
JNUG3131
ZigBee 3.0 Devices User Guide
Rev. 2.3 — 24 January 2025 User guide

Document information
Information Content

Keywords JNUG3131, K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x family of
microprocessors, NXP hardware platforms, ZigBee devices, Zigbee Lighting and Occupancy
device types, supported clusters, attributes, ZigBee 3.0 software architecture, ZigBee 3.0
Software Development Kit (SDK)

Abstract This manual describes ZigBee 3.0 software architecture, the supported Zigbee device types and
instructions for using the device software on the wireless microcontrollers hardware platforms:
K32W148-EVK, FRDM-MCXW71, FRDM-MCXW72, MCX-W71-EVK, and MCX-W72-EVK. These
platforms belong to the NXP provided K32W041, K32W061, K32W1, MCXW71, MCXW72, and
JN518x family of wireless microcontrollers.

https://www.nxp.com

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Overview

This manual describes ZigBee 3.0 software architecture and the supported Zigbee device types. It also
describes Zigbee Lighting and Occupancy device types and how to implement these devices on the K32W148-
EVK, FRDM-MCXW71, FRDM-MCXW72, MCX-W71-EVK, and MCX-W72-EVK hardware platforms provided by
NXP.

The device software described in this manual can be used on the NXP K32W041, K32W061, K32W1,
MCXW71, MCXW72, and JN518x family of wireless microcontrollers.

The document is organized as follows:

• Chapter 1 introduces ZigBee device types and provides general guidance on implementing device types in
ZigBee application software.

• Chapter 2 describes the ZigBee Base Device (ZBD), including the associated functions and other resources.
• Chapter 3 describes the ZigBee Lighting and Occupancy (ZLO) device types, including the device software

structures and functions.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
2 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Conventions
• Bold type font represents Files, folders, GUI elements, function names, and parameter types.
• italics type font represents function parameters.
• Courier New typeface represents Code fragments.

Note: This is a sample Note. It highlights important additional information.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
3 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Acronyms and abbreviations
Table 1 lists the acronyms and abbreviations used in this document.

Acronym Description

ACE Ancillary Control Equipment

APDU Application Protocol Data Unit

API Application Programming Interface

BDB Base Device Behavior

CIE Control and Indicating Equipment

DRLC Demand-Response and Load Control

HA Home Automation

IAS Intruder Alarm System

SDK Software Development Kit

SE Smart Energy

WD Warning Device

ZBD ZigBee Base Device

ZCL ZigBee Cluster Library

ZLO ZigBee Lighting and Occupancy

ZPS ZigBee PRO Stack

Table 1. Acronyms and abbreviations

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
4 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Related documents and support resources
• JNUG3130 ZigBee 3.0 Stack User Guide
• JNUG3132 ZigBee Cluster Library (for ZigBee 3.0) User Guide
• Connectivity Framework Reference Manual
• 13-0402 Base Device Behavior Specification [from ZigBee Alliance]
• 15-0014 Lighting & Occupancy Device Specification [from ZigBee Alliance]
• 075123 rev 6 ZigBee Cluster Library Specification [from ZigBee Alliance]

To access online support resources such as SDKs, Application Notes, and User Guides, visit the Wireless
Connectivity area of the NXP website:

https://www.nxp.com/products/wireless:WIRELESS-CONNECTIVITY

All NXP resources referred to in this manual can be found at the above address, unless otherwise stated.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
5 / 115

https://www.nxp.com/products/wireless:WIRELESS-CONNECTIVITY
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

1 Introduction

The nodes of a ZigBee wireless network are based on device types defined by the ZigBee Alliance. Such a
device type is a software entity that determines the functionality supported by a node. This chapter introduces
ZigBee device types and describes related concepts that are required in programming software applications for
ZigBee nodes.

Note: ZigBee device types have previously been collected together in market-specific application profiles,
such as Home Automation. ZigBee 3.0 allows devices from different market sectors to exist in the same
network. Therefore, application profiles are not so prevalent in ZigBee 3.0 but are still supported for backward
compatibility.

1.1 ZigBee device types
A device type is a software entity which defines the functionality of a ZigBee node. The device type defines
a collection of clusters that make up this functionality. A cluster is therefore a basic building-block of device
functionality. Some clusters are mandatory and some are optional. For example, the Thermostat device uses
the Basic and Temperature Measurement clusters, and can also use one or more optional clusters.

Note: The clusters used by a device type are supplied in the ZigBee Cluster Library (ZCL). The ZCL is detailed
in the ZigBee Cluster Library (for ZigBee 3.0) User Guide (JNUG3132).

A device is an instance of a device type.

A network node can support more than one device type. The application for a device type runs on a software
entity called an endpoint and each node can have up to 240 endpoints, numbered from 1.

In addition, every ZigBee 3.0 node must employ the following devices:

• ZigBee Base Device (ZBD): This is a standard device type which handles fundamental operations such as
commissioning. This device does not need an endpoint. The ZigBee Base Device is fully detailed in Chapter
2.

• ZigBee Device Objects (ZDO): This represents the ZigBee node type (Coordinator, Router, or End Device)
and has a number of communication roles. This device occupies endpoint 0.

The relative locations of the different devices are indicated in Section 1.2.

1.2 Software architecture
Figure 1 shows the basic ZigBee 3.0 software architecture, which illustrates the locations of the ZigBee devices.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
6 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

IEEE 802.15.4 MAC layer

Application (APL) layer

IEEE 802.15.4 PHY layer

ZigBee Cluster Library (ZCL)

ZigBee Device(s) ZigBee
Device
Objects
(ZDO)

Network (NWK) layer

ZigBee
Base

Device

Application Support sub-layer (APS)

Figure 1. Basic Software Architecture

For more detailed software architecture information, refer to the ZigBee 3.0 User Guide (JNUG3130).

1.3 Shared device structure
The basic operations in a ZigBee 3.0 network are concerned with reading and setting the attribute values of the
clusters of a device. In each device, attribute values are exchanged between the application and the ZigBee
Cluster Library (ZCL) by means of a shared structure. This structure is protected by a mutex (described in
the ZCL User Guide (JNUG3132)). The structure for a particular device contains structures for the clusters
supported by that device.

Note: In order to use a cluster which is supported by a device, the relevant option for the cluster must be
specified at build-time - see Section 1.6.

A shared device structure may be used in either of the following ways:

• The local application writes attribute values to the structure, allowing the ZCL to respond to commands
relating to these attributes.

• The ZCL parses incoming commands that write attribute values to the structure. The written values can then
be read by the local application.

Remote read and write operations involving a shared device structure are illustrated in Figure 2. For more
detailed descriptions of these operations, refer to the ZCL User Guide (JNUG3132).

Note: The shared device structure is located on the server device, which hosts the cluster server to be
accessed. The client device, which performs the remote access, hosts the corresponding cluster client.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
7 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Read
Command

Response

Server Device

Device
Structure

Application

WriteRead

Client Device

Application

Read Request

ZCLZCL

Reading Remote Attributes

Write
Command

Server Device

Device
Structure

Application

Read
Write

Client Device

Application

Write Request

ZCLZCL

Writing Remote Attributes

Response

Application requests read of attribute values from device
structure on remote server and ZCL sends request .
ZCL receives response and generates events (which can
prompt application to read attributes from structure).

1.

4.

If necessary, application first updates attribute values in
device structure.
ZCL reads requested attribute values from device structure
and then returns them to requesting client .

2.

3.

ZCL sends 'write attributes' request to remote server.
ZCL can receive optional response and generate events
for the application (that indicate any unsuccessful writes).

1.
5.

ZCL writes received attribute values to device structure and
optionally sends response to client.
If required, application can then read new attribute values
from device structure.
ZCL can optionally generate a ‘write attributes’ response .

2.

3.

4.

Event (s)

Event (s)

Figure 2. Operations using Shared Device Structure

Note: If there are no remote attribute writes, the attributes of a cluster server (in the shared structure) on a
device are maintained by the local application.

1.4 Endpoint callback functions
A user-defined callback function must be provided for each endpoint used. The callback function is invoked
when an event occurs (such as an incoming message) relating to the endpoint. The callback function is
registered when the endpoint is registered using the registration function for the device type that the endpoint
supports (see Section 1.4) - for example, using the function eZLO_RegisterOnOffLightEndPoint() for an On/
Off Light device (see Section 3.1).

The endpoint callback function has the type definition given below:

typedef void (* tfpZCL_ZCLCallBackFunction)

(tsZCL_CallBackEvent *pCallBackEvent); where pCallBackEvent is a pointer the event.

Note: Events that do not have an associated endpoint are delivered via the general stack-supplied callback
function APP_vGenCallback(). For example, stack leave and join events can be received by the application
through this callback function. Stack events are described in the ZigBee 3.0 Stack User Guide.

Note: (JNUG3130).

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
8 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

1.5 Device initialization
A ZigBee 3.0 application is initialized as described in the section "Forming and Joining a Network" of the ZigBee
3.0 Stack User Guide (JNUG3130). In addition, some device initialization must be performed.

ZigBee devices must be initialized in the following order and steps:

1. In the header file zcl_options.h, enable the required compile-time options. These options include the clusters
to be used by the device, the client/server status of each cluster and the optional attributes for each cluster. For
more information on compile-time options, refer to Section 1.6.

2. In the application, create an instance of the device structure by declaring a file scope variable - for example:

tsZLO_DimmableLightDevicesDevice;

3. In the initialization part of the application, set up the device handled by your code, as follows:

a) Set the initial values of the cluster attributes to be used by the device - for example:

sDevice.sBasicCluster.u8StackVersion=1;
sDevice.sBasicCluster....

b) After calling eZCL_Initialise() and before calling ZPS_eAplAfInit(), register the device by calling the relevant
device registration function - for example, eZLO_RegisterDimmableLightEndPoint(). In this function call, the
device allocates a unique endpoint (in the range 1-240). In addition, its device structure is specified as well as
a user-defined callback function is invoked when an event occurs relating to the endpoint (see Section 1.5). As
soon as this function has been called, the shared device structure is read by another device.

c) After calling ZPS_eAplAfInit(), initialize and start the ZigBee Base Device (ZBD) by calling BDB_vInit() and
then BDB_vStart(). Refer to Section 2.1 for more details of ZigBee Base Device initialization.

Note:

1. The set of endpoint registration functions for the different device types is detailed in the device type
descriptions - for example, in Chapter 3 for Lighting and Occupancy devices.

2. The device registration functions create instances of all the clusters used by the device. Thus, there is no
need to call the individual cluster creation functions explicitly, for example, eCLD_IdentifyCreateIdentify()
for the Identify cluster.

1.6 Compile-time options
Before a ZigBee 3.0 application is built, configure compile-time options in the header file zcl_options.h for the
application.

Note:

1. Cluster-specific compile-time options are detailed in the cluster descriptions in the ZCL User Guide
(JNUG3132).

2. In addition, set compile-time options for the ZigBee Base Device in the file bdb_options.h - see Section
2.10.

Number of Endpoints

An application must specify the highest numbered endpoint used by it - for example:

#define BDB_FB_NUMBER_OF_ENDPOINTS3

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
9 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Normally, the endpoints starting at endpoint 1 are for application use, so the above case uses endpoints
1 to 3. It is possible, however, to use the lower numbered endpoints for non-application purposes,
for example, to run other protocols on endpoints 1 and 2, and the application on endpoint 3. With
BDB_FB_NUMBER_OF_ENDPOINTS set to 3, some storage is statically allocated for endpoints 1 and 2 but never
used. Note that this define applies only to local endpoints - the application can refer to remote endpoints with
numbers beyond the locally defined value of BDB_FB_NUMBER_OF_ENDPOINTS.

Manufacturer Code

The ZCL allows a manufacturer code to define devices developed by a certain manufacturer. The value
allocated to a manufacturer by the ZigBee Alliance is a 16-bit and is set as follows:

#define ZCL_MANUFACTURER_CODE0x1037

The above example sets the manufacturer code to the default value of 0x1037 (which belongs to NXP) but
manufacturers should set their own allocated value.

Enabled Clusters

Enable all the required clusters in the options header file. For example, an application for an On/Off Light device
that uses all the possible clusters requires the following definitions:

#define CLD_BASIC
#define CLD_IDENTIFY
#define CLD_GROUPS
#define CLD_SCENES
#define CLD_ONOFF

Server and Client options

Many clusters have options that indicate whether the cluster acts as a server or a client on the local device.
If the cluster is enabled using one of the above definitions, define the server/client status of the cluster. For
example, to employ the Groups cluster as a server, include the following in the header file:

#define GROUPS_SERVER

Support for attribute Read/Write

Compile read/write access to cluster attributes into the application explicitly. Separately enable the server and
client sides of a cluster using the following macros in the options header file:

#define ZCL_ATTRIBUTE_READ_SERVER_SUPPORTED
#define ZCL_ATTRIBUTE_READ_CLIENT_SUPPORTED
#define ZCL_ATTRIBUTE_WRITE_SERVER_SUPPORTED
#define ZCL_ATTRIBUTE_WRITE_CLIENT_SUPPORTED

Each of the above definitions applies to all clusters used in the application.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
10 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Optional attributes

Many clusters have optional attributes that may enable at compile time via the options header file - for example,
the Basic cluster ‘application version’ attribute is enabled as follows:

#define CLD_BAS_ATTR_APPLICATION_VERSION

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
11 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

2 ZigBee Base Device

The ZigBee Base Device (ZBD) is a mandatory device on all nodes of a ZigBee 3.0 network. It exists alongside
one or more other ZigBee device types on a node, but does not require an endpoint. The ZigBee Base Device
provides a framework for the use of ZigBee device types. It implements basic functionality that all nodes require
and ensures consistent behavior across all nodes, particularly regarding network creation, joining, and security.

The network commissioning and security functionality of the ZigBee Base Device is described in this chapter.
The chapter also describes the NXP resources required to implement these features in ZigBee 3.0 applications
on the NXP hardware platforms:- K32W148-EVK, FRDM-MCXW71, FRDM-MCXW72, MCX-W71-EVK, and
MCX-W72-EVK. These platforms belong to NXP provided K32W041, K32W061, K32W1, MCXW71, MCXW72,
and JN518x family of wireless microcontrollers.

Detailed information about the ZigBee Base Device is provided in the ZigBee Base Device Behavior
Specification (13-0402), available from the ZigBee Alliance.

2.1 Initializing and starting the ZigBee Base Device
Initialize the ZigBee Base Device in the application code using the function BDB_vInit(). Call this function after
initializing the ZigBee PRO stack and after restoring the ZigBee Base Device attribute bbdbNodeIsOnANetwork
from persistent storage.

Note:

1. BDB_vInit() internally calls the function BDB_vSetKeys(), which loads into memory the pre-configured
link key from the file bdb_link_keys.c. Network security and the pre-configured link keys are described in
Section 2.3.

2. The ZigBee Base Device requires a number of internal software times, the number defined by the macro
BDB_ZTIMER_STORAGE. Therefore, when the application calls ZTIMER_eInit() to initialize the required
software timers and allocate storage (array elements) for them, it must add BDB_ZTIMER_STORAGE
timers for use by the ZigBee Base Device. This function must be called beforeBDB_vInit(). Software timers
and their associated functions are described in the ZigBee 3.0 Stack User Guide (JNUG3130).

The ZigBee Base Device is started by calling the function BDB_vStart(). This function may or may not perform
an action. It depends on the node type and whether the node was previously a member of a network. In both
cases, the function finally invokes the callback function APP_vBdbCallback() with a suitable event.

If the node was not on a network:

For a Router node that supports Touchlink commissioning (see Section 2.2.1), the function
selects a radio channel for the node from the set of primary channels for Touchlink specified in the
BDBC_TL_PRIMARY_CHANNEL_SET bitmap (see Section 2.5.2.2). Either the first channel of the specified set
selects or, if the macro RAND_CHANNEL is set to TRUE (in the file bdb_options.h), a channel selects from the
set at random.

For the Coordinator and other Router and End Device nodes, no action is taken. The application must then
form a network (Coordinator or Router). Alternatively, it can join the node to a network using one of the
commissioning methods described in Section 2.2 (End Device or Router).

In the above cases, the function generates a BDB_EVENT_INIT_SUCCESS event.

If the node was on a network:

For Coordinator and Router nodes, no action is taken and the function generates a
BDB_EVENT_INIT_SUCCESS event.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
12 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

For an End Device node, the function attempts to rejoin the node to the network. It performs a series of rejoin
cycles, where each cycle comprises the following three rejoin attempts:

1. First attempt with the previously used network parameters (without network discovery)

2. Second attempt with network discovery on the set of primary channels specified in the
u32bdbPrimaryChannelSet bitmap (attribute)

3. Third attempt with network discovery on the set of secondary channels specified in the
u32bdbSecondaryChannelSet bitmap (attribute)

The channel bitmaps are ZigBee Base Device attributes, described in Section 2.5.1.

The above rejoin cycle performs up to a maximum of BDBC_IMP_MAX_REJOIN_CYCLES times, which is an
implementation-specific ZigBee Base Device constant (see Section 2.5.2).

If a rejoin attempt is successful, the function generates the event BDB_EVENT_REJOIN_SUCCESS.

If all the rejoin attempts are unsuccessful, the function generates the event BDB_EVENT_REJOIN_FAILURE
unless unsecured joins are enabled through the APS attribute apsUseInsecureJoin, in which case the function
attempts a join through Network Steering (described in Section 2.2.2). The nature of the join depends on the
value of the Extended PAN ID (EPID) set in the APS attribute ApsUseExtendedPanid:

• For a non-zero EPID, the node attempts to join the network with this EPID.
• For a zero EPID, the function attempts to join any available network.

This join is attempted with an automatic call to the function BDB_eNsStartNwkSteering().

2.2 Network commissioning
Network commissioning covers the following activities:

• Creating a network
• Allowing devices to join the network (through the local node)
• Joining a network
• Binding a local endpoint to an endpoint on a remote node
• Adding a remote node to a group

The commissioning activities performed by an individual node depend on the ZigBee node type (Coordinator,
Router, End Device) and the commissioning modes that are enabled for the node. A number of different
commissioning modes are available through the ZigBee Base Device. These modes are listed in Table 2 along
with the commissioning activities that they support.

Commissioning mode Functionality

Touchlink • Creating a new network
• Allowing other devices to join an existing network
• Joining local device to an existing network

Network steering • Allowing other devices to join an existing network
• Joining local device to an existing network

Network formation • Creating a new network

Finding and binding • Binding a local endpoint to an endpoint on a remote node
• Adding a remote node to a group

Table 2. Functionality of Commissioning Modes

The commissioning modes are individually enabled/disabled via the attribute u8bdbCommissioningMode, as
indicated in Table 3 below. This attribute is a bitmap with a bit for each of four commissioning mode - a bit is to

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
13 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

‘1’ to enable or ‘0’ to disable the corresponding commissioning mode. Enumerations are available to enable the
individual modes (set their bits to ‘1’).

Bit Commissioning mode Enumeration

0 Touchlink BDB_COMMISSIONING_MODE_TOUCHLINK

1 Network steering BDB_COMMISSIONING_MODE_NWK_STEERING

2 Network formation BDB_COMMISSIONING_MODE_NWK_FORMATION

3 Finding and binding BDB_COMMISSIONING_MODE_FINDING_N_BINDING

Table 3. Commissioning Modes (configured via bdbCommissioningMode)

The current commissioning state on a node is reflected in the attribute ebdbCommissioningStatus.

In the NXP implementation of the ZigBee Base Device, the individual commissioning modes are initiated
under application control using supplied API functions. A commissioning mode is invoked by the application if
the mode is enabled and the node type is relevant to the mode (for example, an End Device cannot perform
Network Formation).

The commissioning modes are outlined in the subsections below. For detailed information on these modes,
refer to the ZigBee Base Device Behavior Specification (13-0402-08).

Note: A node is normally be prompted to enter commissioning by a user action, such as pressing a button on
the node. This action may be on behalf of the node as a whole or a single endpoint on the node.

2.2.1 Touchlink

Touchlink commissioning is used to form a new network and/or join a node to an existing network. Touchlink is
initiated on a node called the ‘initiator’ which either is a member of an existing network or (if not) creates a new
network. In both cases, the initiator joins a second node to the network, called the ‘target’ node.

Touchlink is provided as a cluster in the ZigBee Cluster Library (ZCL). The initiator must support the Touchlink
cluster as a client and the target node must support the cluster as a server. If it is required on a node, Touchlink
commissioning must be enabled via the ZigBee Base Device attribute u8bdbCommissioningMode. For detailed
information on the Touchlink Commissioning cluster and how to implement Touchlink, refer to the ZigBee
Cluster Library User Guide (JNUG3132).

A ‘Touchlink Pre-configured Link Key’ is provided, which is used during the commissioning of a node into a
secured network (see Section 2.3).

If Touchlink commissioning is not successful, this is indicated by a status of NO_SCAN_RESPONSE through the
attribute ebdbCommissioningStatus (all other states indicate success).

2.2.2 Network steering

Network Steering is used to join the local node to an existing network or allow other nodes to join a network via
the local node.

If Network Steering is required on a node, enable it via the attribute u8bdbCommissioningMode. You can start
Network Steering from your application by calling the function BDB_eNsStartNwkSteering().

The path taken depends on whether the local node is already a member of a network, as indicated by the
Boolean attribute bbdbNodeIsOnANetwork. In all cases, the outcome of Network Steering is indicated by events
passed into the callback function APP_vBdbCallback().

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
14 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Node is already on a network

When the node is a member of a network, it opens the network for other nodes to join for a fixed time period. It
performs this by broadcasting a Management Permit Joining request (any node type can open the network in
this way). This period is 180 seconds by default, but can be configured (in seconds) through the ZigBee Base
Device constant BDBC_MIN_COMMISSIONING_TIME (see Section 2.5.2). After initiating the above broadcast,
the event BDB_EVENT_NWK_STEERING_SUCCESS is generated.

Node is not on a network

When the node is not a member of a network and is a Router or End Device, it searches for a suitable network
to join. If it finds one, it attempts to join the network, as follows:

1. The node performs a network discovery by scanning the primary set of radio channels specified through the
u32bdbPrimaryChannelSet bitmap (attribute). If no open network is found, the network discovery is repeated
on the secondary set of radio channels specified through the u32bdbSecondaryChannelSet bitmap (attribute).
If still no network is found, the event BDB_EVENT_NO_NETWORK is generated and the Network Steering is
abandoned.

2. If at least one open network is found, the node then attempts to join each discovered open network one
by one, up to a maximum of BDBC_MAX_SAME_NETWORK_RETRY_ATTEMPTS times. If a network is
successfully joined, the attribute bbdbNodeIsOnANetwork is set to TRUE. If there is no successful join following
a scan of the primary channels, the scan is repeated (Step 1) on the secondary channels. If there is still no
successful join following this scan, the BDB_EVENT_NWK_JOIN_FAILURE event is generated and the Network
Steering is abandoned.

3. The joining node is authenticated and receives the network key from its parent. If the network being joined
has centralized security and therefore a Trust Centre, the node unicasts a Node Descriptor request to the
Trust Centre. The Node Descriptor received back is checked to ensure that the Trust Centre supports the
ZigBee PRO stack version r21 or above. If so, the node performs the procedure for retrieving a new Trust
Centre link key to replace its pre-configured link key. Failure at any point is indicated to the application by a
BDB_EVENT_NWK_JOIN_FAILURE event.

4. On successful completion of the above steps, the joining node requests that the ‘permit joining’ time (for
new nodes to join the network) is extended by BDBC_MIN_COMMISSIONING_TIME (180 s by default) and
generates a BDB_EVENT_NWK_STEERING_SUCCESS event for the application.

Depending on the outcome of the above Network Steering process:

• If the node successfully joins a network, you may wish to bind the node to another node or add the node to a
group, wherein it is necessary to continue to the Finding and Binding stage, described in Section 2.2.4.

• If the node fails to join a network, you may wish to make sure that the desired network is open for joining and
reinitiate this Network Steering procedure. If there is a Router node, the application may opt to form its own
distributed network, wherein it is necessary to continue to the Network Formation stage described in Section
2.2.3.

2.2.3 Network Formation

Network Formation allows a new network to be created by a Coordinator or Router.

• A Coordinator forms a centralized security network (see Section 2.3.1) and activate its Trust Centre
functionality.

• A Router forms a distributed security network (see Section 2.3.2).

If Network Formation is required on a node, enable it via the attribute u8bdbCommissioningMode. You can start
Network Formation from your application by calling the function BDB_eNfStartNwkFormation().

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
15 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

The node performs a scan of the primary set of radio channels specified through the u32bdbPrimaryChannelSet
bitmap (attribute) to form a centralized or distributed network with a unique PAN ID on one of the free
primary channels. If this network formation fails or the primary channel bitmap is set to zero, the node
performs a scan of the secondary set of radio channels. these radio channels are specified through the
u32bdbSecondaryChannelSet bitmap (attribute) to form a centralized or distributed network with a unique PAN
ID on one of the free secondary channels.

During the formation of a distributed security network by a Router:

• The above channel scans start with the first channel of the relevant set and cover all the specified channels.
• If the macro RAND_CHANNEL is TRUE (in the application), a channel is selected at random from the

scanned channels.
• The macro RAND_DISTRIBUTED_NWK_KEY is set to TRUE to choose a network key at random (but may be

set to FALSE during application development in order to use a specific network key).
• The PAN ID and Extended PAN ID are allocated at random (but must not clash with the other networks

operating in the neighbourhood).
• The 16-bit network address of the local is allocated at random.

In all cases, successful Network Formation is indicated by the event
BDB_EVENT_NWK_FORMATION_SUCCESS through the callback function APP_vBdbCallback(). The
unsuccessful Network Formation is indicated by the event BDB_EVENT_NWK_FORMATION_FAILURE.

If Network Formation is successful, the new network consists of just one node. Further nodes are added to the
network using Network Steering (see Section 2.2.2) or Touchlink (see Section 2.2.1).

2.2.4 Finding and Binding

Finding and Binding mode allows a node in the network to pair with another network node - for example, a new
lamp may pair with a controller device, to allow control of the lamp. The objective of this commissioning mode is
to bind an endpoint on a new node to a compatible endpoint on a remote node in the network (depending on the
supported clusters). Alternatively, the new node is added to a group of nodes that are collectively controlled.

If it is required on a node, enable Finding and Binding via the attribute u8bdbCommissioningMode.

In Finding and Binding, a node have one of two roles:

• Initiator: This node either creates a (local) binding with a remote endpoint or requests that the remote
endpoint is added to a group.

• Target: This node identifies itself, and receives and responds to requests from the initiator.

The intended outcome is a pairing between the initiator and the target. Usually, the initiator is a controller
device. The path followed by the Finding and Binding process depends on whether the local endpoint is an
initiator or a target.

2.2.4.1 Initiator Node

Finding and Binding is started on an initiator node by calling the function BDB_eFbTriggerAsInitiator().
This function is called as the result of a user action on the node, such as a button-press. The initiator
then remains in Finding and Binding mode for a fixed time-interval (in seconds) defined by the constant
BDBC_MIN_COMMISSIONING_TIME. If Finding and Binding does not succeed within this time, the event
BDB_EVENT_FB_TIMEOUT is generated and passed into the callback function APP_vBdbCallback().

Once Finding and Binding starts, the initiator node searches for target endpoints by broadcasting
an Identify Query command periodically with a period (in seconds) defined through the macro
BDB_FB_RESEND_IDENTIFY_QUERY_TIME.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
16 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Note: Before each broadcast attempt, the event BDB_EVENT_FB_NO_QUERY_RESPONSE is generated
and passed into APP_vBdbCallback(). This event allows the application to exit the current Finding and Binding
process (see below).

If the initiator receives an Identify Query response from a remote endpoint, the application must pass
the ZCL event BDB_E_ZCL_EVENT_IDENTIFY_QUERY to the Base Device using the function
BDB_vZclEventHandler(). This event allows the Base Device to gather information about the identifying
device by sending a Simple Descriptor request to the relevant endpoint. If the requested Simple Descriptor is
successfully received back, the callback function checks this descriptor for clusters that match those on the
initiator. The application is notified of via a BDB_EVENT_FB_HANDLE_SIMPLE_DESC_RESP_OF_TARGET
event passed into APP_vBdbCallback().

If there is at least one matching cluster, the initiator does one of the following:

• If binding is required (indicated by the u16bdbCommissioningGroupID attribute being equal to 0xFFFF), the
initiator adds the remote endpoint to the local Binding table (but should first request the IEEE/MAC address of
the remote node).

• If grouping is required (indicated by the u16bdbCommissioningGroupID attribute being equal to a 16-bit group
address), the initiator requests that the target endpoint adds the group address to its Group Address table.

The application is notified of a successful binding or grouping via the following events:

• For a binding:
– BDB_EVENT_FB_BIND_CREATED_FOR_TARGET for success
– BDB_EVENT_FB_ERR_BINDING_FAILED for failure

• For a grouping:
– BDB_EVENT_FB_GROUP_ADDED_TO_TARGET for success
– BDB_EVENT_FB_ERR_GROUPING_FAILED for failure

At this point, the application can remotely stop identification mode (and therefore Finding and Binding) on the
target node by calling the Identify cluster function eCLD_IdentifyCommandIdentifyRequestSend() to request
that the identification mode period is set to zero.

A Finding and Binding process is stopped on the initiator endpoint using the function
BDB_vFbExitAsInitiator(). This function is typically called in the callback function APP_vBdbCallback() as the
result of a user action, such as a button-press or button-release.

2.2.4.2 Target Node

Finding and Binding is started on a target node by calling the function BDB_eFbTriggerAsTarget(). This
function is called as the result of a user action on the node, such as a button-press.

The target node then uses the Identify cluster to put itself into identification mode for a fixed time period. This
period (in seconds) is determined by u16IdentifyTime, an Identify cluster attribute which is automatically set
to the value of the constant BDBC_MIN_COMMISSIONING_TIME. In identification mode, the cluster responds
to any received Identify Query commands, as well as other Finding and Binding commands. The node may also
visually or audibly indicate that it is in identification mode. On exiting identification mode at the end of the above
period, the cluster is no longer able to process Identify Query commands but the node is still able to service
other commands from the initiator related to the binding/grouping. The Identify cluster is fully described in the
ZigBee Cluster Library User Guide (JNUG3132).

A target node can be brought out of the Finding and Binding process in either of the following ways:

• The local application can call the function BDB_vFbExitAsTarget() as the result of a user action, such as a
button-press or button-release.

• The remote application (on the initiator) can call the Identify cluster function eCLD_IdentifyCommand
IdentifyRequestSend() to request that the identification mode period is set to zero. To indicate to

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
17 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

the Base Device that the identification process has ended, the application must pass the ZCL event
BDB_E_ZCL_EVENT_IDENTIFY to the Base Device using the BDB_vZclEventHandler() function. This
allows the Base Device to exit the 'Finding and Binding' process on the target endpoint.

2.2.5 Out-Of-Band Commissioning

A node is commissioned to a ZigBee network via out-of-band means - that is, not using IEEE802.15.4 packets
operating in the radio channel used by the target network. For example, the out-of-band commissioning is
conducted from another ZigBee device using inter-PAN packets (operating in a different radio channel) or by a
commissioning device that uses NFC (Near Field Communication).

Out-of-band commissioning creates a new network by starting the Coordinator or to join a Router or End Device
to an existing network. To do this, commissioning data must be sent to the node via an out-of-band means. This
data includes details of the network (see Section 2.7.5). The application must pass the received commissioning
data to the ZigBee Base Device and start out-of-band commissioning using the function BDB_u8OutOfBand
CommissionStartDevice(). The data is then stored locally.

As part of the out-of-band commissioning of a node to an existing centralized network, the Trust Centre of the
joined network must validate the new node by checking that the node contains appropriate data values, such
as the correct network key and Trust Centre address. If such a validation request is received by the node, the
required data values are obtained by the application in either of two ways:

• The function BDB_vOutOfBandCommissionGetData() is used to read the relevant data values. In this case,
the application should encrypt the obtained network key before sending the data to the Trust Centre. The
install code for the node should be used in this encryption.

• The function BDB_eOutOfBandCommissionGetDataEncrypted() is used to read the relevant data values
and encrypt the obtained network key - therefore, the network key is delivered encrypted. The install code
for the node used in this encryption must be specified in the function call. The application then sends the
obtained data to the Trust Centre.

Once the Trust Centre receives the requested data, it decrypts the obtained network key using the function
BDB_bOutOfBandCommissionGetKey() and then checks if the correct key is used. This function requires the
install code for the new node, which must be supplied to the Trust Centre via out-of-band means (for example,
via a keypad).

Security keys and install codes are described in Section 2.3.

2.3 Network security
The ZigBee Base Device supports the following network security modes:

• Centralized security
• Distributed security

These security modes are described in the subsections below:

All Router and End Device nodes should support both centralized security and distributed security by adapting
to the security scheme employed by the network that they join. A Co-ordinator supports only centralized
security.

When the application calls BDB_vInit(), this function internally calls the function BDB_vSetKeys(). This
function loads the appropriate pre-configured link key, depending on whether the node type supports centralized
and/or distributed security. The pre-configured link keys are defined in the file bdb_link_keys.c.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
18 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

2.3.1 Centralized security networks

A centralized security network is formed by a Coordinator, which also acts as the Trust Centre for the network.
When a node attempts to join the network, it is authenticated by this Trust Centre before it is allowed into the
network.

For participation in centralized security networks, all nodes must be pre-configured with a link key. This key is
used to encrypt the network key when passing it from the Trust Centre to a newly joined node. When a node
joins a network with centralized security, the ZigBee Base Device automatically uses the relevant pre-configured
link key. Similar is the case for a Coordinator that forms a new centralized security network.

The following key types can be pre-configured for centralized security:

• Default Global Trust Centre Link Key: This key is factory-programmed into all nodes and is used to encrypt
communications between the Trust Centre and a joining node.

• Touchlink Pre-configured Link Key: This key is factory-programmed into all nodes that can employ
Touchlink commissioning and is used to encrypt communications between the Router parent and a joining
node. The Touchlink Pre-configured Link Key can be one of three types:
– Development key, used during development before ZigBee certification
– Master key, used after successful ZigBee certification
– Certification key, used during ZigBee certification testing

The link key used in the final products should be a ‘master key’, which results from the successful
ZigBee certification of the product.

• Install Code-derived Pre-configured Link Key: This key is derived by the ZigBee stack from a random
install code which is assigned to each Router and End Device node in the factory. The install code is
factory-programmed into the node but provided to the Trust Centre via out-of-band means when the node is
commissioned. The use of install codes is described in more detail below.

Install Codes

An install code is used to create an initial link key employed in commissioning an individual node into a
centralized security network. An install code is assigned to the node in the factory. It is a random code but is not
necessarily unique (the same install code may be randomly generated for more than one node). The ZigBee
stack derives a link key from the install code using a Matyas-Meyer-Oseas hash function. The install code is
factory-programmed into the node and also accompanies the node (for example: in printed form) when it leaves
the factory. The process of using an install code to commission a node is outlined below.

In the factory:

1. An install code is randomly generated for the individual node.

2. The install code is programmed into the node.

3. A pre-configured link key is derived from the install code by the ZigBee stack.

4. The install code is shipped with the node (by some unspecified means).

During installation:

5. The install code that was shipped with the node is installed into the Co-ordinator/Trust Centre.

6. The pre-configured link key is derived from the install code by the ZigBee stack of the Co-ordinator/Trust
Centre.

7. The Trust Centre and node then use the pre-configured link key in joining the node to the network (for
example: to encrypt/decrypt the network key).

More detailed information about install codes are available in the ZigBee Base Device Behavior Specification
(13-0402-08).

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
19 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

2.3.2 Distributed security networks

A distributed security network is formed by a Router and does not have a Trust Centre. It consists only of
Routers and End Devices. When a node attempts to join the network, it is authenticated by its Router parent
before it is allowed into the network.

For participation in distributed security networks, all Router and End Device nodes must be pre-configured
with a link key. This key is used to encrypt the network key when passing it from a Router parent to a newly
joined node. When a Router or End Device joins a network with distributed security, the ZigBee Base Device
automatically uses the relevant pre-configured link key. Similar is the case for a Router that forms a new
distributed security network.

The following key types can be pre-configured for distributed security:

• Distributed Security Global Link Key: This key is factory-programmed into all nodes and is used to encrypt
communications between the Router parent and a joining node.

• Touchlink Pre-configured Link Key: This key is factory-programmed into all nodes that can employ
Touchlink commissioning and is used to encrypt communications between the Router parent and a joining
node. The Touchlink Pre-configured Link Key can be one of three types:
– Development key, used during development before ZigBee certification
– Master key, used after successful ZigBee certification
– Certification key, used during ZigBee certification testing

The link key used in the final products should be a ‘master key’, which results from the successful
ZigBee certification of the product.

2.4 ZigBee base device rejoin handling
For a Router or End Device, there are instances in which the ZigBee PRO stack initiates a network rejoin
attempt and include:

• A Router or End Device which receives a ‘leave with rejoin’ request.
• An End Device which polls its parent for data but fails to receive a response.

The ZigBee Base Device handles the stack events that result from this rejoin attempt:

• If the stack event ZPS_EVENT_NWK_FAILED_TO_JOIN is received to indicate an unsuccessful rejoin,
the ZigBee Base Device makes a series of rejoin attempts as described for the case "If the node was in a
network" in Section 2.1. If a rejoin attempt is successful, the event BDB_EVENT_REJOIN_SUCCESS is
generated to notify the application. If all rejoins are unsuccessful, the event BDB_EVENT_REJOIN_FAILURE
is generated unless unsecured joins are enabled, in which case a join through Network Steering is attempted.

• If the stack event ZPS_EVENT_NWK_JOINED_AS_ROUTER or
ZPS_EVENT_NWK_JOINED_AS_END_DEVICE is received to indicate a successful rejoin, the event
BDB_EVENT_REJOIN_SUCCESS is generated to notify the application.

2.5 Attributes and Constants

2.5.1 Attributes

The attributes of the ZigBee Base Device are contained in the structure BDB_tsAttrib, shown below:

typedefstruct
{
uint16u16bdbCommissioningGroupID;
uint8u8bdbCommissioningMode;
BDB_teCommissioningStatusebdbCommissioningStatus;
uint64u64bdbJoiningNodeEui64;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
20 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

uint8au8bdbJoiningNodeNewTCLinkKey[16];
bool_tbbdbJoinUsesInstallCodeKey;
constuint8u8bdbNodeCommissioningCapability;
bool_tbbdbNodeIsOnANetwork;
uint8u8bdbNodeJoinLinkKeyType;
uint32u32bdbPrimaryChannelSet;
uint8u8bdbScanDuration;
uint32u32bdbSecondaryChannelSet;
uint8u8bdbTCLinkKeyExchangeAttempts;
uint8u8bdbTCLinkKeyExchangeAttemptsMax;
uint8u8bdbTCLinkKeyExchangeMethod;
uint8u8bdbTrustCenterNodeJoinTimeout;
bool_tbbdbTrustCenterRequireKeyExchange;
bool_tbTLStealNotAllowed;
bool_tbLeaveRequested;
}BDB_tsAttrib;

The ZigBee Base Device attribute values are initialized at compile time in the bdb_options.h file using the
macros listed in Table 4 below (for information on compile-time options, refer to Section 2.10). The attributes are
written to or read at run time through the above structure.

Note: Both bTLStealNotAllowed and bLeaveRequested are NXP proprietary variables and not ZigBee
attributes.

Attribute Initialization Macro

u16bdbCommissioningGroupID BDB_COMMISSIONING_GROUP_ID

u8bdbCommissioningMode BDB_COMMISSIONING_MODE

ebdbCommissioningStatus BDB_COMMISSIONING_STATUS

u64bdbJoiningNodeEui64 BDB_JOINING_NODE_EUI64

au8bdbJoiningNodeNewTCLinkKey[16] -

bbdbJoinUsesInstallCodeKey BDB_JOIN_USES_INSTALL_CODE_KEY

u8bdbNodeCommissioningCapability -

bbdbNodeIsOnANetwork -

u8bdbNodeJoinLinkKeyType BDB_NODE_JOIN_LINK_KEY_TYPE

u32bdbPrimaryChannelSet BDB_PRIMARY_CHANNEL_SET

u8bdbScanDuration BDB_SCAN_DURATION

u32bdbSecondaryChannelSet BDB_SECONDARY_CHANNEL_SET

u8bdbTCLinkKeyExchangeAttempts BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS

u8bdbTCLinkKeyExchangeAttemptsMax BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS_MAX

u8bdbTCLinkKeyExchangeMethod BDB_TC_LINK_KEY_EXCHANGE_METHOD

u8bdbTrustCenterNodeJoinTimeout BDB_TRUST_CENTER_NODE_JOIN_TIMEOUT

bbdbTrustCenterRequireKeyExchange BDB_TRUST_CENTER_REQUIRE_KEYEXCHANGE

bTLStealNotAllowed -

bLeaveRequested -

Table 4. ZBD Attributes and Initialization Macros

The attributes are individually described below. For further details, refer to the ZigBee Base Device Behavior
Specification (13-0402-08).

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
21 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

u16bdbCommissioningGroupID

This attribute can only be used on a Finding and Binding initiator endpoint. It contains the identifier of
the group in which the initiator puts the target endpoints. If it is equal to 0xFFFF, individual (rather than
group) bindings are created. The value of this attribute can be initialized at compile time using the macro
BDB_COMMISSIONING_GROUP_ID.

Use of this attribute requires Finding and Binding to be enabled in the u8bdbCommissioningMode attribute.

The Finding and Binding commissioning mode is described in Section 2.2.4.

u8bdbCommissioningMode

This attribute is a bitmap used to indicate which commissioning modes are enabled on an endpoint. Each bit
corresponds to a commissioning mode and is set (to ‘1’) when the mode is enabled - this means that the node is
able to implement this commissioning mode, if necessary. The value of this attribute can be initialized at compile
time using the macro BDB_COMMISSIONING_MODE. The bitmap is illustrated in the Table 5, along with the
enumerations used to set the bits.

Bit Commissioning Mode Enumeration

0 Touchlink BDB_COMMISSIONING_MODE_TOUCHLINK

1 Network Steering BDB_COMMISSIONING_MODE_NWK_STEERING

2 Network Formation BDB_COMMISSIONING_MODE_NWK_FORMATION

3 Finding and Binding BDB_COMMISSIONING_MODE_FINDING_N_BINDING

4-7 Reserved (set to ‘0’) -

Table 5. bdbCommissioningMode Bitmap

The commissioning modes are described in Section 2.2.

Note: The attribute is used on all node types. However, in order to enable a commissioning mode, it must
be available on the node, as indicated through the attribute u8bdbNodeCommissioningCapability. The
enabled commissioning modes are a subset of the commissioning capabilities of the node.

ebdbCommissioningStatus

This attribute indicates the status of the commissioning process that is underway on an endpoint. The attribute
takes one of the values defined in the BDB_teCommissioningStatus enumerations (see Section 2.8.2). The
attribute is used on all node types. The value of this attribute is updated internally by the ZigBee Base Device
implementation, but can be read by the application.

u64bdbJoiningNodeEui64

This attribute contains the 64-bit IEEE/MAC address of a node that is in the process of joining a centralized
security network. It is used on the network Coordinator only. The value of this attribute is updated internally by
the ZigBee Base Device implementation.

au8bdbJoiningNodeNewTCLinkKey

This attribute contains a new link key for use with a node that is joining the network but has not yet been
granted full network membership. The value of this attribute is updated internally by the ZigBee Base Device
implementation (on a joining node and its parent).

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
22 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

bbdbJoinUsesInstallCodeKey

This attribute indicates whether a pre-configured link key must be available for a node before it is allowed to
join the network - this may be a pre-installed link key or may be derived from an install code. A value of TRUE
means that a link key is required, while FALSE means that a link key is not required. It is used on the network
Co-ordinator/Trust Centre only. The value of this attribute can be initialized at compile time using the macro
BDB_JOIN_USES_INSTALL_CODE_KEY. By default, the attribute should be set to FALSE. The attribute is
not used by the ZigBee Base Device. If the attribute is set to TRUE, it is the responsibility of the application to
handle this functionality directly and to set the required key (see u8bdbNodeJoinLinkKeyType).

u8bdbNodeCommissioningCapability

This attribute is a bitmap indicating the commissioning capabilities of the node. Each bit corresponds to
a commissioning capability and is set (to ‘1’) if the capability is present. The attribute is used on all node
types. The application cannot write directly to these bits - they are set according to the options defined in the
application makefile. The bitmap and the related makefile options are detailed in the Table 6.

Bit Capability Makefile Options

0 Network Steering Is set to ‘1’ if BDB_SUPPORT_NWK_STEERING is defined

1 Network Formation Is set to ‘1’ if BDB_SUPPORT_NWK_FORMATION is defined

2 Finding and Binding Is set to ‘1’ if either of the following is defined:
• BDB_SUPPORT_FIND_AND_BIND_INITIATOR
• BDB_SUPPORT_FIND_AND_BIND_TARGET

3 Touchlink Is set to ‘1’ if any of the following is defined:
• BDB_SUPPORT_TOUCHLINK_INITIATOR_END_DEVICE
• BDB_SUPPORT_TOUCHLINK_INITIATOR_ROUTER
• BDB_SUPPORT_TOUCHLINK_TARGET

4-7 Reserved (set to ‘0’) -

Table 6. bdbCommissioningCapability Bitmap

The above commissioning modes are described in Section 2.2.

Note: In order to use one of the available commissioning modes, the mode must also be enabled through the
attribute u8bdbCommissioningMode. The enabled commissioning modes are a subset of the commissioning
capabilities of the node.

bbdbNodeIsOnANetwork

This attribute indicates whether the local node is a member of a network. A value of TRUE means that it is in
a network (but not necessarily bound to any remote nodes), while FALSE means that it is not in a network.
The attribute is used on all node types but the ZigBee Base Device does not maintain it. The application is
responsible for persisting the attribute value and initializing the attribute following a power-cycle (before any
other ZigBee Base Device functions are called).

u8bdbNodeJoinLinkKeyType

This attribute indicates the type of link key with which the node is able to decrypt the encrypted network key
received over-air when the node joins a new network. The attribute is used by Router and End Device nodes.
The attribute values and the corresponding link key types are listed in the Table 7, as well as the macros use to
define the link keys.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
23 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Value Link Key Type Link Key Definition Macro

0x00 Default global trust Centre link key DEFAULT_GLOBAL_TRUST_CENTER_LINK_KEY

0x01 Distributed security global link key DISTRIBUTED_SECURITY_GLOBAL_LINK_KEY

0x02 Install code derived pre-configured link key INSTALL_CODE_DERIVED_PRECONFIGURED_LINK_
KEY

0x03 Touchlink pre-configured link key TOUCHLINK_PRECONFIGURED_LINK_KEY

Table 7. bdbNodeJoinLinkKeyType Values and Macros

u32bdbPrimaryChannelSet

This attribute specifies the primary (first-choice) set of 2.4 GHz radio channels that are used in channel
scans. The attribute is a bitmap in which each bit corresponds to a channel and should be set to ‘1’ if
the channel is to be included in a scan. The bit number corresponds directly to the channel number - for
example, bit 11 corresponds to the 2.4 GHz channel 11 and bit 26 corresponds to channel 26. This attribute
is used on all node types. The value of this attribute can be initialized at compile time using the macro
BDB_PRIMARY_CHANNEL_SET.

u8bdbScanDuration

This attribute determines the duration of a scan operation per 2.4 GHz radio channel. The actual scan duration
is calculated from the attribute value as follows:

aBaseSuperframeDuration x (2bdbScanDuration + 1)

where aBaseSuperframeDuration is defined in the IEEE 802.15.4 specification

The attribute is used on all node types. The value of this attribute is taken from the Scan Duration Time set in
the ZPS Configuration Editor.

u32bdbSecondaryChannelSet

This attribute specifies the secondary (second-choice) set of 2.4 GHz radio channels that are used in channel
scans. This channel set is used if the scan of primary channels is unsuccessful. The attribute is a bitmap in
which each bit corresponds to a channel. In order to include the channel in a scan, set each bit to ‘1’. The bit
number corresponds directly to the channel number - for example, bit 11 corresponds to the 2.4 GHz channel
11 and bit 26 corresponds to channel 26. If a scan of secondary channels is not required, the attribute should be
set to zero. The attribute is used on all node types. The value of this attribute can be initialized at compile time
using the macro BDB_SECONDARY_CHANNEL_SET.

u8bdbTCLinkKeyExchangeAttempts

This attribute indicates the number of attempts to request a new link key that were made when the node joined
the network. The attribute is used on Router and End Device nodes. The value of this attribute can be initialized
at compile time using the macro BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS.

u8bdbTCLinkKeyExchangeAttemptsMax

This attribute specifies the maximum number of key establishment attempts that are made before key
establishment is abandoned when the node joins a new network. The attribute is used on Router and End
Device nodes. The value of this attribute can initialized at compile time using the macro BDB_TC_LINK_KEY_
EXCHANGE_ATTEMPTS_MAX.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
24 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

u8bdbTCLinkKeyExchangeMethod

This attribute specifies the method that was used to obtain a new link key when the node joined the network.
The attribute values and corresponding methods are listed in the Table 8. This attribute is used on Router and
End Device nodes.

Value Key Exchange Method

0x00 APS Request Key

0x01 Certificate Based Key Exchange (CBKE)

0x02-0xFF Reserved

Table 8. bdbTCLinkKeyExchangeMethod Values

The value of this attribute can be initialized at compile time using the macro
BDB_TC_LINK_KEY_EXCHANGE_METHOD. It should be initialized to 0x00 (APS Request Key).

u8bdbTrustCenterNodeJoinTimeout

This attribute specifies a timeout (in seconds) for the Trust Centre to delete the Trust Centre-generated link key
for a newly joined node when key establishment with the node was unsuccessful. The attribute is used on the
network Co-ordinator/Trust Centre only. The value of this attribute can be initialized at compile time using the
macro BDB_TRUST_CENTER_NODE_JOIN_TIMEOUT.

bbdbTrustCenterRequireKeyExchange

This attribute specifies whether the Trust Centre requires a joining node to replace its initial link key with a new
link key generated by the Trust Centre. A value of TRUE means that the joining node successfully completes
the link key exchange procedure and failure to do so results in the node being removed from the network. A
value of FALSE means that the joining node is allowed to remain in the network even if it does not successfully
complete the link key exchange procedure. The attribute is used on the network Co-ordinator/Trust Centre only.
The value of this attribute is initialized at compile time using the macro BDB_TRUST_CENTER_REQUIRE_
KEYEXCHANGE. It should be initialized according to the Trust Centre policy that is implemented in the network
- by default, set it to FALSE for backward compatibility.

bTLStealNotAllowed

This attribute is an NXP proprietary flag which the application can set to prevent Touchlink commissioning
commands from another node in a different network from 'stealing' the local node. Clearing the flag allows the
node to be stolen, in which case it leaves the current network and either joins the other network or forms a new
distributed network, as instructed by Touchlink initiator.

bLeaveRequested

This attribute is an NXP proprietary flag which the application should only read and not write to. If Touchlink
commissioning operations cause the ZigBee Base Device to initiate a network leave, then this flag is set by the
Base Device. When a ZPS_EVENT_NWK_LEAVE_CONFIRM stack event is generated, the application should
read this flag. If it reads as TRUE, the application should not handle the event (since the ZigBee Base Device
handles it).

2.5.2 Constants

The ZigBee Base Device constants are divided into two categories:

• Constants used on all nodes - see Section 2.5.2.1.
JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
25 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

• Constants used on nodes that support Touchlink - see Section 2.5.2.2.

2.5.2.1 General constants

The Table 9 lists the ZigBee Base Device constants that can be used on all nodes and also shows the
corresponding macros used to define the constant values in the bdb_options.h file.

Constant Macro

bdbcMaxSameNetworkRetryAttempts BDBC_MAX_SAME_NETWORK_RETRY_ATTEMPTS

bdbcMinCommissioningTime BDBC_MIN_COMMISSIONING_TIME

bdbcRecSameNetworkRetryAttempts BDBC_REC_SAME_NETWORK_RETRY_ATTEMPTS

bdbcTCLinkKeyExchangeTimeout BDBC_TC_LINK_KEY_EXCHANGE_TIMEOUT

Table 9. ZBD General Constants and Macros

bdbcMaxSameNetworkRetryAttempts

This constant specifies the maximum number of join or key exchange attempts that the node can make on the
same network. The value of this constant is defined using the macro BDBC_MAX_SAME_NETWORK_RETRY_
ATTEMPTS and should be set to 10 (as recommended in the ZigBee BDB Specification).

bdbcMinCommissioningTime

This constant specifies the minimum time-interval (in seconds) for which a network is open to allow
new nodes to join or for a device to identify itself. The value of this constant is defined using the macro
BDBC_MIN_COMMISSIONING_TIME and should be set to 180 (as recommended in the ZigBee BDB
Specification).

bdbcRecSameNetworkRetryAttempts

This constant specifies the recommended number of join or key exchange attempts that the node can make
on the same network. The value of this constant is defined using the macro BDBC_REC_SAME_NETWORK_
RETRY_ATTEMPTS and should be set to 3 (as recommended in the ZigBee BDB Specification).

bdbcTCLinkKeyExchangeTimeout

This constant specifies the maximum time (in seconds) for which a joining node will wait for a response after
an APS key request has been sent to the Trust Centre. The value of this constant is defined using the macro
BDBC_TC_LINK_KEY_EXCHANGE_TIMEOUT and should be set to 5 (as recommended in the ZigBee BDB
Specification).

2.5.2.2 Touchlink constants

The Table 10 lists the ZigBee Base Device constants that can be used on nodes that support Touchlink
commissioning and also shows the corresponding macros used to define the constant values in the
bdb_options.h file.

Constant Macro

bdbcTLInterPANTransIdLifetime BDBC_TL_INTERPAN_TRANS_ID_LIFETIME

bdbcTLMinStartupDelayTime BDBC_TL_MIN_STARTUP_DELAY_TIME

Table 10. ZBD Touchlink Constants and Macros

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
26 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Constant Macro

bdbcTLPrimaryChannelSet BDBC_TL_PRIMARY_CHANNEL_SET

bdbcTLRxWindowDuration BDBC_TL_RX_WINDOW_DURATION

bdbcTLScanTimeBaseDuration BDBC_TL_SCAN_TIME_BASE_DURATION_MS

bdbcTLSecondaryChannelSet BDBC_TL_SECONDARY_CHANNEL_SET

Table 10. ZBD Touchlink Constants and Macros...continued

bdbcTLInterPANTransIdLifetime

This constant specifies the maximum length of time (in seconds) that an inter-PAN transaction ID remains valid.
The value of this constant is defined using the macro BDBC_TL_INTERPAN_TRANS_ID_LIFETIME and should
be set to 8 (as recommended in the ZigBee BDB Specification).

bdbcTLMinStartupDelayTime

This constant specifies the length of time (in seconds) that a Touchlink initiator waits for the target
to complete its network start-up procedure. The value of this constant is defined using the macro
BDBC_TL_MIN_STARTUP_DELAY_TIME and should be set to 2 (as recommended in the ZigBee BDB
Specification).

bdbcTLPrimaryChannelSet

This constant specifies the bitmap for the primary (first-choice) set of 2.4 GHz radio channels that
is used for a non-extended Touchlink scan. The value of this constant is defined using the macro
BDBC_TL_PRIMARY_CHANNEL_SET and should be set to 0x02108800, corresponding to channels 11, 15, 20
and 25 (as recommended in the ZigBee BDB Specification).

bdbcTLRxWindowDuration

This constant specifies the maximum duration (in seconds) for which the radio receiver of node remains
enabled during Touchlink commissioning, in order to receive responses. The value of this constant is defined
using the macro BDBC_TL_RX_WINDOW_DURATION and should be set to 5 (as recommended in the ZigBee
BDB Specification).

bdbcTLScanTimeBaseDuration

This constant specifies the base duration (in milliseconds) for which the radio receiver of node remains enabled
after transmitting a scan request during a Touchlink scan operation, in order to receive responses. The value of
this constant is defined using the macro BDBC_TL_SCAN_TIME_BASE_DURATION_MS and should be set to
250 (as recommended in the ZigBee BDB Specification).

bdbcTLSecondaryChannelSet

This constant specifies the bitmap for the secondary (second-choice) set of 2.4 GHz radio
channels that is used for an extended Touchlink scan. It should contain the channels that remain
from those specified in bdbcTLPrimaryChannelSet. The value of this constant is defined using
the macro BDBC_TL_SECONDARY_CHANNEL_SET and should be set to 0x07FFF800 XOR
BDBC_TL_PRIMARY_CHANNEL_SET.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
27 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

2.6 Functions
This section details the C functions that are provided for the ZigBee Base Device. The functions are listed below
along with the references to their descriptions.

1. BDB_vInit
2. BDB_vSetKeys
3. BDB_vStart
4. BDB_eNfStartNwkFormation
5. BDB_eNsStartNwkSteering
6. BDB_eFbTriggerAsInitiator
7. BDB_vFbExitAsInitiator
8. BDB_eFbTriggerAsTarget
9. BDB_vFbExitAsTarget

10. BDB_bIsBaseIdle
11. BDB_u8OutOfBandCommissionStartDevice
12. BDB_vOutOfBandCommissionGetData
13. BDB_eOutOfBandCommissionGetDataEncrypted
14. BDB_bOutOfBandCommissionGetKey

Note:

1. The application must provide a user-defined callback function, APP_vBdbCallback(), to handle ZigBee
Base Device events. The prototype for this function is given in Section 2.9.

2. The ZigBee Base Device supplies the callback function BDB_vZclEventHandler(), which handles certain
ZCL events during the Finding and Binding process, as indicated in Section 2.2.4.

2.6.1 BDB_vInit

void BDB_vInit(BDB_tsInitArgs *psInitArgs);

Description

This function initializes the ZigBee Base Device (ZBD) and must be the first ZigBee Base Device function called
in your code. The function must be called after initializing the ZigBee PRO stack via a call to ZPS_eAplAfInit().
The ZigBee Base Device attribute bbdbNodeIsOnANetwork is restored from persistent storage (if relevant)
before calling this function.

Note: Before calling this function, the application must initialize the required ZigBee software timers using the
function ZTIMER_eInit() from the ZigBee PRO Stack libraries. In doing so, it must add a number of timers for
internal use by the ZigBee Base Device, where this number is defined by the macro BDB_ZTIMER_STORAGE.

The initialization performed by this function includes the following:

• Sets the ZigBee Base Device attributes to their default values, unless other values are defined by the
application in the file bdb_options.h.

• Registers the ZigBee Base Device message queue passed into this function - this message queue is used by
the ZigBee Base Device to capture stack events.

• Calls BDB_vSetKeys() to set the initial pre-configured security keys (defined in the file bdb_link_keys.c),
according to the node type:
– For a Coordinator, the Default Global Trust Centre Link Key is set.
– For a Router or End Device, both the Default Global Trust Centre Link Key and Distributed Security Global

Link Key are set.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
28 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

• Opens timers for ZigBee Base Device internal use

For more information on the security keys, refer to Section 2.3.

Parameters

psInitArgs: Handle of the ZigBee Base Device event queue

Returns

None

2.6.2 BDB_vSetKeys

void BDB_vSetKeys(void);

Description

This function loads into memory the appropriate pre-configured link key on the local node for the initial security
state of the node. The function is automatically called by BDB_vInit(). However, it must be called explicitly to
restore the link keys after a reset which removes the keys from memory.

The type of link key that is loaded depends on the node type, as follows:

• On a Coordinator, the Default Global Trust Centre Link Key is loaded for participation in a centralized security
network.

• On a Router or End Device, both of the following keys are loaded:
– Default Global Trust Centre Link Key for participation in a centralized security network.
– Distributed Security Global Link Key for participation in a distributed security network.

The pre-configured link keys are defined in the file bdb_link_keys.c, from where they are loaded.

Network security is described in Section 2.3.

Parameters

None

Returns

None

2.6.3 BDB_vStart

void BDB_vStart(void);

Description

This function starts the ZigBee Base Device (ZBD) and must be called after BDB_vInit() and just before the
application enters the main loop (for example: APP_vMainLoop()).

Depending on the node type and whether the node was previously a member of a network, the function may or
may not perform an action. In either case, the function invokes the callback function APP_vBdbCallback() with
a suitable event.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
29 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

• If the node was not in a network:
– For a Router node that supports Touchlink commissioning, the function selects a radio channel for the node

from the set of primary channels defined for Touchlink.
– For other Router, Coordinator, and End Device nodes, no action is taken and the application then must join

the node to a network.
In the above cases, the function generates the event BDB_EVENT_INIT_SUCCESS.

• If the node was in a network:
– For Coordinator and Router nodes, no action is taken by the function and the event

BDB_EVENT_INIT_SUCCESS is generated.
– For an End Device node, a series of rejoin attempts are performed. If a rejoin attempt is successful,

the event BDB_EVENT_REJOIN_SUCCESS is generated. If all rejoins are unsuccessful, the event
BDB_EVENT_REJOIN_FAILURE is generated unless unsecured joins are enabled, in which case a join
through Network Steering is attempted.

The above actions are described in more detail in Section 2.1.

Parameters

None

Returns

None

2.6.4 BDB_eNfStartNwkFormation

BDB_teStatus BDB_eNfStartNwkFormation(void);

Description

This function starts the Network Formation process and, if necessary, must be called after
BDB_vStart(). If it is potentially required on a node, Network Formation must be enabled via the attribute
u8bdbCommissioningMode.

The function can be called only on a Coordinator or Router:

• If called on a Coordinator, a centralized security network is formed.
• If called on a Router, a distributed security network is formed.

The above network types are described in Section 2.3.

Once Network Formation starts, the function returns and the eventual outcome of the Network Formation
process is indicated by an asynchronous event - one of the following:

• BDB_EVENT_NWK_FORMATION_SUCCESS if a centralized or distributed network has been successfully
formed.

• BDB_EVENT_NWK_FORMATION_FAILURE if a network has not been successfully formed.

Network Formation is described in more detail in Section 2.2.3.

Parameters

None

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
30 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Returns

• BDB_E_SUCCESS
(Network Formation has been successfully started)*.

• BDB_E_ERROR_INVALID_PARAMETER
(End Device has attempted Network Formation).

• BDB_E_ERROR_NODE_IS_ON_A_NWK
(node is already in a network).

* The eventual outcome is indicated by a BDB_EVENT_NWK_FORMATION_SUCCESS or
BDB_EVENT_NWK_FORMATION_FAILURE event, as described above.

2.6.5 BDB_eNsStartNwkSteering

BDB_teStatus BDB_eNsStartNwkSteering(void);

Description

This function starts the Network Steering process and, if necessary, must be called after BDB_vStart(). If it is
potentially required on a node, enable Network Steering via the attribute u8bdbCommissioningMode.

The actions performed by this function depend on whether the local node is already a member of a network:

• When the node is already in a network and is a Coordinator or Router, it opens up the network for other nodes
to join. This action is for a fixed time-interval of 180 seconds by default, but this interval can be configured (in
seconds) using the macro BDBC_MIN_COMMISSIONING_TIME in the bdb_options.h file.

• When the node is not already in a network, it searches for a suitable network to join. If it finds one, attempts to
join the network. Once a node has joined the network, the node is authenticated and receives the network key
from its parent. If the network has a Trust Centre, the node may then replace its pre-configured link key with
one generated and supplied by the Trust Centre.

Once Network Steering starts, the function returns and the eventual outcome of the Network Steering process is
indicated by an asynchronous event - one of the following:

• BDB_EVENT_NWK_STEERING_SUCCESS if Network Steering has been completed successfully.
• BDB_EVENT_NO_NETWORK if no open network was discovered for joining.
• BDB_EVENT_NWK_JOIN_FAILURE if the node attempted to join a network but failed.

Network Steering is described in more detail in Section 2.2.2.

Parameters

None

Returns

• BDB_E_SUCCESS
(Network Steering has been successfully started)*.

• BDB_E_ERROR_IMPROPER_COMMISSIONING_MODE
(Network Steering is not enabled).

• BDB_E_ERROR_COMMISSIONING_IN_PROGRESS
(node is already in a commissioning mode).

• BDB_E_ERROR_INVALID_DEVICE
(joining node is a Coordinator).

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
31 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

* The eventual outcome is indicated by a BDB_EVENT_NWK_STEERING_SUCCESS,
BDB_EVENT_NO_NETWORK or BDB_EVENT_NWK_JOIN_FAILURE event, as described above.

2.6.6 BDB_eFbTriggerAsInitiator

BDB_teStatus BDB_eFbTriggerAsInitiator(
uint8u8SourceEndPointId);

Description

This function starts the Finding and Binding process on an initiator endpoint. The function may be called as the
result of a user action, such as a button-press. The initiator remains in Finding and Binding mode for a fixed
time-interval (in seconds) defined using the macro BDBC_MIN_COMMISSIONING_TIME in the bdb_options.h
file.

The initiator node first searches for target endpoints by broadcasting an Identify Query command. If the initiator
receives a response from a remote endpoint, it then sends a Simple Descriptor request to this endpoint. If the
requested Simple Descriptor is successfully received back, then the initiator checks this descriptor for clusters
on the remote endpoint that match its own clusters. If there is at least one matching cluster, the initiator does
one of the following:

• If binding is required (indicated by the u16bdbCommissioningGroupID attribute being equal to 0xFFFF), the
initiator adds the remote endpoint to the local Binding table.

• If grouping is required (indicated by the u16bdbCommissioningGroupID attribute being equal to a 16-bit group
address), the initiator requests that the target endpoint adds the group address to its Group Address table.

Finding and Binding mode is described in Section 2.2.4.

Note: Events are generated during this function call - for details, refer to Section 2.2.4.1.

Parameters

u8SourceEndPointId: Number of initiator endpoints

Returns

• BDB_E_SUCCESS
(Finding and Binding has been successfully started).

• BDB_E_FAILURE
(invalid endpoint number or unable to broadcast Identify Query command).

• BDB_E_ERROR_COMMISSIONING_IN_PROGRESS
(Finding and Binding already on-going).

2.6.7 BDB_vFbExitAsInitiator

void BDB_vFbExitAsInitiator(void);

Description

This function stops an on-going Finding and Binding process on an initiator endpoint. The function may be
called as the result of a user action, such as a button-press or button-release.

Finding and Binding mode is described in Section 2.2.4.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
32 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Parameters

None

Returns

None

2.6.8 BDB_eFbTriggerAsTarget

BDB_teStatus BDB_eFbTriggerAsTarget(uint8 u8EndPoint);

Description

This function starts the Finding and Binding process on a target endpoint and must be called locally by the
application on the target endpoint. The function may be called as the result of a user action, such as a button-
press.

The functions put the device into identification mode of the Identify cluster for a time-interval (in seconds)
which is at least equal to the value defined using the macro BDBC_MIN_COMMISSIONING_TIME in the
bdb_options.h file. During this time, the target device generates responses to Identify Query commands, as
well as other Finding and Binding commands.

The endpoint is then brought out of Find and Binding mode locally using the function BDB_vFbExitAsTarget()
or remotely (by the initiator) using the Identify cluster function eCLD_IdentifyCommandIdentifyRequestSend
().

Finding and Binding mode is described in Section 2.2.4.

Parameters

u8EndPoint: Number of target endpoints

Returns

• BDB_E_SUCCESS
(Finding and Binding has been successfully started).

• BDB_E_FAILURE
(invalid endpoint number or Identify cluster is inaccessible).

2.6.9 BDB_vFbExitAsTarget

void BDB_vFbExitAsTarget(uint8 u8SourceEndpoint);

Description

This function stops an on-going Finding and Binding process on a target endpoint and must be called locally
by the application on the target endpoint. The function may be called as the result of a user action, such as a
button-press or button-release.

Finding and Binding mode is described in Section 2.2.4.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
33 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Parameters

u8SourceEndpoint: Number of target endpoint

Returns

None

2.6.10 BDB_bIsBaseIdle

bool_t BDB_bIsBaseIdle(void);

Description

This function determines whether the ZigBee Base Device is busy or idle, and therefore whether the node can
enter sleep mode. The function returns a Boolean indicating the activity status of the ZigBee Base Device.

If the ZigBee Base Device is idle and the node can go to sleep (indicated by TRUE), it is then the responsibility
of the application to put the device into sleep mode.

Parameters

None

Returns

TRUE indicates that the ZigBee Base Device is idle and the node can sleep.
FALSE indicates that the ZigBee Base Device is busy.

2.6.11 BDB_u8OutOfBandCommissionStartDevice

uint8 BDB_u8OutOfBandCommissionStartDevice(
BDB_tsOobWriteDataToCommission *psStartupData);

Description

This function initiates out-of-band commissioning which allows the local device to form a network as a
Coordinator or to join an existing network as a Router or End Device. The function should be called after
ZPS_eAplAfInit(). It is called when commissioning data is received from another device via out-of-band
means. This commissioning data must be supplied to the function in a BDB_tsOobWriteDataToCommission
structure, described in Section 2.7.5.

Not all the data values are mandatory.

The out-of-band commissioning interface makes sensible assumptions about data values and does not allow
certain values already in the node to be over-ridden by the commissioning data. For example:

• It does not allow the network address of a Coordinator to set to a non-zero value (since the network address
of the Coordinator must be zero)

• It does not allow the rejoin flag to set on a Coordinator (since the Coordinator cannot leave and then rejoin the
network)

• In a centralized network, it does not allow the IEEE/MAC address of Trust Centre to set to any value other
than the IEEE/MAC address of Coordinator (since the Coordinator is always the Trust Centre)

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
34 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

For an overview of out-of-band commissioning, refer to Section 2.2.5.

Parameters

psStartupData: Pointer to a structure containing commissioning data (see Section 2.7.5)

Returns

• BDB_E_SUCCESS
(The device has successfully formed or joined a network).

• BDB_E_FAILURE
(The request to form or join a network has not been accepted).

• ZPS_NWK_ENUM_INVALID_REQUEST
(The request contained invalid data).

• ZPS_APL_APS_E_ILLEGAL_REQUEST
(The stack is not in the correct state to accept the request).

2.6.12 BDB_vOutOfBandCommissionGetData

void BDB_vOutOfBandCommissionGetData(
BDB_tsOobReadDataToAuthenticate
*psReturnedCommissioningData);

Description

This function is used to obtain locally stored commissioning data. The obtained data is received in a structure
described in Section 2.7.6 and includes the network key. The data is then passed to higher layers which may
encrypt it before sending it by out-of-band means to the other device involved in the commissioning.

A similar set of data but with the network key encrypted can be obtained using the function BDB_eOutOfBand
CommissionGetDataEncrypted().

For an overview of out-of-band commissioning, refer to Section 2.2.5.

Parameters

psReturnedCommissioningData: Pointer to a structure to receive the obtained commissioning data (see
Section 2.7.6)

Returns

None

2.6.13 BDB_eOutOfBandCommissionGetDataEncrypted

BDB_teStatus BDB_eOutOfBandCommissionGetDataEncrypted(
BDB_tsOobWriteDataToAuthenticate *psSrcCredentials,
uint8 *pu8ReturnAuthData,
uint16 *puSize);

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
35 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Description

This function is used to obtain locally stored commissioning data, including the network key which returns
encrypted. Authentication data (including an install code) must be provided which is used to encrypt the network
key.

The obtained data is received as a byte stream - the size of the byte stream is also returned. The byte stream
contains the following data:

• IEEE/MAC address of the local node as u64address (8 bytes)
• Network key encrypted with the data passed via psSrcCredentials (16 bytes)
• MIC value generated to validate encryption (4 bytes)
• Key sequence number of active network key (1 byte)
• Active channel number (1 byte)
• PAN ID (2 bytes)
• Extended PAN ID (8 bytes)

The encrypted network key and other obtained data are then sent by out-of-band means to the
other device involved in the commissioning. The receiving device may decrypt the key using the
BDB_bOutOfBandCommissionGetKey() function.

A similar set of data without encryption of the network key is obtained using the function BDB_u8OutOfBand
CommissionStartDevice().

For an overview of out-of-band commissioning, refer to Section 2.2.5.

Parameters

• psSrcCredentials: Pointer to a structure containing authentication data to be used to encrypt the network key
(see Section 2.7.7).

• pu8ReturnAuthData: Pointer to the start of the returned byte stream containing the obtained data.
• puSize: Pointer to a location to receive the size of the obtained byte stream.

Returns

None

2.6.14 BDB_bOutOfBandCommissionGetKey

bool_tBDB_bOutOfBandCommissionGetKey(
uint8* pu8InstallCode,
uint8* pu8EncKey,
uint64 u64ExtAddress,
uint8* pu8DecKey,
uint8* pu8Mic);

Description

This function is used to decrypt an encrypted security key. It may be used to decrypt the network key received
from another device during out-of-band commissioning.

The function requires the install code that was used to generate the pre-configured link key used to encrypt the
key.

For an overview of out-of-band commissioning, refer to Section 2.2.5.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
36 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Parameters

• pu8InstallCode: Pointer to install code used to generate the pre-configured link key used in the encryption.
• pu8EncKey: Pointer to encrypted key.
• u64ExtAddress: Pointer to IEEE/MAC address of originating device.
• pu8DecKey: Pointer to location to receive the decrypted key.
• pu8Mic: Pointer to the MIC value to be used to validate the decryption.

Returns

TRUE if key successfully decrypted, otherwise FALSE

2.7 Structures

2.7.1 BDB_tsBdbEvent

The following structure contains ZigBee Base Device event information that is passed to the
APP_vBdbCallback() callback function (see Section 2.9).

typedef struct
{
BDB_teBdbEventTypee EventType;
BDB_tuBdbEventData uEventData;
}BDB_tsBdbEvent;

where:

• eEventType is an enumeration indicating the event type - for the possible enumerations, refer to Section 2.9.
• uEventData is a union structure containing the event information (if any) - for a description of this structure,

refer to Section 2.7.2.

2.7.2 BDB_tuBdbEventData

The following structure is a union containing the data for a ZigBee Base Device event.

typedef union
{
BDB_tsZpsAfEvent sZpsAfEvent;
BDB_tsFindAndBindEvent *psFindAndBindEvent;
}BDB_tuBdbEventData

where:

• sZpsAfEvent is a structure containing the data for a stack event, indicated by the event type
BDB_EVENT_ZPSAF - for a description of this structure, refer to Section 2.7.3.

• psFindAndBindEvent is a pointer to a structure containing the data for a ‘Finding and Binding’ event (see
Section 2.9) - for a description of this structure, refer to Section 2.7.4.

2.7.3 BDB_tsZpsAfEvent

The following structure contains the data for a ZigBee stack event (see the BDB_EVENT_ZPSAF event in
Section 2.9).

typedef struct

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
37 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

{
uint8 u8EndPoint;
ZPS_tsAfEvent sStackEvent;
}BDB_tsZpsAfEvent;

where:

• u8EndPoint is the number of the endpoint on which the event occurred.
• sStackEvent is a ZPS structure containing the stack event type and data - this structure is detailed in the

ZigBee 3.0 Stack User Guide (JNUG3130).

2.7.4 BDB_tsFindAndBindEvent

The following structure contains the data for a ‘Finding and Binding’ event (see Section 2.9), which is passed to
the application during the Finding and Binding process on the initiator.

typedef struct{
uint8 u8InitiatorEp;
uint8 u8TargetEp;
uint16 u16TargetAddress;
uint16 u16ProfileId;
uint16 u16DeviceId;
uint8 u8DeviceVersion;
union {
uint16 u16ClusterId;
uint16 u16GroupId;
}uEvent;
ZPS_tsAfZdpEvent *psAfZdpEvent;
bool bAllowBindOrGroup;
bool bGroupCast;
}BDB_tsFindAndBindEvent;

where:

• u8InitiatorEp is the number of the endpoint involved in the binding/grouping on the initiator node.
• u8TargetEp is the number of the endpoint involved in the binding/grouping on the target node.
• u16TargetAddress is the 16-bit network address of the target node.
• u16ProfileId is the identifier of the ZigBee application profile supported by the two nodes (for Lighting &

Occupancy devices, this is 0x0104)
• u16DeviceId is the 16-bit identifier of the ZigBee device type supported by the target endpoints. This must

be a device type identifier issued by the ZigBee Alliance.
• u8DeviceVersion contains 4 bits (bits 0-3) representing the version of the supported device description on

the target node (the default is 0000, unless set to another value according to the application profile used).
• uEvent is a union of the following two fields:

– u16ClusterId is the identifier of the cluster involved in the binding.
– u16GroupId is the address of the group to which the target endpoint is assigned.

• psAfZdpEvent is a pointer to a ZPS_tsAfZdpEvent structure containing the generated Finding and Binding
event - this ZPS structure is detailed in the ZigBee 3.0 Stack User Guide (JNUG3130). The event can be any
of the following (detailed in Section 2.9):
– BDB_EVENT_FB_HANDLE_SIMPLE_DESC_RESP_OF_TARGET
– BDB_EVENT_FB_CHECK_BEFORE_BINDING_CLUSTER_FOR_TARGET
– BDB_EVENT_FB_CLUSTER_BIND_CREATED_FOR_TARGET
– BDB_EVENT_FB_BIND_CREATED_FOR_TARGET
– BDB_EVENT_FB_GROUP_ADDED_TO_TARGET

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
38 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

– BDB_EVENT_FB_ERR_BINDING_FAILED
– BDB_EVENT_FB_ERR_BINDING_TABLE_FULL
– BDB_EVENT_FB_ERR_GROUPING_FAILED
– BDB_EVENT_FB_NO_QUERY_RESPONSE
– BDB_EVENT_FB_TIMEOUT

• bAllowBindOrGroup is a Boolean flag that indicates whether the relevant cluster is permitted to participate
in a binding or grouping. The default value is TRUE (permitted) but if the application must exclude the cluster
(and block the binding/grouping) then it should set this field to FALSE.

• bGroupCast is a Boolean flag that indicates whether an 'Add Group If Identifying' command should be
broadcast to all the identifying targets (TRUE) or an 'Add Group' request should be individually unicast to all
the identifying targets. The default value is TRUE.

2.7.5 BDB_tsOobWriteDataToCommission

The following structure contains the data values used to initialize a node at the start of out-of-band
commissioning of the node.

typedef struct{
uint64 u64PanId;
uint64 u64TrustCenterAddress;
uint8* pu8NwkKey;
uint8* pu8InstallCode;
uint16 u16PanId;
uint16 u16ShortAddress;
bool_t bRejoin;
uint8 u8ActiveKeySqNum;
uint8 u8DeviceType;
uint8 u8RxOnWhenIdle;
uint8 u8Channel;
uint8 u8NwkUpdateId;
}BDB_tsOobWriteDataToCommission;

where:

• u64PanId is the Extended PAN ID of the network to be joined.
• u64TrustCenterAddress is the IEEE/MAC address of the Trust Centre in the centralized network to be

joined.
• pu8NwkKey is a pointer to the network key.
• pu8InstallCode is a pointer to an initial link key derived from an install code (see Section 2.3.1).
• u16PanId is the PAN ID of the network to be joined.
• u16ShortAddress is the network address assigned to the node.
• bRejoin is the ‘rejoin flag’ which indicates whether the node should attempt to rejoin the network if it leaves

(TRUE: rejoin, FALSE: do not rejoin).
• u8ActiveKeySqNum is the key sequence number associated with the active network key.
• u8DeviceType is a value indicating the type of ZigBee node:

– 0: Coordinator
– 1: Router
– 2: End Device
All other values are reserved.

• u8RxOnWhenIdle is a value indicating whether the receiver of the node is enabled during idle periods:
– 0: Receiver off when idle (sleeping device)
– 1: Receiver on when idle (non-sleeping device)

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
39 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

All other values are reserved.
• u8Channel is the radio channel number on which the network operates.
• u8NwkUpdateId is a unique byte value which is incremented when the network parameters are updated

(and is therefore used to determine whether a receiving node has missed an update).

2.7.6 BDB_tsOobReadDataToAuthenticate

The following structure contains data values that are read from the local node during out-of-band commissioning
of the node.

typedef struct{
uint8 au8Key[16]__attribute__((aligned(16)));
uint64 u64TcAddress;
uint64 u64PanId;
uint16 u16ShortPanId;
uint8 u8ActiveKeySeq;
uint8 u8Channel;
}BDB_tsOobReadDataToAuthenticate;

where:

• au8Key[16]__attribute__((aligned (16))) is an array containing the current network key, with one
byte per array element.

• u64TcAddress is the IEEE/MAC address of the Trust Centre of the network to which the node is being
commissioned.

• u64PanId is the Extended PAN ID of the network to which the node is being commissioned.
• u16ShortPanId is the PAN ID of the network to which the node is being commissioned.
• u8ActiveKeySeq is the key sequence number of the currently active network key.
• u8Channel is the radio channel number on which the network operates.

2.7.7 BDB_tsOobWriteDataToAuthenticate

The following structure contains authentication data that is used to encrypt a security key during out-of-band
commissioning of the node.

typedef struct{
uint64 u64ExtAddr;
uint8* pu8InstallCode;
}BDB_tsOobWriteDataToAuthenticate;

where:

• u64ExtAddr is the IEEE/MAC address of the node.
• pu8InstallCode is a pointer to a 16-bit install code to be used in the key encryption.

2.8 Enumerations
This section lists and describes the enumerations used on the ZigBee Base Device. However, the ZigBee Base
Device event enumerations are detailed in Section 2.9.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
40 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

2.8.1 BDB_teStatus

The following enumerations indicate the status of certain function calls.

typedefenum
{
BDB_E_SUCCESS,
BDB_E_FAILURE,
BDB_E_ERROR_INVALID_PARAMETER,
BDB_E_ERROR_INVALID_DEVICE,
BDB_E_ERROR_NODE_IS_ON_A_NWK,
BDB_E_ERROR_IMPROPER_COMMISSIONING_MODE,
BDB_E_ERROR_COMMISSIONING_IN_PROGRESS,
}BDB_teStatus;

The enumerations are listed and described in the Table 11:

Enumeration Description

BDB_E_SUCCESS Function call is successful in its purpose

BDB_E_FAILURE Function call fails in its purpose and no other error code
is appropriate

BDB_E_ERROR_INVALID_PARAMETER A specified parameter value is invalid

BDB_E_ERROR_INVALID_DEVICE Device type is not valid for the operation

BDB_E_ERROR_NODE_IS_ON_A_NWK Node is already in a network

BDB_E_ERROR_IMPROPER_COMMISSIONING_MODE The commissioning mode is not appropriate

BDB_E_ERROR_COMMISSIONING_IN_PROGRESS The commissioning process is in progress

Table 11. Function Status Enumerations

2.8.2 BDB_teCommissioningStatus

The following enumerations are used to indicate the status of the commissioning process for the node.

typedefenum
{
E_BDB_COMMISSIONING_STATUS_SUCCESS,
E_BDB_COMMISSIONING_STATUS_IN_PROGRESS,
E_BDB_COMMISSIONING_STATUS_NOT_AA_CAPABLE,
E_BDB_COMMISSIONING_STATUS_NO_NETWORK,
E_BDB_COMMISSIONING_STATUS_FORMATION_FAILURE,
E_BDB_COMMISSIONING_STATUS_NO_IDENTIFY_QUERY_RESPONSE,
E_BDB_COMMISSIONING_STATUS_BINDING_TABLE_FULL,
E_BDB_COMMISSIONING_STATUS_NO_SCAN_RESPONSE,
E_BDB_COMMISSIONING_STATUS_NOT_PERMITTED,
E_BDB_COMMISSIONING_STATUS_TCLK_EX_FAILURE
}BDB_teCommissioningStatus;

The enumerations are listed and described in the Table 12:

Enumeration Description

E_BDB_COMMISSIONING_STATUS_SUCCESS Commissioning is successfully completed

E_BDB_COMMISSIONING_STATUS_IN_PROGRESS Commissioning is on-going

Table 12. Commissioning Status Enumerations

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
41 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Enumeration Description

E_BDB_COMMISSIONING_STATUS_NOT_AA_CAPABLE Parent cannot assign address to joining node

E_BDB_COMMISSIONING_STATUS_NO_NETWORK No network is found that can be joined

E_BDB_COMMISSIONING_STATUS_FORMATION_FAILURE Network formation failed

E_BDB_COMMISSIONING_STATUS_NO_IDENTIFY_QUERY_
RESPONSE

No responses received to an Identify Query
command

E_BDB_COMMISSIONING_STATUS_BINDING_TABLE_FULL The local Binding table is full

E_BDB_COMMISSIONING_STATUS_NO_SCAN_RESPONSE No responses received during a channel scan

E_BDB_COMMISSIONING_STATUS_NOT_PERMITTED Requested commissioning is not permitted

E_BDB_COMMISSIONING_STATUS_TCLK_EX_FAILURE Trust Centre link key exchange failed

Table 12. Commissioning Status Enumerations...continued

2.9 Events
The ZigBee Base Device has a number of associated events. Some API functions (described in Section 2.6)
return immediately and the outcome of the process they invoke is later indicated with the generation of an
asynchronous event. A user-defined callback function must be defined in the application to handle these events.
The prototype of this callback function is as follows:

void APP_vBdbCallback(BDB_tsBdbEvent *psBdbEvent)

where psBdbEvent is a pointer to a BDB_tsBdbEvent event structure containing the event information to be
passed to the function (for this structure, see Section 2.7.1).

The enumerations for the ZigBee Base Device events are listed below.

typedefenum{
BDB_EVENT_NONE,
BDB_EVENT_ZPSAF,
BDB_EVENT_INIT_SUCCESS,
BDB_EVENT_REJOIN_SUCCESS,
BDB_EVENT_REJOIN_FAILURE,
BDB_EVENT_NWK_STEERING_SUCCESS,
BDB_EVENT_NO_NETWORK,
BDB_EVENT_NWK_JOIN_SUCCESS,
BDB_EVENT_NWK_JOIN_FAILURE,
BDB_EVENT_APP_START_POLLING,
BDB_EVENT_NWK_FORMATION_SUCCESS,
BDB_EVENT_NWK_FORMATION_FAILURE,
BDB_EVENT_FB_HANDLE_SIMPLE_DESC_RESP_OF_TARGET,
BDB_EVENT_FB_CHECK_BEFORE_BINDING_CLUSTER_FOR_TARGET,
BDB_EVENT_FB_CLUSTER_BIND_CREATED_FOR_TARGET,
BDB_EVENT_FB_BIND_CREATED_FOR_TARGET,
BDB_EVENT_FB_GROUP_ADDED_TO_TARGET,
BDB_EVENT_FB_ERR_BINDING_FAILED,
BDB_EVENT_FB_ERR_BINDING_TABLE_FULL,
BDB_EVENT_FB_ERR_GROUPING_FAILED,
BDB_EVENT_FB_NO_QUERY_RESPONSE,
BDB_EVENT_FB_TIMEOUT,
BDB_EVENT_FB_OVER_AT_TARGET,
BDB_EVENT_LEAVE_WITHOUT_REJOIN,
}BDB_teBdbEventType;

These events are described below.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
42 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

The events with ‘FB’ in their names are used in the ‘Finding and Binding’ process and the event data is
contained in the structure BDB_tsFindAndBindEvent (see Section 2.7.4).

Note: In addition, certain ZCL events are generated during the Finding and Binding process. These events are
passed to the callback function BDB_vZclEventHandler(), which is supplied with the ZigBee Base Device. For
these events, refer to Section 2.2.4.

1. BDB_EVENT_ZPSAF
This event indicates that a ZigBee stack event has occurred. In this case, the uEventData field (of
the BDB_tsBdbEvent structure) contains a BDB_tsZpsAfEvent structure, which itself includes the
ZPS_tsAfEvent stack event structure.

2. BDB_EVENT_INIT_SUCCESS
This event is generated when the ZigBee Base Device has been successfully initialized.

3. BDB_EVENT_REJOIN_SUCCESS
This event is generated when the node has successfully rejoined its previous network.

4. BDB_EVENT_REJOIN_FAILURE
This event is generated when the node attempts to rejoin its previous network has failed.

5. BDB_EVENT_NWK_STEERING_SUCCESS
This event is generated when the Network Steering process has successfully completed and the local node
has broadcast either of the following messages:
• Management Permit Joining message to request the network to be opened for other devices to join (this

message is broadcast when the local node was already in the network before Network Steering).
• Device Announce message to announce that the local node has joined the network (this message is

broadcast when the local node was not in the network before Network Steering).
6. BDB_EVENT_NO_NETWORK

This event is generated when no open network open was discovered in a channel scan performed by a
device attempting to join a network.

7. BDB_EVENT_NWK_JOIN_SUCCESS
This event is generated when the node has successfully joined a network.

8. BDB_EVENT_NWK_JOIN_FAILURE
This event is generated when the node attempted to join a network but failed.

9. BDB_EVENT_APP_START_POLLING
This event is generated on an End Device during the Trust Centre link key exchange procedure to instruct
the application to start fast polling of its parent, in order to retrieve packets received as part of the exchange
procedure.

10. BDB_EVENT_NWK_FORMATION_SUCCESS
This event is generated at the end of the Network Formation process when a centralized or distributed has
been successfully formed by the local node.

11. BDB_EVENT_NWK_FORMATION_FAILURE
This event is generated at the end of the Network Formation process if the local node failed to form a
network.

12. BDB_EVENT_FB_HANDLE_SIMPLE_DESC_RESP_OF_TARGET
This event indicates that the initiator has received a Simple Descriptor response from a target. This event
can be used by the application to determine which type of device (for example: Dimmable Light, On/Off
Light) the initiator is binding to. The information provided to the application is:
• u8InitiatorEp

u8TargetEp
u16TargetAddress
u16ProfileId
u16DeviceId

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
43 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

u8DeviceVersion

• psAfZdpEvent (points to received Simple Descriptor)
13. BDB_EVENT_FB_CHECK_BEFORE_BINDING_CLUSTER_FOR_TARGET

This event is generated just before creating a Binding table entry for a cluster. It allows the application
to exclude clusters from binding by setting the bAllowBindOrGroup flag to FALSE (by default it is
TRUE). This event can also be used when the application must perform a group binding by setting the
attribute u16bdbCommissioningGroupID to a value other than 0xFFFF. Moreover, this event also allows the
application to decide whether to broadcast an 'Add Group If Identifying' or unicast an 'Add Group' command.
An 'Add Group If Identifying' is broadcast to all the identifying targets by setting bGroupCast to TRUE. By
default, this parameter is set to FALSE and allows unicasting an 'Add Group' request individually to all the
identifying targets. The information provided to the application is:
• u8InitiatorEp

u8TargetEp
u16TargetAddress
u16ClusterId
bAllowBindOrGroup
bGroupCast

• psAfZdpEvent (points to received Simple Descriptor)
14. BDB_EVENT_FB_CLUSTER_BIND_CREATED_FOR_TARGET

This event is generated per cluster for every binding or grouping created. The event may be generated
more than once for the same target device. For example, when binding a color Dimmer Switch to a
Dimmable Light, the event is generated twice: once for the On/Off cluster and once for the Level Control
Cluster. The information provided to the application is:
• u8InitiatorEp

u8TargetEp
u16TargetAddress
u16ClusterId

15. BDB_EVENT_FB_BIND_CREATED_FOR_TARGET
This event is generated once all address bindings have been completed. The application can then send a
‘Stop Identifying’ command to the bound target. The information provided to the application is:

u8InitiatorEp
u8TargetEp
u16TargetAddress

16. BDB_EVENT_FB_GROUP_ADDED_TO_TARGET
This event is generated once the ‘Add Group’ or ‘Add Group If Identifying’ has been sent, in order to inform
the application that grouping has been completed from the perspective of the initiator. The application
can then groupcast a ‘Stop Identifying’ command to the grouped targets. The information provided to the
application is:

u8InitiatorEp
u8TargetEp
u16GroupId
u16TargetAddress
psAfZdpEvent

17. BDB_EVENT_FB_ERR_BINDING_FAILED
This event is generated to indicate that an unexpected error has occurred while creating a Binding table
entry.

18. BDB_EVENT_FB_ERR_BINDING_TABLE_FULL
This event is generated to inform the application that the Binding table is full and therefore the Finding and
Binding process has failed. As a result, the ZigBee Base Device exits the Finding and Binding process.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
44 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

19. BDB_EVENT_FB_ERR_GROUPING_FAILED
This event is generated to indicate that a grouping has failed, since the initiator was not able to send an
‘Add Group’ or ‘Add Group If Identifying’ request.

20. BDB_EVENT_FB_NO_QUERY_RESPONSE
This event indicates that the initiator did not receive an Identify Query response within
BDB_FB_RESEND_IDENTIFY_QUERY_TIME (default value is 10) seconds. The information provided to
the application is:
• u8InitiatorEp

21. BDB_EVENT_FB_TIMEOUT
This event indicates that the commissioning timer expired after a period defined by the constant
BDBC_MIN_COMMISSIONING_TIME (180 seconds by default). The information provided to the application
is:
• u8InitiatorEp

22. BDB_EVENT_FB_OVER_AT_TARGET
This event indicates that the Finding and Binding process has ended on the target node because the
identify time reached zero or a remote node forced it to go to zero.

23. BDB_EVENT_LEAVE_WITHOUT_REJOIN
This event is generated when the node has been instructed to leave the network without attempting to rejoin
the network.

2.10 Compile-time Options
Compile-time options can be configured through definitions in the file bdb_options.h. This option allows custom
values to be defined for ZigBee Base Device attributes and constants. If the value of an attribute or constant is
not defined in this file, the default value for the attribute or constant is used.

Attributes

The following macros can be used to pre-configure values for the ZigBee Base Device attributes (listed and
described in Section 2.5.1):

• BDB_COMMISSIONING_GROUP_ID
• BDB_COMMISSIONING_MODE
• BDB_COMMISSIONING_STATUS
• BDB_JOINING_NODE_EUI64
• BDB_JOIN_USES_INSTALL_CODE_KEY
• BDB_NODE_JOIN_LINK_KEY_TYPE
• BDB_PRIMARY_CHANNEL_SET
• BDB_SCAN_DURATION
• BDB_SECONDARY_CHANNEL_SET
• BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS
• BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS_MAX
• BDB_TC_LINK_KEY_EXCHANGE_METHOD
• BDB_TRUST_CENTER_NODE_JOIN_TIMEOUT
• BDB_TRUST_CENTER_REQUIRE_KEYEXCHANGE

For example, to set the maximum number of key establishment attempts to 5, include the following line:

#define BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS_MAX5

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
45 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Constants

The following macros can be used to set values for the ZigBee Base Device constants (listed and described in
Section 2.5.2):

• BDBC_MAX_SAME_NETWORK_RETRY_ATTEMPTS
• BDBC_MIN_COMMISSIONING_TIME
• BDBC_REC_SAME_NETWORK_RETRY_ATTEMPTS
• BDBC_TC_LINK_KEY_EXCHANGE_TIMEOUT
• BDBC_TL_INTERPAN_TRANS_ID_LIFETIME
• BDBC_TL_MIN_STARTUP_DELAY_TIME
• BDBC_TL_PRIMARY_CHANNEL_SET
• BDBC_TL_RX_WINDOW_DURATION
• BDBC_TL_SCAN_TIME_BASE_DURATION_MS
• BDBC_TL_SECONDARY_CHANNEL_SET

For example, to set the minimum commissioning time for which a network is open to join to 240 seconds,
include the following line:

#define BDBC_MIN_COMMISSIONING_TIME240

(this minimum commissioning time should set to a value below 255 seconds)

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
46 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3 Lighting and Occupancy Device Types

This chapter details the ZigBee device types that are collected together in the ZigBee Lighting and Occupancy
Device Specification (15-0014-01) from the ZigBee Alliance.

Note: Lighting and Occupancy are not the application profiles. The devices in this collection use the application
profile identifier 0x0104, previously used for the Home Automation application profile. This identifier ensures
backward compatibility with applications for devices based on the Home Automation 1.2 profile.

The ZigBee Lighting and Occupancy (ZLO) device types are listed in the Table 13.

Device Type Device ID Reference

On/Off Light 0x0100 Section 3.1

Dimmable Light 0x0101 Section 3.2

Colour Dimmable Light 0x0102 Section 3.3

On/Off Light Switch 0x0103 Section 3.4

Dimmer Switch 0x0104 Section 3.5

Colour Dimmer Switch 0x0105 Section 3.6

Light Sensor 0x0106 Section 3.7

Occupancy Sensor 0x0107 Section 3.8

On/Off Ballast 0x0108 Section 3.9

Dimmable Ballast 0x0109 Section 3.10

On/Off Plug-in Unit 0x010A Section 3.11

Dimmable Plug-in Unit 0x010B Section 3.12

Colour Temperature Light 0x010C Section 3.13

Extended Colour Light 0x010D Section 3.14

Light Level Sensor 0x010E Section 3.15

Colour Controller 0x0800 Section 3.16

Colour Scene Controller 0x0810 Section 3.17

Non-Colour Controller 0x0820 Section 3.18

Non-Colour Scene Controller 0x0830 Section 3.19

Control Bridge 0x0840 Section 3.20

On/Off Sensor 0x0850 Section 3.21

Table 13. Lighting and Occupancy Device Types

3.1 On/Off light
The On/Off Light device is simply a light that can be switched on and off (two states only and no intermediate
levels).

• The Device ID is 0x0100.
• The header file for the device is on_off_light.h.
• The clusters supported by the device are listed in Section 3.1.1.
• The device structure, tsZLO_OnOffLightDevice, is listed in Section 3.1.2.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
47 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

• The endpoint registration function for the device, eZLO_RegisterOnOffLightEndPoint(), is detailed in
Section 3.1.3.

3.1.1 Supported clusters

The clusters used by the On/Off Light device are listed in the Table 14.

Server (Input) side Client (Output) side

Mandatory

Basic

Identify

On/Off

Scenes

Groups

Optional

Level control OTA upgrade

Touchlink commissioning Occupancy sensing

Table 14. Clusters for On/Off Light

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.1.2 Device structure

The following tsZLO_OnOffLightDevice structure is the shared structure for an On/Off Light device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_OnOffLightDeviceClusterInstances sClusterInstance;
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
/* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)
/* On/Off Cluster - Server */
 tsCLD_OnOff sOnOffServerCluster;
 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)
/* Groups Cluster - Server */
 tsCLD_Groups sGroupsServerCluster;
 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;
 #endif
 #if (defined CLD_SCENES) && (defined SCENES_SERVER)
/* Scenes Cluster - Server */
 tsCLD_Scenes sScenesServerCluster;
 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
/* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
48 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
/* On Off light device 2 optional clusters for the server */
 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)
/* LevelControl Cluster - Server */
 tsCLD_LevelControl sLevelControlServerCluster;
 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;
 #endif
 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
 tsCLD_ZllCommission sZllCommissionServerCluster;
 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;
 #endif
/* On Off light device 2 optional clusters for the client */
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 /* OTA cluster - Client */
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
 #if (defined CLD_OCCUPANCY_SENSING) && (defined
 OCCUPANCY_SENSING_CLIENT)
 /* Occupancy Sensing Cluster - Client */
 tsCLD_OccupancySensing sOccupancySensingClientCluster;
 #endif
} tsZLO_OnOffLightDevice;

3.1.3 Registration function

The following eZLO_RegisterOnOffLightEndPoint() function is the endpoint registration function for an On/Off
Light device.

teZCL_Status eZLO_RegisterOnOffLightEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_OnOffLightDevice *psDeviceInfo);

Description

This function is used to register an endpoint that supports an On/Off Light device. The function must be called
after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_OnOffLightDevice structure, described in Section 3.1.2. This structure
stores all variables relating to the colour Controller device associated with the endpoint. This function sets the

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
49 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

sEndPoint and sClusterInstance fields of this structure and these fields must not be directly written to by
the application.

The function is called multiple times if more than one endpoint is used - for example, if more than one On/Off
Light device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the callback function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered. on this endpoint (see Section 3.1.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.2 Dimmable Light
The Dimmable Light device is a light that can have its luminance varied, and can be switched on and off. The
permitted range of light levels is 0x01 to 0xFE.

• The Device ID is 0x0101.
• The header file for the device is dimmable_light.h.
• The clusters supported by the device are listed in Section 3.2.1.
• The device structure, tsZLO_DimmableLightDevice, is listed in Section 3.2.2.
• The endpoint registration function for the device, eZLO_RegisterDimmableLightEndPoint(), is detailed in

Section 3.2.3.

3.2.1 Supported clusters

The clusters used by the Dimmable Light device are listed in the Table 15.

Server (Input) side Client (Output) side

Mandatory

Table 15. Clusters for Dimmable Light

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
50 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Server (Input) side Client (Output) side

Basic

Identify

On/Off

Level control

Scenes

Groups

Optional

Touchlink commissioning OTA upgrade

Occupancy sensing

Table 15. Clusters for Dimmable Light...continued

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.2.2 Device Structure

The following tsZLO_DimmableLightDevice structure is the shared structure for a Dimmable Light device:

typedefstruct
{
tsZCL_EndPointDefinitionsEndPoint;
/*Clusterinstances*/
tsZLO_DimmableLightDeviceClusterInstancessClusterInstance;
#if(definedCLD_BASIC)&&(definedBASIC_SERVER)
/*BasicCluster-Server*/
tsCLD_BasicsBasicServerCluster;
#endif
#if(definedCLD_IDENTIFY)&&(definedIDENTIFY_SERVER)
/*IdentifyCluster-Server*/
tsCLD_IdentifysIdentifyServerCluster;
tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;
#endif
#if(definedCLD_ONOFF)&&(definedONOFF_SERVER)
/*On/OffCluster-Server*/
tsCLD_OnOffsOnOffServerCluster;
tsCLD_OnOffCustomDataStructuresOnOffServerCustomDataStructure;
#endif
#if(definedCLD_GROUPS)&&(definedGROUPS_SERVER)
/*GroupsCluster-Server*/
tsCLD_GroupssGroupsServerCluster;
tsCLD_GroupsCustomDataStructuresGroupsServerCustomDataStructure;
#endif
#if(definedCLD_SCENES)&&(definedSCENES_SERVER)
/*ScenesCluster-Server*/
tsCLD_ScenessScenesServerCluster;
tsCLD_ScenesCustomDataStructuresScenesServerCustomDataStructure;
#endif
#if(definedCLD_LEVEL_CONTROL)&&(definedLEVEL_CONTROL_SERVER)
/*LevelControlCluster-Server*/
tsCLD_LevelControlsLevelControlServerCluster;
tsCLD_LevelControlCustomDataStructure

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
51 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

sLevelControlServerCustomDataStructure;
#endif
#if(definedCLD_ZLL_COMMISSION)&&(definedZLL_COMMISSION_SERVER)
tsCLD_ZllCommissionsZllCommissionServerCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionServerCustomDataStructure;
#endif
#if(definedCLD_OTA)&&(definedOTA_CLIENT)
/*OTAcluster-Client*/
tsCLD_AS_OtasCLD_OTA;
tsOTA_CommonsCLD_OTA_CustomDataStruct;
#endif
#if(definedCLD_OCCUPANCY_SENSING)&&(definedOCCUPANCY_SENSING_CLIENT)
/*OccupancySensingCluster-Client*/
tsCLD_OccupancySensingsOccupancySensingClientCluster;
#endif
}tsZLO_DimmableLightDevice;

3.2.3 Registration Function

The following eZLO_RegisterDimmableLightEndPoint() function is the endpoint registration function for a
Dimmable Light device.

teZCL_Status eZLO_RegisterDimmableLightEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_DimmableLightDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a Dimmable Light device. The function must be
called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_DimmableLightDevice structure, described in Section 3.2.2. This
structure stores all variables relating to the color Controller device associated with the endpoint. The
sEndPoint and sClusterInstance fields of this structure are set by this function and must not be directly
written to by the application.

The function may be called multiple times if more than one endpoint is used - for example, if more than one
Dimmable Light device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
52 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being
registered on this endpoint (see Section 3.2.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.3 Colour Dimmable Light
The Colour Dimmable Light device is a multi-colour light that can have its hue, saturation and luminance varied,
and can be switched on and off.

• The Device ID is 0x0102.
• The header file for the device is colour_dimmable_light.h.
• The clusters supported by the device are listed in Section 3.3.1.
• The device structure, tsZLO_ColourDimmableLightDevice, is listed in Section 3.3.2.
• The endpoint registration function for the device, eZLO_RegisterColourDimmableLightEndPoint(), is

detailed in Section 3.3.3.

3.3.1 Supported clusters

The clusters used by the Colour Dimmable Light device are listed in the Table 16.

Server (Input) side Client (Output) side

Mandatory

Basic

Identify

On/Off

Level control

Colour control

Scenes

Groups

Table 16. Clusters for Colour Dimmable Light

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
53 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Server (Input) side Client (Output) side

Optional

Touchlink commissioning OTA upgrade

Occupancy sensing

Table 16. Clusters for Colour Dimmable Light...continued

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.3.2 Device Structure

The following tsZLO_ColourDimmableLightDevice structure is the shared structure for a Colour Dimmable
Light device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
/* Cluster instances */
 tsZLO_DimmableLightDeviceClusterInstances sClusterInstance;
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
/* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
/* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)
/* On/Off Cluster - Server */
 tsCLD_OnOff sOnOffServerCluster;
 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)
/* Groups Cluster - Server */
 tsCLD_Groups sGroupsServerCluster;
 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;
 #endif
 #if (defined CLD_SCENES) && (defined SCENES_SERVER)
/* Scenes Cluster - Server */
 tsCLD_Scenes sScenesServerCluster;
 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;
 #endif
 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)
/* LevelControl Cluster - Server */
 tsCLD_LevelControl sLevelControlServerCluster;
 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;
 #endif
 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
 tsCLD_ZllCommission sZllCommissionServerCluster;
 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
/* OTA cluster - Client */

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
54 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
 #if (defined CLD_OCCUPANCY_SENSING) && (defined
OCCUPANCY_SENSING_CLIENT)
/* Occupancy Sensing Cluster - Client */
 tsCLD_OccupancySensing sOccupancySensingClientCluster;
 #endif
} tsZLO_DimmableLightDevice;

3.3.3 Registration Function

The following eZLO_RegisterColourDimmableLightEndPoint() function is the endpoint registration function
for a color Dimmable Light device.

teZCL_Status eZLO_RegisterColourDimmableLightEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_ColourDimmableLightDevice *psDeviceInfo);

Description

This function is used to register an endpoint that supports a color Dimmable Light device. The function must be
called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_ColourDimmableLightDevice structure, described in Section 3.3.2. This
structure stores all variables relating to the color Controller device associated with the endpoint. This function
sets the sEndPoint and sClusterInstance fields of this structure and these fields must not be directly
written to by the application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
color Dimmable Light device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.3.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
55 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.4 On/Off Light Switch
The On/Off Light Switch device is used to switch a light device on and off by sending on, off and toggle
commands to the target device.

• The Device ID is 0x0103.
• The header file for the device is on_off_light_switch.h.
• The clusters supported by the device are listed in Section 3.4.1.
• The device structure, tsZLO_OnOffLightSwitchDevice, is listed in Section 3.4.2.
• The endpoint registration function for the device, eZLO_RegisterOnOffLightSwitchEndPoint(), is detailed in

Section 3.4.3.

3.4.1 Supported clusters

The clusters used by the On/Off Light Switch device are listed in the Table 17.

Server (Input) side Client (Output) side

Mandatory

Basic On/Off

Identify Identify

Optional

On/Off switch configuration OTA upgrade

Scenes

Groups

Table 17. Clusters for On/Off Light Switch

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.4.2 Device Structure

The following tsZLO_OnOffLightSwitchDevice structure is the shared structure for an On/Off Light Switch
device:

typedef struct
JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
56 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_OnOffLightSwitchDeviceClusterInstances sClusterInstance;
 /* Mandatory server clusters */
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 /* Recommended Optional server */
 #if (defined CLD_OOSC) && (defined OOSC_SERVER)
 /* On/Off Switch Configuration Cluster - Server */
 tsCLD_OOSC sOOSCServerCluster;
 #endif
/* Mandatory client clusters */
 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)
 tsCLD_OnOff sOnOffClientCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
 /* Identify Cluster - Client */
 tsCLD_Identify sIdentifyClientCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;
 #endif
 #if (defined CLD_BASIC) && (defined BASIC_CLIENT)
 /* Basic Cluster - Client */
 tsCLD_Basic sBasicClientCluster;
 #endif
 /* Recommended Optional client clusters */
 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)
 /* Scenes Cluster - Client */
 tsCLD_Scenes sScenesClientCluster;
 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
 /* Groups Cluster - Client */
 tsCLD_Groups sGroupsClientCluster;
 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
} tsZLO_OnOffLightSwitchDevice;

3.4.3 Registration Function

The following eZLO_RegisterOnOffLightSwitchEndPoint() function is the endpoint registration function for an
On/Off Light Switch device.

teZCL_Status eZLO_RegisterOnOffLightSwitchEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
57 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

tsZLO_OnOffLightSwitchDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports an On/Off Light Switch device. The function must
be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_OnOffLightSwitchDevice structure, described in Section 3.4.2. This
structure stores all variables relating to the color Controller device associated with the endpoint. This function
sets the sEndPoint and sClusterInstance fields of this structure and these fields must not be directly
written to by the application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one On/
Off Light Switch device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.4.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
58 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.5 Dimmer Switch
The Dimmer Switch device is used to control a characteristic of a light (for example, luminance) and to switch
the light device on and off.

• The Device ID is 0x0104.
• The header file for the device is dimmer_switch.h.
• The clusters supported by the device are listed in Section 3.5.1.
• The device structure, tsZLO_DimmerSwitchDevice, is listed in Section 3.5.2.
• The endpoint registration function for the device, eZLO_RegisterDimmerSwitchEndPoint(), is detailed in

Section 3.5.3.

3.5.1 Supported clusters

The clusters used by the Dimmer Switch device are listed in the Table 18.

Server (input) side Client (output) side

Mandatory

Basic On/Off

Identify Identify

Level control

Optional

On/Off switch configuration OTA upgrade

Scenes

Groups

Table 18. Clusters for Dimmer Switch

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.5.2 Device Structure

The following tsZLO_DimmerSwitchDevice structure is the shared structure for a Dimmer Switch device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
/* Cluster instances */
 tsZLO_DimmerSwitchDeviceClusterInstances sClusterInstance;
/* Mandatory server clusters */
#if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
#endif
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
/* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
#endif
/* Optional server clusters */
#if (defined CLD_OOSC) && (defined OOSC_SERVER)

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
59 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 /* On/Off Switch Configuration Cluster - Server */
 tsCLD_OOSC sOOSCServerCluster;
#endif
/* Mandatory client clusters */
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
 /* Identify Cluster - Client */
 tsCLD_Identify sIdentifyClientCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;
#endif
#if (defined CLD_BASIC) && (defined BASIC_CLIENT)
 /* Basic Cluster - Client */
 tsCLD_Basic sBasicClientCluster;
 #endif
#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)
 tsCLD_OnOff sOnOffClientCluster;
#endif
#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)
 /* Level Control Cluster - Client */
 tsCLD_LevelControl sLevelControlClientCluster;
 tsCLD_LevelControlCustomDataStructure
 sLevelControlClientCustomDataStructure;
#endif
/* Recommended Optional client clusters */
#if (defined CLD_SCENES) && (defined SCENES_CLIENT)
 /* Scenes Cluster - Client */
 tsCLD_Scenes sScenesClientCluster;
 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;
#endif
#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
 /* Groups Cluster - Client */
 tsCLD_Groups sGroupsClientCluster;
 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
#endif
#if (defined CLD_OTA) && (defined OTA_CLIENT)
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
#endif
} tsZLO_DimmerSwitchDevice;

3.5.3 Registration Function

The following eZLO_RegisterDimmerSwitchEndPoint() function is the endpoint registration function for a
Dimmer Switch device.

teZCL_Status eZLO_RegisterDimmerSwitchEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_DimmerSwitchDevice *psDeviceInfo);

Description

This function is used to register an endpoint that supports a Dimmer Switch device. The function must be called
after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
60 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for application.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_DimmerSwitchDevice structure, described in Section 3.5.2. This structure
stores all variables relating to the color Controller device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be directly written to by the
application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
Dimmer Switch device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.5.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.6 Colour Dimmer Switch
The Colour Dimmer Switch device controls the hue, saturation and luminance of a multi-colour light, and to
switch the light device on and off.

• The Device ID is 0x0105.
• The header file for the device is colour_dimmer_switch.h.
• The clusters supported by the device are listed in Section 3.6.1.
• The device structure, tsZLO_ColourDimmerSwitchDevice, is listed in Section 3.6.2.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
61 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

• The endpoint registration function for the device, eZLO_RegisterColourDimmerSwitchEndPoint(), is
detailed in Section 3.6.3.

3.6.1 Supported clusters

The clusters used by the Colour Dimmer Switch device are listed in the Table 19.

Server (input) side Client (output) side

Mandatory

Basic On/Off

Identify Level control

Colour control

Identify

Optional

On/Off switch configuration OTA upgrade

Scenes

Groups

Table 19. Clusters for Colour Dimmer Switch

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.6.2 Device Structure

The following tsZLO_ColourDimmerSwitchDevice structure is the shared structure for a Colour Dimmer
Switch device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_ColourDimmerSwitchDeviceClusterInstances sClusterInstance;
 /* Mandatory server clusters */
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 /* Optional server clusters */
 #if (defined CLD_OOSC) && (defined OOSC_SERVER)
 /* On/Off Switch Configuration Cluster - Server */
 tsCLD_OOSC sOOSCServerCluster;
 #endif
 /* Mandatory client clusters */
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
 /* Identify Cluster - Client */
 tsCLD_Identify sIdentifyClientCluster;
 tsCLD_IdentifyCustomDataStructure

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
62 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 sIdentifyClientCustomDataStructure;
 #endif
 #if (defined CLD_BASIC) && (defined BASIC_CLIENT)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicClientCluster;
 #endif
 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)
 tsCLD_OnOff sOnOffClientCluster;
 #endif
 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)
 /* Level Control Cluster - Client */
 tsCLD_LevelControl sLevelControlClientCluster;
 tsCLD_LevelControlCustomDataStructure
 sLevelControlClientCustomDataStructure;
 #endif
 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)
 /* Colour Control Cluster - Client */
 tsCLD_ColourControl sColourControlClientCluster;
 tsCLD_ColourControlCustomDataStructure
 sColourControlClientCustomDataStructure;
 #endif
 /*Recommended Optional client clusters */
 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)
 /* Scenes Cluster - Client */
 tsCLD_Scenes sScenesClientCluster;
 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
 /* Groups Cluster - Client */
 tsCLD_Groups sGroupsClientCluster;
 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
} tsZLO_ColourDimmerSwitchDevice;

3.6.3 Registration Function

The following eZLO_RegisterColourDimmerSwitchEndPoint() function is the endpoint registration function for
a color Dimmer Switch device.

teZCL_Status eZLO_RegisterColourDimmerSwitchEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_DimmerSwitchDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a color Dimmer Switch device. The function must
be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must
be less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file. This
parameter represents the highest endpoint number used for applications.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
63 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_ColourDimmerSwitchDevice structure, described in Section
3.6.2. This structure stores all variables relating to the color Controller device associated with the endpoint. This
function sets the sEndPoint and sClusterInstance fields of this structure and these fields must not be
directly written to by the application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
color Dimmer Switch device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.6.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.7 Light Sensor
The Light Sensor device reports the illumination level in an area.

• The Device ID is 0x0106.
• The header file for the device is light_sensor.h.
• The clusters supported by the device are listed in Section 3.7.1.
• The device structure, tsZLO_LightSensorDevice, is listed in Section 3.7.2.
• The endpoint registration function for the device, eZLO_RegisterLightSensorEndPoint(), is detailed in

Section 3.7.3.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
64 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.7.1 Supported clusters

The clusters used by the Light Sensor device are listed in the Table 20.

Server (input) side Client (output) side

Mandatory

Basic Identify

Identify

Illuminance measurement

Optional

OTA upgrade

Groups

Table 20. Clusters for Light Sensor

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.7.2 Device Structure

The following tsZLO_LightSensorDevice structure is the shared structure for a Light Sensor device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_LightSensorDeviceClusterInstances sClusterInstance;
 /* Mandatory server clusters */
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 #if (defined CLD_ILLUMINANCE_MEASUREMENT) && (defined
 ILLUMINANCE_MEASUREMENT_SERVER)
 /* Illuminance Measurement Cluster - Server */
 tsCLD_IlluminanceMeasurement sIlluminanceMeasurementServerCluster;
 #endif
 /* Optional server clusters */
 #if (defined CLD_POLL_CONTROL) && (defined POLL_CONTROL_SERVER)
 tsCLD_PollControl sPollControlServerCluster;
 tsCLD_PollControlCustomDataStructure
 sPollControlServerCustomDataStructure;
 #endif
 /* Mandatory server clusters */
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
 /* Identify Cluster - Client */
 tsCLD_Identify sIdentifyClientCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;
 #endif

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
65 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 /* Recommended Optional client clusters */
 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
 /* Groups Cluster - Client */
 tsCLD_Groups sGroupsClientCluster;
 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
} tsZLO_LightSensorDevice;

3.7.3 Registration Function

The following eZLO_RegisterLightSensorEndPoint() function is the endpoint registration function for a Light
Sensor device.

teZCL_Status eZLO_RegisterLightSensorEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_LightSensorDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a Light Sensor device. The function must be called
after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_LightSensorDevice structure, described in Section 3.7.2. This structure
stores all variables relating to the color Controller device associated with the endpoint. This function sets the
sEndPoint and sClusterInstance fields of this structure and these fields must not be directly written to by
the application.

The function is called multiple times if more than one endpoint is used - for example, if more than one Light
Sensor device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.7.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
66 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.8 Occupancy Sensor
The Occupancy Sensor device reports the presence (or not) of occupants in an area.

• The Device ID is 0x0107.
• The header file for the device is occupancy_sensor.h.
• The clusters supported by the device are listed in Section 3.8.1.
• The device structure, tsZLO_OccupancySensorDevice, is listed in Section 3.7.2.
• The endpoint registration function for the device, eZLO_RegisterOccupancySensorEndPoint(), is detailed

in Section 3.7.3.

3.8.1 Supported clusters

The clusters used by the Occupancy Sensor device are listed in the Table 21.

Server (input) side Client (output) side

Mandatory

Basic Identify

Identify

Occupancy sensing

Optional

OTA upgrade

Groups

Table 21. Clusters for Occupancy Sensor

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
67 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.8.2 Device Structure

The following tsZLO_OccupancySensorDevice structure is the shared structure for an Occupancy Sensor
device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_OccupancySensorDeviceClusterInstances sClusterInstance;
 /* Mandatory server clusters */
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure sIdentifyServerCustomDataStructure;
 #endif
 #if (defined CLD_OCCUPANCY_SENSING) && (defined OCCUPANCY_SENSING_SERVER)
 /* Occupancy Sensing Cluster - Server */
 tsCLD_OccupancySensing sOccupancySensingServerCluster;
 #endif
 /* Optional server clusters */
 #if (defined CLD_POLL_CONTROL) && (defined POLL_CONTROL_SERVER)
 tsCLD_PollControl sPollControlServerCluster;
 tsCLD_PollControlCustomDataStructure
 sPollControlServerCustomDataStructure;
 #endif
 /* Mandatory client clusters */
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
 /* Identify Cluster - Client */
 tsCLD_Identify sIdentifyClientCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;
 #endif
 /* Recommended Optional client clusters */
 #if (defined CLD_POLL_CONTROL) && (defined POLL_CONTROL_CLIENT)
 tsCLD_PollControl sPollControlClientCluster;
 tsCLD_PollControlCustomDataStructure
 sPollControlClientCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
 /* Groups Cluster - Client */
 tsCLD_Groups sGroupsClientCluster;
 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
} tsZLO_OccupancySensorDevice;;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
68 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.8.3 Registration Function

The following eZLO_RegisterOccupancySensorEndPoint() function is the endpoint registration function for an
Occupancy Sensor device.

teZCL_Status eZLO_RegisterOccupancySensorEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_OccupancySensorDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports an Occupancy Sensor device. The function must be
called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_OccupancySensorDevice structure, described in Section 3.8.2.
This structure stores all variables relating to the color Controller device associated with the endpoint. The
sEndPoint and sClusterInstance fields of this structure are set by this function and must not be directly
written to by the application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
Occupancy Sensor device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.8.2). This function sets the sEndPoint and sClusterInstance
fields of this structure and these fields must not be directly written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
69 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.9 On/Off Ballast
The On/Off Ballast is a lighting device that can be switched on/off from a controller device, such as an On/Off
Light Switch or an Occupancy Sensor.

• The Device ID is 0x0108.
• The header file for the device is on_off_ballast.h.
• The clusters supported by the device are listed in Section 3.9.1.
• The device structure, tsZLO_OnOffBallastDevice, is listed in Section 3.9.2.
• The endpoint registration function for the device, eZLO_RegisterOnOffBallastEndPoint(), is detailed in

Section 3.9.3.

3.9.1 Supported clusters

The clusters used by the On/Off Ballast device are listed in the Table 22.

Server (Input) side Client (Output) side

Mandatory

Basic

Power configuration

Device temperature configuration

Identify

Groups

Scenes

On/Off

Ballast configuration

Optional

Level control OTA upgrade

Illuminance level sensing Illuminance measurement

Touchlink commissioning Illuminance level sensing

Occupancy sensing

Table 22. Clusters for On/Off Ballast

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
70 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.9.2 Device Structure

The following tsZLO_OnOffBallastDevice structure is the shared structure for an On/Off Ballast device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_OnOffBallastDeviceClusterInstances sClusterInstance;
 /* Mandatory server clusters */
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)
 /* On/Off Cluster - Server */
 tsCLD_OnOff sOnOffServerCluster;
 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;
 #endif
 #if (defined CLD_SCENES) && (defined SCENES_SERVER)
 /* Scenes Cluster - Server */
 tsCLD_Scenes sScenesServerCluster;
 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)
 /* Groups Cluster - Server */
 tsCLD_Groups sGroupsServerCluster;
 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;
 #endif
 /* Optional server clusters */
 #if (defined CLD_POWER_CONFIGURATION) && (defined
 POWER_CONFIGURATION_SERVER)
 /* Power Configuration Cluster - Server */
 tsCLD_PowerConfiguration sPowerConfigServerCluster;
 #endif
 #if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
 DEVICE_TEMPERATURE_CONFIGURATION_SERVER)
 /* Device Temperature Configuration Cluster - Server */
 tsCLD_DeviceTemperatureConfiguration
 sDeviceTemperatureConfigurationServerCluster;
 #endif
 #if (defined CLD_BALLAST_CONFIGURATION) && (defined
 BALLAST_CONFIGURATION_SERVER)
 tsCLD_BallastConfiguration sBallastConfigurationServerCluster;
 #endif
 /* Recommended Optional server clusters */
 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)
 /* LevelControl Cluster - Server */
 tsCLD_LevelControl sLevelControlServerCluster;
 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;
 #endif
 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
 ILLUMINANCE_LEVEL_SENSING_SERVER)

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
71 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 tsCLD_IlluminanceLevelSensing
 sIlluminanceLevelSensingServerCluster;
 #endif
 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
 tsCLD_ZllCommission sZllCommissionServerCluster;
 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;
 #endif
 /*Recommended Optional client clusters */
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 /* OTA cluster - Client */
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
 #if (defined CLD_ILLUMINANCE_MEASUREMENT) && (defined
 ILLUMINANCE_MEASUREMENT_CLIENT)
 /* Illuminance Measurement Cluster - Client */
 tsCLD_IlluminanceMeasurement sIlluminanceMeasurementClientCluster;
 #endif
 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
 ILLUMINANCE_LEVEL_SENSING_CLIENT)
 tsCLD_IlluminanceLevelSensing
 sIlluminanceLevelSensingClientCluster;
 #endif
 #if (defined CLD_OCCUPANCY_SENSING) && (defined
 OCCUPANCY_SENSING_CLIENT)
 /* Occupancy Sensing Cluster - Client */
 tsCLD_OccupancySensing sOccupancySensingClientCluster;
 #endif
} tsZLO_OnOffBallastDevice;

3.9.3 Registration Function

The following eZLO_RegisterOnOffBallastEndPoint() function is the endpoint registration function for an On/
Off Ballast device.

teZCL_Status eZLO_RegisterOnOffBallastEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_OnOffBallastDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports an On/Off Ballast device. The function must be
called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
72 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Also provide a pointer to a tsZLO_OnOffBallastDevice structure, described in Section 3.9.2. This structure
stores all variables relating to the color Controller device associated with the endpoint. This function sets the
sEndPoint and sClusterInstance fields of this structure and these fields must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used - for example, if more than
one On/Off Ballast device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.9.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.10 Dimmable Ballast
The Dimmable Ballast is a lighting device that switches on/off or have its level adjusted from a controller device,
such as a Dimmer Switch, or simply be switched on/off from an Occupancy Sensor.

• The Device ID is 0x0109.
• The header file for the device is dimmable_ballast.h.
• The clusters supported by the device are listed in Section 3.10.1.
• The device structure, tsZLO_DimmableBallastDevice, is listed in Section 3.10.2.
• The endpoint registration function for the device, eZLO_RegisterDimmableBallastEndPoint, is detailed in

Section 3.10.3.

3.10.1 Supported clusters

The clusters used by the Dimmable Ballast device are listed in the Table 23 .

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
73 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Server (Input) side Client (Output) side

Mandatory

Basic

Power configuration

Device temperature configuration

Identify

Groups

Scenes

On/Off

Level control

Ballast configuration

Optional

Illuminance level sensing OTA upgrade

Touchlink commissioning Illuminance measurement

Illuminance level sensing

Occupancy sensing

Table 23. Clusters for Dimmable Ballast

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.10.2 Device Structure

The following tsZLO_DimmableBallastDevice structure is the shared structure for a Dimmable Ballast
device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_DimmableBallastDeviceClusterInstances sClusterInstance;
 /* Mandatory server clusters */
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)
 /* On/Off Cluster - Server */
 tsCLD_OnOff sOnOffServerCluster;
 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;
 #endif
 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)
 /* LevelControl Cluster - Server */
 tsCLD_LevelControl sLevelControlServerCluster;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
74 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;
 #endif
#if (defined CLD_SCENES) && (defined SCENES_SERVER)
 /* Scenes Cluster - Server */
 tsCLD_Scenes sScenesServerCluster;
 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)
 /* Groups Cluster - Server */
 tsCLD_Groups sGroupsServerCluster;
 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;
 #endif
 #if (defined CLD_POWER_CONFIGURATION) && (defined
 POWER_CONFIGURATION_SERVER)
 /* Power Configuration Cluster - Server */
 tsCLD_PowerConfiguration sPowerConfigServerCluster;
 #endif
 #if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
 DEVICE_TEMPERATURE_CONFIGURATION_SERVER)
 /* Device Temperature Configuration Cluster - Server */
 tsCLD_DeviceTemperatureConfiguration
 sDeviceTemperatureConfigurationServerCluster;
 #endif
 #if (defined CLD_BALLAST_CONFIGURATION) && (defined
 BALLAST_CONFIGURATION_SERVER)
 tsCLD_BallastConfiguration sBallastConfigurationServerCluster;
 #endif
 /* Recommended Optional server clusters */
 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
 ILLUMINANCE_LEVEL_SENSING_SERVER)
 tsCLD_IlluminanceLevelSensing
 sIlluminanceLevelSensingServerCluster;
 #endif
 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
 tsCLD_ZllCommission sZllCommissionServerCluster;
 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;
 #endif
/*Recommended Optional client clusters */
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 /* OTA cluster - Client */
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
 #if (defined CLD_ILLUMINANCE_MEASUREMENT) && (defined
 ILLUMINANCE_MEASUREMENT_CLIENT)
 /* Illuminance Measurement Cluster - Client */
 tsCLD_IlluminanceMeasurement sIlluminanceMeasurementClientCluster;
 #endif
 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
 ILLUMINANCE_LEVEL_SENSING_CLIENT)
 tsCLD_IlluminanceLevelSensing
 sIlluminanceLevelSensingClientCluster;
 #endif
 #if (defined CLD_OCCUPANCY_SENSING) && (defined
 OCCUPANCY_SENSING_CLIENT)
 /* Occupancy Sensing Cluster - Client */
 tsCLD_OccupancySensing sOccupancySensingClientCluster;
 #endif

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
75 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

} tsZLO_DimmableBallastDevice;

3.10.3 Registration Function

The following eZLO_RegisterDimmableBallastEndPoint() function is the endpoint registration function for a
Dimmable Ballast device.

teZCL_Status eZLO_RegisterDimmableBallastEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_DimmableBallastDevice *psDeviceInfo);

Description

This function is used to register an endpoint that supports a Dimmable Ballast device. The function must be
called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_DimmableBallastDevice structure, described in Section 3.10.2.
This structure stores all variables relating to the color Controller device associated with the endpoint. The
sEndPoint and sClusterInstance fields of this structure are set by this function and must not be directly
written to by the application. The function is called multiple times if more than one endpoint is being used - for
example, if more than one Dimmable Ballast device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.10.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
76 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

9. E_ZCL_ERR_SECURITY_RANGE
10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.11 On/Off Plug-in Unit
The On/Off Plug-in Unit device is typically used in nodes that contain a controllable mains plug or adaptor which
includes an on/off switch. It may be controlled from a controller device such as an On/Off Light Switch.

• The Device ID is 0x010A.
• The header file for the device is on_off_plug.h.
• The clusters supported by the device are listed in Section 3.11.1.
• The device structure, tsZLO_OnOffPlugDevice, is listed in Section 3.11.2.
• The endpoint registration function for the device, eZLO_RegisterOnOffPlugEndPoint(), is detailed in Section

3.11.3.

3.11.1 Supported clusters

The clusters supported by the On/Off Plug-in Unit device are listed in the Table 24.

Server (Input) side Client (Output) side

Mandatory

Basic

Identify

Groups

Scenes

On/Off

Optional

Level control OTA upgrade

Table 24. Clusters for On/Off Plug-in Unit

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.11.2 Device Structure

The following tsZLO_OnOffPlugDevice structure is the shared structure for an On/Off Plug-in Unit device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_OnOffPlugDeviceClusterInstances sClusterInstance;
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
77 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)
 /* On/Off Cluster - Server */
 tsCLD_OnOff sOnOffServerCluster;
 tsCLD_OnOffCustomDataStructure
 sOnOffServerCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)
 /* Groups Cluster - Server */
 tsCLD_Groups sGroupsServerCluster;
 tsCLD_GroupsCustomDataStructure
 sGroupsServerCustomDataStructure;
 #endif
 #if (defined CLD_SCENES) && (defined SCENES_SERVER)
 /* Scenes Cluster - Server */
 tsCLD_Scenes sScenesServerCluster;
 tsCLD_ScenesCustomDataStructure
 sScenesServerCustomDataStructure;
 #endif
 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)
 /* LevelControl Cluster - Server */
 tsCLD_LevelControl sLevelControlServerCluster;
 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 /* OTA cluster - Client */
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
} tsZLO_OnOffPlugDevice;

3.11.3 Registration Function

The following eZLO_RegisterOnOffPlugEndPoint() function is the endpoint registration function for an On/Off
Plug-in Unit device.

teZCL_Status eZLO_RegisterOnOffPlugEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_OnOffPlugDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports an On/Off Plug-in Unit device. The function must be
called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
78 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_OnOffPlugDevice structure, described in Section 3.11.2. This structure
stores all variables relating to the color Controller device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be directly written to by the
application. The function is called multiple times if more than one endpoint is being used - for example, if more
than one On/Off Plug-in Unit device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.11.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.12 Dimmable Plug-in Unit
The Dimmable Plug-in Unit device is typically used in nodes that contain a controllable mains plug or adaptor
which includes an adjustable output (to a lamp). It may be controlled from a controller device such as a Dimmer
Switch or a Non-colour Controller.

• The Device ID is 0x010B.
• The header file for the device is dimmable_plug.h.
• The clusters supported by the device are listed in Section 3.12.1.
• The device structure, tsZLO_DimmablePlugDevice, is listed in Section 3.12.2.
• The endpoint registration function for the device, eZLO_RegisterDimmablePlugEndPoint(), is detailed in

Section 3.12.3.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
79 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.12.1 Supported clusters

The clusters supported by the Dimmable Plug-in Unit device are listed in the Table 25.

Server (Input) side Client (Output) side

Mandatory

Basic

Identify

Groups

Scenes

On/Off

Level control

Optional

OTA upgrade

Table 25. Clusters for Dimmable Plug-in Unit

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.12.2 Device Structure

The following tsZLO_DimmablePlugDevice structure is the shared structure for a Dimmable Plug-in Unit
device:

typedefstruct
{
 tsZCL_EndPointDefinitionsEndPoint;
 /* Cluster instances */
 tsZLO_DimmablePlugDeviceClusterInstances sClusterInstance;
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)
 /* On/Off Cluster - Server */
 tsCLD_OnOff sOnOffServerCluster;
 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)
 /* Groups Cluster - Server */
 tsCLD_Groups sGroupsServerCluster;
 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;
 #endif
 #if (defined CLD_SCENES) && (defined SCENES_SERVER)
 /* Scenes Cluster - Server */
 tsCLD_Scenes sScenesServerCluster;
 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
80 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 #endif
 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)
 /* LevelControl Cluster - Server */
 tsCLD_LevelControl sLevelControlServerCluster;
 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 /* OTA cluster - Client */
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
} tsZLO_DimmablePlugDevice;

3.12.3 Registration Function

The following eZLO_RegisterDimmablePlugEndPoint() function is the endpoint registration function for a
Dimmable Plug-in Unit device.

teZCL_Status eZLO_RegisterDimmablePlugEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_DimmablePlugDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a Dimmable Plug-in Unit device. The function must
be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_DimmablePlugDevice structure, described in Section 3.12.2. This
structure stores all variables relating to the color Controller device associated with the endpoint. The
sEndPoint and sClusterInstance fields of this structure are set by this function and must not be directly
written to by the application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
Dimmable Plug-in Unit device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.12.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
81 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.13 Colour Temperature Light
The Colour Temperature Light device is typically used in nodes that contain a colour lamp with adjustable colour
(and brightness) which operates using colour temperature.

• The Device ID is 0x010C.
• The header file for the device is colour_temperature_light.h.
• The clusters supported by the device are listed in Section 3.13.1.
• The device structure, tsZLO_ColourTemperatureLightDevice, is listed in Section 3.13.2.
• The endpoint registration function for the device, eZLO_RegisterColourTemperatureLightEndPoint(), is

detailed in Section 3.13.3.

3.13.1 Supported clusters

The clusters supported by the Colour Temperature Light device are listed in the Table 26.

Server (Input) side Client (Output) side

Mandatory

Basic

Identify

Groups

Scenes

On/Off

Level control

Colour control

Optional

Touchlink commissioning OTA upgrade

Table 26. Clusters for Colour Temperature Light

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
82 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.13.2 Device Structure

The following tsZLO_ColourTemperatureLightDevice structure is the shared structure for a Colour
Temperature Light device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_ColourTemperatureLightDeviceClusterInstances sClusterInstance;
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)
 /* On/Off Cluster - Server */
 tsCLD_OnOff sOnOffServerCluster;
 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)
 /* Groups Cluster - Server */
 tsCLD_Groups sGroupsServerCluster;
 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;
 #endif
 #if (defined CLD_SCENES) && (defined SCENES_SERVER)
 /* Scenes Cluster - Server */
 tsCLD_Scenes sScenesServerCluster;
 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;
 #endif
 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)
 /* LevelControl Cluster - Server */
 tsCLD_LevelControl sLevelControlServerCluster;
 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;
 #endif
 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_SERVER)
 /* Colour Control Cluster - Server */
 tsCLD_ColourControl sColourControlServerCluster;
 tsCLD_ColourControlCustomDataStructure
 sColourControlServerCustomDataStructure;
 #endif
 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
 tsCLD_ZllCommission sZllCommissionServerCluster;
 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 /* OTA cluster - Client */
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
83 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 #endif
} tsZLO_ColourTemperatureLightDevice;

3.13.3 Registration Function

The following eZLO_RegisterColourTemperatureLightEndPoint() function is the endpoint registration function
for a color Temperature Light device.

teZCL_Status eZLO_RegisterColourTemperatureLightEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_ColourTemperatureLightDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a color Temperature Light device. The function
must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_ColourTemperatureLightDevice structure, described in Section 3.13.2.
This structure stores all variables relating to the color Controller device associated with the endpoint. The
sEndPoint and sClusterInstance fields of this structure are set by this function and must not be directly
written to by the application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
color Temperature Light device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.13.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
84 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.14 Extended Colour Light
The Extended Colour Light device is typically used in nodes that contain a colour lamp with adjustable colour
and brightness. This device supports a range of colour parameters, including hue/saturation, enhanced hue,
colour temperature, colour loop, and XY.

• The Device ID is 0x010D.
• The header file for the device is extended_colour_light.h.
• The clusters supported by the device are listed in Section 3.14.1.
• The device structure, tsZLO_ExtendedColourLightDevice, is listed in Section 3.14.2.
• The endpoint registration function for the device, eZLO_RegisterExtendedColourLightEndPoint(), is

detailed in Section 3.14.3.

3.14.1 Supported clusters

The clusters supported by the Extended Colour Light device are listed in the Table 27.

Server (Input) side Client (Output) side

Mandatory

Basic

Identify

Groups

Scenes

On/Off

Level control

Colour control

Optional

Touchlink commissioning OTA upgrade

Table 27. Clusters for Extended Colour Light

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
85 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.14.2 Device Structure

The following tsZLO_ExtendedColourLightDevice structure is the shared structure for an Extended color
Light device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /*Clusterinstances*/
 tsZLO_ExtendedColourLightDeviceClusterInstances
 sClusterInstance;
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)
 /* On/Off Cluster - Server */
 tsCLD_OnOff sOnOffServerCluster;
 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)
 /* Groups Cluster - Server */
 tsCLD_Groups sGroupsServerCluster;
 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;
 #endif
 #if (defined CLD_SCENES) && (defined SCENES_SERVER)
 /* Scenes Cluster - Server */
 tsCLD_Scenes sScenesServerCluster;
 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;
 #endif
 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)
 /* LevelControl Cluster - Server */
 tsCLD_LevelControl sLevelControlServerCluster;
 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;
 #endif
 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_SERVER)
 /* Colour Control Cluster - Server */
 tsCLD_ColourControl sColourControlServerCluster;
 tsCLD_ColourControlCustomDataStructure
 sColourControlServerCustomDataStructure;
 #endif
 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
 tsCLD_ZllCommission sZllCommissionServerCluster;
 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 /* OTA cluster - Client */
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
} tsZLO_ExtendedColourLightDevice;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
86 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.14.3 Registration Function

The following eZLO_RegisterExtendedColourLightEndPoint() function is the endpoint registration function for
an Extended color Light device.

teZCL_Status eZLO_RegisterExtendedColourLightEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_ExtendedColourLightDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports an Extended color Light device. The function must
be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_ExtendedColourLightDevice structure, described in Section 3.14.2.
This structure stores all variables relating to the color Controller device associated with the endpoint. The
sEndPoint and sClusterInstance fields of this structure are set by this function and must not be directly
written to by the application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
Extended color Light device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.14.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
87 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.15 Light Level Sensor
The Light Level Sensor device measures the illumination level in an area. It can be used to switch on/off a
lighting device, such as an On/Off Ballast.

• The Device ID is 0x010E.
• The header file for the device is light_level_sensor.h.
• The clusters supported by the device are listed in Section 3.15.1.
• The device structure, tsZLO_LightLevelSensorDevice, is listed in Section 3.15.2.
• The endpoint registration function for the device, eZLO_RegisterLightLevelSensorEndPoint(), is detailed in

Section 3.15.3.

3.15.1 Supported clusters

The clusters used by the Light Level Sensor device are listed in the Table 28.

Server (Input) side Client (Output) side

Mandatory

Basic Identify

Identify

Illuminance level sensing

Optional

OTA upgrade

Groups

Table 28. Clusters for Light Level Sensor

3.15.2 Device Structure

The following tsZLO_LightLevelSensorDevice structure is the shared structure for a Light Level Sensor
device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_LightLevelSensorDeviceClusterInstances sClusterInstance;
 /* Mandatory server clusters */
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)
 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
88 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
 ILLUMINANCE_LEVEL_SENSING_SERVER)
 tsCLD_IlluminanceLevelSensing
 sIlluminanceLevelSensingServerCluster;
 #endif
 /* Optional server clusters */
 #if (defined CLD_POLL_CONTROL) && (defined POLL_CONTROL_SERVER)
 tsCLD_PollControl sPollControlServerCluster;
 tsCLD_PollControlCustomDataStructure
 sPollControlServerCustomDataStructure;
 #endif
 /* Mandatory server clusters */
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
 /* Identify Cluster - Client */
 tsCLD_Identify sIdentifyClientCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;
 #endif
 /* Recommended Optional client clusters */
 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
 /* Groups Cluster - Client */
 tsCLD_Groups sGroupsClientCluster;
 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
} tsZLO_LightLevelSensorDevice;

3.15.3 Registration Function

The following eZLO_RegisterLightLevelSensorEndPoint() function is the endpoint registration function for a
Light Level Sensor device.

teZCL_Status eZLO_RegisterLightLevelSensorEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_LightLevelSensorDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a Light Level Sensor device. The function must be
called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(*tfpZCL_ZCLCallBackFunction)

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
89 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_ColourControllerDevice structure, described in Section 3.16.2. This structure
stores all variables relating to the color Controller device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be directly written to by the
application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
Light Level Sensor device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.16.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.16 Colour Controller
The Colour Controller device is used in a node that issues colour-control commands to adjust the intensity or
colour of a lighting device, or switch it on/off.

• The Device ID is 0x0800.
• The header file for the device is colour_controller.h.
• The clusters supported by the device are listed in Section 3.16.1.
• The device structure, tsZLO_ColourControllerDevice, is listed in Section 3.16.2.
• The endpoint registration function for the device, eZLO_RegisterColourRemoteEndPoint(), is detailed in

Section 3.16.3.

3.16.1 Supported clusters

The clusters supported by the Colour Controller device are listed in the Table 29.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
90 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Server (Input) side Client (Output) side

Mandatory

Basic On/Off

Identify Identify

Level control

Colour control

Optional

Touchlink commissioning Touchlink commissioning

Groups

OTA upgrade

Table 29. Clusters for Colour Controller

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.16.2 Device Structure

The following tsZLO_ColourControllerDevice structure is the shared structure for a Colour Controller
device:

typedef struct
{
tsZCL_EndPointDefinitionsEndPoint;
/* Clusterinstances */
tsZLO_ColourControllerDeviceClusterInstances sClusterInstance;
#if (defined CLD_BASIC) && (defined BASIC_SERVER)
/* Basic Cluster - Server */
tsCLD_Basic sBasicServerCluster;
#endif
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
/* Identify Cluster - Server */
tsCLD_Identify sIdentifyServerCluster;
tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
tsCLD_ZllCommission sZllCommissionServerCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionServerCustomDataStructure;
#endif
/* Mandatory client clusters */
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
/* Identify Cluster - Client */
tsCLD_Identify sIdentifyClientCluster;
tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;
#endif
#if (defined CLD_BASIC) && (defined BASIC_CLIENT)
/* Basic Cluster - Client */
tsCLD_Basic sBasicClientCluster;
#endif
#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)
/* On/Off Cluster - Client */

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
91 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

tsCLD_OnOff sOnOffClientCluster;
#endif
#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)
/* Level Control Cluster - Client */
tsCLD_LevelControl sLevelControlClientCluster;
tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;
#endif
#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)
/* Colour Control Cluster - Client */
tsCLD_ColourControl sColourControlClientCluster;
tsCLD_ColourControlCustomDataStructure
sColourControlClientCustomDataStructure;
#endif
/* Optional client cluster */
#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
/* Groups Cluster - Client */
tsCLD_Groups sGroupsClientCluster;
tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
#endif
#if (defined CLD_OTA) && (defined OTA_CLIENT)
/* OTA cluster - Client */
tsCLD_AS_Ota sCLD_OTA;
tsOTA_Common sCLD_OTA_CustomDataStruct;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)
tsCLD_ZllCommission sZllCommissionClientCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionClientCustomDataStructure;
#endif
}tsZLO_ColourControllerDevice;

3.16.3 Registration Function

The following eZLO_RegisterColourControllerEndPoint() function is the endpoint registration function for a
color Controller device.

teZCL_Status eZLO_RegisterColourControllerEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_ColourControllerDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a color Controller device. The function must be
called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent* pCallBackEvent);

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
92 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Also provide a pointer to a tsZLO_ColourControllerDevice structure, described in Section 3.16.2.
This structure stores all variables relating to the color Controller device associated with the endpoint. The
sEndPoint and sClusterInstance fields of this structure are set by this function and must not be directly
written to by the application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
color Controller device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.16.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.17 Color Scene Controller
The color Scene Controller device is used in nodes that support scenes and that issue color-control commands.
A typical use is to adjust the intensity or color of a lighting device, or switch it on/off. For example, it can be used
as a controller for a Color Dimmable Light.

• The Device ID is 0x0810.
• The header file for the device is colour_scene_controller.h.
• The clusters supported by the device are listed in Section 3.17.1.
• The device structure, tsZLO_ColourSceneControllerDevice, is listed in Section 3.17.2.
• The endpoint registration function for the device, eZLO_RegisterColourSceneControllerEndPoint(), is

detailed in Section 3.17.3.

3.17.1 Supported clusters

The clusters supported by the Colour Scene Controller device are listed in the Table 30.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
93 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Server (Input) side Client (Output) side

Mandatory

Basic On/Off

Identify Identify

Level control

Colour control

Scenes

Optional

Touchlink commissioning Touchlink commissioning

Groups

OTA upgrade

Table 30. Clusters for Colour Scene Controller

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.17.2 Device Structure

The following tsZLO_ColourSceneControllerDevice structure is the shared structure for a Colour Scene
Controller device:

typedef struct
{
tsZCL_EndPointDefinition sEndPoint;
/* Cluster instances */
tsZLO_ColourSceneControllerDeviceClusterInstances sClusterInstance;
#if (defined CLD_BASIC) && (defined BASIC_SERVER)
/* Basic Cluster - Server */
tsCLD_Basic sBasicServerCluster;
#endif
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
/* Identify Cluster - Server */
tsCLD_Identify sIdentifyServerCluster;
tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
tsCLD_ZllCommission sZllCommissionServerCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionServerCustomDataStructure;
#endif
/* Mandatory client clusters */
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
/* Identify Cluster - Client */
tsCLD_Identify sIdentifyClientCluster;
tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;
#endif
#if (defined CLD_BASIC) && (defined BASIC_CLIENT)
/* Basic Cluster - Server */
tsCLD_Basic sBasicClientCluster;
#endif
#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
94 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

/* On/Off Cluster - Client */
tsCLD_OnOff sOnOffClientCluster;
#endif
#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)
/* Level Control Cluster - Client */
tsCLD_LevelControl sLevelControlClientCluster;
tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;
#endif
#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)
/* Colour Control Cluster - Client */
tsCLD_ColourControl sColourControlClientCluster;
tsCLD_ColourControlCustomDataStructure
sColourControlClientCustomDataStructure;
#endif
#if (defined CLD_SCENES) && (defined SCENES_CLIENT)
/* Scenes Cluster - Client */
tsCLD_Scenes sScenesClientCluster;
tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;
#endif
/* Recommended Optional Client Cluster */
#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
/* Groups Cluster - Client */
tsCLD_Groups sGroupsClientCluster;
tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
#endif
#if (defined CLD_OTA) && (defined OTA_CLIENT)
/* OTA cluster - Client */
tsCLD_AS_Ota sCLD_OTA;
tsOTA_Common sCLD_OTA_CustomDataStruct;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)
tsCLD_ZllCommission sZllCommissionClientCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionClientCustomDataStructure;
#endif
}tsZLO_ColourSceneControllerDevice;

3.17.3 Registration Function

The following eZLO_RegisterColourSceneControllerEndPoint() function is the endpoint registration function
for a color Scene Controller device.

teZCL_Status eZLO_RegisterColourSceneControllerEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_ColourSceneControllerDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a color Scene Controller device. The function must
be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
95 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_ColourSceneControllerDevice structure, described in Section 3.17.2.
This structure stores all variables relating to the color Controller device associated with the endpoint. The
sEndPoint and sClusterInstance fields of this structure are set by this function and must not be directly
written to by the application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
color Scene Controller device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.17.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.18 Non-Colour Controller
The Non-Colour Controller device is used in nodes that issue control commands that are not related to colour -
for example, to control a Dimmable Light.

• The Device ID is 0x0820.
• The header file for the device is non_colour_controller.h.
• The clusters supported by the device are listed in Section 3.18.1.
• The device structure, tsZLO_NonColourControllerDevice, is listed in Section 3.18.2.
• The endpoint registration function for the device, eZLO_RegisterNonColourControllerEndPoint(), is

detailed in Section 3.18.3.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
96 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.18.1 Supported clusters

The clusters supported by the Non-Colour Controller device are listed in the Table 31.

Server (Input) side Client (Output) side

Mandatory

Basic On/Off

Identify Identify

Level control

Optional

Touchlink commissioning Touchlink commissioning

Groups

OTA upgrade

Table 31. Clusters for Non-Colour Controller

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.18.2 Device structure

The following tsZLO_NonColourControllerDevice structure is the shared structure for a Non-Colour
Controller device:

typedef struct
{
tsZCL_EndPointDefinition sEndPoint;
/* Cluster instances */
tsZLO_NonColourControllerDeviceClusterInstances sClusterInstance;
#if (defined CLD_BASIC) && (defined BASIC_SERVER)
/* Basic Cluster - Server */
tsCLD_Basic sBasicServerCluster;
#endif
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
/* Identify Cluster - Server */
tsCLD_Identify sIdentifyServerCluster;
tsCLD_IdentifyCustomDataStructure sIdentifyServerCustomDataStructure;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
tsCLD_ZllCommission sZllCommissionServerCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionServerCustomDataStructure;
#endif
/* Mandatory client clusters */
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
/* Identify Cluster - Client */
tsCLD_Identify sIdentifyClientCluster;
tsCLD_IdentifyCustomDataStructure sIdentifyClientCustomDataStructure;
#endif
#if (defined CLD_BASIC) && (defined BASIC_CLIENT)
/* Basic Cluster - Client */
tsCLD_Basic sBasicClientCluster;
#endif
#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)
/* On/Off Cluster - Client */

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
97 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

tsCLD_OnOff sOnOffClientCluster;
#endif
#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)
/* Level Control Cluster - Client */
tsCLD_LevelControl sLevelControlClientCluster;
tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;
#endif
#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
/* Groups Cluster - Client */
tsCLD_GroupssGroup sClientCluster;
tsCLD_GroupsCustomDataStructuresGroup sClientCustomDataStructure;
#endif
#if (defined CLD_OTA) && (defined OTA_CLIENT)
/* OTA cluster - Client */
tsCLD_AS_Ota sCLD_OTA;
tsOTA_Common sCLD_OTA_CustomDataStruct;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)
tsCLD_ZllCommission sZllCommissionClientCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionClientCustomDataStructure;
#endif
}tsZLO_NonColourControllerDevice;

3.18.3 Registration function

The following eZLO_RegisterNonColourControllerEndPoint() function is the endpoint registration function for
a Non-Colour Controller device.

teZCL_Status eZLO_RegisterNonColourControllerEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_NonColourControllerDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a Non-Colour Controller device. The function must
be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_NonColourControllerDevice structure, described in Section 3.18.2.
This structure stores all variables relating to the color Controller device associated with the endpoint. The
sEndPoint and sClusterInstance fields of this structure are set by this function and must not be directly
written to by the application.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
98 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

The function is called multiple times if more than one endpoint is being used - for example, if more than one
Non-Colour Controller device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.18.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.19 Non-Colour Scene Controller
The Non-Colour Scene Controller device is used in nodes that support ‘scenes’ and issues control commands
which are not related to colour - for example, to control a Dimmable Light.

• The Device ID is 0x0830.
• The header file for the device is non_colour_scene_controller.h.
• The clusters supported by the device are listed in Section 3.19.1.
• The device structure, tsZLO_NonColourSceneRemoteDevice, is listed in Section 3.19.2.
• The endpoint registration function for the device, eZLO_RegisterNonColourSceneControllerEndPoint(), is

detailed in Section 3.19.3.

3.19.1 Supported clusters

The clusters supported by the Non-Colour Scene Controller device are listed in the Table 32.

Server (Input) side Client (Output) side

Mandatory

Basic On/Off

Table 32. Clusters for Non-Colour Scene Controller

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
99 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Server (Input) side Client (Output) side

Identify Identify

Level control

Scenes

Optional

Touchlink commissioning Touchlink commissioning

Groups

OTA upgrade

Table 32. Clusters for Non-Colour Scene Controller...continued

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.19.2 Device Structure

The following tsZLO_NonColourSceneControllerDevice structure is the shared structure for a Non-
Colour Scene Controller device:

typedef struct
{
tsZCL_EndPointDefinition sEndPoint;
/* Cluster instances */
tsZLO_NonColourSceneControllerDeviceClusterInstances sClusterInstance;
#if (defined CLD_BASIC) && (defined BASIC_SERVER)
/* Basic Cluster - Server */
tsCLD_Basic sBasicServerCluster;
#endif
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
/* Identify Cluster - Server */
tsCLD_Identify sIdentifyServerCluster;
tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
tsCLD_ZllCommission sZllCommissionServerCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionServerCustomDataStructure;
#endif
/* Mandatory client clusters */
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
/* Identify Cluster - Client */
tsCLD_Identify sIdentifyClientCluster;
tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;
#endif
#if (defined CLD_BASIC) && (defined BASIC_CLIENT)
/* Basic Cluster - Client */
tsCLD_Basic sBasicClientCluster;
#endif
#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)
/* On/Off Cluster - Client */
tsCLD_OnOff sOnOffClientCluster;
#endif
#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)
/* Level Control Cluster - Client */

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
100 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

tsCLD_LevelControl sLevelControlClientCluster;
tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;
#endif
#if (defined CLD_SCENES) && (defined SCENES_CLIENT)
/* Scenes Cluster - Client */
tsCLD_Scenes sScenesClientCluster;
tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;
#endif
/* Recommended Optional Client Cluster*/
#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
/* Groups Cluster - Client */
tsCLD_Groups sGroupsClientCluster;
tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
#endif
#if (defined CLD_OTA) && (defined OTA_CLIENT)
/* OTA cluster - Client */
tsCLD_AS_Ota sCLD_OTA;
tsOTA_Common sCLD_OTA_CustomDataStruct;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)
tsCLD_ZllCommission sZllCommissionClientCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionClientCustomDataStructure;
#endif
}tsZLO_NonColourSceneControllerDevice;

3.19.3 Registration Function

The following eZLO_RegisterNonColourSceneControllerEndPoint() function is the endpoint registration
function for a Non-Colour Scene Controller device.

teZCL_Status eZLO_RegisterNonColourSceneControllerEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_NonColourSceneControllerDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a Non-Colour Scene Controller device. The function
must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_NonColourSceneControllerDevice structure, described in Section
3.19.2. This structure stores all variables relating to the color Controller device associated with the endpoint.
The sEndPoint and sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.
JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
101 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

The function is called multiple times if more than one endpoint is being used - for example, if more than one
Non-Colour Scene Controller device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.19.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.20 Control Bridge
The Control Bridge device is used in nodes that relay control commands issued from another network, for
example, in an Internet router with a ZigBee interface.

• The Device ID is 0x0840.
• The header file for the device is control_bridge.h.
• The clusters supported by the device are listed in Section 3.20.1.
• The device structure, tsZLO_ControlBridgeDevice, is listed in Section 3.20.2.
• The endpoint registration function for the device, eZLO_RegisterControlBridgeEndPoint(), is detailed in

Section 3.20.3.

3.20.1 Supported clusters

The clusters supported by the Control Bridge device are listed in the Table 33.

Server (Input) side Client (Output) side

Mandatory

Basic On/Off

Table 33. Clusters for Control Bridge

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
102 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Server (Input) side Client (Output) side

Identify Identify

Groups

Scenes

Level control

Colour control

Optional

OTA upgrade OTA upgrade

Touchlink commissioning Touchlink commissioning

Illuminance measurement

Illuminance level sensing

Occupancy sensing

Table 33. Clusters for Control Bridge...continued

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.20.2 Device Structure

The following tsZLO_ControlBridgeDevice structure is the shared structure for a Control Bridge device:

typedef struct
{
tsZCL_EndPointDefinition sEndPoint;
/* Cluster instances */
tsZLO_ControlBridgeDeviceClusterInstances sClusterInstance;
#if (defined CLD_BASIC) && (defined BASIC_SERVER)
/* Basic Cluster - Server */
tsCLD_Basic sBasicServerCluster;
#endif
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
/* Identify Cluster - Server */
tsCLD_Identify sIdentifyServerCluster;
tsCLD_IdentifyCustomDataStructure sIdentifyServerCustomDataStructure;
#endif
/* Recommended Optional Server Cluster */
#if (defined CLD_OTA) && (defined OTA_SERVER)
/* OTA cluster */
tsCLD_AS_Ota sCLD_ServerOTA;
tsOTA_Common sCLD_OTA_ServerCustomDataStruct;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
tsCLD_ZllCommission sZllCommissionServerCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionServerCustomDataStructure;
#endif
/*
* Mandatory client clusters
*/
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
/* Identify Cluster - Client */
tsCLD_Identify sIdentifyClientCluster;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
103 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

tsCLD_IdentifyCustomDataStructure sIdentifyClientCustomDataStructure;
#endif
#if (defined CLD_BASIC) && (defined BASIC_CLIENT)
/* Basic Cluster - Client */
tsCLD_Basic sBasicClientCluster;
#endif
#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)
/* On/Off Cluster - Client */
tsCLD_OnOff sOnOffClientCluster;
#endif
#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)
/* Level Control Cluster - Client */
tsCLD_LevelControl sLevelControlClientCluster;
tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;
#endif
#if (defined CLD_SCENES) && (defined SCENES_CLIENT)
/* Scenes Cluster - Client */
tsCLD_Scenes sScenesClientCluster;
tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;
#endif
#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
/* Groups Cluster - Client */
tsCLD_Groups sGroupsClientCluster;
tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
#endif
#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)
/* Colour Control Cluster - Client */
tsCLD_ColourControl sColourControlClientCluster;
tsCLD_ColourControlCustomDataStructure
sColourControlClientCustomDataStructure;
#endif
/* Recommended Optional client clusters */
#if (defined CLD_OTA) && (defined OTA_CLIENT)
/* OTA cluster */
tsCLD_AS_Ota sCLD_OTA;
tsOTA_Common sCLD_OTA_CustomDataStruct;
#endif
#if(defined CLD_ILLUMINANCE_MEASUREMENT) && (defined
 ILLUMINANCE_MEASUREMENT_CLIENT)
/* Illuminance Measurement Cluster - Client */
tsCLD_IlluminanceMeasurement sIlluminanceMeasurementClientCluster;
#endif
#if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
 ILLUMINANCE_LEVEL_SENSING_CLIENT)
tsCLD_IlluminanceLevelSensing sIlluminanceLevelSensingClientCluster;
#endif
#if (defined CLD_OCCUPANCY_SENSING) && (defined OCCUPANCY_SENSING_CLIENT)
/* Occupancy Sensing Cluster - Client */
tsCLD_OccupancySensing sOccupancySensingClientCluster;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)
tsCLD_ZllCommission sZllCommissionClientCluster;
tsCLD_ZllCommissionCustomDataStructure
sZllCommissionClientCustomDataStructure;
#endif
}tsZLO_ControlBridgeDevice;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
104 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.20.3 Registration Function

The following eZLO_RegisterControlBridgeEndPoint() function is the endpoint registration function for a
Control Bridge device.

teZCL_Status eZLO_RegisterControlBridgeEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_ControlBridgeDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports a Control Bridge device. The function must be
called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_ControlBridgeDevice structure, described in Section 3.20.2. This
structure stores all variables relating to the color Controller device associated with the endpoint. The
sEndPoint and sClusterInstance fields of this structure are set by this function and must not be directly
written to by the application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one
Control Bridge device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.20.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
105 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

3.21 On/Off Sensor
The On/Off Sensor device is used in sensor nodes that issue control commands, for example, an infrared
occupancy sensor.

• The Device ID is 0x0850.
• The header file for the device is on_off_sensor.h.
• The clusters supported by the device are listed in Section 3.21.1.
• The device structure, tsZLO_OnOffSensorDevice, is listed in Section 3.21.2.
• The endpoint registration function for the device, eZLO_RegisterOnOffSensorEndPoint(), is detailed in

Section 3.21.3.

3.21.1 Supported clusters

The clusters used by the On/Off Sensor device are listed in the Table 34.

Server (Input) side Client (Output) side

Mandatory

Basic On/Off

Identify Identify

Optional

Touchlink commissioning Touchlink commissioning

Level control

Colour control

Groups

Scenes

OTA upgrade

Table 34. Clusters for On/Off Sensor

The mandatory attributes within each cluster for this device type are indicated in the ZigBee Lighting and
Occupancy Device Specification (15-0014-01).

3.21.2 Device structure

The following tsZLO_OnOffSensorDevice structure is the shared structure for a On/Off Sensor device:

typedef struct
{
 tsZCL_EndPointDefinition sEndPoint;
 /* Cluster instances */
 tsZLO_OnOffSensorDeviceClusterInstances sClusterInstance;
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
106 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

 /* Basic Cluster - Server */
 tsCLD_Basic sBasicServerCluster;
 #endif
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
 /* Identify Cluster - Server */
 tsCLD_Identify sIdentifyServerCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;
 #endif
 /* Recommended Optional Server Cluster */
 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
 tsCLD_ZllCommission sZllCommissionServerCluster;
 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;
 #endif
/** Mandatory client clusters*/
 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)
 /* Identify Cluster - Client */
 tsCLD_Identify sIdentifyClientCluster;
 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;
 #endif
 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)
 /* On/Off Cluster - Client */
 tsCLD_OnOff sOnOffClientCluster;
 #endif
 /* Recommended Optional Client CLuster */
 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)
 /* Level Control Cluster - Client */
 tsCLD_LevelControl sLevelControlClientCluster;
 tsCLD_LevelControlCustomDataStructure
 sLevelControlClientCustomDataStructure;
 #endif
 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)
 /* Scenes Cluster - Client */
 tsCLD_Scenes sScenesClientCluster;
 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;
 #endif
 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
 /* Groups Cluster - Client */
 tsCLD_Groups sGroupsClientCluster;
 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;
 #endif
 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)
 /* Colour Control Cluster - Client */
 tsCLD_ColourControl sColourControlClientCluster;
 tsCLD_ColourControlCustomDataStructure
 sColourControlClientCustomDataStructure;
 #endif
 #if (defined CLD_OTA) && (defined OTA_CLIENT)
 /* OTA cluster - Client */
 tsCLD_AS_Ota sCLD_OTA;
 tsOTA_Common sCLD_OTA_CustomDataStruct;
 #endif
 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)
 tsCLD_ZllCommission sZllCommissionClientCluster;
 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionClientCustomDataStructure;
 #endif
} tsZLO_OnOffSensorDevice;

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
107 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.21.3 Registration function

The following eZLO_RegisterOnOffSensorEndPoint() function is the endpoint registration function for an On/
Off Sensor device.

teZCL_Status eZLO_RegisterOnOffSensorEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLO_OnOffSensorDevice *psDeviceInfo);

Description

This function is used to register an endpoint which supports an On/Off Sensor device. The function must be
called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint 0 is reserved for ZigBee
use). Application endpoints are normally numbered consecutively starting at 1. The specified number must be
less than or equal to the value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

While invoking this function, specify a user-defined callback function, which is invoked when an event
associated with the endpoint occurs. This callback function is defined according to the typedef:

typedef void(* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

Also provide a pointer to a tsZLO_OnOffSensorDevice structure, described in Section 3.21.2. This structure
stores all variables relating to the color Controller device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be directly written to by the
application.

The function is called multiple times if more than one endpoint is being used - for example, if more than one On/
Off Sensor device is housed in the same hardware, sharing the same module.

Parameters

• u8EndPointIdentifier: Endpoint that is to be associated with the registered structure and callback function.
• cbCallBack: Pointer to the function that is used to indicate events to the application for this endpoint.
• psDeviceInfo: Pointer to the structure that acts as storage for all variables related to the device being

registered on this endpoint (see Section 3.21.2). The sEndPoint and sClusterInstance fields are set by
this register function for internal use and must not be written to by the application.

Returns

1. E_ZCL_SUCCESS
2. E_ZCL_FAIL
3. E_ZCL_ERR_PARAMETER_NULL
4. E_ZCL_ERR_PARAMETER_RANGE
5. E_ZCL_ERR_EP_RANGE
6. E_ZCL_ERR_CLUSTER_0
7. E_ZCL_ERR_CALLBACK_NULL
8. E_ZCL_ERR_CLUSTER_NULL
9. E_ZCL_ERR_SECURITY_RANGE

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
108 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

10. E_ZCL_ERR_CLUSTER_ID_RANGE
11. E_ZCL_ERR_MANUFACTURER_SPECIFIC
12. E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED
13. E_ZCL_ERR_ATTRIBUTE_ID_ORDER
14. E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JNUG3132).

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
109 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

4 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2018-2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
110 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

5 Revision history

The table below lists the revisions to this document.

Document ID Release date Description

JNUG3131 v.2.3 24 January 2025 Added support for MCXW71 and MCXW72 devices

JNUG3131 v.2.2 28 February 2023 Added support for K32W1 devices

JNUG3131 v.2.1 21 June 2022 Updated to latest NXP documentation format

JNUG3131 v.2.0 18 November 2019 Addition of K32W041 and K32W061 devices

JNUG3131 v.1.0 21 June 2018 First release

Table 35. Document revision history

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
111 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
112 / 115

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Matter, Zigbee — are developed by the Connectivity Standards Alliance.
The Alliance's Brands and all goodwill associated therewith, are the
exclusive property of the Alliance.

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
113 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

Contents
1 Introduction .. 6
1.1 ZigBee device types .. 6
1.2 Software architecture ...6
1.3 Shared device structure7
1.4 Endpoint callback functions 8
1.5 Device initialization .. 9
1.6 Compile-time options ...9
2 ZigBee Base Device 12
2.1 Initializing and starting the ZigBee Base

Device ..12
2.2 Network commissioning13
2.2.1 Touchlink ..14
2.2.2 Network steering ..14
2.2.3 Network Formation .. 15
2.2.4 Finding and Binding ...16
2.2.4.1 Initiator Node ... 16
2.2.4.2 Target Node ... 17
2.2.5 Out-Of-Band Commissioning18
2.3 Network security .. 18
2.3.1 Centralized security networks19
2.3.2 Distributed security networks20
2.4 ZigBee base device rejoin handling20
2.5 Attributes and Constants 20
2.5.1 Attributes ..20
2.5.2 Constants ...25
2.5.2.1 General constants ..26
2.5.2.2 Touchlink constants ... 26
2.6 Functions ... 28
2.6.1 BDB_vInit ... 28
2.6.2 BDB_vSetKeys .. 29
2.6.3 BDB_vStart .. 29
2.6.4 BDB_eNfStartNwkFormation 30
2.6.5 BDB_eNsStartNwkSteering 31
2.6.6 BDB_eFbTriggerAsInitiator 32
2.6.7 BDB_vFbExitAsInitiator32
2.6.8 BDB_eFbTriggerAsTarget 33
2.6.9 BDB_vFbExitAsTarget 33
2.6.10 BDB_bIsBaseIdle ...34
2.6.11 BDB_u8OutOfBandCommissionStartDevice ... 34
2.6.12 BDB_vOutOfBandCommissionGetData35
2.6.13 BDB_

eOutOfBandCommissionGetDataEncrypted35
2.6.14 BDB_bOutOfBandCommissionGetKey 36
2.7 Structures ...37
2.7.1 BDB_tsBdbEvent ... 37
2.7.2 BDB_tuBdbEventData 37
2.7.3 BDB_tsZpsAfEvent .. 37
2.7.4 BDB_tsFindAndBindEvent 38
2.7.5 BDB_tsOobWriteDataToCommission39
2.7.6 BDB_tsOobReadDataToAuthenticate 40
2.7.7 BDB_tsOobWriteDataToAuthenticate 40
2.8 Enumerations ...40
2.8.1 BDB_teStatus .. 41
2.8.2 BDB_teCommissioningStatus41
2.9 Events ..42
2.10 Compile-time Options 45

3 Lighting and Occupancy Device Types 47
3.1 On/Off light .. 47
3.1.1 Supported clusters ...48
3.1.2 Device structure ...48
3.1.3 Registration function .. 49
3.2 Dimmable Light ..50
3.2.1 Supported clusters ...50
3.2.2 Device Structure .. 51
3.2.3 Registration Function52
3.3 Colour Dimmable Light 53
3.3.1 Supported clusters ...53
3.3.2 Device Structure .. 54
3.3.3 Registration Function55
3.4 On/Off Light Switch ..56
3.4.1 Supported clusters ...56
3.4.2 Device Structure .. 56
3.4.3 Registration Function57
3.5 Dimmer Switch .. 59
3.5.1 Supported clusters ...59
3.5.2 Device Structure .. 59
3.5.3 Registration Function60
3.6 Colour Dimmer Switch61
3.6.1 Supported clusters ...62
3.6.2 Device Structure .. 62
3.6.3 Registration Function63
3.7 Light Sensor .. 64
3.7.1 Supported clusters ...65
3.7.2 Device Structure .. 65
3.7.3 Registration Function66
3.8 Occupancy Sensor .. 67
3.8.1 Supported clusters ...67
3.8.2 Device Structure .. 68
3.8.3 Registration Function69
3.9 On/Off Ballast .. 70
3.9.1 Supported clusters ...70
3.9.2 Device Structure .. 71
3.9.3 Registration Function72
3.10 Dimmable Ballast ...73
3.10.1 Supported clusters ...73
3.10.2 Device Structure .. 74
3.10.3 Registration Function76
3.11 On/Off Plug-in Unit .. 77
3.11.1 Supported clusters ...77
3.11.2 Device Structure .. 77
3.11.3 Registration Function78
3.12 Dimmable Plug-in Unit79
3.12.1 Supported clusters ...80
3.12.2 Device Structure .. 80
3.12.3 Registration Function81
3.13 Colour Temperature Light 82
3.13.1 Supported clusters ...82
3.13.2 Device Structure .. 83
3.13.3 Registration Function84
3.14 Extended Colour Light85
3.14.1 Supported clusters ...85
3.14.2 Device Structure .. 86

JNUG3131 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.3 — 24 January 2025 Document feedback
114 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

NXP Semiconductors JNUG3131
ZigBee 3.0 Devices User Guide

3.14.3 Registration Function87
3.15 Light Level Sensor ...88
3.15.1 Supported clusters ...88
3.15.2 Device Structure .. 88
3.15.3 Registration Function89
3.16 Colour Controller ... 90
3.16.1 Supported clusters ...90
3.16.2 Device Structure .. 91
3.16.3 Registration Function92
3.17 Color Scene Controller 93
3.17.1 Supported clusters ...93
3.17.2 Device Structure .. 94
3.17.3 Registration Function95
3.18 Non-Colour Controller96
3.18.1 Supported clusters ...97
3.18.2 Device structure ...97
3.18.3 Registration function .. 98
3.19 Non-Colour Scene Controller99
3.19.1 Supported clusters ...99
3.19.2 Device Structure .. 100
3.19.3 Registration Function101
3.20 Control Bridge ..102
3.20.1 Supported clusters ...102
3.20.2 Device Structure .. 103
3.20.3 Registration Function105
3.21 On/Off Sensor ..106
3.21.1 Supported clusters ...106
3.21.2 Device structure ...106
3.21.3 Registration function 108
4 Note about the source code in the

document ..110
5 Revision history ...111

Legal information ...112

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 24 January 2025
Document identifier: JNUG3131

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3131

	1 Introduction
	1.1 ZigBee device types
	1.2 Software architecture
	1.3 Shared device structure
	1.4 Endpoint callback functions
	1.5 Device initialization
	1.6 Compile-time options

	2 ZigBee Base Device
	2.1 Initializing and starting the ZigBee Base Device
	2.2 Network commissioning
	2.2.1 Touchlink
	2.2.2 Network steering
	2.2.3 Network Formation
	2.2.4 Finding and Binding
	2.2.4.1 Initiator Node
	2.2.4.2 Target Node

	2.2.5 Out-Of-Band Commissioning

	2.3 Network security
	2.3.1 Centralized security networks
	2.3.2 Distributed security networks

	2.4 ZigBee base device rejoin handling
	2.5 Attributes and Constants
	2.5.1 Attributes
	2.5.2 Constants
	2.5.2.1 General constants
	2.5.2.2 Touchlink constants

	2.6 Functions
	2.6.1 BDB_vInit
	2.6.2 BDB_vSetKeys
	2.6.3 BDB_vStart
	2.6.4 BDB_eNfStartNwkFormation
	2.6.5 BDB_eNsStartNwkSteering
	2.6.6 BDB_eFbTriggerAsInitiator
	2.6.7 BDB_vFbExitAsInitiator
	2.6.8 BDB_eFbTriggerAsTarget
	2.6.9 BDB_vFbExitAsTarget
	2.6.10 BDB_bIsBaseIdle
	2.6.11 BDB_u8OutOfBandCommissionStartDevice
	2.6.12 BDB_vOutOfBandCommissionGetData
	2.6.13 BDB_eOutOfBandCommissionGetDataEncrypted
	2.6.14 BDB_bOutOfBandCommissionGetKey

	2.7 Structures
	2.7.1 BDB_tsBdbEvent
	2.7.2 BDB_tuBdbEventData
	2.7.3 BDB_tsZpsAfEvent
	2.7.4 BDB_tsFindAndBindEvent
	2.7.5 BDB_tsOobWriteDataToCommission
	2.7.6 BDB_tsOobReadDataToAuthenticate
	2.7.7 BDB_tsOobWriteDataToAuthenticate

	2.8 Enumerations
	2.8.1 BDB_teStatus
	2.8.2 BDB_teCommissioningStatus

	2.9 Events
	2.10 Compile-time Options

	3 Lighting and Occupancy Device Types
	3.1 On/Off light
	3.1.1 Supported clusters
	3.1.2 Device structure
	3.1.3 Registration function

	3.2 Dimmable Light
	3.2.1 Supported clusters
	3.2.2 Device Structure
	3.2.3 Registration Function

	3.3 Colour Dimmable Light
	3.3.1 Supported clusters
	3.3.2 Device Structure
	3.3.3 Registration Function

	3.4 On/Off Light Switch
	3.4.1 Supported clusters
	3.4.2 Device Structure
	3.4.3 Registration Function

	3.5 Dimmer Switch
	3.5.1 Supported clusters
	3.5.2 Device Structure
	3.5.3 Registration Function

	3.6 Colour Dimmer Switch
	3.6.1 Supported clusters
	3.6.2 Device Structure
	3.6.3 Registration Function

	3.7 Light Sensor
	3.7.1 Supported clusters
	3.7.2 Device Structure
	3.7.3 Registration Function

	3.8 Occupancy Sensor
	3.8.1 Supported clusters
	3.8.2 Device Structure
	3.8.3 Registration Function

	3.9 On/Off Ballast
	3.9.1 Supported clusters
	3.9.2 Device Structure
	3.9.3 Registration Function

	3.10 Dimmable Ballast
	3.10.1 Supported clusters
	3.10.2 Device Structure
	3.10.3 Registration Function

	3.11 On/Off Plug-in Unit
	3.11.1 Supported clusters
	3.11.2 Device Structure
	3.11.3 Registration Function

	3.12 Dimmable Plug-in Unit
	3.12.1 Supported clusters
	3.12.2 Device Structure
	3.12.3 Registration Function

	3.13 Colour Temperature Light
	3.13.1 Supported clusters
	3.13.2 Device Structure
	3.13.3 Registration Function

	3.14 Extended Colour Light
	3.14.1 Supported clusters
	3.14.2 Device Structure
	3.14.3 Registration Function

	3.15 Light Level Sensor
	3.15.1 Supported clusters
	3.15.2 Device Structure
	3.15.3 Registration Function

	3.16 Colour Controller
	3.16.1 Supported clusters
	3.16.2 Device Structure
	3.16.3 Registration Function

	3.17 Color Scene Controller
	3.17.1 Supported clusters
	3.17.2 Device Structure
	3.17.3 Registration Function

	3.18 Non-Colour Controller
	3.18.1 Supported clusters
	3.18.2 Device structure
	3.18.3 Registration function

	3.19 Non-Colour Scene Controller
	3.19.1 Supported clusters
	3.19.2 Device Structure
	3.19.3 Registration Function

	3.20 Control Bridge
	3.20.1 Supported clusters
	3.20.2 Device Structure
	3.20.3 Registration Function

	3.21 On/Off Sensor
	3.21.1 Supported clusters
	3.21.2 Device structure
	3.21.3 Registration function

	4 Note about the source code in the document
	5 Revision history
	Legal information
	Contents

