
JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)
Rev. 3.1 — 24 January 2025

Document information
Information Content

Keywords JNUG3132, NXP K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x family of
wireless microcontrollers, ZigBee devices, clusters, attributes, ZigBee 3.0 standard, ZigBee 3.0
applications, ZigBee 3.0 Software Development Kit (SDK)

Abstract This manual describes the NXP implementation of the ZigBee Cluster Library (ZCL) for the
ZigBee 3.0 standard on the K32W041, K32W061, K32W1, MCXW71, MCXW72 and JN518x
family of wireless microcontrollers. The NXP hardware platforms: K32W148-EVK, FRDM-
MCXW71, FRDM-MCXW72, MCX-W71-EVK, and MCX-W72-EVK support this library.

https://www.nxp.com

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Preface

Introduction
This manual describes the NXP implementation of the ZigBee Cluster Library (ZCL) for the ZigBee 3.0
standard. The manual describes the clusters from the ZCL that may be used in ZigBee 3.0 applications
developed using an NXP ZigBee 3.0 Software Developer’s Kit (SDK).

Prerequisites
This manual assumes that you are already familiar with the concepts of ZigBee devices, clusters, and attributes.
These are described in the ZigBee 3.0 Stack User Guide (JNUG3130), available from the NXP web site (see
“Support Resources”).

Chip Compatibility
The ZCL software described in this manual can be used on the NXP K32W041, K32W061, K32W1, MCXW71,
MCXW72, and JN518x family of wireless microcontrollers. The NXP hardware platforms K32W148-EVK,
FRDM-MCXW71, FRDM-MCXW72, MCX-W71-EVK, and MCX-W72-EVK are supported.

Organization
• Part I: Fundamentals comprises four chapters:

– Chapter 1 introduces the ZigBee Cluster Library (ZCL)
– Chapter 2 describes some essential concepts for the ZCL, including read/write access to cluster attributes

and the associated read/write functions
– Chapter 3 describes the event handling framework of the ZCL, including the supplied event handling

function
– Chapter 4 describes the error handling provision of the ZCL, including the supplied error handling function

• Part II: Common Resources comprises three chapters:
– Chapter 5 details the general functions of the ZCL
– Chapter 6 details the general structures used by the ZCL
– Chapter 7 details the general enumerations used by the ZCL

• Part III: General Clusters comprises fifteen chapters:
– Chapter 8 details the Basic cluster
– Chapter 9 details the Power Configuration cluster
– Chapter 10 details the Device Temperature Configuration cluster
– Chapter 11 details the Identify cluster
– Chapter 12 details the Groups cluster
– Chapter 13 details the Scenes cluster
– Chapter 14 details the On/Off cluster
– Chapter 15 details the On/Off Switch Configuration cluster
– Chapter 16 details the Level Control cluster
– Chapter 17 details the Alarms cluster
– Chapter 18 details the Time cluster, as well as the use of ZCL time
– Chapter 19 details the Input and Output clusters
– Chapter 20 details the Poll Control cluster
– Chapter 21 details the Power Profile cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
2 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– Chapter 22 details the Diagnostics cluster
• Part IV: Measurement and Sensing Clusters comprises eight chapters:

– Chapter 23 details the Illuminance Measurement cluster
– Chapter 24 details the Illuminance Level Sensing cluster
– Chapter 25 details the Temperature Measurement cluster
– Chapter 26 details the Pressure Measurement cluster
– Chapter 27 details the Flow Measurement cluster
– Chapter 28 details the Relative Humidity Measurement cluster
– Chapter 29 details the Occupancy Sensing cluster
– Chapter 30 details the Electrical Measurement cluster

• Part V: Lighting Clusters comprises two chapters:
– Chapter 31 details the Colour Control cluster
– Chapter 32 details the Ballast Configuration cluster

• Part VI: HVAC Clusters comprises three chapters:
– Chapter 33 details the Thermostat cluster
– Chapter 34 details the Fan Control cluster
– Chapter 35 details the Thermostat UI Configuration cluster

• Part VII: Closure Clusters comprises one chapter:
– Chapter 36 details the Door Lock cluster

• Part VIII: Security and Safety Clusters comprises three chapters:
– Chapter 37 details the IAS Zone cluster
– Chapter 38 details the IAS ACE (Ancillary Control Equipment) cluster
– Chapter 39 details the IAS WD (Warning Device) cluster

• Part IX: Smart Energy Clusters comprises three chapters:
– Chapter 40 details the Price cluster
– Chapter 41 details the Demand-Response and Load Control cluster
– Chapter 42 details the Simple Metering cluster

• Part X: Commissioning Clusters comprises two chapters:
– Chapter 43 details the Commissioning cluster
– Chapter 44 details the Touchlink Commissioning cluster

• Part XI: Appliances Clusters comprises four chapters:
– Chapter 45 details the Appliance Control cluster
– Chapter 46 details the Appliance Identification cluster
– Chapter 47 details the Appliance Events and Alerts cluster
– Chapter 48 details the Appliance Statistics cluster

• Part XII: Over-The-Air Upgrade comprises one chapter:
– Chapter 49 details the OTA (Over-the-Air) Upgrade cluster

• Part XIII: Appendices comprises the nine appendixes listed below:
– Appendix A: Mutex Callbacks
– Appendix B: Attribute Reporting
– Appendix C: Extended Attribute Discovery
– Appendix D: Custom Endpoints
– Appendix E: Manufacturer-specific Attributes and Commands
– Appendix F: OTA Extension for Dual-processor Nodes
– Appendix G: Glossary

These cover topics that include mutex callbacks, attribute reporting, attribute discovery, custom endpoints,
manufacturer-specific attributes and commands. The storage of OTA upgrade applications in internal or

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
3 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

external flash memory, OTA upgrade of nodes comprising two processors, example code fragments, and a
glossary of terms are also included.

Conventions
• Files, folders, functions and parameter types are represented in bold type.
• Function parameters are represented in italics type.
• Code fragments are represented in the Courier New typeface.
• This is a Tip. It indicates useful or practical information.

Note: This is a Note. It highlights important additional information.

CAUTION: This is a Caution. It warns of situations that may result in equipment malfunction or damage.

Acronyms

S.No Acronym Description

1 ACE Ancillary Control Equipment

2 API Application Programming Interface

3 APDU Application Protocol Data Unit

4 CIE Control and Indicating Equipment

5 DRLC Demand-Response and Load Control

6 HVAC Heating, Ventilation and Air-Conditioning

7 IAS Intruder Alarm System

8 OTA Over The Air

9 SE Smart Energy

10 UI User Interface

11 UTC Co-ordinated Universal Time

12 WD Warning Device

13 ZCL ZigBee Cluster Library

Table 1. Acronyms

Related Documents
Refer to the following documents for further information:

• JNUG3130 ZigBee 3.0 Stack User Guide
• JNUG3131 ZigBee Devices User Guide
• Connectivity Framework Reference Manual
• 075123 rev 7 ZigBee Cluster Library Specification [from ZigBee Alliance]
• 095264 ZigBee Over-the-air Upgrading Cluster [from ZigBee Alliance]

Support Resources
To access online support resources such as SDKs, Application Notes and User Guides, visit the Wireless
Connectivity page of the NXP web site:

• www.nxp.com/products/wireless-connectivity

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
4 / 860

http://www.nxp.com/products/wireless-connectivity
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

All NXP resources referred to in this manual can be found at the above address, unless otherwise stated.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
5 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part I: Fundamentals

Part 1 comprises the following:

• Chapter 1 introduces the ZigBee Cluster Library (ZCL)
• Chapter 2 describes some essential concepts for the ZCL, including read/write access to cluster attributes and

the associated read/write functions
• Chapter 3 describes the event handling framework of the ZCL, including the supplied event handling function
• Chapter 4 describes the error handling provision of the ZCL, including the supplied error handling function

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
6 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

1 ZigBee Cluster Library (ZCL)

The ZigBee Cluster Library (ZCL) for ZigBee 3.0 contains standard clusters, as defined by the ZigBee Alliance,
for use in ZigBee 3.0 applications over a diverse range of market sectors. Each cluster corresponds to a specific
functionality, through a set of attributes and/or commands. Clusters can be selected from the ZCL to give an
application the required set of capabilities.

The ZCL also provides a common means for applications to communicate. It defines a header and payload that
sit inside the Protocol Data Unit (PDU) used for messages. It also defines attribute types (such as integers and
strings), common commands (for example, for reading attributes), and default responses for indicating success
or failure.

The NXP implementation of the ZCL, described in this manual, is supplied in the ZigBee 3.0 Software
Developer’s Kit (SDK) available via the NXP web site (see Section "Support Resources"). These SDKs provide
only the clusters supported by NXP that are described in this manual. The ZCL is fully detailed in the ZigBee
Cluster Library Specification (075123), available from the ZigBee Alliance.

1.1 ZCL Member Clusters
The clusters of the ZCL are divided into functional areas, for convenience. An application can use clusters from
any number of these areas to make up its complete functionality. The clusters implemented by NXP are from the
following areas (the associated clusters are listed in the referenced sub-sections):

• General - Section 1.1.1
• Measurement and Sensing - Section 1.1.2
• Lighting - Section 1.1.3
• Heating, Ventilation and Air-Conditioning (HVAC) - Section 1.1.4
• Closures - Section 1.1.5
• Security and Safety - Section 1.1.6
• Smart Energy - Section 1.1.7
• Commissioning - Section 1.1.8
• Appliances - Section 1.1.9
• Over-The-Air (OTA) Upgrade - Section 1.1.10

Note: Not all of the clusters from the above ZCL functional areas are available in the NXP software.

1.1.1 General

The General clusters implemented by NXP are listed and outlined in the table below. These clusters are
detailed in ‘Part III: General Clusters’ of this manual.

Cluster Cluster ID Description

Basic 0x0000 The Basic cluster contains the basic properties of a ZigBee device for
example, software and hardware versions. The Basic cluster allows the
setting of user-defined properties such as location. This cluster is detailed in
Chapter 8.

Power Configuration 0x0001 The Power Configuration cluster allows users to determine the power source
details of a device and helps configure the under/over-voltage alarms. This
cluster is detailed in Chapter 9.

Device Temperature
Configuration

0x0002 The Device Temperature Configuration cluster allows information about the
internal temperature of a device to be obtained and under/over-temperature
alarms to be configured. This cluster is detailed in Chapter 10.

Table 2. General Clusters

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
7 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Cluster Cluster ID Description

Identify 0x0003 The Identify cluster allows a ZigBee device to make itself known visually (for
example, by flashing a light) to an observer, such as a network installer. This
cluster is detailed in Chapter 11.

Groups 0x0004 The Groups cluster allows the management of the Group table concerned
with group addressing - that is, the targeting of multiple endpoints using a
single address. This cluster is detailed in Chapter 12.

Scenes 0x0005 The Scenes cluster allows the management of pre-defined sets of cluster
attribute values called scenes, where a scene can be stored, retrieved, and
applied to put the system into a pre-determined state. This cluster is detailed
in Chapter 13.

On/Off 0x0006 The On/Off cluster allows a device to be put into the ‘on’ and ‘off’ states, or
toggled between the two states. This cluster is detailed in Chapter 14.

On/Off Switch Configuration 0x0007 The On/Off Switch Configuration cluster allows the switch type on a device
to be defined, as well as the commands to be generated when the switch is
moved between its two states. This cluster is detailed in Chapter 15.

Level Control 0x0008 The Level Control cluster allows control of the level of a physical quantity (for
example, heat output) on a device. This cluster is detailed in Chapter 16.

Alarms 0x0009 The Alarms cluster is used for sending alarm notifications and the general
configuration of alarms for all other clusters on the ZigBee device (individual
alarm conditions are set in the corresponding clusters). This cluster is
detailed in Chapter 17.

Time 0x000A The Time cluster provides an interface to a real-time clock on a ZigBee
device, allowing the clock time to be read and written in order to synchronize
the clock to a time standard. This is the number of seconds since 0 hrs 0
mins 0 secs on 1st January 2000 UTC (Coordinated Universal Time). This
cluster includes functionality for local time-zone and daylight saving time.
This cluster is detailed in Chapter 18.

Analogue Input (Basic) 0x000C The Analogue Input (Basic) cluster provides an interface for accessing an
analog measurement. This cluster is detailed in Section 19.1.

Analogue Output (Basic) 0x000D The Analogue Output (Basic) cluster provides an interface for setting the
value of an analog output. This cluster is detailed in Section 19.2.

Binary Input (Basic) 0x000F The Binary Input (Basic) cluster provides an interface for accessing a binary
(two-state) measurement. This cluster is detailed in Section 19.3.

Binary Output (Basic) 0x0010 The Binary Output (Basic) cluster provides an inter-face for setting the state
of a binary (two-state) output. This cluster is detailed in Section 19.4.

Multistate Input (Basic) 0x0012 The Multistate Input (Basic) cluster provides an interface for accessing a
multistate measurement (that can take one of a set of fixed states). This
cluster is detailed in Section 19.5.

Multistate Output (Basic) 0x0013 The Multistate Output (Basic) cluster provides an interface for setting the
value of a multistate output (that can take one of a set of fixed states). This
cluster is detailed in Section 19.6.

Poll Control 0x0020 The Poll Control cluster provides an interface for remotely controlling the
rate at which a ZigBee End Device polls its parent for data. This cluster is
detailed in Chapter 20.

Power Profile 0x001A The Power Profile cluster provides an interface between a home appliance
(for example, a washing machine) and the controller of an energy
management system. This cluster is detailed in Chapter 21.

Table 2. General Clusters...continued

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
8 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Cluster Cluster ID Description

Diagnostics 0x0B05 The Diagnostics cluster allows the operation of the ZigBee PRO stack to be
followed over time. This cluster is detailed in Chapter 22.

Table 2. General Clusters...continued

1.1.2 Measurement and Sensing

The Measurement and Sensing clusters implemented by NXP are listed and outlined in the table below. These
clusters are detailed in ‘Part IV: Measurement and Sensing Clusters’ of this manual.

Cluster Cluster ID Description

Illuminance Measurement 0x0400 The Illuminance Measurement cluster provides an interface to an
illuminance measuring device, allowing the configuration of measuring and
the reporting of measurements. This cluster is detailed in Chapter 23.

Illuminance Level Sensing 0x0401 The Illuminance Level Sensing cluster provides an interface to light-level
sensing functionality. This cluster is detailed in Chapter 24.

Temperature Measurement 0x0402 The Temperature Measurement cluster provides an interface to a
temperature measuring device, allowing the configuration of measuring
and the reporting of measurements. This cluster is detailed in Chapter 25.

Pressure Measurement 0x0403 The Pressure Measurement cluster provides an inter-face to a pressure
measuring device, allowing the configuration of measuring and the
reporting of measurements. This cluster is detailed in Chapter 26.

Flow Measurement 0x0404 The Flow Measurement cluster provides an interface to a flow measuring
device for a fluid, allowing the configuration of measuring and the reporting
of measurements. This cluster is detailed in Chapter 27.

Relative Humidity
Measurement

0x0405 The Relative Humidity Measurement cluster provides an interface to a
humidity measuring device, allowing the configuration of relative humidity
measuring and the reporting of measurements. This cluster is detailed in
Chapter 28.

Occupancy Sensing 0x0406 The Occupancy Sensing cluster provides an interface to an occupancy
sensor, allowing the configuration of sensing and the reporting of status.
This cluster is detailed in Chapter 29.

Electrical Measurement 0x0B04 The Electrical Measurement cluster provides an interface for obtaining
electrical measurements from a device. This cluster is detailed in Chapter
30.

Table 3. Measurement and Sensing Clusters

1.1.3 Lighting

The Lighting clusters implemented by NXP are listed and outlined in the table below. These clusters are detailed
in ‘Part V: Lighting Clusters’ of this manual.

Cluster Cluster ID Description

Colour Control 0x0300 The Colour Control cluster can be used to adjust the colour of a
light (it does not govern the overall luminance of the light, as this is
controlled using the Level Control cluster). This cluster is detailed in
Chapter 31.

Table 4. Lighting Clusters

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
9 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Cluster Cluster ID Description

Ballast Configuration 0x0301 The Ballast Configuration cluster can be used to configure a lighting
ballast that restricts the light levels of a connected set of lamps. This
cluster is detailed in Chapter 32.

Table 4. Lighting Clusters...continued

1.1.4 Heating, Ventilation, and Air-Conditioning (HVAC)

The HVAC clusters implemented by NXP are listed and outlined in the table below. These clusters are detailed
in ‘Part VI: HVAC Clusters’ of this manual.

Cluster Cluster ID Description

Thermostat 0x0201 The Thermostat cluster provides a means of configuring and controlling the
functionality of a thermostat. This cluster is detailed in Chapter 33.

Fan Control 0x0202 The Fan Control cluster provides a means of con-trolling the speed or state
of a fan which may be part of a heating or cooling system. The cluster is
detailed in Chapter 34.

Thermostat User Interface
Configuration

0x0204 The Thermostat User Interface (UI) Configuration cluster provides a
means of configuring the user inter-face (keypad and/or LCD screen) for
a thermostat or a thermostat controller device. This cluster is detailed in
Chapter 35.

Table 5. HVAC Clusters

1.1.5 Closures

The Closure clusters implemented by NXP are listed and outlined in the table below. These clusters are detailed
in ‘Part VII: Closure Clusters’ of this manual.

Cluster Cluster ID Description

Door Lock 0x0101 The Door Lock cluster provides a means of representing the state of a door
lock and (optionally) the door. This cluster is detailed in Chapter 36.

Table 6. Closure Clusters

1.1.6 Security and Safety

The Security and Safety clusters implemented by NXP are listed and outlined in the table below. These clusters
are detailed in ‘Part VIII: Security and Safety Clusters’ of this manual.

Cluster Cluster ID Description

IAS Zone 0x0500 The IAS Zone cluster provides an interface to a zone device in an IAS
(Intruder Alarm System). This cluster is detailed in Chapter 37.

IAS ACE (Ancillary Control
Equipment)

0x0501 The IAS ACE cluster provides a control interface to a CIE (Control and
Indicating Equipment) device in an IAS (Intruder Alarm System). This cluster
is detailed in Chapter 38.

IAS WD (Warning Device) 0x0502 The IAS WD cluster provides an interface to a Warning Device in an IAS
(Intruder Alarm System). For example, a CIE (Control and Indicating
Equipment) device can use the cluster to issue alarm warning indications
to a Warning Device when an alarm condition is detected. This cluster is
detailed in Chapter 39.

Table 7. Security and Safety Clusters

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
10 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

1.1.7 Smart Energy

The Smart Energy clusters implemented by NXP are listed and outlined in the table below. These clusters are
detailed in ‘Part IX: Smart Energy Clusters’ of this manual.

Cluster Cluster ID Description

Price 0x0700 The Price cluster provides the mechanism for sending and receiving
pricing information within a ZigBee 3.0 network. This cluster is
detailed in Chapter 40.

Demand-Response and Load
Control

0x0701 The Demand-Response and Load Control (DRLC) cluster provides
an interface for controlling an attached appliance that supports load
control. The cluster is able to receive load control requests and
act upon them - the demand-response functionality. This cluster is
detailed in Chapter 41.

Simple Metering 0x0702 The Simple Metering cluster provides a mechanism to obtain
consumption data from a metering device (elec-tric, gas, water or
thermal). This cluster is detailed in Chapter 42.

Table 8. Smart Energy Clusters

Other Smart Energy (SE) clusters, that are not available in the ZigBee 3.0 SDK, are provided in the NXP ZigBee
Smart Energy SDK. The ZigBee 3.0 SDK contains only the SE clusters that are supported by NXP for non-SE
applications.

1.1.8 Commissioning

The Commissioning clusters implemented by NXP are listed and outlined in the table below. These clusters are
detailed in ‘Part X: Commissioning Clusters’ of this manual.

Cluster Cluster ID Description

Commissioning 0x0015 The Commissioning cluster can be used for commissioning the
ZigBee stack on a device during network installation and defining
the device behaviour with respect to the ZigBee network (it does not
affect applications operating on the devices). This cluster is detailed
in Chapter 43.

Touchlink Commissioning 0x1000 The Touchlink Commissioning cluster is used when forming a ZigBee
3.0 network or adding a new node to an existing network. This cluster
is detailed in Chapter 44.

Table 9. Commissioning Clusters

1.1.9 Appliances

The Appliances clusters implemented by NXP are listed and outlined in the table below. These clusters are
detailed in ‘Part XI: Appliances Clusters’ of this manual.

Cluster Cluster ID Description

Appliance Control 0x001B The Appliance Control cluster provides an interface for remotely
controlling appliances in the home. This cluster is detailed in Chapter
45.

Appliance Identification 0x0B00 The Appliance Identification cluster provides an interface for obtaining
and setting basic appliance information. This cluster is detailed in
Chapter 46.

Table 10. Appliances Clusters

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
11 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Cluster Cluster ID Description

Appliance Events and Alerts 0x0B02 The Appliance Events and Alerts cluster provides an interface for the
notification of significant events and alert situations. This cluster is
detailed in Chapter 47.

Appliance Statistics 0x0B03 The Appliance Statistics cluster provides an interface for supplying
statistical information about an appliance. This cluster is detailed in
Chapter 48.

Table 10. Appliances Clusters...continued

1.1.10 Over-The-Air (OTA) Upgrade

The Over-The-Air (OTA) Upgrade cluster is outlined in the table below and detailed in ‘Part XII: Over-The-Air
Upgrade’ of this manual.

Cluster Cluster ID Description

OTA Upgrade 0x0019 The OTA Upgrade cluster provides the facility to upgrade (or
downgrade or re-install) application software on the nodes of a
ZigBee 3.0 network by distributing the replacement software through
the network (over the air) and updating the software with minimal
interruption to node operation. This cluster is detailed in Chapter 49.

Table 11. OTA Upgrade Cluster

1.2 General ZCL Resources
In addition to clusters, the ZCL provides general (non-cluster-specific) resources. For example, common
mechanisms are used to allow a cluster client to access (read and write to) the attributes on the cluster server -
the NXP ZCL software includes C functions and structures for performing such accesses across all clusters.

The fundamental principles and mechanisms of the ZCL are presented in the rest of Part I: Fundamentals:

• Chapter 2 describes essential ZCL principles, such as accessing attributes
• Chapter 3 describes the ZCL handling of stack-related and timer-related events
• Chapter 4 described the ZCL handling of errors.

The general resources provided by the ZCL software are detailed in Part II: Common Resources:

• Chapter 5 details the core functions provided with the ZCL
• Chapter 6 details the general ZCL structures
• Chapter 7 details the general ZCL enumerations and status codes

Cluster-specific resources are detailed in the respective chapters for the clusters.

Note: It is possible to customize the clusters of the ZCL by introducing manufacturer-specific attributes and
commands. The processes of adding custom attributes and commands are described in Appendix E.

1.3 ZCL Compile-time Options
Before the application can be built, the ZCL compile-time options must be configured in the header file
zcl_options.h for the application.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
12 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enabled Clusters

All required clusters must be enabled in the options header file. For example, to enable the Basic and Time
clusters, the following lines are required:

#define CLD_BASIC
#define CLD_TIME

In addition, to include the software for a cluster client or server or both, it is necessary to select them in the
options header file. For example, to select the Basic cluster client and server, the following lines are required:

#define BASIC_CLIENT
#define BASIC_SERVER

Support for Attribute Read/Write

Read/write access to cluster attributes must be explicitly compiled into the application, and must be enabled
separately for the server and client sides of a cluster using the following macros in the options header file:

#define ZCL_ATTRIBUTE_READ_SERVER_SUPPORTED
#define ZCL_ATTRIBUTE_READ_CLIENT_SUPPORTED
#define ZCL_ATTRIBUTE_WRITE_SERVER_SUPPORTED
#define ZCL_ATTRIBUTE_WRITE_CLIENT_SUPPORTED

Each of the above definitions apply to all clusters used in the application.

Tip: If only read access to attributes is required, then it is recommended not to enable write access. This is
because omitting the write options gives the benefit of a reduced application size.

Optional Attributes

Many clusters have optional attributes that may be enabled at compile-time via the options header file - for
example, to enable the Time Zone attribute in the Time cluster:

#define E_CLD_TIME_ATTR_TIME_ZONE

Note: Cluster-specific compile-time options are described in detail in the chapters for the individual clusters.
The attribute reporting feature also has its own compile-time options (see Appendix B.3.1).

Number of Endpoints

The following line can be added to set the number of endpoints supported on a node (to n):

#define ZCL_NUMBER_OF_ENDPOINTS n

The default value is 1.

Default Responses

The following line can be added to enable default responses (see Section 2.5):

#define ZCL_DISABLE_DEFAULT_RESPONSES

By default, they are disabled.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
13 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

APS Acknowledgements

The following line can be added to enable APS acknowledgments:

#define ZCL_DISABLE_APS_ACK

By default, they are disabled.

Cooperative Tasks

By default, tasks within the application are cooperative, and events will therefore not be generated for locking
and unlocking mutexes for resources that are shared between the tasks. To disable the cooperative task
feature, add the following line:

#undefine COOPERATIVE

Note that this requires an undefine.

Parameter Checking

Parameter checking in various functions can be enabled by including the following line:

#define STRICT_PARAM_CHECK

This feature is useful for testing during application development. When the testing is complete, the option
should be disabled to eliminate the checks and to save code memory. This option can be defined in the
zcl_options.h file or the makefile.

‘Wild Card’ Profile

Commands with a ‘wild card’ application profile (Profile ID of 0xFFFF) can be accepted and processed by the
receiving device by including the following line:

#define ZCL_ALLOW_WILD_CARD_PROFILE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
14 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

2 ZCL Fundamentals and Features

This chapter describes essential ZCL concepts, including the use of shared device structures as well as remote
read and write accesses to cluster attributes.

Note:

1. This chapter assumes that you are familiar with ZigBee clusters and associated concepts (such as the
cluster server and client). For an introduction to ZigBee clusters, refer to the ZigBee 3.0 Stack User Guide
(JNUG3130).

2. The ZCL functions referred to in this chapter are detailed in Chapter 5.

2.1 Initializing the ZCL
The ZCL can be initialized using the function eZCL_Initialise(), which must be called before registering any
endpoints. The initialization is done using the device-specific endpoint registration functions and before starting
the ZigBee PRO stack. As part of this initialization, you must specify a user-defined callback function that would
be invoked when a ZigBee PRO stack event occurs that is not associated with an endpoint. Also provide a local
pool of Application Protocol Data Units (APDUs) that are used by the ZCL to hold messages that are to be sent
and received.

2.2 Shared Device Structures
In each ZigBee device, cluster attribute values are exchanged between the application and the ZCL by means
of a shared structure. This structure is protected by a mutex - see Appendix A. The structure for a particular
ZigBee device contains structures for the clusters supported by that device.

Note: In order to use a cluster which is supported by a device, the relevant option for the cluster must be
specified at build-time - see Section 1.3.

A shared device structure within a device can be accessed both by the local application and by a remote
application on another device. Remote read and write operations involving a shared device structure are
illustrated in Figure 1 below. Normally, a cluster client requests these operations and they are performed on a
cluster server. For more detailed descriptions of these operations, refer to Section 2.3.

Usually, the ZCL parses remote commands that write attribute values to the shared device structure. The written
values can then be read by the local application. For example, an On/Off Switch device remotely writes to the
shared device structure in an On/Off Light device and the local application then reads this data to change the
state or configuration of the light.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
15 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Read
Command

Response

Server Device

Device
Structure

Application

Write Read

Client Device

Application

Read Request

ZCLZCL

Reading Remote Attributes

Write
Command

Server Device

Device
Structure

Application

Read
Write

Client Device

Application

Write Request

ZCLZCL

Writing Remote Attributes

Response

Application requests read of attribute values from device
structure on remote server and ZCL sends request .
ZCL receives response and generates events (which can
prompt application to read attributes from structure).

1.

4.

If necessary, application first updates attribute values in
device structure.
ZCL reads requested attribute values from device structure
and then returns them to requesting client .

2.

3.

ZCL sends 'write attributes' request to remote server.
ZCL can receive optional response and generate events
for the application (that indicate any unsuccessful writes).

1.
5.

ZCL writes received attribute values to device structure and
optionally sends response to client.
If required, application can then read new attribute values
from device structure.
ZCL can optionally generate a ‘write attributes’ response .

2.

3.

4.

Event (s)

Event (s)

Figure 1. Operations using Shared Device Structure

Note: Provided that there are no remote attribute writes, the attributes of a cluster server (in the shared
structure) on a device are maintained by the local application(s).

2.3 Accessing Attributes
This section describes the processes of reading and writing cluster attributes on a remote node. For the
attribute access function descriptions, refer to Section 5.2.

2.3.1 Attribute Access Permissions

For each attribute of a cluster, access permissions should be defined for the different types of access to the
attribute. These permissions are configured using control flags, with one flag for each access type, as follows:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
16 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Access Type Flag Description

Read E_ZCL_AF_RD Global commands can read the attribute value

Write E_ZCL_AF_WR Global commands can write a new value to the attribute

Report E_ZCL_AF_RP Global commands can report the value of the attribute or
configure the attribute for default reporting

Scene E_ZCL_AF_SE The attribute can be accessed through a scene (if the Scenes
cluster is implemented on the same endpoint)

Table 12. Attribute Access Types and Control Flags

If a particular access type is required for an individual attribute, the corresponding flag must be defined for that
attribute. This is done in the C header file for the cluster. For example, in the case of the On/Off cluster, the
required flags must be defined for each attribute in the following structure in the OnOff.c file:

const tsZCL_AttributeDefinition asCLD_OnOffClusterAttributeDefinitions[] = {
#ifdef ONOFF_SERVER
 {E_CLD_ONOFF_ATTR_ID_ONOFF, (E_ZCL_AF_RD|E_ZCL_AF_SE|E_ZCL_AF_RP), E_ZCL_BOOL,
 (uint32)(&((tsCLD_OnOff*)(0))->bOnOff),0}, /* Mandatory */
#ifdef CLD_ONOFF_ATTR_GLOBAL_SCENE_CONTROL
 {E_CLD_ONOFF_ATTR_ID_GLOBAL_SCENE_CONTROL, (E_ZCL_AF_RD), _ZCL_BOOL,
 (uint32)(&((tsCLD_OnOff*)(0))->bGlobalSceneControl),0}, /* Optional */
#endif
#ifdef CLD_ONOFF_ATTR_ON_TIME
 {E_CLD_ONOFF_ATTR_ID_ON_TIME, E_ZCL_AF_RD|E_ZCL_AF_WR), E_ZCL_UINT16,
 (uint32)(&((tsCLD_OnOff*)(0))->u16OnTime),0}, /* Optional */
#endif
#ifdef CLD_ONOFF_ATTR_OFF_WAIT_TIME
 {E_CLD_ONOFF_ATTR_ID_OFF_WAIT_TIME, (E_ZCL_AF_RD|E_ZCL_AF_WR), E_ZCL_UINT16,
 (uint32)(&((tsCLD_OnOff*)(0))->u16OffWaitTime),0}, /* Optional */
#endif
#ifdef CLD_ONOFF_ATTR_STARTUP_ONOFF
 /* ZLO extension for OnOff Cluster */
 {E_CLD_ONOFF_ATTR_ID_STARTUP_ONOFF, E_ZCL_AF_RD|E_ZCL_AF_WR), E_ZCL_ENUM8,
 (uint32)(&((tsCLD_OnOff*)(0))->eStartUpOnOff),0}, /* Optional */
#endif
#endif
 {E_CLD_GLOBAL_ATTR_ID_CLUSTER_REVISION, (E_ZCL_AF_RD|E_ZCL_AF_GA), E_ZCL_UINT16,
 (uint32)(&((tsCLD_OnOff*)(0))->u16ClusterRevision),0}, /* Mandatory */
 #if (defined ONOFF_SERVER) && (defined CLD_ONOFF_ATTR_ATTRIBUTE_REPORTING_STATUS)
 {E_CLD_GLOBAL_ATTR_ID_ATTRIBUTE_REPORTING_STATUS,(E_ZCL_AF_RD|E_ZCL_AF_GA), E_ZCL_ENUM8,
 (uint32)(&((tsCLD_OnOff*)(0))->u8AttributeReportingStatus),0}, /* Optional */
#endif
};

Note: The flag E_ZCL_AF_GA indicates a global attribute.

2.3.2 Reading Attributes

A ZigBee 3.0 application might require to read attribute values from a remote device. Attributes are read by
sending a ‘read attributes’ request, normally from a client cluster to a server cluster. This request can be sent
using a general ZCL function (see below) or using a function which is specific to the target cluster. The cluster-
specific functions for reading attributes are covered in the chapters of this manual that describe the supported
clusters.

Note: Users should enable read access to cluster attributes explicitly at compile-time as described in Section
1.3.

A ZCL function is provided for reading a set of attributes of a remote cluster instance, as described in Section
2.3.2.1. A function is also provided for reading a local cluster attribute value, as described in Section 2.3.2.2.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
17 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

2.3.2.1 Reading a set of attributes of a remote cluster

This section describes the use of the function eZCL_SendReadAttributesRequest() to send a ‘read attributes’
request to a remote cluster in order to obtain the values of selected attributes. The resulting activities on the
source and destination nodes are outlined below and illustrated in Figure 2. The events generated from a ‘read
attributes’ request are further described in Chapter 3.

Note: The described sequence is similar when using the cluster-specific ‘read attributes’ functions.

1. On Source Node

The function eZCL_SendReadAttributesRequest() is called to submit a request to read one or more attributes
on a cluster on a remote node. The information required by this function includes the following:

• Source endpoint (from which the read request is to be sent)
• Address of destination node for request
• Destination endpoint (on destination node)
• Identifier of the cluster containing the attributes [enumerations provided]
• Number of attributes to be read
• Array of identifiers of attributes to be read [enumerations provided]

2. On Destination Node

On receiving the ‘read attributes’ request, the ZCL software on the destination node performs the following
steps:

1. Generates an E_ZCL_CBET_READ_REQUEST event for the destination endpoint callback function which, if
required, can update the shared device structure that contains the attributes to be read, before the read takes
place.

2. If tasks within the application are not cooperative, the ZCL generates an E_ZCL_CBET_LOCK_MUTEX event
for the endpoint callback function, which should lock the mutex that protects the shared device structure - for
information on mutexes, refer to Appendix A.

3. Reads the relevant attribute values from the shared device structure and creates a ‘read attributes’ response
message containing the read values.

4. If tasks within the application are not cooperative, the ZCL generates an E_ZCL_CBET_UNLOCK_MUTEX
event for the endpoint callback function, which should now unlock the mutex that protects the shared device
structure (other application tasks can now access the structure).

5. Sends the ‘read attributes’ response to the source node of the request.

3. On Source Node

On receiving the ‘read attributes’ response, the ZCL software on the source node performs the following steps:

1. For each attribute listed in the ‘read attributes’ response, it generates an E_ZCL_CBET_READ_INDIVIDUAL_
ATTRIBUTE_RESPONSE message for the source endpoint callback function, which may or may not take action
on this message.

2. On completion of the parsing of the ‘read attributes’ response, it generates a single
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE message for the source endpoint callback function, which may
or may not take action on this message.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
18 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Endpoint ZCL ZCL Endpoint

'Read Attributes' Message

READ_REQUEST
'Read Attributes' Request

LOCK_MUTEX

Read Attribute Values

UNLOCK_MUTEX

'Read Attributes' Response

READ_INDIVIDUAL_
ATTRIBUTE_RESPONSE

READ_ATTRIBUTES
_RESPONSE

Source Node Destination Node

Shared
Structure

Figure 2. ‘Read Attributes’ Request and Response

Note: The ‘read attributes’ requests and responses arrive at their destinations as data messages. Such a
message triggers a stack event of the type ZPS_EVENT_APS_DATA_INDICATION, which is handled as
described in Section 3.2.

2.3.2.2 Reading an Attribute of a Local Cluster

An individual attribute of a cluster on the local node can be read using the function
eZCL_ReadLocalAttributeValue(). The read value is returned by the function (in a memory location for which a
pointer must be provided).

2.3.3 Writing Attributes

The ZCL provides functions for writing attribute values to both remote and local clusters, as described in Section
2.3.3.1 and Section 2.3.3.2 respectively.

2.3.3.1 Writing to Attributes of a Remote Cluster

A ZigBee 3.0 application might require to write attribute values to a remote device. Attribute values are written
by sending a ‘write attributes’ request, normally from a client cluster to a server cluster, where the relevant
attributes in the shared device structure are updated. Write access to cluster attributes must be explicitly
enabled at compile time as described in Section 1.3.

Three ‘write attributes’ functions are provided in the ZCL:

• eZCL_SendWriteAttributesRequest(): This function sends a ‘write attributes’ request to a remote device,
which attempts to update the attributes in its shared structure. The remote device generates a ‘write attributes’
response to the source device, indicating success or listing error codes for any attributes that it could not
update.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
19 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• eZCL_SendWriteAttributesNoResponseRequest(): This function sends a ‘write attributes’ request to a
remote device, which attempts to update the attributes in its shared structure. However, the remote device
does not generate a ‘write attributes’ response, regardless of whether there are errors.

• eZCL_SendWriteAttributesUndividedRequest(): This function sends a ‘write attributes’ request to a remote
device, which checks that all the attributes can be written to without error:
– If all attributes can be written without error, all the attributes are updated.
– If any attribute is in error, all the attributes are left at their existing values.

The remote device generates a ‘write attributes’ response to the source device, indicating success or
listing error codes for attributes that are in error.

The activities surrounding a ‘write attributes’ request on the source and destination nodes are outlined below
and illustrated in Figure 2. The events generated from a ‘write attributes’ request are further described in
Chapter 3.

1. On Source Node

In order to send a ‘write attributes’ request, the application on the source node calls one of the above ZCL ‘write
attributes’ functions to submit a request to update the relevant attributes on a cluster on a remote node. The
information required by this function includes the following:

• Source endpoint (from which the write request is to be sent)
• Address of destination node for request
• Destination endpoint (on destination node)
• Identifier of the cluster containing the attributes [enumerations provided]
• Number of attributes to be written
• Array of identifiers of attributes to be written [enumerations provided]

2. On Destination Node

On receiving the ‘write attributes’ request, the ZCL software on the destination node performs the following
steps:

1. For each attribute to be written, generates an E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE event for the
destination endpoint callback function.

• If required, the callback function can do either or both of the following:
– Check that the new attribute value is in the correct range - if the value is out-of-range, the function should

set the eAttributeStatus field of the event to E_ZCL_ERR_ATTRIBUTE RANGE
– Block the write by setting the the eAttributeStatus field of the event to

E_ZCL_DENY_ATTRIBUTE_ACCESS
• In the case of an out-of-range value or a blocked write, there is no further processing for that particular

attribute following the ‘write attributes’ request.

2. If tasks within the application are not cooperative, the ZCL generates an E_ZCL_CBET_LOCK_MUTEX
event for the endpoint callback function, which should lock the mutex that protects the relevant shared device
structure - for information on mutexes, refer to Appendix A.

3. Writes the relevant attribute values to the shared device structure - an E_ZCL_CBET_WRITE_INDIVIDUAL_
ATTRIBUTE event is generated for each individual attempt to write an attribute value, which the endpoint
callback function can use to keep track of the successful and unsuccessful writes.

Note: If an ‘undivided write attributes’ request is received, an individual failed write would render the whole
update process unsuccessful.

4. Generates an E_ZCL_CBET_WRITE_ATTRIBUTES event to indicate that all relevant attributes have been
processed and, if required, creates a ‘write attributes’ response message for the source node.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
20 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

5. If tasks within the application are not cooperative, the ZCL generates an E_ZCL_CBET_UNLOCK_MUTEX
event for the endpoint callback function, which should now unlock the mutex that protects the shared device
structure (other application tasks can now access the structure).

6. If required, sends a ‘write attributes’ response to the source node of the request.

3. On Source Node

On receiving an optional ‘write attributes’ response, the ZCL software on the source node performs the following
steps:

1. For each attribute listed in the ‘write attributes’ response, it generates an E_ZCL_CBET_WRITE_
INDIVIDUAL_ATTRIBUTE_RESPONSE message for the source endpoint callback function, which may or may
not take action on this message. Only attributes for which the write has failed are included in the response and
will therefore result in one of these events.

2. On completion of the parsing of the ‘write attributes’ response, it generates a single E_ZCL_CBET_WRITE_
ATTRIBUTES_RESPONSE message for the source endpoint callback function, which may or may not take
action on this message.

Endpoint ZCL ZCL Endpoint

'Write Attributes' Message

CHECK_ATTRIBUTE_RANGE
'Write Attributes' Request

LOCK_MUTEX

Write Attribute Value

UNLOCK_MUTEX

'Write Attributes' Response

WRITE_INDIVIDUAL_
ATTRIBUTE_RESPONSE

WRITE_ATTRIBUTES
_RESPONSE

Source Node Destination Node

WRITE_INDIVIDUAL_ATTRIBUTE

WRITE_ATTRIBUTES

Shared
Structure

Figure 3. ‘Write Attributes’ Request and Response

Note: The ‘write attributes’ requests and responses arrive at their destinations as data messages. Such a
message triggers a stack event of the type ZPS_EVENT_APS_DATA_INDICATION, which is handled as
described in Chapter 3.

2.3.3.2 Writing an Attribute Value to a Local Cluster

An individual attribute of a cluster on the local node can be written to using the function
eZCL_WriteLocalAttributeValue(). The function is blocking, returning only once the value has been written.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
21 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

2.3.4 Attribute Discovery

A ZigBee cluster may have mandatory and/or optional attributes. The desired optional attributes are enabled in
the cluster structure. An application running on a cluster client may need to discover which optional attributes
are supported by the cluster server.

The ZCL provides functionality to perform the necessary ‘attribute discovery’, as described in the rest of this
section.

Note:

1. ‘Extended’ attribute discovery is also available. When this optional attribute is used, the accessibility of each
reported attribute is also indicated. This is described in Appendix C.

2. Alternatively, the application on a cluster client can check whether a particular attribute exists on the cluster
server by attempting to read the attribute (see Section 2.3.2) - if the attribute does not exist on the server, an
error is returned.

Compile-time Options

If required, the attribute discovery feature must be explicitly enabled on the cluster server and client at compile
time by including the relevant defines, from those below, in the zcl_options.h files:

#define ZCL_ATTRIBUTE_DISCOVERY_SERVER_SUPPORTED
#define ZCL_ATTRIBUTE_DISCOVERY_EXTENDED_SERVER_SUPPORTED
#define ZCL_ATTRIBUTE_DISCOVERY_CLIENT_SUPPORTED
#define ZCL_ATTRIBUTE_DISCOVERY_EXTENDED_CLIENT_SUPPORTED

Application Coding

The application on a cluster client can initiate a discovery of the attributes on the cluster server by calling the
function eZCL_SendDiscoverAttributesRequest(), which sends a ‘discover attributes’ request to the server.
This function allows a range of attributes to be searched for, defined by:

• The ‘start’ attribute in the range (the attribute identifier must be specified)
• The number of attributes in the range

Initially, the start attribute should be set to the first attribute of the cluster. If the discovery request does not
return all the attributes used on the cluster server, the above function should be called again with the start
attribute set to the next ‘undiscovered’ attribute. Multiple function calls may be required to discover all of the
attributes used on the server.

On receiving a discover attributes request, the server handles the request automatically (provided that attribute
discovery has been enabled in the compile-time options - see above) and replies with a ‘discover attributes’
response containing the requested information.

The arrival of this response at the client results in an E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE
_RESPONSE event for each attribute reported in the response. Therefore, multiple events normally
result from a single discover attributes request. This event contains details of the reported attribute in a
tsZCL_AttributeDiscoveryResponse structure (see Section 6.1.10).

Following the event for the final attribute reported, the event E_ZCL_CBET_DISCOVER_ATTRIBUTES_
RESPONSE is generated to indicate that all attributes from the discover attributes response have been
reported.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
22 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

2.3.5 Attribute Reporting

A cluster client can poll the value of an attribute on the cluster server by sending a ‘read attributes’ request, as
described in Section 2.3.2. Alternatively, the server can issue unsolicited attribute reports to the client using the
‘attribute reporting’ feature (in which case there is no need for the client to request attribute values).

The attribute reporting mechanism reduces network traffic compared with the polling method. It also allows a
sleeping server to report its attribute values while it is awake. Attribute reporting is an optional feature and is not
supported by all devices.

An ‘attribute report’ (from server to client) can be triggered in one of the following ways:

• by the user application (on the server device)
• automatically (triggered by a change in the attribute value or periodically)

Automatic attribute reporting for an attribute can be enabled and configured remotely from the client or, for
some attributes, locally on the server (see below). If it is required, automatic attribute reporting must be enabled
at compile-time on both the cluster server and client. Automatic attribute reporting is more fully described in
Appendix B.1 and the configuration of attribute reporting is detailed in Appendix B.3.

The ZCL specification states that certain attributes of a cluster must be reportable. Attribute reporting for these
attributes remains optional but can be enabled for the individual attributes using a flag (E_ZCL_AF_RP) in
the attribute definition structure - see the example code for the On/Off cluster in Section 2.3.1. This defines
those attributes that the cluster server will report by default, known as ‘default reporting’, but reports on other
attributes can be requested/configured by the cluster client.

Note: Attribute reporting configuration data should be preserved in Non-Volatile Memory (NVM) to allow
automatic attribute reporting to resume following a reset of the server device. Persisting this data in NVM is
described in Appendix B.7.

An attribute report can be issued directly by the server application as follows:

• For all reportable attributes using the function eZCL_ReportAllAttributes()
• For an individual reportable attribute using the function eZCL_ReportAttribute()

Only standard attributes can be reported (this does not include manufacturer-specific attributes) and only
those attributes for which reporting has been enabled. This method of attribute reporting does not require any
configuration, apart from enabling reports for the desired attributes. In this case, attribute reporting does not
need to be enabled at compile-time on the server, but it still needs to be enabled at compile-time on the client to
allow the client to receive attribute reports.

Sending an attribute report from the server is further described in Appendix B.4 and receiving an attribute report
on the client is described in Appendix B.5.

2.4 Global Attributes
There are two global attributes that are used in multiple clusters. These attributes are additions to the ZCL r6 for
ZigBee 3.0 and are described below.

ClusterRevision

The ClusterRevision global attribute is mandatory in all clusters. It indicates the revision of the cluster used
by the current instance of the cluster on the local endpoint. The cluster specification from the ZCL r6 acts as
the baseline for the revision numbering of a cluster - this is revision 1 of the cluster. The cluster revision number
is incremented by one for each subsequent update of the cluster specification. Those cluster specifications
that pre-date the ZCL r6 have assumed revision numbers of 0. To check that the local cluster instance is
interoperable with a remote instance of the same cluster (perhaps based on a different cluster revision), the
ClusterRevision attribute on the remote node should be read - if the remote cluster instance is based

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
23 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

on an earlier cluster revision that does not support an essential feature, the two cluster instances will not be
interoperable.

AttributeReportingStatus

The AttributeReportingStatus global attribute is optional and used only when attribute reporting is
enabled for the cluster (see Section 2.3.5). Where ‘attribute report’ messages are generated for multiple
attributes, this attribute indicates whether there are reports pending (0x00) or the reports are complete (0x01).

2.5 Default Responses
The ZCL provides a default response which is generated in reply to a unicast command in the following
circumstances:

• When there is no other relevant response and the requirement for default responses has not been disabled on
the endpoint that sent the command.

• When an error results from a unicast command and there is no other relevant response, even if the
requirement for default responses has been disabled on the endpoint that sent the command.

The default response disable setting is made in the bDisableDefaultResponse field of the structure
tsZCL_EndPointDefinition detailed in Section 6.1.1. This setting dictates the value of the ‘disable default
response’ bit in messages sent by the endpoint. The receiving device then uses this bit to determine whether to
return a default response to the source device.

The default response includes the ID of the command that triggered the response and a status field (see
Section 6.1.9). Therefore, in the case of an error, the command ID field of the default response contains the the
identity of the command that caused the error.

Note: The default response can be generated on reception of all commands, including responses (for example,
a ‘read attributes’ response) but not other default responses.

2.6 Handling Commands for Unsupported Clusters
A node might receive a cluster-specific command or general command for a cluster that is
not supported. In such a case, the ZCL sends a ‘default response’ containing the status code
E_ZCL_CMDS_UNSUPPORTED_CLUSTER to the originator of the command. This is the standard method of
handling the unsupported command (as described in the ZCL specification). Default responses are described in
Section 2.5.

The NXP implementation of the ZCL provides an alternative method for dealing with commands for unsupported
clusters. A user-defined callback function can be introduced which is invoked when a command is received for
an unsupported cluster. This function determines whether the application will handle the command and returns
a Boolean value:

• If the callback function returns TRUE, the ZCL passes the unsupported command to the application in
an appropriate event. For example, consider the case when a Report Attribute command is received for
the Occupancy Sensing cluster which is not supported by the device. If the callback function opts to allow
the application to handle this command, the callback function returns TRUE and the ZCL then passes the
command to the main application in the event E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTE or
E_ZCL_CBET_REPORT_ATTRIBUTES, as appropriate.

• If the callback function returns FALSE, the ZCL handles the unsupported command in the standard way
by sending a default response containing the status E_ZCL_CMDS_UNSUPPORTED_CLUSTER. The
application is not notified about the received command.

The prototype for the user-defined callback function is as follows:

bool_t bZCL_OverrideHandlingEntireProfileCmd(uint16 u16ClusterId);
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
24 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where u16ClusterId is the ZigBee identifier of the cluster to which the command relates.

This callback function can be registered with the ZCL using the function vZCL_RegisterHandleGeneralCmd
CallBack(), detailed in Section 5.1.

2.7 Handling Commands from Other Manufacturers
Every manufacturer of ZigBee Certified Products is allocated a manufacturer code by the ZigBee Alliance. The
manufacturer code for NXP is 0x1037. A manufacturer-specific command that is sent by a node contains the
manufacturer code for the node manufacturer.

By default, the NXP implementation of the ZCL rejects manufacturer-specific commands containing
manufacturer codes other than NXP’s own code. For a rejected command, the ZCL sends a ‘default response’
containing the status code E_ZCL_CMDS_UNSUP_MANUF_CLUSTER_COMMAND to the originator of the
command. Default responses are described in Section 2.5.

However, a mechanism is available to handle multiple manufacturer codes. A user-defined callback function
can be introduced, which is invoked when a manufacturer-specific command is received containing a non-
NXP manufacturer code. This function determines whether the application handles the command and returns a
Boolean value:

• If the callback function returns TRUE, the ZCL passes the command to the application in an appropriate
event.

• If the callback function returns FALSE, the ZCL handles the command with in the standard way by sending
a default response containing the status E_ZCL_CMDS_UNSUP_MANUF_CLUSTER_COMMAND. The
application is not notified about the received command.

The prototype for the user-defined callback function is as follows:

bool_t bZCL_IsManufacturerCodeSupported(uint16 u16ManufacturerCode);

where u16ManufacturerCode is the manufacturer code in the received command.

This callback function can be registered with the ZCL using the function vZCL_RegisterCheckForManufCode
CallBack(), detailed in Section 5.1.

2.8 Bound Transmission Management
ZigBee PRO provides the facility for bound transfers/transmissions. In this case, a source endpoint on one
node is bound to one or more destination endpoints on other nodes. Data sent from the source endpoint is then
automatically transmitted to all the bound endpoints (without the need to specify destination addresses). The
bound transmission is handled by a Bind Request Server on the source node. Binding, bound transfers, and the
Bind Request Server are fully described in the ZigBee 3.0 Stack User Guide (JNUG3130).

Congestion may occur if a new bound transmission is requested while the Bind Request Server is still busy
completing the previous bound transmission (still sending packets to bound nodes). This causes the new bound
transmission to fail. The ZCL software incorporates a feature for managing bound transmission requests, so not
to overload the Bind Request Server and cause transmissions to fail.

Note: The alternative to using this feature is for the application to re-attempt bound transmissions that fail.

If this feature is enabled and a bound transmission request submitted to the Bind Request Server fails, the
bound transmission APDU is automatically put into a queue. A one-second scheduler periodically takes the
APDU at the head of the queue and submits it to the Bind Request Server for transmission. If this bound
transmission also fails, the APDU is returned to the bound transmission queue.

The bound transmission queue has the following properties:

• Number of buffers in the queue

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
25 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• Size of each buffer, in bytes

The feature is enabled and the above properties are defined at compile-time, as described below.

Note: If a single APDU does not fit into a single buffer in the queue, it is stored in multiple buffers (provided that
enough buffers are available).

Compile-time Options

In order to use the bound transmission management feature, the following definitions are required in the
zcl_options.h file.

Add this line to enable the bound transmission management feature:

#define CLD_BIND_SERVER

Add this line to define the number of buffers in the bound transmission queue (in this example, the queue will
contain four buffers):

#define MAX_NUM_BIND_QUEUE_BUFFERS 4

Add this line to define the size, in bytes, of a buffer in the bound transmission queue (in this example, the buffer
size is 60 bytes):

#define MAX_PDU_BIND_QUEUE_PAYLOAD_SIZE 60

Certain clusters and the ‘attribute reporting’ feature allow APS acknowledgements to be disabled for bound
transmissions. The required definitions are detailed in the cluster-specific compile-time options.

2.9 Command Discovery
The ZCL provides the facility to discover the commands that a cluster instance on a remote device can receive
and generate. This is useful since an individual cluster instance may not be able to receive or generate all of the
commands that are theoretically supported by the cluster.

The commands that are supported by a cluster (and that can therefore potentially be discovered) are defined in
a Command Definition table which is enabled in the cluster definition when Command Discovery is enabled (see
Section 6.1.2).

Two ZCL functions are provided to implement the Command Discovery feature (as indicated in Section 2.9.1
below and fully described in Section 5.3).

2.9.1 Discovering Command Sets

The commands supported by a remote cluster instance can be discovered as described below.

Discovering commands that can be received

The commands that can be received by an instance of a cluster on a remote device can be discovered using
the function

eZCL_SendDiscoverCommandReceivedRequest()

This function sends a request to the remote cluster instance, which responds with a list of commands (identified
by their Command IDs). On receiving this response, the following events are generated on the local device:

• E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_RECEIVED_RESPONSE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
26 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

This event is generated for each individual command reported in the response. The reported information
is contained in a structure of the type tsZCL_CommandDiscoveryIndividualResponse (see Section
6.1.17).

• E_ZCL_CBET_DISCOVER_COMMAND_RECEIVED_RESPONSE
This event is generated after all the above individual events, in order to indicate the end of these events.
The reported information is contained in a structure of the type tsZCL_CommandDiscoveryResponse
(see Section 6.1.18).

Discovering commands that can be generated

The commands that can be generated by an instance of a cluster on a remote device can be discovered using
the function

eZCL_SendDiscoverCommandGeneratedRequest()

This function sends a request to the remote cluster instance, which responds with a list of commands (identified
by their Command IDs). On receiving this response, the following events are generated on the local device:

• E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_GENERATED_RESPONSE
This event is generated for each individual command reported in the response. The reported information
is contained in a structure of the type tsZCL_CommandDiscoveryIndividualResponse (see Section
6.1.17).

• E_ZCL_CBET_DISCOVER_COMMAND_GENERATED_RESPONSE
This event is generated after all the above individual events, in order to indicate the end of these events.
The reported information is contained in a structure of the type tsZCL_CommandDiscoveryResponse
(see Section 6.1.18).

Note: The above functions can be called multiple times to discover the commands in stages. After each
call, the tsZCL_CommandDiscoveryResponse structure contains a Boolean flag which indicates whether
there are more commands to be discovered (see Section 6.1.18). For complete details, refer to the function
descriptions in Section 5.3.

2.9.2 Compile-time Options

If required, the Command Discovery feature must be enabled at compile-time.

To enable the feature, the following must be defined at both the local and remote ends:

#define ZCL_COMMAND_DISCOVERY_SUPPORTED

To enable the handling of Command Discovery requests and the generation of responses at the remote end, the
following must be defined on the remote device:

#define ZCL_COMMAND_RECEIVED_DISCOVERY_SERVER_SUPPORTED
#define ZCL_COMMAND_GENERATED_DISCOVERY_SERVER_SUPPORTED

To enable the handling of Command Discovery responses at the local end, the following must be defined on the
local device:

#define ZCL_COMMAND_RECEIVED_DISCOVERY_CLIENT_SUPPORTED
#define ZCL_COMMAND_GENERATED_DISCOVERY_CLIENT_SUPPORTED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
27 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

3 Event Handling

This chapter describes the event handling framework which allows the ZCL to deal with stack-related and timer-
related events (including cluster-specific events).

A message arriving in a message queue triggers a stack event whereas a timer event is triggered when a
software timer expires (for more information on timer events, refer to Section 5.2).

The event must be wrapped in a tsZCL_CallBackEvent structure by the application (see Section 3.1 below),
which then passes this event structure into the ZCL using the function vZCL_EventHandler(), described in
Section 5.1. The ZCL processes the event and, if necessary, invokes the relevant endpoint callback function.
Refer to Section 3.2 for more details of event processing.

3.1 Event Structure
The tsZCL_CallBackEvent structure, in which an event is wrapped, is as follows:

typedef struct
{
 teZCL_CallBackEventType eEventType;
 uint8 u8TransactionSequenceNumber;
 uint8 u8EndPoint;
 teZCL_Status eZCL_Status;
union {
 tsZCL_IndividualAttributesResponse sIndividualAttributeResponse;
 tsZCL_DefaultResponse sDefaultResponse;
 tsZCL_TimerMessage sTimerMessage;
 tsZCL_ClusterCustomMessage sClusterCustomMessage;
 tsZCL_AttributeReportingConfigurationRecord
 sAttributeReportingConfigurationRecord;
 tsZCL_AttributeReportingConfigurationResponse
 sAttributeReportingConfigurationResponse;
 tsZCL_AttributeDiscoveryResponse sAttributeDiscoveryResponse;
 ZCL_AttributeStatusRecord sReportingConfigurationResponse;
 tsZCL_ReportAttributeMirror sReportAttributeMirror;
 uint32 u32TimerPeriodMs;
 tsZCL_CommandDiscoveryIndividualResponse
 sCommandsReceivedDiscoveryIndividualResponse;
 tsZCL_CommandDiscoveryResponse sCommandsReceivedDiscoveryResponse;
 tsZCL_CommandDiscoveryIndividualResponse
 sCommandsGeneratedDiscoveryIndividualResponse;
 tsZCL_CommandDiscoveryResponse sCommandsGeneratedDiscoveryResponse;
 tsZCL_AttributeDiscoveryExtendedResponse
 sAttributeDiscoveryExtenedResponse;
}uMessage ;
 ZPS_tsAfEvent *pZPSevent;
 tsZCL_ClusterInstance *psClusterInstance;
} tsZCL_CallBackEvent;

The fields of this structure are fully described Section 6.2.

In the tsZCL_CallBackEvent structure, the eEventType field defines the type of event being posted - the
various event types are described in Section 3.3 below. The union and remaining fields are each relevant to
only specific event types.

3.2 Processing Events
This section outlines how the application should deal with stack events and timer events that are generated
externally to the ZCL. A cluster-specific event initially arrives as one of these events.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
28 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The occurrence of an event in the ZCL queue activates a ZCL user function. The following actions must then be
performed in the application:

1. The task checks whether the event that has occurred is a timer event (timer messages are collected by a
user-defined function).

2. The task sets fields of the event structure tsZCL_CallBackEvent (see Section 3.1), as follows (all other
fields are ignored):

• For a timer event, sets the field eEventType to E_ZCL_CBET_TIMER.
• For a millisecond timer event, sets the field eEventType to E_ZCL_CBET_TIMER_MS.
• For a stack event, sets the field eEventType to E_ZCL_ZIGBEE_EVENT and sets the field pZPSevent to

point to the ZPS_tsAfEvent structure received by the application. This structure is defined in the ZigBee 3.0
Stack User Guide (JNUG3130).

3. The task passes this event structure to the ZCL using vZCL_EventHandler() - the ZCL then identifies the
event type (see Section 3.3) and invokes the appropriate endpoint callback function.

Note: For a cluster-specific event (which arrives as a stack event or a timer event), the cluster normally
contains its own event handler which is invoked by the ZCL. If the event requires the attention of the application,
the ZCL replaces the eEventType field with E_ZCL_CBET_CLUSTER_CUSTOM and populates the
tsZCL_ClusterCustomMessage structure with the event data. The ZCL then invokes the user-defined
endpoint callback function to perform any application-specific event handling that is required.

3.3 Events
The events that are not cluster-specific are divided into four categories (Input, Read, Write, General), as
shown in the following table. The ‘input events’ originate externally to the ZCL and are passed into the ZCL for
processing (see Section 3.2). The remaining events are generated as part of this processing.

Note: Cluster-specific events are covered in the chapter for the relevant cluster.

Category Event

E_ZCL_ZIGBEE_EVENT

E_ZCL_CBET_TIMER

Input Events

E_ZCL_CBET_TIMER_MS

E_ZCL_CBET_READ_REQUEST

E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

Read Events

E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

E_ZCL_CBET_WRITE_ATTRIBUTES

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE

Write Events

E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

E_ZCL_CBET_LOCK_MUTEX

E_ZCL_CBET_UNLOCK_MUTEX

E_ZCL_CBET_DEFAULT_RESPONSE

General Events

E_ZCL_CBET_UNHANDLED_EVENT

Table 13. Events

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
29 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Category Event

E_ZCL_CBET_ERROR

E_ZCL_CBET_CLUSTER_UPDATE

Table 13. Events...continued

The above events are described below.

Input Events

The ‘input events’ are generated externally to the ZCL. Such an event is received by the application, which
wraps the event in a tsZCL_CallBackEvent structure and passes it into the ZCL using the function
vZCL_EventHandler() - for further details of event processing, refer to Section 3.2.

• E_ZCL_ZIGBEE_EVENT
All ZigBee PRO stack events to be processed by the ZCL are designated as this type of event by setting
the eEventType field in the tsZCL_CallBackEvent structure to E_ZCL_ZIGBEE_EVENT.

• E_ZCL_CBET_TIMER
A timer event (indicating that a timer has expired) which is to be processed by the ZCL is designated
as this type of event by setting the eEventType field in the tsZCL_CallBackEvent structure to
E_ZCL_CBET_TIMER.

• E_ZCL_CBET_TIMER_MS
A millisecond timer event (indicating that a timer has expired) which is to be processed by the ZCL is
designated as this type of event by setting the eEventType field in the tsZCL_CallBackEvent structure
to E_ZCL_CBET_TIMER_MS.

Read Events

The ‘read events’ are generated as the result of a ‘read attributes’ request (see Section 2.3.2). Some of these
events are generated on the remote node and some of them are generated on the local (requesting) node, as
indicated in the table below.

Generated on local node (client): Generated on remote node (server):

E_ZCL_CBET_READ_REQUEST

E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RE
SPONSE

E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

Table 14. Read Events

The circumstances surrounding the generation of the ‘read events’ are outlined below:

• E_ZCL_CBET_READ_REQUEST
When a ‘read attributes’ request has been received and passed to the ZCL (as a stack event), the ZCL
generates the event E_ZCL_CBET_READ_REQUEST for the relevant endpoint to indicate that the
endpoint’s shared device structure is going to be read. This gives an opportunity for the application to
access the shared structure first, if required - for example, to update attribute values before they are read.
This event may be ignored if the application reads the hardware asynchronously - for example, driven by a
timer or interrupt.

• E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE
When a ‘read attributes’ response has been received by the requesting node and passed to the ZCL (as a
stack event), the ZCL generates the event E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
30 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

for each individual attribute in the response. Details of the attribute are incorporated in the structure ts
ZCL_ReadIndividualAttributesResponse, described in Section 6.2.
Note that this event is often ignored by the application, while the event
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE (see next event) is handled.

• E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE
When a ‘read attributes’ response has been received by the requesting node and the ZCL has completed
updating the local copy of the shared device structure, the ZCL generates the event E_ZCL_CBET_
READ_ATTRIBUTES_RESPONSE. The transaction sequence number and cluster instance fields of the
tsZCL_CallBackEvent structure are used by this event.

Write Events

The ‘write events’ are generated as the result of a ‘write attributes’ request (see Section 2.3.3). Some of these
events are generated on the remote node and some of them are generated on the local (requesting) node, as
indicated in the table below.

Generated on local node (client): Generated on remote node (server):

E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

E_ZCL_CBET_WRITE_ATTRIBUTES

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_R
ESPONSE

E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

Table 15. Write Events

During the process of receiving and processing a ‘write attributes’ request, the receiving application maintains a
tsZCL_IndividualAttributesResponse structure for each individual attribute in the request:

typedef struct PACK {
uint16 u16AttributeEnum;
teZCL_ZCLAttributeType eAttributeDataType;
teZCL_CommandStatus eAttributeStatus;
void *pvAttributeData;
tsZCL_AttributeStatus *psAttributeStatus;
} tsZCL_IndividualAttributesResponse;

The u16AttributeEnum field identifies the attribute.

The field eAttributeDataType is set to the ZCL data type of the attribute in the request, which is checked by
the ZCL to ensure that the attribute type in the request matches the expected attribute type.

The above structure is fully detailed in Section 6.2.

The circumstances surrounding the generation of the ‘write events’ are outlined below:

• E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE
When a ‘write attributes’ request has been received and passed to the ZCL (as a stack event), for each
attribute in the request the ZCL generates the event E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE for the
relevant endpoint. This indicates that a ‘write attributes’ request has arrived and gives an opportunity for the
application to do either or both of the following:
– Check that the attribute value to be written falls within the valid range (range checking is not performed in

the ZCL because the range may depend on application-specific rules).
– Decide whether the requested write access to the attribute in the shared structure is allowed or not allowed.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
31 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• The value to be written is pointed to by pvAttributeData in the above structure (this does not point to the
field of the shared structure containing this attribute, as the shared structure field still has its existing value).

• The attribute status field eAttributeStatus in the above structure is initially set to E_ZCL_SUCCESS. The
application should set this field to E_ZCL_ERR_ATTRIBUTE_RANGE if the attribute value is out-of-range or
to E_ZCL_DENY_ATTRIBUTE_ACCESS if it decides to disallow the write. Also note the following:

• If a conventional ‘write attributes’ request is received and an attribute value fails the range check or write
access to an attribute is denied, this attribute is left unchanged in the shared structure but other attributes are
updated.

• If an ‘undivided write attributes’ request is received and any attribute fails the range check or write access to
any attribute is denied, no attribute values are updated in the shared structure.

• E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE
Following an attempt to write an attribute value to the shared structure, the ZCL generates the event E_
ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE for the relevant endpoint. The field eAttributeStatus
in the structure tsZCL_IndividualAttributesResponse indicates to the application whether the
attribute value was updated successfully:
If the write is successful, this status field is left as E_ZCL_SUCCESS.
If the write is unsuccessful, this status field is set to a suitable error status (see Section 7.1.4).

• E_ZCL_CBET_WRITE_ATTRIBUTES
Once all the attributes in a ‘write attributes’ request have been processed, the ZCL generates the event
E_ZCL_CBET_WRITE_ATTRIBUTES for the relevant endpoint.

• E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE
The E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE event is generated for each
attribute that is listed in an incoming ‘write attributes’ response message. Only attributes that have
failed to be written are contained in the message. The field eAttributeStatus of the structure
tsZCL_IndividualAttributesResponse indicates the reason for the failure (see Section 7.1.4).

• E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE
The E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE event is generated when the parsing of an
incoming ‘write attributes’ response message is complete. This event is particularly useful following a write
where all the attributes have been written without errors since, in this case, no E_ZCL_CBET_WRITE_
INDIVIDUAL_ATTRIBUTE_RESPONSE event is generated.

General Events

• E_ZCL_CBET_LOCK_MUTEX and E_ZCL_CBET_UNLOCK_MUTEX
When an application task accesses the shared device structure of an endpoint, a mutex should be used
by the task to protect the shared structure from conflicting accesses. Thus, the ZCL may need to lock or
unlock a mutex in handling an event - for example, when a "read attributes" request has been received and
passed to the ZCL (as a stack event). In these circumstances, the ZCL generates the following events:
E_ZCL_CBET_LOCK_MUTEX when a mutex is to be locked
E_ZCL_CBET_UNLOCK_MUTEX when a mutex is to be unlocked
The ZCL specifies one of the above events in invoking the callback function for the endpoint. Thus, the
endpoint callback function must include the necessary code to lock and unlock a mutex - for further
information, refer to Appendix A.
The locking and unlocking of a mutex are useful if the tasks in the application are non-cooperative while
sharing the same resource. To optimize the code, the above events are not generated when the tasks are
in a cooperative group. Tasks are cooperative by default and, if not required, this feature can be disabled in
the zcl_options.h file (see Section 1.3).

• E_ZCL_CBET_DEFAULT_RESPONSE
The E_ZCL_CBET_DEFAULT_RESPONSE event is generated when a ZCL default response
message has been received. These messages indicate that either an error has occurred or a message

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
32 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

has been processed. The payload of the default response message is contained in the structure
tsZCL_DefaultResponseMessage below:

typedef struct PACK {
 uint8 u8CommandId;
 uint8 u8StatusCode;
} tsZCL_DefaultResponseMessage;

u8CommandId is the ZCL command identifier of the command which triggered the default response
message.
u8StatusCode is the status code from the default response message. It is set to 0x00 for OK or to an error
code defined in the ZCL Specification.
E_ZCL_CBET_UNHANDLED_EVENT and E_ZCL_CBET_ERROR
The E_ZCL_CBET_UNHANDLED_EVENT and E_ZCL_CBET_ERROR events indicate that a stack
message has been received which cannot be handled by the ZCL. The *pZPSevent field of the
tsZCL_CallBackEvent structure points to the stack event that caused the event.
E_ZCL_CBET_CLUSTER_UPDATE
The E_ZCL_CBET_CLUSTER_UPDATE event indicates that one or more attribute values for a cluster on
the local device may have changed.

Note: ZCL error events and default responses (see Section 6.1.9) may be generated when problems occur
in receiving commands. The possible ZCL status codes contained in the events and responses are detailed in
Section 4.2.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
33 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

4 Error Handling

This chapter describes the error handling provision in the NXP implementation of the ZCL.

4.1 Last Stack Error
The last error generated by the ZigBee PRO stack can be obtained using the ZCL function
eZCL_GetLastZpsError(), described in Section 5.1. The possible returned errors are listed in the Return/Status
Codes chapter of the ZigBee 3.0 Stack User Guide (JNUG3130).

4.2 Error/Command Status on Receiving Command
When a device receives a command, an error might be generated. If receiving a command results in an error,
an event of the type E_ZCL_CBET_ERROR is generated on the device. In such cases, the following status
codes may be used:

• The ZCL status of the event (sZCL_CallBackEvent.eZCL_Status) is set to one of the error codes
detailed in Section 7.2.

• A ‘default response’ (see Section 6.1.9) may be generated which contains one of the command status codes
detailed in Section 7.1.4. This response is sent to the source node of the received command (and can be
intercepted using an over-air sniffer).

The table below details the error and command status codes that may be generated.

Error Status (in Event) Command Status (in Response) Notes

E_ZCL_ERR_ZRECEIVE_FAIL * None A receive error has occurred. This
error is often security-based due
to key establishment not being
successfully completed - ZPS error
is ZPS_APL_APS_E_SECURITY_
FAIL.

E_ZCL_ERR_EP_UNKNOWN E_ZCL_CMDS_SOFTWARE_
FAILURE

Destination endpoint for the
command is not registered with the
ZCL.

E_ZCL_ERR_CLUSTER_NOT_
FOUND

E_ZCL_CMDS_UNSUPPORTED_
CLUSTER

Destination cluster for the
command is not registered with the
ZCL.

E_ZCL_ERR_SECURITY_
INSUFFICIENT_FOR_CLUSTER

E_ZCL_CMDS_FAILURE Attempt made to access a cluster
using a packet without the
necessary application-level (APS)
encryption.

None E_ZCL_CMDS_UNSUP_
GENERAL_COMMAND

Command has no handler enabled
in zcl_options.h file.

E_ZCL_ERR_CUSTOM_
COMMAND_HANDLER_NULL_
OR_RETURNED_ERR

E_ZCL_CMDS_UNSUP_
CLUSTER_COMMAND

Custom command has no
registered handler or its handler
has not returned E_ZCL_
SUCCESS.

Table 16. Error and Command Status Codes

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
34 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Error Status (in Event) Command Status (in Response) Notes

E_ZCL_ERR_KEY_ESTABLISH-
MENT_END_POINT_NOT_FOUND

None Key Establishment cluster has not
been registered correctly.

E_ZCL_ERR_KEY_ESTABLISH-
MENT_CALLBACK_ERROR

None Key Establishment cluster callback
function has returned an error.

None E_ZCL_CMDS_MALFORMED_
COMMAND

A received message is incomplete
due to some missing command-
specific data.

Table 16. Error and Command Status Codes...continued

* ZigBee PRO stack raises an error which can be retrieved using eZCL_GetLastZpsError().

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
35 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part II: Common Resources

This part comprises three chapters:

• Chapter 5 details the general functions of the ZCL.
• Chapter 6 details the general structures used by the ZCL.
• Chapter 7 details the general enumerations used by the ZCL.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
36 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

5 ZCL Functions

This chapter details the core functions of the ZCL that may be needed irrespective of the clusters used. These
functions include:

• General functions - see Section 5.1
• Attribute Access functions - see Section 5.2
• Command Discovery functions - see Section 5.3

5.1 General Functions
This section details a set of general ZCL functions that deal with ZCL initialization, endpoint registration, timing,
APS acknowledgments, event handling, and error handling:

1. eZCL_Initialise
2. eZCL_Register
3. vZCL_EventHandler
4. eZCL_Update100mS
5. vZCL_DisableAPSACK
6. eZCL_GetLastZpsError
7. vZCL_RegisterHandleGeneralCmdCallBack
8. vZCL_RegisterCheckForManufCodeCallBack

5.1.1 eZCL_Initialise

teZCL_Status eZCL_Initialise(
 tfpZCL_ZCLCallBackFunction cbCallBack,
 PDUM_thAPdu hAPdu);

Description

This function initializes the ZCL. It should be called before registering any endpoints (using one of the device-
specific endpoint registration functions) and before starting the ZigBee PRO stack.

As part of this function call, you must specify a user-defined callback function that is invoked when a ZigBee
PRO stack event occurs that is not associated with an endpoint (the callback function for events associated with
an endpoint is specified when the endpoint is registered using one of the registration functions). This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)
 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a local pool of Application Protocol Data Units (APDUs) that would be used
by the ZCL to hold messages to be sent and received.

Parameters

• cbCallBack: Pointer to a callback function to handle stack events that are not associated with a registered
endpoint

• hAPdu: Pointer to a pool of APDUs for holding messages to be sent and received

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
37 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_HEAP_FAIL
• E_ZCL_ERR_PARAMETER_NULL

5.1.2 eZCL_Register

teZCL_Status eZCL_Register(
 tsZCL_EndPointDefinition *psEndPointDefinition);

Description

This function is used to register an endpoint with the ZCL. The function validates the clusters and corresponding
attributes supported by the endpoint, and registers the endpoint.

The function should only be called to register a custom endpoint (which does not contain one of the standard
ZigBee device types). It should be called for each custom endpoint on the local node. The function is not
required when using a standard ZigBee device (for example, On/Off Switch) on an endpoint - in this case, the
appropriate device registration function should be used.

Parameters

• psEndPointDefinition: Pointer to tsZCL_EndPointDefinition structure for the endpoint to be registered
(see Section 6.1.1)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_PARAMETER_RANGE
• E_ZCL_ERR_HEAP_FAIL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_SECURITY_RANGE
• E_ZCL_ERR_CLUSTER_0
• E_ZCL_ERR_CLUSTER_NULL
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_CLUSTER_ID_RANGE
• E_ZCL_ERR_ATTRIBUTES_NULL
• E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED,
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND,
• E_ZCL_ERR_CALLBACK_NULL

5.1.3 vZCL_EventHandler

void vZCL_EventHandler(
 tsZCL_CallBackEvent *psZCLCallBackEvent);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
38 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function should be called when an event (ZigBee stack, peripheral, timer, or cluster event) occurs. The
function is used to pass the event to the ZCL. The ZCL then processes the event, including a call to any
necessary callback function.

The event is passed into the function in a tsZCL_CallBackEvent structure, which the application must fill in -
refer to Section 6.2 for details of this structure.

Parameters

• psZCLCallBackEvent: Pointer to a tsZCL_CallBackEvent event structure (see Section 6.2) containing the
event to process

Returns

• None

5.1.4 eZCL_Update100mS

teZCL_Status eZCL_Update100mS(void);

Description

This function is used to service all the timing needs of the clusters used by the application and should be called
every 100 ms. This can be achieved by using a 100 ms software timer to periodically prompt execution of this
function.

The function calls the external user-defined function vIdEffectTick(), which can be used to implement an
identify effect on the node. This function must be defined in the application, irrespective of whether identify
effects are needed (and therefore, may be empty). The function prototype is:

void vIdEffectTick(void)

Parameters

None

Returns

E_ZCL_SUCCESS

5.1.5 vZCL_DisableAPSACK

void vZCL_DisableAPSACK(bool_t bDisableAPSACK);

Description

This function can be used to enable/disable the request of an APS acknowledgment when a ZCL command is
sent. APS acknowledgments are enabled by default.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
39 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• bDisableAPSACK: Enable or disable APS acknowledgment requests:
– TRUE - Disable requests of APS acknowledgments
– FALSE - Enable requests of APS acknowledgments

Returns

None

5.1.6 eZCL_GetLastZpsError

ZPS_teStatus eZCL_GetLastZpsError(void);

Description

This function returns the last error code generated by the ZigBee PRO stack when accessed from the ZCL.

For example, if a call to the On/Off cluster function eCLD_OnOffCommandSend() returns
E_ZCL_ERR_ZTRANSMIT_FAIL (because the ZigBee PRO API function that was used to transmit the
command failed), the eZCL_GetLastZpsError() function can be called to obtain the return code from the
ZigBee PRO stack.

Note that the error code is not updated on a successful call to the ZigBee PRO stack. Also, there is only a single
instance of the error code, so subsequent errors would over-write the current value.

Note: If an error occurs when a command is received, an event of type E_ZCL_CBET_ERROR is generated on
the receiving node. A ‘default response’ may also be returned to the source node of the received command. The
possible ZCL status codes in the error event and in the default response are detailed in Section 4.2.

Parameters

None

Returns

The error code of the last ZigBee PRO stack error - see the Return/Status Codes chapter of the ZigBee 3.0
Stack User Guide (JNUG3130)

5.1.7 vZCL_RegisterHandleGeneralCmdCallBack

void vZCL_RegisterHandleGeneralCmdCallBack(void *fnPtr);

Description

This function is used to register an optional user-defined callback function that is invoked when a cluster-
specific or general command is received for a cluster that is not supported on the local device.

The purpose of the registered callback function is to determine whether the application would handle the
unsupported command. The prototype of the callback function is as follows:

bool_t bZCL_OverrideHandlingEntireProfileCmd(uint16 u16ClusterId);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
40 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where u16ClusterId is the ZigBee identifier of the cluster to which the command relates. The function returns
a Boolean value, which is TRUE if the main application handles the command and FALSE if the ZCL would
handle the command:

• If the function returns TRUE, the ZCL passes the command to the main application in an appropriate event.
• If the function returns FALSE, the ZCL sends a ‘default response’ containing the status

E_ZCL_CMDS_UNSUPPORTED_CLUSTER to the originator of the command (this is also the standard way
of handling a command for an unsupported cluster when a callback function has not been registered).

For more information on handling commands for unsupported clusters, refer to Section 2.6.

Parameters

• fnPtr: Pointer to user-defined callback function to be registered

Returns

• None

5.1.8 vZCL_RegisterCheckForManufCodeCallBack

void vZCL_RegisterCheckForManufCodeCallBack(void *fnPtr);

Description

This function is used to register an optional user-defined callback function that is invoked when a manufacturer-
specific command is received containing a manufacturer code other than NXP’s own code (0x1037).

The purpose of the registered callback function is to determine whether the application would handle a received
command with a given manufacturer code. The prototype of the callback function is as follows:

bool_t bZCL_IsManufacturerCodeSupported(uint16 u16ManufacturerCode);

where u16ManufacturerCode is the manufacturer code contained in the received command. The function
returns a Boolean value, which is TRUE if the main application handles the command and FALSE if the ZCL
handles the command:

• If the function returns TRUE, the ZCL passes the command to the main application in an appropriate event.
• If the function returns FALSE, the ZCL sends a ‘default response’ containing the status E_ZCL_CMDS_

UNSUP_MANUF_CLUSTER_COMMAND to the originator of the command (this is also the standard way of
handling a command with a non-NXP manufacturer code when a callback function has not been registered).

For more information on handling manufacturer-specific commands containing non-NXP manufacturer codes,
refer to Section 2.7.

Parameters

• fnPtr: Pointer to user-defined callback function to be registered

Returns

• None

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
41 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

5.2 Attribute Access Functions
The following functions are provided in the ZCL for accessing cluster attributes on a remote device:

1. eZCL_SendReadAttributesRequest
2. eZCL_SendWriteAttributesRequest
3. eZCL_SendWriteAttributesNoResponseRequest
4. eZCL_SendWriteAttributesUndividedRequest
5. eZCL_SendDiscoverAttributesRequest
6. eZCL_SendDiscoverAttributesExtendedRequest
7. eZCL_SendConfigureReportingCommand
8. eZCL_SendReadReportingConfigurationCommand
9. eZCL_ReportAllAttributes

10. eZCL_ReportAttribute
11. eZCL_CreateLocalReport
12. eZCL_SetReportableFlag
13. vZCL_SetDefaultReporting
14. eZCL_HandleReadAttributesResponse
15. eZCL_ReadLocalAttributeValue
16. eZCL_WriteLocalAttributeValue
17. eZCL_OverrideClusterControlFlags
18. eZCL_SetSupportedSecurity

Note: In addition to the general function eZCL_SendReadAttributesRequest(), there are cluster-specific ‘read
attributes’ functions for some clusters.

5.2.1 eZCL_SendReadAttributesRequest

teZCL_Status eZCL_SendReadAttributesRequest(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 uint16 u16ClusterId,
 bool_t bDirectionIsServerToClient,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8NumberOfAttributesInRequest,
 bool_t bIsManufacturerSpecific,
 uint16 u16ManufacturerCode,
 uint16 *pu16AttributeRequestList);

Description

This function can be used to send a ‘read attributes’ request to a cluster on a remote endpoint. Read access to
cluster attributes on the remote node must be enabled at compile-time as described in Section 1.3.

Specify the endpoint on the local node from which the request is to be sent. Also specify the address of the
destination node, the destination endpoint number, and the cluster from which attributes are to be read. It is
possible to use this function to send a request to bound endpoints or to a group of endpoints on remote nodes.
In the latter case, a group address must be specified.

Note: When sending requests to multiple endpoints through a single call to this function, multiple responses
would subsequently be received from the remote endpoints.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
42 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The function allows you to read selected attributes from the remote cluster. Specify the number of attributes to
be read and to identify the required attributes by means of an array of identifiers. This array must be created by
the application (the memory space for the array only needs to persist for the duration of this function call). The
attributes can be from the relevant ZigBee cluster specification or manufacturer-specific.

Also provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request. This feature is useful while sending more than one request to the same destination endpoint.

On receiving the ‘read attributes’ response, the obtained attribute values are automatically written to the
local copy of the shared device structure for the remote device and an E_ZCL_CBET_READ_INDIVIDUAL_
ATTRIBUTE_RESPONSE event is then generated for each attribute updated. The response may not contain
values for all requested attributes. Finally, once all received attribute values have been parsed, the event
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE is generated.

Parameters

• u8SourceEndPointIdNumber of the local endpoint through which the request is sent
• u8DestinationEndPointIdNumber of the remote endpoint to which the request is sent. This parameter is

ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP
• u16ClusterIdIdentifier of the cluster to be read (see the macros section in the cluster header file)
• bDirectionIsServerToClientDirection of request:

– TRUE: Cluster server to client
– FALSE: Cluster client to server

• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the request is sent

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

• u8NumberOfAttributesInRequest: Number of attributes to be read
• bIsManufacturerSpecific: Indicates whether attributes are manufacturer-specific or defined in the relevant

ZigBee cluster:
– TRUE: Attributes are manufacturer-specific
– FALSE: Attributes are from ZigBee cluster

• u16ManufacturerCode: ZigBee Alliance code for the manufacturer that defined proprietary attributes (set to
zero if attributes are from the ZigBee cluster - that is, if bIsManufacturerSpecific is set to FALSE)

• pu16AttributeRequestList: Pointer to an array which lists the attributes to be read. The attributes are identified
by using enumerations (listed in the ‘Enumerations’ section of each cluster-specific chapter)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTES_0
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL
• E_ZCL_FAIL
• E_ZCL_ERR_EP_UNKNOWN

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
43 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

5.2.2 eZCL_SendWriteAttributesRequest

teZCL_Status eZCL_SendWriteAttributesRequest(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 uint16 u16ClusterId,
 bool_t bDirectionIsServerToClient,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8NumberOfAttributesInRequest,
 bool_t bIsManufacturerSpecific,
 uint16 u16ManufacturerCode,
 tsZCL_WriteAttributeRecord *pu16AttributeRequestList);

Description

This function can be used to send a ‘write attributes’ request to a cluster on a remote endpoint. The function
also demands a ‘write attributes’ response from the remote endpoint, listing any attributes that could not be
updated (see below). Note that write access to cluster attributes on the remote node must be enabled at
compile-time as described in Section 1.3.

You must specify the endpoint on the local node from which the request is to be sent.

You must also specify the address of the destination node, the destination endpoint number and the cluster
to which attributes are to be written. It is possible to use this function to send a request to bound endpoints
or to a group of endpoints on remote nodes - in the latter case, a group address must be specified. Note that
when sending requests to multiple endpoints through a single call to this function, multiple responses will
subsequently be received from the remote endpoints.

The function allows you to write selected attributes to the remote cluster. You are required to specify the number
of attributes to be written and to identify the required attributes by means of an array of identifiers - this array
must be created by the application (the memory space for the array only needs to be valid for the duration of
this function call). The attributes can be from the relevant ZigBee cluster specification or manufacturer-specific

You are also required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for
the request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to
be paired with a request. This is useful when sending more than one request to the same destination endpoint.

Following a ‘write attributes’ response from the remote endpoint, the event E_ZCL_CBET_WRITE_
INDIVIDUAL_ATTRIBUTE_RESPONSE is generated for each attribute that was not successfully updated on
the remote endpoint. Finally, the event E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE is generated when
processing of the response is complete. If required, these events can be handled in the user-defined callback
function which is specified when the (requesting) endpoint is registered using the endpoint registration function
for the device type.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent. This parameter is

ignored while sending to address types, eZCL_AMBOUND and eZCL_AMGROUP.
• u16ClusterId: Identifier of the cluster to be written to (see the macros section in the cluster header file)
• bDirectionIsServerToClient: Direction of request:

– TRUE: Cluster server to client
– FALSE: Cluster client to server

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
44 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the request is sent

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

• u8NumberOfAttributesInRequest: Number of attributes to be written
• bIsManufacturerSpecific: Indicates whether attributes are manufacturer-specific or as defined in relevant

ZigBee cluster:
– TRUE: Attributes are manufacturer-specific
– FALSE: Attributes are from ZigBee cluster

• u16ManufacturerCode: ZigBee Alliance code for the manufacturer that defined proprietary attributes (set to
zero if attributes are from the ZigBee cluster - that is, if bIsManufacturerSpecific is set to FALSE)

• pu16AttributeRequestList: Pointer to an array of structures containing the attribute data to be written (see
Section 6.1.21)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTES_0
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL
• E_ZCL_FAIL
• E_ZCL_ERR_EP_UNKNOWN

5.2.3 eZCL_SendWriteAttributesNoResponseRequest

teZCL_Status eZCL_SendWriteAttributesNoResponseRequest(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 uint16 u16ClusterId,
 bool_t bDirectionIsServerToClient,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8NumberOfAttributesInRequest,
 bool_t bIsManufacturerSpecific,
 uint16 u16ManufacturerCode,
 tsZCL_WriteAttributeRecord *pu16AttributeRequestList);

Description

This function can be used to send a ‘write attributes’ request to a cluster on a remote endpoint without requiring
a response. If you need a response to your request, use the function eZCL_SendWriteAttributesRequest()
instead. Note that write access to cluster attributes on the remote node must be enabled at compile-time as
described in Section 1.3.

Specify the endpoint on the local node from which the request is to be sent. Also specify the address of the
destination node, the destination endpoint number, and the cluster to which attributes are to be written. It is
possible to use this function to send a request to bound endpoints or to a group of endpoints on remote nodes -
in the latter case, a group address must be specified.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
45 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The function allows you to write selected attributes to the remote cluster. Users should specify the number of
attributes to be written and identify the required attributes by using an array of identifiers. The application should
create this array. The memory space for the array only needs to be valid for the duration of this function call.
The attributes can be from the relevant ZigBee cluster specification or manufacturer-specific.

You must also provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the request.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent.
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent. This parameter is

ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP
• u16ClusterId: Identifier of the cluster to be written to (see the macros section in the cluster header file):
• bDirectionIsServerToClient: Direction of request:

– TRUE: Cluster server to client
– FALSE: Cluster client to server

• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the request is sent.

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

• u8NumberOfAttributesInRequest: Number of attributes to be written
• bIsManufacturerSpecific: : Indicates whether attributes are manufacturer-specific or as defined in relevant

ZigBee cluster:
– TRUE: Attributes are manufacturer-specific
– FALSE: Attributes are from ZigBee cluster

• u16ManufacturerCode: ZigBee Alliance code for the manufacturer that defined proprietary attributes (set to
zero if attributes are from the ZigBee cluster - that is, if bIsManufacturerSpecific is set to FALSE)

• pu16AttributeRequestList: Pointer to an array of structures containing the attribute data to be written (see
Section 6.1.21).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTES_0
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL
• E_ZCL_FAIL
• E_ZCL_ERR_EP_UNKNOWN

5.2.4 eZCL_SendWriteAttributesUndividedRequest

teZCL_Status eZCL_SendWriteAttributesUndividedRequest(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 uint16 u16ClusterId,
 bool_t bDirectionIsServerToClient,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8NumberOfAttributesInRequest,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
46 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 bool_t bIsManufacturerSpecific,
 uint16 u16ManufacturerCode,
 tsZCL_WriteAttributeRecord *pu16AttributeRequestList);

Description

This function can be used to send an ‘undivided write attributes’ request to a cluster on a remote endpoint. This
ensures that all the specified attributes are updated on the remote endpoint or none at all. This implies that
if one of the attributes cannot be written, then none of them are updated. The function also demands a ‘write
attributes’ response from the remote endpoint, indicating success or failure.

Note: Write access to cluster attributes on the remote node must be enabled at compile-time as described in
Section 1.3.

You should specify the endpoint on the local node from which the request is to be sent.

You must also specify the address of the destination node, the destination endpoint number and the cluster to
which attributes are to be written. It is possible to use this function to send a request to bound endpoints or to
a group of endpoints on remote nodes - in the latter case, a group address must be specified. When sending
requests to multiple endpoints through a single call to this function, multiple responses are subsequently
received from the remote endpoints.

The function allows you to write selected attributes to the remote cluster. You must specify the number of
attributes to be written and to identify the required attributes by means of an array of identifiers. The application
should create this array, such that the memory space for the array only needs to be valid for the duration of this
function call. The attributes can be from the relevant ZigBee cluster specification or manufacturer-specific

You must also provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the request.
The TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired
with a request. This is useful when sending more than one request to the same destination endpoint.

Following a ‘write attributes’ response from the remote endpoint, the event E_ZCL_CBET_WRITE_
ATTRIBUTES_RESPONSE is generated to indicate success or failure. This event can be handled in the user-
defined callback function which is specified when the (requesting) endpoint is registered using the appropriate
endpoint registration function for the device type.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent. Note that this

parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP
• u16ClusterId: Identifier of the cluster to be written to (see the macros section in the cluster header file)
• bDirectionIsServerToClient: Direction of request:

– TRUE: Cluster server to client
– FALSE: Cluster client to server

• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the request is sent

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

• u8NumberOfAttributesInRequest: Number of attributes to be written
• bIsManufacturerSpecific: Indicates whether attributes are manufacturer-specific or as defined in relevant

ZigBee cluster:
– TRUE: Attributes are manufacturer-specific
– FALSE: Attributes are from ZigBee cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
47 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16ManufacturerCode: ZigBee Alliance code for the manufacturer that defined proprietary attributes (set to
zero if attributes are from the ZigBee cluster - that is, if bIsManufacturerSpecific is set to FALSE)

• pu16AttributeRequestList: Pointer to an array of structures containing the attribute data to be written (see
Section 6.1.21)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTES_0
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL
• E_ZCL_FAIL
• E_ZCL_ERR_EP_UNKNOWN

5.2.5 eZCL_SendDiscoverAttributesRequest

teZCL_Status eZCL_SendDiscoverAttributesRequest(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 uint16 u16ClusterId,
 bool_t bDirectionIsServerToClient,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint16 u16AttributeId,
 bool_t bIsManufacturerSpecific,
 uint16 u16ManufacturerCode,
 uint8 u8MaximumNumberOfIdentifiers);

Description

This function can be used to send a ‘discover attributes’ request to a cluster (normally a cluster server) on a
remote device. The range of attributes of interest (within the standard set of cluster attributes) must be defined
by specifying the identifier of the ‘start’ attribute and the number of attributes in the range. The function returns
immediately and the results of the request are later received in a ‘discover attributes’ response.

You must provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful while sending more than one request to the same destination endpoint.

On receiving the ‘discover attributes’ response, the event

E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_RESPONSE

is generated for each attribute reported in the response. Therefore, multiple events normally result from a single
function call (‘discover attributes’ request). Following the event for the final attribute reported, the event

E_ZCL_CBET_DISCOVER_ATTRIBUTES_RESPONSE

is generated to indicate that all attributes from the discover attributes response have been reported.

Attribute discovery is fully described in Section 2.3.4.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
48 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent
• u16ClusterId: Identifier of the cluster to be queried (see the macros section in the cluster header file): :
• bDirectionIsServerToClient: Direction of request:

– TRUE: Cluster server to client
– FALSE: Cluster client to server

• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the request is sent

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

• u16AttributeId: Identifier of ‘start’ attribute of interest
• bIsManufacturerSpecific: Indicates whether attributes are manufacturer-specific or as defined in relevant

ZigBee cluster:
– TRUE: Attributes are manufacturer-specific
– FALSE: Attributes are from ZigBee cluster

• u16ManufacturerCode: ZigBee Alliance code for the manufacturer that defined proprietary attributes (set to
zero if attributes are from the ZigBee cluster - that is, if bIsManufacturerSpecific is set to FALSE)

• u8MaximumNumberOfIdentifiers: Number of attributes in attribute range of interest (maximum number of
attributes to report in response)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTES_0
• E_ZCL_ERR_ZBUFFER_FAIL

5.2.6 eZCL_SendDiscoverAttributesExtendedRequest

teZCL_Status eZCL_SendDiscoverAttributesExtendedRequest(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 uint16 u16ClusterId,
 bool_t bDirectionIsServerToClient,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint16 u16AttributeId,
 bool_t bIsManufacturerSpecific,
 uint16 u16ManufacturerCode,
 uint8 u8MaximumNumberOfIdentifiers);

Description

This function can be used to send a ‘discover attributes extended’ request to a cluster (normally a cluster
server) on a remote device. The range of attributes of interest (within the standard set of cluster attributes)
must be defined by specifying the identifier of the ‘start’ attribute and the number of attributes in the range. The
function returns immediately and the results of the request are later received in a ‘discover attributes extended’
response.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
49 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: An ‘extended’ attribute discovery is similar to a normal attribute discovery except the accessibility of each
attribute is additionally indicated as being ‘read’, ‘write’ or ‘reportable’.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

On receiving the ‘discover attributes extended’ response, the event

E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_EXTENDED_RESPONSE

is generated for each attribute reported in the response. Therefore, multiple events normally result from a single
function call (‘discover attributes extended’ request). Within this event, the details of the reported attribute are
contained in a structure of the type tsZCL_AttributeDiscoveryExtendedResponse (see Section 6.1.11).

Following the event for the final attribute reported, the event

E_ZCL_CBET_DISCOVER_ATTRIBUTES_EXTENDED_RESPONSE

is generated to indicate that all attributes from the discover attributes extended response have been reported.

Extended attribute discovery is fully described in Appendix C.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent
• u16ClusterId: Identifier of the cluster to be queried (see the macros section in the cluster header file): :
• bDirectionIsServerToClient: Direction of request:

– TRUE: Cluster server to client
– FALSE: Cluster client to server

• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the request is sent

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

• u16AttributeId: Identifier of ‘start’ attribute of interest
• bIsManufacturerSpecific: Indicates whether attributes are manufacturer-specific or as defined in relevant

ZigBee cluster:
– TRUE: Attributes are manufacturer-specific
– FALSE: Attributes are from ZigBee cluster

• u16ManufacturerCode: ZigBee Alliance code for the manufacturer that defined proprietary attributes (set to
zero if attributes are from the ZigBee-defined cluster - that is, if bIsManufacturerSpecific is set to FALSE)

• u8MaximumNumberOfIdentifiers: Number of attributes in attribute range of interest (maximum number of
attributes to report in response)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTES_0
• E_ZCL_ERR_ZBUFFER_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
50 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

5.2.7 eZCL_SendConfigureReportingCommand

teZCL_Status eZCL_SendConfigureReportingCommand(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 uint16 u16ClusterId,
 bool_t bDirectionIsServerToClient,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8NumberOfAttributesInRequest,
 bool_t bIsManufacturerSpecific,
 uint16 u16ManufacturerCode,
 tsZCL_AttributeReportingConfigurationRecord
 *psAttributeReportingConfigurationRecord);

Description

This function can be used on a cluster client to send a ‘configure reporting’ command to a cluster server, in
order to request automatic reporting to be configured for a set of attributes. The configuration information is
provided to the function in an array of structures, where each structure contains the configuration data for a
single attribute. The function will return immediately and the results of the request will later be received in a
‘configure reporting’ response.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

On receiving the ‘configure reporting’ response, the event

E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE_RESPONSE

is generated for each attribute in the response. Therefore, multiple events will normally result from a single
function call (‘configure reporting’ command). Following the event for the final attribute, the event

E_ZCL_CBET_REPORT_ATTRIBUTES_CONFIGURE_RESPONSE

is generated to indicate that the configuration outcomes for all the attributes from the ‘configure reporting’
command have been reported.

Note: In order for automatic reporting to be successfully configured for an attribute using this function,
the ‘reportable flag’ for the attribute must have been set on the cluster server using the function
eZCL_SetReportableFlag().

Attribute reporting is fully described in Appendix B.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent
• u16ClusterId: Identifier of the cluster to be configured (see the macros section in the cluster header file)
• bDirectionIsServerToClient: Direction of request:

– TRUE: Cluster server to client
– FALSE: Cluster client to server

• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the request would be sent

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
51 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

• u8NumberOfAttributesInRequest: Number of attributes for which reporting is to be configured as a result of
the request

• bIsManufacturerSpecific: Indicates whether attributes are manufacturer-specific or as defined in relevant
ZigBee cluster:
– TRUE: Attributes are manufacturer-specific
– FALSE: Attributes are from ZigBee cluster

• u16ManufacturerCode: ZigBee Alliance code for the manufacturer that defined proprietary attributes. This
code is set to zero if attributes are from the ZigBee cluster - that is, if bIsManufacturerSpecific is set to FALSE

• psAttributeReportingConfigurationRecord: Pointer to array of structures, where each structure contains the
attributing reporting configuration data for a single attribute (see Section 6.1.5)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTES_0
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL
• E_ZCL_FAIL

5.2.8 eZCL_SendReadReportingConfigurationCommand

teZCL_Status eZCL_SendReadReportingConfigurationCommand(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 uint16 u16ClusterId,
 bool_t bDirectionIsServerToClient,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8NumberOfAttributesInRequest,
 bool_t bIsManufacturerSpecific,
 uint16 u16ManufacturerCode,
 tsZCL_AttributeReadReportingConfigurationRecord
 *psAttributeReadReportingConfigurationRecord);

Description

This function can be used on a cluster client to send a ‘read reporting configuration’ command to a cluster
server, in order to request the attribute reporting configuration data for a set of attributes. For each attribute,
configuration data can be requested relating to either sending or receiving an attribute report. The required
configuration data is specified to the function in an array of structures, where each structure contains the
requirements for a single attribute. The function will return immediately and the results of the request will later
be received in a ‘read reporting configuration’ response.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

On receiving the ‘read reporting configuration’ response, the event

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
52 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

E_ZCL_CBET_REPORT_READ_INDIVIDUAL_ATTRIBUTE_CONFIGURATION_RESPONSE

is generated for each attribute in the response. Therefore, multiple events will normally result from a single
function call (‘read reporting configuration’ command). Following the event for the final attribute reported, the
event

E_ZCL_CBET_REPORT_READ_ATTRIBUTE_CONFIGURATION_RESPONSE

is generated to indicate that the configuration outcomes for all the attributes from the ‘configure reporting’
command have been reported.

Attribute reporting is fully described in Appendix B.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent.
• u16ClusterId: containing the attributes (see the macros section in the cluster header file)
• bDirectionIsServerToClient: Direction of request:

– TRUE: Cluster server to client
– FALSE: Cluster client to server

• psDestinationAddressPointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the request is sent

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

• u8NumberOfAttributesInRequest: Number of attributes for which reporting is to be configured as a result of
the request

• bIsManufacturerSpecific: Indicates whether attributes are manufacturer-specific or as defined in relevant
ZigBee cluster:
– TRUE: Attributes are manufacturer-specific
– FALSE: Attributes are from ZigBee cluster

• u16ManufacturerCode: ZigBee Alliance code for the manufacturer that defined proprietary attributes (set to
zero if attributes are from the ZigBee cluster - that is, if bIsManufacturerSpecific is set to FALSE)

• psAttributeReportingConfigurationRecord: Pointer to an array of structures, where each structure indicates the
required configuration data for a single attribute (see Section 6.1.7)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTES_0
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL
• E_ZCL_FAIL

5.2.9 eZCL_ReportAllAttributes

teZCL_Status eZCL_ReportAllAttributes(
 tsZCL_Address *psDestinationAddress,
 uint16 u16ClusterID,
 uint8 u8SrcEndPoint,
 uint8 u8DestEndPoint,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
53 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 PDUM_thAPduInstance hAPduInst);

Description

This function can be used on the cluster server to issue an attribute report for all the reportable attributes on the
server. Only the standard attributes are reported - this does not include manufacturer-specific attributes.

Use of this function requires no special configuration on the cluster server. However, the target client must be
enabled to receive attribute reports (via the compile-time option ZCL_ATTRIBUTE_REPORTING_CLIENT_
SUPPORTED - see Appendix B.3.1).

After this function is called and before the attribute report is sent, the event
E_ZCL_CBET_REPORT_REQUEST is generated on the server, allowing the application to update the attribute
values in the shared structure, if required.

Attribute reporting is fully described in Appendix B.

Parameters

• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the attribute report is sent

• u16ClusterID: Identifier of the cluster containing the attributes to be reported (see the macros section in the
cluster header file)

• u8SrcEndPoint: Number of endpoint on server from which attribute report is sent
• u8DestEndPoint: Number of endpoint on target client to which attribute report is sent
• hAPduInst: Handle of APDU instance that will contain the attribute report

Returns

• E_ZCL_SUCCESS

5.2.10 eZCL_ReportAttribute

teZCL_Status eZCL_ReportAttribute(
 tsZCL_Address *psDestinationAddress,
 uint16 u16ClusterID,
 uint16 u16AttributeID,
 uint8 u8SrcEndPoint,
 uint8 u8DestEndPoint,
 PDUM_thAPduInstance hAPduInst);

Description

This function can be used on the cluster server to issue an attribute report for an individual reportable attribute
on the server. Only a standard attribute can be reported - a manufacturer-specific attribute cannot be reported.

Use of this function requires no special configuration on the cluster server but the target client must be
enabled to receive attribute reports (via the compile-time option ZCL_ATTRIBUTE_REPORTING_CLIENT_
SUPPORTED - see Appendix B.3.1).

After this function has been called and before the attribute report is sent, the event
E_ZCL_CBET_REPORT_REQUEST is generated on the server, allowing the application to update the attribute
value in the shared structure, if required.

Attribute reporting is fully described in Appendix B.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
54 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the attribute report is sent

• u16ClusterID: Identifier of the cluster containing the attribute to be reported (see the macros section in the
cluster header file)

• u16AttributeID: Identifier of the attribute to be reported
• u8SrcEndPoint: Number of endpoint on server from which attribute report is sent
• u8DestEndPoint: Target client to which attribute report is sent
• hAPduInst: Handle of APDU instance that contains the attribute report

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND
• E_ZCL_ERR_ATTRIBUTE_NOT_REPORTABLE
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_CLUSTER_NOT_FOUND

5.2.11 eZCL_CreateLocalReport

teZCL_Status eZCL_CreateLocalReport(
 uint8 u8SourceEndPointId,
 uint16 u16ClusterId,
 bool_t bManufacturerSpecific,
 bool_t bIsServerAttribute,
 tsZCL_AttributeReportingConfigurationRecord
 *psAttributeReportingConfigurationRecord);

Description

This function can be used on a cluster server during a ‘cold start’ to register attribute reporting configuration
data (with the ZCL) that has been retrieved from Non-Volatile Memory (NVM) using the Non-Volatile Memory
Manager (NVM). Each call of the function registers the Attribute Reporting Configuration Record for a single
attribute. This configuration record is supplied to the function in a structure that has been populated using
the NVM. The function should only be called after the ZCL has been initialized. Following this function call,
automatic attribute reporting can resume for the relevant attribute (for example, following a power loss or device
reset).

The function must not be called for attributes that have not been configured for automatic attribute
reporting. For example, it must not be used for attributes for which the maximum reporting interval is set to
REPORTING_MAXIMUM_TURNED_OFF).

Attribute reporting is fully described in Appendix B.

Parameters

• u8SourceEndPointId: Number of endpoint on which the relevant cluster is located

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
55 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16ClusterId: Identifier of the cluster containing the attribute for which retrieved attribute reporting
configuration data is to be registered (see the macros section in the cluster header file)

• bManufacturerSpecific: Indicates whether attribute is manufacturer-specific or as defined in relevant ZigBee
cluster:
– TRUE: Attribute is manufacturer-specific
– FALSE: Attribute is from ZigBee cluster

• bIsServerAttribute: Indicates whether the attribute is located on the cluster server (or client):
– TRUE: Attribute is on cluster server
– FALSE: Attribute is on cluster client

• psAttributeReportingConfigurationRecord: Pointer to structure (see Section 6.1.5) containing the reporting
configuration data for the attribute

Returns

• E_ZCL_SUCCESS

5.2.12 eZCL_SetReportableFlag

teZCL_Status eZCL_SetReportableFlag(
 uint8 u8SrcEndPoint,
 uint16 u16ClusterID,
 bool bIsServerClusterInstance,
 bool bIsManufacturerSpecific,
 uint16 u16AttributeId);

Description

This function can be used on a cluster server to set (to ‘1’) the ‘reportable flag’ E_ZCL_AF_RP for an attribute.
Setting this flag configures the attribute to be potentially reportable, allowing automatic reporting to be
configured and implemented for the attribute. It will also allow the attribute to be reported as a result of a call to
eZCL_ReportAllAttributes().

The cluster on which the attribute resides must be specified. The flag will be set for the specified attribute on all
endpoints, but a single endpoint must be nominated which will be used to search for the attribute definition and
to check that the specified cluster has been registered with the ZCL.

Attribute reporting is fully described in Appendix B.

Parameters

• u8SourceEndPointId: Number of endpoint to be used to search for the attribute definition and to check the
cluster

• u16ClusterId: Identifier of the cluster containing the attribute for which the flag is to be set: (see the macros
section in the cluster header file)

• bIsServerClusterInstance: Type of cluster instance to be set:
– TRUE: Cluster Server
– FALSE: Cluster Client

• bIsManufacturerSpecific: Indicates whether attribute is manufacturer-specific or as defined in relevant ZigBee
cluster:
– TRUE: Attribute is manufacturer-specific
– FALSE: Attribute is from ZigBee cluster:

• u16AttributeId: Identifier of attribute for which the flag is to be set
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
56 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_EP_RANGE

5.2.13 vZCL_SetDefaultReporting

void vZCL_SetDefaultReporting(
 tsZCL_ClusterInstance *psClusterInstance);

Description

This function can be used on a cluster server to enable ‘default reporting’ for those attributes that are reportable.
It should be called immediately after the cluster instance has been created.

The function checks which attributes are potentially reportable - that is, which attributes have the ‘reportable
flag’ E_ZCL_AF_RP set. It then sets the ‘default reporting flag’ E_ZCL_ACF_RP for these attributes.

Note: The flag E_ZCL_AF_RP can be set for an attribute in the attribute definition or through a call to the
function eZCL_SetReportableFlag().

Attribute reporting is fully described in Appendix B.

Parameters

• psClusterInstance Pointer to structure containing information about the cluster instance for which default
reporting is to be enabled (see Section 6.1.16).

Returns

• None

5.2.14 eZCL_HandleReadAttributesResponse

teZCL_Status eZCL_HandleReadAttributesResponse(
 tsZCL_CallBackEvent *psEvent,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used to examine the response to a 'read attributes' request for a remote cluster and
determine whether the response is complete - that is, whether the 'read attributes' response contains all the
relevant attribute values (it may be incomplete if the returned data is too large to fit into a single APDU).

eZCL_HandleReadAttributesResponse() should normally be included in the user-defined callback function
that is invoked on generation of the event E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE. The callback
function must pass the generated event into eZCL_HandleReadAttributesResponse().

If the 'read attributes' response is not complete, the function will re-send 'read attributes' requests until all
relevant attribute values have been received.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
57 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

You are also required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for
the request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to
be paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• psEvent Pointer to generated event of the type E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE
• pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN)

of the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_CLUSTER_ID_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTE_WO
• E_ZCL_ERR_ATTRIBUTES_ACCESS
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_PARAMETER_RANGE

5.2.15 eZCL_ReadLocalAttributeValue

ZPS_teStatus eZCL_ReadLocalAttributeValue(
 uint8 u8SourceEndPointId,
 uint16 u16ClusterId,
 bool bIsServerClusterInstance,
 bool bIsManufacturerSpecific,
 bool_t blsClientAttribute,
 uint16 u16AttributeId,
 void *pvAttributeValue);

Description

This function can be used to read a local attribute value of the specified cluster on the specified endpoint.
Before reading the attribute value, the function checks that the attribute and cluster actually reside on the
endpoint.

Parameters

• u8SourceEndPointId Number of the local endpoint on which the read will be performed
• u16ClusterId Identifier of the cluster to be read (see the macros section in the cluster header

file)
• bIsServerClusterInstance Type of cluster instance to be read:
• TRUE: Cluster server
• FALSE: Cluster client
• bIsManufacturerSpecific Indicates whether attribute is manufacturer-specific or as defined in relevant

ZigBee cluster:
• TRUE: Attribute is manufacturer-specific

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
58 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• FALSE: Attribute is from ZigBee cluster
• blsClientAttribute Type of attribute to be read (client or server):
• TRUE: Client attribute
• FALSE: Server attribute
• u16AttributeId Identifier of the attribute to be read
• pvAttributeValue Pointer to location to receive the read attribute value

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_CLUSTER_ID_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTE_WO
• E_ZCL_ERR_ATTRIBUTES_ACCESS
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_PARAMETER_RANGE

5.2.16 eZCL_WriteLocalAttributeValue

ZPS_teStatus eZCL_WriteLocalAttributeValue(
 uint8 u8SourceEndPointId,
 uint16 u16ClusterId,
 bool bIsServerClusterInstance,
 bool bIsManufacturerSpecific,
 bool_t blsClientAttribute,
 uint16 u16AttributeId,
 void *pvAttributeValue);

Description

This function writes a value to a local attribute value of the specified cluster on the specified endpoint. Before
writing the attribute value, the function checks that the attribute and cluster actually reside on the endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint on which the write is performed
• u16ClusterId: Identifier of the cluster to be written to (see the macros section in the cluster header file):
• bIsServerClusterInstance: Type of cluster instance to be written to:

– TRUE: Cluster server
– FALSE: Cluster client

• bIsManufacturerSpecific: Indicates whether attribute is manufacturer-specific or as defined in relevant ZigBee
cluster:
– TRUE: Attribute is manufacturer-specific
– FALSE: Attribute is from ZigBee cluster

• blsClientAttribute: Type of attribute to be written to (client or server):
– TRUE: Client attribute
– FALSE: Server attribute

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
59 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16AttributeId: Identifier of the attribute to be written to
• pvAttributeValue: Pointer to location containing the attribute value to be written

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_CLUSTER_ID_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTE_WO
• E_ZCL_ERR_ATTRIBUTES_ACCESS
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_PARAMETER_RANGE

5.2.17 eZCL_OverrideClusterControlFlags

teZCL_Status eZCL_OverrideClusterControlFlags(
 uint8 u8SrcEndpoint,
 uint16 u16ClusterId,
 bool bIsServerClusterInstance,
 uint8 u8ClusterControlFlags);

Description

This function can be used to over-ride the control flag setting for the specified cluster (it can be used for any
cluster). If required, this function can be called immediately after the relevant endpoint registration function (for
example, for a Light Sensor device, eHA_RegisterLightSensorEndPoint()) or at any subsequent point in the
application.

In particular, this function can be used by the application to change the default security level for a cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint on which the control flag is to be over-ridden
• u16ClusterId: Identifier of the cluster to have control flag over-ridden (see the macros section in the cluster

header file):
• bIsServerClusterInstance: Type of cluster instance:

– TRUE: Cluster server
– FALSE: Cluster client

• u8ClusterControlFlags: Value to be written to control flag, one of:
– E_ZCL_SECURITY_NETWORK
– E_ZCL_SECURITY_APPLINK

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_PARAMETER_NULL
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
60 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

5.2.18 eZCL_SetSupportedSecurity

teZCL_Status eZCL_SetSupportedSecurity(
 teZCL_ZCLSendSecurity eSecuritySupported);

Description

This function can be used to set the security level for future transmissions from the local device. The possible
levels are:

• Application-level security, which uses an application link key that is unique to the pair of nodes in
communication

• Network-level security, which uses a network key that is shared by the whole network

By default, application-level security is enabled. In practice, this function can be used to disable application-level
security on the local device so that the device sends all future communications with only network-level security.
This is useful when transmitted packets need to be easily accessed. For example, it can be used during over-air
tests performed using a packet sniffer.

Parameters

• eSecuritySupportedRequired level of security, one of:
– E_ZCL_SECURITY_NETWORK - network-level security
– E_ZCL_SECURITY_APPLINK - application-level security

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_RANGE

5.3 Command Discovery Functions
The following functions are provided in the ZCL for performing command discovery:

• eZCL_SendDiscoverCommandReceivedRequest
• eZCL_SendDiscoverCommandGeneratedRequest

Note: In order to use these functions, Command Discovery must be enabled in the compile-time options. For
more details, refer to the introduction to Command Discovery in Section 2.9.

5.3.1 eZCL_SendDiscoverCommandReceivedRequest

teZCL_Status eZCL_SendDiscoverCommandReceivedRequest(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 uint16 u16ClusterId,
 bool_t bDirectionIsServerToClient,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8CommandId,
 bool_t bIsManufacturerSpecific,
 uint16 u16ManufacturerCode,
 uint8 u8MaximumNumberOfCommands);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
61 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a request to initiate a command discovery on a remote cluster instance to obtain a list of
commands that can be received by the cluster instance.

Commands are represented by their Command IDs and the first Command ID from which the discovery is to
start must be specified. The maximum number of commands to be reported must also be specified. This allows
the function can be called multiple times to discover the commands in stages (see below).

The function also allows commands to be searched for that are associated with a particular manufacturer code.
Alternatively, the manufacturer code can be searched for, along with the commands.

The target cluster returns a response containing the requested information. On receiving this response, the
following events are generated on the local device:

• E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_RECEIVED_RESPONSE: This event is generated for
each individual command reported in the response. The reported information is contained in a structure of the
type tsZCL_CommandDiscoveryIndividualResponse (see Section 6.1.17).

• E_ZCL_CBET_DISCOVER_COMMAND_RECEIVED_RESPONSE: This event is generated after all the
above individual events, in order to indicate the end of these events. The reported information is contained in
a structure of the type tsZCL_CommandDiscoveryResponse (see Section 6.1.18).

The tsZCL_CommandDiscoveryResponse structure in the last event contains a flag which indicates whether
there are still commands to be discovered. If this is the case, the function can be called again with a new
starting point (first Command ID).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Command discovery is described in Section 2.9.

Parameters

• u8SourceEndPointId Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint (hosting the target cluster instance) to which the

request is sent
• u16ClusterId: Identifier of the cluster for which a command discovery is requested
• bDirectionIsServerToClient: Boolean indicating the type of request in terms of source and target clusters:
• TRUE - server sending request to client
• FALSE - client sending request to server
• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to

which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of

the request
• u8CommandId: Command ID which is the starting point for the command discovery
• bIsManufacturerSpecific: Boolean indicating whether a manufacturer code is specified in the parameter

u16ManufacturerCode below:
– TRUE - u16ManufacturerCode is used
– FALSE - u16ManufacturerCode is not used

• u16ManufacturerCode: A manufacturer-specific code (depends on the setting of bIsManufacturerSpecific
above). 0xFFFF is a wildcard value indicating that the manufacturer code should be discovered along with the
commands

• u8MaximumNumberOfCommands: Maximum number of commands to be discovered

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
62 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_PARAMETER_NULL

5.3.2 eZCL_SendDiscoverCommandGeneratedRequest

teZCL_Status eZCL_SendDiscoverCommandGeneratedRequest(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 uint16 u16ClusterId,
 bool_t bDirectionIsServerToClient,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8CommandId,
 bool_t bIsManufacturerSpecific,
 uint16 u16ManufacturerCode,
 uint8 u8MaximumNumberOfCommands);

Description

This function sends a request to initiate a command discovery on a remote cluster instance to obtain a list of
commands that can be generated by the cluster instance.

Commands are represented by their Command IDs and the first Command ID from which the discovery is to
start must be specified. The maximum number of commands to be reported must also be specified. This allows
the function can be called multiple times to discover the commands in several stages.

The function also allows commands to be searched for that are associated with a particular manufacturer code.
Alternatively, the manufacturer code can be searched for, along with the commands.

The target cluster returns a response containing the requested information. On receiving this response, the
following events are generated on the local device:

• E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_GENERATED_RESPONSE: This event is generated
for each individual command reported in the response. The reported information is contained in a structure of
the type tsZCL_CommandDiscoveryIndividualResponse (see Section 6.1.17).

• E_ZCL_CBET_DISCOVER_COMMAND_GENERATED_RESPONSE: This event is generated after all the
above individual events, in order to indicate the end of these events. The reported information is contained in
a structure of the type tsZCL_CommandDiscoveryResponse (see Section 6.1.18).

The tsZCL_CommandDiscoveryResponse structure in the last event contains a flag which indicates whether
there are still commands to be discovered. If this is the case, the function can be called again with a new
starting point (first Command ID).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Command discovery is described in Section 2.9.

Parameters

• u8SourceEndPointId : Number of the local endpoint through which the request is sent

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
63 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8DestinationEndPointId: Number of the remote endpoint (hosting the target cluster instance) to which the
request is sent

• u16ClusterId: Identifier of the cluster for which a command discovery is requested
• bDirectionIsServerToClient: Boolean indicating the type of request in terms of source and target clusters:

– TRUE - server sending request to client
– FALSE - client sending request to server

• psDestinationAddress: Pointer to a structure (see Section 6.1.4) containing the address of the remote node to
which the request is sent

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

• u8CommandId: Command ID which is the starting point for the command discovery
• bIsManufacturerSpecific: Boolean indicating whether a manufacturer code is specified in the parameter

u16ManufacturerCode below:
– TRUE - u16ManufacturerCode is used
– FALSE - u16ManufacturerCode is not used

• u16ManufacturerCode: A manufacturer-specific code (depends on the setting of bIsManufacturerSpecific
above). 0xFFFF is a wildcard value indicating that the manufacturer code should be discovered along with the
commands

• u8MaximumNumberOfCommands: Maximum number of commands to be discovered

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTES_0
• E_ZCL_ERR_ZBUFFER_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
64 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

6 ZCL Structures

This chapter details the structures that are not specific to any particular ZCL cluster.

Note: Cluster-specific structures are detailed in the chapters for the respective clusters.

6.1 General Structures

6.1.1 tsZCL_EndPointDefinition

This structure defines the endpoint for an application:

struct tsZCL_EndPointDefinition
{
 uint8 u8EndPointNumber;
 uint16 u16ManufacturerCode;
 uint16 u16ProfileEnum;
 bool_t bIsManufacturerSpecificProfile;
 uint16 u16NumberOfClusters;
 tsZCL_ClusterInstance *psClusterInstance;
 bool_t bDisableDefaultResponse;
 tfpZCL_ZCLCallBackFunction pCallBackFunctions;
};

Where:

• u8EndPointNumber is the endpoint number between 1 and 240 (0 is reserved)
• u16ManufacturerCode is the manufacturer code (only valid when bIsManufacturerSpecificProfile

is set to TRUE)
• u16ProfileEnum is the ZigBee application profile ID
• bIsManufacturerSpecificProfile indicates whether the application profile is proprietary (TRUE) or

from the ZigBee Alliance (FALSE)
• u16NumberOfClusters is the number of clusters on the endpoint
• psClusterInstance is a pointer to an array of cluster instance structures
• bDisableDefaultResponse can be used to disable the requirement for default responses to be returned

for commands sent from the endpoint (TRUE=disable, FALSE=enable)
• pCallBackFunctions is a pointer to the callback functions for the endpoint

6.1.2 tsZCL_ClusterDefinition

This structure defines a cluster used on a device:

typedef struct
{
 uint16 u16ClusterEnum;
 bool_t bIsManufacturerSpecificCluster;
 uint8 u8ClusterControlFlags;
 uint16 u16NumberOfAttributes;
 tsZCL_AttributeDefinition *psAttributeDefinition;
 tsZCL_SceneExtensionTable *psSceneExtensionTable;
#ifdef ZCL_COMMAND_DISCOVERY_SUPPORTED
 uint8 u8NumberOfCommands;
 tsZCL_CommandDefinition *psCommandDefinition;
#endif
} tsZCL_ClusterDefinition;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
65 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Where:

• u16ClusterEnum is the Cluster ID.
• bIsManufacturerSpecificCluster indicates whether the cluster is specific to a manufacturer

(proprietary):
– TRUE - proprietary cluster
– FALSE - ZigBee cluster

u8ClusterControlFlags is a bitmap containing control bits in two parts, as follows:

Bits Description Values

0 - 3 Type of security Indicates the type of security key used via one of the following teZCL_ZCLSend
Security enumerations (see Section 7.1.6):
• E_ZCL_SECURITY_NETWORK
• E_ZCL_SECURITY_APPLINK
• E_ZCL_SECURITY_TEMP_APPLINK

(this option is for internal use only)

4 - 7 Cluster mirror Used internally to indicate whether the cluster is mirrored,
as follows:
• 0000b - Not mirrored
• 1000b - Mirrored
All other values are reserved

Table 17. u8ClusterControlFlags bitmap

• u16NumberOfAttributes indicates the number of attributes in the cluster.
• psAttributeDefinition is a pointer to an array of attribute definition structures - see Section 6.1.3.
• psSceneExtensionTable is a pointer to a structure containing a Scene Extension table - see Section

6.1.20.
• The following optional pair of fields are related to the Command Discovery feature (see Section 2.9):

– u8NumberOfCommands is the number of supported commands in the Command Definition table (see
below).

– psCommandDefinition is a pointer to a Command Definition table which contains a list of the commands
supported by the cluster - each entry of the table contains the details of a supported command in a
tsZCL_CommandDefinition structure (see Section 6.1.19).

6.1.3 tsZCL_AttributeDefinition

This structure defines an attribute used in a cluster:

struct tsZCL_AttributeDefinition
{
 uint16 u16AttributeEnum;
 uint8 u8AttributeFlags;
 teZCL_ZCLAttributeType eAttributeDataType;
 uint16 u16OffsetFromStructBase;
 uint16 u16AttributeArrayLength;
};

Where:

• u16AttributeEnum is the Attribute ID.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
66 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8AttributeFlags is a 5-bit bitmap indicating the accessibility of the attribute (for details of the access
types, refer to Section 2.3.1) - a bit is set to ‘1’ if the corresponding access type is supported, as follows:

Bit Access Type

0 Read

1 Write

2 Reportable

3 Scene

4 Global

5-7 Reserved

Table 18. u8AttributeFlags bitmap

• eAttributeDataType is the data type of the attribute - see Section 7.1.3.
• u16OffsetFromStructBase is the offset of the attribute’s location from the start of the cluster.
• u16AttributeArrayLength is the number of consecutive attributes of the same type.

6.1.4 tsZCL_Address

This structure is used to specify the addressing mode and address for a communication with a remote node:

typedef struct PACK
{
 teZCL_AddressMode eAddressMode;
 union {
 zuint16 u16GroupAddress;
 zuint16 u16DestinationAddress;
 zuint64 u64DestinationAddress;
 teAplAfBroadcastMode eBroadcastMode;
 } uAddress;
} tsZCL_Address;

Where:

• eAddressMode is the addressing mode to be used (see Section 7.1.1).
• uAddress is a union containing the necessary address information (only one of the following must be set,

depending on the addressing mode selected):
– u16GroupAddress is the 16-bit group address for the target nodes.
– u16DestinationAddress is the 16-bit network address of the target.
– u64DestinationAddress is the 64-bit IEEE/MAC address of the target.
– eBroadcastMode is the required broadcast mode (see Section 7.1.2).

6.1.5 tsZCL_AttributeReportingConfigurationRecord

This structure contains the configuration record for automatic reporting of an attribute.

typedef struct
{
 uint8 u8DirectionIsReceived;
 teZCL_ZCLAttributeType eAttributeDataType;
 uint16 u16AttributeEnum;
 uint16 u16MinimumReportingInterval;
 uint16 u16MaximumReportingInterval;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
67 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint16 u16TimeoutPeriodField;
 tuZCL_AttributeReportable uAttributeReportableChange;
} tsZCL_AttributeReportingConfigurationRecord;

Where:

• u8DirectionIsReceived indicates whether the record configures how attribute reports can be received or
sent:
– 0x00: Configures how attribute reports are sent by the server - the following fields are included in the

message payload:
eAttributeDataType, u16MinimumReportingInterval, u16MaximumReportingInterval,
uAttributeReportableChange

– 0x01: Configures how attribute reports are received by the client - u16TimeoutPeriodField is included
in the message payload.

• eAttributeDataType indicates the data type of the attribute.
• u16AttributeEnum is the identifier of the attribute to which the configuration record relates.
• u16MinimumReportingInterval is the minimum time-interval, in seconds, between consecutive reports

for the attribute - the value 0x0000 indicates no minimum (REPORTING_MINIMUM_LIMIT_NONE).
• u16MaximumReportingInterval is the time-interval, in seconds, between consecutive reports for periodic

reporting - the following special values can also be set:
– 0x0000 indicates that periodic reporting is to be disabled for the attribute (REPORTING_MAXIMUM_

PERIODIC_TURNED_OFF).
– 0xFFFF indicates that automatic reporting is to be completely disabled for the attribute

(REPORTING_MAXIMUM_TURNED_OFF).
• u16TimeoutPeriodField is the timeout value, in seconds, for an attribute report - if the time elapsed

since the last report exceeds this value (without receiving another report), it may be assumed that there is a
problem with the attribute reporting - the value 0x0000 indicates that no timeout will be applied (REPORTS_
OF_ATTRIBUTE_NOT_SUBJECT_TO_TIMEOUT).

• uAttributeReportableChange is the minimum change in the attribute value that causes an attribute
report to be issued.

Note: For successful attribute reporting, the timeout on the receiving client must be set to a higher value than
the maximum reporting interval for the attribute on the sending server.

6.1.6 tsZCL_AttributeReportingConfigurationResponse

This structure contains information from a ‘configure reporting’ response.

typedef struct
{
 teZCL_CommandStatus eCommandStatus;
 tsZCL_AttributeReportingConfigurationRecord
 sAttributeReportingConfigurationRecord;
}tsZCL_AttributeReportingConfigurationResponse;

Where:

• eCommandStatus is an enumeration representing the status from the response (see Section 7.1.4).
• sAttributeReportingConfigurationRecord is a configuration record structure (see Section 6.1.5), but

only the fields u16AttributeEnum and u8DirectionIsReceived are used in the response.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
68 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

6.1.7 tsZCL_AttributeReadReportingConfigurationRecord

This structure contains the details of a reporting configuration query for one attribute, to be included in a ‘read
reporting configuration’ command:

typedef struct
{
 uint8 u8DirectionIsReceived;
 uint16 u16AttributeEnum;
} tsZCL_AttributeReadReportingConfigurationRecord;

Where:

• u8DirectionIsReceived specifies whether the required reporting configuration information details how the
attribute reports are received or sent.
– 0x00: Specifies that required information details how a report is sent by the server.
– 0x01: Specifies that required information details how a report is received by the client.

• u16AttributeEnum is the identifier of the attribute to which the required reporting configuration information
relates.

6.1.8 tsZCL_IndividualAttributesResponse

This structure is contained in a ZCL event of type E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RE
SPONSE (see Section):

typedef struct PACK {
 uint16 u16AttributeEnum;
 teZCL_ZCLAttributeType eAttributeDataType;
 teZCL_CommandStatus eAttributeStatus;
 void *pvAttributeData;
} tsZCL_IndividualAttributesResponse;

Where:

• u16AttributeEnum identifies the attribute that has been read (the relevant enumerations are listed in the
‘Enumerations’ section of each cluster-specific chapter).

• eAttributeDataType is the ZCL data type of the read attribute (see Section 7.1.3).
• eAttributeStatus is the status of the read operation (0x00 for success or an error code - see Section

7.1.4 for enumerations).
• pvAttributeData is a pointer to the read attribute data which (if the read was successful) has been

inserted by the ZCL into the shared device structure.

The above structure is contained in the tsZCL_CallBackEvent event structure, detailed in Section 6.2, when
the field eEventType is set to E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE.

6.1.9 tsZCL_DefaultResponse

This structure is contained in a ZCL event of type E_ZCL_CBET_DEFAULT_RESPONSE (see Section):

 typedef struct PACK {
 uint8 u8CommandId;
 uint8 u8StatusCode;
} tsZCL_DefaultResponse;

Where:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
69 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8CommandId is the ZCL identifier of the command that triggered the default response message
• u8StatusCode is the status code from the default response message (0x00 for OK or an error code defined

in the ZCL Specification - see Section 4.2)

The above structure is contained in the tsZCL_CallBackEvent event structure, detailed in Section 6.2, when
the field eEventType is set to E_ZCL_CBET_DEFAULT_RESPONSE.

6.1.10 tsZCL_AttributeDiscoveryResponse

This structure contains details of an attribute reported in a ‘discover attributes’ response. It is contained in a ZCL
event of type E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_RESPONSE.

typedef struct
{
 bool_t bDiscoveryComplete;
 uint16 u16AttributeEnum;
 teZCL_ZCLAttributeType eAttributeDataType;
} tsZCL_AttributeDiscoveryResponse;

where:

• bDiscoveryComplete indicates whether this is the final attribute from a ‘discover attributes’ to be reported:
– TRUE - final attribute
– FALSE - not final attribute

• u16AttributeEnum is the identifier of the attribute being reported
• eAttributeDataType indicates the data type of the attribute being reported (see Section 7.1.3)

The above structure is contained in the tsZCL_CallBackEvent event structure, detailed in Section 6.2, when
the field eEventType is set to E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_RESPONSE.

6.1.11 tsZCL_AttributeDiscoveryExtendedResponse

This structure contains details of an attribute reported in a ‘discover attributes extended’ response. It is
contained in a ZCL event of type E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_EXTENDED_
RESPONSE.

typedef struct
{
 bool_t bDiscoveryComplete;
 uint16 u16AttributeEnum;
 teZCL_ZCLAttributeType eAttributeDataType;
 uint8 u8AttributeFlags;
}tsZCL_AttributeDiscoveryExtendedResponse;

where:

• bDiscoveryComplete indicates whether this is the final attribute from a ‘discover attributes’ to be reported:
– TRUE - final attribute
– FALSE - not final attribute

• u16AttributeEnum is the identifier of the attribute being reported
• eAttributeDataType indicates the data type of the attribute being reported (see Section 7.1.3)
• u8AttributeFlags is a 5-bit bitmap indicating the accessibility of the reported attribute (for details of the

access types, refer to Section 2.3.1) - a bit is set to ‘1’ if the corresponding access type is supported, as
follows:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
70 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bit Access Type

0 Read

1 Write

2 Reportable

3 Scene

4 Global

5-7 Reserved

The above structure is contained in the tsZCL_CallBackEvent event structure, detailed in Section 6.2,
when the field eEventType is set to E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_EXTENDED_
RESPONSE.

6.1.12 tsZCL_ReportAttributeMirror

This structure contains information relating to a report attribute command:

typedef struct
{
 uint8 u8DestinationEndPoint;
 uint16 u16ClusterId;
 uint64 u64RemoteIeeeAddress;
 teZCL_ReportAttributeStatus eStatus;
}tsZCL_ReportAttributeMirror;

where:

• u8DestinationEndPoint is the number of target endpoint for the attribute report (this is the endpoint on
which the mirror for the device resides)

• u16ClusterId is the ID of the cluster for which information is to be mirrored
• u64RemoteIeeeAddress is the IEEE/MAC address of the target device for the attribute report (which

contains the mirror for the device)
• eStatus indicates the status of the attribute report (see Section 7.1.5)

6.1.13 tsZCL_OctetString

This structure contains information on a ZCL octet (byte) string. This string is of the format:

Octet Count, N
(1 octet)

Data
(N octets)

Table 19. tsZCL_OctetString string

which contains N+1 octets, where the leading octet indicates the number of octets (N) of data in the remainder
of the string (valid values are from 0x00 to 0xFE).

The tsZCL_OctetString structure incorporates this information as follows:

typedef struct
{
 uint8 u8MaxLength;
 uint8 u8Length;
 uint8 *pu8Data;
} tsZCL_OctetString;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
71 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Where:

• u8MaxLength is the maximum number of data octets in an octet string
• u8Length is the actual number of data octets (N) in this octet string
• pu8Data is a pointer to the first data octet of this string

Note that there is also a tsZCL_LongOctetString structure in which the octet count (N) is represented by
two octets, thus allowing double the number of data octets.

6.1.14 tsZCL_CharacterString

This structure contains information on a ZCL character string. This string is of the format:

Character Data Length, L
(1 byte)

Character Data
(L bytes)

Table 20. tsZCL_CharacterString format

which contains L+1 bytes, where the leading byte indicates the number of bytes (L) of character data in the
remainder of the string (valid values are from 0x00 to 0xFE). This value represents the number of characters
in the string only if the character set used encodes each character using one byte (this is the case for ISO 646
ASCII but not in all character sets, for example, UTF8).

The tsZCL_CharacterString structure incorporates this information as follows:

typedef struct
{
 uint8 u8MaxLength;
 uint8 u8Length;
 uint8 *pu8Data;
} tsZCL_CharacterString;

where:

• u8MaxLength is the maximum number of character data bytes
• u8Length is the actual number of character data bytes (L) in this string
• pu8Data is a pointer to the first character data byte of this string

The string is not null-terminated and may therefore contain null characters mid-string.

Note that there is also a sZCL_LongCharacterString structure in which the character data length (L) is
represented by two bytes, thus allowing double the number of characters.

6.1.15 tsZCL_ClusterCustomMessage

This structure contains a cluster custom message:

typedef struct {
 uint16 u16ClusterId;
 void *pvCustomData;
} tsZCL_ClusterCustomMessage;

Where:

• u16ClusterId is the Cluster ID.
• pvCustomData is a pointer to the start of the data contained in the message.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
72 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

6.1.16 tsZCL_ClusterInstance

This structure contains information about an instance of a cluster on a device:

struct tsZCL_ClusterInstance
{
 bool_t bIsServer;
 tsZCL_ClusterDefinition *psClusterDefinition;
 void *pvEndPointSharedStructPtr;
 uint8 *pu8AttributeControlBits;
 void *pvEndPointCustomStructPtr;
 tfpZCL_ZCLCustomcallCallBackFunction
 pCustomcallCallBackFunction;
};

where:

• bIsServer indicates whether the cluster instance is a server or client:
– TRUE - server
– FALSE - client

• psClusterDefinition is a pointer to the cluster definition structure - see Section 6.1.2
• pvEndPointSharedStructPtr is a pointer to the shared device structure that contains the cluster’s

attributes
• pu8AttributeControlBits is a pointer to an array of bitmaps, one for each attribute in the relevant

cluster - for internal cluster definition use only, array should be initialized to 0
• pvEndPointCustomStructPtr is a pointer to any custom data (only relevant to a user-defined cluster)
• pCustomcallCallBackFunction is a pointer to a custom callback function (only relevant to a user-defined

cluster)

6.1.17 tsZCL_CommandDiscoveryIndividualResponse

This structure contains information about an individual command reported in a Command Discovery response
(see Section 2.9).

typedef struct
{
 uint8 u8CommandEnum;
 uint8 u8CommandIndex;
} tsZCL_CommandDiscoveryIndividualResponse;

where:

• u8CommandEnum is the Command ID of the reported command
• u8CommandIndex is the index of the reported command in the response payload

The above structure is contained in the tsZCL_CallBackEvent event structure, detailed in Section 6.2,
when the field eEventType is set to E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_RECEIVED_
RESPONSE or E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_GENERATED_RESPONSE.

6.1.18 tsZCL_CommandDiscoveryResponse

This structure contains information about a Command Discovery response (see Section 2.9).

typedef struct
{
 bool_t bDiscoveryComplete;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
73 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8NumberOfCommands;
} tsZCL_CommandDiscoveryResponse;

Where:

• bDiscoveryComplete is a Boolean flag which indicates whether the Command Discovery is complete, i.e.
whether there are any commands remaining to be discovered:
– TRUE - all commands have been discovered
– FALSE - there are further commands to be discovered

• u8NumberOfCommands is the number of discovered commands reported in the response (the individual
commands are reported in a structure of the type tsZCL_CommandDiscoveryIndividualResponse - see
Section 6.1.17)

The above structure is contained in the tsZCL_CallBackEvent event structure, detailed in Section 6.2, when
the field eEventType is set to E_ZCL_CBET_DISCOVER_COMMAND_RECEIVED_RESPONSE or E_ZCL_
CBET_DISCOVER_COMMAND_GENERATED_RESPONSE.

6.1.19 tsZCL_CommandDefinition

This structure contains the details of a command which is supported by the cluster (and can be reported in
Command Discovery).

struct tsZCL_CommandDefinition
{
 uint8 u8CommandEnum;
 uint8 u8CommandFlags;
};

Where:

• u8CommandEnum is the Command ID within the cluster
• u8CommandFlags is a bitmap containing a set of control flags, as follows:

Bits Enumeration Description

0 E_ZCL_CF_RX Command is generated by the client and received by the server

1 E_ZCL_CF_TX Command is generated by the server and received by the client

2 - Reserved

3 E_ZCL_CF_MS Command is manufacturer-specific

4 - 7 - Reserved

6.1.20 tsZCL_SceneExtensionTable

This structure contains a Scenes Extension table.

typedef struct
{
 tfpZCL_SceneEventHandler pSceneEventHandler;
 uint16 u16NumberOfAttributes;
 uint16 au16Attributes[];
} tsZCL_SceneExtensionTable;

Where:

• pSceneEventHandler is a pointer a Scenes event handler function

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
74 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16NumberOfAttributes is the number of attributes in the Scene extension
• au16Attributes is an array of the attribute IDs of the attributes in the Scene extension

6.1.21 tsZCL_WriteAttributeRecord

The is structure contains the details for a ‘write attribute’ operation.

typedef struct
{
 teZCL_ZCLAttributeType eAttributeDataType;
 uint16 u16AttributeEnum;
 uint8 *pu8AttributeData;
}tsZCL_WriteAttributeRecord;

Where:

• eAttributeDataType is an enumeration indicating the attribute data type (for the enumerations, refer to
Section 7.1.3).

• u16AttributeEnum is an enumeration for the attribute identifier (for the relevant ‘Attribute ID’ enumerations,
refer to the ‘Enumerations’ section of each cluster-specific chapter).

• pu8AttributeData is a pointer to the attribute data to be written.

6.2 Event Structure (tsZCL_CallBackEvent)
A ZCL event must be wrapped in the following tsZCL_CallBackEvent structure before being passed into the
function vZCL_EventHandler():

typedef struct
 {
teZCL_CallBackEventType eEventType;
uint8 u8TransactionSequenceNumber;
uint8 u8EndPoint;
teZCL_Status eZCL_Status;
union {
tsZCL_IndividualAttributesResponse sIndividualAttributeResponse;
tsZCL_DefaultResponse sDefaultResponse;
tsZCL_TimerMessage sTimerMessage;
tsZCL_ClusterCustomMessage sClusterCustomMessage;
tsZCL_AttributeReportingConfigurationRecord
 sAttributeReportingConfigurationRecord;
tsZCL_AttributeReportingConfigurationResponse

 sAttributeReportingConfigurationResponse;
tsZCL_AttributeDiscoveryResponse sAttributeDiscoveryResponse;
tsZCL_AttributeStatusRecord sReportingConfigurationResponse;
tsZCL_ReportAttributeMirror sReportAttributeMirror;
uint32 u32TimerPeriodMs;
tsZCL_CommandDiscoveryIndividualResponse

 sCommandsReceivedDiscoveryIndividualResponse;
tsZCL_CommandDiscoveryResponse sCommandsReceivedDiscoveryResponse;
tsZCL_CommandDiscoveryIndividualResponse

 sCommandsGeneratedDiscoveryIndividualResponse;
tsZCL_CommandDiscoveryResponse sCommandsGeneratedDiscoveryResponse;
tsZCL_AttributeDiscoveryExtendedResponse
 sAttributeDiscoveryExtenedResponse;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
75 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 }uMessage ;
 ZPS_tsAfEvent *pZPSevent;
 tsZCL_ClusterInstance *psClusterInstance;
} tsZCL_CallBackEvent;

where

• eEventType: specifies the type of event generated - see Section 7.3.
• u8TransactionSequenceNumber is the Transaction Sequence Number (TSN) of the incoming ZCL

message (if any) which triggered the ZCL event.
• u8EndPoint is the endpoint on which the ZCL message (if any) was received.
• eZCL_Status is the status of the operation that the event reports - see Section 7.2
• uMessage is a union containing information that is only valid for specific events:

– sIndividualAttributeResponse contains the response to a ‘read attributes’ or ‘write attributes’
request - see Section 6.1.8.

– sDefaultResponse contains the response to a request (other than a read request) - see Section 6.1.9.
– sTimerMessage contains the details of a timer event - this feature is included for future use.
– sClusterCustomMessage contains details of a cluster custom command - see Section 6.1.15
– sAttributeReportingConfigurationRecord contains the attribute reporting configuration data from

the ‘configure reporting’ request for an attribute - see Section 6.1.5.
– sAttributeReportingConfigurationResponse is reserved for future use.
– sAttributeDiscoveryResponse contains the details of an attribute reported in a ‘discover attributes’

response - see Section 6.1.10.
– sReportingConfigurationResponse is reserved for future use.
– sReportAttributeMirror contains information on the device from which a ZCL ‘report attribute’

command has been received.
– u32TimerPeriodMs contains the timed period of the millisecond timer which is enabled by the application

when the event E_ZCL_CBET_ENABLE_MS_TIMER occurs.
– sCommandsReceivedDiscoveryIndividualResponse contains information about an individual

command (that can be received) reported in a Command Discovery response - see Section 6.1.17.
– sCommandsReceivedDiscoveryResponse contains information about a Command Discovery response

which reports commands that can be received - see Section 6.1.18.
– sCommandsGeneratedDiscoveryIndividualResponse contains information about an individual

command (that can be generated) reported in a Command Discovery response - see Section 6.1.17.
– sCommandsGeneratedDiscoveryResponse contains information about a Command Discovery response

which reports commands that can be generated - see Section 6.1.18.
– sAttributeDiscoveryExtenedResponse contains information from a Discover Attributes Extended

response - see Section 6.1.11.

The remaining fields are common to more than one event type but are not valid for all events:

• pZPSevent is a pointer to the stack event (if any) that caused the ZCL event.
• psClusterInstance is a pointer to the cluster instance structure that holds the information relating to the

cluster being accessed.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
76 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

7 Enumerations and Status Codes

This chapter details the enumerations and status codes provided in the NXP implementation of the ZCL or
provided in the ZigBee PRO APIs and used by the ZCL.

7.1 General Enumerations

7.1.1 Addressing Modes (teZCL_AddressMode)

The following enumerations are used to specify the addressing mode to be used in a communication with a
remote node:

typedef enum
{
 E_ZCL_AM_BOUND,
 E_ZCL_AM_GROUP,
 E_ZCL_AM_SHORT,
 E_ZCL_AM_IEEE,
 E_ZCL_AM_BROADCAST,
 E_ZCL_AM_NO_TRANSMIT,
 E_ZCL_AM_BOUND_NO_ACK,
 E_ZCL_AM_SHORT_NO_ACK,
 E_ZCL_AM_IEEE_NO_ACK,
 E_ZCL_AM_BOUND_NON_BLOCKING,
 E_ZCL_AM_BOUND_NON_BLOCKING_NO_ACK,
 E_ZCL_AM_ENUM_END, /* enum End */
} teZCL_AddressMode;

The above enumerations are described in the table below.

Enumeration Description

E_ZCL_AM_BOUND Use one or more bound nodes/endpoints, with acknowledgments

E_ZCL_AM_GROUP Use a pre-defined group address, with acknowledgments

E_ZCL_AM_SHORT Use a 16-bit network address, with acknowledgments

E_ZCL_AM_IEEE Use a 64-bit IEEE/MAC address, with acknowledgments

E_ZCL_AM_BROADCAST Perform a broadcast (see Section 7.1.2)

E_ZCL_AM_NO_TRANSMIT Do not transmit

E_ZCL_AM_BOUND_NO_ACK Perform a bound transmission, with no acknowledgments

E_ZCL_AM_SHORT_NO_ACK Perform a transmission using a 16-bit network address, with no
acknowledgments

E_ZCL_AM_IEEE_NO_ACK Perform a transmission using a 64-bit IEEE/MAC address, with no
acknowledgments

E_ZCL_AM_BOUND_NON_BLOCKING Perform a non-blocking bound transmission, with acknowledgments

E_ZCL_AM_BOUND_NON_BLOCKING_NO_
ACK

Perform a non-blocking bound transmission, with no acknowledgments

Table 21. Addressing Mode Enumerations

The required addressing mode is specified in the structure tsZCL_Address (see Section 6.1.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
77 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

7.1.2 Broadcast Modes (ZPS_teAplAfBroadcastMode)

The following enumerations are used to specify the type of broadcast (when the addressing mode for a
communication has been set to E_ZCL_AM_BROADCAST (see Section 7.1.1)):

typedef enum
{
 ZPS_E_APL_AF_BROADCAST_ALL,
 ZPS_E_APL_AF_BROADCAST_RX_ON,
 ZPS_E_APL_AF_BROADCAST_ZC_ZR
} ZPS_teAplAfBroadcastMode;

The above enumerations are described in the table below.

Enumeration Description

ZPS_E_APL_AF_BROADCAST_
ALL

All End Devices

ZPS_E_APL_AF_BROADCAST_
RX_ON

Nodes on which the radio receiver remains enabled when the node is idle (e.g.
sleeping)

ZPS_E_APL_AF_BROADCAST_
ZC_ZR

Only the Coordinator and Routers

Table 22. Broadcast Mode Enumerations

The required broadcast mode is specified in the structure tsZCL_Address (see Section 6.1.4).

7.1.3 Attribute Types (teZCL_ZCLAttributeType)

The following enumerations are used to represent the attribute types in the/ZCL clusters:

typedef enum
{
 /* Null */
 E_ZCL_NULL = 0x00,
 /* General Data */
 E_ZCL_GINT8 = 0x08, // General 8 bit - not specified if signed
 E_ZCL_GINT16,
 E_ZCL_GINT24,
 E_ZCL_GINT32,
 E_ZCL_GINT40,
 E_ZCL_GINT48,
 E_ZCL_GINT56,
 E_ZCL_GINT64,
 /* Logical */
 E_ZCL_BOOL = 0x10,
 /* Bitmap */
 E_ZCL_BMAP8 = 0x18, // 8 bit bitmap
 E_ZCL_BMAP16,
 E_ZCL_BMAP24,
 E_ZCL_BMAP32,
 E_ZCL_BMAP40,
 E_ZCL_BMAP48,
 E_ZCL_BMAP56,
 E_ZCL_BMAP64,
 /* Unsigned Integer */
 E_ZCL_UINT8 = 0x20, // Unsigned 8 bit
 E_ZCL_UINT16,
 E_ZCL_UINT24,
 E_ZCL_UINT32,
 E_ZCL_UINT40,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
78 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_ZCL_UINT48,
 E_ZCL_UINT56,
 E_ZCL_UINT64,
 /* Signed Integer */
 E_ZCL_INT8 = 0x28, // Signed 8 bit
 E_ZCL_INT16,
 E_ZCL_INT24,
 E_ZCL_INT32,
 E_ZCL_INT40,
 E_ZCL_INT48,
 E_ZCL_INT56,
 E_ZCL_INT64,
 /* Enumeration */
 E_ZCL_ENUM8 = 0x30, // 8 Bit enumeration
 E_ZCL_ENUM16,
 /* Floating Point */
 E_ZCL_FLOAT_SEMI = 0x38, // Semi precision
 E_ZCL_FLOAT_SINGLE, // Single precision
 E_ZCL_FLOAT_DOUBLE, // Double precision
 /* String */
 E_ZCL_OSTRING = 0x41, // Octet string
 E_ZCL_CSTRING, // Character string
 E_ZCL_LOSTRING, // Long octet string
 E_ZCL_LCSTRING, // Long character string
 /* Ordered Sequence */
 E_ZCL_ARRAY = 0x48,
 E_ZCL_STRUCT = 0x4c,
 E_ZCL_SET = 0x50,
 E_ZCL_BAG = 0x51,
 /* Time */
 E_ZCL_TOD = 0xe0, // Time of day
 E_ZCL_DATE, // Date
 E_ZCL_UTCT, // UTC Time
 /* Identifier */
 E_ZCL_CLUSTER_ID = 0xe8, // Cluster ID
 E_ZCL_ATTRIBUTE_ID, // Attribute ID
 E_ZCL_BACNET_OID, // BACnet OID
 /* Miscellaneous */
 E_ZCL_IEEE_ADDR = 0xf0, // 64 Bit IEEE Address
 E_ZCL_KEY_128, // 128 Bit security key
 /* Unknown */
 E_ZCL_UNKNOWN = 0xff
} teZCL_ZCLAttributeType;

7.1.4 Command Status (teZCL_CommandStatus)

The following enumerations are used to indicate the status of a command:

typedef enum
{
 E_ZCL_CMDS_SUCCESS =0x00,
 E_ZCL_CMDS_FAILURE,
 E_ZCL_CMDS_NOT_AUTHORIZED =0x7e,
 E_ZCL_CMDS_RESERVED_FIELD_NOT_ZERO,
 E_ZCL_CMDS_MALFORMED_COMMAND =0x80,
 E_ZCL_CMDS_UNSUP_CLUSTER_COMMAND,
 E_ZCL_CMDS_UNSUP_GENERAL_COMMAND,
 E_ZCL_CMDS_UNSUP_MANUF_CLUSTER_COMMAND,
 E_ZCL_CMDS_UNSUP_MANUF_GENERAL_COMMAND,
 E_ZCL_CMDS_INVALID_FIELD,
 E_ZCL_CMDS_UNSUPPORTED_ATTRIBUTE,
 E_ZCL_CMDS_INVALID_VALUE,
 E_ZCL_CMDS_READ_ONLY,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
79 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_ZCL_CMDS_INSUFFICIENT_SPACE,
 E_ZCL_CMDS_DUPLICATE_EXISTS,
 E_ZCL_CMDS_NOT_FOUND,
 E_ZCL_CMDS_UNREPORTABLE_ATTRIBUTE,
 E_ZCL_CMDS_INVALID_DATA_TYPE,
 E_ZCL_CMDS_INVALID_SELECTOR,
 E_ZCL_CMDS_WRITE_ONLY,
 E_ZCL_CMDS_INCONSISTENT_STARTUP_STATE,
 E_ZCL_CMDS_DEFINED_OUT_OF_BAND,
 E_ZCL_CMDS_INCONSISTENT,
 E_ZCL_CMDS_ACTION_DENIED,
 E_ZCL_CMDS_TIMEOUT,
 E_ZCL_CMDS_HARDWARE_FAILURE =0xc0,
 E_ZCL_CMDS_SOFTWARE_FAILURE,
 E_ZCL_CMDS_CALIBRATION_ERROR,
 E_ZCL_CMDS_UNSUPPORTED_CLUSTER,
 E_ZCL_CMDS_ENUM_END
} teZCL_CommandStatus;

The above enumerations are described in the table below.

Enumeration Description

E_ZCL_CMDS_SUCCESS Command was successful

E_ZCL_CMDS_FAILURE Command was unsuccessful

E_ZCL_CMDS_NOT_AUTHORIZED Sender does not have authorisation to issue the command

E_ZCL_CMDS_RESERVED_FIELD_
NOT_ZERO

A reserved field of command is not set to zero

E_ZCL_CMDS_MALFORMED_
COMMAND

Command has missing fields or invalid field values

E_ZCL_CMDS_UNSUP_CLUSTER_
COMMAND

The specified cluster has not been registered with the ZCL on the device

E_ZCL_CMDS_UNSUP_GENERAL_
COMMAND

Command does not have a handler enabled in the zcl_options.h file

E_ZCL_CMDS_UNSUP_MANUF_
CLUSTER_COMMAND

Manufacturer-specific cluster command is not sup-ported or has unknown
manufacturer code

E_ZCL_CMDS_UNSUP_MANUF_
GENERAL_COMMAND

Manufacturer-specific ZCL command is not sup-ported or has unknown
manufacturer code

E_ZCL_CMDS_INVALID_FIELD Command has field which contains invalid value

E_ZCL_CMDS_UNSUPPORTED_
ATTRIBUTE

Specified attribute is not supported on the device

E_ZCL_CMDS_INVALID_VALUE Specified attribute value is out of range or a reserved value

E_ZCL_CMDS_READ_ONLY Attempt to write to read-only attribute

E_ZCL_CMDS_INSUFFICIENT_
SPACE

Not enough memory space to perform requested operation

E_ZCL_CMDS_DUPLICATE_EXISTS Attempt made to create a table entry that already exists in the target table

E_ZCL_CMDS_NOT_FOUND Requested information cannot be found

E_ZCL_CMDS_UNREPORTABLE_
ATTRIBUTE

Periodic reports cannot be produced for this attribute

Table 23. Command Status Enumerations

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
80 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_ZCL_CMDS_INVALID_DATA_TYPE Invalid data type specified for attribute

E_ZCL_CMDS_INVALID_SELECTOR Incorrect selector for this attribute

E_ZCL_CMDS_WRITE_ONLY Issuer of command does not have authorisation to read specified attribute

E_ZCL_CMDS_INCONSISTENT_
STARTUP_STATE

Setting the specified values would put device into an inconsistent state on start-
up

E_ZCL_CMDS_DEFINED_OUT_OF_
BAND

Attempt has been made to write to attribute using an out-of-band method or not
over-air

E_ZCL_CMDS_HARDWARE_FAILURE Command was unsuccessful due to hardware failure

E_ZCL_CMDS_SOFTWARE_FAILURE Command was unsuccessful due to software failure

E_ZCL_CMDS_CALIBRATION_
ERROR

Error occurred during calibration

E_ZCL_CMDS_UNSUPPORTED_
CLUSTER

The cluster is not supported

Table 23. Command Status Enumerations...continued

7.1.5 Report Attribute Status (teZCL_ReportAttributeStatus)

The following enumerations are used to indicate the status of a report attribute command.

typedef enum
{
 E_ZCL_ATTR_REPORT_OK = 0x00,
 E_ZCL_ATTR_REPORT_EP_MISMATCH,
 E_ZCL_ATTR_REPORT_ADDR_MISMATCH,
 E_ZCL_ATTR_REPORT_ERR
} teZCL_ReportAttributeStatus;

The above enumerations are described in the table below.

Enumeration Description

E_ZCL_ATTR_REPORT_OK Indicates that report is valid

E_ZCL_ATTR_REPORT_EP_
MISMATCH

Indicates that source endpoint does not match endpoint in mirror

E_ZCL_ATTR_REPORT_ADDR_
MISMATCH

Indicates that source address does not match address in mirror

E_ZCL_ATTR_REPORT_ERR Indicates that there is an error in the report

Table 24. Report Attribute Status Enumerations

7.1.6 Security Level (teZCL_ZCLSendSecurity)

The following enumerations are used to indicate the security level for transmissions:

typedef enum
{
 E_ZCL_SECURITY_NETWORK = 0x00,
 E_ZCL_SECURITY_APPLINK,
 E_ZCL_SECURITY_TEMP_APPLINK,
 E_ZCL_SECURITY_ENUM_END

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
81 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

} teZCL_ZCLSendSecurity;

The above enumerations are described in the table below.

Enumeration Description

E_ZCL_SECURITY_NETWORK Network-level security, using a network key

E_ZCL_SECURITY_APPLINK Application-level security, using an application link key

E_ZCL_SECURITY_TEMP_APPLINK Temporary application-level security. This option is for internal use only. This is
used for situations in which an application link key is to be used temporarily. For
example, it can be used for an individual communication.

Table 25. Security Level Enumerations

7.2 General Return codes (ZCL Status)
The following ZCL status enumerations are returned by many API functions to indicate the outcome of the
function call.

typedef enum
{
 // General
 E_ZCL_SUCCESS = 0x0,
 E_ZCL_FAIL, // 01
 E_ZCL_ERR_PARAMETER_NULL, // 02
 E_ZCL_ERR_PARAMETER_RANGE, // 03
 E_ZCL_ERR_HEAP_FAIL, // 04
 // Specific ZCL status codes
 E_ZCL_ERR_EP_RANGE, // 05
 E_ZCL_ERR_EP_UNKNOWN, // 06
 E_ZCL_ERR_SECURITY_RANGE, // 07
 E_ZCL_ERR_CLUSTER_0, // 08
 E_ZCL_ERR_CLUSTER_NULL, // 09
 E_ZCL_ERR_CLUSTER_NOT_FOUND, // 10
 E_ZCL_ERR_CLUSTER_ID_RANGE, // 11
 E_ZCL_ERR_ATTRIBUTES_NULL, // 12
 E_ZCL_ERR_ATTRIBUTES_0, // 13
 E_ZCL_ERR_ATTRIBUTE_WO, // 14
 E_ZCL_ERR_ATTRIBUTE_RO, // 15
 E_ZCL_ERR_ATTRIBUTES_ACCESS, // 16
 E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED, // 17
 E_ZCL_ERR_ATTRIBUTE_NOT_FOUND, // 18
 E_ZCL_ERR_CALLBACK_NULL, // 19
 E_ZCL_ERR_ZBUFFER_FAIL, // 20
 E_ZCL_ERR_ZTRANSMIT_FAIL, // 21
 E_ZCL_ERR_CLIENT_SERVER_STATUS, // 22
 E_ZCL_ERR_TIMER_RESOURCE, // 23
 E_ZCL_ERR_ATTRIBUTE_IS_CLIENT, // 24
 E_ZCL_ERR_ATTRIBUTE_IS_SERVER, // 25
 E_ZCL_ERR_ATTRIBUTE_RANGE, // 26
 E_ZCL_ERR_ATTRIBUTE_MISMATCH, // 27
 E_ZCL_ERR_KEY_ESTABLISHMENT_MORE_THAN_ONE_CLUSTER, //28
 E_ZCL_ERR_INSUFFICIENT_SPACE, // 29
 E_ZCL_ERR_NO_REPORTABLE_CHANGE, // 30
 E_ZCL_ERR_NO_REPORT_ENTRIES, // 31
 E_ZCL_ERR_ATTRIBUTE_NOT_REPORTABLE, //32
 E_ZCL_ERR_ATTRIBUTE_ID_ORDER, // 33
 E_ZCL_ERR_MALFORMED_MESSAGE, // 34
 E_ZCL_ERR_MANUFACTURER_SPECIFIC, // 35

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
82 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_ZCL_ERR_PROFILE_ID, // 36
 E_ZCL_ERR_INVALID_VALUE, // 37
 E_ZCL_ERR_CERT_NOT_FOUND, // 38
 E_ZCL_ERR_CUSTOM_DATA_NULL, // 39
 E_ZCL_ERR_TIME_NOT_SYNCHRONISED, // 40
 E_ZCL_ERR_SIGNATURE_VERIFY_FAILED, //41
 E_ZCL_ERR_ZRECEIVE_FAIL, // 42
 E_ZCL_ERR_KEY_ESTABLISHMENT_END_POINT_NOT_FOUND, // 43
 E_ZCL_ERR_KEY_ESTABLISHMENT_CLUSTER_ENTRY_NOT_FOUND, // 44
 E_ZCL_ERR_KEY_ESTABLISHMENT_CALLBACK_ERROR, // 45
 E_ZCL_ERR_SECURITY_INSUFFICIENT_FOR_CLUSTER, // 46
 E_ZCL_ERR_CUSTOM_COMMAND_HANDLER_NULL_OR_RETURNED_ERROR, // 47
 E_ZCL_ERR_INVALID_IMAGE_SIZE, // 48
 E_ZCL_ERR_INVALID_IMAGE_VERSION, // 49
 E_ZCL_READ_ATTR_REQ_NOT_FINISHED, // 50
 E_ZCL_DENY_ATTRIBUTE_ACCESS, // 51
 E_ZCL_ERR_SECURITY_FAIL, // 52
 E_ZCL_ERR_CLUSTER_COMMAND_NOT_FOUND,
 E_ZCL_ERR_ENUM_END
} teZCL_Status;

Enumeration Description

E_ZCL_SUCCESS Function call was successful in its purpose

E_ZCL_FAIL Function call failed in its purpose and no other error code is appropriate

E_ZCL_ERR_PARAMETER_NULL Specified parameter pointer was null

E_ZCL_ERR_PARAMETER_RANGE A parameter value was out-of-range

E_ZCL_ERR_HEAP_FAIL ZCL heap is out-of-memory

E_ZCL_ERR_EP_RANGE Specified endpoint number was out-of-range

E_ZCL_ERR_EP_UNKNOWN Specified endpoint has not been registered with the ZCL (but endpoint number
was in-range)

E_ZCL_ERR_SECURITY_RANGE Security value is out-of-range

E_ZCL_ERR_CLUSTER_0 Specified endpoint has no clusters

E_ZCL_ERR_CLUSTER_NULL Specified pointer to a cluster was null

E_ZCL_ERR_CLUSTER_NOT_FOUND Specified cluster has not been registered with the ZCL

E_ZCL_ERR_CLUSTER_ID_RANGE Specified cluster ID was out-of-range

E_ZCL_ERR_ATTRIBUTES_NULL Specified pointer to an attribute was null

E_ZCL_ERR_ATTRIBUTES_0 List of attributes to be read was empty

E_ZCL_ERR_ATTRIBUTE_WO Attempt was made to read write-only attribute

E_ZCL_ERR_ATTRIBUTE_RO Attempt was made to write to read-only attribute

E_ZCL_ERR_ATTRIBUTES_ACCESS Error occurred while accessing attribute

E_ZCL_ERR_ATTRIBUTE_TYPE_
UNSUPPORTED

Specified attribute was of unsupported type

E_ZCL_ERR_ATTRIBUTE_NOT_
FOUND

Specified attribute was not found

E_ZCL_ERR_CALLBACK_NULL Specified pointer to a callback function was null

E_ZCL_ERR_ZBUFFER_FAIL No buffer available to transmit message

Table 26. General Return Code Enumerations

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
83 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_ZCL_ERR_ZTRANSMIT_FAIL * ZigBee PRO stack has reported a transmission error

E_ZCL_ERR_CLIENT_SERVER_
STATUS

Cluster instance of wrong kind (e.g. client instead of server)

E_ZCL_ERR_TIMER_RESOURCE No timer resource was available

E_ZCL_ERR_ATTRIBUTE_IS_CLIENT Attempt made by a cluster client to read a client attribute

E_ZCL_ERR_ATTRIBUTE_IS_SERVER Attempt made by a cluster server to read a server attribute

E_ZCL_ERR_ATTRIBUTE_RANGE Attribute value is out-of-range

E_ZCL_ERR_ATTRIBUTE_MISMATCH Reserved for future use

E_ZCL_ERR_KEY_ESTABLISHMENT_
MORE_THAN_ONE_CLUSTER

Attempt made to register more than one Key Establishment cluster on the device
(only one is permitted per device)

E_ZCL_ERR_INSUFFICIENT_SPACE Cluster does not have enough space in its list to store data item, e.g. eSE_Price
AddPriceEntry() may return this code

E_ZCL_ERR_NO_REPORTABLE_
CHANGE

Reserved for future use

E_ZCL_ERR_NO_REPORT_ENTRIES Reserved for future use

E_ZCL_ERR_ATTRIBUTE_NOT_
REPORTABLE

Reserved for future use

E_ZCL_ERR_ATTRIBUTE_ID_ORDER
**

Attempt made to register a cluster with attribute IDs not defined in ascending
order

E_ZCL_ERR_MALFORMED_
MESSAGE

Received ZCL message is not formed correctly. This error code is used in a
callback event on the receiving device

E_ZCL_ERR_MANUFACTURER_
SPECIFIC **

Inconsistency in a manufacturer-specific cluster definition has been found

E_ZCL_ERR_PROFILE_ID ** Profile ID of a cluster is not valid - for example, the cluster being registered is not
manufacturer-specific but the profile ID is in range reserved for manufacturer-
specific profiles

E_ZCL_ERR_INVALID_VALUE An invalid value has been detected.

E_ZCL_ERR_CERT_NOT_FOUND Reserved for future use

E_ZCL_ERR_CUSTOM_DATA_NULL Custom data associated with cluster is NULL

E_ZCL_ERR_TIME_NOT_
SYNCHRONISED

Time has not been synchronized by calling vZCL_SetUTC-Time(). This error
code is returned by functions that require time to be synchronised, for example, e
SE_PriceAddPriceEntry()

E_ZCL_ERR_SIGNATURE_VERIFY_
FAILED

Reserved for future use

E_ZCL_ERR_ZRECEIVE_FAIL * ZigBee PRO stack has reported a receive error

E_ZCL_ERR_KEY_ESTABLISHMENT_
END_POINT_NOT_FOUND

Key Establishment endpoint has not been registered correctly

E_ZCL_ERR_KEY_ESTABLISHMENT_
CLUSTER_ENTRY_NOT_FOUND

Key Establishment cluster has not been registered correctly

E_ZCL_ERR_KEY_ESTABLISHMENT_
CALLBACK_ERROR

Key Establishment cluster callback function has returned an error

Table 26. General Return Code Enumerations...continued

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
84 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_ZCL_ERR_SECURITY_
INSUFFICIENT_FOR_CLUSTER

Cluster that requires application-level (APS) security has been accessed using a
packet that has not been encrypted with the application link key

E_ZCL_ERR_CUSTOM_COMMAND_
HANDLER_NULL_OR_RETURNED_
ERROR

No custom handler has been registered for the command or the custom handler
for the command has not returned E_ZCL_SUCCESS

E_ZCL_ERR_INVALID_IMAGE_SIZE OTA image size is not in the correct range

E_ZCL_ERR_INVALID_IMAGE_
VERSION

OTA image version is not in the correct range

E_ZCL_READ_ATTR_REQ_NOT_
FINISHED

‘Read attributes’ request not completely fulfilled

E_ZCL_DENY_ATTRIBUTE_ACCESS Write access to attribute is denied

E_ZCL_ERR_SECURITY_FAIL Security failure

E_ZCL_ERR_CLUSTER_COMMAND_
NOT_FOUND

The cluster command was not found

E_ZCL_ERR_INVALID_VALUE Reserved for future use

Table 26. General Return Code Enumerations...continued

* ZigBee PRO stack raises an error which can be retrieved using eZCL_GetLastZpsError().

** This error code is returned by eZCL_Register(), used in designing custom clusters

7.3 ZCL Event Enumerations
The ZCL event types are enumerated in the teZCL_CallBackEventType structure below and described in
Table 22. An event must be wrapped in a structure of type tsZCL_CallBackEvent, detailed in Section 6.2,
with the eEventType field set to one of the enumerations in the table. The event must be passed into the ZCL
using the function vZCL_EventHandler(), detailed in Section 5.1. Event handling is fully described in Chapter 3.

typedef enum
{
 E_ZCL_CBET_LOCK_MUTEX = 0x0,
 E_ZCL_CBET_UNLOCK_MUTEX,
 E_ZCL_CBET_UNHANDLED_EVENT,
 E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE,
 E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE,
 E_ZCL_CBET_READ_REQUEST,
 E_ZCL_CBET_REPORT_REQUEST,
 E_ZCL_CBET_DEFAULT_RESPONSE,
 E_ZCL_CBET_ERROR,
 E_ZCL_CBET_TIMER,
 E_ZCL_CBET_ZIGBEE_EVENT,
 E_ZCL_CBET_CLUSTER_CUSTOM,
 E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE,
 E_ZCL_CBET_WRITE_ATTRIBUTES,
 E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE,
 E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE,
 E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE,
 E_ZCL_CBET_REPORT_TIMEOUT,
 E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTE,
 E_ZCL_CBET_REPORT_ATTRIBUTES,
 E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE_RESPONSE,
 E_ZCL_CBET_REPORT_ATTRIBUTES_CONFIGURE,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
85 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE,
 E_ZCL_CBET_REPORT_ATTRIBUTES_CONFIGURE_RESPONSE,
 E_ZCL_CBET_REPORT_READ_INDIVIDUAL_ATTRIBUTE_CONFIGURATION_RESPONSE,
 E_ZCL_CBET_REPORT_READ_ATTRIBUTE_CONFIGURATION_RESPONSE,
 E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_RESPONSE,
 E_ZCL_CBET_DISCOVER_ATTRIBUTES_RESPONSE,
 E_ZCL_CBET_CLUSTER_UPDATE,
 E_ZCL_CBET_ATTRIBUTE_REPORT_MIRROR,
 E_ZCL_CBET_REPORT_REQUEST,
 E_ZCL_CBET_ENABLE_MS_TIMER,
 E_ZCL_CBET_DISABLE_MS_TIMER,
 E_ZCL_CBET_TIMER_MS,
 E_ZCL_CBET_ZGP_DATA_IND_ERROR,
 E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_RECEIVED_RESPONSE,
 E_ZCL_CBET_DISCOVER_COMMAND_RECEIVED_RESPONSE,
 E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_GENERATED_RESPONSE,
 E_ZCL_CBET_DISCOVER_COMMAND_GENERATED_RESPONSE,
 E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_EXTENDED_RESPONSE,
 E_ZCL_CBET_DISCOVER_ATTRIBUTES_EXTENDED_RESPONSE,
 E_ZCL_CBET_ENUM_END
} teZCL_CallBackEventType;

The above enumerations are described in the table below.

Event Type Enumeration Description

E_ZCL_CBET_LOCK_MUTEX Indicates that a mutex needs to be locked by the application. This event can be
generated only when cooperative tasks are disabled in the compile-time options
(see Section 1.3)

E_ZCL_CBET_UNLOCK_MUTEX Indicates that a mutex needs to be unlocked by the application. This event can be
generated only when cooperative tasks are disabled in the compile-time options
(see Section 1.3)

E_ZCL_CBET_UNHANDLED_EVENT Indicates that a stack event has been received that cannot be handled by the
ZCL (for example, a Data Confirm)

E_ZCL_CBET_READ_INDIVIDUAL_
ATTRIBUTE_RESPONSE

Generated for each attribute included in a ‘read attributes’ response

E_ZCL_CBET_READ_ATTRIBUTES_
RESPONSE

Indicates that a ‘read attributes’ response has been received

E_ZCL_CBET_READ_REQUEST Indicates that a ‘read attributes’ request has been received (giving an opportunity
for the local application to update the shared structure before it is read)

E_ZCL_CBET_DEFAULT_RESPONSE Indicates that a ZCL default response message has been received (which
indicates an error or that a command has been processed)

E_ZCL_CBET_ERROR Indicates that a stack event has been received that can-not be handled by the
ZCL

E_ZCL_CBET_TIMER Indicates that a one-second tick of the real-time clock has occurred or that the
ZCL timer has expired

E_ZCL_CBET_ZIGBEE_EVENT Indicates that a ZigBee PRO stack event has occurred

E_ZCL_CBET_CLUSTER_CUSTOM Indicates that a custom event which is specific to a cluster has occurred

E_ZCL_CBET_WRITE_INDIVIDUAL_
ATTRIBUTE

Indicates that an attempt has been made to write an attribute in the shared
structure, following a ‘write attributes’ request, and indicates success or failure

Table 27. ZCL Event Types

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
86 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Event Type Enumeration Description

E_ZCL_CBET_WRITE_ATTRIBUTES Indicates that all the relevant attributes have been written in the shared structure,
following a ‘write attributes’ request

E_ZCL_CBET_WRITE_INDIVIDUAL_
ATTRIBUTE_RESPONSE

Generated for each attribute included in a ‘write attributes’ response (this event
contains only those attributes for which the writes have failed)

E_ZCL_CBET_WRITE_ATTRIBUTES_
RESPONSE

Indicates that a ‘write attributes’ response has been received and has been
parsed

E_ZCL_CBET_CHECK_ATTRIBUTE_
RANGE

Generated for each attribute included in a received ‘write attributes’ request, and
prompts the application to perform a range check on the new attribute value and
to decide whether a write access to the relevant attribute in the shared structure
are allowed or disallowed

E_ZCL_CBET_REPORT_TIMEOUT Indicates that an attribute report is overdue

E_ZCL_CBET_REPORT_
INDIVIDUAL_ATTRIBUTE

Generated for each attribute included in a received attribute report

E_ZCL_CBET_REPORT_ATTRIBUTES Indicates that all attributes included in a received attribute report have been
parsed

E_ZCL_CBET_REPORT_
INDIVIDUAL_ATTRIBUTES_
CONFIGURE_RESPONSE

Generated for each attribute included in a ‘configure attributes’ response

E_ZCL_CBET_REPORT_
ATTRIBUTES_CONFIGURE

Indicates that all attributes included in a ‘configure reporting’ request have been
parsed

E_ZCL_CBET_REPORT_
INDIVIDUAL_ATTRIBUTES_
CONFIGURE

Generated for each attribute included in a ‘configure reporting’ request

E_ZCL_CBET_REPORT_
ATTRIBUTES_CONFIGURE_
RESPONSE

Indicates that all attributes included in a ‘configure reporting’ response have been
reported

E_ZCL_CBET_REPORT_READ_
INDIVIDUAL
_ATTRIBUTE_CONFIGURATION_
RESPONSE

Generated for each attribute included in a ‘read reporting configuration’ response

E_ZCL_CBET_REPORT_READ_
ATTRIBUTE_CONFIGURATION_
RESPONSE

Indicates that all attributes included in a ‘read reporting configuration’ response
have been reported

E_ZCL_CBET_DISCOVER_
INDIVIDUAL_ATTRIBUTE_
RESPONSE

Generated for each attribute included in a ‘discover attributes’ response

E_ZCL_CBET_DISCOVER_
ATTRIBUTES
_RESPONSE

Indicates that all attributes included in a ‘discover attributes’ response have been
reported

E_ZCL_CBET_CLUSTER_UPDATE Indicates that a cluster attribute value may have been changed on the local
device

E_ZCL_CBET_ENABLE_MS_TIMER Indicates that a millisecond timer needs to be started

E_ZCL_CBET_DISABLE_MS_TIMER Indicates that a millisecond timer needs to be stopped

E_ZCL_CBET_TIMER_MS Indicates that a millisecond timer has expired

Table 27. ZCL Event Types...continued

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
87 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Event Type Enumeration Description

E_ZCL_CBET_ZGP_DATA_IND_
ERROR

Indicates that a ZigBee Green Power data indication error has occurred

E_ZCL_CBET_DISCOVER_
INDIVIDUAL_COMMAND_RECEIVED_
RESPONSE

Generated for each command (that can be received) included in a ‘command
discovery‘ response

E_ZCL_CBET_DISCOVER_
COMMAND_RECEIVED_RESPONSE

Indicates that all commands (that can be received) included in a ‘command
discovery’ response have been reported

E_ZCL_CBET_DISCOVER_
INDIVIDUAL_COMMAND_
GENERATED_RESPONSE

Generated for each command (that can be generated) included in a ‘command
discovery‘ response

E_ZCL_CBET_DISCOVER_
COMMAND_GENERATED_R
ESPONSE

Indicates that all commands (that can be generated) included in a ‘command
discovery’ response have been reported

E_ZCL_CBET_DISCOVER_
INDIVIDUAL_ATTRIBUTE_
EXTENDED_RESPONSE

Generated for each attribute included in a ‘discover attributes extended’ response

E_ZCL_CBET_DISCOVER_
ATTRIBUTES_EXTENDED_
RESPONSE

Indicates that all attributes included in a ‘discover attributes extended’ response
have been reported

E_ZCL_CBET_REPORT_TIMEOUT Reserved for future use

E_ZCL_CBET_REPORT_
INDIVIDUAL_ATTRIBUTE

Reserved for future use

E_ZCL_CBET_REPORT_ATTRIBUTES Reserved for future use

E_ZCL_CBET_REPORT_
INDIVIDUAL_ATTRIBUTES_
CONFIGURE_RESPONSE

Reserved for future use

E_ZCL_CBET_REPORT_
ATTRIBUTES_CONFIGURE

Reserved for future use

E_ZCL_CBET_REPORT_
INDIVIDUAL_ATTRIBUTES_
CONFIGURE

Reserved for future use

E_ZCL_CBET_REPORT_
ATTRIBUTES_CONFIGURE_
RESPONSE

Reserved for future use

E_ZCL_CBET_REPORT_READ_
INDIVIDUAL_ATTRIBUTE_
CONFIGURATION_RESPONSE

Reserved for future use

E_ZCL_CBET_REPORT_READ_
ATTRIBUTE_CONFIGURATION_
RESPONSE

Reserved for future use

E_ZCL_CBET_DISCOVER_
INDIVIDUAL_ATTRIBUTE_
RESPONSE

Reserved for future use

E_ZCL_CBET_DISCOVER_
ATTRIBUTES_RESPONSE

Reserved for future use

Table 27. ZCL Event Types...continued

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
88 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: The structure teZCL_CallBackEventType is extended by the EZ-mode Commissioning module with
the events listed and described in Section 40.5. These events are only included if this module is used, in which
case they are added after E_ZCL_CBET_ENUM_END.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
89 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part III: General Clusters

This Part, General Clusters, comprises fifteen chapters:

• Chapter 8 details the Basic cluster
• Chapter 9 details the Power Configuration cluster
• Chapter 10 details the Device Temperature Configuration cluster
• Chapter 11 details the Identify cluster
• Chapter 12 details the Groups cluster
• Chapter 13 details the Scenes cluster
• Chapter 14 details the On/Off cluster
• Chapter 15 details the On/Off Switch Configuration cluster
• Chapter 16 details the Level Control cluster
• Chapter 17 details the Alarms cluster
• Chapter 18 details the Time cluster, as well as the use of ZCL time
• Chapter 19 details the Input and Output clusters
• Chapter 20 details the Poll Control cluster
• Chapter 21 details the Power Profile cluster
• Chapter 22 details the Diagnostics cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
90 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

8 Basic Cluster

This chapter details the Basic cluster which is a mandatory cluster for all ZigBee devices.

The Basic cluster has a Cluster ID of 0x0000.

8.1 Overview
All devices implement the Basic cluster as a Server-side (input) cluster, so the cluster is able to store attributes
and respond to commands relating to these attributes. The cluster’s attributes hold basic information about
the node (and apply to devices associated with all active endpoints on the host node). The information that
can potentially be stored in this cluster comprises: ZCL version, application version, stack version, hardware
version, manufacturer name, model identifier, date, power source.

Note: The Basic cluster can also be implemented as a Client-side (output) cluster to allow the host device to
act as a commissioning tool.

The Basic cluster contains only two mandatory attributes, the remaining attributes being optional - see Section
8.2.

Note: Since the Basic cluster contains information about the entire node, only one set of Basic cluster
attributes must be stored on the node, even if there are multiple instances of the Basic cluster server across
multiple devices/endpoints. All cluster instances must refer to the same structure containing the attribute values.

The Basic cluster is enabled by defining CLD_BASIC in the zcl_options.h file.

A Basic cluster instance can act as a client and/or a server. The inclusion of the client or server software must
be pre-defined in the application’s compile-time options (in addition, if the cluster is to reside on a custom
endpoint then the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Basic cluster are fully detailed in Section 8.6.

8.2 Basic Cluster structure and attributes
The Basic cluster is contained in the following tsCLD_Basic structure:

typedef struct
{
#ifdef BASIC_SERVER
 zuint8 u8ZCLVersion;
#ifdef CLD_BAS_ATTR_APPLICATION_VERSION
 zuint8 u8ApplicationVersion;
#endif
#ifdef CLD_BAS_ATTR_STACK_VERSION
 zuint8 u8StackVersion;
#endif
#ifdef CLD_BAS_ATTR_HARDWARE_VERSION
 zuint8 u8HardwareVersion;
#endif
#ifdef CLD_BAS_ATTR_MANUFACTURER_NAME
 tsZCL_CharacterString sManufacturerName;
uint8 au8ManufacturerName[32];
#endif
#ifdef CLD_BAS_ATTR_MODEL_IDENTIFIER
 tsZCL_CharacterString sModelIdentifier;
 uint8 au8ModelIdentifier[32];
#endif
#ifdef CLD_BAS_ATTR_DATE_CODE
 tsZCL_CharacterString sDateCode;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
91 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 au8DateCode[16];
#endif
 zenum8 ePowerSource;
#ifdef CLD_BAS_ATTR_GENERIC_DEVICE_CLASS
 zenum8 eGenericDeviceClass;
#endif
#ifdef CLD_BAS_ATTR_GENERIC_DEVICE_TYPE
 zenum8 eGenericDeviceType;
#endif
#ifdef CLD_BAS_ATTR_PRODUCT_CODE
 tsZCL_OctetString sProductCode;
uint8
au8ProductCode[CLD_BASIC_MAX_NUMBER_OF_BYTES_PRODUCT_CODE];
#endif
#ifdef CLD_BAS_ATTR_PRODUCT_URL
 tsZCL_CharacterString sProductURL;
 uint8
 au8ProductURL[CLD_BASIC_MAX_NUMBER_OF_BYTES_PRODUCT_URL];
#endif
#ifdef CLD_BAS_ATTR_LOCATION_DESCRIPTION
 tsZCL_CharacterString sLocationDescription;
 uint8 au8LocationDescription[16];
#endif
#ifdef CLD_BAS_ATTR_PHYSICAL_ENVIRONMENT
 zenum8 u8PhysicalEnvironment;
#endif
#ifdef CLD_BAS_ATTR_DEVICE_ENABLED
 zbool bDeviceEnabled;
#endif
#ifdef CLD_BAS_ATTR_ALARM_MASK
 zbmap8 u8AlarmMask;
#endif
#ifdef CLD_BAS_ATTR_DISABLE_LOCAL_CONFIG
 zbmap8 u8DisableLocalConfig;
#endif
#ifdef CLD_BAS_ATTR_SW_BUILD_ID
 tsZCL_CharacterString sSWBuildID;
 uint8 au8SWBuildID[16];
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_Basic;

where:

• u8ZCLVersion is an 8-bit version number which represents a published set of foundation items, such as
global commands and functional descriptions. Currently this should be set to 2.

• u8ApplicationVersion is an optional 8-bit attribute which represents the version of the application (and is
manufacturer-specific)

• u8StackVersion is an optional 8-bit attribute which represents the version of the ZigBee stack used (and is
manufacturer-specific)

• u8HardwareVersion is an optional 8-bit attribute which represents the version of the hardware used for the
device (and is manufacturer-specific)

• The following optional pair of attributes are used to store the name of the manufacturer of the device:
– sManufacturerName is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to

32 characters representing the manufacturer’s name

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
92 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– au8ManufacturerName[32] is a byte-array which contains the character data bytes representing the
manufacturer’s name

• The following optional pair of attributes are used to store the identifier for the model of the device:
– sModelIdentifier is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 32

characters representing the model identifier
– au8ModelIdentifier[32] is a byte-array which contains the character data bytes representing the

model identifier
• The following optional pair of attributes are used to store manufacturing information about the device:

– sDateCode is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16
characters in which the 8 most significant characters contain the date of manufacture in the format
YYYYMMDD and the 8 least significant characters contain manufacturer-defined information such as
country of manufacture, factory identifier, production line identifier

– au8DateCode[16] is a byte-array which contains the character data bytes representing the manufacturing
information

Note: The application device code automatically sets two of the fields of sDataCode. The field
sDataCode.pu8Data is set to point at au8DateCode and the field sDataCode.u8MaxLength is set to 16
(see Section 6.1.14 for details of these fields).

• ePowerSource is an 8-bit value in which seven bits indicate the primary power source for the device (e.g.
battery) and one bit indicates whether there is a secondary power source for the device. Enumerations are
provided to cover all possibilities - see Section 8.5.2

Note: The power source in the Basic cluster is completely unrelated to the Node Power descriptor in the
ZigBee PRO stack. The power source in the ZigBee PRO stack is set using the ZPS Configuration Editor.

• eGenericDeviceClass is an optional attribute that identifies the field of application in which the local device
type operates (see eGenericDeviceType below). Enumerations are provided - see Section 8.5.3. Currently,
the attribute is used only in lighting applications, for which the value is 0x00 (all other values are reserved).

• eGenericDeviceType is an optional attribute that identifies the local device type. Enumerations are
provided to cover the different possibilities - see Section 8.5.4. Currently, the attribute is used only in lighting
applications.

• The following optional pair of attributes are used to store a code for the product (this attribute may be used in
lighting applications only):
– sProductCode is a tsZCL_OctetString structure (see Section 6.1.14) for a string representing the

product code - the maximum number of characters is defined at compile-time (see Section 8.6) using the
macro CLD_BASIC_MAX_NUMBER_OF_BYTES_PRODUCT_CODE.

– au8ProductCode[] is a byte-array which contains the character data bytes representing the product
code - the number of array elements, and therefore characters, is determined at compile-time, as indicated
above.

• The following optional pair of attributes are used to store a URL for the product (this attribute may be used in
lighting application only):
– sProductURL is a tsZCL_CharacterString structure (see Section 6.1.14) for a character string

representing the product URL - the maximum number of characters is defined at compile-time (see Section
8.6) using the macro CLD_BASIC_MAX_NUMBER_OF_BYTES_PRODUCT_URL.

– au8ProductURL[] is a byte-array which contains the character data bytes representing the product URL -
the number of array elements, and therefore characters, is determined at compile-time, as indicated above.

• The following optional pair of attributes relates to the location of the device:
– sLocationDescription is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up

to 16 characters representing the location of the device
– au8LocationDescription[16] is a byte-array which contains the character data bytes representing the

location of the device

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
93 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8PhysicalEnvironment is an optional 8-bit attribute which indicates the physical environment of the
device. Enumerations are provided to cover the different possibilities - see Section 8.5.5.

• bDeviceEnabled is an optional Boolean attribute which indicates whether the device is enabled (TRUE)
or disabled (FALSE). A disabled device cannot send or respond to application level commands other than
commands to read or write attributes

• u8AlarmMask is an optional bitmap indicating the general alarms that can be generated (Bit 0 - general
software alarm, Bit 1 - general hardware alarm)

• u8DisableLocalConfig is an optional bitmap allowing the local user interface of the device to be disabled
(Bit 0 - ‘Reset to factory defaults’ buttons, Bit 1 - ‘Device configuration’ buttons)

• The following optional pair of attributes are used to store a manufacturer-specific software build identifier:
– sSWBuildID is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the software build identifier
– au8SWBuildID[16] is a byte-array which contains the character data bytes representing the software

build identifier.
– u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which

this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1.
The value is incremented by one for each subsequent revision of the cluster specification. This attribute is
also described in Section 2.4

The Basic cluster structure contains three mandatory elements: u8ZCLVersion, ePowerSource and
u16ClusterRevision. The remaining elements are optional, each being enabled/disabled through a
corresponding macro defined in the zcl_options.h file - for example, the attribute u8ApplicationVersion is
enabled/disabled using the enumeration CLD_BAS_ATTR_APPLICATION_VERSION (see Section 8.3).

The mandatory attribute settings are described further in Section 8.3.

8.3 Mandatory Attribute Settings
The application must set the values of the mandatory u8ZCLVersion, ePowerSource and
u16ClusterRevision fields of the Basic cluster structure so that other devices can read them. This should
be done immediately after calling the endpoint registration function for the device - for example, eZLO_Register
DimmableLightEndPoint().

These values can be set by calling the eZCL_WriteLocalAttributeValue() function with the appropriate input
values. Alternatively, they can be set by writing to the relevant members of the shared structure of the device, as
illustrated below, where sLight or sSwitch is the device that is registered using the registration function.

On a Dimmable Light:

sLight.sBasicCluster.u8ZCLVersion = 0x01;
sLight.sBasicCluster.ePowerSource = E_CLD_BAS_PS_SINGLE_PHASE_MAINS;
sLight.sBasicClusteru.16ClusterRevision = CLD_BAS_CLUSTER_REVISION;

On a battery-powered Dimmer Switch:

sSwitch.sLocalBasicCluster.u8ZCLVersion = 0x01;
sSwitch.sLocalBasicCluster.ePowerSource = E_CLD_BAS_PS_BATTERY;
sLight.sBasicClusteru.16ClusterRevision = CLD_BAS_CLUSTER_REVISION;

8.4 Functions
The following two Basic cluster functions are provided in the NXP implementation of the ZCL:

• eCLD_BasicCreateBasic
• eCLD_BasicCommandResetToFactoryDefaultsSend

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
94 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

8.4.1 eCLD_BasicCreateBasic

teZCL_Status eCLD_BasicCreateBasic(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Basic cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Basic
cluster instance on the endpoint, but instances of other clusters may also be created on the same endpoint by
calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device (for example, a
Simple Sensor) is used. In this case, the device and its supported clusters must be registered on the endpoint
using the relevant device registration function.

When used, this function must be the first Basic cluster function called in the application, and must be called
after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Basic cluster. The function initializes the array elements to zero.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer : Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Basic cluster. This parameter can refer to a pre-filled
structure called sCLD_Basic which is provided in the Basic.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_Basic which defines the attributes of Basic cluster. The
function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
95 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

8.4.2 eCLD_BasicCommandResetToFactoryDefaultsSend

teZCL_Status eCLD_BasicCommandResetToFactoryDefaultsSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be called on a client device to send a ‘Reset To Factory Defaults’ command, requesting the
recipient server device to reset to its factory defaults. The recipient device generates a callback event on the
endpoint on which the Basic cluster was registered.

If used, the ‘Reset To Factory Defaults’ command must be enabled in the compile-time options on both
the client and server, as described in Section 8.6.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

8.5 Enumerations

8.5.1 teCLD_BAS_ClusterID

The following structure contains the enumerations used to identify the attributes of the Basic cluster.

typedef enum
{

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
96 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_BAS_ATTR_ID_ZCL_VERSION = 0x0000, /* Mandatory */
 E_CLD_BAS_ATTR_ID_APPLICATION_VERSION,
 E_CLD_BAS_ATTR_ID_STACK_VERSION,
 E_CLD_BAS_ATTR_ID_HARDWARE_VERSION,
 E_CLD_BAS_ATTR_ID_MANUFACTURER_NAME,
 E_CLD_BAS_ATTR_ID_MODEL_IDENTIFIER,
 E_CLD_BAS_ATTR_ID_DATE_CODE,
 E_CLD_BAS_ATTR_ID_POWER_SOURCE, /* Mandatory */
 E_CLD_BAS_ATTR_ID_LOCATION_DESCRIPTION = 0x0010,
 E_CLD_BAS_ATTR_ID_PHYSICAL_ENVIRONMENT,
 E_CLD_BAS_ATTR_ID_DEVICE_ENABLED,
 E_CLD_BAS_ATTR_ID_ALARM_MASK,
 E_CLD_BAS_ATTR_ID_DISABLE_LOCAL_CONFIG,
 E_CLD_BAS_ATTR_ID_SW_BUILD_ID = 0x4000
} teCLD_BAS_ClusterID;

8.5.2 teCLD_BAS_PowerSource

The following enumerations are used in the Basic cluster to specify the power source for a device (see above):

typedef enum
{
 E_CLD_BAS_PS_UNKNOWN = 0x00,
 E_CLD_BAS_PS_SINGLE_PHASE_MAINS,
 E_CLD_BAS_PS_THREE_PHASE_MAINS,
 E_CLD_BAS_PS_BATTERY,
 E_CLD_BAS_PS_DC_SOURCE,
 E_CLD_BAS_PS_EMERGENCY_MAINS_CONSTANTLY_POWERED,
 E_CLD_BAS_PS_EMERGENCY_MAINS_AND_TRANSFER_SWITCH,
 E_CLD_BAS_PS_UNKNOWN_BATTERY_BACKED = 0x80,
 E_CLD_BAS_PS_SINGLE_PHASE_MAINS_BATTERY_BACKED,
 E_CLD_BAS_PS_THREE_PHASE_MAINS_BATTERY_BACKED,
 E_CLD_BAS_PS_BATTERY_BATTERY_BACKED,
 E_CLD_BAS_PS_DC_SOURCE_BATTERY_BACKED,
 E_CLD_BAS_PS_EMERGENCY_MAINS_CONSTANTLY_POWERED_BATTERY_BACKED,
 E_CLD_BAS_PS_EMERGENCY_MAINS_AND_TRANSFER_SWITCH_BATTERY_BACKED,
} teCLD_BAS_PowerSource;

The power source enumerations are described in the table below.

Enumeration Description

E_CLD_BAS_PS_UNKNOWN Unknown power source

E_CLD_BAS_PS_SINGLE_PHASE_MAINS Single-phase mains powered

E_CLD_BAS_PS_THREE_PHASE_MAINS Three-phase mains powered

E_CLD_BAS_PS_BATTERY Battery powered

E_CLD_BAS_PS_DC_SOURCE DC source

E_CLD_BAS_PS_EMERGENCY_MAINS_CONSTANTLY_POWERED Constantly powered from emergency
mains supply

E_CLD_BAS_PS_EMERGENCY_MAINS_AND_TRANSFER_SWITCH Powered from emergency mains supply
via transfer switch

E_CLD_BAS_PS_UNKNOWN_BATTERY_BACKED Unknown power source but battery
back-up

Table 28. Power Source Enumerations

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
97 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_CLD_BAS_PS_SINGLE_PHASE_MAINS_BATTERY_BACKED Single-phase mains powered with
battery back-up

E_CLD_BAS_PS_THREE_PHASE_MAINS_BATTERY_BACKED Three-phase mains powered with
battery back-up

E_CLD_BAS_PS_BATTERY_BATTERY_BACKED Battery powered with battery back-up

E_CLD_BAS_PS_DC_SOURCE_BATTERY_BACKED DC source with battery back-up

E_CLD_BAS_PS_EMERGENCY_MAINS_CONSTANTLY_POWERED_
BATTERY_BACKED

Constantly powered from emergency
mains supply with battery back-up

E_CLD_BAS_PS_EMERGENCY_MAINS_AND_TRANSFER_SWITCH_
BATTERY_BACKED

Powered from emergency mains supply
via transfer switch with battery back-up

Table 28. Power Source Enumerations...continued

8.5.3 teCLD_BAS_GenericDeviceClass

The following enumerations are used in the Basic cluster to specify the Device Classes:

typedef enum
{
 E_CLD_BAS_GENERIC_DEVICE_CLASS_LIGHTING = 0x00,
} teCLD_BAS_GenericDeviceClass;

8.5.4 eCLD_BAS_GenericDeviceType

The following enumerations are used in the Basic cluster to specify the Device Types:

typedef enum
{
 E_CLD_BAS_GENERIC_DEVICE_TYPE_INCANDESCENT = 0x00,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_SPOTLIGHT_HALOGEN,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_HALOGEN_BULB,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_CFL,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_LINEAR_FLUORESCENT,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_LED_BULB,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_SPOTLIGHT_LED,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_LED_STRIP,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_LED_TUBE,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_INDOOR_LUMINAIRE,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_OUTDOOR_LUMINAIRE,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_PENDANT_LUMINAIRE,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_FLOOR_STANDING_LUMINAIRE,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_CONTROLLER = 0xE0,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_WALL_SWITCH,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_PORTABLE_REMOTE_CONTROLLER,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_MOTION_OR_LIGHT_SENSOR,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_ACTUATOR = 0xF0,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_WALL_SOCKET,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_GATEWAY_OR_BRIDGE,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_PLUG_IN_UNIT,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_RETROFIT_ACTUATOR,
 E_CLD_BAS_GENERIC_DEVICE_TYPE_UNSPECIFIED = 0xFF
} teCLD_BAS_GenericDeviceType;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
98 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

8.5.5 teCLD_BAS_PhysicalEnvironment

The following enumerations are used in the Basic cluster to specify the Physical Environment:

typedef enum
{
 E_CLD_BAS_PE_UNSPECIFIED = 0x00,
 E_CLD_BAS_PE_MIRROR,
 E_CLD_BAS_PE_ATRIUM,
 E_CLD_BAS_PE_BAR,
 E_CLD_BAS_PE_COURTYARD,
 E_CLD_BAS_PE_BATHROOM,
 E_CLD_BAS_PE_BEDROOM,
 E_CLD_BAS_PE_BILLIARD_ROOM,
 E_CLD_BAS_PE_UTILITY_ROOM,
 E_CLD_BAS_PE_CELLAR,
 E_CLD_BAS_PE_STORAGE_CLOSET,
 E_CLD_BAS_PE_THREATER,
 E_CLD_BAS_PE_OFFICE_0x0B,
 E_CLD_BAS_PE_DECK,
 E_CLD_BAS_PE_DEN,
 E_CLD_BAS_PE_DINNING_ROOM,
 E_CLD_BAS_PE_ELECTRICAL_ROOM,
 E_CLD_BAS_PE_ELEVATOR,
 E_CLD_BAS_PE_ENTRY,
 E_CLD_BAS_PE_FAMILY_ROOM,
 E_CLD_BAS_PE_MAIN_FLOOR,
 E_CLD_BAS_PE_UPSTAIRS,
 E_CLD_BAS_PE_DOWNSTAIRS,
 E_CLD_BAS_PE_BASEMENT_LOWER_LEVEL,
 E_CLD_BAS_PE_GALLERY,
 E_CLD_BAS_PE_GAME_ROOM,
 E_CLD_BAS_PE_GARAGE,
 E_CLD_BAS_PE_GYM,
 E_CLD_BAS_PE_HALLWAY,
 E_CLD_BAS_PE_HOUSE,
 E_CLD_BAS_PE_KITCHEN,
 E_CLD_BAS_PE_LAUNDRY_ROOM,
 E_CLD_BAS_PE_LIBRARY,
 E_CLD_BAS_PE_MASTER_BEDROOM,
 E_CLD_BAS_PE_MUD_ROOM,
 E_CLD_BAS_PE_NURSERY,
 E_CLD_BAS_PE_PANTRY,
 E_CLD_BAS_PE_OFFICE_0X24,
 E_CLD_BAS_PE_OUTSIDE,
 E_CLD_BAS_PE_POOL,
 E_CLD_BAS_PE_PORCH,
 E_CLD_BAS_PE_SEWING_ROOM,
 E_CLD_BAS_PE_SITTING_ROOM,
 E_CLD_BAS_PE_STAIRWAY,
 E_CLD_BAS_PE_YARD,
 E_CLD_BAS_PE_ATTIC,
 E_CLD_BAS_PE_HOT_TUB,
 E_CLD_BAS_PE_LIVING_ROOM_0X2E,
 E_CLD_BAS_PE_SAUNA,
 E_CLD_BAS_PE_SHOP_WORKSHOP,
 E_CLD_BAS_PE_GUEST_BEDROOM,
 E_CLD_BAS_PE_GUEST_BATH,
 E_CLD_BAS_PE_POWDER_ROOM,
 E_CLD_BAS_PE_BACK_YARD,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
99 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_BAS_PE_FRONT_YARD,
 E_CLD_BAS_PE_PATIO,
 E_CLD_BAS_PE_DRIVEWAY,
 E_CLD_BAS_PE_SUN_ROOM,
 E_CLD_BAS_PE_LIVING_ROOM_0X39,
 E_CLD_BAS_PE_SPA,
 E_CLD_BAS_PE_WHIRLPOOL,
 E_CLD_BAS_PE_SHED,
 E_CLD_BAS_PE_EQUIPMENT_STORAGE,
 E_CLD_BAS_PE_HOBBY_CRAFT_ROOM,
 E_CLD_BAS_PE_FOUNTAIN,
 E_CLD_BAS_PE_POND,
 E_CLD_BAS_PE_RECEPTION_ROOM,
 E_CLD_BAS_PE_BREAKFAST_ROOM,
 E_CLD_BAS_PE_NOOK,
 E_CLD_BAS_PE_GARDEN,
 E_CLD_BAS_PE_PANIC_ROOM,
 E_CLD_BAS_PE_TERRACE,
 E_CLD_BAS_PE_ROOF,
 E_CLD_BAS_PE_TOILET,
 E_CLD_BAS_PE_TOILET_MAIN,
 E_CLD_BAS_PE_OUTSIDE_TOILET,
 E_CLD_BAS_PE_SHOWER_ROOM,
 E_CLD_BAS_PE_STUDY,
 E_CLD_BAS_PE_FRONT_GARDEN,
 E_CLD_BAS_PE_BACK_GARDEN,
 E_CLD_BAS_PE_KETTLE,
 E_CLD_BAS_PE_TELEVISION,
 E_CLD_BAS_PE_STOVE,
 E_CLD_BAS_PE_MICROWAVE,
 E_CLD_BAS_PE_TOASTER,
 E_CLD_BAS_PE_VACUMM,
 E_CLD_BAS_PE_APPLIANCE,
 E_CLD_BAS_PE_FRONT_DOOR,
 E_CLD_BAS_PE_BACK_DOOR,
 E_CLD_BAS_PE_FRIDGE_DOOR,
 E_CLD_BAS_PE_MEDICATION_CABINET_DOOR,
 E_CLD_BAS_PE_WARDROBE_DOOR,
 E_CLD_BAS_PE_FRONT_CUPBOARD_DOOR,
 E_CLD_BAS_PE_OTHER_DOOR,
 E_CLD_BAS_PE_WAITING_ROOM,
 E_CLD_BAS_PE_TRIAGE_ROOM,
 E_CLD_BAS_PE_DOCTOR_OFFICE,
 E_CLD_BAS_PE_PATIENT_PRIVATE_ROOM,
 E_CLD_BAS_PE_CONSULTATION_ROOM,
 E_CLD_BAS_PE_NURSE_STATION,
 E_CLD_BAS_PE_WARD,
 E_CLD_BAS_PE_COORIDOR,
 E_CLD_BAS_PE_OPERATING_THREATER,
 E_CLD_BAS_PE_DENTAL_SURGERY_ROOM,
 E_CLD_BAS_PE_MEDICAL_IMAGING_ROOM,
 E_CLD_BAS_PE_DECONTAMINATION_ROOM,
 E_CLD_BAS_PE_UNKNOWN_ENVIRONMENT
} teCLD_BAS_PhysicalEnvironment;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
100 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

8.6 Compile-time options
To enable the Basic cluster in the code to be built, it is necessary to add the following to the zcl_options.h file:

#define CLD_BASIC

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define BASIC_CLIENT
#define BASIC_SERVER

The Basic cluster contains macros that may be optionally specified at compile-time by adding some or all of the
following lines to the zcl_options.h file.

Optional Attributes

Add this line to enable the optional Application Version attribute:

#define CLD_BAS_ATTR_APPLICATION_VERSION

Add this line to enable the optional Stack Version attribute:

#define CLD_BAS_ATTR_STACK_VERSION

Add this line to enable the optional Hardware Version attribute:

#define CLD_BAS_ATTR_HARDWARE_VERSION

Add this line to enable the optional Manufacturer Name attribute:

#define CLD_BAS_ATTR_MANUFACTURER_NAME

Add this line to enable the optional Model Identifier attribute:

#define CLD_BAS_ATTR_MODEL_IDENTIFIER

Add this line to enable the optional Date Code attribute:

#define CLD_BAS_ATTR_DATE_CODE

Add this line to enable the optional Generic Class Device attribute:

#define CLD_BAS_ATTR_GENERIC_DEVICE_CLASS

Add this line to enable the optional Generic Device Type attribute:

#define CLD_BAS_ATTR_GENERIC_DEVICE_TYPE

Add this line to enable the optional Product Code attribute:

#define CLD_BAS_ATTR_PRODUCT_CODE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
101 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Add this line to enable the optional Product URL attribute:

#define CLD_BAS_ATTR_PRODUCT_URL

Add this line to enable the optional Location Description attribute:

#define CLD_BAS_ATTR_LOCATION_DESCRIPTION

Add this line to enable the optional Physical Environment attribute:

#define CLD_BAS_ATTR_PHYSICAL_ENVIRONMENT

Add this line to enable the optional Device Enabled attribute:

#define CLD_BAS_ATTR_DEVICE_ENABLED

Add this line to enable the optional Alarm Mask attribute:

#define CLD_BAS_ATTR_ALARM_MASK

Add this line to enable the optional Disable Local Config attribute:

#define CLD_BAS_ATTR_DISABLE_LOCAL_CONFIG

Add this line to enable the optional Software Build ID attribute:

#define CLD_BAS_ATTR_SW_BUILD_ID

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_BAS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

Optional Commands

Add this line to enable the optional Reset To Factory Defaults command on the client and server:

#define CLD_BAS_CMD_RESET_TO_FACTORY_DEFAULTS

Product Code Length

The default length of the product code contained in the attributes sProductCode and au8ProductCode[]
can be defined by adding the following line:

#define CLD_BAS_PCODE_SIZE <n>

where <n> is the default number characters in the product code.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
102 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The maximum length of the product code contained in the attributes sProductCode and au8ProductCode[]
can be defined by adding the following line:

#define CLD_BASIC_MAX_NUMBER_OF_BYTES_PRODUCT_CODE <n>

where <n> is the maximum number characters in the product code.

Product URL Length

The default length of the product URL contained in the attributes sProductURL and au8ProductURL[] can
be defined by adding the following line:

#define CLD_BAS_URL_SIZE <n>

where <n> is the default number characters in the product URL.

The maximum length of the product URL contained in the attributes sProductURL and au8ProductURL[]
can be defined by adding the following line:

#define CLD_BASIC_MAX_NUMBER_OF_BYTES_PRODUCT_URL <n>

where <n> is the maximum number characters in the product URL.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
103 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

9 Power Configuration Cluster

This chapter describes the Power Configuration cluster which is concerned with the power source(s) of a
device.

The Power Configuration cluster has a Cluster ID of 0x0001.

9.1 Overview
The Power Configuration cluster allows:

• information to be obtained about the power source(s) of a device
• voltage alarms to be configured

To use the functionality of this cluster, you must include the file PowerConfiguration.h in your application and
enable the cluster by defining CLD_POWER_CONFIGURATION in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

• The cluster server is able to receive commands to change the power configuration on the local device.
• The cluster client is able to send commands to change the power configuration on the remote device.

The inclusion of the client or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance).

The compile-time options for the Power Configuration cluster are fully detailed in Section 9.6.

9.2 Power Configuration Cluster structure and attributes
The structure definition for the Power Configuration cluster is:

typedef struct
{
#ifdef POWER_CONFIGURATION_SERVER
#ifdef CLD_PWRCFG_ATTR_MAINS_VOLTAGE
 zuint16 u16MainsVoltage;
#endif
#ifdef CLD_PWRCFG_ATTR_MAINS_FREQUENCY
 zuint8 u8MainsFrequency;
#endif
#ifdef CLD_PWRCFG_ATTR_MAINS_ALARM_MASK
 zbmap8 u8MainsAlarmMask;
#endif
#ifdef CLD_PWRCFG_ATTR_MAINS_VOLTAGE_MIN_THRESHOLD
 uint16 u16MainsVoltageMinThreshold;
#endif
#ifdef CLD_PWRCFG_ATTR_MAINS_VOLTAGE_MAX_THRESHOLD
 uint16 u16MainsVoltageMaxThreshold;
#endif
#ifdef CLD_PWRCFG_ATTR_MAINS_VOLTAGE_DWELL_TRIP_POINT
 uint16 u16MainsVoltageDwellTripPoint;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_VOLTAGE
 uint8 u8BatteryVoltage;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_PERCENTAGE_REMAINING
 uint8 u8BatteryPercentageRemaining;
#endif

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
104 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#ifdef CLD_PWRCFG_ATTR_BATTERY_MANUFACTURER
 tsZCL_CharacterString sBatteryManufacturer;
 uint8 au8BatteryManufacturer[16];
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_SIZE
 zenum8 u8BatterySize;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_AHR_RATING
 zuint16 u16BatteryAHRating;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_QUANTITY
 zuint8 u8BatteryQuantity;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_RATED_VOLTAGE
 zuint8 u8BatteryRatedVoltage;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_ALARM_MASK
 zbmap8 u8BatteryAlarmMask;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_VOLTAGE_MIN_THRESHOLD
 zuint8 u8BatteryVoltageMinThreshold;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD1
 zuint8 u8BatteryVoltageThreshold1;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD2
 zuint8 u8BatteryVoltageThreshold2;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD3
 zuint8 u8BatteryVoltageThreshold3;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_MIN_THRESHOLD
 zuint8 u8BatteryPercentageMinThreshold;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD1
 zuint8 u8BatteryPercentageThreshold1;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD2
 zuint8 u8BatteryPercentageThreshold2;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD3
 zuint8 u8BatteryPercentageThreshold3;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_STATE
 zbmap32 u32BatteryAlarmState;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_2_VOLTAGE
 uint8 u8Battery2Voltage;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_2_PERCENTAGE_REMAINING
 uint8 u8Battery2PercentageRemaining;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_2_MANUFACTURER
 tsZCL_CharacterString sBattery2Manufacturer;
 uint8 au8Battery2Manufacturer[16];
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_2_SIZE
 zenum8 u8Battery2Size;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_2_AHR_RATING

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
105 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zuint16 u16Battery2AHRating;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_2_QUANTITY
 zuint8 u8Battery2Quantity;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_2_RATED_VOLTAGE
 zuint8 u8Battery2RatedVoltage;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_2_ALARM_MASK
 zbmap8 u8Battery2AlarmMask;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_2_VOLTAGE_MIN_THRESHOLD
 zuint8 u8Battery2VoltageMinThreshold;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD1
 zuint8 u8Battery2VoltageThreshold1;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD2
 zuint8 u8Battery2VoltageThreshold2;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD3
 zuint8 u8Battery2VoltageThreshold3;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_MIN_THRESHOLD
 zuint8 u8Battery2PercentageMinThreshold;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD1
 zuint8 u8Battery2PercentageThreshold1;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD2
 zuint8 u8Battery2PercentageThreshold2;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD3
 zuint8 u8Battery2PercentageThreshold3;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_ALARM_STATE
 zbmap32 u32Battery2AlarmState;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_3_VOLTAGE
 uint8 u8Battery3Voltage;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_3_PERCENTAGE_REMAINING
 uint8 u8Battery3PercentageRemaining;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_3_MANUFACTURER
 tsZCL_CharacterString sBattery3Manufacturer;
 uint8 au8Battery3Manufacturer[16];
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_3_SIZE
 zenum8 u8Battery3Size;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_3_AHR_RATING
 zuint16 u16Battery3AHRating;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_3_QUANTITY
 zuint8 u8Battery3Quantity;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_3_RATED_VOLTAGE
 zuint8 u8Battery3RatedVoltage;
#endif

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
106 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_ALARM_MASK
 zbmap8 u8Battery3AlarmMask;
#endif
#ifdef CLD_PWRCFG_ATTR_BATTERY_3_VOLTAGE_MIN_THRESHOLD
 zuint8 u8Battery3VoltageMinThreshold;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD1
 zuint8 u8Battery3VoltageThreshold1;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD2
 zuint8 u8Battery3VoltageThreshold2;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD3
 zuint8 u8Battery3VoltageThreshold3;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_MIN_THRESHOLD
 zuint8 u8Battery3PercentageMinThreshold;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD1
 zuint8 u8Battery3PercentageThreshold1;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD2
 zuint8 u8Battery3PercentageThreshold2;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD3
 zuint8 u8Battery3PercentageThreshold3;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_ALARM_STATE
 zbmap32 u32Battery3AlarmState;
#endif
#ifdef CLD_PWRCFG_ATTR_ID_ATTRIBUTE_REPORTING_STATUS
 zuint8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_PowerConfiguration;

The attributes are classified into four attribute sets: Mains Information, Mains Settings, Battery Information,
Battery Settings and Global. The attributes from these sets are described below.

Mains Information Attribute Set

• u16MainsVoltage is the measured AC (RMS) mains voltage or DC voltage currently applied to the device,
in units of 100 mV.

• u8MainsFrequency is half of the measured AC mains frequency, in Hertz, currently applied to the device.
Actual frequency = 2 x u8MainsFrequency. This allows AC mains frequencies to be stored in the range
2-506 Hz in steps of 2 Hz. In addition:
– 0x00 indicates a DC supply or that AC frequency is too low to be measured
– 0xFE indicates that AC frequency is too high to be measured
– 0xFF indicates that AC frequency could not be measured.

Mains Settings Attribute Set

• u8MainsAlarmMask is a bitmap indicating which mains voltage alarms can be generated (a bit is set to ‘1’ if
the alarm is enabled):

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
107 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bit Description

0 Under-voltage alarm (triggered when measured RMS mains voltage falls below a pre-defined
threshold - see below)

1 Over-voltage alarm (triggered when measured RMS mains voltage rises above a pre-defined
threshold - see below)

2 Mains power supply has been lost or is unavailable - that is, the device is now running on
battery power.

3-7 Reserved

• u16MainsVoltageMinThreshold is the threshold for the under-voltage alarm, in units of 100
mV. The RMS mains voltage is allowed to fall below this threshold for the duration specified by
16MainsVoltageDwellTripPoint before the alarm is triggered (see below). 0xFFFF indicates that the
alarm will not be generated.

• u16MainsVoltageMaxThreshold is the threshold for the over-voltage alarm, in units of 100
mV. The RMS mains voltage is allowed to rise above this threshold for the duration specified by
16MainsVoltageDwellTripPoint before the alarm is triggered (see below). 0xFFFF indicates that the
alarm will not be generated.

• u16MainsVoltageDwellTripPoint defines the time-delay, in seconds, before an over-voltage or under-
voltage alarm will be triggered when the mains voltage crosses the relevant threshold. If the mains voltage
returns within the limits of the thresholds during this time, the alarm will be cancelled. 0xFFFF indicates that
the alarms will not be generated.

Battery Information Attribute Set (Battery 1)

• u8BatteryVoltage is the measured battery voltage currently applied to the device, in units of 100 mV. 0xFF
indicates that the measured voltage is invalid or unknown.

• u8BatteryPercentageRemaining indicates the remaining battery life as a percentage of the complete
battery lifespan, expressed to the nearest half-percent in the range 0 to 100 - for example, 0xAF represents
87.5%. The special value 0xFF indicates an invalid or unknown measurement.

Battery Settings Attribute Set (Battery 1)

• sBatteryManufacturer is a pointer to the array containing the name of the battery manufacturer (see
below).

• au8BatteryManufacturer[16] is a 16-element array containing the name of the battery manufacturer
(maximum of 16 characters).

• u8BatterySize is an enumeration indicating the type of battery in the device - the enumerations are listed
in Section 9.5.2.

• u16BatteryAHRating is the Ampere-hour (Ah) charge rating of the battery, in units of 10 mAh.
• u8BatteryQuantity is the number of batteries used to power the device.
• u8BatteryRatedVoltage is the rated voltage of the battery, in units of

100 mV.
• u8BatteryAlarmMask is a bitmap indicating whether the battery-low alarm can be generated - if enabled,

the alarm is generated when the battery voltage falls below a pre-defined threshold (see below). The alarm-
enable bit is bit 0 (which is set to ‘1’ if the alarm is enabled).

• u8BatteryVoltageMinThreshold is the battery voltage threshold, in units of 100 mV, below which the
device cannot operate or transmit - a battery-low alarm can be triggered when the battery voltage falls below
this threshold:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
108 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Value Description

0x00 - 0x39 Minimum battery voltage threshold, in units of 100 mV

0x3A Mains power supply has been lost or is unavailable - that is, the device is now running on
battery power.

0x3B - 0xFF Reserved

• u8BatteryVoltageThreshold1 is a battery voltage threshold, in units of 100 mV, which can correspond
to a battery-low alarm - that is, if the battery voltage falls below this threshold, an alarm can be triggered. It
must be greater than the value defined for u8BatteryVoltageMinThreshold. The special value 0xFF indicates
that the threshold is not used.u8BatteryVoltageThreshold2 is a battery voltage threshold, in units of 100 mV,
which can correspond to a battery-low alarm - that is, if the battery voltage falls below this threshold, an alarm
can be triggered. It must be greater than the value defined for u8BatteryVoltageThreshold1. The special value
0xFF indicates that the threshold is not used.

• u8BatteryVoltageThreshold3 is a battery voltage threshold, in units of 100 mV, which can correspond
to a battery-low alarm - that is, if the battery voltage falls below this threshold, an alarm can be triggered. It
must be greater than the value defined for u8BatteryVoltageThreshold2. The special value 0xFF indicates that
the threshold is not used.

• u8BatteryPercentageMinThreshold is the minimum alarm threshold for percentage battery-
life, expressed in half-percent steps in the range 0 to 100 - if the remaining percentage battery-life
(u8BatteryPercentageRemaining) falls below this threshold, an alarm can be triggered.

• u8BatteryPercentageThreshold1 is an alarm threshold for percentage battery-life, expressed in half-
percent steps in the range 0 to 100 - if the remaining percentage battery-life (u8BatteryPercentageRemaining)
falls below this threshold, an alarm can be triggered. It must be greater than the value defined for
u8BatteryPercentageMinThreshold. The special value 0xFF indicates that the threshold is not used.

• u8BatteryPercentageThreshold2 is an alarm threshold for percentage battery-life, expressed in half-
percent steps in the range 0 to 100 - if the remaining percentage battery-life (u8BatteryPercentageRemaining)
falls below this threshold, an alarm can be triggered. It must be greater than the value defined for
u8BatteryPercentageThreshold1. The special value 0xFF indicates that the threshold is not used.

• u8BatteryPercentageThreshold3 is an alarm threshold for percentage battery-life, expressed in half-
percent steps in the range 0 to 100 - if the remaining percentage battery-life (u8BatteryPercentageRemaining)
falls below this threshold, an alarm can be triggered. It must be greater than the value defined for
u8BatteryPercentageThreshold2. The special value 0xFF indicates that the threshold is not used.

• u32BatteryAlarmState is a bitmap representing the current state of the alarms for the battery or batteries
(the bitmap includes status bits for optional additional batteries 2 and 3). It indicates the state of the battery in
relation to the voltage and percentage-life thresholds defined by the attributes above (a bit is set to ‘1’ when
the corresponding threshold has been reached).

Bit Description

Bits for Battery

0 Bit is set if one of the following thresholds has been reached:

u8BatteryVoltageMinThreshold
u8BatteryPercentageMinThreshold

1 Bit is set if one of the following thresholds has been reached:

u8BatteryVoltageThreshold1
u8BatteryPercentageThreshold1

2 Bit is set if one of the following thresholds has been reached:

u8BatteryVoltageThreshold2

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
109 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bit Description
u8BatteryPercentageThreshold2

3 Bit is set if one of the following thresholds has been reached:

u8BatteryVoltageThreshold3
u8BatteryPercentageThreshold3

4 - 9 Reserved

Bits for Battery 2 (Optional)

10 Bit is set if one of the following thresholds has been reached:

u8Battery2VoltageMinThreshold
u8Battery2PercentageMinThreshold

11 Bit is set if one of the following thresholds has been reached:

u8Battery2VoltageThreshold1
u8Battery2PercentageThreshold1

12 Bit is set if one of the following thresholds has been reached:

u8Battery2VoltageThreshold2
u8Battery2PercentageThreshold2

13 Bit is set if one of the following thresholds has been reached:

u8Battery2VoltageThreshold3
u8Battery2PercentageThreshold3

14 - 19 Reserved

Bits for Battery 3 (Optional)

20 Bit is set if one of the following thresholds has been reached:

u8Battery3VoltageMinThreshold
u8Battery3PercentageMinThreshold

21 Bit is set if one of the following thresholds has been reached:

u8Battery3VoltageThreshold1
u8Battery3PercentageThreshold1

22 Bit is set if one of the following thresholds has been reached:

u8Battery3VoltageThreshold2
u8Battery3PercentageThreshold2

23 Bit is set if one of the following thresholds has been reached:

u8Battery3VoltageThreshold3
u8Battery3PercentageThreshold3

24 - 29 Reserved

30 Mains power supply has been lost or is unavailable - that is, the device is now running on battery power

31 Reserved

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
110 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Battery Information and Battery Settings Attribute Sets for Battery <X>

The Battery Information and Battery Settings attribute sets are repeated for up to two further (optional) batteries,
denoted 2 and 3. The attributes are as follows, where <X> is 2 or 3, and their definitions are identical to those of
the equivalent attributes in the Battery Information and Battery Settings attribute sets described above.

u8Battery<X>Voltage
u8Battery<X>PercentageRemaining
au8Battery<X>Manufacturer[16]
u8Battery<X>Size
u16Battery<X>AHRating
u8Battery<X>Quantity
u8Battery<X>RatedVoltage
u8Battery<X>AlarmMask
u8Battery<X>VoltageMinThreshold
u8Battery<X>VoltageThreshold1
u8Battery<X>VoltageThreshold2
u8Battery<X>VoltageThreshold3
u8Battery<X>PercentageMinThreshold
u8Battery<X>PercentageThreshold1
u8Battery<X>PercentageThreshold2
u8Battery<X>PercentageThreshold3
u32Battery<X>AlarmState

Global Attribute Set

u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is also described in Section 2.4.
u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also described in Section 2.4.

9.3 Attributes for Default Reporting
The following attributes of the Power Configuration cluster can be selected for default reporting:

u8BatteryPercentageRemaining
u32BatteryAlarmState

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

9.4 Functions
The below Power Configuration cluster function is provided in the NXP implementation of the ZCL:

eCLD_PowerConfigurationCreatePowerConfiguration

9.4.1 eCLD_PowerConfigurationCreatePowerConfiguration

teZCL_Status eCLD_PowerConfigurationCreatePowerConfiguration(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
111 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function creates an instance of the Power Configuration cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Power
Configuration cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Power Configuration cluster.

The function initializes the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section
6.1.2). In this case, this structure must contain the details of the Power Configuration cluster. This
parameter can refer to a pre-filled structure called sCLD_PowerConfiguration which is provided in the
PowerConfiguration.h file.
pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_PowerConfiguration which defines the attributes
of Power Configuration cluster. The function initializes the attributes with default values.
pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above).

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL

9.5 Enumerations and Defines

9.5.1 teCLD_PWRCFG_AttributeId

The following structure contains the enumerations used to identify the attributes of the Power Configuration
cluster.

typedef enum
{
 /* Mains Information attribute set attribute IDs */

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
112 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE = 0x0000,
 E_CLD_PWRCFG_ATTR_ID_MAINS_FREQUENCY,
 /* Mains settings attribute set attribute IDs */
 E_CLD_PWRCFG_ATTR_ID_MAINS_ALARM_MASK = 0x0010,
 E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE_MIN_THRESHOLD,
 E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE_MAX_THRESHOLD,
 E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE_DWELL_TRIP_POINT,
 /* Battery information attribute set attribute IDs */
 E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE = 0x0020,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_REMAINING,
 /* Battery settings attribute set attribute IDs */
 E_CLD_PWRCFG_ATTR_ID_BATTERY_MANUFACTURER = 0x0030,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_SIZE,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_AHR_RATING,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_QUANTITY,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_RATED_VOLTAGE,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_MASK,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_MIN_THRESHOLD,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD1,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD2,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD3,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_MIN_THRESHOLD,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD1,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD2,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD3,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_STATE,
 /* Battery information 2 attribute set attribute IDs */
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE = 0x0040,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_REMAINING,
 /* Battery settings 2 attribute set attribute IDs */
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_MANUFACTURER = 0x0050,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_SIZE,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_AHR_RATING,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_QUANTITY,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_RATED_VOLTAGE,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ALARM_MASK,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_MIN_THRESHOLD,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD1,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD2,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD3,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_MIN_THRESHOLD,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD1,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD2,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD3,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ALARM_STATE,
 /* Battery information 3 attribute set attribute IDs */
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE = 0x0060,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_REMAINING,
 /* Battery settings 3 attribute set attribute IDs */
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_MANUFACTURER = 0x0070,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_SIZE,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_AHR_RATING,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_QUANTITY,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_RATED_VOLTAGE,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_ALARM_MASK,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_MIN_THRESHOLD,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD1,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD2,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD3,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_MIN_THRESHOLD,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
113 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD1,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD2,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD3,
 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_ALARM_STATE,
 /* Global attribute IDs */
 E_CLD_PWRCFG_ATTR_ID_CLUSTER_REVISION = 0xFFFC,
 E_CLD_PWRCFG_ATTR_ID_ATTRIBUTE_REPORTING_STATUS = 0xFFFE
} teCLD_PWRCFG_AttributeId;

9.5.2 teCLD_PWRCFG_BatterySize

The following structure contains the enumerations used to indicate the type of battery used in the device.

typedef enum
{
 E_CLD_PWRCFG_BATTERY_SIZE_NO_BATTERY = 0x00,
 E_CLD_PWRCFG_BATTERY_SIZE_BUILT_IN,
 E_CLD_PWRCFG_BATTERY_SIZE_OTHER,
 E_CLD_PWRCFG_BATTERY_SIZE_AA,
 E_CLD_PWRCFG_BATTERY_SIZE_AAA,
 E_CLD_PWRCFG_BATTERY_SIZE_C,
 E_CLD_PWRCFG_BATTERY_SIZE_D,
 E_CLD_PWRCFG_BATTERY_SIZE_UNKNOWN = 0xff,
} teCLD_PWRCFG_BatterySize;

9.5.3 Defines for Voltage Alarms

The following #defines are provided for use in the configuration of the mains over-voltage and under-voltage
alarms, and the battery-low alarm.

Mains Alarm Mask

#define CLD_PWRCFG_MAINS_VOLTAGE_TOO_LOW (1 << 0)
#define CLD_PWRCFG_MAINS_VOLTAGE_TOO_HIGH (1 << 1)

Battery Alarm Mask

#define CLD_PWRCFG_BATTERY_VOLTAGE_TOO_LOW (1 << 0)

9.6 Compile-time options
To enable the Power Configuration cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_POWER_CONFIGURATION

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define POWER_CONFIGURATION_CLIENT
#define POWER_CONFIGURATION_SERVER

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
114 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The Power Configuration cluster contains macros that may be optionally specified at compile-time by adding
some or all the following lines to the zcl_options.h file.

Optional Attributes

Add this line to enable the optional Mains Voltage attribute:

#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE

Add this line to enable the optional Mains Frequency attribute:

#define CLD_PWRCFG_ATTR_MAINS_FREQUENCY

Add this line to enable the optional Mains Alarm Mask attribute:

#define CLD_PWRCFG_ATTR_MAINS_ALARM_MASK

Add this line to enable the optional Mains Voltage Min Threshold attribute:

#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE_MIN_THRESHOLD

Add this line to enable the optional Mains Voltage Max Threshold attribute:

#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE_MAX_THRESHOLD

Add this line to enable the optional Mains Voltage Dwell Trip Point attribute:

#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE_DWELL_TRIP_POINT

Add this line to enable the optional Battery Voltage attribute:

#define CLD_PWRCFG_ATTR_BATTERY_VOLTAGE

Add this line to enable the optional Battery Manufacturer attributes:

#define CLD_PWRCFG_ATTR_BATTERY_MANUFACTURER

Add this line to enable the optional Battery Size attribute:

#define CLD_PWRCFG_ATTR_BATTERY_SIZE

Add this line to enable the optional Battery Amp Hour attribute:

#define CLD_PWRCFG_ATTR_BATTERY_AHR_RATING

Add this line to enable the optional Battery Quantity attribute:

#define CLD_PWRCFG_ATTR_BATTERY_QUANTITY

Add this line to enable the optional Battery Rated Voltage attribute:

#define CLD_PWRCFG_ATTR_BATTERY_RATED_VOLTAGE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
115 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Add this line to enable the optional Battery Alarm Mask attribute:

#define CLD_PWRCFG_ATTR_BATTERY_ALARM_MASK

Add this line to enable the optional Battery Voltage Min Threshold attribute:

#define CLD_PWRCFG_ATTR_BATTERY_VOLTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery Percentage Life Remaining attribute:

#define CLD_PWRCFG_ATTR_BATTERY_PERCENTAGE_REMAINING

Add this line to enable the optional Battery Voltage Threshold 1 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD1

Add this line to enable the optional Battery Voltage Threshold 2 attribute:

#define LD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD2

Add this line to enable the optional Battery Voltage Threshold 3 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD3

Add this line to enable the optional Battery Percentage Life Min Threshold attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery Percentage Life Threshold 1 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD1

Add this line to enable the optional Battery Percentage Life Threshold 2 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD2

Add this line to enable the optional Battery Percentage Life Threshold 3 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD3

Add this line to enable the optional Battery Alarm State attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_STATE

Add this line to enable the optional Battery <X> Voltage attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_VOLTAGE

Add this line to enable the optional Battery <X> Percentage Life Remaining attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_PERCENTAGE_REMAINING

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
116 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Add this line to enable the optional Battery <X> Manufacturer attributes:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_MANUFACTURER

Add this line to enable the optional Battery <X> Size attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_SIZE

Add this line to enable the optional Battery <X> Amp Hour attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_AHR_RATING

Add this line to enable the optional Battery <X> Quantity attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_QUANTITY

Add this line to enable the optional Battery <X> Rated Voltage attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_RATED_VOLTAGE

Add this line to enable the optional Battery <X> Alarm Mask attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_ALARM_MASK

Add this line to enable the optional Battery <X> Voltage Min Threshold attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_VOLTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery <X> Voltage Threshold 1 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_VOLTAGE_THRESHOLD1

Add this line to enable the optional Battery <X> Voltage Threshold 2 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_VOLTAGE_THRESHOLD2

Add this line to enable the optional Battery <X> Voltage Threshold 3 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_VOLTAGE_THRESHOLD3

Add this line to enable the optional Battery <X> Percentage Life Remaining attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_PERCENTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery <X> Percentage Life Threshold 1 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_PERCENTAGE_THRESHOLD1

Add this line to enable the optional Battery <X> Percentage Life Threshold 2 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_PERCENTAGE_THRESHOLD2

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
117 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Add this line to enable the optional Battery <X> Percentage Life Threshold 3 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_PERCENTAGE_THRESHOLD3

Add this line to enable the optional Battery <X> Alarm State attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_ALARM_STATE

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_PWRCFG_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_PWRCFG_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
118 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

10 Device Temperature Configuration Cluster

This chapter describes the Device Temperature Configuration cluster, which is concerned with internal
temperature of a device.

The Device Temperature Configuration cluster has a Cluster ID of 0x0002.

10.1 Overview
The Device Temperature Configuration cluster allows:

• Information to be obtained about the internal temperature of a device.
• Over-temperature and under-temperature alarms to be configured.

To use the functionality of this cluster, you must include the file DeviceTemperatureConfiguration.h in your
application and enable the cluster by defining CLD_DEVICE_TEMPERATURE_CONFIGURATION in the
zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

• The cluster server is able to receive commands to access internal temperature data on the local device.
• The cluster client is able to send commands to access the internal temperature data on the remote device.

The inclusion of the client or server software must be pre-defined in the compile-time options of the application.
In addition, if the cluster is designed to reside on a custom endpoint, then the role of client or server must also
be specified when creating the cluster instance.

The compile-time options for the Device Temperature Configuration cluster are fully detailed in Section 10.5.

10.2 Cluster structure and attributes
The structure definition for the Device Temperature Configuration cluster is:

typedef struct
{
#ifdef DEVICE_TEMPERATURE_CONFIGURATION_SERVER
 zint16 i16CurrentTemperature;
#ifdef CLD_DEVTEMPCFG_ATTR_ID_MIN_TEMP_EXPERIENCED
 zint16 i16MinTempExperienced;
#endif
#ifdef CLD_DEVTEMPCFG_ATTR_ID_MAX_TEMP_EXPERIENCED
 zint16 i16MaxTempExperienced;
#endif
#ifdef CLD_DEVTEMPCFG_ATTR_ID_OVER_TEMP_TOTAL_DWELL
 zuint16 u16OverTempTotalDwell;
#endif
#ifdef CLD_DEVTEMPCFG_ATTR_ID_DEVICE_TEMP_ALARM_MASK
 zbmap8 u8DeviceTempAlarmMask;
#endif
#ifdef CLD_DEVTEMPCFG_ATTR_ID_LOW_TEMP_THRESHOLD
 zint16 i16LowTempThreshold;
#endif
#ifdef CLD_DEVTEMPCFG_ATTR_ID_HIGH_TEMP_THRESHOLD
 zint16 i16HighTempThreshold;
#endif
#ifdef CLD_DEVTEMPCFG_ATTR_ID_LOW_TEMP_DWELL_TRIP_POINT
 zuint24 u24LowTempDwellTripPoint;
#endif
#ifdef CLD_DEVTEMPCFG_ATTR_ID_HIGH_TEMP_DWELL_TRIP_POINT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
119 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zuint24 u24HighTempDwellTripPoint;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_DeviceTemperatureConfiguration;

The attributes are classified into three attribute sets: Device Temperature Information, Device Temperature
Settings, and Global. The attributes from these sets are described below.

Device Temperature Information Attribute Set

• i16CurrentTemperature is a mandatory attribute representing the current internal temperature of the
local device, in degrees Celsius. The valid temperature range is -200 to +200 oC (and the value is 0xFFFF is
invalid).

• i16MinTempExperienced is an optional attribute representing the minimum internal temperature
experienced by the local device while powered, in degrees Celsius. The valid temperature range is -200 to
+200oC (and the value is 0xFFFF is invalid).

• i16MaxTempExperienced is an optional attribute representing the maximum internal temperature
experienced by the local device while powered, in degrees Celsius. The valid temperature range is -200 to
+200oC (and the value is 0xFFFF is invalid).

• u16OverTempTotalDwell is an optional attribute representing the total time, in hours, that the device has
spent (in its lifetime) above the temperature specified in the attribute i16HighTempThreshold (see below).

Device Temperature Settings Attribute Set

• u8DeviceTempAlarmMask is an optional attribute containing a bitmap that specifies the device temperature
alarms that are enabled and disabled. The relevant bit is set to ‘1’ for alarm enabled and ‘0’ for alarm disabled,
as shown in the table below.

Bit Alarm

0 Under-temperature alarm (device temperature too low)

1 Over-temperature alarm (device temperature too high)

2-7 Reserved

Table 29. Device Temperature Settings Attribute bitmap

• i16LowTempThreshold is an optional attribute representing the lower temperature threshold, in degrees
Celsius, for an under-temperature alarm. The device temperature is allowed to fall below this threshold for
the duration specified by u24LowTempDwellTripPoint before the alarm is triggered (see below). 0x8000
indicates that the alarm is not generated.

• i16HighTempThreshold is an optional attribute representing the upper temperature threshold, in degrees
Celsius, for an over-temperature alarm. The device temperature is allowed to rise above this threshold for
the duration specified by u24HighTempDwellTripPoint before the alarm is triggered (see below). 0x8000
indicates that the alarm is not generated.

• u24LowTempDwellTripPoint is an optional attribute representing the time delay, in seconds, before an
under-temperature alarm is triggered when the device temperature falls below the lower threshold value
specified in i16LowTempThreshold. If the device temperature returns above the threshold during this time,
the alarm is canceled. 0xFFFFFF indicates that the under-temperature alarm is not generated.

• u24HighTempDwellTripPoint is an optional attribute represent time-delay, in seconds. This attribute
specifies the time before an over-temperature alarm is triggered when the device temperature rises above
the upper threshold value specified in i16HighTempThreshold. If the device temperature returns below the
threshold during this time, the alarm is canceled. 0xFFFFFF indicates that the over-temperature alarm is not
generated.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
120 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Global Attribute Set

u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which
this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1.
The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also
described in Section 2.4.

10.3 Functions
The following Device Temperature Configuration cluster function is provided in the NXP implementation of the
ZCL:

eCLD_DeviceTemperatureConfigurationCreateDeviceTemperatureConfiguration

10.3.1 eCLD_DeviceTemperatureConfigurationCreateDeviceTemperatureConfiguration

teZCL_Status eCLD_DeviceTemperatureConfigurationCreateDeviceTemperatureConfiguration(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Device Temperature Configuration cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure
and can act as a server or a client, as specified.

The function should be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function creates a Device
Temperature Configuration cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

Note: This function is not called for an endpoint on which a standard ZigBee device is used. In this case, the
device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Device Temperature Configuration cluster.

The function initializes the array elements to zero.

Parameters

• psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer Type of cluster instance (server or client) to be created: TRUE - server FALSE - client
• psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2).

In this case, this structure must contain the details of the Device Temperature Configuration cluster. This
parameter can refer to a pre-filled structure called sCLD_DeviceTemperatureConfiguration which is
provided in the DeviceTemperatureConfiguration.h file.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
121 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_DeviceTemperatureConfiguration which defines
the attributes of Device Temperature Configuration cluster. The function initializes the attributes with default
values.

• pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

10.4 Enumerations and Defines

10.4.1 teCLD_DEVTEMPCFG_AttributeId

The following structure contains the enumerations used to identify the attributes of the Device Temperature
Configuration cluster.

typedef enum
{
 /* Device Temperature Information attribute set attribute IDs */
 E_CLD_DEVTEMPCFG_ATTR_ID_CURRENT_TEMPERATURE = 0x0000,
 E_CLD_DEVTEMPCFG_ATTR_ID_MIN_TEMP_EXPERIENCED,
 E_CLD_DEVTEMPCFG_ATTR_ID_MAX_TEMP_EXPERIENCED,
 E_CLD_DEVTEMPCFG_ATTR_ID_OVER_TEMP_TOTAL_DWELL,
 /* Device Temperature Settings attribute set attribute IDs */
 E_CLD_DEVTEMPCFG_ATTR_ID_DEVICE_TEMP_ALARM_MASK = 0x0010,
 E_CLD_DEVTEMPCFG_ATTR_ID_LOW_TEMP_THRESHOLD,
 E_CLD_DEVTEMPCFG_ATTR_ID_HIGH_TEMP_THRESHOLD,
 E_CLD_DEVTEMPCFG_ATTR_ID_LOW_TEMP_DWELL_TRIP_POINT,
 E_CLD_DEVTEMPCFG_ATTR_ID_HIGH_TEMP_DWELL_TRIP_POINT,
} teCLD_DEVTEMPCFG_AttributeId;

10.4.2 Defines for Device Temperature Alarms

The following #defines are provided for use in the configuration of the over-temperature and under-temperature
alarms.

#define CLD_DEVTEMPCFG_BITMASK_DEVICE_TEMP_TOO_LOW (1 << 0)
#define CLD_DEVTEMPCFG_BITMASK_DEVICE_TEMP_TOO_HIGH (1 << 1)

10.5 Compile-time options
To enable the Device Temperature Configuration cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_DEVICE_TEMPERATURE_CONFIGURATION

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define DEVICE_TEMPERATURE_CONFIGURATION_CLIENT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
122 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#define DEVICE_TEMPERATURE_CONFIGURATION_SERVER

The Device Temperature Configuration cluster contains macros that may be optionally specified at compile time
by adding some or all the following lines to the zcl_options.h file.

Optional Attributes

Add this line to enable the optional Minimum Temperature Experienced attribute:

#define CLD_DEVTEMPCFG_ATTR_ID_MIN_TEMP_EXPERIENCED

Add this line to enable the optional Maximum Temperature Experienced attribute:

#define CLD_DEVTEMPCFG_ATTR_ID_MAX_TEMP_EXPERIENCED

Add this line to enable the optional Over Temperature Total attribute:

#define CLD_DEVTEMPCFG_ATTR_ID_OVER_TEMP_TOTAL_DWELL

Add this line to enable the optional Temperature Alarm Mask attribute:

#define CLD_DEVTEMPCFG_ATTR_ID_DEVICE_TEMP_ALARM_MASK

Add this line to enable the optional Low Temperature Threshold attribute:

#define CLD_DEVTEMPCFG_ATTR_ID_LOW_TEMP_THRESHOLD

Add this line to enable the optional High Temperature Threshold attribute:

#define CLD_DEVTEMPCFG_ATTR_ID_HIGH_TEMP_THRESHOLD

Add this line to enable the optional Low Temperature Trip Point attribute:

#define CLD_DEVTEMPCFG_ATTR_ID_LOW_TEMP_DWELL_TRIP_POINT

Add this line to enable the optional High Temperature Trip Point attribute:

#define CLD_DEVTEMPCFG_ATTR_ID_HIGH_TEMP_DWELL_TRIP_POINT

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_DEVTEMPCFG_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
123 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

11 Identify Cluster

This chapter describes the Identify cluster which allows a device to identify itself (for example, by flashing an
LED on the node).

The Identify cluster has a Cluster ID of 0x0003.

11.1 Overview
The Identify cluster allows the host device to be put into identification mode in which the node highlights itself in
some way to an observer (in order to distinguish itself from other nodes in the network). It is recommended that
identification mode should involve flashing a light with a period of 0.5 seconds.

To use the functionality of this cluster, you must include the file Identify.h in your application and enable the
cluster by defining CLD_IDENTIFY in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

• The cluster server is able to receive commands to start and stop identification mode on the local device.
• The cluster client is able to send the above commands to the server (and therefore control identification mode

on the remote device)

The inclusion of the client or server software must be pre-defined in compile-time options of the application. In
addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance.

The compile-time options for the Identify cluster are fully detailed in Section 11.9.

Note: The Identify cluster contains optional functionality for the EZ-mode Commissioning module, which is part
of the ZigBee Base Device functionality and is described in the ZigBee Devices User Guide (JNUG3131).

11.2 Identify Cluster Structure and Attribute
The structure definition for the Identify cluster is:

typedef struct
{
#ifdef IDENTIFY_SERVER
 zuint16 u16IdentifyTime;
#ifdef CLD_IDENTIFY_ATTR_COMMISSION_STATE
 zbmap8 u8CommissionState;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_Identify;

Where:

• u16IdentifyTime is a mandatory attribute specifying the remaining length of time, in seconds, that
the device continues in identification mode. Setting the attribute to a non-zero value puts the device into
identification mode and the attribute is then decremented every second.

• u8CommissionState is an optional attribute for use with EZ-mode Commissioning (see Chapter 40) to
indicate the network status and operational status of the node - this information is contained in a bitmap, as
follows:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
124 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bits Description

0 Network State
• 1 if in the correct network (must be 1 if Operational State bit is 1)
• 0 if not in a network, or in a temporary network, or network status is unknown

1 Operational State
• 1 if commissioned for operation (Network State bit is set to 1)
• 0 if not commissioned for operation

2 - 7 Reserved

Table 30. u8CommissionState Attribute Bitmap

u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which this
instance is based.
The cluster specification in the ZCL r6 corresponds to a cluster revision of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also described in (see
Section 2.4).

11.3 Initialization
The function eCLD_IdentifyCreateIdentify() is used to create an instance of the Identify cluster. This function is
called by the initialization function for the host device but can alternatively be used directly by the application in
setting up a custom endpoint which supports the Identify cluster (among others).

11.4 Sending Commands
The NXP implementation of the ZCL provides functions for sending commands between an Identify cluster
client and server.

11.4.1 Starting and Stopping Identification Mode

The function eCLD_IdentifyCommandIdentifyRequestSend() is used on the cluster client to send a command
to the cluster server requesting identification mode to be started or stopped on the server device. The required
action is contained in the payload of the command (see Section 11.7.2):

• Setting the payload element u16IdentifyTime to a non-zero value has the effect of requesting that the server
device enters identification mode for a time (in seconds) corresponding to the specified value.

• Setting the payload element u16IdentifyTime to zero has the effect of requesting the immediate termination of
any identification mode that is in progress on the server device.

Identification mode can alternatively be started and stopped on a light of a remote node as described in Section
11.4.2.

11.4.2 Requesting Identification Effects

The function eCLD_IdentifyCommandTriggerEffectSend() can be used to request a particular identification
effect or behavior on a light of a remote node. This function can be used for entering and leaving identification
mode instead of eCLD_IdentifyCommandIdentifyRequestSend().

The possible behaviors that can be requested are as follows:

• Blink: Light is switched on and then off (once)
• Breathe: Light is switched on and off by smoothly increasing and then decreasing its brightness over a 1

second period, and then this process is repeated 15 times.
• Okay:

– Colour light goes green for 1 second.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
125 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– Monochrome light flashes twice in 1 second.
• Channel change:

– Colour light goes orange for 8 seconds.
– Monochrome light switches to maximum brightness for 0.5 s and then to minimum brightness for 7.5 s.

• Finish effect: Current stage of effect is completed and then identification mode is terminated (for example, for
the Breathe effect, only the current 1 second cycle is completed).

• Stop effect: Current effect and identification mode are terminated as soon as possible.

11.4.3 Inquiring about Identification Mode

The function eCLD_IdentifyCommandIdentifyQueryRequestSend() is called on an Identify cluster client in
order to request a response from a server cluster when it is in identification mode. This request should only be
unicast.

11.4.4 Using EZ-mode Commissioning Features

The Identify cluster also contains the following optional features that can be used with EZ-mode commissioning,
which is a part of the ZigBee Base Device functionality and is described in the ZigBee Devices User Guide
(JNUG3131).

‘EZ-mode Invoke’ Command

The ‘EZ-mode Invoke’ command is supported which allows a device to schedule and start one or more stages
of EZ-mode commissioning on a remote device. The command is issued by calling the eCLD_IdentifyEZMode
InvokeCommandSend() function and allows the following stages to be specified:

1. Factory Reset: EZ-mode commissioning configuration of the destination device to be reset to ‘Factory Fresh’
settings.

2. Network Steering: Destination device to be put into the ‘Network Steering’ phase.

3. Find and Bind: Destination device to be put into the ‘Find and Bind’ phase.

On receiving the command, the event E_CLD_IDENTIFY_CMD_EZ_MODE_INVOKE is generated on the
remote device, indicating one or more requested commissioning actions. The local application must perform
these actions using the functions of the EZ-mode Commissioning module. If more than one stage is specified,
they must be performed sequentially in the above order and must be contiguous.

If the ‘EZ-mode Invoke’ command is to be used by an application, its use must be enabled at compile time (see
Section 11.9).

‘Commissioning State’ Attribute

The Identify cluster server contains an optional ‘Commissioning State’ attribute, u8CommissionState (see
Section 11.2), which indicates whether the local device is:

• a member of the (correct) network
• in a commissioned state and ready for operation

If the ‘Commissioning State’ attribute is to be used by an application, its use must be enabled at compile time
(see Section 11.9).

The EZ-mode initiator can send an ‘Update Commission State’ command to the target device in order to
update the commissioning state of the target. The command is issued by calling the eCLD_IdentifyUpdate
CommissionStateCommandSend() function. On receiving this command on the target, the ‘Commissioning

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
126 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

State’ attribute is automatically updated. It is good practice for the EZ-mode initiator to send this command to
notify the target device when commissioning is complete.

11.5 Sleeping Devices in Identification Mode
In some cases, a device might sleep between activities (for example, a switch that is configured as a sleeping
End Device) and is also operating in identification mode. In such a case, the device must wake once per second
for the ZCL to decrement the u16IdentifyTime attribute (see Section 11.2), which represents the time remaining
in identification mode. The device may also use this wake time to highlight itself, for example, flash an LED. The
attribute is automatically updated by the ZCL when the application passes an E_ZCL_CBET_TIMER event to
the ZCL via the vZCL_EventHandler() function. The ZCL also automatically increments ZCL time as a result of
this event.

When in identification mode, it is not permissible for a device to sleep for longer than 1 second, and to generate
one timer event on waking. Before entering sleep, the value of the u16IdentifyTime attribute can be checked.
If this value is zero, the device is not in identification mode and is therefore allowed to sleep for longer than 1
second.

For details of updating ZCL time following a prolonged sleep, refer to Section 18.4.1.

11.6 Functions
The following Identify cluster functions are provided in the NXP implementation of the ZCL:

• eCLD_IdentifyCreateIdentify
• eCLD_IdentifyCommandIdentifyRequestSend
• eCLD_IdentifyCommandTriggerEffectSend
• eCLD_IdentifyCommandIdentifyQueryRequestSend
• eCLD_IdentifyEZModeInvokeCommandSend
• eCLD_IdentifyUpdateCommissionStateCommandSend

11.6.1 eCLD_IdentifyCreateIdentify

teZCL_Status eCLD_IdentifyCreateIdentify(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_IdentifyCustomDataStructure
 *psCustomDataStructure);

Description

This function creates an instance of the Identify cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function must be called when setting up a custom endpoint containing one or more selected clusters (rather
than the whole set of clusters supported by a standard ZigBee device). This function creates an Identify cluster
instance on the endpoint, but instances of other clusters may also be created on the same endpoint by calling
their corresponding creation functions.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
127 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: This function should not be called for an endpoint on which a standard ZigBee device is used. In this
case, the device and its supported clusters must be registered on the endpoint using the relevant device
registration function.

When used, this function must be the first Identify cluster function called in the application, and must be called
after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Identify cluster. The function initializes the array elements to zero.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Identify cluster. This parameter can refer to a pre-filled
structure called sCLD_Identify which is provided in the Identify.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_Identify which defines the attributes of Identify cluster. The
function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

• psCustomDataStructure: Pointer to the structure that contains custom data for the Identify cluster (see Section
11.7.1). This structure is used for internal data storage. No knowledge of the fields of this structure is required.

Returns

• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_SUCCESS

11.6.2 eCLD_IdentifyCommandIdentifyRequestSend

teZCL_Status eCLD_IdentifyCommandIdentifyRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Identify_IdentifyRequestPayload *psPayload);

Description

This function can be called on a client device to send a custom command requesting that the recipient server
device either enters or exits identification mode. The required action (start or stop identification mode) must be
specified in the payload of the custom command (see Section 11.7.2). The required duration of the identification
mode is specified in the payload and this value replaces the value in the Identify cluster structure on the target
device.

A device which receives this command generates a callback event on the endpoint on which the Identify cluster
was registered.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
128 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for the command (see Section 11.7.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

11.6.3 eCLD_IdentifyCommandTriggerEffectSend

teZCL_Status eCLD_IdentifyCommandTriggerEffectSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 teCLD_Identify_EffectId eEffectId,
 uint8 u8EffectVariant);

Description

This function can be called on a client device to send a custom command to a server device, in order to control
the identification effect on a light of the target node. Therefore, this function can be used to start and stop
identification mode instead of eCLD_IdentifyCommandIdentifyRequestSend(). Use of the ‘Trigger Effect’
function must be enabled via a compile-time option, as described in Section 11.9.

The following effect commands can be sent using this function:

Effect command Description

Blink Light is switched on and then off (once)

Breathe Light is switched on and off by smoothly increasing and then decreasing its brightness over a
1-second period, and then this is repeated 15 times

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
129 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Effect command Description

Okay • Color light goes green for 1 second
• Monochrome light flashes twice in 1 second

Channel change • Color light goes orange for 8 seconds
• Monochrome light switches to

maximum brightness for 0.5 s and then to
minimum brightness for 7.5 s

Finish effect Current stage of effect is completed and then identification mode is terminated (for example,
for the Breathe effect, only the current 1-second cycle is completed)

Stop effect Current effect and identification mode are terminated as soon as possible

A variant of the selected effect can also be specified, but currently only the default (as described above) is
available.

A device which receives this command generates a callback event on the endpoint on which the Identify cluster
was registered.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• eEffectId: Effect command to send (see above), one of:

– E_CLD_IDENTIFY_EFFECT_BLINK
– E_CLD_IDENTIFY_EFFECT_BREATHE
– E_CLD_IDENTIFY_EFFECT_OKAY
– E_CLD_IDENTIFY_EFFECT_CHANNEL_CHANGE
– E_CLD_IDENTIFY_EFFECT_FINISH_EFFECT
– E_CLD_IDENTIFY_EFFECT_STOP_EFFECT

• u8EffectVariant: Required variant of specified effect - set to zero for default (as no variants are currently
available).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
130 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

11.6.4 eCLD_IdentifyCommandIdentifyQueryRequestSend

tsZCL_Status eCLD_IdentifyCommandIdentifyQueryRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be called on a client device to send a custom command requesting a response from any
server devices that are currently in identification mode.

A device which receives this command generates a callback event on the endpoint on which the Identify cluster
is registered. If the receiving device is in identification mode, it returns a response containing the amount of time
for which it continues in this mode (see Section 11.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

11.6.5 eCLD_IdentifyEZModeInvokeCommandSend

teZCL_Status eCLD_IdentifyEZModeInvokeCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
131 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 bool bDirection,
 tsCLD_Identify_EZModeInvokePayload
 *psPayload);

Description

This function can be used to send an ‘EZ-mode Invoke’ to a remote device. The sent command requests one or
more of the following stages of the EZ-mode commissioning process to be performed on the destination device.
EZ-mode commissioning is a part of the ZigBee Base Device functionality and is described in the ZigBee
Devices User Guide (JNUG3131)).

1. Factory Reset - clears all bindings, group table entries, and the u8CommissionState attribute, and reverts
to the ‘Factory Fresh’ settings.

2. Network Steering - puts the destination device into the ‘Network Steering’ phase.

3. Find and Bind - puts the destination device into the ‘Find and Bind’ phase.

The required stages are specified in a bitmap in the command payload structure
tsCLD_Identify_EZModeInvokePayload (see Section 11.7.4). If more than one stage is specified, they
must be performed in the above order and be contiguous.

On receiving the ‘EZ-mode Invoke’ command on the destination device, an
E_CLD_IDENTIFY_CMD_EZ_MODE_INVOKE event is generated with the required commissioning actions
specified in the u8Action field of the tsCLD_Identify_EZModeInvokePayload structure. It is the
responsibility of the local application to perform the requested actions using the functions of the EZ-mode
Commissioning module (see Section 40.6).

Note that the ‘EZ-mode Invoke’ command is optional and, if necessary, must be enabled in the compile-time
options (see Section 11.9).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• bDirection: Boolean indicating the direction of the command, as follows (this should always be set to TRUE):

– TRUE - Identify cluster client to server
– FALSE - Identify cluster server to client

• psPayload: Pointer to a structure containing the payload for the command (see Section 11.7.4).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
132 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

11.6.6 eCLD_IdentifyUpdateCommissionStateCommandSend

teZCL_Status eCLD_IdentifyUpdateCommissionStateCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Identify_UpdateCommissionStatePayload
 *psPayload);

Description

This function can be used to send an ‘Update Commission State’ command from an EZ-mode initiator device
(cluster client) to a target device (cluster server) in order to update the (optional) u8CommissionState
attribute (see Section 11.2) which is used for EZ-mode commissioning (which is part of the ZigBee Base Device
functionality and is described in the ZigBee Devices User Guide (JNUG3131)). The command allows individual
bits of u8CommissionState to be set or cleared (see Section 11.7.4).

On receiving the ‘Update Commission State’ command on the target device, an event is generated and the
requested update is automatically performed.

Note that the u8CommissionState attribute is optional and, if necessary, must be enabled in the compile-time
options (see Section 11.9).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for the command (see Section 11.7.4).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
133 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

11.7 Structures

11.7.1 Custom Data Structure

 The Identity cluster requires extra storage space to be allocated to be used by internal functions. The
structure definition for this storage is shown below:

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_IdentifyCallBackMessage sCallBackMessage;
 } tsCLD_IdentifyCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

11.7.2 Custom Command Payloads

The following structure contains the payload for an Identify cluster custom command (sent using the function e
CLD_IdentifyCommandIdentifyRequestSend()):

/* Identify request command payload */
typedef struct
{
 zuint16 u16IdentifyTime;
} tsCLD_Identify_IdentifyRequestPayload;

where u16IdentifyTime is the amount of time, in seconds, for which the target device is to remain in
identification mode. If this element is set to 0x0000 and the target device is in identification mode, the mode is
terminated immediately.

11.7.3 Custom Command Responses

The following structure contains the response to a query whether a device is in identification mode (the original
query is sent using the function eCLD_IdentifyCommandIdentifyQueryRequestSend()):

/* Identify query response command payload */
typedef struct
{
 zuint16 u16Timeout;
} tsCLD_Identify_IdentifyQueryResponsePayload;

where u16Timeout is the amount of time, in seconds, that the responding device remains in identification
mode.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
134 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

11.7.4 EZ-mode Commissioning Command Payloads

The structures described below may be used when the Identify cluster is used with EZ-mode commissioning
(which is part of the ZigBee Base Device functionality and is described in the ZigBee Devices User Guide
(JNUG3131)).

‘EZ-Mode Invoke’ Command Payload

The following structure is used when sending an ‘EZ-mode Invoke’ command (using the eCLD_Identify
EZModeInvokeCommandSend() function).

typedef struct
{
 zbmap8 u8Action;
} tsCLD_Identify_EZModeInvokePayload;

where u8Action is a bitmap specifying the EZ-mode commissioning actions to be performed on the destination
device - a bit is set to ‘1’ if the corresponding action is required, or to ‘0’ if it is not required:

Bits Action

0 Factory Reset - clears all bindings, group table entries, and the u8CommissionState attribute, and
reverts to the ‘Factory Fresh’ settings

1 Network Steering - puts the device into the ‘Network Steering’ phase

2 Find and Bind - puts the device into the ‘Find and Bind’ phase

3 - 7 Reserved

‘Update Commission State’ Command Payload

The following structure is used when sending an ‘Update Commission State’ command (using the eCLD_
IdentifyUpdateCommissionStateCommandSend() function), which requests an update to the value of the
u8CommissionState attribute (for the definition of the attribute, refer to Section 11.2).

typedef struct
{
 zenum8 u8Action;
 zbmap8 u8CommissionStateMask;
} tsCLD_Identify_UpdateCommissionStatePayload;

where:

• u8Action is a value specifying the action to perform (set or clear) on the u8CommissionState bits
specified through u8CommissionStateMask:
– 1: Set the specified bits to ‘1’.
– 2: Clear the specified bits to ‘0’.

All other values are reserved.
• u8CommissionStateMask is a bitmap in which the bits correspond to the bits of the u8CommissionState

attribute. A bit of this field indicates whether the corresponding attribute bit is to be updated (according to the
action specified in u8Action):
– If a bit is set to ‘1’, the corresponding u8CommissionState bit should be updated.
– If a bit is set to ‘0’, the corresponding u8CommissionState bit should not be updated.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
135 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

11.8 Enumerations

11.8.1 teCLD_Identify_ClusterID

The following structure contains the enumerations used to identify the attributes of the Identify cluster.

typedef enum
{
 E_CLD_IDENTIFY_ATTR_ID_IDENTIFY_TIME = 0x0000, /* Mandatory */
 E_CLD_IDENTIFY_ATTR_ID_COMMISSION_STATE /* Optional */
 } teCLD_Identify_ClusterID;

11.9 Compile-time options
To enable the Identify cluster in the code to be built, it is necessary to add the following to the zcl_options.h
file:

#define CLD_IDENTIFY

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define IDENTIFY_CLIENT
#define IDENTIFY_SERVER

The following cluster functionality can be enabled or configured in zcl_options.h.

Cluster Revision

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_IDENTIFY_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

Trigger Effect

Add this line to enable use of the eCLD_IdentifyCommandTriggerEffectSend() function to remotely start/stop
identification mode:

#define CLD_IDENTIFY_CMD_TRIGGER_EFFECT

Enhanced Functionality for EZ-mode Commissioning

To enable the optional ‘Commission State’ attribute, you must include:

#define CLD_IDENTIFY_ATTR_COMMISSION_STATE

To enable the optional ‘EZ-mode Invoke’ command, you must include:

#define CLD_IDENTIFY_CMD_EZ_MODE_INVOKE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
136 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

EZ-mode commissioning is part of the ZigBee Base Device functionality and is described in the ZigBee Devices
User Guide (JNUG3131).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
137 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

12 Groups Cluster

This chapter describes the Groups cluster which allows the management of the Group table concerned with
group addressing.

The Groups cluster has a Cluster ID of 0x0004.

12.1 Overview
The Groups cluster allows the management of group addressing that is available in ZigBee PRO. In this
addressing scheme, an endpoint on a device can be a member of a group comprising endpoints from one or
more devices. The group is assigned a 16-bit group ID or address. The group ID and the local member endpoint
numbers are held in an entry of the Group table on a device. If a message is sent to a group address, the Group
table is used to determine to which endpoints (if any) the message should deliver on the device. A group can
be assigned a name of up to 16 characters and the cluster allows the support of group names to be enabled/
disabled.

To use the functionality of this cluster, you must include the file Groups.h in your application and enable the
cluster by defining CLD_GROUPS in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

• The cluster server is able to receive commands to modify the local group table.
• The cluster client is able to send commands to the server to request changes to the group table on the server.

The inclusion of the client or server software must be pre-defined in the compile-time options of the application.
In addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance.

The compile-time options for the Groups cluster are fully detailed in Section 12.8.

12.2 Groups Cluster structure and attributes
The structure definition for the Groups cluster is:

typedef struct
{
 zbmap8 u8NameSupport;
 zuint16 u16ClusterRevision;
} tsCLD_Groups;

where:

• u8NameSupport indicates whether group names are supported by the cluster:
– A most significant bit of 1 indicates that group names are supported.
– A most significant bit of 0 indicates that group names are not supported.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

12.3 Initialization
The function eCLD_GroupsCreateGroups() is used to create an instance of the Groups cluster. The
function is called by the initialization function for the host device.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
138 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

A local endpoint can be added to a group on the local node using the function eCLD_GroupsAdd(). If the group
does not exist, the function creates it. Therefore, this is a way of creating a local group.

12.4 Sending Commands
The NXP implementation of the ZCL provides functions for sending commands between a Groups cluster client
and server. A command is sent from the client to one or more endpoints on the server. Multiple endpoints can
be targeted using binding or group addressing.

12.4.1 Adding Endpoints to Groups

Two functions are provided for adding one or more endpoints to a group on a remote device. Each function
sends a command to the endpoints to be added to the group, where the required group is specified in the
payload of the command. If the group does not exist in the Group table of the target device, it is added to the
table.

• eCLD_GroupsCommandAddGroupRequestSend() can be used to request the addition of the target
endpoints to the specified group.

• eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend() can be used to request the addition of the
target endpoints to the specified group if the target device is in identification mode of the Identity cluster (see
Chapter 11).

An endpoint can also be added to a local group, as described in Section 12.3.

12.4.2 Removing Endpoints from Groups

Two functions are provided for removing one or more endpoints from groups on a remote device. Each function
sends a command to the endpoints to be removed from the groups. If a group is empty following the removal of
the endpoint, it is deleted in the Group table.

• eCLD_GroupsCommandRemoveGroupRequestSend() can be used to request the removal of the target
endpoint from the group which is specified in the payload of the command.

• eCLD_GroupsCommandRemoveAllGroupsRequestSend() can be used to request the removal of the
target endpoint from all groups on the remote device.

If an endpoint is a member of a scene associated with a group to be removed, the above function calls also
results in the removal of the endpoint from the scene.

12.4.3 Obtaining Information about Groups

Two functions are provided for obtaining information about groups. Each function sends a command to the
endpoints to which the inquiry relates.

• eCLD_GroupsCommandViewGroupRequestSend() can be used to request the name of a group with the
ID/address specified in the command payload.

• eCLD_GroupsCommandGetGroupMembershipRequestSend() can be used to determine whether the
target endpoint is a member of any of the groups specified in the command payload.

12.5 Functions
The following Groups cluster functions are provided in the NXP implementation of the ZCL:

1. eCLD_GroupsCreateGroups
2. eCLD_GroupsAdd
3. eCLD_GroupsCommandAddGroupRequestSend

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
139 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

4. eCLD_GroupsCommandViewGroupRequestSend
5. eCLD_GroupsCommandGetGroupMembershipRequestSend
6. eCLD_GroupsCommandRemoveGroupRequestSend
7. eCLD_GroupsCommandRemoveAllGroupsRequestSend
8. eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend

12.5.1 eCLD_GroupsCreateGroups

teZCL_Status eCLD_GroupsCreateGroups(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 tsCLD_GroupsCustomDataStructure
 *psCustomDataStructure,
 tsZCL_EndPointDefinition *psEndPointDefinition);

Description

This function creates an instance of the Groups cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function must be called when setting up a custom endpoint containing one or more selected clusters (rather
than the whole set of clusters supported by a standard ZigBee device). This function creates a Groups cluster
instance on the endpoint, but instances of other clusters may also be created on the same endpoint by calling
their corresponding creation functions.

Note: Do not call this function for an endpoint on which a standard ZigBee device is used. In this case, the
device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be the first Groups cluster function called in the application, and must be called
after the stack has been started and after the ZCL has been initialized.

The function retrieves any group IDs already stored in the Application Information Base (AIB) of the ZigBee
PRO stack. However, the AIB does not store group names. If name support is required, the application should
store the group names using the NVM module, so that they can be retrieved following a power outage.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Groups cluster. This parameter can refer to a pre-filled
structure called sCLD_Groups which is provided in the Groups.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_Groups which defines the attributes of Groups cluster. The
function initializes the attributes with default values.

• psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see
Section 12.6.1).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
140 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• psEndPointDefinition: Pointer to the ZCL endpoint definition structure for the application (see Section 6.1.1).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

12.5.2 eCLD_GroupsAdd

teZCL_Status eCLD_GroupsAdd(uint8 u8SourceEndPointId,
 uint16 u16GroupId,
 uint8 *pu8GroupName);

Description

This function adds the specified endpoint on the local node to the group with the specified group ID/address
and specified group name. The relevant entry is modified in the Group table on the local endpoint (of the calling
application). If the group does not currently exist, it is created by adding a new entry for the group to the Group
table.

Note that the number of entries in the Group table must not exceed the value of
CLD_GROUPS_MAX_NUMBER_OF_GROUPS defined at compile time (see Section 12.8).

Parameters

• u8SourceEndPointId: Number of local endpoint to be added to group.
• u16GroupId: 16-bit group ID/address of group.
• pu8GroupName: Pointer to character string representing name of group.

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

12.5.3 eCLD_GroupsCommandAddGroupRequestSend

teZCL_Status eCLD_GroupsCommandAddGroupRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Groups_AddGroupRequestPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
141 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends an Add Group command to a remote device, requesting that the specified endpoints on the
target device be added to a group. The group ID/address and name (if supported) are specified in the payload
of the message, and must be added to the Group table on the target node along with the associated endpoint
numbers.

The device receiving this message generates a callback event on the endpoint on which the Groups cluster is
registered. Also, add the group to its Group table before sending a response indicating success or failure (see
Section 12.6.4).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 12.6.3).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

12.5.4 eCLD_GroupsCommandViewGroupRequestSend

teZCL_Status eCLD_GroupsCommandViewGroupRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Groups_ViewGroupRequestPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
142 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a View Group command to a remote device, requesting the name of the group with the
specified group ID (address) on the destination endpoint.

The device receiving this message generates a callback event on the endpoint on which the Groups cluster was
registered and generates a View Group response containing the group name (see Section 12.6.4).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 12.6.3).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

12.5.5 eCLD_GroupsCommandGetGroupMembershipRequestSend

teZCL_Status eCLD_GroupsCommandGetGroupMembershipRequestSend
 (uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Groups_GetGroupMembershipRequestPayload
 *psPayload);

Description

This function sends a Get Group Membership command to inquire whether the target endpoint is a member of
any of the groups specified in a list contained in the command payload.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
143 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The device receiving this message generates a callback event on the endpoint on which the Groups cluster is
registered and generates a Get Group Membership response containing the required information (see Section
12.6.4).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 12.6.3).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

12.5.6 eCLD_GroupsCommandRemoveGroupRequestSend

teZCL_Status eCLD_GroupsCommandRemoveGroupRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Groups_RemoveGroupRequestPayload
 *psPayload);

Description

This function sends a Remove Group command to request that the target device deletes membership of the
destination endpoints from a particular group - that is, remove the endpoints from the entry of the group in the
Group table on the device and, if no other endpoints remain in the group, remove the group from the table.

The device receiving this message generates a callback event on the endpoint on which the Groups cluster
is registered. If the group becomes empty following the deletion, the device removes the group ID and group
name from its Group table. It then generates an appropriate Remove Group response indicating success or
failure (see Section 12.6.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
144 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If the target endpoint belongs to a scene associated with the group to be removed (requiring the Scenes cluster
- see Chapter 13), the endpoint is also removed from this scene as a result of this function call - that is, the
relevant scene entry is deleted from the Scene table on the target device.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: The number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 12.6.3).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

12.5.7 eCLD_GroupsCommandRemoveAllGroupsRequestSend

teZCL_Status eCLD_GroupsCommandRemoveAllGroupsRequestSend
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function sends a Remove All Groups command to request that the target device removes all group
memberships of the destination endpoints. Issuing this command removes the endpoints from all group entries
in the Group table on the device. If no other endpoints remain in a group, the function removes the group from
the table.

The device receiving this message generates a callback event on the endpoint on which the Groups cluster is
registered. If a group becomes empty following the deletion, the device removes the group ID and group name
from its Group table.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
145 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If the target endpoint belongs to scenes associated with the groups to be removed, calling this function also
removes the endpoint from the scenes. The relevant scene entries are deleted from the Scene table on the
target device. (For details about the Scenes cluster - refer to Chapter 13).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: The number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

The eCLD_GroupsCommandRemoveAllGroupsRequestSend function invokes the ZigBee PRO stack
function to transmit the data. If the ZigBee PRO stack function returns an error, the same can be obtained by
calling the eZCL_GetLastZpsError() function.

12.5.8 eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend

teZCL_Status eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend
 (uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Groups_AddGroupRequestPayload
 *psPayload);

Description

This function sends an Add Group If Identifying command to a remote device, requesting that the specified
endpoints on the target device be added to a particular group on the condition that the remote device is
identifying itself. The group ID/address and name (if supported) are specified in the payload of the message,
and must be added to the Group table on the target node along with the associated endpoint numbers. The
identifying functionality is controlled using the Identify cluster (see Chapter 11).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
146 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The device receiving this message generates a callback event on the endpoint on which the Groups cluster is
registered and then checks whether the device is identifying itself. If so, the device (if possible) adds the group
ID and group name to its Group table. If the device is not identifying itself, then no action is taken.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 12.6.3).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function, which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

12.6 Structures

12.6.1 Custom Data Structure

The Groups cluster requires extra storage space to be allocated to be used by internal functions. The structure
definition for this storage is shown below:

typedef struct
{
 DLIST lGroupsAllocList;
 DLIST lGroupsDeAllocList;
 bool bIdentifying;
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_GroupsCallBackMessage sCallBackMessage;
#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)
 tsCLD_GroupTableEntry
 asGroupTableEntry[CLD_GROUPS_MAX_NUMBER_OF_GROUPS];
#endif
} tsCLD_GroupsCustomDataStructure;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
147 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The fields are for internal use and no knowledge of them is required.

However, the structure tsCLD_GroupTableEntry used for the Group table entries is shown in Section 12.6.2.

12.6.2 Group Table Entry

The following structure contains a Group table entry.

typedef struct
{
 DNODE dllGroupNode;
 uint16 u16GroupId;
 uint8 au8GroupName[CLD_GROUPS_MAX_GROUP_NAME_LENGTH + 1];
} tsCLD_GroupTableEntry;

The fields are for internal use and no knowledge of them is required.

12.6.3 Custom Command Payloads

The following structures contain the payloads for the Groups cluster custom commands.

Add Group Request Payload

typedef struct
{
 zuint16 u16GroupId;
 tsZCL_CharacterString sGroupName;
} tsCLD_Groups_AddGroupRequestPayload;

where:

• u16GroupId is the ID/address of the group to which the endpoints must be added.
• sGroupName is the name of the group to which the endpoints must be added.

View Group Request Payload

typedef struct
{
 zuint16 u16GroupId;
} tsCLD_Groups_ViewGroupRequestPayload;

where u16GroupId is the ID/address of the group whose name is required

Get Group Membership Request Payload

typedef struct
{
 zuint8 u8GroupCount;
 zint16 *pi16GroupList;
} tsCLD_Groups_GetGroupMembershipRequestPayload;

where:

• u8GroupCount is the number of groups in the list of the next field.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
148 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pi16GroupList is a pointer to a list of groups whose memberships are being queried, where each group is
represented by its group ID/address.

Remove Group Request Payload

typedef struct
{
 zuint16 u16GroupId;
} tsCLD_Groups_RemoveGroupRequestPayload;

where u16GroupId is the ID/address of the group from which the endpoints must be removed.

12.6.4 Custom Command Responses

The Groups cluster generates responses to certain custom commands. The responses which contain payloads
are detailed below:

Add Group Response Payload

typedef struct
{
 zenum8 eStatus;
 zuint16 u16GroupId;
} tsCLD_Groups_AddGroupResponsePayload;

where:

• eStatus is the status (success or failure) of the requested group addition.
• u16GroupId is the ID/address of the group to which endpoints were added.

View Group Response Payload

typedef struct
{
 zenum8 eStatus;
 zuint16 u16GroupId;
 tsZCL_CharacterString sGroupName;
} tsCLD_Groups_ViewGroupResponsePayload;

where:

• eStatus is the status (success or failure) of the requested operation.
• u16GroupId is the ID/address of the group whose name was requested.
• sGroupName is the returned name of the specified group.

Get Group Membership Response Payload

typedef struct
{
 zuint8 u8Capacity;
 zuint8 u8GroupCount;
 zint16 *pi16GroupList;
} tsCLD_Groups_GetGroupMembershipResponsePayload;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
149 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where:

• u8Capacity is the capacity of the Group table of the device to receive more groups - that is, the number of
groups that may be added (special values: 0xFE means that at least one additional group may be added, a
higher value means that the remaining capacity of the table is unknown).

• u8GroupCount is the number of groups in the list of the next field.
• pi16GroupList is a pointer to the returned list of groups from those queried that exist on the device, where

each group is represented by its group ID/address.

Remove Group Response Payload

typedef struct
{
 zenum8 eStatus;
 zuint16 u16GroupId;
} tsCLD_Groups_RemoveGroupResponsePayload;

where:

• eStatus is the status (success or failure) of the requested group modification.
• u16GroupId is the ID/address of the group from which endpoints were removed.

12.7 Enumerations

12.7.1 teCLD_Groups_ClusterID

The following structure contains the enumeration used to identify the attribute of the Groups cluster.

typedef enum
{
 E_CLD_GROUPS_ATTR_ID_NAME_SUPPORT = 0x0000 /* Mandatory */
} teCLD_Groups_ClusterID;

12.8 Compile-time Options
To enable the Groups cluster in the code to be built, it is necessary to add the following to the zcl_options.h
file:

#define CLD_GROUPS

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define GROUPS_CLIENT
#define GROUPS_SERVER

The Groups cluster contains macros that may be optionally specified at compile time by adding one or both of
the following lines to the zcl_options.h file.

To set the size used for the group addressing table in the .zpscfg file,

Add this line:

#define CLD_GROUPS_MAX_NUMBER_OF_GROUPS (8)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
150 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

To configure the maximum length of the group name, add the following line:

#define CLD_GROUPS_MAX_GROUP_NAME_LENGTH (16)

To define the value (n) of the Cluster Revision attribute, add the following line:

#define CLD_GROUPS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
151 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

13 Scenes Cluster

This chapter describes the Scenes cluster that allows scenes to be managed.

The Scenes cluster has a Cluster ID of 0x0005.

13.1 Overview
A scene is a set of stored attribute values for one or more cluster instances, where these cluster instances may
exist on endpoints on one or more devices.

The Scenes cluster allows standard values for these attributes to be set and retrieved. Thus, the cluster can
be used to put the network or part of the network into a pre-defined mode (for example, Night or Day mode
for a lighting network). These pre-defined scenes can be used as a basis for ‘mood lighting’. A Scenes cluster
instance must be created on each endpoint which contains a cluster that is part of a scene.

A scene is often associated with a group (which collects together a set of endpoints over one or more devices) -
groups are described in Chapter 12. A scene may, however, be used without a group.

Note: When the Scenes cluster is used on an endpoint, a Groups cluster instance must always be created on
the same endpoint, even if a group is not used for the scene.

If a cluster on a device is used in a scene, an entry for the scene must be contained in the Scene table on the
device. A Scene table entry includes the scene ID, the group ID associated with the scene (0x0000 if there
is no associated group), the scene transition time (amount of time to switch to the scene), and the attribute
settings for the clusters on the device. The scene ID must be unique within the group with which the scene is
associated.

To use the functionality of this cluster, you must include the file Scenes.h in your application and enable the
cluster by defining CLD_SCENES in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

• The cluster server is able to receive commands to access scenes.
• The cluster client is able to send commands to the server to request read or write access to scenes.

The inclusion of the client or server software must be pre-defined in the compile-time options of the application
(in addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be
specified when creating the cluster instance).

The compile-time options for the Scenes cluster are fully detailed in Section 13.9.

13.2 Scenes Cluster structure and attributes
The structure definition for the Scenes cluster is:

typedef struct
{
#ifdef SCENES_SERVER
 zuint8 u8SceneCount;
 zuint8 u8CurrentScene;
 zuint16 u16CurrentGroup;
 zbool bSceneValid;
 zuint8 u8NameSupport;
#ifdef CLD_SCENES_ATTR_LAST_CONFIGURED_BY
 zieeeaddress u64LastConfiguredBy;
#endif
#endif
 zuint16 u16ClusterRevision;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
152 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

} tsCLD_Scenes;

where:

• u8SceneCount is the number of scenes currently in the Scene table.
• u8CurrentScene is the scene ID of the last scene invoked on the device.
• u16CurrentGroup is the group ID of the group associated with the last scene invoked (or 0x0000 if this

scene is not associated with a group).
• bSceneValid indicates whether the current state of the device corresponds to the values of the
CurrentScene and CurrentGroup attributes (TRUE if they do, FALSE if they do not).

• u8NameSupport indicates whether scene names are supported - if the most significant bit is 1 then they are
supported, otherwise they are not supported.

• u64LastConfiguredBy is the 64-bit IEEE address of the device that last configured the Scene table
(0xFFFFFFFFFFFFFFFF indicates that the address is unknown or the table has not been configured).

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

13.3 Initialization
The function eCLD_ScenesCreateScenes() is used to create an instance of the Scenes cluster. The function is
generally called by the initialization function for the host device.

13.4 Sending Remote Commands
The NXP implementation of the ZCL provides functions for sending commands between a Scenes cluster client
and server. A command is sent from the client to one or more endpoints on the server. Multiple endpoints can
usually be targeted using binding or group addressing.

Note: Commands can also be issued for operations on the local node, as described in Section 13.5.

13.4.1 Creating a Scene

In order to create a scene, add an entry for the scene to the Scene table on every device that contains a cluster,
which is associated with the scene.

Use the function eCLD_ScenesCommandAddSceneRequestSend() to request a scene to be added to a
Scene table on a remote device. Invoking this function sends a request to a single device or to multiple devices
(using binding or group addressing). The fields of the Scene table entry are specified in the payload of the
request.

Alternatively:

• The function eCLD_ScenesCommandEnhancedAddSceneRequestSend() can be used to request that a
scene is added to a Scene table on a remote device. This method allows the transition time for the scene to
be set in units of tenths of a second (rather than seconds).

• A scene can be created by saving the current attribute settings of the relevant clusters. In this way, the current
state of the system can be captured as a scene and reapplied ‘at the touch of a button’ when required. For
example scenes can be created for lighting levels in a ‘smart lighting’ system. The current settings are stored
as a scene in the Scene table using eCLD_ScenesCommandStoreSceneRequestSend(). This function can
send the request to a single device or multiple devices. If a Scene table entry exists with the same scene ID
and group ID, the existing cluster settings in the entry are overwritten with the new ‘captured’ settings.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
153 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: This operation of capturing the current system state as a scene does not result in meaningful settings
for the transition time and scene name fields of the Scene table entry. If non-null values are required for
these fields, the table entry should be created in advance with the desired field values using eCLD_Scenes
CommandAddSceneRequestSend().

13.4.2 Copying a Scene

Scene settings can be copied from one scene to another scene on the same remote endpoint using the e
CLD_ScenesCommandCopySceneSceneRequestSend() function. This function allows the settings from an
existing scene with a specified source scene ID and associated group ID to be copied to a new scene with a
specified destination scene ID and associated group ID.

Note: If an entry corresponding to the target scene ID and group ID exists in the Scene table on the endpoint,
the entry settings are overwritten with the copied settings. Otherwise, a new Scene table entry is created with
these settings.

The above function also allows all scenes associated with particular group ID to be copied to another group
ID. In this case, the original scene IDs are maintained but are associated with the new group ID (any specified
source and destination scene IDs are ignored). Thus, the same scene IDs are associated with two different
group IDs.

13.4.3 Applying a Scene

The cluster settings of a scene stored in the Scene table can be retrieved and applied to the system by calling
eCLD_ScenesCommandRecallSceneRequestSend(). Again, this function can send a request to a single
device or to multiple devices (using binding or group addressing).

If the required scene does not contain any settings for a particular cluster or there are some missing attribute
values for a cluster, these attribute values remain unchanged in the implementation of the cluster - that is, the
corresponding parts of the system do not change their states.

13.4.4 Deleting a Scene

Two functions are provided for removing scenes from the system:

• eCLD_ScenesCommandRemoveSceneRequestSend() can be used to request the removal of the
destination endpoint from a particular scene - that is, to remove the scene from the Scene table on the target
device.

• eCLD_ScenesCommandRemoveAllScenesRequestSend() can be used to request that the target device
removes scenes associated with a particular group ID/address - that is, remove all Scene table entries relating
to this group ID. Specifying a group ID of 0x0000 removes all scenes not associated with a group.

13.4.5 Obtaining Information about Scenes

The following functions are provided for obtaining information about scenes:

• eCLD_ScenesCommandViewSceneRequestSend() can be used to request information on a particular
scene on the destination endpoint. Only one device may be targeted by this function. The target device
returns a response containing the relevant information.

Alternatively, eCLD_ScenesCommandEnhancedViewSceneRequestSend() can be used, which allows
the transition time for the scene to be obtained in units of tenths of a second (rather than seconds).

• eCLD_ScenesCommandGetSceneMembershipRequestSend() can be used to discover which scenes
are associated with a particular group on a device. The request can be sent to a single device or to multiple
devices. The target device returns a response containing the relevant information (in the case of multiple

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
154 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

target devices, no response is returned from a device that does not contain a scene associated with the
specified group ID). In this way, the function can be used to determine the unused scene IDs.

13.5 Issuing Local Commands
Some of the operations described in Section 13.4 that correspond to remote commands can also be performed
locally, as described below.

13.5.1 Creating a Scene

A scene can be created on the local node using either of the following functions:

• eCLD_ScenesAdd(): This function can be used to add a new scene to the Scene table on the specified local
endpoint. A scene ID and an associated group ID must be specified (the latter must be set to 0x0000 if there
is no group association). If a scene with these IDs exists in the table, the existing entry is overwritten.

• eCLD_ScenesStore(): This function can be used to save the currently implemented attribute values on the
device to a scene in the Scene table on the specified local endpoint. A scene ID and an associated group ID
must be specified (the latter must be set to 0x0000 if there is no group association). If a scene with these IDs
exists in the table, the existing entry is overwritten except for the transition time and scene name fields.

13.5.2 Applying a Scene

An existing scene can be applied on the local node using the function eCLD_ScenesRecall(). This function
reads the stored attribute values for the specified scene from the local Scene table and implements them on the
device. The values of any attributes that are not included in the scene remain unchanged.

13.6 Functions
The following Scenes cluster functions are provided in the NXP implementation of the ZCL:

1. eCLD_ScenesCreateScenes
2. eCLD_ScenesAdd
3. eCLD_ScenesStore
4. eCLD_ScenesRecall
5. eCLD_ScenesCommandAddSceneRequestSend
6. eCLD_ScenesCommandViewSceneRequestSend
7. eCLD_ScenesCommandRemoveSceneRequestSend
8. eCLD_ScenesCommandRemoveAllScenesRequestSend
9. eCLD_ScenesCommandStoreSceneRequestSend

10. eCLD_ScenesCommandRecallSceneRequestSend
11. eCLD_ScenesCommandGetSceneMembershipRequestSend
12. eCLD_ScenesCommandEnhancedAddSceneRequestSend
13. eCLD_ScenesCommandEnhancedViewSceneRequestSend
14. eCLD_ScenesCommandCopySceneSceneRequestSend

13.6.1 eCLD_ScenesCreateScenes

teZCL_Status eCLD_ScenesCreateScenes(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
155 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 *pu8AttributeControlBits,
 tsCLD_ScenesCustomDataStructure
 *psCustomDataStructure,
 tsZCL_EndPointDefinition *psEndPointDefinition);

Description

This function creates an instance of the Scenes cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function should be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function creates a Scenes
cluster instance on the endpoint, but instances of other clusters may also be created on the same endpoint by
calling their corresponding creation functions.

Note: Do not call this function for an endpoint on which a standard ZigBee device is used. In this case, the
device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be the first Scenes cluster function called in the application, and must be called
after the stack has been started and after the ZCL has been initialized.

On calling this function for the first time, a ‘global scene’ entry is created/reserved in the Scene table. On
subsequent calls (for example, following a power-cycle or on waking from sleep), if the scene data is recovered
by the application from non-volatile memory before the function is called then there is no reinitialization of the
scene data. Note that removing all groups from the device also removes the global scene entry (along with
other scene entries) from the Scene table.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Scene cluster.

The function initializes the array elements to zero.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this
case, this structure must contain the details of the Scenes cluster. This parameter can refer to a pre-filled
structure called sCLD_Scenes which is provided in the Scenes.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_Scenes which defines the attributes of Scenes cluster. The
function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

• psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see
Section 13.7.1)

• psEndPointDefinition: Pointer to the ZCL endpoint definition structure for the application (see Section 6.1.1)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
156 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

13.6.2 eCLD_ScenesAdd

teZCL_Status eCLD_ScenesAdd(
 uint8 u8SourceEndPointId,
 uint16 u16GroupId,
 uint8 u8SceneId);

Description

This function adds a new scene on the specified local endpoint - that is, adds an entry to the Scenes table on
the endpoint. The group ID associated with the scene must also be specified (or set to 0x0000 if there is no
associated group).

If a scene with the specified scene ID and group ID exists in the table, the existing entry is overwritten (that is,
all previous scene data in this entry is lost).

Parameters

• u8SourceEndPointId: Number of local endpoint on which Scene table entry is to be added.
• u16GroupId: 16-bit group ID/address of associated group (or 0x0000 if no group).
• u8SceneId: 8-bit scene ID of new scene.

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

13.6.3 eCLD_ScenesStore

teZCL_Status eCLD_ScenesStore(
 uint8 u8SourceEndPointId,
 uint16 u16GroupId,
 uint8 u8SceneId);

Description

This function adds a new scene on the specified local endpoint, based on the current cluster attribute values
of the device- that is, saves the current attribute values of the device to a new entry of the Scenes table on
the endpoint. The group ID associated with the scene must also be specified (or set to 0x0000 if there is no
associated group).

If a scene with the specified scene ID and group ID exists in the table, the existing entry is overwritten. The
previous scene data in this entry is lost, except for the transition time field and the scene name field - these
fields are left unchanged.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
157 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• u8SourceEndPointId: Number of local endpoint on which Scene table entry is to be added.
• u16GroupId: 16-bit group ID/address of associated group (or 0x0000 if no group)
• u8SceneId: 8-bit scene ID of scene

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

13.6.4 eCLD_ScenesRecall

teZCL_Status eCLD_ScenesRecall(
 uint8 u8SourceEndPointId,
 uint16 u16GroupId,
 uint8 u8SceneId);

Description

This function obtains the attribute values (from the extension fields) of the scene with the specified Scene ID
and Group ID on the specified (local) endpoint, and sets the corresponding cluster attributes on the device
to these values. Thus, the function reads the stored attribute values for a scene and implements them on the
device.

Note that the values of any cluster attributes that are not included in the scene remains unchanged.

Parameters

• u8SourceEndPointId: Number of local endpoint containing Scene table to be read.
• u16GroupId: 16-bit group ID/address of associated group (or 0x0000 if no group)
• u8SceneId: 8-bit scene ID of scene to be read.

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

13.6.5 eCLD_ScenesCommandAddSceneRequestSend

teZCL_Status eCLD_ScenesCommandAddSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesAddSceneRequestPayload *psPayload);

Description

This function sends an Add Scene command to a remote device in order to add a scene on the specified
endpoint - that is, to add an entry to the Scene table on the endpoint. The scene ID is specified in the payload of

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
158 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

the message, along with a duration for the scene among other values (see Section 13.7.2). The scene may also
be associated with a particular group.

The device receiving this message generates a callback event on the endpoint on which the Scenes cluster is
registered and, if possible, add the scene to its Scene table before sending an Add Scene response indicating
success or failure (see Section 13.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 13.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

13.6.6 eCLD_ScenesCommandViewSceneRequestSend

teZCL_Status eCLD_ScenesCommandViewSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesViewSceneRequestPayload
 *psPayload);

Description

This function sends a View Scene command to a remote device, requesting information on a particular
scene on the destination endpoint. The relevant scene ID is specified in the command payload. Note that this
command can only be sent to an individual device/endpoint and not to a group address.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
159 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The device receiving this message generates a callback event on the endpoint on which the Scenes cluster was
registered and generates a View Scene response containing the relevant information (see Section 13.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address type eZCL_AMBOUND.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 13.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

13.6.7 eCLD_ScenesCommandRemoveSceneRequestSend

teZCL_Status eCLD_ScenesCommandRemoveSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesRemoveSceneRequestPayload
 *psPayload);

Description

This function sends a Remove Scene command to request that the target device deletes membership of the
destination endpoint from a particular scene - that is, remove the scene from the Scene table. The relevant
scene ID is specified in the payload of the message. The scene may also be associated with a particular group.

The device receiving this message generates a callback event on the endpoint on which the Scenes cluster
was registered. The device then deletes the scene in the Scene table. If the request was sent to a single device
(rather than to a group address), it then generates an appropriate Remove Scene response indicating success,
or failure (see Section 13.7.3).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
160 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 13.7.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

13.6.8 eCLD_ScenesCommandRemoveAllScenesRequestSend

teZCL_Status eCLD_ScenesCommandRemoveAllScenesRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesRemoveAllScenesRequestPayload
 *psPayload);

Description

This function sends a Remove All Scenes command to request that the target device deletes all entries
corresponding to the specified group ID/address in its Scene table. The relevant group ID is specified in the
payload of the message. Note that specifying a group ID of 0x0000 removes all scenes not associated with a
group.

The device receiving this message generates a callback event on the endpoint on which the Scenes cluster
was registered. The device then deletes the scenes in the Scene table. If the request is sent to a single device
(rather than to a group address), it then generates an appropriate Remove All Scenes response indicating
success, or failure (see Section 13.7.3).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
161 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 13.7.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

13.6.9 eCLD_ScenesCommandStoreSceneRequestSend

teZCL_Status eCLD_ScenesCommandStoreSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesStoreSceneRequestPayload
 *psPayload);

Description

This function sends a Store Scene command to request that the target device saves the current settings of all
other clusters on the device as a scene - that is, adds a scene containing the current cluster settings to the
Scene table. The entry is stored using the scene ID and group ID specified in the payload of the command. If an
entry exists with these IDs, its existing cluster settings are overwritten with the new settings.

Note that this command does not set the transition time and scene name fields (or for a new entry, they are set
to null values). If this command is to create a new scene that requires particular settings for these fields, Add
Group command should be used. The scene entry must be created in advance using the Add Group command,
and the fields transition time and scene name should be pre-configured.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
162 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The device receiving this message generates a callback event on the endpoint on which the Scenes cluster
was registered. If the request is sent to a single device (rather than to a group address), it then generates an
appropriate Store Scene response indicating success, or failure (see Section 13.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: ID or number of the local endpoint through which to send the request. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values.

• u8DestinationEndPointId: ID or number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 13.7.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_F

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

13.6.10 eCLD_ScenesCommandRecallSceneRequestSend

teZCL_Status eCLD_ScenesCommandRecallSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesRecallSceneRequestPayload
 *psPayload);

Description

This function sends a Recall Scene command to request that the target device retrieves and implements the
settings of the specified scene - that is, reads the scene settings from the Scene table and applies them to the
other clusters on the device. The required scene ID and group ID are specified in the payload of the command.

Note that if the specified scene entry does not contain any settings for a particular cluster or there are some
missing attribute values for a cluster, these attribute values remains unchanged in the implementation of the
cluster.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
163 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The device receiving this message generates a callback event on the endpoint on which the Scenes cluster
was registered. If the request is sent to a single device (rather than to a group address), it then generates an
appropriate Recall Scene response indicating success, or failure (see Section 13.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 13.7.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

13.6.11 eCLD_ScenesCommandGetSceneMembershipRequestSend

teZCL_Status eCLD_ScenesCommandGetSceneMembershipRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesGetSceneMembershipRequestPayload
 *psPayload);

Description

This function sends a Get Scene Membership to inquire which scenes are associated with a specified group ID
on a device. The relevant group ID is specified in the payload of the command.

The device receiving this message generates a callback event on the endpoint on which the Scenes cluster
is registered. If the request is sent to a single device (rather than to a group address), it then generates an
appropriate Get Scene Membership response indicating success or failure and, if successful, the response
contains a list of the scene IDs associated with the given group ID (see Section 13.7.3). If the original command

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
164 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

is sent to a group address, an individual device only responds if it has scenes associated with the group ID in
the command payload (so it only responds if successful).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 13.7.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

13.6.12 eCLD_ScenesCommandEnhancedAddSceneRequestSend

teZCL_Status eCLD_ScenesCommandEnhancedAddSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesEnhancedAddSceneRequestPayload
 *psPayload);

Description

This function sends an Enhanced Add Scene command to a remote device in order to add a scene on the
specified endpoint - that is, to add an entry to the Scene table on the endpoint. The function allows a finer
transition time (in tenths of a second rather than seconds) when applying the scene. The scene ID is specified
in the payload of the message, along with a duration for the scene and the transition time, among other values
(see Section 13.7.2). The scene may also be associated with a particular group.

The device receiving this message generates a callback event on the endpoint on which the Scenes cluster
is registered. If possible, add the scene to its Scene table before sending an Enhanced Add Scene response
indicating success or failure (see Section 13.7.3).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
165 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 13.7.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

13.6.13 eCLD_ScenesCommandEnhancedViewSceneRequestSend

teZCL_Status eCLD_ScenesCommandEnhancedViewSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesEnhancedViewSceneRequestPayload
 *psPayload);

Description

This function sends an Enhanced View Scene command to a remote device, requesting information on
a particular scene on the destination endpoint. The returned information includes the finer transition time
configured with the function eCLD_ScenesCommandEnhancedAddSceneRequestSend(). The relevant
scene ID is specified in the command payload. Note that this command can only be sent to an individual device/
endpoint and not to a group address.

The device receiving this message generates a callback event on the endpoint on which the Scenes cluster was
registered and generates an Enhanced View Scene response containing the relevant information (see Section
13.7.3).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
166 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address type eZCL_AMBOUND.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 13.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

13.6.14 eCLD_ScenesCommandCopySceneSceneRequestSend

teZCL_Status eCLD_ScenesCommandCopySceneSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesCopySceneRequestPayload *psPayload);

Description

This function sends a Copy Scene command to a remote device, requesting that the scene settings from one
scene ID/group ID combination are copied to another scene ID/group ID combination on the target endpoint.
The relevant source and destination scene ID/group ID combinations are specified in the command payload.

Note that:

• If the destination scene ID/group ID exists on the target endpoint, the existing scene is overwritten with the
new settings.

• The message payload contains a ‘copy all scenes’ bit. If the bit is set to ‘1’, it instructs the destination server to
copy all scenes in the specified source group to scenes with the same scene IDs in the destination group. In
this case, the source and destination scene IDs in the payload are ignored.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
167 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The device receiving this message generates a callback event on the endpoint on which the Scenes cluster was
registered and, if the original request is unicast, generates a Copy Scene response (see Section 13.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address type eZCL_AMBOUND.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 13.7.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

13.7 Structures

13.7.1 Custom Data Structure

The Scenes cluster requires extra storage space to be allocated to be used by internal functions. The structure
definition for this storage is shown below:

typedef struct
{
 DLIST lScenesAllocList;
 DLIST lScenesDeAllocList;
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ScenesCallBackMessage sCallBackMessage;
 tsCLD_ScenesTableEntry
 asScenesTableEntry[CLD_SCENES_MAX_NUMBER_OF_SCENES];
} tsCLD_ScenesCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
168 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

13.7.2 Custom Command Payloads

The following structures contain the payloads for the Scenes cluster custom commands.

Add Scene Request Payload

typedef struct
{
 uint16 u16GroupId;
 uint8 u8SceneId;
 uint16 u16TransitionTime;
 tsZCL_CharacterString sSceneName;
 tsCLD_ScenesExtensionField sExtensionField;
} tsCLD_ScenesAddSceneRequestPayload;

where:

• u16GroupId is the group ID with which the scene is associated (0x0000 if there is no association with a
group)

• u8SceneId is the ID of the scene to be added to the Scene table (the Scene ID must be unique within the
group associated with the scene)

• u16TransitionTime is the amount of time, in seconds, that the device takes to switch to this scene
• sSceneName is an optional character string (of up to 16 characters) representing the name of the scene
• sExtensionField is a structure containing the attribute values of the clusters to which the scene relates

View Scene Request Payload

typedef struct
{
 uint16 u16GroupId;
 uint8 u8SceneId;
} tsCLD_ScenesViewSceneRequestPayload;

where:

• u16GroupId is the group ID with which the desired scene is associated
• u8SceneId is the scene ID of the scene to be viewed

Remove Scene Request Payload

typedef struct
{
 uint16 u16GroupId;
 uint8 u8SceneId;
} tsCLD_ScenesRemoveSceneRequestPayload;

where:

• u16GroupId is the group ID with which the relevant scene is associated
• u8SceneId is the scene ID of the scene to be deleted from the Scene table

Remove All Scenes Request Payload

typedef struct

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
169 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

{
 uint16 u16GroupId;
} tsCLD_ScenesRemoveAllScenesRequestPayload;

where u16GroupId is the group ID for which all scenes are to be deleted.

Store Scene Request Payload

typedef struct
{
 uint16 u16GroupId;
 uint8 u8SceneId;
} tsCLD_ScenesStoreSceneRequestPayload;

where:

• u16GroupId is the group ID with which the relevant scene is associated
• u8SceneId is the scene ID of the scene in which the captured cluster settings are to be stored

Recall Scene Request Payload

typedef struct
{
 uint16 u16GroupId;
 uint8 u8SceneId;
} tsCLD_ScenesRecallSceneRequestPayload;

where:

• u16GroupId is the group ID with which the relevant scene is associated
• u8SceneId is the scene ID of the scene from which cluster settings are to be retrieved and applied

Get Scene Membership Request Payload

typedef struct
{
 uint16 u16GroupId;
} tsCLD_ScenesGetSceneMembershipRequestPayload;

where u16GroupId is the group ID for which associated scenes are required.

Enhanced Add Scene Request Payload

typedef struct
{
 uint16 u16GroupId;
 uint8 u8SceneId;
 uint16 u16TransitionTime100ms;
 tsZCL_CharacterString sSceneName;
 tsCLD_ScenesExtensionField sExtensionField;
} tsCLD_ScenesEnhancedAddSceneRequestPayload;

where:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
170 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16GroupId is the group ID with which the scene is associated (0x0000 if there is no association with a
group)

• u8SceneId is the ID of the scene to be added to the Scene table (the Scene ID must be unique within the
group associated with the scene)

• u16TransitionTime100ms is the amount of time, in tenths of a second, that the device takes to switch to
this scene

• sSceneName is an optional character string (of up to 16 characters) representing the name of the scene
• sExtensionField is a structure containing the attribute values of the clusters to which the scene relates

View Scene Request Payload

typedef struct
{
 uint16 u16GroupId;
 uint8 u8SceneId;
} tsCLD_ScenesEnhancedViewSceneRequestPayload;

where:

• u16GroupId is the group ID with which the desired scene is associated
• u8SceneId is the scene ID of the scene to be viewed

Copy Scene Request Payload

typedef struct
{
 uint8 u8Mode;
 uint16 u16FromGroupId;
 uint8 u8FromSceneId;
 uint16 u16ToGroupId;
 uint8 u8ToSceneId;
} tsCLD_ScenesCopySceneRequestPayload;

where:

• u8Mode is a bitmap indicating the required copying mode (only bit 0 is used):
– If bit 0 is set to ‘1’, then ‘copy all scenes’ mode is used, in which all scenes associated with the source group

are duplicated for the destination group (and the scene ID fields are ignored)
– If bit 0 is set to ‘0’, then a single scene is copied

• u16FromGroupId is the source group ID
• u8FromSceneId is the source scene ID (ignored for ‘copy all scenes’ mode)
• u16ToGroupId is the destination group ID
• u8ToSceneId is the destination scene ID (ignored for ‘copy all scenes’ mode)

13.7.3 Custom Command Responses

The Scenes cluster generates responses to certain custom commands. The responses which contain payloads
are detailed below:

Add Scene Response Payload

typedef struct
{

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
171 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zenum8 eStatus;
 uint16 u16GroupId;
 uint8 u8SceneId;
} tsCLD_ScenesAddSceneResponsePayload;

where:

• eStatus is the outcome of the Add Scene command (success or invalid)
• u16GroupId is the group ID with which the added scene is associated
• u8SceneId is the scene ID of the added scene

View Scene Response Payload

typedef struct
{
 zenum8 eStatus;
 uint16 u16GroupId;
 uint8 u8SceneId;
 uint16 u16TransitionTime;
 tsZCL_CharacterString sSceneName;
 tsCLD_ScenesExtensionField sExtensionField;
} tsCLD_ScenesViewSceneResponsePayload;

where:

• eStatus is the outcome of the View Scene command (success or invalid)
• u16GroupId is the group ID with which the viewed scene is associated
• u8SceneId is the scene ID of the viewed scene
• u16TransitionTime is the amount of time, in seconds, that the device takes to switch to the viewed scene
• sSceneName is an optional character string (of up to 16 characters) representing the name of the viewed

scene
• sExtensionField is a structure containing the attribute values of the clusters to which the viewed scene

relates

Remove Scene Response Payload

typedef struct
{
 zenum8 eStatus;
 uint16 u16GroupId;
 uint8 u8SceneId;
} tsCLD_ScenesRemoveSceneResponsePayload;

where:

• eStatus is the outcome of the Remove Scene command (success or invalid)
• u16GroupId is the group ID with which the removed scene is associated
• u8SceneId is the scene ID of the removed scene

Remove All Scenes Response Payload

typedef struct
{
 zenum8 eStatus;
 uint16 u16GroupId;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
172 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

} tsCLD_ScenesRemoveAllScenesResponsePayload;

where:

• eStatus is the outcome of the Remove All Scenes command (success or invalid)
• u16GroupId is the group ID with which the removed scenes are associated

Store Scene Response Payload

typedef struct
{
 zenum8 eStatus;
 uint16 u16GroupId;
 uint8 u8SceneId;
} tsCLD_ScenesStoreSceneResponsePayload;

where:

• eStatus is the outcome of the Store Scene command (success or invalid)
• u16GroupId is the group ID with which the stored scene is associated
• u8SceneId is the scene ID of the stored scene

Get Scene Membership Response Payload

typedef struct
{
 zenum8 eStatus;
 uint8 u8Capacity;
 uint16 u16GroupId;
 uint8 u8SceneCount;
 uint8 *pu8SceneList;
} tsCLD_ScenesGetSceneMembershipResponsePayload;

where:

• eStatus is the outcome of the Get Scene Membership command (success or invalid)
• u8Capacity is the capacity of the Scene table of the device to receive more scenes - that is, the number of

scenes that may be added (special values: 0xFE means that at least one more scene may be added, a higher
value means that the remaining capacity of the table is unknown)

• u16GroupId is the group ID to which the query relates
• u8SceneCount is the number of scenes in the list of the next field
• pu8SceneList is a pointer to the returned list of scenes from those queried that exist on the device, where

each scene is represented by its scene ID

Enhanced Add Scene Response Payload

typedef struct
{
 zenum8 eStatus;
 uint16 u16GroupId;
 uint8 u8SceneId;
} tsCLD_ScenesEnhancedAddSceneResponsePayload;

where:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
173 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• eStatus is the outcome of the Enhanced Add Scene command (success or invalid)
• u16GroupId is the group ID with which the added scene is associated
• u8SceneId is the scene ID of the added scene

Enhanced View Scene Response Payload

typedef struct
{
 zenum8 eStatus;
 uint16 u16GroupId;
 uint8 u8SceneId;
 uint16 u16TransitionTime;
 tsZCL_CharacterString sSceneName;
 tsCLD_ScenesExtensionField sExtensionField;
} tsCLD_ScenesEnhancedViewSceneResponsePayload;

where:

• eStatus is the outcome of the Enhanced View Scene command (success or invalid)
• u16GroupId is the group ID with which the viewed scene is associated
• u8SceneId is the scene ID of the viewed scene
• u16TransitionTime is the amount of time, in seconds, that the device takes to switch to the viewed scene
• sSceneName is an optional character string (of up to 16 characters) representing the name of the viewed

scene
• sExtensionField is a structure containing the attribute values of the clusters to which the viewed scene

relates

Copy Scene Response Payload

typedef struct
{
 uint8 u8Status;
 uint16 u16FromGroupId;
 uint8 u8FromSceneId;
} tsCLD_ScenesCopySceneResponsePayload;

where:

• u8Status is the outcome of the Copy Scene command (success, invalid scene, or insufficient space for new
scene)

• u16FromGroupId is the source group ID for the copy
• u8FromSceneId is the source scene ID for the copy

13.7.4 Scenes Table Entry

The following structure contains the data for a Scenes table entry (containing a saved scene):

typedef struct
{
 DNODE dllScenesNode;
 bool bActive;
 bool bInTransit;
 uint16 u16GroupId;
 uint8 u8SceneId;
 uint16 u16TransitionTime;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
174 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint32 u32TransitionTimer;
 uint8 u8SceneNameLength;
 uint8 au8SceneName[CLD_SCENES_MAX_SCENE_NAME_LENGTH + 1];
 uint16 u16SceneDataLength;
 uint8 au8SceneData[CLD_SCENES_MAX_SCENE_STORAGE_BYTES];
#ifdef CLD_SCENES_TABLE_SUPPORT_TRANSITION_TIME_IN_MS
 uint8 u8TransitionTime100ms;
#endif
} tsCLD_ScenesTableEntry;

where:

• bActive is a boolean value indicating whether the scene is active (TRUE) or inactive (FALSE).
• bInTransit is a boolean value indicating whether the scene is in a transitional state (TRUE) or a constant

active/inactive state (FALSE).
• u16GroupId is the identifier of the group to which the scene applies (the value 0x0000 is used to indicate

that the scene is not associated with a group).
• u8SceneId is the identifier of the scene and must be a unique value within the group with which the scene is

associated.
• u16TransitionTime is the length of time, in seconds, that the device takes to move from its current state to

the scene state.
• u32TransitionTimer is the elapsed time, in milliseconds, since the start of a currently active transition to

the scene.
• u8SceneNameLength is the number of characters in the name of the scene (and therefore

the size of the array au8SceneName[] below). The value must not be greater than
CLD_SCENES_MAX_SCENE_NAME_LENGTH, which is set in the compile-time options (see Section 13.9).

• au8SceneName[] is an array containing the name of the scene, with one ASCII character in each array
element. The number of elements in the array must be set in u8SceneNameLength above.

• u16SceneDataLength is the number of items of data for the scene (and therefore
the size of the array au8SceneData[] below). The value must not be greater than
CLD_SCENES_MAX_SCENE_STORAGE_BYTES, which is set in the compile-time options (see Section
13.9).

• au8SceneData[] is an array containing the data for the scene, with one data item in each array element.
The data stored is dependent on the cluster to which the scene data applies. The number of elements in the
array must be set in u16SceneDataLength above.

• u8TransitionTime 100 ms is an optional that allows a fractional part to be added to the transition time
(u16TransitionTime) of the scene. This value represents the number of tenths of a second in the range
0x00 to 0x09.

13.8 Enumerations

13.8.1 teCLD_Scenes_ClusterID

The following structure contains the enumerations used to identify the attributes of the Scenes cluster.

typedef enum
{
 E_CLD_SCENES_ATTR_ID_SCENE_COUNT = 0x0000, /* Mandatory */
 E_CLD_SCENES_ATTR_ID_CURRENT_SCENE, /* Mandatory */
 E_CLD_SCENES_ATTR_ID_CURRENT_GROUP, /* Mandatory */
 E_CLD_SCENES_ATTR_ID_SCENE_VALID, /* Mandatory */
 E_CLD_SCENES_ATTR_ID_NAME_SUPPORT, /* Mandatory */
 E_CLD_SCENES_ATTR_ID_LAST_CONFIGURED_BY /* Optional */
} teCLD_Scenes_ClusterID;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
175 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

13.9 Compile-time options
To enable the Scenes cluster in the code to be built, it is necessary to add the following to the zcl_options.h
file:

#define CLD_SCENES

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define SCENES_CLIENT
#define SCENES_SERVER

The Scenes cluster contains macros that may be optionally specified at compile time by adding some or all the
following lines to the zcl_options.h file.

To enable the optional Last Configured By attribute, add this line:

#define CLD_SCENES_ATTR_LAST_CONFIGURED_BY

To configure the maximum length of the Scene Name storage, add this line:

#define CLD_SCENES_MAX_SCENE_NAME_LENGTH (16)

To configure the maximum number of scenes, add this line:

#define CLD_SCENES_MAX_NUMBER_OF_SCENES (16)

To configure the maximum number of bytes available for scene storage, add this line:

#define CLD_SCENES_MAX_SCENE_STORAGE_BYTES (20)

To enable the Enhanced Add Scene command, add this line:

#define CLD_SCENES_CMD_ENHANCED_ADD_SCENE

To enable the Enhanced View Scene command, add this line:

#define CLD_SCENES_CMD_ENHANCED_VIEW_SCENE

To enable the Copy Scene command, add this line:

#define CLD_SCENES_CMD_COPY_SCENE

To enable TransitionTime100ms in Scene tables, add this line:

#define CLD_SCENES_TABLE_SUPPORT_TRANSITION_TIME_IN_MS

To define the value (n) of the Cluster Revision attribute, add this line:

#define CLD_SCENES_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
176 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

14 On/Off Cluster

This chapter describes the On/Off cluster.

The On/Off cluster has a Cluster ID of 0x0006.

14.1 Overview
The On/Off cluster allows a device to be put into the ‘on’ and ‘off’ states, or toggled between the two states. The
cluster also provides the following enhanced functionality for lighting:

• When switching off lights with an effect, saves the last light (attribute) settings to a global scene, ready to be
reused for the next switch-on from the global scene - see Section 14.5.2 and Section 14.6

• Allows lights to be switched on for a timed period (and then automatically switched off) - see Section 14.5.3

To use the functionality of this cluster, you must include the file OnOff.h in your application and enable the
cluster by defining CLD_ONOFF in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

• The cluster server is able to receive commands to change the on/off state of the local device.
• The cluster client is able to send commands to the server to request a change to the on/off state of the remote

device.

The inclusion of the client or server software must be pre-defined in the compile-time options of the application.
In addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance.

The compile-time options for the On/Off cluster are fully detailed in Section 14.10.

14.2 On/Off Cluster Structure and Attribute
The structure definition for the On/Off cluster is:

typedef struct
{
#ifdef ONOFF_SERVER
 zbool bOnOff;
#ifdef CLD_ONOFF_ATTR_GLOBAL_SCENE_CONTROL
 zbool bGlobalSceneControl;
#endif
#ifdef CLD_ONOFF_ATTR_ON_TIME
 zuint16 u16OnTime;
#endif
#ifdef CLD_ONOFF_ATTR_OFF_WAIT_TIME
 zuint16 u16OffWaitTime;
#endif
#ifdef CLD_ONOFF_ATTR_STARTUP_ONOFF
 /* ZLO extension for OnOff Cluster */
 zenum8 eStartUpOnOff;
#endif
#ifdef CLD_ONOFF_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_OnOff;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
177 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where:

• bOnOff is the on/off state of the device (TRUE = on, FALSE = off).
• bGlobalSceneControl is an optional attribute for lighting that is used with the global scene - the value of

this attribute determines whether to permit saving the current light settings to the global scene:
– TRUE - Current light settings can be saved to the global scene
– FALSE - Current light settings cannot be saved to the global scene

• u16OnTime is an optional attribute for lighting used to store the time, in tenths of a second, for which the
lights remain ‘on’ after a switch-on with ‘timed off’
(that is, the time before starting the transition from the ‘on’ state to the ‘off’ state). The special values 0x0000
and 0xFFFF indicate that the lamp must be maintained in the ‘on’ state indefinitely (no timed off).

• u16OffWaitTime is an optional attribute for lighting used to store the waiting time, in tenths of a second,
following a ‘timed off’ before the lights can be again switched on with a ‘timed off’.

Note: If the bGlobalSceneControl attribute and global scene are to be used, the Scenes and Groups
clusters must also be enabled - see Chapter 13 and Chapter 12.

• eStartUpOnOff is an optional attribute that is used in the lighting domain to define the required start-up
behavior of a light device when it is supplied with power. It determines the initial value of bOnOff on start-up.
The possible values and behaviors are as follows:

eStartUpOnOff Behavior

0x00 Put the light in the off state - set bOnOff to FALSE

0x01 Put the light in the on state - set bOnOff to TRUE

0x02 Toggle the light from its previous state:
• If bOnOff was FALSE, set it to TRUE
• If bOnOff was TRUE, set it to FALSE

0x03-0xFE Reserved

0xFF Put the light in its previous state - set bOnOff to its previous value

Table 31. eStartUpOnOff attribute

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

14.3 Attributes for Default Reporting
The following attribute of the On/Off cluster can be selected for default reporting:

• bOnOff

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for this attribute is
described in Appendix B.3.6.

14.4 Initialization
The function eCLD_OnOffCreateOnOff() is used to create an instance of the On/Off cluster. The function
is called by the initialization function for the host device.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
178 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: If the global scene is to be used to remember light settings, then. Scenes and Groups cluster instances
must be created - see Chapter 13 and Chapter 12.

14.5 Sending Commands
The NXP implementation of the ZCL provides functions for sending commands between an On/Off cluster client
and server. A command is sent from the client to one or more endpoints on the server. Multiple endpoints can
usually be targeted using binding or group addressing.

14.5.1 Switching On and Off

A remote device (supporting the On/Off cluster server) can be switched on, switched off or, toggled between
the on and off states by calling the function eCLD_OnOffCommandSend() on a cluster client. In the case of
a toggle, if the device is initially in the on state it is switched off and if the device is initially in the off state it is
switched on.

14.5.1.1 Timeout on the ‘On’ Command

On receiving an 'On' command, a timeout is applied such that the 'on' state is maintained for a specified
duration before automatically switching to the 'off' state. This timeout is defined using the optional attributes
u16OnConfigurableDuration and eDurationUnitOfMeasurement. The timeout duration in seconds is
given by:

u16OnConfigurableDuration * 10^(power from eDurationUnitOfMeasurement)

The attribute u16OnConfigurableDuration can be set locally or remotely, while the attribute
eDurationUnitOfMeasurement must be set locally. A maximum timeout duration can be defined
locally via the optional attribute u16MaxDuration, which puts an upper limit on the value of
u16OnConfigurableDuration.

The attribute u16OnConfigurableDuration can be set remotely using the
eZCL_SendWriteAttributesRequest() function. On receiving this write request, the local ZCL checks that the
requested duration is within the permissible range (see Section 2.3.3.1) - if the request exceeds the maximum
permitted value, the timeout duration is clipped to this maximum.

For full details of the above attributes, refer to Section 14.2.

When an ‘On’ command is received, an E_ZCL_CBET_CLUSTER_CUSTOM event is generated. The
application is responsible for implementing the timeout described above, if it is enabled. First, the application
must check the attributes u16OnConfigurableDuration and eDurationUnitOfMeasurement to make
sure they have valid values. If so, the application must start a timer to implement the timeout for the duration
defined by these attributes. On expiration of the timer, the application must switch from the ‘on’ state to the ‘off’
state by (locally) writing to the bOnOff attribute.

14.5.1.2 On/Off with Transition Effect

If the Level Control cluster (see Chapter 16) is also used on the target device, an ‘On’ or ‘Off’ command can be
implemented with a transition effect, as follows:

• If the optional Level Control ‘On Transition Time’ attribute is enabled, an ‘On’ command results in a gradual
transition. This transition is from the ‘off’ level to the ‘on’ level over the time-interval specified by the attribute.

• If the optional Level Control ‘Off Transition Time’ attribute is enabled, an ‘Off’ command results in a gradual
transition from the ‘on’ level to the ‘off’ level over the time-interval specified by the attribute.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
179 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

14.5.2 Switching Off Lights with Effect

In the case of lighting, lights can be (remotely) switched off with an effect by calling the function eCLD_OnOff
CommandOffWithEffectSend() on an On/Off cluster client.

Two ‘off effects’ are available and there are variants of each effect:

• Fade, with the following variants:
– Fade to off in 0.8 seconds (default)
– Reduce brightness by 50 % in 0.8 seconds then fade to off in 4 seconds
– No fade

• Rise and fall, with (currently) only one variant:
– Increase brightness by 20 % (if possible) in 0.5 seconds then fade to off in 1 second (default)

14.5.3 Switching On Timed Lights

In the case of lighting, lights can be switched on temporarily and automatically switched off at the end of a timed
period. This kind of switch-on can be initiated remotely using the function CLD_OnOffCommandOnWithTimed
OffSend() on an On/Off cluster client. In addition, a waiting time can be implemented after the automatic switch-
off, during which the lights cannot be switched on again using the above function (although a normal switch-on
is possible).

The following values must be specified:

• Time for which the lights remain on (in tenths of a second)
• Waiting time following the automatic switch-off (in tenths of a second)

In addition, the circumstances in which the command can be accepted must be specified - that is, accepted at
any time (except during the waiting time) or only when the lights are already on. The latter case can be used to
initiate a timed switch-off.

14.6 Saving Light Settings
In the case of lighting, the current light (attribute) settings can be automatically saved to a ‘global scene’
when switching off the lights using the function eCLD_OnOffCommandOffWithEffectSend(). If the
lights are, then switched on with the E_CLD_ONOFF_CMD_ON_RECALL_GLOBAL_SCENE option in
eCLD_OnOffCommandSend(), the saved light settings are reloaded. In this way, the system remembers the
last light settings used before switch-off and resumes with these settings at the next switch-on. This feature is
useful when the light levels are adjustable using the Level Control cluster (Chapter 16) and/or the light colours
are adjustable using the Colour Control cluster (Chapter 31).

The attribute values corresponding to the current light settings are saved (locally) to a global scene with scene
ID and group ID both equal to zero. Therefore, to use this feature:

• Scenes cluster must be enabled and a cluster instance created
• Groups cluster must be enabled and a cluster instance created
• Optional On/Off cluster attribute bGlobalSceneControl must be enabled

The above attribute is a boolean which determines whether to permit the current light settings to be saved to
the global scene. The attribute is set to FALSE after a switch-off using the function eCLD_OnOffCommand
OffWithEffectSend(). It is set to TRUE after a switch-on or a change in the light settings (attributes) - more
specifically, after a change resulting from a Level Control cluster ‘Move to Level with On/Off’ command, from
a Scenes cluster ‘Recall Scene’ command, or from an On/Off cluster 'On' command or 'On With Recall Global
Scene' command.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
180 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

14.7 Functions
The following On/Off cluster functions are provided in the NXP implementation of the ZCL:

1. eCLD_OnOffCreateOnOff
2. _OnOffCommandSend
3. eCLD_OnOffCommandOffWithEffectSend
4. eCLD_OnOffCommandOnWithTimedOffSend

14.7.1 eCLD_OnOffCreateOnOff

teZCL_Status eCLD_OnOffCreateOnOff(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_OnOffCustomDataStructure
 *psCustomDataStructure);

Description

This function creates an instance of the On/Off cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function must be called when setting up a custom endpoint containing one or more selected clusters (rather
than the whole set of clusters supported by a standard ZigBee device). This function creates an On/Off cluster
instance on the endpoint, but instances of other clusters may also be created on the same endpoint by calling
their corresponding creation functions.

Note: Do not call this function for an endpoint on which a standard ZigBee device is used. In this case, the
device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be the first On/Off cluster function called in the application, and must be called
after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the On/Off cluster. The function initialises the array elements to zero.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initialising individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the On/Off cluster. This parameter can refer to a pre-filled
structure called sCLD_OnOff which is provided in the OnOff.h file.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
181 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_OnOff which defines the attributes of On/Off cluster. The
function initialises the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above)

• psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see
Section 14.8.1)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

14.7.2 eCLD_OnOffCommandSend

teZCL_Status eCLD_OnOffCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 teCLD_OnOff_Command eCommand);

Description

This function sends a custom command instructing the target device to perform the specified operation on itself:
switch off, switch on, toggle (on-to-off or off-to-on), or switch on with settings retrieved from the global scene,
This last option (On with Recall Global Scene) is described in Section 14.6 and, if used, must be enabled in the
compile-time options on the server (target), as indicated in Section 14.10.

The device receiving this message generates a callback event on the endpoint on which the On/Off cluster was
registered.

If the Level Control cluster (see Chapter 16) is also used on the target device, an ‘On’ or ‘Off’ command can be
implemented with a transition effect, as follows:

• If the optional Level Control ‘On Transition Time’ attribute is enabled, an ‘On’ command results in a gradual
transition. This transition is from the ‘off’ level to the ‘on’ level over the time-interval specified in the attribute.

• If the optional Level Control ‘Off Transition Time’ attribute is enabled, an ‘Off’ command results in a gradual
transition from the ‘on’ level to the ‘off’ level over the time-interval specified in the attribute.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• eCommand: Command code, one of the following:

– E_CLD_ONOFF_CMD_OFF
– E_CLD_ONOFF_CMD_ON

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
182 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– E_CLD_ONOFF_CMD_TOGGLE
– E_CLD_ONOFF_CMD_ON_RECALL_GLOBAL_SCENE
– E_CLD_ONOFF_CMD_TOGGLE

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

14.7.3 eCLD_OnOffCommandOffWithEffectSend

teZCL_Status eCLD_OnOffCommandOffWithEffectSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_OnOff_OffWithEffectRequestPayload *psPayload);

Description

This function sends a custom ‘Off With Effect’ command instructing the target lighting device to switch off one or
more lights with the specified effect, which can be one of:

• fade (in two phases or no fade)
• rise and fall

Each of these effects is available in variants. The required effect and variant are specified in the command
payload. For the payload details, refer to "Off With Effect Request Payload ".

The device receiving this message generates a callback event on the endpoint on which the On/Off cluster was
registered.

Following a call to this function, the light settings on the target device are saved to a global scene, after which
the attribute bGlobalSceneControl is set to FALSE - for more details, refer to Section 14.6.

If used, the ‘Off With Effect’ command must be enabled in the compile-time options on both the client and
server, as described in Section 14.10.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
183 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of
the request.

• psPayload: Pointer to a structure containing the payload for this message (see Section 14.8.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

14.7.4 eCLD_OnOffCommandOnWithTimedOffSend

teZCL_Status eCLD_OnOffCommandOnWithTimedOffSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_OnOff_OnWithTimedOffRequestPayload
 *psPayload);

Description

This function sends a custom ‘On With Timed Off’ command instructing the target lighting device to switch on
one or more lights for a timed period and then switch them off. In addition, a waiting time can be implemented
after switch-off, during which the lights cannot be switched on again.

The following functionality must be specified in the command payload:

• Time for which the lights must remain on.
• Waiting time during which switched-off lights cannot be switched on again.
• Whether this command can be accepted at any time (outside the waiting time) or only when a light is on.

For the payload details, refer to "On With Timed Off Request Payload".

The device receiving this message generates a callback event on the endpoint on which the On/Off cluster was
registered.

If used, the ‘On With Timed Off’ command must be enabled in the compile-time options on both the client and
server, as described in Section 14.10.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values.

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
184 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent.
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request.
• psPayload: Pointer to a structure containing the payload for this message (see Section 14.8.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

14.8 Structures

14.8.1 Custom Data Structure

The On/Off cluster requires extra storage space to be allocated to be used by internal functions. The structure
definition for this storage is shown below:

typedef struct
{
 uint8 u8Dummy;
} tsCLD_OnOffCustomDataStructure;

The fields are for internal use and no knowledge of them required.

14.8.2 Custom Command Payloads

Off With Effect Request Payload

typedef struct
{
 zuint8 u8EffectId;
 zuint8 u8EffectVariant;
} tsCLD_OnOff_OffWithEffectRequestPayload;

where:

• u8EffectId indicates the required ‘off effect’:
– 0x00 - Fade
– 0x01 - Rise and fall

All other values are reserved.
• u8EffectVariant indicates the required variant of the specified ‘off effect’ - the interpretation of this field

depends on the value of u8EffectId, as indicated in the table below.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
185 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8EffectId u8EffectVariant Description

0x00 Fade to off in 0.8 seconds (default)

0x01 No fade

0x02 Reduce brightness by 50 % in 0.8 seconds then fade to off in 4
seconds

0x00
(Fade)

0x03-0xFF Reserved

0x00 Increase brightness by 20 % (if possible) in 0.5 seconds then fade
to off in 1 second (default)

0x01
(Rise and fall)

0x01-0xFF Reserved

0x02-0xFF 0x00-0xFF Reserved

Table 32. u8EffectId values and description

On With Timed Off Request Payload

typedef struct
{
 zuint8 u8OnOff;
 zuint16 u16OnTime;
 zuint16 u16OffTime;
} tsCLD_OnOff_OnWithTimedOffRequestPayload;

where:

• u8OnOff indicates when the command can be accepted:
– 0x00 - at all times (apart from in waiting time, if implemented)
– 0x01 - only when light is on

All other values are reserved.
• u16OnTime is the ‘on time’, expressed in tenths of a second in the range 0x0000 to 0xFFFE.
• u16OffTime is the ‘off waiting time’, expressed in tenths of a second in the range 0x0000 to 0xFFFE

14.9 Enumerations

14.9.1 teCLD_OnOff_ClusterID

The following structure contains the enumerations used to identify the attributes of the On/Off cluster.

typedef enum
{
 E_CLD_ONOFF_ATTR_ID_ONOFF = 0x0000,
 E_CLD_ONOFF_ATTR_ID_GLOBAL_SCENE_CONTROL = 0x4000,
 E_CLD_ONOFF_ATTR_ID_ON_TIME,
 E_CLD_ONOFF_ATTR_ID_OFF_WAIT_TIME,
 #ifdef CLD_ONOFF_ATTR_STARTUP_ONOFF
 /* ZLO extension for OnOff Cluster */
 E_CLD_ONOFF_ATTR_ID_STARTUP_ONOFF,
 #endif
} teCLD_OnOff_ClusterID;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
186 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

14.9.2 teCLD_OOSC_SwitchType (On/Off Switch Types)

typedef enum
{
 E_CLD_OOSC_TYPE_TOGGLE,
 E_CLD_OOSC_TYPE_MOMENTARY
} teCLD_OOSC_SwitchType;

14.9.3 teCLD_OOSC_SwitchAction (On/Off Switch Actions)

typedef enum
{
 E_CLD_OOSC_ACTION_S2ON_S1OFF,
 E_CLD_OOSC_ACTION_S2OFF_S1ON,
 E_CLD_OOSC_ACTION_TOGGLE
} teCLD_OOSC_SwitchAction;

14.10 Compile-time options
• To enable the On/Off cluster in the code to be built, it is necessary to add the following to the zcl_options.h

file:

#define CLD_ONOFF

• In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of
the following to the same file:

#define ONOFF_CLIENT
#define ONOFF_SERVER

• The On/Off cluster contains macros that may be optionally specified at compile time by adding some or all of
the following lines to the zcl_options.h file.

Optional Attributes

1. To enable the optional On Configurable Duration attribute, add this line:

#define CLD_ONOFF_ATTR_ID_ON_CONFIGURABLE_DURATION

2. To enable the optional Duration Unit of Measure attribute, add this line:

#define CLD_ONOFF_ATTR_ID_DURATION_UNIT_OF_MEASUREMENT

3. To enable the optional Maximum Duration attribute, add this line:

#define CLD_ONOFF_ATTR_ID_MAX_DURATION

4. To enable the optional Global Scene Control attribute, add this line:

#define CLD_ONOFF_ATTR_GLOBAL_SCENE_CONTROL

5. To enable the optional On Time attribute, add this line:

#define CLD_ONOFF_ATTR_ON_TIME

6. To enable the optional Off Wait Time attribute, add this line:

#define CLD_ONOFF_ATTR_OFF_WAIT_TIME

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
187 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

7. To enable the optional Start-up On/Off attribute, add this line:

#define CLD_ONOFF_ATTR_STARTUP_ONOFF

8. To enable the optional Attribute Reporting Status attribute, add this line:

#define CLD_ONOFF_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Optional Commands

1. Add this line to enable processing of the On With Recall Global Scene command on the server:

#define CLD_ONOFF_CMD_ON_WITH_RECALL_GLOBAL_SCENE

2. Add this line to enable the optional On With Timed Off command on the client and server:

#define CLD_ONOFF_CMD_ON_WITH_TIMED_OFF

3. Add this line to enable the optional Off With Effect command on the client and server:

#define CLD_ONOFF_CMD_OFF_WITH_EFFECT

Cluster Revision

To define the value (n) of the Cluster Revision attribute, add this line:

#define CLD_ONOFF_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
188 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

15 On/Off Switch Configuration Cluster

This chapter describes the On/Off Switch Configuration cluster.

The On/Off Switch Configuration cluster has a Cluster ID of 0x0007.

Note: When using this cluster, the On/Off cluster must also be used (see Chapter 14).

15.1 Overview
The On/Off Switch Configuration cluster allows the switch type on a device to be defined, as well as the
commands to be generated when the switch is moved between its two states.

To use the functionality of this cluster, you must include the file OOSC.h in your application and enable the
cluster by defining CLD_OOSC in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

• The cluster server is able to receive commands to define a switch configuration.
• The cluster client is able to send commands to define a switch configuration.

The inclusion of the client or server software must be pre-defined in the compile-time options of the application.
In addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance.

The compile-time options for the On/Off Switch Configuration cluster are fully detailed in Section 15.6.

15.2 On/Off Switch Config Cluster Structure and Attribute
The structure definition for the On/Off Switch Configuration cluster is:

typedef struct
{
#ifdef OOSC_SERVER
 zenum8 eSwitchType;
 zenum8 eSwitchActions;
#endif
 zuint16 u16ClusterRevision;
} tsCLD_OOSC;

where:

• eSwitchType is the type of the switch, one of:
– Toggle (0x00) - when the switch is physically moved between its two states, it remains in the latest state

until it is physically returned to the original state (for example, a rocker switch)
– Momentary (0x01) - when the switch is physically moved between its two states, it returns to the original

state as soon as it is released (for example, a pushbutton which is pressed and then released)
– Multi-function (0x02) - when the switch is physically moved between its two states, the command it sends is

application-specific and may be dependent on the circumstances.
Enumerations are provided for the above settings (see Section 15.5.2).

• eSwitchActions defines the commands to be generated when the switch moves between state 1 (S1) and
state 2 (S2), one of:
– S1 to S2 is ‘switch on’, S2 to S1 is ‘switch off’
– S1 to S2 is ‘switch off’, S2 to S1 is ‘switch on’
– S1 to S2 is ‘toggle’, S2 to S1 is ‘toggle’

Enumerations are provided for the above settings (see Section 15.5.3).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
189 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section2.4.

15.3 Initialisation
The function eCLD_OOSCCreateOnOffSwitchConfig() is used to create an instance of the On/Off Switch
Configuration cluster. The function is called by the initialization function for the host device.

15.4 Functions
The following On/Off Switch Configuration cluster function is provided in the NXP implementation of the ZCL:

• eCLD_OOSCCreateOnOffSwitchConfig

15.4.1 eCLD_OOSCCreateOnOffSwitchConfig

teZCL_Status eCLD_OOSCCreateOnOffSwitchConfig(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 tsZCL_AttributeStatus *psAttributeStatus);

Description

This function creates an instance of the On/Off Switch Configuration cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure
and can act as a server or a client, as specified.

Call the function when setting up a custom endpoint containing one or more selected clusters (rather than
the whole set of clusters supported by a standard ZigBee device). This function creates an On/Off Switch
Configuration cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be the first On/Off Switch Configuration cluster function called in the application,
and must be called after the stack has been started and after the ZCL has been initialized.

Parameters

• psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
FALSE - client

• psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the On/Off Switch Configuration cluster. This parameter
can refer to a pre-filled structure called sCLD_OOSC which is provided in the OOSC.h file.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
190 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_OOSC which defines the attributes of On/Off Switch
Configuration cluster. The function initializes the attributes with default values.

• psAttributeStatus Pointer to a structure containing the storage for each attribute's status

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

15.5 Enumerations

15.5.1 teCLD_OOSC_ClusterID

The following structure contains the enumerations used to identify the attributes of the On/Off Switch
Configuration cluster.

typedef enum
{
 E_CLD_OOSC_ATTR_ID_SWITCH_TYPE = 0x0000, /* Mandatory */
 E_CLD_OOSC_ATTR_ID_SWITCH_ACTIONS = 0x0010, /* Mandatory */
} teCLD_OOSC_ClusterID;

15.5.2 teCLD_OOSC_SwitchType

The following structure contains the enumerations used to specify the switch type in the eSwitchType
attribute.

typedef enum
{
 E_CLD_OOSC_TYPE_TOGGLE,
 E_CLD_OOSC_TYPE_MOMENTARY,
 E_CLD_OOSC_TYPE_MULTI_FUNCTION
} teCLD_OOSC_SwitchType;

The above enumerations are detailed in the table below.

Enumeration Description

E_CLD_OOSC_TYPE_TOGGLE Toggle - when the switch is physically moved between its two
states, it remains in the latest state until it is physically returned to
the original state (for example, a rocker switch).

E_CLD_OOSC_TYPE_MOMENTARY Momentary - when the switch is physically moved between its two
states, it returns to the original state as soon as it is released (for
example, a pushbutton which is pressed and then released).

E_CLD_OOSC_TYPE_MULTI_FUNCTION Multi-function - when the switch is physically moved between its
two states, the command it sends is application-specific and may
be dependent on the circumstances.

Table 33. Switch Type Enumerations

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
191 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

15.5.3 teCLD_OOSC_SwitchAction

The following structure contains the enumerations used to specify the switch action in the eSwitchActions
attribute.

typedef enum
{
 E_CLD_OOSC_ACTION_S2ON_S1OFF,
 E_CLD_OOSC_ACTION_S2OFF_S1ON,
 E_CLD_OOSC_ACTION_TOGGLE
} teCLD_OOSC_SwitchAction;

The above enumerations are detailed in the table below.

Enumeration
Description
When the switch moves between state 1 (S1) and state 2
(S2)...

E_CLD_OOSC_ACTION_S2ON_S1OFF S1 to S2 is ‘switch on’, S2 to S1 is ‘switch off’

E_CLD_OOSC_ACTION_S2OFF_S1ON S1 to S2 is ‘switch off’, S2 to S1 is ‘switch on’

E_CLD_OOSC_ACTION_TOGGLE S1 to S2 is ‘toggle’, S2 to S1 is ‘toggle’

Table 34. Switch Action Enumerations

15.6 Compile-time options
To enable the On/Off Switch Configuration cluster in the code to be built, it is necessary to add the following to
the zcl_options.h file:

#define CLD_OOSC

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define OOSC_CLIENT
#define OOSC_SERVER

To define the value (n) of the Cluster Revision attribute, add this line:

#define CLD_OOSC_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
192 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

16 Level Control Cluster

This chapter describes the Level Control cluster.

The Level Control cluster has a Cluster ID of 0x0008.

16.1 Overview
The Level Control cluster is used to control the level of a physical quantity on a device. The physical quantity is
device-dependent - for example, it could be light, sound or heat output.

Note: This cluster should be used with the On/Off cluster (see Chapter 14) and this is assumed to be the case
in this description.

The Level Control cluster provides the facility to increase to a target level gradually during a ‘switch-on’ and
decrease from this level gradually during a ‘switch-off’.

To use the functionality of this cluster, you must include the file LevelControl.h in your application and enable
the cluster by defining CLD_LEVEL_CONTROL in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

• The cluster server is able to receive commands to change the level on the local device.
• The cluster client is able to send commands to change the level on the remote device.

The inclusion of the client or server software must be pre-defined in the application’s compile-time options. In
addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance.

The compile-time options for the Level Control cluster are fully detailed in Section 16.10.

16.2 Level Control Cluster structure and attributes
The structure definition for the Level Control cluster is shown below.

typedef struct
{
#ifdef LEVEL_CONTROL_SERVER
 zuint8 u8CurrentLevel;
#ifdef CLD_LEVELCONTROL_ATTR_REMAINING_TIME
 zuint16 u16RemainingTime;
#endif
 zbmap8 u8Options;
#ifdef CLD_LEVELCONTROL_ATTR_ON_OFF_TRANSITION_TIME
 zuint16 u16OnOffTransitionTime;
#endif
#ifdef CLD_LEVELCONTROL_ATTR_ON_LEVEL
 zuint8 u8OnLevel;
#endif
#ifdef CLD_LEVELCONTROL_ATTR_ON_TRANSITION_TIME
 zuint16 u16OnTransitionTime;
#endif
#ifdef CLD_LEVELCONTROL_ATTR_OFF_TRANSITION_TIME
 zuint16 u16OffTransitionTime;
#endif
#ifdef CLD_LEVELCONTROL_ATTR_DEFAULT_MOVE_RATE
 zuint8 u8DefaultMoveRate;
#endif
#ifdef CLD_LEVELCONTROL_ATTR_STARTUP_CURRENT_LEVEL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
193 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zuint8 u8StartUpCurrentLevel;
#endif
#ifdef CLD_LEVELCONTROL_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_LevelControl;

where:

• u8CurrentLevel is the current level on the device, in the range 0x01 to 0xFE (0x00 is not used and 0xFF
represents an undefined level).

• u16RemainingTime is the time remaining (in tenths of a second) at the current level
• u8Options is a bitmap which allows behaviors connected with certain commands to be defined (these

behaviors should only be defined during commissioning), as follows:

Bits Name Description

0 ChangeIfOff Defines whether changes to the Level Control cluster can be made
from control clusters (for example, Colour Control) when the bOnOff
attribute of the On/Off cluster is zero (off):
• 1 – Allow changes
• 0 – Do not allow changes

1 CoupleColorTempToLevel Defines whether changes to the u8CurrentLevel attribute are to be
coupled with colour temperature:
• 1 – Couple changes
• 0 – Do not couple changes

2-7 - Reserved

• u16OnOffTransitionTime is the time taken (in tenths of a second) to increase from ‘off’ to the target level
or decrease from the target level to ‘off’ when an On or Off command is received, respectively (see below for
target level)

• u8OnLevel is the target level to which u8CurrentLevel is set when an On command is received. The
value must be in the range 0x01 to 0xFE. If maximum and minimum levels are implemented using the final
four attributes of the cluster (see below), the value must be within the permissible range.

• u16OnTransitionTime is an optional attribute representing the time taken (in tenths of a second) to
increase the level from 0 (off) to 255 (on) when an ‘On’ command of the On/Off cluster is received. The
special value of 0xFFFF indicates that the transition time u16OnOffTransitionTime must be used instead
(which is also used if u16OnTransitionTime is not enabled).

• u16OffTransitionTime is an optional attribute representing the time taken (in tenths of a second) to
decrease the level from 255 (on) to 0 (off) when an ‘Off’ command of the On/Off cluster is received. The
special value of 0xFFFF indicates that the transition time u16OnOffTransitionTime must be used instead
(which is also be used if u16OffTransitionTime is not enabled).

• u8DefaultMoveRate is an optional attribute representing the rate of movement (in units per second) to be
used when a Move command is received with a rate value (u8Rate) equal to 0xFF (see Section 16.8.3.2).

• u8StartUpCurrentLevel is an optional attribute that is used in the lighting domain to define the
required start-up level of a light device when it is supplied with power. It determines the initial value of
u8CurrentLevel on start-up (in the range 0x01 to 0xFE).

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
194 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

16.3 Attributes for Default Reporting
The following attribute of the Level Control cluster can be selected for default reporting:

• u8CurrentLevel

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for this attribute is
described in Appendix B.3.6.

16.4 Initialization
The function eCLD_LevelControlCreateLevelControl() is used to create an instance of the Level Control
cluster. The function is called by the initialization function for the host device.

16.5 Sending Remote Commands
The NXP implementation of the ZCL provides functions for sending commands between a Level Control cluster
client and server. A command is sent from the client to one or more endpoints on the server. Multiple endpoints
can usually be targeted using binding or group addressing.

16.5.1 Changing Level

Three functions (see below) are provided for sending commands to change the current level on a device. These
commands modify the ‘current level’ attribute of the Level Control cluster.

Each of the three level functions can be implemented with the On/Off cluster. In this case:

• If the command increases the current level, the OnOff attribute of the On/Off cluster is set to ‘on’.
• If the command decreases the current level to the minimum permissible level for the device, the OnOff

attribute of the On/Off cluster is set to ‘off’.

Use of the three functions/commands are described below.

Move to Level Command

The current level can be moved (up or down) to a new level over a given time using the function eCLD_Level
ControlCommandMoveToLevelCommandSend(). The target level and transition time are specified in the
command payload (see Section 16.8.3.1).

Move Command

The current level can be moved (up or down) at a specified rate using the function eCLD_LevelControl
CommandMoveCommandSend(). The level varies until stopped (see Section 16.5.2) or until the maximum or
minimum level is reached. The direction and rate are specified in the command payload (see Section 16.8.3.2).

Step Command

The current level can be moved (up or down) to a new level in a single step over a given time using the function
eCLD_LevelControlCommandStepCommandSend(). The direction, step size and, transition time are
specified in the command payload (see Section 16.8.3.3).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
195 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

16.5.2 Stopping a Level Change

A level change initiated using any of the functions referenced in Section 16.5.1 can be halted using the function
eCLD_LevelControlCommandStopCommandSend() or eCLD_LevelControlCommandStopWithOnOff
CommandSend().

16.6 Issuing Local Commands
Some of the operations described in Section 16.5 that correspond to remote commands can also be performed
locally, as described below.

16.6.1 Setting Level

The level on the device on a local endpoint can be set using the function eCLD_LevelControlSetLevel(). This
function sets the value of the ‘current level’ attribute of the Level Control cluster. A transition time must also be
specified, in units of tenths of a second, during which the level moves toward the target value (this transition
should be as smooth as possible, not stepped).

The specified level must be in the range 0x01 to 0xFE (the extreme values 0x00 and 0xFF are not used),
where:

• 0x01 represents the minimum possible level for the device
• 0x02 to 0xFD are device-dependent values
• 0xFE represents the maximum level for the device

When the On/Off cluster is also enabled, calling the above function can have the following outcomes:

• If the operation is to increase the current level, the OnOff attribute of the On/Off cluster is set to ‘on’.
• If the operation is to decrease the current level to the minimum permissible level for the device, the OnOff

attribute of the On/Off cluster is set to ‘off’.

16.6.2 Obtaining Level

The current level on the device on a local endpoint can be obtained using the function
eCLD_LevelControlGetLevel(). This function reads the value of the ‘current level’ attribute of the Level Control
cluster.

16.7 Functions
The following Level Control cluster functions are provided in the NXP implementation of the ZCL:

1. eCLD_LevelControlCreateLevelControl
2. eCLD_LevelControlSetLevel
3. eCLD_LevelControlGetLevel
4. eCLD_LevelControlCommandMoveToLevelCommandSend
5. eCLD_LevelControlCommandMoveCommandSend
6. eCLD_LevelControlCommandStepCommandSend
7. eCLD_LevelControlCommandStopCommandSend

16.7.1 eCLD_LevelControlCreateLevelControl

teZCL_Status eCLD_LevelControlCreateLevelControl(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
196 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
 tsCLD_LevelControlCustomDataStructure
 *psCustomDataStructure);

Description

This function creates an instance of the Level Control cluster on an endpoint. The cluster instance is created
on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a
server or a client, as specified.

Call the function when setting up a custom endpoint containing one or more selected clusters (rather than the
whole set of clusters supported by a standard ZigBee device). This function creates a Level Control cluster
instance on the endpoint, but instances of other clusters may also be created on the same endpoint by calling
their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be the first Level Control cluster function called in the application, and must be
called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Level Control cluster. The function initializes the array elements to zero.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this
case, this structure must contain the details of the Level Control cluster. This parameter can refer to a pre-
filled structure called sCLD_LevelControl which is provided in the LevelControl.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_LevelControl, which defines the attributes of Level Control
cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above)

• psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see
Section 16.8.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

16.7.2 eCLD_LevelControlSetLevel

teZCL_Status eCLD_LevelControlSetLevel(

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
197 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8SourceEndPointId,
 uint8 u8Level,
 uint16 u16TransitionTime);

Description

This function sets the level on the device on the specified (local) endpoint by writing the specified value to the
‘current level’ attribute. The new level is implemented over the specified transition time by gradually changing
the level.

The specified target level must be within the range 0x01 to 0xFE or a more restricted range imposed by the
device manufacturer and/or user/installer (see Section 16.6.1).

This operation is performed with the On/Off cluster (if enabled), in which case:

• If the operation is to increase the current level, the OnOff attribute of the On/Off cluster is set to ‘on’.
• If the operation is to decrease the current level to the minimum permissible level for the device, the OnOff

attribute of the On/Off cluster is set to ‘off’.

Parameters

• u8SourceEndPointId: Number of the local endpoint on which level is to be changed
• u8Level: New level to be set, within the range 0x01 to 0xFE or within a more restricted range (see above)
• u16TransitionTime: Time to be taken, in units of tenths of a second, to reach the target level (0xFFFF means

move to the level as fast as possible)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

16.7.3 eCLD_LevelControlGetLevel

teZCL_Status eCLD_LevelControlGetLevel(
 uint8 u8SourceEndPointId,
 uint8 *pu8Level);

Description

This function obtains the current level on the device on the specified (local) endpoint by reading the ‘current
level’ attribute.

Parameters

• u8SourceEndPointId Number of the local endpoint from which the level is to be read

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
198 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pu8Level Pointer to location to receive obtained level

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

16.7.4 eCLD_LevelControlCommandMoveToLevelCommandSend

teZCL_Status eCLD_LevelControlCommandMoveToLevelCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 bool_t bWithOnOff,
 tsCLD_LevelControl_MoveToLevelCommandPayload
 *psPayload);

Description

This function sends a Move to Level command to instruct a device to move its ‘current level’ attribute to the
specified level over a specified time. The new level and the transition time are specified in the payload of the
command (see Section 16.8.3). The target level must be within the range 0x01 to 0xFE or a more restricted
range imposed by the device manufacturer and/or user/installer (see Section 16.5.1).

The device receiving this message generates a callback event on the endpoint on which the Level Control
cluster is registered and transition the ‘current level’ attribute to the new value.

The option is provided to use this command in association with the On/Off cluster. In this case:

• If the command is to increase the current level, the OnOff attribute of the On/Off cluster is set to ‘on’.
• If the command is to decrease the current level to the minimum permissible level for the device, the OnOff

attribute of the On/Off cluster is set to ‘off’.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
199 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of
the request

• bWithOnOff: Specifies whether this cluster interacts with the On/Off cluster:
– TRUE - interaction
– FALSE - no interaction

• psPayloadPointer to a structure containing the payload for this message (see Section 16.8.3)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

16.7.5 eCLD_LevelControlCommandMoveCommandSend

teZCL_Status eCLD_LevelControlCommandMoveCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 bool_t bWithOnOff,
tsCLD_LevelControl_MoveCommandPayload
 *psPayload);

Description

This function sends a Move command to instruct a device to move its ‘current level’ attribute either up or down
in a continuous manner at a specified rate. The direction and rate are specified in the payload of the command
(see Section 16.8.3).

If the current level reaches the maximum or minimum permissible level for the device, the level change stops.

The device receiving this message generates a callback event on the endpoint on which the Level Control
cluster is registered, and move the current level in the direction and at the rate specified.

The option is provided to use this command in association with the On/Off cluster. In this case:

• If the command is to increase the current level, the OnOff attribute of the On/Off cluster is set to ‘on’.
• If the command decreases the current level to the minimum permissible level for the device, the OnOff

attribute of the On/Off cluster is set to ‘off’.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
200 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• bWithOnOff: Specifies whether this cluster interacts with the On/Off cluster:

– TRUE - interaction
– FALSE - no interaction

• psPayload: Pointer to a structure containing the payload for this message (see Section 16.8.3)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

16.7.6 eCLD_LevelControlCommandStepCommandSend

teZCL_Status eCLD_LevelControlCommandStepCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 bool_t bWithOnOff,
tsCLD_LevelControl_StepCommandPayload
 *psPayload);

Description

This function sends a Step command to instruct a device to move its ‘current level’ attribute either up or down
in a step of the specified step size over the specified time. The direction, step size and, transition time are
specified in the payload of the command (see Section 16.8.3).

If the target level is above the maximum or below the minimum permissible level for the device, the stepped
change is limited to this level, and the transition time is cut short.

The device receiving this message generates a callback event on the endpoint on which the Level Control
cluster is registered and move the current level according to the specified direction, step size and transition
time.

The option is provided to use this command in association with the On/Off cluster. In this case:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
201 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• If the command is to increase the current level, the OnOff attribute of the On/Off cluster is set to ‘on’.
• If the command decreases the current level to the minimum permissible level for the device, the OnOff

attribute of the On/Off cluster is set to ‘off’.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• bWithOnOff: Specifies whether this cluster interacts with the On/Off cluster:

– TRUE - interaction
– FALSE - no interaction

• psPayload: Pointer to a structure containing the payload for this message (see Section 16.8.3)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

16.7.7 eCLD_LevelControlCommandStopCommandSend

teZCL_Status eCLD_LevelControlCommandStopCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 bool_t bWithOnOff,
 tsCLD_LevelControl_StopCommandPayload
 *psPayload);

Description

This function sends a Stop command to instruct a device to halt any transition to a new level. If necessary, the
command can be sent as the ‘with On/Off’ version, used when the Level Control cluster interacts with the On/Off
cluster, but the result on the target device is the same.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
202 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The device receiving this message generates a callback event on the endpoint on which the Level Control
cluster is registered and stop any in progress transition.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId Number of the local endpoint through which to send the request. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number

(TSN) of the request
• bWithOnOff Specifies whether this cluster interacts with the On/Off cluster:

TRUE - interaction
FALSE - no interaction

• psPayload Pointer to a structure containing the payload for this message (see Section 16.8.3.4)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

16.8 Structures

16.8.1 Level Control Transition Structure

The following structure is used to store information about an ongoing level transition.

typedef struct
{
 teCLD_LevelControl_Transition eTransition;
 teCLD_LevelControl_MoveMode eMode;
 bool bWithOnOff;
 int iCurrentLevel;
 int iTargetLevel;
 int iPreviousLevel;
 int iStepSize;
 uint32 u32Time;
} tsCLD_LevelControl_Transition;

where:
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
203 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• eTransition is an enumeration indicating the type of level transition implemented - for the enumerations,
see Section 16.9.2.

• eMode is an enumeration indicating the direction in which the level is moved during the transition - for the
enumerations, see Section 16.9.3

• bWithOnOff is a boolean which is set to TRUE if the transition is implemented with the On/Off cluster (or
FALSE otherwise). When enabled:
– If the transition is to increase the level, the OnOff attribute of the On/Off cluster is set to ‘on’.
– If the transition decreases the level to the minimum permissible level for the device, the OnOff attribute of

the On/Off cluster is set to ‘off’.
• iCurrentLevel is the current level (0x01-0xFE) during the transition.
• iTargetLevel is the target level (0x01-0xFE) of the transition.
• iPreviousLevel is the previous level (0x01-0xFE) during the transition.
• iStepSize is the size of a single step of the transition.
• u32Time is the total time for the transition, in tenths of a second.

16.8.2 Custom Data Structure

The Level Control cluster requires extra storage space to be allocated for use by internal functions. The
structure definition for this storage is shown below:

typedef struct
{
 tsCLD_LevelControl_Transition sTransition;
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_LevelControlCallBackMessage sCallBackMessage;
} tsCLD_LevelControlCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

16.8.3 Custom Command Payloads

The following structures contain the payloads for the Level Control cluster custom commands.

16.8.3.1 Move To Level Command Payload

typedef struct
{
 uint8 u8Level;
 uint16 u16TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_LevelControl_MoveToLevelCommandPayload;

where:

• u8Level is the target level within the range 0x01 to 0xFE or within a more restricted range (see Section
16.5.1)

• u16TransitionTime is the time taken, in units of tenths of a second, to reach the target level (0xFFFF
means use the u16OnOffTransitionTime attribute instead - if this optional attribute is not present, the
device changes the level as fast as possible).

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
204 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

16.8.3.2 Move Command Payload

typedef struct
{
 uint8 u8MoveMode;
 uint8 u8Rate;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_LevelControl_MoveCommandPayload;

where:

• u8MoveMode indicates the direction of the required level change, up (0x00) or down (0x01)
• u8Rate represents the required rate of change in units per second (0xFF means use the
u8DefaultMoveRate attribute instead - if this optional attribute is not present, the device changes the level
as fast as possible)

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

16.8.3.3 Step Command Payload

typedef struct
{
 uint8 u8StepMode;
 uint8 u8StepSize;
 uint16 u16TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_LevelControl_StepCommandPayload;

where:

• u8StepMode indicates the direction of the required level change, up (0x00) or down (0x01)
• u8StepSize is the size for the required level change
• u16TransitionTime is the time taken, in units of tenths of a second, to reach the target level (0xFFFF

means move to the level as fast as possible)
• OptionsMask and OptionsOverride must be either both present or both not present. These fields are

used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

16.8.3.4 Stop Command Payload

typedef struct
{
 zbmap8 u8OptionsMask;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
205 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zbmap8 u8OptionsOverride;
} tsCLD_LevelControl_StopCommandPayload;

where OptionsMask and OptionsOverride must be either both present or both not present. These fields
are used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

16.9 Enumerations

16.9.1 teCLD_LevelControl_ClusterID

The following enumerations are used to identify the attributes of the Level Control cluster.

typedef enum
{
 E_CLD_LEVELCONTROL_ATTR_ID_CURRENT_LEVEL = 0x0000,
 E_CLD_LEVELCONTROL_ATTR_ID_REMAINING_TIME,
 E_CLD_LEVELCONTROL_ATTR_ID_OPTIONS = 0x000F,
 E_CLD_LEVELCONTROL_ATTR_ID_ON_OFF_TRANSITION_TIME = 0x010,
 E_CLD_LEVELCONTROL_ATTR_ID_ON_LEVEL,
 E_CLD_LEVELCONTROL_ATTR_ID_ON_TRANSITION_TIME,
 E_CLD_LEVELCONTROL_ATTR_ID_OFF_TRANSITION_TIME,
 E_CLD_LEVELCONTROL_ATTR_ID_DEFAULT_MOVE_RATE,
 E_CLD_LEVELCONTROL_ATTR_ID_STARTUP_CURRENT_LEVEL = 0x4000,
} teCLD_LevelControl_ClusterID;

16.9.2 teCLD_LevelControl_Transition

The following enumerations are used to specify a type of level transition.
typedef enum
{
 E_CLD_LEVELCONTROL_TRANSITION_MOVE_TO_LEVEL = 0,
 E_CLD_LEVELCONTROL_TRANSITION_MOVE,
 E_CLD_LEVELCONTROL_TRANSITION_STEP,
 E_CLD_LEVELCONTROL_TRANSITION_STOP,
 E_CLD_LEVELCONTROL_TRANSITION_ON,
 E_CLD_LEVELCONTROL_TRANSITION_OFF,
 E_CLD_LEVELCONTROL_TRANSITION_OFF_WITH_EFFECT_DIM_DOWN_FADE_OFF,
 E_CLD_LEVELCONTROL_TRANSITION_OFF_WITH_EFFECT_DIM_UP_FADE_OFF,
 E_CLD_LEVELCONTROL_TRANSITION_NONE,
} teCLD_LevelControl_Transition;

16.9.3 teCLD_LevelControl_MoveMode

The following enumerations are used to specify the direction of a level change.
typedef enum
{
 E_CLD_LEVELCONTROL_MOVE_MODE_UP = 0x0,
 E_CLD_LEVELCONTROL_MOVE_MODE_DOWN
} teCLD_LevelControl_MoveMode;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
206 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

16.10 Compile-time options
To enable the Level Control cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_LEVEL_CONTROL

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define LEVEL_CONTROL_CLIENT
#define LEVEL_CONTROL_SERVER

The Level Control cluster contains macros that may be optionally specified at compile time by adding one or
more of the following lines to the zcl_options.h file.

Optional Attributes

To enable the optional Remaining Time attribute, add this line:

#define CLD_LEVELCONTROL_ATTR_REMAINING_TIME

To enable the optional On/Off Transition Time attribute, add this line:

#define CLD_LEVELCONTROL_ATTR_ON_OFF_TRANSITION_TIME

To enable the optional On Level attribute, add this line:

#define CLD_LEVELCONTROL_ATTR_ON_LEVEL

To enable the optional On Transition Time attribute, add this line:

#define CLD_LEVELCONTROL_ATTR_ON_TRANSITION_TIME

To enable the optional Off Transition Time attribute, add this line:

#define CLD_LEVELCONTROL_ATTR_OFF_TRANSITION_TIME

To enable the optional Default Move Rate attribute, add this line:

#define CLD_LEVELCONTROL_ATTR_DEFAULT_MOVE_RATE

To enable the optional Start-up Current Level attribute, add this line:

#define CLD_LEVELCONTROL_ATTR_STARTUP_CURRENT_LEVEL

Global Attributes

To enable the optional Attribute Reporting Status attribute, add this line:

#define CLD_LEVELCONTROL_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
207 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

To define the value (n) of the Cluster Revision attribute, add this line:

#define CLD_LEVELCONTROL_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
208 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

17 Alarms Cluster

This chapter describes the Alarms cluster which is defined in the ZCL.

The Alarms cluster has a Cluster ID of 0x0009.

17.1 Overview
The Alarms cluster is used to configure alarm functionality on a device and send alarm notifications to other
devices.

Note: The Alarms cluster is used with other clusters that use alarms. Alarms conditions and codes are cluster-
specific and defined in these clusters.

To use the functionality of this cluster, you must include the file Alarms.h in your application and enable the
cluster by defining CLD_ALARMS in the zcl_options.h file.

An Alarms cluster instance can act as a client or a server. The inclusion of the client or server software must be
pre-defined in the application’s compile-time options (in addition, if the cluster is to reside on a custom endpoint
then the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Alarms cluster are fully detailed in Section 17.9.

The Alarms cluster server resides on a device on which other clusters may generate alarm conditions (for
example, a cluster attribute value exceeds a certain limit). When an alarm condition occurs, the Alarms cluster
server may send an Alarm notification to a cluster client - for example, the client may be on a device that signals
alarms to the user. An Alarms cluster client may also contain a user interface (for example, a set of buttons)
which allows user instructions to be sent to the server - for example, to reset an alarm.

The Alarms cluster server implements alarm logging by keeping a record of the previously generated alarms in
an Alarms table. Thus, historic alarm information can be retrieved from the Alarms table. Each entry of the table
contains the following information about one alarm activation:

• Alarm code which identifies the type of alarm (this type is cluster-specific)
• Cluster ID of the cluster which generated the alarm
• Time-stamp indicating the time (UTC) at which the alarm is generated

A maximum number of Alarms table entries can be set in the compile-time options.

Note: Any device which implements time-stamping for alarms must also employ the Time cluster, described in
Chapter 17.

17.2 Alarms Cluster structure and attributes
The structure definition for the Alarms cluster is shown below.

typedef struct
{
#ifdef ALARMS_SERVER
 #ifdef CLD_ALARMS_ATTR_ALARM_COUNT
 zuint16 u16AlarmCount;
 #endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_Alarms;

where:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
209 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16AlarmCount is an optional attribute which contains the number of entries currently in the Alarms table on
the cluster server.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

17.3 Initialization
The function eCLD_AlarmsCreateAlarms() is used to create an instance of the Alarms cluster. The function is
generally called by the initialization function for the host device.

17.4 Alarm Operations
This section describes the main operations that are performed using the Alarms cluster - raising an alarm and
clearing/resetting an alarm.

17.4.1 Raising an Alarm

An alarm is raised when an alarm condition occurs on a cluster on the same endpoint as the Alarms cluster
server - for example, when a cluster attribute falls below a lower threshold. The Alarms cluster server
should then send an Alarm notification to any remote Alarms cluster clients that might be interested in the
alarm. The server application can send this notification and add an entry to the Alarms table by calling
the eCLD_AlarmsSignalAlarm() function. On arriving at a destination device, the notification causes an
E_CLD_ALARMS_CMD_ALARM event to be generated to notify the client application.

17.4.2 Resetting Alarms (from Client)

A client application can remotely request one alarm or all alarms to be reset:

• The function eCLD_AlarmsCommandResetAlarmCommandSend() can be used to request an individual
alarm to be reset. A Reset Alarm command is sent to the cluster server. On arriving at the destination device,
the command causes an E_CLD_ALARMS_CMD_RESET_ALARM event to be generated.

• The function eCLD_AlarmsCommandResetAllAlarmsCommandSend() can be used to request all alarms
to be reset. A Reset All Alarms command is sent to the cluster server. On arriving at the destination device,
the command causes an E_CLD_ALARMS_CMD_RESET_ALL_ALARMS event to be generated.

On the generation of the above events on the cluster server, the server application can remove the relevant
entry or entries from the local Alarms table as described in Section 17.4.2.

Note: The client application can also request that all the entries in an Alarms table are removed by calling e
CLD_AlarmsCommandResetAlarmLogCommandSend(). In this case, the entries are automatically deleted
by the ZCL on the server.

17.5 Alarms Events
The Alarms cluster has its own events that are handled through the callback mechanism outlined in Chapter
3. If a device uses the Alarms cluster, then Alarms event handling must be included in the callback function for
the associated endpoint, where this callback function is registered through the relevant endpoint registration
function (for example, through eHA_RegisterThermostatEndPoint() for a Thermostat device). The relevant
callback function is then invoked when an Alarms event occurs.

For an Alarms event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
210 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_AlarmsCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_AlarmsResetAlarmCommandPayload *psResetAlarmCommandPayload;
 tsCLD_AlarmsAlarmCommandPayload *psAlarmCommandPayload;
 tsCLD_AlarmsGetAlarmResponsePayload *psGetAlarmResponse;
 } uMessage;
} tsCLD_AlarmsCallBackMessage;

When an Alarms event occurs, one of a number of command types could have been received. The relevant
command type is specified through the u8CommandId field of the tsCLD_AlarmsCallBackMessage
structure. The possible command types are detailed below.

The table below lists and describes the command types that can be received by the cluster server.

u8CommandId Enumeration Description

E_CLD_ALARMS_CMD_RESET_ALARM A Reset Alarm command has been received

E_CLD_ALARMS_CMD_RESET_ALL_ALARMS A Reset All Alarms command has been received

E_CLD_ALARMS_CMD_GET_ALARM A Get Alarm command has been received

E_CLD_ALARMS_CMD_RESET_ALARM_LOG A Reset Alarm Log command has been received

Table 35. Alarms Command Types (on Server)

The table below lists and describes the command types that can be received by the cluster client.

u8CommandId Enumeration Description

E_CLD_ALARMS_CMD_ALARM An Alarm notification has been received

E_CLD_ALARMS_CMD_GET_ALARM_RESPONSE A Get Alarm response has been received

Table 36. Alarms Command Types (on Client)

17.6 Functions
The following Alarms cluster functions are provided in the NXP implementation of the ZCL:

1. eCLD_AlarmsCreateAlarms
2. eCLD_AlarmsCommandResetAlarmCommandSend
3. eCLD_AlarmsCommandResetAllAlarmsCommandSend
4. eCLD_AlarmsCommandGetAlarmCommandSend
5. eCLD_AlarmsCommandResetAlarmLogCommandSend
6. eCLD_AlarmsResetAlarmLog
7. eCLD_AlarmsAddAlarmToLog
8. eCLD_AlarmsGetAlarmFromLog

17.6.1 eCLD_AlarmsCreateAlarms

teZCL_Status eCLD_AlarmsCreateAlarms(
 tsZCL_ClusterInstance *psClusterInstance,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
211 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_AlarmsCustomDataStructure
 *psCustomDataStructure);

Description

This function creates an instance of the Alarms cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function is only called when setting up a custom endpoint containing one or more selected clusters (rather
than the whole set of clusters supported by a standard ZigBee device). This function creates an Alarms cluster
instance on the endpoint, but instances of other clusters may also be created on the same endpoint by calling
their corresponding creation functions.

Note: This function is not called for an endpoint on which a standard ZigBee device is used. In this case, the
device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be the first Alarms cluster function called in the application, and must be called
after the stack has been started and after the ZCL has been initialized.

Parameters

• psClusterInstance:Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Alarms cluster. This parameter can refer to a pre-filled
structure called sCLD_Alarms which is provided in the Alarms.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_Alarms which defines the attributes of Alarms cluster. The
function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above)

• psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see
Section 17.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL

17.6.2 eCLD_AlarmsCommandResetAlarmCommandSend

teZCL_Status eCLD_AlarmsCommandResetAlarmCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
212 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_AlarmsResetAlarmCommandPayload
 *psPayload);

Description

This function can be called on an Alarms cluster client to send a Reset Alarm command to a cluster server.
This command requests that a specific alarm for a specific cluster is reset. The function may be called as the
result of user input. The relevant alarm and cluster ID must be specified in the command payload (see Section
17.7.3.1).

On receiving the command, an E_CLD_ALARMS_CMD_RESET_ALARM event is generated on the cluster
server to notify the application.

The function is only used to reset alarms that are not automatically reset when the alarm condition no longer
exists.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 17.7.3.1)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

17.6.3 eCLD_AlarmsCommandResetAllAlarmsCommandSend

teZCL_Status eCLD_AlarmsCommandResetAllAlarmsCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
213 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 *pu8TransactionSequenceNumber);

Description

This function can be called on an Alarms cluster client to send a Reset All Alarms command to a cluster server.
This command requests that all alarms on the server device are reset. The function may be called as the result
of user input.

On receiving the command, an E_CLD_ALARMS_CMD_RESET_ALL_ALARMS event is generated on the
cluster server to notify the application.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

17.6.4 eCLD_AlarmsCommandGetAlarmCommandSend

teZCL_Status eCLD_AlarmsCommandGetAlarmCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on an Alarms cluster client to send a Get Alarm command to a cluster server. This
command requests information on the logged alarm with the earliest timestamp in the device’s Alarms table. As
a result of this command, the retrieved entry is also deleted from the table.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
214 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The requested information is returned by the server in a Get Alarm response. When this response is received,
an E_CLD_ALARMS_CMD_GET_ALARM_RESPONSE event is generated on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

17.6.5 eCLD_AlarmsCommandResetAlarmLogCommandSend

teZCL_Status eCLD_AlarmsCommandResetAlarmLogCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be called on an Alarms cluster client to send a Reset Alarm Log command to a cluster server.
This command requests that the Alarms table on the server is cleared of all entries. The function may be called
as the result of user input.

On receiving the command, an E_CLD_ALARMS_CMD_RESET_ALARM_LOG event is generated on the
cluster server to notify the application but the ZCL automatically clears the Alarms table.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
215 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

17.6.6 eCLD_AlarmsResetAlarmLog

teZCL_Status eCLD_AlarmsResetAlarmLog(
 tsZCL_EndPointDefinition *psEndPointDefinition,
 tsZCL_ClusterInstance *psClusterInstance);

Description

This function can be called on the Alarms cluster server to clear all entries of the local Alarms table. The
function may be called as the result of user input.

Parameters

• psEndPointDefinition: Pointer to the ZCL endpoint definition structure for the application (see Section 6.1.1)
• psClusterInstance: Pointer to structure containing information about the Alarms cluster instance (see Section

6.1.16)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
216 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

17.6.7 eCLD_AlarmsAddAlarmToLog

teZCL_Status eCLD_AlarmsAddAlarmToLog(
 tsZCL_EndPointDefinition *psEndPointDefinition,
 tsZCL_ClusterInstance *psClusterInstance,
 uint8 u8AlarmCode,
 uint16 u16ClusterId);

Description

This function can be called on the Alarms cluster server to add a new entry to the local Alarms table. The
function should be called by the server application when an alarm condition has occurred. The alarm and the
cluster which generated it must be specified. A timestamp (UTC) for the alarm is automatically inserted into the
entry.

Parameters

• psEndPointDefinition: Pointer to the ZCL endpoint definition structure for the application (see Section 6.1.1)
• psClusterInstance: Pointer to structure containing information about the Alarms cluster instance (see Section

6.1.16)
• u8AlarmCode: Code that identifies the type of alarm to be added
• u16ClusterId: Cluster ID of the cluster which generated the alarm

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

17.6.8 eCLD_AlarmsGetAlarmFromLog

teZCL_Status eCLD_AlarmsGetAlarmFromLog(
 tsZCL_EndPointDefinition *psEndPointDefinition,
 tsZCL_ClusterInstance *psClusterInstance,
 uint8 *pu8AlarmCode,
 uint16 *pu16ClusterId,
 uint32 *pu32TimeStamp);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
217 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be called on the Alarms cluster server to obtain an entry from the local Alarms table.
Information on the logged alarm with the earliest timestamp in the device’s Alarms table is returned - pointers
to memory locations to receive the retrieved alarm data must be provided. As a result of this command, the
retrieved entry is also deleted from the table.

Parameters

• psEndPointDefinition: Pointer to the ZCL endpoint definition structure for the application (see Section 6.1.1)
• psClusterInstance: Pointer to structure containing information about the Alarms cluster instance (see Section

6.1.16)
• pu8AlarmCode: Pointer to location to receive the alarm code which identifies the retrieved alarm type
• pu16ClusterId: Pointer to location to receive the Cluster ID of the cluster which generated the alarm
• pu32TimeStamp: Pointer to location to receive timestamp (UTC) of the retrieved alarm (a value of

0XFFFFFFFF indicates that no timestamp is available for the alarm)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

17.6.9 eCLD_AlarmsSignalAlarm

teZCL_Status eCLD_AlarmsSignalAlarm(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8AlarmCode,
 uint16 u16ClusterId);

Description

This function can be called on the Alarms cluster server to send an Alarm notification to a cluster client and add
a log entry to the local Alarms table on the server. The function should be called by the server application when
an alarm condition has occurred. The alarm and the cluster which generated it must be specified.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
218 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• u8AlarmCode: Code which identifies the type of alarm that has occurred
• u16ClusterId: Cluster ID of the cluster which generated the alarm

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

17.7 Structures

17.7.1 Event Callback Message Structure

For an Alarms event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_AlarmsCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_AlarmsResetAlarmCommandPayload *psResetAlarmCommandPayload;
 tsCLD_AlarmsAlarmCommandPayload *psAlarmCommandPayload;
 tsCLD_AlarmsGetAlarmResponsePayload *psGetAlarmResponse;
} uMessage;
} tsCLD_AlarmsCallBackMessage;

where:

• u8CommandId indicates the type of Alarms command that has been received by a cluster server or client, one
of:
– E_CLD_ALARMS_CMD_RESET_ALARM (server event)
– E_CLD_ALARMS_CMD_RESET_ALL_ALARMS (server event)
– E_CLD_ALARMS_CMD_GET_ALARM (server event)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
219 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– E_CLD_ALARMS_CMD_RESET_ALARM_LOG (server event)
– E_CLD_ALARMS_CMD_ALARM (client event)
– E_CLD_ALARMS_CMD_GET_ALARM_RESPONSE (client event)

• uMessage is a union containing the command payload in the following form:
– psResetAlarmCommandPayload is a pointer to a structure containing the Reset Alarm command payload

- see Section 17.7.3.1
– psAlarmCommandPayload is a pointer to a structure containing the Alarm notification payload - see

Section 17.7.3.2
– psGetAlarmResponse is a pointer to a structure containing the Get Alarm response payload - see Section

17.7.4.1

For further information on the above events, refer to Section 17.5.

17.7.2 Custom Data Structure

The Alarms cluster requires extra storage space to be allocated for use by internal functions. The structure
definition for this storage is shown below:

typedef struct
{
 DLIST lAlarmsAllocList;
 DLIST lAlarmsDeAllocList;
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_AlarmsCallBackMessage sCallBackMessage;
 tsCLD_AlarmsTableEntry
 asAlarmsTableEntry[CLD_ALARMS_MAX_NUMBER_OF_ALARMS];
} tsCLD_AlarmsCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

17.7.3 Custom Command Payloads

This section contains the structures for the payloads of the Alarms cluster custom commands.

17.7.3.1 Reset Alarm Command Payload

typedef struct
{
 uint8 u8AlarmCode;
 uint16 u16ClusterId;
} tsCLD_AlarmsResetAlarmCommandPayload;

where:

• u8AlarmCode is the code which identifies the type of alarm to be reset - these codes are cluster-specific
• u16ClusterId is the Cluster ID of the cluster which generates the alarm to be reset

17.7.3.2 Alarm Notification Payload

typedef struct
{
 uint8 u8AlarmCode;
 uint16 u16ClusterId;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
220 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

} tsCLD_AlarmsAlarmCommandPayload;

where:

• u8AlarmCode is the code which identifies the type of alarm that has been generated - these codes are
cluster-specific

• u16ClusterId is the Cluster ID of the cluster which generated the alarm

17.7.4 Custom Response Payloads

This section contains the structures for the payloads of the Alarms cluster custom responses.

17.7.4.1 Get Alarm Response Payload

typedef struct
{
 uint8 u8Status;
 uint8 u8AlarmCode;
 uint16 u16ClusterId;
 uint32 u32TimeStamp;
} tsCLD_AlarmsGetAlarmResponsePayload;

where:

• u8Status indicates the result of the Get Alarm operation as follows:
– SUCCESS (0x01): An alarm entry is successfully retrieved from the Alarms table and its details are reported

in the remaining fields (below)
– NOT_FOUND (0x00): There were no alarm entries to be retrieved from the Alarms table and the remaining

fields (below) are empty
• u8AlarmCode is the code which identifies the type of alarm reported - these codes are cluster-specific
• u16ClusterId is the Cluster ID of the cluster which generated the alarm
• u32TimeStamp is a timestamp representing the time (UTC) at which the alarm was generated (a value of

0XFFFFFFFF indicates that no timestamp is available for the alarm)

17.7.5 Alarms Table Entry

The following structure contains the data for an entry of an Alarms table.

typedef struct
{
 DNODE dllAlarmsNode;
 uint8 u8AlarmCode;
 uint16 u16ClusterId;
 uint32 u32TimeStamp;
} tsCLD_AlarmsTableEntry;

where:

• dllAlarmsNode is for internal use and no knowledge of it is required
• u8AlarmCode is the code which identifies the type of alarm - these codes are cluster-specific
• u16ClusterId is the Cluster ID of the cluster which generated the alarm
• u32TimeStamp is a timestamp representing the time (UTC) at which the alarm was generated (a value of

0XFFFFFFFF indicates that no timestamp is available for the alarm)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
221 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

17.8 Enumerations

17.8.1 teCLD_Alarms_AttributeID

The following structure contains the enumerations used to identify the attributes of the Alarms cluster.

typedef enum
{
 E_CLD_ALARMS_ATTR_ID_ALARM_COUNT = 0x0000,
} teCLD_Alarms_AttributeID;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
222 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

18 Time Cluster and ZCL Time

This chapter describes the Time cluster which is defined in the ZCL. This cluster is used to maintain a time
reference for the transactions in a ZigBee PRO network and to time synchronize the ZigBee PRO devices.

The Time cluster has a Cluster ID of 0x000A.

This section also describes the maintenance of ‘ZCL time’.

18.1 Overview
The Time cluster is required in a ZigBee PRO network in which the constituent devices must be kept time-
synchronized - for example, in an HVAC system, it may be necessary for heating to operate only between
specific times of the day. In such a case, one device implements the Time cluster as a server and acts as the
time-master for the network. While the other devices in the network, implement the Time cluster as a client and
time-synchronize with the server.

Note: As for all clusters, the Time cluster is stored in a shared device structure (see Section 18.3) which, for
the cluster client, reflects the state of the cluster server. Access to the shared device structure (on Time cluster
server and client) must be controlled using a mutex - for information on mutexes, refer to Appendix A.

The Time cluster is enabled by defining CLD_TIME in the zcl_options.h file. The inclusion of the client or
server software must also be pre-defined in the application’s compile-time options. In addition, if the cluster is
to reside on a custom endpoint then specify the role of client or server, when creating the cluster instance. The
compile-time options for the Time cluster are fully detailed in Section 18.10.

In addition to the time in the Time cluster, the ZCL also keeps its own time, ‘ZCL time’. ZCL time may be
maintained on a device even when the Time cluster is not used by the device. Both times are described below.

Time Attribute

The Time cluster contains an attribute for the current time, as well as associated information such as time-zone
and daylight saving - see Section 18.3. The time attribute is referenced to UTC (Coordinated Universal Time)
and based on the type UTCTime, which is defined in the ZigBee standard as:

"UTCTime is an unsigned 32-bit value representing the number of seconds since 0 hours, 0 minutes, 0
seconds, on the January 1, 2000 UTC".

ZCL Time

‘ZCL time’ is based on the above UTCTime definition. This time is derived from a 1 second timer and is used to
drive any ZCL timers that have been registered.

18.2 Time Cluster structure and attributes
The Time cluster is contained in the following tsCLD_Time structure:

typedef struct
{
#ifdef TIME_SERVER
 zutctime utctTime;
 zbmap8 u8TimeStatus;
#ifdef CLD_TIME_ATTR_TIME_ZONE
 zint32 i32TimeZone;
#endif
#ifdef CLD_TIME_ATTR_DST_START
 zuint32 u32DstStart;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
223 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#endif
#ifdef CLD_TIME_ATTR_DST_END
 zuint32 u32DstEnd;
#endif
#ifdef CLD_TIME_ATTR_DST_SHIFT
 zint32 i32DstShift;
#endif
#ifdef CLD_TIME_ATTR_STANDARD_TIME
 zuint32 u32StandardTime;
#endif
#ifdef CLD_TIME_ATTR_LOCAL_TIME
 zuint32 u32LocalTime;
#endif
#ifdef CLD_TIME_ATTR_LAST_SET_TIME
 zutctime u32LastSetTime;
#endif
#ifdef CLD_TIME_ATTR_VALID_UNTIL_TIME
 zutctime u32ValidUntilTime;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_Time;;

where:

• utctTime is a mandatory 32-bit attribute which holds the current time (UTC). This attribute can only be over-
written using a remote ‘write attributes’ request if the local Time cluster is not configured as the time-master
for the network - this is the case if bit 0 of the element u8TimeStatus (see below) is set to 0.

• u8TimeStatus is a mandatory 8-bit attribute containing the following bitmap:

Bits Meaning Description

0 Master 1: Time-master for network
0: Not time-master for network

1 Synchronized 1: Synchronized to another device
0: Not synchronized to another device

2 Master for Time Zone and DST
*

1: Master for time-zone and DST
0: Not master for time-zone and DST

3-7 Reserved -

Table 37. u8TimeStatus Bitmap

* DST= Daylight Saving Time
Macros are provided for setting the individual bits of this bitmap:
– CLD_TM_TIME_STATUS_MASTER_MASK (bit 0)
– CLD_TM_TIME_STATUS_SYNCHRONIZED_MASK (bit 1)
– CLD_TM_TIME_STATUS_MASTER_ZONE_DST_MASK (bit 2)

• i32TimeZone is an optional attribute which indicates the local time-zone expressed as an offset from UTC, in
seconds.

• u32DstStart is an optional attribute which contains the start-time (UTC), in seconds, for daylight saving for
the current year.

• u32DstEnd is an optional attribute which contains the end-time (UTC), in seconds, for daylight saving for the
current year.

• i32DstShift is an optional attribute which contains the local time-shift, in seconds, relative to standard local
time that is applied during the daylight saving period.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
224 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u32StandardTime is an optional attribute which contains the local standard time (equal to utctTime +
i32TimeZone).

• u32LocalTime is an optional attribute which contains the local time taking into account daylight saving, if
applicable (equal to utctTime + i32TimeZone + i32DstShift during the daylight saving period).

• u32LastSetTime is an optional attribute which indicates the most recent UTC time at which the Time
attribute (utctTime) was set, either internally or over the ZigBee network.

• u32ValidUntilTime is an optional attribute which indicates a UTC time (later than u32LastSetTime) up
to which the Time attribute (utctTime) value may be trusted.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

Note: If necessary, the daylight saving attributes (u32DstStart, u32DstEnd and, i32DstShift) must all be
enabled together.

The Time cluster structure contains two mandatory elements, utctTime and u8TimeStatus. The
remaining elements are optional, each being enabled/disabled through a corresponding macro defined in the
zcl_options.h file - for example, the optional time zone element i32TimeZone is enabled/disabled through the
macro CLD_TIME_ATTR_TIME_ZONE (see Section 18.3.2).

18.3 Attribute Settings

18.3.1 Mandatory Attributes

The mandatory attributes of the Time cluster are set as follows:

utctTime

This is a mandatory 32-bit attribute which holds the current time (UTC). On the time-master, this attribute
value is incremented once per second. On all other devices, it is the responsibility of the local application to
synchronise this time with the time-master. For more information on time-synchronisation, refer to Section 18.5.

u8TimeStatus

This is a mandatory 8-bit attribute containing the bitmap detailed in Table 28 on page 389. This attribute must be
set as follows on the time-master (Time cluster server):

• The ‘Master’ bit should initially be zero until the current time has been obtained from an external time-of-day
source. Once the time has been obtained and set, the ‘Master’ bit should be set (to ‘1’).

• The ‘Synchronised’ bit must always be zero, as the time-master does not obtain its time from another device
within the ZigBee network (this bit is set to ‘1’ only for a secondary Time cluster server that is synchronized to
the time-master).

• The ‘Master for Time Zone and DST’ bit must be set (to ‘1’) once the time-zone and Daylight Saving Time
(DST) attributes (see below) have been correctly set for the device.

Macros are provided for setting the individual bits of the u8TimeStatus bitmap - for example, the macro
CLD_TM_TIME_STATUS_MASTER_MASK is used to set the Master bit. These macros are defined in the
header file time.h and are also listed in Section 18.2.

18.3.2 Optional Attributes

The optional attributes of the Time cluster are set as follows:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
225 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

i32TimeZone

This is an optional attribute which is enabled using the macro CLD_TIME_ATTR_TIME_ZONE and which
indicates the local time-zone.

The local time-zone is expressed as an offset from UTC, where this offset is quantified in seconds. Therefore:

Current local standard time = utctTime + i32TimeZone

where i32TimeZone is negative if the local time is behind UTC.

u32DstStart

This is an optional attribute which is enabled using the macro CLD_TIME_ATTR_DST_START and which
contains the start-time (in seconds) for daylight saving for the current year.

If u32DstStart is used then u32DstEnd and i32DstShift are also required.

u32DstEnd

This is an optional attribute which is enabled using the macro CLD_TIME_ATTR_DST_END and which contains
the end-time (in seconds) for daylight saving for the current year.

If u32DstEnd is used then u32DstStart and i32DstShift are also required.

i32DstShift

This is an optional attribute which is enabled using the macro CLD_TIME_ATTR_DST_SHIFT and which
contains the local time-shift (in seconds), relative to standard local time, that is applied during the daylight
saving period (between u32DstStart and u32DstEnd). During this period:

Current local time = utctTime + i32TimeZone + i32DstShift

This time-shift varies between territories, but is 3600 seconds (1 hour) for Europe and North America.

If i32DstShift is used then u32DstStart and u32DstEnd are also required.

u32StandardTime

This is an optional attribute which is enabled using the macro CLD_TIME_ATTR_STANDARD_TIME and which
contains the local standard time (equal to utctTime + i32TimeZone).

u32LocalTime

This is an optional attribute which is enabled using the macro CLD_TIME_ATTR_LOCAL_TIME and which
contains the local time taking into account daylight saving, if applicable (equal to utctTime + i32TimeZone +
i32DstShift during the daylight saving period and equal to u32StandardTime outside of the daylight saving
period).

u32LastSetTime

This is an optional attribute which is enabled using the macro CLD_TIME_ATTR_LAST_SET_TIME and which
indicates the most recent UTC time at which the Time attribute (utctTime) was set, either internally or over the
ZigBee network.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
226 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u32ValidUntilTime

This is an optional attribute which is enabled using the macro CLD_TIME_ATTR_VALID_UNTIL_TIME and
indicates a UTC time (later than u32LastSetTime) up to which the Time attribute (utctTime) value may be
trusted.

18.4 Maintaining ZCL Time
The simplest case of keeping time on a ZigBee PRO device is to maintain ‘ZCL time’ only (without using the
Time cluster). In this case, the ZCL time on a device can be initialized by the application using the function
vZCL_SetUTCTime().

The ZCL time is subsequently incremented from a local one-second timer, as follows. On expiration of the timer,
an event is generated (from the hardware/software timer that drives the one-second timer), which causes a ZCL
user task to be activated. The event is initially handled by this task as described in Section 3.2, resulting in an
E_ZCL_CBET_TIMER event being passed to the ZCL via the function vZCL_EventHandler(). The following
actions should then be performed:

1. The ZCL automatically increments the ZCL time and may run cluster-specific schedulers.

2. The user task resumes the one-second timer.

18.4.1 Updating ZCL Time Following Sleep

In the case of a device that sleeps, on waking from sleep, the application should update the ZCL time using
the function vZCL_SetUTCTime() according to the duration for which the device was asleep. This requires the
sleep duration to be timed.

While sleeping, the device normally uses its RC oscillator for timing purposes, which may not maintain the
required accuracy. It is therefore recommended that a more accurate external crystal is used to time the sleep
periods.

The vZCL_SetUTCTime() function does not cause timer events to be executed. If the device is awake for less
than one second, the application should generate a E_ZCL_CBET_TIMER event to prompt the ZCL to run any
timer-related functions. Note that when passed into vZCL_EventHandler(), this event will increment the ZCL
time by one second.

18.4.2 ZCL Time Synchronization

The local ZCL time on a device can be synchronized with the time in a time-related cluster, such as Time, Price,
or Messaging. The ZCL time is considered to be synchronized following a call to vZCL_SetUTCTime(). The
NXP implementation of the ZCL also provides the following functions relating to ZCL time synchronization:

• u32ZCL_GetUTCTime() obtains the ZCL time (held locally).
• bZCL_GetTimeHasBeenSynchronised() determines whether the ZCL time on the device has been

synchronized - that is, whether vZCL_SetUTCTime() has been called.
• vZCL_ClearTimeHasBeenSynchronised() can be used to specify that the device can no longer be

considered to be synchronized (for example, if there has been a problem in accessing the Time cluster server
over a long period).

18.5 Time-Synchronization of Devices
The devices in a ZigBee PRO network may need to be time-synchronized (so that they all refer to the same
time). In this case, the Time cluster is used and one device acts as the Time cluster server and time-master
from which the other devices set their time.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
227 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: Synchronization with a time-master is not required in all networks. In such cases, it is sufficient to use the
ZCL time without synchronization between devices, as described in Section 18.4.

There are two times on a device that should be maintained during the synchronisation process:

• Time attribute of the Time cluster (utctTime field of tsCLD_Time structure)
• ZCL time

On the time-master, these times are initialized by the local application using an external master time and
are subsequently maintained using a local one-second timer (see Section 18.5.1), as well as occasional re-
synchronizations with external master time.

On all other devices, these times are initialized by the local application by synchronizing with the time-master
(see Section 18.5.2). The ZCL time is subsequently maintained using a local one-second timer and both times
are occasionally re-synchronized with the time-master (see Section 18.5.3).

synchronization with the time-master is normally performed via the Time cluster.

CAUTION: If there is more than one Time cluster server in the network, devices should only attempt to
synchronize to one server in order to prevent their clocks from repeatedly jittering backwards and forwards.

The diagram in Figure 4 below provides an overview of the time initialization and synchronization processes
described in the sub-sections that follow.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
228 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Time Cluster

Application on
Time-master

ZCL Clock
ZCL

Software Timer

Time Cluster

Application on Other
Device

ZCL Clock
ZCL

Software Timer

Increment

Increment Set

Set

Master Time
from External Source

'Read
Attributes'
Request

'Read
Attributes'
Response

Increment

READ_ATTRIBUTES_RESPONSE Event

Callback Function

Set

Set

Table 38. Time Initialization and Synchronization

18.5.1 Initialising and Maintaining Master Time

The time-master must initially obtain a master time from an external source. The application on the time-master
must use this time to set its ZCL time by calling the function vZCL_SetUTCTime() and to set the value of the
Time cluster attribute utctTime in the local tsCLD_Time structure within the shared device structure (securing
access with a mutex). The application must also set (to ‘1’) the ‘Master’ bit of the u8TimeStatus attribute of
the tsCLD_Time structure, to indicate that this device is the time-master and that the time has been set.

Note: The ‘Synchronised’ bit of the u8TimeStatus attribute should always be zero on the time-master, as this
device does not synchronise to any other device within the ZigBee network.

If the time-master has also obtained time-zone and daylight saving information (or has been pre-programmed
with this information), its application must set (to ‘1’) the ‘Master for Time Zone and DST’ bit of the
u8TimeStatus attribute and write the relevant optional attributes. These optional attributes can then be used
to provide time-zone and daylight saving information to other devices (see Section 18.3).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
229 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: The time-master can prevent other devices from attempting to read its Time cluster attributes before
the time has been set - the initialization of the master time should be done after registering the endpoint for the
device and before starting the ZigBee PRO stack.

The ZCL time and the utctTime attribute are subsequently incremented from a local one-second timer, as
follows. On expiration of the timer, an event is generated (from the hardware/software timer that drives the
one-second timer), which causes a ZCL user task to be activated. The event is initially handled by this task as
described in Section 3.2, resulting in an E_ZCL_CBET_TIMER event being passed to the ZCL via the function
vZCL_EventHandler(). The following actions should then be performed:

1. The ZCL automatically increments the ZCL time and may run cluster-specific schedulers (e.g. for maintaining
a price list).

2. The user task updates the value of the utctTime attribute of the tsCLD_Time structure within the shared
device structure (securing access with a mutex).

3. The user task resumes the one-second timer.

Both the ZCL time and the utctTime attribute must also be updated by the application when an update of the
master time is received.

18.5.2 Initial Synchronisation of Devices

It is the responsibility of the application on a ZigBee PRO device to perform time-synchronisation with the
time-master. The application can remotely read the Time cluster attributes from the time-master by calling the
function eZCL_SendReadAttributesRequest(), which will result in a ‘read attributes’ response containing
the Time cluster data. On receiving this response, a ‘data indication’ stack event is generated on the local
device, which causes a ZCL user task to be activated. The event is initially handled by this task as described
in Section 3.2, resulting in an E_ZCL_ZIGBEE_EVENT event being passed to the ZCL via the function
vZCL_EventHandler(). Provided that the event contains a message incorporating a ‘read attributes’ response,
the ZCL:

1. automatically sets the utctTime field of the tsCLD_Time structure to the value of the same attribute in the
‘read attributes’ response (and also sets other Time cluster attributes, if requested)

2. invokes the relevant user-defined callback function (see Chapter 3), which must read the local utctTime
attribute (securing access with a mutex) and use this value to set the ZCL time by calling the function
vZCL_SetUTCTime()

Note: When a device attempts to time-synchronise with the time-master, it should check the u8TimeStatus
attribute in the ‘read attributes’ response. If the ‘Master’ bit of this attribute is not equal to ‘1’, the obtained time
should not be trusted and the time should not be set. The device should wait and try to synchronise again later.

It may also be possible to obtain time-zone and daylight saving information from the time-master. If available,
this information will be returned in the ‘read attributes’ response. However, before using these optional Time
cluster attributes from the response, the application should first check that the ‘Master for Time Zone and DST’
bit of the u8TimeStatus attribute is set (to ‘1’) in the response.

The ZCL time and utctTime attribute value on the local device are subsequently maintained as described in
Section 18.5.3.

18.5.3 Re-synchronisation of Devices

After the initialization described in Section 18.5.2, the ZCL time must be updated by the application on each
one-second tick of the local timer. The ZCL time is updated from the timer in the same way as described in
Section 18.4.

Due to the inaccuracy of the local one-second timer, the ZCL time is likely to lose synchronisation with
the time on the time-master. It will therefore be necessary to occasionally re-synchronise the local ZCL
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
230 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

time with the time-master - the utctTime attribute value is also updated at the same time. A device can
re-synchronise with the time-master by first remotely reading the utctTime attribute using the function
eZCL_SendReadAttributesRequest(). On receiving the ‘read attributes’ response from the time-master, the
operations performed are the same as those described for initial synchronisation in Section 18.5.2.

18.6 Time Event
The Time cluster does not have any events of its own, but the ZCL includes one time-related event:
E_ZCL_CBET_TIMER. For this event, the eEventType field of the tsZCL_CallBackEvent structure (see
Section 3.1) is set to E_ZCL_CBET_TIMER.

The application may need to generate this event, as indicated in Section 3.2.

18.7 Functions
The following time-related functions are provided in the NXP implementation of the ZCL:

1. eCLD_TimeCreateTime
2. vZCL_SetUTCTime
3. u32ZCL_GetUTCTime
4. bZCL_GetTimeHasBeenSynchronised
5. vZCL_ClearTimeHasBeenSynchronised

Note: The time used in the Time cluster and in the ZCL is a UTC (Co-ordinated Universal Time) type
UTCTime, which is defined in the ZigBee Specification as follows: "UTCTime is an unsigned 32 bit value
representing the number of seconds since 0 hours, 0 minutes, 0 seconds, on the 1st of January, 2000 UTC"

18.7.1 eCLD_TimeCreateTime

teZCL_Status eCLD_TimeCreateTime(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Time cluster on the local endpoint. The cluster instance can act as a
server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Time
cluster instance on the endpoint, but instances of other clusters may also be created on the same endpoint by
calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device (e.g. Simple Sensor)
will be used. In this case, the device and its supported clusters must be registered on the endpoint using the
relevant device registration function.

When used, this function must be the first Time cluster function called in the application, and must be called
after the stack has been started and after the ZCL has been initialized.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
231 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Time cluster.

The function initializes the array elements to zero.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Time cluster. This parameter can refer to a pre-filled
structure called sCLD_Time which is provided in the Time.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_Time which defines the attributes of Time cluster. The function
initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

18.7.2 vZCL_SetUTCTime

void vZCL_SetUTCTime(uint32 u32UTCTime);

Description

This function sets the current time (UTC) that is stored in the ZCL (‘ZCL time’).

The application may call this function, for example, when a time update has been received (e.g. via the Time or
Price cluster).

Note that this function does not update the time in the Timer cluster - if required, the application must do this by
writing to the tsCLD_Time structure (see Section 18.2).

Parameters

u32UTCTime The current time (UTC) to be set, in seconds

Returns

None

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
232 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

18.7.3 u32ZCL_GetUTCTime

uint32 u32ZCL_GetUTCTime(void);

Description

This function obtains the current time (UTC) that is stored in the ZCL (‘ZCL time’).

Parameters

None

Returns

The current time (UTC), in seconds, obtained from the ZCL

18.7.4 bZCL_GetTimeHasBeenSynchronised

bool_t bZCL_GetTimeHasBeenSynchronised(void);

Description

This function queries whether the ZCL time on the device has been synchronized.

The clock is considered to be unsynchronized at start-up and is synchronized following a call to
vZCL_SetUTCtime(). The ZCL time must be synchronized before using the time-related functions of other
clusters.

Parameters

None

Returns

TRUE if the local ZCL time has been synchronized, otherwise FALSE

18.7.5 vZCL_ClearTimeHasBeenSynchronised

void vZCL_ClearTimeHasBeenSynchronised(void);

Description

This function is used to notify the ZCL that the local ZCL time may no longer be accurate.

Parameters

None

Returns

None

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
233 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

18.8 Return codes
The time-related functions use the ZCL return codes defined in Section 7.2.

18.9 Enumerations

18.9.1 teCLD_TM_AttributeID

The following structure contains the enumerations used to identify the attributes of the Time cluster.

typedef enum
{
 E_CLD_TIME_ATTR_ID_TIME = 0x0000, /* Mandatory */
 E_CLD_TIME_ATTR_ID_TIME_STATUS, /* Mandatory */
 E_CLD_TIME_ATTR_ID_TIME_ZONE,
 E_CLD_TIME_ATTR_ID_DST_START,
 E_CLD_TIME_ATTR_ID_DST_END,
 E_CLD_TIME_ATTR_ID_DST_SHIFT,
 E_CLD_TIME_ATTR_ID_STANDARD_TIME,
 E_CLD_TIME_ATTR_ID_LOCAL_TIME,
 E_CLD_TIME_ATTR_ID_LAST_SET_TIME,
 E_CLD_TIME_ATTR_ID_VALID_UNTIL_TIME
} teCLD_TM_AttributeID;

18.10 Compile-time Options
To enable the Time cluster in the code to be built, it is necessary to add the following to the zcl_options.h file:

#define CLD_TIME

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define TIME_CLIENT
#define TIME_SERVER

The Time cluster contains macros that may be optionally specified at compile-time by adding some or all of the
following lines to the zcl_options.h file.

Add this line to enable the optional Time Zone attribute

#define CLD_TIME_ATTR_TIME_ZONE

Add this line to enable the optional DST Start attribute

#define CLD_TIME_ATTR_DST_START

Add this line to enable the optional DST End attribute

#define CLD_TIME_ATTR_DST_END

Add this line to enable the optional DST Shift attribute

#define CLD_TIME_ATTR_DST_SHIFT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
234 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Add this line to enable the optional Standard Time attribute

#define CLD_TIME_ATTR_STANDARD_TIME

Add this line to enable the optional Local Time attribute

#define CLD_TIME_ATTR_LOCAL_TIME

Note: Some attributes must always be enabled together - for example, if daylight saving is to be implemented
then CLD_TIME_ATTR_DST_START, CLD_TIME_ATTR_DST_END and CLD_TIME_ATTR_DST_SHIFT must
all be included in the zcl_options.h file.

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_TIME_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
235 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

19 Input and Output Clusters

This chapter details the following input and output clusters:

• Analogue Input (Basic) - see Section 19.1
• Analogue Output (Basic) - see Section 19.2
• Binary Input (Basic) - see Section 19.3
• Binary Output (Basic) - see Section 19.4
• Multistate Input (Basic) - see Section 19.5
• Multistate Output (Basic) - see Section 19.6

19.1 Analogue Input (Basic)
This chapter describes the Analogue Input (Basic) cluster, which provides an interface for accessing an
analogue measurement.

The Analogue Input (Basic) cluster has a Cluster ID of 0x000C.

19.1.1 Overview

The Analogue Input (Basic) cluster provides an interface for accessing an analogue measurement and its
associated characteristics. It is typically used in a sensor that measures an analogue physical quantity.

To use the functionality of this cluster, you must include the file AnalogInputBasic.h in your application and
enable the cluster by defining CLD_ANALOG_INPUT_BASIC in the zcl_options.h file.

An Analogue Input (Basic) cluster instance can act as either a client or a server. The inclusion of the client or
server software must be pre-defined in the application’s compile-time options (in addition, if the cluster is to
reside on a custom endpoint then the role of client or server must also be specified when creating the cluster
instance).

The compile-time options for the Analogue Input (Basic) cluster are fully detailed in Section 19.1.6.

19.1.2 Analogue Input (Basic) Structure and Attributes

The structure definition for the Analogue Input (Basic) cluster is:

typedef struct
{
#ifdef ANALOG_INPUT_BASIC_SERVER
#ifdef CLD_ANALOG_INPUT_BASIC_ATTR_DESCRIPTION
 tsZCL_CharacterString sDescription;
 zuint8 au8Description[16];
#endif
#ifdef CLD_ANALOG_INPUT_BASIC_ATTR_MAX_PRESENT_VALUE
 zsingle fMaxPresentValue;
#endif
#ifdef CLD_ANALOG_INPUT_BASIC_ATTR_MIN_PRESENT_VALUE
 zsingle fMinPresentValue;
#endif
 zbool bOutOfService;
 zsingle fPresentValue;
#ifdef CLD_ANALOG_INPUT_BASIC_ATTR_RELIABILITY
 zenum8 u8Reliability;
#endif
#ifdef CLD_ANALOG_INPUT_BASIC_ATTR_RESOLUTION
 zsingle fResolution;
#endif
 zbmap8 u8StatusFlags;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
236 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#ifdef CLD_ANALOG_INPUT_BASIC_ATTR_ENGINEERING_UNITS
 zenum16 u16EngineeringUnits;
#endif
#ifdef CLD_ANALOG_INPUT_BASIC_ATTR_APPLICATION_TYPE
 zuint32 u32ApplicationType;
#endif
#ifdef CLD_ANALOG_INPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_AnalogInputBasic;

• The following optional pair of attributes are used to store a human readable description of the usage of the
analogue input (for example, "Kitchen Temp"):
– sDescription is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the description
– au8Description[16] is a byte-array which contains the character data bytes representing the

description
– fMaxPresentValue is an optional attribute which indicates the highest analogue input value that can be

reliably obtained and stored in the fPresentValue attribute.

• fMinPresentValue is an optional attribute which indicates the lowest analogue input value that can be
reliably obtained and stored in the fPresentValue attribute.

• bOutOfService is a mandatory attribute which indicates whether the analogue input is currently in or out of
service:
– TRUE: Out of service
– FALSE In service

If this attribute is set to TRUE, the fPresentValue attribute will not be updated to contain the current
value of the input.

• fPresentValue is a mandatory attribute representing the latest analogue input value (this attribute is
updated when the analogue input is re-sampled).

• u8Reliability is an optional attribute which indicates whether the value reported through
fPresentValue is reliable or why it might be unreliable:
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_NO_SENSOR
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_OVER_RANGE
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_UNDER_RANGE
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_OPEN_LOOP
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_SHORTED_LOOP
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_NO_OUTPUT
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_PROCESS_ERROR
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR

• fResolution is an optional attribute which indicates the smallest detectable change in the analogue input
value that will result in an update of the attribute fPresentValue.

• u8StatusFlags is a mandatory attribute which is a bitmap representing the following status flags:

Bits Name Description

0 In Alarm Reserved - unused for Analogue Input (Basic) cluster

1 Fault • 1: Optional attribute u8Reliability is used and does not have a value of NO_
FAULT_DETECTED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
237 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bits Name Description
• 0: Otherwise

2 Overridden • 1: Cluster has been overridden by a local mechanism
(fPresentValue and u8Reliability will not track input)

• 0: Otherwise

3 Out Of Service • 1: Attribute bOutOfService is set to TRUE
• 0: Otherwise

4-7 - Reserved

• u16EngineeringUnits is an optional attribute which indicates the physical unit of measure for the
analogue input value recorded in the attribute fPresentValue. The values 0x0000 to 0x00FE are used to
represent the units specified in Clause 21 of the BACnet standard. The value 0x00FF represents 'other' unit,
and the values 0x0100 to 0xFFFF are for proprietary use. If the attribute u32ApplicationType is used and
specifies an application type with an associated unit of measure, this unit will take precedence over the one
specified in u16EngineeringUnits.

• u32ApplicationType is an optional attribute which is a bitmap representing the application type, as
follows:

Bits Field Name Description

0-15 Index Specific application usage (for example,Boiler Entering Temperature). There is a set of
possible usages for each value of Type (see below). For these lists, refer to the attribute
description in the ZCL Specification.

16-23 Type Physical quantity measured (for example,Temperature). For the Analogue Input cluster,
this can be a value in the range 0x00 to 0x0E. For the corresponding quantities, refer to the
attribute description in the ZCL Specification.

24-31 Group Identifier for the cluster that this attribute is part of (not the Cluster ID). For the Analogue Input
cluster, this is 0x00.

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

19.1.3 Attributes for Default Reporting

The following attributes of the Analogue Input (Basic) cluster can be selected for default reporting:

fPresentValue

• u8AttributeReportingStatus

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

19.1.4 Functions

The following Analogue Input (Basic) cluster function is provided in the NXP implementation of the ZCL:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
238 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

eCLD_AnalogInputBasicCreateAnalogInputBasic

The cluster attributes can be accessed using the general attribute read/write functions, as described in Section
2.3.

19.1.4.1 eCLD_AnalogInputBasicCreateAnalogInputBasic

teZCL_Status eCLD_AnalogInputBasicCreateAnalogInputBasic(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Analogue Input (Basic) cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create an
Analogue Input (Basic) cluster instance on the endpoint, but instances of other clusters may also be created on
the same endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Analog Input Basic cluster.

The function initializesthe array elements to zero.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
• TRUE - server
• FALSE - client
• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this

case, this structure must contain the details of the Analogue Input (Basic) cluster. This parameter can refer to
a pre-filled structure called sCLD_AnalogInputBasic which is provided in the AnalogInputBasic.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_AnalogInputBasic which defines the attributes of Analogue
Input (Basic) cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
239 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

19.1.5 Enumerations

19.1.5.1 teCLD_AnalogInputBasicCluster_AttrID

The following structure contains the enumerations used to identify the attributes of the Analogue Input (Basic)
cluster.

typedef enum
{
 E_CLD_ANALOG_INPUT_BASIC_ATTR_ID_DESCRIPTION,
 E_CLD_ANALOG_INPUT_BASIC_ATTR_ID_MAX_PRESENT_VALUE,
 E_CLD_ANALOG_INPUT_BASIC_ATTR_ID_MIN_PRESENT_VALUE,
 E_CLD_ANALOG_INPUT_BASIC_ATTR_ID_OUT_OF_SERVICE,
 E_CLD_ANALOG_INPUT_BASIC_ATTR_ID_PRESENT_VALUE,
 E_CLD_ANALOG_INPUT_BASIC_ATTR_ID_RELIABILITY,
 E_CLD_ANALOG_INPUT_BASIC_ATTR_ID_RESOLUTION,
 E_CLD_ANALOG_INPUT_BASIC_ATTR_ID_STATUS_FLAGS,
 E_CLD_ANALOG_INPUT_BASIC_ATTR_ID_ENGINEERING_UNITS,
 E_CLD_ANALOG_INPUT_BASIC_ATTR_ID_APPLICATION_TYPE,
} teCLD_AnalogInputBasicCluster_AttrID;

19.1.5.2 teCLD_AnalogInputBasic_Reliability

The following structure contains the enumerations used to report the value of the u8Reliability attribute
(see Section 19.1.2).

typedef enum
{
 E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED,
 E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_NO_SENSOR,
 E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_OVER_RANGE,
 E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_UNDER_RANGE,
 E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_OPEN_LOOP,
 E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_SHORTED_LOOP,
 E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_NO_OUTPUT,
 E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER,
 E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_PROCESS_ERROR,
 E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR
}teCLD_AnalogInputBasic_Reliability;

19.1.6 Compile-time Options

To enable the Analogue Input (Basic) cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_ANALOG_INPUT_BASIC

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
240 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define ANALOG_INPUT_BASIC_CLIENT
#define ANALOG_INPUT_BASIC_SERVER

Optional Attributes

The optional attributes for the Analogue Input (Basic) cluster (see Section 19.1.2) are enabled by defining:

• CLD_ANALOG_INPUT_BASIC_ATTR_DESCRIPTION
• CLD_ANALOG_INPUT_BASIC_ATTR_MAX_PRESENT_VALUE
• CLD_ANALOG_INPUT_BASIC_ATTR_MIN_PRESENT_VALUE
• CLD_ANALOG_INPUT_BASIC_ATTR_RELIABILITY
• CLD_ANALOG_INPUT_BASIC_ATTR_RESOLUTION
• CLD_ANALOG_INPUT_BASIC_ATTR_ENGINEERING_UNITS
• CLD_ANALOG_INPUT_BASIC_ATTR_APPLICATION_TYPE
• CLD_ANALOG_INPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_ANALOG_INPUT_BASIC_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_ANALOG_INPUT_BASIC_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

19.2 Analogue Output (Basic)
This chapter describes the Analogue Output (Basic) cluster, which provides an interface for setting the value of
an analogue output.

The Analogue Output (Basic) cluster has a Cluster ID of 0x000D.

19.2.1 Overview

The Analogue Input (Basic) cluster provides an interface for setting the value of an analogue output and
accessing its associated characteristics. It is typically used in a a controller that outputs an analogue control
signal.

To use the functionality of this cluster, you must include the file AnalogOutputBasic.h in your application and
enable the cluster by defining CLD_ANALOG_OUTPUT_BASIC in the zcl_options.h file.

An Analogue Output (Basic) cluster instance can act as either a client or a server. The inclusion of the client
or server software must be pre-defined in the application’s compile-time options (in addition, if the cluster is to
reside on a custom endpoint then the role of client or server must also be specified when creating the cluster
instance).

The compile-time options for the Analogue Output (Basic) cluster are fully detailed in Section 19.2.6.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
241 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

19.2.2 Analogue Output (Basic) Structure and Attributes

The structure definition for the Analogue Output (Basic) cluster is:

 typedef struct
 {
 #ifdef ANALOG_OUTPUT_BASIC_SERVER
 #ifdef CLD_ANALOG_OUTPUT_BASIC_ATTR_DESCRIPTION
 tsZCL_CharacterString sDescription;
 uint8 au8Description[16];
#endif
#ifdef CLD_ANALOG_OUTPUT_BASIC_ATTR_MAX_PRESENT_VALUE
 zsingle fMaxPresentValue;
#endif
#ifdef CLD_ANALOG_OUTPUT_BASIC_ATTR_MIN_PRESENT_VALUE
 zsingle fMinPresentValue;
#endif
 zbool bOutOfService;
 zsingle fPresentValue;
#ifdef CLD_ANALOG_OUTPUT_BASIC_ATTR_RELIABILITY
 zenum8 u8Reliability;
#endif
#ifdef CLD_ANALOG_OUTPUT_BASIC_ATTR_RELINQUISH_DEFAULT
 zsingle fRelinquishDefault;
#endif
#ifdef CLD_ANALOG_OUTPUT_BASIC_ATTR_RESOLUTION
 zsingle fResolution;
#endif
 zbmap8 u8StatusFlags;
#ifdef CLD_ANALOG_OUTPUT_BASIC_ATTR_ENGINEERING_UNITS
 zenum16 u16EngineeringUnits;
#endif
#ifdef CLD_ANALOG_OUTPUT_BASIC_ATTR_APPLICATION_TYPE
 zuint32 u32ApplicationType;
#endif
#ifdef CLD_ANALOG_OUTPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_AnalogOutputBasic;

• The following optional pair of attributes store a human readable description of the usage of the analogue
output (for example, "Fan Speed"):
– sDescription is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the description:
– au8Description[16] is a byte-array which contains the character data bytes representing the

description
– fMaxPresentValue is an optional attribute which indicates the highest analogue output value that can be

reliably used and stored in the fPresentValue attribute.
– fMinPresentValue is an optional attribute which indicates the lowest analogue output value that can be

reliably used and stored in the fPresentValue attribute.

• bOutOfService is a mandatory attribute which indicates whether the analogue output is currently in or out of
service:
– TRUE: Out of service
– FALSE: In service

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
242 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If this attribute is set to TRUE, the fPresentValue attribute will not be used to control the physical
analogue output.

• fPresentValue is a mandatory attribute representing the latest analogue output value (this attribute is used
to control the physical analogue output).

• u8Reliability is an optional attribute which indicates whether the value contained in fPresentValue is
reliable or why it might be unreliable:
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_OVER_RANGE
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_UNDER_RANGE
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_OPEN_LOOP
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_SHORTED_LOOP
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_PROCESS_ERROR
– E_CLD_ANALOG_INPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR

• fRelinquishDefault is an optional attribute representing the default value to be used for fPresentValue
when the supplied value is invalid.

• fResolution is an optional attribute which indicates the smallest change in the analogue output value that
will cause the application to update the attribute fPresentValue.

• u8StatusFlags is a mandatory attribute which is a bitmap representing the following status flags:

Bits Name Description

0 In Alarm Reserved - unused for Analogue Output (Basic) cluster

1 Fault • 1: Optional attribute u8Reliability is used and does not have a value of NO_
FAULT_DETECTED

• 0: Otherwise

2 Overridden • 1: Cluster has been over-ridden by a local mechanism
(fPresentValue and u8Reliability will not track input)

• 0: Otherwise

3 Out Of Service • 1: Attribute bOutOfService is set to TRUE
• 0: Otherwise

4-7 - Reserved

• u16EngineeringUnits is an optional attribute which indicates the physical unit of measure for the
analogue output value recorded in the attribute fPresentValue. The values 0x0000 to 0x00FE are used to
represent the units specified in Clause 21 of the BACnet standard. The value 0x00FF represents 'other' unit,
and the values 0x0100 to 0xFFFF are for proprietary use. If the attribute u32ApplicationType is used and
specifies an application type with an associated unit of measure, this unit will take precedence over the one
specified in u16EngineeringUnits.

• u32ApplicationType is an optional attribute which is a bitmap representing the application type, as
follows:

Bits Field Name Description

0-15 Index Specific application usage (for example, Fan Speed). There is a set of possible
usages for each value of Type (see below). For these lists, refer to the attribute
description in the ZCL Specification.

16-23 Type Physical quantity controlled (for example, Rotational Speed). For the Analogue
Output cluster, this can be a value in the range 0x00 to 0x0E. For the corresponding
quantities, refer to the attribute description in the ZCL Specification.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
243 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bits Field Name Description

24-31 Group Identifier for the cluster that this attribute is part of (not the Cluster ID). For the
Analogue Output cluster, this is 0x01.

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

19.2.3 Attributes for Default Reporting

The following attributes of the Analogue Output (Basic) cluster can be selected for default reporting:

fPresentValue
u8AttributeReportingStatus

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

19.2.4 Functions

The following Analogue Output (Basic) cluster function is provided in the NXP implementation of the ZCL:

• eCLD_AnalogOutputBasicCreateAnalogOutputBasic

The cluster attributes can be accessed using the general attribute read/write functions, as described in Section
2.3.

19.2.4.1 eCLD_AnalogOutputBasicCreateAnalogOutputBasic

teZCL_Status eCLD_AnalogOutputBasicCreateAnalogOutputBasic(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Analogue Output (Basic) cluster on an endpoint. The cluster instance
is created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create an
Analogue Output (Basic) cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
244 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Analog Output Basic cluster.

The function initializes the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section
6.1.2). In this case, this structure must contain the details of the Analogue Output (Basic) cluster. This
parameter can refer to a pre-filled structure called sCLD_AnalogOutputBasic which is provided in the
AnalogOutputBasic.h file.
pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_AnalogOutputBasic which defines the attributes of
Analogue Output (Basic) cluster. The function initializes the attributes with default values.
pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above).

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

19.2.5 Enumerations

19.2.5.1 teCLD_AnalogOutputBasicCluster_AttrID

The following structure contains the enumerations used to identify the attributes of the Analogue Output (Basic)
cluster.

typedef enum
{
 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_DESCRIPTION,
 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_MAX_PRESENT_VALUE,
 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_MIN_PRESENT_VALUE,
 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_OUT_OF_SERVICE,
 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_PRESENT_VALUE,
 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_RELIABILITY,
 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_RELINQUISH_DEFAULT,
 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_RESOLUTION,
 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_STATUS_FLAGS,
 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_ENGINEERING_UNITS,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
245 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_APPLICATION_TYPE,
} teCLD_AnalogOutputBasicCluster_AttrID;

19.2.5.2 teCLD_AnalogOutputBasic_Reliability

The following structure contains the enumerations used to report the value of the u8Reliability attribute
(see Section 19.2.2).

typedef enum
{
 E_CLD_ANALOG_OUTPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED,
 E_CLD_ANALOG_OUTPUT_BASIC_RELIABILITY_OVER_RANGE,
 E_CLD_ANALOG_OUTPUT_BASIC_RELIABILITY_UNDER_RANGE,
 E_CLD_ANALOG_OUTPUT_BASIC_RELIABILITY_OPEN_LOOP,
 E_CLD_ANALOG_OUTPUT_BASIC_RELIABILITY_SHORTED_LOOP,
 E_CLD_ANALOG_OUTPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER,
 E_CLD_ANALOG_OUTPUT_BASIC_RELIABILITY_PROCESS_ERROR,
 E_CLD_ANALOG_OUTPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR
}teCLD_AnalogOutputBasic_Reliability;

19.2.6 Compile-time options

To enable the Analogue Output (Basic) cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_ANALOG_OUTPUT_BASIC

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define ANALOG_OUTPUT_BASIC_CLIENT
#define ANALOG_OUTPUT_BASIC_SERVER

Optional Attributes

The optional attributes for the Analogue Output (Basic) cluster (see Section 19.2.2) are enabled by defining:

• CLD_ANALOG_OUTPUT_BASIC_ATTR_DESCRIPTION
• CLD_ANALOG_OUTPUT_BASIC_ATTR_MAX_PRESENT_VALUE
• CLD_ANALOG_OUTPUT_BASIC_ATTR_MIN_PRESENT_VALUE
• CLD_ANALOG_OUTPUT_BASIC_ATTR_RELIABILITY
• CLD_ANALOG_OUTPUT_BASIC_ATTR_RELINQUISH_DEFAULT
• CLD_ANALOG_OUTPUT_BASIC_ATTR_RESOLUTION
• CLD_ANALOG_OUTPUT_BASIC_ATTR_ENGINEERING_UNITS
• CLD_ANALOG_OUTPUT_BASIC_ATTR_APPLICATION_TYPE
• CLD_ANALOG_OUTPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_ANALOG_OUTPUT_BASIC_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
246 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_ANALOG_OUTPUT_BASIC_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

19.3 Binary Input (Basic) Cluster
This chapter describes the Binary Input (Basic) cluster, which provides an interface for accessing a binary (two-
state) measurement.

The Binary Input (Basic) cluster has a Cluster ID of 0x000F.

19.3.1 Overview

The Binary Input (Basic) cluster provides an interface for accessing a binary measurement and its associated
characteristics. It is typically used to implement a sensor that measures a two-state physical quantity.

To use the functionality of this cluster, you must include the file BinaryInputBasic.h in your application and
enable the cluster by defining CLD_BINARY_INPUT_BASIC in the zcl_options.h file.

A Binary Input (Basic) cluster instance can act as either a client or a server. The inclusion of the client or server
software must be pre-defined in the application’s compile-time options (in addition, if the cluster is to reside on a
custom endpoint then the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Binary Input (Basic) cluster are fully detailed in Section 19.3.6.

19.3.2 Binary Input (Basic) Structure and Attributes

The structure definition for the Binary Input (Basic) cluster is:

typedef struct
{
#ifdef BINARY_INPUT_BASIC_SERVER
#ifdef CLD_BINARY_INPUT_BASIC_ATTR_ACTIVE_TEXT
 tsZCL_CharacterString sActiveText;
 uint8 au8ActiveText[16];
#endif
#ifdef CLD_BINARY_INPUT_BASIC_ATTR_DESCRIPTION
 tsZCL_CharacterString sDescription;
 uint8 au8Description[16];
#endif
#ifdef CLD_BINARY_INPUT_BASIC_ATTR_INACTIVE_TEXT
 tsZCL_CharacterString sInactiveText;
 uint8 au8InactiveText[16];
#endif
 zbool bOutOfService;
#ifdef CLD_BINARY_INPUT_BASIC_ATTR_POLARITY
 zenum8 u8Polarity;
#endif
 zbool bPresentValue;
#ifdef CLD_BINARY_INPUT_BASIC_ATTR_RELIABILITY
 zenum8 u8Reliability;
#endif
 zbmap8 u8StatusFlags;
#ifdef CLD_BINARY_INPUT_BASIC_ATTR_APPLICATION_TYPE
 zuint32 u32ApplicationType;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
247 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#endif
#ifdef CLD_BINARY_INPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_BinaryInputBasic;

• The following optional pair of attributes are used to store a human readable description of the active state of a
binary input (for example, "Window 3 open"):
– sActiveText is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the description
– au8ActiveText[16] is a byte-array which contains the character data bytes representing the description

If these attributes are used, the ‘Inactive Text’ attributes must also be used.
• The following optional pair of attributes are used to store a human readable description of the usage of the

binary input (for example,"Window 3 status"):
– sDescription is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the description
– au8Description[16] is a byte-array which contains the character data bytes representing the

description
• The following optional pair of attributes are used to store a human readable description of the inactive state of

a binary input (for example,"Window 3 closed"):
– sInactiveText is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the description
– au8InactiveText[16] is a byte-array which contains the character data bytes representing the

description
If these attributes are used, the ‘Active Text’ attributes must also be used.

• bOutOfService is a mandatory attribute which indicates whether the binary input is currently in or out of
service:
– TRUE: Out of service
– FALSE In service

If this attribute is set to TRUE, the bPresentValue attribute will not be updated to contain the current
value of the input.

• u8Polarity is an optional attribute which indicates the relationship between the value of the
bPresentValue attribute and the physical state of the input:
– E_CLD_ BINARY_INPUT_BASIC_POLARITY_NORMAL (0x00): The active (1) state of bPresentValue

corresponds to the active/on state of the physical input
– E_CLD_ BINARY_INPUT_BASIC_POLARITY_REVERSE (0x01): The active (1) state of bPresentValue

corresponds to the inactive/off state of the physical input
• bPresentValue is a mandatory attribute representing the current state of the binary input (this attribute is

updated when the input changes state):
– TRUE: Input is in the ‘active’ state
– FALSE: Input is in the ‘inactive’ state

The interpretation of bPresentValue in relation to the physical state of the input is determined by the
setting of the u8Polarity attribute.
By default this attribute is read-only, but it becomes readable and writable when bOutOfService is set
to TRUE.

• u8Reliability is an optional attribute which indicates whether the value reported through
bPresentValue is reliable or why it might be unreliable:
– E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED
– E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_SENSOR

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
248 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_OVER_RANGE
– E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_UNDER_RANGE
– E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_OPEN_LOOP
– E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_SHORTED_LOOP
– E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_OUTPUT
– E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER
– E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_PROCESS_ERROR
– E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR

• u8StatusFlags is a mandatory attribute which is a bitmap representing the following status flags:

Bits Name Description

0 In Alarm Reserved - unused for Binary Input (Basic) cluster

1 Fault • 1: Optional attribute u8Reliability is used and does not have a value of NO_
FAULT_DETECTED

• 0: Otherwise

2 Overridden • 1: Cluster has been over-ridden by a local mechanism
(bPresentValue and u8Reliability will not track input)

• 0: Otherwise

3 Out Of Service • 1: Attribute bOutOfService is set to TRUE
• 0: Otherwise

4-7 - Reserved

• u32ApplicationType is an optional attribute which is a bitmap representing the application type, as
follows:

Bits Field Name Description

0-15 Index Specific application usage (for example, Boiler Status). There is a set of possible
usages for each value of Type (see below). For these lists, refer to the attribute
description in the ZCL Specification.

16-23 Type Application domain. For the Basic Input cluster, this can be set to 0x00 (HVAC) or
0x01 (Security).

24-31 Group Identifier for the cluster that this attribute is part of (not the Clus-ter ID). For the
Binary Input (Basic) cluster, this is 0x03.

u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is also described in Section 2.4.
u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also described in Section 2.4.

19.3.3 Attributes for Default Reporting

The following attributes of the Binary Input (Basic) cluster can be selected for default reporting:

bPresentValue
u8AttributeReportingStatus

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
249 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

19.3.4 Functions

The following Binary Input (Basic) cluster function is provided in the NXP implementation of the ZCL:

• Function Page
• eCLD_BinaryInputBasicCreateBinaryInputBasic 432

The cluster attributes can be accessed using the general attribute read/write functions, as described in Section
2.3.

19.3.4.1 eCLD_BinaryInputBasicCreateBinaryInputBasic

teZCL_Status eCLD_BinaryInputBasicCreateBinaryInputBasic(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Binary Input (Basic) cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Binary
Input (Basic) cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Binary Input Basic cluster.

The function initializes the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Binary Input (Basic) cluster. This parameter can refer
to a pre-filled structure called sCLD_BinaryInputBasic which is provided in the BinaryInputBasic.h file.
pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_BinaryInputBasic which defines the attributes of
Binary Input (Basic) cluster. The function initializes the attributes with default values.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
250 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above).

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

19.3.5 Enumerations

19.3.5.1 teCLD_BinaryInputBasicCluster_AttrID

The following structure contains the enumerations used to identify the attributes of the Binary Input (Basic)
cluster.

typedef enum
{
 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_ACTIVE_TEXT,
 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_DESCRIPTION,
 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_INACTIVE_TEXT,
 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_OUT_OF_SERVICE,
 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_POLARITY,
 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_PRESENT_VALUE,
 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_RELIABILITY,
 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_STATUS_FLAGS,
 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_APPLICATION_TYPE
} teCLD_BinaryInputBasicCluster_AttrID;

19.3.5.2 teCLD_BinaryInputBasic_Polarity

The following structure contains the enumerations used to specify the value of the u8Polarity attribute (see
Section 19.3.2).

typedef enum
{
 E_CLD_ BINARY_INPUT_BASIC_POLARITY_NORMAL ,
 E_CLD_ BINARY_INPUT_BASIC_POLARITY_REVERSE
}teCLD_BinaryInputBasic_Polarity

19.3.5.3 teCLD_BinaryInputBasic_Reliability

The following structure contains the enumerations used to report the value of the u8Reliability attribute
(see Section 19.3.2).

typedef enum
{
 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED,
 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_SENSOR,
 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_OVER_RANGE,
 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_UNDER_RANGE,
 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_OPEN_LOOP,
 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_SHORTED_LOOP,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
251 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_OUTPUT,
 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER,
 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_PROCESS_ERROR,
 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR
}teCLD_BinaryInputBasic_Reliability;

19.3.6 Compile-time options

To enable the Binary Input (Basic) cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_BINARY_INPUT_BASIC

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define BINARY_INPUT_BASIC_CLIENT
#define BINARY_INPUT_BASIC_SERVER

Optional Attributes

The optional attributes for the Binary Input (Basic) cluster (see Section 19.3.2) are enabled by defining:

• CLD_BINARY_INPUT_BASIC_ATTR_ACTIVE_TEXT
• CLD_BINARY_INPUT_BASIC_ATTR_DESCRIPTION
• CLD_BINARY_INPUT_BASIC_ATTR_INACTIVE_TEXT
• CLD_BINARY_INPUT_BASIC_ATTR_POLARITY
• CLD_BINARY_INPUT_BASIC_ATTR_RELIABILITY
• CLD_BINARY_INPUT_BASIC_ATTR_APPLICATION_TYPE

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_BINARY_INPUT_BASIC_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_BINARY_INPUT_BASIC_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

19.4 Binary Output (Basic)
This chapter describes the Binary Output (Basic) cluster, which provides an interface for setting the state of a
binary (two-state) output.

The Binary Output (Basic) cluster has a Cluster ID of 0x0010.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
252 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

19.4.1 Overview

The Binary Output (Basic) cluster provides an interface for setting the state of a binary output and its associated
characteristics. It is typically used to implement a controller that produces a two-state output signal.

To use the functionality of this cluster, you must include the file BinaryOutputBasic.h in your application and
enable the cluster by defining CLD_BINARY_OUTPUT_BASIC in the zcl_options.h file.

A Binary Output (Basic) cluster instance can act as either a client or a server. The inclusion of the client or
server software must be pre-defined in the application’s compile-time options (in addition, if the cluster is to
reside on a custom endpoint then the role of client or server must also be specified when creating the cluster
instance).

The compile-time options for the Binary Output (Basic) cluster are fully detailed in Section 19.4.6.

19.4.2 Binary Output (Basic) Structure and Attributes

The structure definition for the Binary Output (Basic) cluster is:

typedef struct
{
#ifdef BINARY_OUTPUT_BASIC_SERVER
#ifdef CLD_BINARY_OUTPUT_BASIC_ATTR_ACTIVE_TEXT
 tsZCL_CharacterString sActiveText;
 uint8 au8ActiveText[16];
#endif
#ifdef CLD_BINARY_OUTPUT_BASIC_ATTR_DESCRIPTION
 tsZCL_CharacterString sDescription;
 uint8 au8Description[16];
#endif
#ifdef CLD_BINARY_OUTPUT_BASIC_ATTR_INACTIVE_TEXT
 tsZCL_CharacterString sInactiveText;
 uint8 au8InactiveText[16];
#endif
#ifdef CLD_BINARY_OUTPUT_BASIC_ATTR_MINIMUM_OFF_TIME
 zuint32 u32MinimumOffTime;
#endif
#ifdef CLD_BINARY_OUTPUT_BASIC_ATTR_MINIMUM_ON_TIME
 zuint32 u32MinimumOnTime;
#endif
 zbool bOutOfService;
#ifdef CLD_BINARY_OUTPUT_BASIC_ATTR_POLARITY
 zenum8 u8Polarity;
#endif
 zbool bPresentValue;
#ifdef CLD_BINARY_OUTPUT_BASIC_ATTR_RELIABILITY
 zenum8 u8Reliability;
#endif
#ifdef CLD_BINARY_OUTPUT_BASIC_ATTR_RELINQUISH_DEFAULT
 zbool bRelinquishDefault;
#endif
 zbmap8 u8StatusFlags;
#ifdef CLD_BINARY_OUTPUT_BASIC_ATTR_APPLICATION_TYPE
 zuint32 u32ApplicationType;
#endif
#ifdef CLD_BINARY_OUTPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
253 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

} tsCLD_BinaryOutputBasic;

• The following optional pair of attributes are used to store a human readable description of the active state of a
binary output (e.g. "Open Window 3"):
– sActiveText is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the description
– au8ActiveText[16] is a byte-array which contains the character data bytes representing the description

If these attributes are used, the ‘Inactive Text’ attributes must also be used.
• The following optional pair of attributes are used to store a human readable description of the usage of the

binary output (e.g. "Control Window 3"):
– sDescription is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the description
– au8Description[16] is a byte-array which contains the character data bytes representing the

description
• The following optional pair of attributes are used to store a human readable description of the inactive state of

a binary output (e.g. "Close Window 3"):
– sInactiveText is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the description
– au8InactiveText[16] is a byte-array which contains the character data bytes representing the

description
If these attributes are used, the ‘Active Text’ attributes must also be used.

u32MinimumOffTime is an optional attribute which represents the minimum time, in seconds, for which the
binary output will remain in the inactive state (0).

• u32MinimumOnTime is an optional attribute which represents the minimum time, in seconds, for which the
binary output will remain in the active state (1).

• bOutOfService is a mandatory attribute which indicates whether the binary output is currently in or out of
service:
– TRUE: Out of service
– FALSE: In service

If this attribute is set to TRUE, the bPresentValue attribute will not be used to control the binary
output.

• u8Polarity is an optional attribute which indicates the relationship between the value of the
bPresentValue attribute and the physical state of the output:
– E_CLD_ BINARY_OUTPUT_BASIC_POLARITY_NORMAL (0x00): The active (1) state of bPresentValue

corresponds to the active/on state of the physical output
– E_CLD_ BINARY_OUTPUT_BASIC_POLARITY_REVERSE (0x01): The active (1) state of
bPresentValue corresponds to the inactive/off state of the physical output

• bPresentValue is a mandatory attribute representing the current state of the binary output (this attribute is
updated by the application):
– TRUE: Output is in the ‘active’ state
– FALSE: Output is in the ‘inactive’ state

The interpretation bPresentValue in relation to the physical state of the output is determined by the
setting of the u8Polarity attribute.

• u8Reliability is an optional attribute which indicates whether the value contained in bPresentValue is
reliable or why it might be unreliable:
– E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED
– E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_OVER_RANGE
– E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_UNDER_RANGE
– E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_OPEN_LOOP

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
254 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_SHORTED_LOOP
– E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER
– E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_PROCESS_ERROR
– E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR

fRelinquishDefault is an optional attribute representing the default value to be used for bPresentValue
when the supplied value is invalid.

• u8StatusFlags is a mandatory attribute which is a bitmap representing the following status flags:

Bits Name Description

0 In Alarm Reserved - unused for Binary Output (Basic) cluster

1 Fault • 1: Optional attribute u8Reliability is used and does not have a value of NO_
FAULT_DETECTED

• 0: Otherwise

2 Overridden • 1: Cluster has been over-ridden by a local mechanism
(bPresentValue and u8Reliability will not track input)

• 0: Otherwise

3 Out Of Service • 1: Attribute bOutOfService is set to TRUE
• 0: Otherwise

4-7 - Reserved

• u32ApplicationType is an optional attribute which is a bitmap representing the application type, as
follows:

Bits Field Name Description

0-15 Index Specific application usage (e.g. Heating Valve). There is a set of possible usages for
each value of Type (see below). For these lists, refer to the attribute description in the
ZCL Specification.

16-23 Type Application domain. For the Basic Output cluster, this can be set to 0x00 (HVAC) or
0x01 (Security).

24-31 Group Identifier for the cluster that this attribute is part of (not the Clus-ter ID). For the
Binary Output (Basic) cluster, this is 0x04.

u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is also described in Section 2.4.
u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also described in Section 2.4.

19.4.3 Attributes for Default Reporting

The following attributes of the Binary Output (Basic) cluster can be selected for default reporting:

bPresentValue
u8AttributeReportingStatus

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

19.4.4 Functions

The following Binary Output (Basic) cluster function is provided in the NXP implementation of the ZCL:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
255 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

•
• eCLD_BinaryOutputBasicCreateBinaryOutputBasic 442

The cluster attributes can be accessed using the general attribute read/write functions, as described in Section
2.3.

19.4.4.1 eCLD_BinaryOutputBasicCreateBinaryOutputBasic

teZCL_Status eCLD_BinaryOutputBasicCreateBinaryOutputBasic(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Binary Output (Basic) cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Binary
Output (Basic) cluster instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Binary Output Basic cluster.

The function initializes the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section
6.1.2). In this case, this structure must contain the details of the Binary Output (Basic) cluster. This
parameter can refer to a pre-filled structure called sCLD_BinaryOutputBasic which is provided in the
BinaryOutputBasic.h file.
pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_BinaryOutputBasic which defines the attributes of
Binary Output (Basic) cluster. The function initializes the attributes with default values.
pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
256 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

19.4.5 Enumerations

19.4.5.1 teCLD_BinaryOutputBasicCluster_AttrID

The following structure contains the enumerations used to identify the attributes of the Binary Output (Basic)
cluster.

typedef enum
{
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_ACTIVE_TEXT,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_DESCRIPTION,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_INACTIVE_TEXT,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_MINIMUM_OFF_TIME,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_MINIMUM_ON_TIME,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_OUT_OF_SERVICE,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_POLARITY,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_PRESENT_VALUE,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_RELIABILITY,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_RELINQUISH_DEFAULT,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_STATUS_FLAGS,
 E_CLD_BINARY_OUTPUT_BASIC_ATTR_ID_APPLICATION_TYPE,
} teCLD_BinaryOutputBasicCluster_AttrID;

19.4.5.2 teCLD_BinaryOutputBasic_Polarity

The following structure contains the enumerations used to specify the value of the u8Polarity attribute (see
Section 19.4.2).

typedef enum
{
 E_CLD_BINARY_OUTPUT_BASIC_POLARITY_NORMAL,
 E_CLD_BINARY_OUTPUT_BASIC_POLARITY_REVERSE
}teCLD_BinaryOutputBasic_Polarity

19.4.5.3 teCLD_BinaryOutputBasic_Reliability

The following structure contains the enumerations used to report the value of the u8Reliability attribute
(see Section 19.4.2).

typedef enum
{
 E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED,
 E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_OVER_RANGE,
 E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_UNDER_RANGE,
 E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_OPEN_LOOP,
 E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_SHORTED_LOOP,
 E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER,
 E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_PROCESS_ERROR,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
257 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_BINARY_OUTPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR
 }teCLD_BinaryOutputBasic_Reliability;

19.4.6 Compile-time options

To enable the Binary Output (Basic) cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_BINARY_OUTPUT_BASIC

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define BINARY_OUTPUT_BASIC_CLIENT
#define BINARY_OUTPUT_BASIC_SERVER

Optional Attributes

The optional attributes for the Binary Output (Basic) cluster (see Section 19.4.2) are enabled by defining:

• CLD_BINARY_OUTPUT_BASIC_ATTR_ACTIVE_TEXT
• CLD_BINARY_OUTPUT_BASIC_ATTR_DESCRIPTION
• CLD_BINARY_OUTPUT_BASIC_ATTR_INACTIVE_TEXT
• CLD_BINARY_OUTPUT_BASIC_ATTR_MINIMUM_OFF_TIME
• CLD_BINARY_OUTPUT_BASIC_ATTR_MINIMUM_ON_TIME
• CLD_BINARY_OUTPUT_BASIC_ATTR_POLARITY
• CLD_BINARY_OUTPUT_BASIC_ATTR_RELIABILITY
• CLD_BINARY_OUTPUT_BASIC_ATTR_RELINQUISH_DEFAULT
• CLD_BINARY_OUTPUT_BASIC_ATTR_APPLICATION_TYPE
• CLD_BINARY_OUTPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS

19.5 Multistate Input (Basic)
This chapter describes the Multistate Input (Basic) cluster, which provides an interface for accessing a
multistate measurement (that can take one of a set of fixed states).

The Multistate Input (Basic) cluster has a Cluster ID of 0x0012.

19.5.1 Overview

The Multistate Input (Basic) cluster provides an interface for accessing a multistate measurement and its
associated characteristics. It is typically used in a sensor that measures a physical quantity that can take one of
a discrete number of states.

To use the functionality of this cluster, you must include the file MultistateInputBasic.h in your application and
enable the cluster by defining CLD_MULTISTATE_INPUT_BASIC in the zcl_options.h file.

A Multistate Input (Basic) cluster instance can act as either a client or a server. The inclusion of the client or
server software must be pre-defined in the application’s compile-time options (in addition, if the cluster is to
reside on a custom endpoint then the role of client or server must also be specified when creating the cluster
instance).

The compile-time options for the Multistate Input (Basic) cluster are fully detailed in Section 19.5.6.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
258 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

19.5.2 Multistate Input (Basic) Structure and Attributes

The structure definition for the Multistate Input (Basic) cluster is:

typedef struct
{
#ifdef MULTISTATE_INPUT_BASIC_SERVER
#ifdef CLD_MULTISTATE_INPUT_BASIC_ATTR_DESCRIPTION
 tsZCL_CharacterString sDescription;
 uint8 au8Description[16];
#endif
 zuint16 u16NumberOfStates;
 zbool bOutOfService;
 zuint16 u16PresentValue;
#ifdef CLD_MULTISTATE_INPUT_BASIC_ATTR_RELIABILITY
 zenum8 u8Reliability;
#endif
 zbmap8 u8StatusFlags;
#ifdef CLD_MULTISTATE_INPUT_BASIC_ATTR_APPLICATION_TYPE
 zuint32 u32ApplicationType;
#endif
#ifdef CLD_MULTISTATE_INPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_MultistateInputBasic;

• The following optional pair of attributes are used to store a human readable description of the usage of the
multistate input (e.g. "Alarm Status"):
– sDescription is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the description
– au8Description[16] is a byte-array which contains the character data bytes representing the

description

u16NumberOfStates is a mandatory attribute which indicates the number of discrete states that the input can
take.

• bOutOfService is a mandatory attribute which indicates whether the multistate input is currently in or out of
service:
– TRUE: Out of service
– FALSE In service

If this attribute is set to TRUE, the u16PresentValue attribute is not updated to contain the current
state of the input.

• u16PresentValue is a mandatory attribute representing the latest state of the input (this attribute is updated
when the multistate input changes).

By default this attribute is read-only, but it becomes readable and writable when bOutOfService is set to
TRUE.

• u8Reliability is an optional attribute which indicates whether the value reported through
fPresentValue is reliable or why it might be unreliable:
– E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED
– E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_NO_SENSOR
– E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_OVER_RANGE
– E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_UNDER_RANGE
– E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_OPEN_LOOP

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
259 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_SHORTED_LOOP
– E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_NO_OUTPUT
– E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER
– E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_PROCESS_ERROR
– E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_MULTISTATE_FAULT

• u8StatusFlags is a mandatory attribute which is a bitmap representing the following status flags:

Bits Name Description

0 In Alarm Reserved - unused for Multistate Input (Basic) cluster

1 Fault • 1: Optional attribute u8Reliability is used and does not have a value of NO_
FAULT_DETECTED

• 0: Otherwise

2 Overridden • 1: Cluster has been over-ridden by a local mechanism
(fPresentValue and u8Reliability will not track input)

• 0: Otherwise

3 Out Of Service • 1: Attribute bOutOfService is set to TRUE
• 0: Otherwise

4-7 - Reserved

• u32ApplicationType is an optional attribute that is a bitmap representing the application type, as follows:

Bits Field Name Description

0-15 Index Specific application usage in terms of the states supported
(e.g. Off/On/Auto). For the list of usages, refer to the attribute description in the ZCL
Specification.

16-23 Type Application domain. For the Multistate Input cluster, this can only be is set to 0x00
(HVAC).

24-31 Group Identifier for the cluster that this attribute is part of (not the Clus-ter ID). For the
Multistate Input cluster, this is 0x0D.

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

19.5.3 Attributes for Default Reporting

The following attributes of the Multistate Input (Basic) cluster can be selected for default reporting:

u16PresentValue
u8AttributeReportingStatus

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
260 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

19.5.4 Functions

The following Multistate Input (Basic) cluster function is provided in the NXP implementation of the ZCL:

•
• eCLD_MultistateInputBasicCreateMultistateInputBasic 450

The cluster attributes can be accessed using the general attribute read/write functions, as described in Section
2.3.

19.5.4.1 eCLD_MultistateInputBasicCreateMultistateInputBasic

teZCL_Status eCLD_MultistateInputBasicCreateMultistateInputBasic(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Multistate Input (Basic) cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a
Multistate Input (Basic) cluster instance on the endpoint, but instances of other clusters may also be created on
the same endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Multistate Input Basic cluster.

The function initializes the array elements to zero.

Parameters

psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer: Type of cluster instance (server or client) to be created:
TRUE - server
FALSE - client
psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2).
In this case, this structure must contain the details of the Multistate Input (Basic) cluster. This parameter
can refer to a pre-filled structure called sCLD_MultistateInputBasic which is provided in the
MultistateInputBasic.h file.
pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_MultistateInputBasic which defines the attributes of
Multistate Input (Basic) cluster. The function initializes the attributes with default values.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
261 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

19.5.5 Enumerations

19.5.5.1 teCLD_MultistateInputBasicCluster_AttrID

The following structure contains the enumerations used to identify the attributes of the Multistate Input (Basic)
cluster.

typedef enum
{
 E_CLD_MULTISTATE_INPUT_BASIC_ATTR_ID_DESCRIPTION,
 E_CLD_MULTISTATE_INPUT_BASIC_ATTR_ID_NUMBER_OF_STATES,
 E_CLD_MULTISTATE_INPUT_BASIC_ATTR_ID_OUT_OF_SERVICE,
 E_CLD_MULTISTATE_INPUT_BASIC_ATTR_ID_PRESENT_VALUE,
 E_CLD_MULTISTATE_INPUT_BASIC_ATTR_ID_RELIABILITY,
 E_CLD_MULTISTATE_INPUT_BASIC_ATTR_ID_STATUS_FLAGS,
 E_CLD_MULTISTATE_INPUT_BASIC_ATTR_ID_APPLICATION_TYPE,
}teCLD_MultistateInputBasicCluster_AttrID;

19.5.5.2 teCLD_MultistateInputBasic_Reliability

The following structure contains the enumerations used to report the value of the u8Reliability attribute
(see Section 19.5.2).

typedef enum
{
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED,
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_NO_SENSOR,
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_OVER_RANGE,
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_UNDER_RANGE,
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_OPEN_LOOP,
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_SHORTED_LOOP,
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_NO_OUTPUT,
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER,
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_PROCESS_ERROR,
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_MULTISTATE_FAULT,
 E_CLD_MULTISTATE_INPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR
}teCLD_MultistateInputBasic_Reliability;

19.5.6 Compile-time options

To enable the Multistate Input (Basic) cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_MULTISTATE_INPUT_BASIC

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
262 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define MULTISTATE_INPUT_BASIC_CLIENT
#define MULTISTATE_INPUT_BASIC_SERVER

Optional Attributes

The optional attributes for the Multistate Input (Basic) cluster (see Section 19.5.2) are enabled by defining:

• CLD_MULTISTATE_INPUT_BASIC_ATTR_DESCRIPTION
• CLD_MULTISTATE_INPUT_BASIC_ATTR_RELIABILITY
• CLD_MULTISTATE_INPUT_BASIC_ATTR_APPLICATION_TYPE
• CLD_MULTISTATE_INPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_MULTISTATE_INPUT_BASIC_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_MULTISTATE_INPUT_BASIC_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

19.6 Multistate Output (Basic)
This chapter describes the Multistate Output (Basic) cluster, which provides an interface for setting the value of
a multistate output (that can take one of a set of fixed states).

The Multistate Output (Basic) cluster has a Cluster ID of 0x0013.

19.6.1 Overview

The Multistate Input (Basic) cluster provides an interface for setting the value of a multistate output and its
associated characteristics. It is typically used in a controller which outputs a control signal that can be set to one
of a discrete number of states.

To use the functionality of this cluster, you must include the file MultistateOutputBasic.h in your application
and enable the cluster by defining CLD_MULTISTATE_OUTPUT_BASIC in the zcl_options.h file.

An Multistate Output (Basic) cluster instance can act as either a client or a server. The inclusion of the client
or server software must be pre-defined in the application’s compile-time options (in addition, if the cluster is to
reside on a custom endpoint then the role of client or server must also be specified when creating the cluster
instance).

The compile-time options for the Multistate Output (Basic) cluster are fully detailed in Section 19.6.6.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
263 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

19.6.2 Multistate Output (Basic) Structure and Attributes

The structure definition for the Multistate Output (Basic) cluster is:

typedef struct
{
#ifdef MULTISTATE_OUTPUT_BASIC_SERVER
#ifdef CLD_MULTISTATE_OUTPUT_BASIC_ATTR_DESCRIPTION
 tsZCL_CharacterString sDescription;
 uint8 au8Description[16];
#endif
 zuint16 u16NumberOfStates;
 zbool bOutOfService;
 zuint16 u16PresentValue;
#ifdef CLD_MULTISTATE_OUTPUT_BASIC_ATTR_RELIABILITY
 zenum8 u8Reliability;
#endif
#ifdef CLD_MULTISTATE_OUTPUT_BASIC_ATTR_RELINQUISH_DEFAULT
 zuint16 u16RelinquishDefault;
#endif
 zbmap8 u8StatusFlags;
#ifdef CLD_MULTISTATE_OUTPUT_BASIC_ATTR_APPLICATION_TYPE
 zuint32 u32ApplicationType;
#endif
#ifdef CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_MultistateOutputBasic;

• The following optional pairs of attributes are used to store a human readable description of the usage of the
multistate output (for example "Alarm State"):
– sDescription is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16

characters representing the description
– au8Description[16] is a byte-array which contains the character data bytes representing the

description.

• u16NumberOfStates is a mandatory attribute that indicates the number of discrete states that the output
can take.

• bOutOfService is a mandatory attribute that indicates whether the multistate output is in or out of service
currently:
– TRUE: Out of service
– FALSE: In service

If this attribute is set to TRUE, the u16PresentValue attribute is not used to control the multistate
output.

• u16PresentValue is a mandatory attribute representing the latest multistate output value (this attribute is
used to control the physical output).

• u8Reliability is an optional attribute that indicates whether the value contained in u16PresentValue is
reliable or why it might be unreliable:
– E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED
– E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_OVER_RANGE
– E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_UNDER_RANGE
– E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_OPEN_LOOP
– E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_SHORTED_LOOP
– E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER
– E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_PROCESS_ERROR
– E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_MULTISTATE_FAULT
– E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
264 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• fRelinquishDefault is an optional attribute representing the default value to be used for
u16PresentValue when the supplied value is invalid.

• u8StatusFlags is a mandatory attribute, which is a bitmap representing the following status flags:

Bits Name Description

0 In Alarm Reserved - unused for Multistate Output (Basic) cluster

1 Fault • 1: Optional attribute u8Reliability is used and does not have a value of NO_
FAULT_DETECTED

• 0: Otherwise

2 Overridden • 1: Cluster has been over-ridden by a local mechanism
(u16PresentValue and u8Reliability do not track input)

• 0: Otherwise

3 Out Of Service • 1: Attribute bOutOfService is set to TRUE
• 0: Otherwise

4-7 - Reserved

• u32ApplicationType is an optional attribute which is a bitmap representing the application type, as
follows:

Bits Field Name Description

0-15 Index Specific application usage in terms of the states supported
(for example, Off/On/Auto). For the list of usages, refer to the attribute description in
the ZCL Specification.

16-23 Type Application domain. For the Multistate Output cluster, this field can only be set to
0x00 (HVAC).

24-31 Group Identifier for the cluster that this attribute is part of (not the Cluster ID). For the
Multistate Output cluster, this is 0x0E.

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

19.6.3 Attributes for Default Reporting

The following attributes of the Multistate Output (Basic) cluster can be selected for default reporting:

u16PresentValue
u8AttributeReportingStatus

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

19.6.4 Functions

The following Multistate Output (Basic) cluster function is provided in the NXP implementation of the ZCL:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
265 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• eCLD_MultistateOutputBasicCreateMultistateOutputBasic

The cluster attributes can be accessed using the general attribute read/write functions, as described in Section
2.3.

19.6.4.1 eCLD_MultistateOutputBasicCreateMultistateOutputBasic

teZCL_Status eCLD_MultistateOutputBasicCreateMultistateOutputBasic(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Multistate Output (Basic) cluster on an endpoint. The cluster instance
is created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create an
Multistate Output (Basic) cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Multistate Output Basic cluster.

The function initializes the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
TRUE - server
FALSE - client
psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Multistate Output (Basic) cluster. This parameter
can refer to a pre-filled structure called sCLD_MultistateOutputBasic which is provided in the
MultistateOutputBasic.h file.
pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_MultistateOutputBasic which defines the attributes of
Multistate Output (Basic) cluster. The function initializes the attributes with default values.
pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
266 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

19.6.5 Enumerations

19.6.5.1 teCLD_MultistateOutputBasicCluster_AttrID

The following structure contains the enumerations used to identify the attributes of the Multistate Output (Basic)
cluster.

typedef enum {
 E_CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ID_DESCRIPTION,
 E_CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ID_NUMBER_OF_STATES,
 E_CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ID_OUT_OF_SERVICE,
 E_CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ID_PRESENT_VALUE,
 E_CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ID_RELIABILITY,
 E_CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ID_RELINQUISH_DEFAULT,
 E_CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ID_STATUS_FLAGS,
 E_CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ID_APPLICATION_TYPE,
} teCLD_MultistateOutputBasicCluster_AttrID;

19.6.5.2 teCLD_MultistateOutputBasic_Reliability

The following structure contains the enumerations used to report the value of the u8Reliability attribute
(see Section 19.6.2).

typedef enum
{
 E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED,
 E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_OVER_RANGE,
 E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_UNDER_RANGE,
 E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_OPEN_LOOP,
 E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_SHORTED_LOOP,
 E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER,
 E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_PROCESS_ERROR,
 E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_MULTISTATE_FAULT,
 E_CLD_MULTISTATE_OUTPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR
}teCLD_MultistateOutputBasic_Reliability;

19.6.6 Compile-time options

To enable the Multistate Output (Basic) cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_MULTISTATE_OUTPUT_BASIC

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define MULTISTATE_OUTPUT_BASIC_CLIENT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
267 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#define MULTISTATE_OUTPUT_BASIC_SERVER

Optional attributes

The optional attributes for the Multistate Output (Basic) cluster (see Section 19.6.2) are enabled by defining:

• CLD_MULTISTATE_OUTPUT_BASIC_ATTR_DESCRIPTION
• CLD_MULTISTATE_OUTPUT_BASIC_ATTR_RELIABILITY
• CLD_MULTISTATE_OUTPUT_BASIC_ATTR_RELINQUISH_DEFAULT
• CLD_MULTISTATE_OUTPUT_BASIC_ATTR_APPLICATION_TYPE
• CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ATTRIBUTE_REPORTING_STATUS

Global attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_MULTISTATE_OUTPUT_BASIC_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_MULTISTATE_OUTPUT_BASIC_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
268 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

20 Poll Control Cluster

This chapter describes the Poll Control cluster which provides an interface for remotely controlling the rate at
which a ZigBee End Device polls its parent for data.

The Poll Control cluster has a Cluster ID of 0x0020.

20.1 Overview
An End Device cannot receive data packets directly, as it might be asleep when a packet arrives. The data
packets for an End Device are therefore buffered by the device’s parent and the End Device polls its parent for
data while awake. An individual data packet is only held on the parent node for a maximum of 7.68 seconds and
if many packets for the End Device are expected over a short period of time, the End Device should retrieve
these packets as quickly as possible. An End Device can implement two polling modes, which are dependent
on the poll interval (time-period between consecutive polls):

• Normal poll mode: A long poll interval is used - this mode is appropriate when the End Device is not
expecting data packets.

• Fast poll mode: A short poll interval is used - this mode is appropriate when the End Device is expecting data
packets.

The End Device may enable fast poll mode itself when it is expecting data packets (for example, after it has
requested data from remote nodes). The Poll Control cluster allows fast poll mode to be selected from a remote
control device to force the End Device to be more receptive to data packets (for example, when a download to
the End Device involving a large number of unsolicited data packets is to be initiated).

The two sides of the cluster are located as follows:

• The cluster server is implemented on the End Device to be controlled
• The cluster client is implemented on the remote controller device

The cluster server (End Device) periodically checks whether the cluster client (remote controller) requires the
poll mode to be changed. This ‘check-in’ method is used since an unsolicited instruction from the controller may
arrive when the End Device is asleep. The automatic ‘check-ins’ are conducted with all the remote endpoints
(on controller nodes) to which the local endpoint (on which the cluster resides) is bound.

The cluster is enabled by defining CLD_POLL_CONTROL in the zcl_options.h file. Further compile-time
options for the Poll Control cluster are detailed in Section 20.10.

20.2 Cluster structure and attributes
The structure definition for the Poll Control cluster (server) is:

typedef struct
{
#ifdef POLL_CONTROL_SERVER
 zuint32 u32CheckinInterval;
 zuint32 u32LongPollInterval;
 zuint16 u16ShortPollInterval;
 zuint16 u16FastPollTimeout;
#ifdef CLD_POLL_CONTROL_ATTR_CHECKIN_INTERVAL_MIN
 zuint32 u32CheckinIntervalMin;
#endif
#ifdef CLD_POLL_CONTROL_ATTR_LONG_POLL_INTERVAL_MIN
 zuint32 u32LongPollIntervalMin;
#endif
#ifdef CLD_POLL_CONTROL_ATTR_FAST_POLL_TIMEOUT_MAX
 zuint16 u16FastPollTimeoutMax;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
269 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_PollControl;

where:

• u32CheckinInterval is the ‘check-in interval’, used by the server in checking whether a client requires the
poll mode to be changed - this is the period, in quarter-seconds, between consecutive checks. The valid range
of values is 1 to 7208960. A user-defined minimum value for this attribute can be set via the optional attribute
u32CheckinIntervalMin (see below). Zero is a special value indicating that the Poll Control cluster server
is disabled. The default value is 14400 (1 hour).

• u32LongPollInterval is the ‘long poll interval’ of the End Device, employed when operating in normal
poll mode - this is the period, in quarter-seconds, between consecutive polls of the parent for data. The valid
range of values is 4 to 7208960. A user-defined minimum value for this attribute can be set via the optional
attribute u32LongPollIntervalMin (see below). 0xFFFF is a special value indicating that the long poll
interval is unknown/undefined. The default value is 20 (5 seconds).

• u16ShortPollInterval is the ‘short poll interval’ of the End Device, employed when operating in fast
poll mode - this is the period, in quarter-seconds, between consecutive polls of the parent for data. The valid
range of values is 1 to 65535 and the default value is 2 (0.5 seconds).

• u16FastPollTimeout is the ‘fast poll timeout’ representing the time-interval, in quarter-seconds, for which
the server should normally stay in fast poll mode (unless over-ridden by a client command). The valid range
of values is 1 to 65535. It is recommended that this timeout is greater than 7.68 seconds. A user-defined
maximum value for this attribute can be set via the optional attribute u16FastPollTimeoutMax (see below).
The default value is 40
(10 seconds).

• u32CheckinIntervalMin is an optional lower limit on the ‘check-in interval’ defined by
u32CheckinInterval. This limit can be used to ensure that the interval is not inadvertently set to a low
value which will quickly drain the energy resources of the End Device node.

• u32LongPollIntervalMin is an optional lower limit on the ‘long poll interval’ defined by
u32LongPollInterval. This limit can be used to ensure that the interval is not inadvertently set (for
example, by another device) to a low value which will quickly drain the energy resources of the End Device
node.

• u16FastPollTimeoutMax is an optional upper limit on the ‘fast poll timeout’ defined by
u16FastPollTimeout. This limit can be used to ensure that the interval is not inadvertently set (for
example, by another device) to a high value which quickly drains the energy resources of the End Device
node.

Note:

1. Valid ranges (maximum and minimum values) for the four mandatory attributes can alternatively be set
using macros in the zcl_options.h file, as described in Section 20.10. Some of these macros can only be
used when the equivalent optional attribute is disabled.

2. For general guidance on attribute settings, refer to Section 20.3. Configuration through the attributes is also
described in Section 20.4.2.

u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which
this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1.
The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also
described in Section 2.4.

20.3 Attribute Settings
In assigning user-defined values to the mandatory attributes, the following inequality should be obeyed:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
270 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u32CheckinInterval ≥ u32LongPollInterval ≥ u16ShortPollInterval

In addition, the mandatory attribute u16FastPollTimeout should not be set to an excessive value for self-
powered nodes, as fast poll mode can rapidly drain the stored energy of a node (for example, the battery).

The three optional attributes can be used to ensure that the values of the corresponding mandatory attributes
are kept within reasonable limits, to prevent the rapid depletion of the energy resources of the node. If required,
the optional attributes must be enabled and initialized in the compile-time options (see Section 20.10).

Minimum and maximum values for all the mandatory attributes can alternatively be set using the compile-time
options (again, refer to Section 20.10).

20.4 Poll Control Operations
This section describes the main operations to be performed on the Poll Control cluster server (End Device) and
client (controller).

20.4.1 Initialization

The Poll Control cluster must be initialized on both the cluster server and client. This can be done using the
function eCLD_PollControlCreatePollControl(), which creates an instance of the Poll Control cluster on a
local endpoint.

If you are using a standard ZigBee device which includes the Poll Control cluster, the above
function is automatically called by the initialization function for the device. You only need to call
eCLD_PollControlCreatePollControl() explicitly when setting up a custom endpoint containing one or more
selected clusters (rather than the whole set of clusters supported by a standard ZigBee device).

20.4.2 Configuration

When initialized, the Poll Control cluster adopts the attribute values that are pre-set in the
tsCLD_PollControl structure (see Section 20.2). For the optional attributes, values can be set in the file
zcl_options.h (see Section 20.10).

The mandatory attributes (and related optional attributes) are as follows:

• Long Poll Interval (u32LongPollInterval): This is the polling period used in normal poll mode, expressed
in quarter-seconds, with a default value of 20 (5 seconds). The attribute has a valid range of 4 to 7208960
but a user-defined minimum value for this attribute can be set via the optional ‘long poll interval maximum’
attribute (u32LongPollIntervalMin). This limit can be used to ensure that the interval is not inadvertently
set (for example, by another device) to a low value which quickly drains the energy resources of the End
Device node. Alternatively, minimum and maximum values can be specified through the compile-time options
(see Section 20.10).

• Short Poll Interval (u16ShortPollInterval): This is the polling period used in fast poll mode, expressed
in quarter-seconds, with a default value of 2 (0.5 seconds). The attribute has a valid range of 1 to 65535.
User-defined minimum and maximum values for this attribute can be specified through the compile-time
options (see Section 20.10).

• Fast Poll Timeout (u16FastPollTimeout): This is the time-interval for which the server should normally
stay in fast poll mode (unless over-ridden by a client command), expressed in quarter-seconds, with a default
value of 40 (10 seconds). It is recommended that this timeout is greater than 7.68 seconds. The valid range of
values is 1 to 65535 but a user-defined maximum value for this attribute can be set via the optional ‘fast poll
timeout maximum’ attribute (u16FastPollTimeoutMax). This limit can be used to ensure that the interval
is not inadvertently set (for example, by another device) to a high value which quickly drains the energy
resources of the End Device node. Alternatively, minimum and maximum values can be specified through the
compile-time options (see Section 20.10).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
271 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• Check-in Interval (u32CheckinInterval): This is the period between the server’s checks of whether a
client requires the poll mode to be changed, expressed in quarter-seconds, with a default value of 14400
(1 hour). It should be greater than the ‘long poll interval’ (see above). Zero is a special value indicating that
the Poll Control cluster server is disabled. Otherwise, the valid range of values is 1 to 7208960 but a user-
defined minimum value for this attribute can be set via the optional ‘check-in interval minimum’ attribute
(u32CheckinIntervalMin). This limit can be used to ensure that the interval is not inadvertently set to
a low value which quickly drains the energy resources of the End Device node. Alternatively, minimum and
maximum values can be specified through the compile-time options (see Section 20.10).

The Poll Control cluster server can also be configured by the server application at run-time by writing to the
relevant attribute(s) using the eCLD_PollControlSetAttribute() function (which must be called separately for
each attribute to be modified). If used, this function must be called after the cluster has been initialized (see
Section 20.4.1).

Changes to certain attributes can also be initiated remotely from the cluster client (controller) using the following
functions:

• eCLD_PollControlSetLongPollIntervalSend(): The client application can use this function to submit a
request to set the ‘long poll interval’ attribute on the server to a specified value. This function causes a ‘Set
Long Poll Interval’ command to be sent to the relevant End Device. If the new value is acceptable, the cluster
server automatically updates the attribute.

• eCLD_PollControlSetShortPollIntervalSend(): The client application can use this function to submit a
request to set the ‘short poll interval’ attribute on the server to a specified value. This function causes a ‘Set
Short Poll Interval’ command to be sent to the relevant End Device. If the new value is acceptable, the cluster
server automatically updates the attribute.

In both of the above cases, a response is only sent back to the client if the new value is not acceptable, in which
case a ZCL ‘default response’ is sent indicating an invalid value.

Use of the above two functions requires the corresponding commands to be enabled in the compile-time
options, as described in Section 20.10.

Note: Changes to attribute values initiated by either the server application or client application takes effect
immediately. So, for example, if the End Device is operating in fast poll mode when the ‘short poll interval’ is
modified, the polling period is immediately re-timed to the new value. If the modified attribute is not related to
the currently operating poll mode, the change is implemented the next time the relevant poll mode is started.

Before the first scheduled ‘check-in’ (after one hour, by default), the End Device application should set up
bindings between the local endpoint on which the cluster resides and the relevant endpoint on each remote
controller node with which the End Device operates. These bindings are used while sending the ‘Check-in’
commands.

20.4.3 Operation

After initialization, the Poll Control cluster server on the End Device begins to operate in normal poll mode and
performs the following activities (while the End Device is awake):

• Periodically poll the parent for data packets at a rate determined by the ‘long poll interval’.
• Periodically check whether any bound cluster clients require the server to enter fast poll mode, with ‘check-ins’

at a rate determined by the ‘check-in interval’.

The server application must provide the cluster with timing prompts for the above periodic activities. These
prompts are produced by periodically calling the function eCLD_PollControlUpdate(). The periods of the above
activities are defined in terms of quarter-seconds. Therefore, this function must be called every quarter-second
and the application must provide a 250 ms software timer to schedule these calls. Any poll or check-in that is
due when this function is called is automatically performed by the cluster server.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
272 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The End Device operates in normal poll mode until either it puts itself into fast poll mode (for example, when it
is expecting responses to a request) or the controller (client) requests the End Device to enter fast poll mode
(for example, when a data download to the End Device is going to be performed). As indicated above, such a
request from the client is raised as the result of the server performing periodic ‘check-ins’ with the client.

On receiving a ‘check-in’ command, an E_CLD_POLL_CONTROL_CMD_CHECK_IN event is generated on the
client. The client application must then fill in the tsCLD_PollControl_CheckinResponsePayload structure
(see Section 20.9.2) of the event, indicating whether fast poll mode is required. A response is then automatically
sent back to the server.

After sending the initial Check-in command, the server waits for up to 7.68 seconds for a response (if no
response is received in this time, the server is free to continue in normal poll mode). If a response is received
from a client, the event E_CLD_POLL_CONTROL_CMD_CHECK_IN is generated on the server, where this
event indicates the processing status of the received response. The server also sends this status back to the
responding client in a ZCL default response.

• If the response was received from a bound client within the timeout period of the initial Check-in command,
the status is ZCL_SUCCESS. In this case, the End Device is automatically put into fast poll mode.

• If the response is invalid for some reason, an error status is indicated as described below in Section 20.4.3.2,
and fast poll mode is not entered.

When the End Device is in fast poll mode, the client application can request the cluster server to exit fast poll
mode immediately (before the timeout expires) by calling the function eCLD_PollControlFastPollStopSend().

20.4.3.1 Fast Poll Mode Timeout

In the Check-in response from a client, the payload (see Section 20.9.2) may contain an optional timeout value
which, if used, specifies the length of time that the device should remain in fast poll mode (this timeout value will
be used instead of the one specified through the ‘fast poll timeout’ attribute). If the response payload specifies
an out-of-range timeout value, the server will send a ZCL default response with status INVALID_VALUE to the
client (see Section 20.4.3.2). In the case of multiple clients (controllers) that have specified different timeout
values, the server will use the largest timeout value received.

20.4.3.2 Invalid Check-in Responses

The server may receive Check-in responses which cannot result in fast poll mode. In these cases, the server
sends a ZCL default response indicating the relevant error status (which is not ZCL_SUCCESS) back to the
originating client. The following circumstances will lead to such a default response:

• The Check-in response is from an unbound client. In this case, the Default Response will contain the status
ACTION_DENIED.

• The Check-in response is from a bound client but requests an invalid fast poll timeout value (see Section
20.4.3.1). In this case, the default response will contain the status INVALID_VALUE.

• The Check-in response is from a bound client but arrives after the timeout period of the original Check-in
command. In this case, the default response will contain the status TIMEOUT.

20.5 Poll Control Events
The Poll Control cluster has its own events that are handled through the callback mechanism described in
Chapter 3. The cluster contains its own event handler. However, if a device uses this cluster then application-
specific Poll Control event handling must be included in the user-defined callback function for the associated
endpoint, where this callback function is registered through the relevant endpoint registration function.
This callback function will then be invoked when a Poll Control event occurs and needs the attention of the
application.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
273 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

For a Poll Control event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_PollControlCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_PollControl_CheckinResponsePayload *psCheckinResponsePayload;
 #ifdef CLD_POLL_CONTROL_CMD_SET_LONG_POLL_INTERVAL
 tsCLD_PollControl_SetLongPollIntervalPayload
 *psSetLongPollIntervalPayload;
 #endif
 #ifdef CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_INTERVAL
 tsCLD_PollControl_SetShortPollIntervalPayload
 *psSetShortPollIntervalPayload;
 #endif
 } uMessage;
} tsCLD_PollControlCallBackMessage;

The above structure is fully described in Section 20.9.1.

When a Poll Control event occurs, one of the command types listed in Table 29 is specified through the
u8CommandId field of the structure tsCLD_PollControlCallBackMessage. This command type
determines which command payload is used from the union uMessage.

u8CommandId Enumeration Description/Payload Type

On Client

E_CLD_POLL_CONTROL_CMD_CHECK_IN A Check-in command has been received by the client.

On Server

E_CLD_POLL_CONTROL_CMD_CHECK_IN A Check-in Response has been received by the server, following a
previously sent Check-In command.
tsCLD_PollControl_CheckinResponsePayload

E_CLD_POLL_CONTROL_CMD_FAST_POLL_
STOP

A ‘Fast Poll Stop’ command has been received by the server.

E_CLD_POLL_CONTROL_CMD_SET_LONG_
POLL_INTERVAL

A ‘Set Long Poll Interval’ command has been received by the server.
tsCLD_PollControl_SetLongPollIntervalPayload

E_CLD_POLL_CONTROL_CMD_SET_
SHORT_POLL_INTERVAL

A ‘Set Short Poll Interval’ command has been received by the server.
tsCLD_PollControl_SetShortPollIntervalPayload

Table 39. Poll Control Command Types (Events)

20.6 Functions
The Poll Control cluster functions are described in the following three sub-sections, according to the side(s) of
the cluster on which they can be used:

• Server/client functions are described in Section 20.6.1
• Server functions are described in Section 20.6.2
• Client functions are described in Section 20.6.3

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
274 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

20.6.1 Server/Client Function

The following Poll Control cluster function can be used on either a cluster server or cluster client:

eCLD_PollControlCreatePollControl

20.6.1.1 eCLD_PollControlCreatePollControl

teZCL_Status eCLD_PollControlCreatePollControl(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_PollControlCustomDataStructure *psCustomDataStructure);

Description

This function creates an instance of the Poll Control cluster on an endpoint. The cluster instance is created
on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a
server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Poll
Control cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions. For more details of creating cluster instances on
custom endpoints, refer to Appendix D.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function from those described in the ZigBee Devices User Guide (JNUG3131).

When used, this function must be the first Poll Control cluster function called in the application, and must be
called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8PollControlAttributeControlBits
[(sizeof(asCLD_PollControlClusterAttrDefs) / sizeof(tsZCL_AttributeDefinition))];

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
• TRUE - server
• FALSE - client
• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this

case, this structure must contain the details of the Poll Control cluster. This parameter can refer to a pre-filled
structure called sCLD_PollControl which is provided in the PollControl.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_PollControl which defines the attributes of the Poll Control
cluster. The function initializes the attributes with default values.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
275 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above). For a cluster client, set this pointer to NULL.

• psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see
Section 20.9.5).

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

20.6.2 Server Functions

The following Poll Control cluster functions can be used on a cluster server only:

• eCLD_PollControlUpdate
• eCLD_PollControlSetAttribute
• eCLD_PollControlUpdateSleepInterval

20.6.2.1 eCLD_PollControlUpdate

 teZCL_Status eCLD_PollControlUpdate(void);

Description

This function can be used on a cluster server to update the timing status for the following periodic activities:

• polling of the parent for a data packet
• ‘check-ins’ with the client to check for a required change in the poll mode

The function should be called once per quarter-second and the application should provide a 250-ms timer to
prompt these function calls.

Any poll or check-in that is due when this function is called are automatically performed by the cluster server.

Parameters

None

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

20.6.2.2 eCLD_PollControlSetAttribute

teZCL_Status eCLD_PollControlSetAttribute(
 uint8 u8SourceEndPointId,
 uint8 u8AttributeId,
 uint32 u32AttributeValue);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
276 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on a cluster server to write to an attribute of the Poll Control cluster. The function
writes to the relevant field of the tsCLD_PollControl structure (detailed in Section 20.2). The attribute to be
accessed is specified using its attribute identifier - enumerations are provided (see Section 20.8.1).

Therefore, this function can be used to change the configuration of the Poll Control cluster. The change takes
effect immediately. So, for example, if the End Device is in normal poll mode when the ‘long poll interval’ is
modified, the polling period is immediately re-timed to the new value. If the modified attribute is not related to
the currently operating poll mode, the change is implemented the next time the relevant poll mode is started.

The specified value of the attribute is validated by the function. If this value is out-of-range for the attribute, the
status E_ZCL_ERR_INVALID_VALUE is returned.

Parameters

• u8SourceEndPointId: Number of local endpoint on which cluster resides
• u8AttributeId : Identifier of attribute to be written to (see Section 20.8.1)
• u32AttributeValue: Value to be written to attribute

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_INVALID_VALUE
• E_ZCL_DENY_ATTRIBUTE_ACCESS

20.6.2.3 eCLD_PollControlUpdateSleepInterval

teZCL_Status eCLD_PollControlUpdateSleepInterval(
 uint32 u32QuarterSecondsAsleep);

Description

This function can be used on a cluster server to provide the updated ticks back into PollControl cluster for the
time the device was sleeping in terms of quarter second.

This function updates the Checkin period based on the ticks provided.

Parameters

u32QuarterSecondsAsleep: Number of Quarter seconds the device has slept for

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_CLUSTER_NOT_FOUND

20.6.3 Client Functions

The following Poll Control cluster functions can be used on a cluster client only:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
277 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

1. eCLD_PollControlSetLongPollIntervalSend
2. eCLD_PollControlSetShortPollIntervalSend
3. eCLD_PollControlFastPollStopSend

20.6.3.1 eCLD_PollControlSetLongPollIntervalSend

teZCL_Status eCLD_PollControlSetLongPollIntervalSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PollControl_SetLongPollIntervalPayload
 *psPayload);

Description

This function can be used on a cluster client to send a ‘Set Long Poll Interval’ command to the cluster server.
This command requests the ‘long poll interval’ for normal poll mode on the End Device to be set to the specified
value.

On receiving the command, the ‘long poll interval’ attribute is only modified by the server if the specified value
is within the valid range for the attribute (including greater than or equal to the optional user-defined minimum,
if set) - see Section 20.2. If this is not the case, the server replies to the client with a ZCL ‘default response’
indicating an invalid value.

The change takes effect immediately. So, if the End Device is in normal poll mode when the ‘long poll interval’ is
modified, the polling period is immediately re-timed to the new value.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of local endpoint on which cluster client resides
• u8DestinationEndPointId: Number of remote endpoint on which cluster server resides
• psDestinationAddress: Pointer to a structure containing the destination address of the server node
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message
• psPayload: Pointer to structure containing the payload for the command (see Section 20.9.3), including the

desired long poll interval

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
278 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

20.6.3.2 eCLD_PollControlSetShortPollIntervalSend

teZCL_Status eCLD_PollControlSetShortPollIntervalSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PollControl_SetShortPollIntervalPayload *psPayload);

Description

This function can be used on a cluster client to send a ‘Set Short Poll Interval’ command to the cluster server.
This command requests the ‘short poll interval’ for fast poll mode on the End Device to be set to the specified
value.

On receiving the command, the ‘short poll interval’ attribute is only modified by the server if the specified value
is within the valid range for the attribute (including greater than or equal to the optional user-defined minimum,
if set) - see Section 20.2. If this is not the case, the server replies to the client with a ZCL ‘default response’
indicating an invalid value.

The change takes effect immediately. So, if the End Device is in fast poll mode when the ‘short poll interval’ is
modified, the polling period is immediately re-timed to the new value.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of local endpoint on which cluster client resides
• u8DestinationEndPointId: Number of remote endpoint on which cluster server resides
• psDestinationAddress: Pointer to a structure containing the destination address of the server node
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message
• psPayload: Pointer to a structure containing the payload for the command (see Section 20.9.4), including the

desired short poll interval

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

20.6.3.3 eCLD_PollControlFastPollStopSend

teZCL_Status eCLD_PollControlFastPollStopSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
279 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on a cluster client to send a ‘Fast Poll Stop’ command to the cluster server. This
command is intended to abort a fast poll mode episode which has been started on the server as the result of a
‘Check-in Response’. Therefore, the command allows fast poll mode to be exited before the mode’s timeout is
reached.

The cluster server only stops fast poll mode on the destination End Device if a matching ‘Fast Poll Stop’
command has been received for every request to start the current episode of fast poll mode. Therefore, if the
current fast poll mode episode resulted from multiple start requests from multiple clients, the episode cannot be
prematurely stopped (before the timeout is reached) unless a ‘Fast Poll Stop’ command is received from each of
those clients.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of local endpoints on which the cluster client resides
• u8DestinationEndPointId: Number of remote endpoints on which the cluster server resides
• psDestinationAddress: Pointer to a structure containing the destination address of the server node
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

20.7 Return codes
The Poll Control cluster functions use the ZCL return codes, listed in Section 7.2.

20.8 Enumerations

20.8.1 ‘Attribute ID’ enumerations

The following structure contains the enumerations used to identify the attributes of the Poll Control cluster.

 typedef enum PACK
{
 E_CLD_POLL_CONTROL_ATTR_ID_CHECKIN_INTERVAL 0x0000,
 E_CLD_POLL_CONTROL_ATTR_ID_LONG_POLL_INTERVAL,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
280 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_POLL_CONTROL_ATTR_ID_SHORT_POLL_INTERVAL,
 E_CLD_POLL_CONTROL_ATTR_ID_FAST_POLL_TIMEOUT,
 E_CLD_POLL_CONTROL_ATTR_ID_CHECKIN_INTERVAL_MIN,
 E_CLD_POLL_CONTROL_ATTR_ID_LONG_POLL_INTERVAL_MIN,
 E_CLD_POLL_CONTROL_ATTR_ID_FAST_POLL_TIMEOUT_MAX;
}teCLD_PollControl_Cluster_AttrID;

20.8.2 ‘Command’ Enumerations

The following enumerations represent the commands that the Poll Control cluster generates.

typedef enum PACK
{
 E_CLD_POLL_CONTROL_CMD_CHECK_IN = 0x00,
 E_CLD_POLL_CONTROL_CMD_FAST_POLL_STOP,
 E_CLD_POLL_CONTROL_CMD_SET_LONG_POLL_INTERVAL,
 E_CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_INTERVAL,
} teCLD_PollControl_CommandID;

The above enumerations are used to indicate types of Poll Control cluster events and are described in Section
20.5.

20.9 Structures

20.9.1 tsCLD_PPCallBackMessage

For a Poll Control event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_PollControlCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_PollControl_CheckinResponsePayload *psCheckinResponsePayload;
 #ifdef CLD_POLL_CONTROL_CMD_SET_LONG_POLL_INTERVAL
 tsCLD_PollControl_SetLongPollIntervalPayload
 *psSetLongPollIntervalPayload;
 #endif
 #ifdef CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_INTERVAL
 tsCLD_PollControl_SetShortPollIntervalPayload
 *psSetShortPollIntervalPayload;
 #endif
 } uMessage;
} tsCLD_PollControlCallBackMessage;

where:

• u8CommandId indicates the type of Poll Control command that has been received, one of:
– E_CLD_POLL_CONTROL_CMD_CHECK_IN
– E_CLD_POLL_CONTROL_CMD_FAST_POLL_STOP
– E_CLD_POLL_CONTROL_CMD_SET_LONG_POLL_INTERVAL
– E_CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_INTERVAL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
281 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If they are required, the last two commands must be enabled in the compile-time options, as described in
Section 20.10.

• uMessage is a union containing the command payload, as one of (depending on the value of u8CommandId):
– psCheckinResponsePayload is a pointer to the payload of a ‘Check-in Response’ (see Section 20.9.2)
– psSetLongPollIntervalPayload is a pointer to the payload of a ‘Set Long Poll Interval’ command (see Section

20.9.3)
– psSetShortPollIntervalPayload is a pointer to the payload of a ‘Set Short Poll Interval’ command (see

Section 20.9.4)

The command payload for each command type is indicated in Table 29 in Section 20.5.

20.9.2 tsCLD_PollControl_CheckinResponsePayload

This structure contains the payload of a ‘Check-in Response’, which is sent from the client to the server in reply
to a ‘Check-in’ command from the server.

typedef struct
{
 zbool bStartFastPolling;
 zuint16 u16FastPollTimeout;
}tsCLD_PollControl_CheckinResponsePayload;

where:

• bStartFastPolling is a boolean indicating whether or not the End Device is required to enter fast poll
mode:
– TRUE: Enter fast poll mode
– FALSE: Continue in normal poll mode

• u16FastPollTimeout is an optional fast poll mode timeout, in quarter-seconds, in the range 1 to 65535 -
that is, the period of time for which the End Device should remain in fast poll mode (if this mode is requested
through bStartFastPolling). Zero is a special value which indicates that the value of the ‘fast poll timeout’
attribute should be used instead (see Section 20.2). If a non-zero value is specified then this value over-rides
the ‘fast poll timeout’ attribute (but does not over-write it).

20.9.3 tsCLD_PollControl_SetLongPollIntervalPayload

This structure contains the payload of a ‘Set Long Poll Interval’ command, which is sent from the client to the
server to request a new ‘long poll interval’ for use in normal poll mode.

typedef struct
{
 zuint32 u32NewLongPollInterval;
}tsCLD_PollControl_SetLongPollIntervalPayload;

where u32NewLongPollInterval is the required value of the ‘long poll interval’, in quarter-seconds, in the
range 4 to 7208960. This value is used to over-write the corresponding cluster attribute if the specified value is
within the valid range for the attribute (including greater than or equal to the optional user-defined minimum, if
set).

To use the ‘Set Long Poll Interval’ command, it must be enabled in the compile-time options, as described in
Section 20.10.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
282 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

20.9.4 tsCLD_PollControl_SetShortPollIntervalPayload

This structure contains the payload of a ‘Set Short Poll Interval’ command, which is sent from the client to the
server to request a new ‘short poll interval’ for use in fast poll mode.

typedef struct
{
 zuint16 u16NewShortPollInterval;
}tsCLD_PollControl_SetShortPollIntervalPayload;

where u16NewShortPollInterval is the required value of the ‘short poll interval’, in quarter-seconds, in the
range 1 to 65535. This value is used to over-write the corresponding cluster attribute if the specified value is
within the valid range for the attribute (including greater than or equal to the optional user-defined minimum, if
set).

To use the ‘Set Short Poll Interval’ command, it must be enabled in the compile-time options, as described in
Section 20.10.

20.9.5 tsCLD_PollControlCustomDataStructure

The Poll Control cluster requires extra storage space to be allocated to be used by internal functions. The
structure definition for this storage is shown below:

typedef struct
{
#ifdef POLL_CONTROL_SERVER
 tsCLD_PollControlParameters sControlParameters;
#endif
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_PollControlCallBackMessage sCallBackMessage;
} tsCLD_PollControlCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

20.10 Compile-time Options
This section describes the compile-time options that may be configured in the zcl_options.h file of an
application that uses the Poll Control cluster.

To enable the Poll Control cluster in the code to be built, it is necessary to add the following line to the file:

#define CLD_POLL_CONTROL

In addition, to enable the cluster as a client or server, it is also necessary to add one of the following lines to the
same file:

#define POLL_CONTROL_SERVER
#define POLL_CONTROL_CLIENT

The following options can also be configured at compile-time in the zcl_options.h file.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
283 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Optional Server Attributes

To enable and assign a value (t quarter-seconds) to the optional Check-in Interval Minimum
(u32CheckinIntervalMin) attribute, add the line:

#define CLD_POLL_CONTROL_ATTR_CHECKIN_INTERVAL_MIN t

To enable and assign a value (t quarter-seconds) to the optional Long Poll Interval Minimum
(u32LongPollIntervalMin) attribute, add the line:

#define CLD_POLL_CONTROL_ATTR_LONG_POLL_INTERVAL_MIN t

To enable and assign a value (t quarter-seconds) to the optional Fast Poll Timeout Maximum
(u16FastPollTimeoutMax) attribute, add the line:

#define CLD_POLL_CONTROL_ATTR_FAST_POLL_TIMEOUT_MAX t

Note: For further information on the above optional server attributes, refer to Section 20.2.

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_POLL_CONTROL_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

Set Valid Range for ‘Check-in Interval’

To set the maximum possible ‘check-in interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_CHECKIN_INTERVAL_MAX t

The default value is 7208960.

To set the minimum possible ‘check-in interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_CHECKIN_INTERVAL_MIN t

The default value is 0.

This minimum value is only applied if the Check-in Interval Minimum attribute (u32CheckinIntervalMin) is
not enabled.

Set Valid Range for ‘Fast Poll Timeout’

To set the maximum possible ‘fast poll timeout’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_FAST_POLL_TIMEOUT_MAX t

The default value is 65535.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
284 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

To set the minimum possible ‘fast poll timeout’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_FAST_POLL_TIMEOUT_MIN t

The default value is 1.

This maximum value is only applied if the Fast Poll Timeout Maximum attribute (u16FastPollTimeoutMax) is
not enabled.

Set Valid Range for ‘Long Poll Interval’

To set the maximum possible ‘long poll interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_LONG_POLL_INTERVAL_MAX t

The default value is 7208960.

To set the minimum possible ‘long poll interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_LONG_POLL_INTERVAL_MIN t

The default value is 4.

This minimum value is only applied if the Long Poll Interval Minimum attribute (u32LongPollIntervalMin) is
not enabled.

Set Valid Range for ‘Short Poll Interval’

To set the maximum possible ‘short poll interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_SHORT_POLL_INTERVAL_MAX t

The default value is 65535.

To set the minimum possible ‘short poll interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_SHORT_POLL_INTERVAL_MIN t

The default value is 1.

Optional Commands

To enable the optional ‘Set Long Poll Interval’ command, add the line:

#define CLD_POLL_CONTROL_CMD_SET_LONG_POLL_INTERVAL

To enable the optional ‘Set Short Poll Interval’ command, add the line:

#define CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_INTERVAL

Maximum Number of Clients

To set the maximum number of clients for a server to n, add the line:

#define CLD_POLL_CONTROL_NUMBER_OF_MULTIPLE_CLIENTS n

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
285 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

This is the maximum number of clients from which the server can handle Check-in Responses. It should be
equal to the capacity (number of entries) of the binding table created on the server device to accommodate
bindings to client devices (where this size is set in a ZigBee network parameter using the ZPS Configuration
Editor).

Disable APS Acknowledgments for Bound Transmissions

To disable APS acknowledgments for bound transmissions from this cluster, add the line:

#define CLD_POLL_CONTROL_BOUND_TX_WITH_APS_ACK_DISABLED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
286 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

21 Power Profile Cluster

This chapter describes the Power Profile cluster which provides an interface between a home appliance (e.g. a
washing machine) and the controller of an energy management system.

The Power Profile cluster has a Cluster ID of 0x001A.

21.1 Overview
The Power Profile cluster allows an appliance, the cluster server, to provide its expected power usage data to a
controller, the cluster client. This ‘power profile’ represents the predicted ‘energy footprint’ of the appliance, and
may be used by the controller to schedule and control the operation of the appliance. It may be requested by
the client or provided unsolicited by the server.

The cluster is enabled by defining CLD_PP in the zcl_options.h file. Further compile-time options for the Power
Profile cluster are detailed in Section 21.11.

Note: The Power Profile cluster requires the Appliance Control cluster for the implementation of status
notifications and power management commands. The Appliance Control cluster is described in Chapter 45.

21.2 Cluster structure and attributes
The structure definition for the Power Profile cluster (server) is:

typedef struct
{
#ifdef PP_SERVER
 zuint8 u8TotalProfileNum;
 zbool bMultipleScheduling;
 zbmap8 u8EnergyFormatting;
 zbool bEnergyRemote;
 zbmap8 u8ScheduleMode;
#ifdef CLD_PP_ATTR_ATTRIBUTE_REPORTING_STATUS
 zuint8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_PP;

where:

• u8TotalProfileNum is the number of power profiles supported by the device (must be between 1 and 254,
inclusive)

• bMultipleScheduling is a boolean indicating whether the server side of the cluster supports the
scheduling of multiple energy phases or just a single energy phase at a time (according to commands
received from the client):
– TRUE if multiple energy phase scheduling is possible
– FALSE if only single energy phase scheduling is possible

• u8EnergyFormatting indicates the format of the Energy fields in the Power Profile Notification and Power
Profile Response:
– Bits 0-2: Number of digits to the right of the decimal point
– Bits 3-6: Number of digits to the left of the decimal point

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
287 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– Bit 7: If set to ‘1’, any leading zeros are removed
• bEnergyRemote is a boolean indicating whether the cluster server (appliance) is configured for remote

control (of energy management):
– TRUE if at least one power profile is enabled for remote control
– FALSE if no power profile is enabled for remote control

This attribute is linked to the bPowerProfileRemoteControl field in the power profile record (see
Section 21.10.13) - if the latter field is set to TRUE, the attribute is also automatically set to TRUE.

• u8ScheduleMode indicates the criterion (cheapest or greenest) that should be used by the cluster client (for
example, energy management system) to schedule the power profiles:
– 0x00 - criterion is left to the cluster server to choose
– 0x01 - cheapest mode (minimize cost of energy usage)
– 0x02 - greenest mode (maximize use of renewable energy sources)
– 0x03 - compromise between cheapest and greenest

All other values are reserved.
• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is

used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

21.3 Attributes for default reporting
The following attributes of the Power Profile cluster can be selected for default reporting:

bEnergyRemote
u8ScheduleMode

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

21.4 Power profiles
An appliance can have one or more power profiles. An example of an appliance with multiple power profiles is a
washing machine which has a number of programmes for different types of materials and loads.

Note: The number of power profiles on a device must be defined in the file zcl_options.h (see Section 21.11).

An individual power profile comprises a series of energy phases with different power demands. For example,
these phases may correspond to the different cycles of a washing machine programme, such as wash, rinse,
spin. Details of a power profile, including these energy phases, are held in an entry of the power profile table on
the cluster server (appliance).

If the appliance is to be remotely controlled, the controller (cluster client) must ‘learn’ the details of the
appliance’s power profile so that it can control the scheduling of the energy phases. The schedule of a power
profile is decided by the client, and includes energy phases and their relative start-times (the energy phases
are not necessarily contiguous in time). A schedule is illustrated in Figure 5. The client must communicate the
schedule for a power profile to the server where the schedule is executed.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
288 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Energy Phase 1
Energy Phase 2

Energy
Phase 3

Time

Power

Figure 4. Schedule of Energy Phases of a Power Profile

21.5 Power profile operations
This section describes the main operations to be performed on the Power Profile cluster server (appliance) and
client (controller).

21.5.1 Initialization

The Power Profile cluster must be initialized on both the cluster server and client. This can be done using the
function eCLD_PPCreatePowerProfile(), which creates an instance of the Power Profile cluster on a local
endpoint.

If you are using a Zigbee device that includes the Power Profile cluster, the above function is automatically
called by the initialization function for the device. The function eCLD_PPCreatePowerProfile() should be called
explicitly when setting up a custom endpoint containing one or more selected clusters rather than the whole set
of clusters supported by a standard Zigbee device.

21.5.2 Adding and removing a power profile (server only)

A Power Profile cluster server (appliance) supports one or more power profiles. Information on these power
profiles is held on the server in a power profile table, where each table entry contains information on one
supported power profile.

The application on the appliance can perform various operations on the power profile table, as described in the
sub-sections below.

21.5.2.1 Adding a power profile entry

The server application can introduce a new power profile by adding a corresponding entry to the power profile
table using the function eCLD_PPAddPowerProfileEntry(). The new power profile table entry is specified in
a tsCLD_PPEntry structure (see Section 21.10.2) supplied to this function. This structure includes the Power
Profile ID - these identifiers should be numbered consecutively from 1 to 255.

The function eCLD_PPAddPowerProfileEntry() can also be used to replace (over-write) an existing power
profile table entry, in which case the new entry should have the same Power Profile ID as the existing entry to
be replaced.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
289 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

21.5.2.2 Removing a power profile entry

The server application can remove a power profile from the device by calling the function
eCLD_PPRemovePowerProfileEntry() to delete the corresponding entry of the local power profile table. The
entry to be deleted is specified by means of the relevant Power Profile ID.

21.5.2.3 Obtaining a Power Profile Entry

The server application can obtain the details of a power profile supported by the server by reading the
corresponding entry of the power profile table using the function eCLD_PPGetPowerProfileEntry(). The
required entry is specified by means of the relevant Power Profile ID.

21.5.3 Communicating power profiles

In order to control the power consumption of the appliance (by scheduling the energy phases of the power
profile), the controller (cluster client) must ‘learn’ the power profiles supported by the appliance (server). This
may be done through requests or notifications, as described in the sub-sections below.

Note: In order remotely control the appliance from a controller for energy management, the attribute
bEnergyRemote of the Power Profile cluster on the server device must be set to TRUE (see Section 21.2).

21.5.3.1 Requesting a power profile (by client)

A client application can request a power profile supported by the server by calling the
eCLD_PPPowerProfileReqSend() function, which sends a Power Profile Request to the server. The function
can be used to request a specific power profile (specified using its Power Profile ID) or all the power profiles
supported by the server.

On receiving a response from the server, an E_CLD_PP_CMD_POWER_PROFILE_RSP event is generated
on the client for each energy phase within the power profile. The reported information is contained in a
tsCLD_PP_PowerProfilePayload structure (see Section 21.10.4). The application may store or discard this
information, as required. By receiving the energy phase information in individual events, the application only
needs to use as much memory as is required to store the relevant energy phase data.

Note: The client application may first use the function eCLD_PPPowerProfileStateReqSend() to request the
identifiers of the power profiles that are currently supported on the server.

21.5.3.2 Notification of a power profile (by server)

The cluster server may send unsolicited notifications of the power profiles that it supports to the client. To do
this, the server application must call the function eCLD_PPPowerProfileNotificationSend() which sends a
Power Profile Notification containing the essential details of one supported power profile (such as the energy
phases within the profile). This information is supplied to the function in a tsCLD_PP_PowerProfilePayload
structure (see Section 21.10.4). If the server supports multiple power profiles, a separate notification must be
sent for each profile.

On receiving the notification on the client, the event E_CLD_PP_CMD_POWER_PROFILE_NOTIFICATION is
generated on the client for each energy phase within the power profile. The reported information is contained in
a tsCLD_PP_PowerProfilePayload structure (see Section 21.10.4). The application may store or discard
this information, as required. By receiving the energy phase information in individual events, the application only
needs to use as much memory as is required to store the relevant energy phase data.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
290 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

21.5.4 Communicating schedule information

A power profile schedule comprises a sequence of energy phases and their relative start-times (the energy
phases may have gaps between them):

• An energy phase is identified by its Energy Phase Identifier, in the range 1 to 255 (inclusive).
• The start-time of an energy phase is expressed as a delay, in minutes, from the end of the previous energy

phase. For the first energy phase of a power profile schedule, this delay is measured from the time that the
schedule was started.

Note: The normal duration of an energy phase, in minutes, is fixed and is specified in the energy phase
information in the power profile.

Although a power profile on the cluster server may support multiple energy phases, the schedule for the power
profile may possibly incorporate only a sub-set of these phases. The client (controller) selects the set of energy
phases in a schedule and communicates this schedule to the server (appliance). This may be done through a
request or notification, as described in Section 21.5.4.1 and Section 21.5.4.2 below.

21.5.4.1 Requesting a schedule (by server)

The server application can request a schedule for a supported power profile from the client by calling the
function eCLD_PPEnergyPhasesScheduleReqSend(), which sends an Energy Phases Schedule Request to
the client.

The client can only return the requested schedule information if it stores this type of information for
the power profile. If this is the case, an E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_REQ
event is generated on the client, with the bIsInfoAvailable field set to TRUE in the event structure
tsCLD_PPCallBackMessage, and the client will send an Energy Phases Schedule Response back to the
server. Otherwise, the client sends a ZCL default response with status NOT_FOUND.

On receiving an Energy Phases Schedule Response from the client, the event E_CLD_PP_CMD_ENERGY_
PHASES_SCHEDULE_RSP is generated on the server, containing the requested schedule information in a ts
CLD_PP_EnergyPhasesSchedulePayload structure (see Section 21.10.6). One or more of the following
outcomes result:

• If the attribute bEnergyRemote is set to FALSE on the server (no remote control of the device), the server
simply rejects the received schedule.

• If the received schedule information contains an u16MaxActivationDelay value of zero for an energy
phase (see Section 21.10.11), this energy phase is rejected by the server although other valid energy
phases are accepted. For each rejected energy phase, the server sends a ZCL default response with status
NOT_AUTHORIZED to the client.

• If the received schedule information results in an update of the power profile schedule on the server, the
server automatically sends an Energy Phases Schedule State Notification back to the client. On receiving
this notification, an E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_NOTIFICATION event is
generated on the client.

Note: Before requesting a power profile schedule, the server application may send the schedule’s timing
constraints to the client using the function eCLD_PPPowerProfileScheduleConstraintsNotificationSend().
The client application can alternatively request these schedule constraints from the server by calling eCLD_
PPPowerProfileScheduleConstraintsReqSend().

21.5.4.2 Notification of a Schedule (by Client)

The cluster client may send an unsolicited notification of a power profile schedule to the server. To do this, the
client application must call the function eCLD_PPEnergyPhasesScheduleNotificationSend() which sends an

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
291 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Energy Phases Schedule Notification containing the schedule. This information is supplied to the function in a
tsCLD_PP_EnergyPhasesSchedulePayload structure (see Section 21.10.6).

On receiving the notification on the server, the event E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_NO
TIFICATION is generated, containing the sent power profile schedule. One or more of the following outcomes
will result:

• If the attribute bEnergyRemote is set to FALSE on the server (no remote control of the device), the server
will simply reject the received schedule.

• If the received schedule information contains an u16MaxActivationDelay value of zero for an energy
phase (see Section 21.10.11), this energy phase is rejected by the server although other valid energy phases
will be accepted. For each rejected energy phase, the server will send a ZCL default response with status
NOT_AUTHORIZED to the client.

• If the received schedule information results in an update of the power profile schedule on the server, the
server will automatically send an Energy Phases Schedule State Notification back to the client. On receiving
this notification, an E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_NOTIFICATION event is
generated on the client.

21.5.4.3 Notification of Energy Phases in Power Profile Schedule (by Server)

The server application can use the function eCLD_PPEnergyPhasesScheduleStateNotificationSend() to
send an unsolicited Energy Phases Schedule State Notification to a cluster client, in order to inform the client of
the energy phases that are in the schedule of a particular power profile.

21.5.4.4 Requesting the Scheduled Energy Phases (by Client)

The client application can use the function eCLD_PPEnergyPhasesScheduleStateReqSend() to send an
Energy Phases Schedule State Request to the cluster server, in order to obtain the schedule of energy phases
for a particular power profile on the server.

On receiving the response on the client, the event E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_ST
ATE_RSP is generated, containing the requested schedule information. The obtained schedule can be used to
re-align the schedule information on the client with the information on the server - for example, after a reset of
the client device.

21.5.5 Executing a Power Profile Schedule

After receiving a power profile schedule from the client (as described in Section 21.5.4), the server can start
execution of the schedule. The instruction to start the schedule comes from the client in the form of an Energy
Phases Schedule Notification. To issue this instruction, the client application must call the function eCLD_
PPEnergyPhasesScheduleNotificationSend(). On receiving the notification, the server automatically starts
the schedule.

The possible states of a power profile are fully detailed in Section 21.9.2 but, generally, it moves through the
following principal states before, during and after execution:

• E_CLD_PP_STATE_PROGRAMMED: The power profile is defined in the local power profile table
but a schedule has not been received from the client. Even without a schedule from the client, a
schedule of energy phases that was defined when the power profile was introduced using the function
eCLD_PPAddPowerProfileEntry() can be started from this state (see below).

• E_CLD_PP_STATE_WAITING_TO_START: The power profile remains in this state before the first energy
phase starts and between energy phases (provided there is a gap between the end of one phase and the
beginning of the next).

• E_CLD_PP_STATE_RUNNING: An energy phase is running.
• E_CLD_PP_STATE_ENDED: The final energy phase has completed.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
292 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Once a schedule has started, the server application must progress execution through the different states of the
schedule by periodically calling the function eCLD_PPSchedule() once per second. This function moves the
power profile to the next state, if it is due to start, and update the relevant state and timing parameters.

Note: The server application can also use the function eCLD_PPSetPowerProfileState() to ‘manually’ move
execution of the schedule to a particular (valid) state, irrespective of whether the target state is scheduled. This
function can be used by the server application to locally start a schedule from the ‘programmed’ state.

Whenever there is a change of state of a power profile, the cluster server automatically sends a Power Profile
State Notification to the client. The server application can also send such a notification ‘manually’ by calling the
function eCLD_PPPowerProfileStateNotificationSend(). The notification contains a power profile record that
specifies the active power profile, the energy phase that is currently running (or due to run next) and the current
state of the power profile. These notifications allow the controller to monitor the appliance. On receiving a
notification on the client, an E_CLD_PP_CMD_POWER_PROFILE_STATE_NOTIFICATION event is generated,
containing the sent power profile state information in a tsCLD_PP_PowerProfileStatePayload structure
(see Section 21.10.5).

21.5.6 Communicating Price Information

The cost of implementing a power profile schedule on an appliance (cluster server) is determined/calculated by
the controller (cluster client). The server can request price information from the client in a number of ways, as
described below.

Note: Use of the Power Profile Price functions, referenced below, must be enabled in the compile-time options,
as described in Section 21.11.

21.5.6.1 Requesting Cost of a Power Profile Schedule (by Server)

The server application can use the function eCLD_PPGetPowerProfilePriceSend() to send a Get Power
Profile Price Request to the client, in order to request the cost of executing the schedule of a particular power
profile.

The client can only return the requested information if price-related information about the power profile
is held on the client device. If this is the case, an E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE
event is generated on the client, with the bIsInfoAvailable field set to TRUE in the event structure
tsCLD_PPCallBackMessage and the client sends a Get Power Profile Price Response back to the server.
Otherwise, the client sends a ZCL default response with status NOT_FOUND.

On receiving a Get Power Profile Price Response on the server, the event E_CLD_PP_CMD_GET_POWER_
PROFILE_PRICE_RSP is generated, containing the requested price information (if available).

Alternatively, the server application can use the function eCLD_PPGetPowerProfilePriceExtendedSen
d() to send a Get Power Profile Price Extended Request to a cluster client, in order to request specific cost
information about a power profile supported by the server. The cost of executing a power profile can be
requested with either scheduled energy phases or contiguous energy phases (no gaps between them). This
request is handled by the client as described above for an ordinary Get Power Profile Price Request. However,
the response results in an E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED_RSP event on the
server, containing the requested price information (if available).

21.5.6.2 Requesting Cost of Power Profile Schedules Over a Day (by Server)

The server application can use the eCLD_PPGetOverallSchedulePriceSend() function to send a Get Overall
Schedule Price Request to the client, in order to obtain the overall cost of all the power profiles that will be
executed over the next 24 hours.

The client can only return the requested information if price-related information about the relevant power
profiles is held on the client device. If this is the case, an E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
293 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

PRICE event is generated on the client, with the bIsInfoAvailable field set to TRUE in the event structure
tsCLD_PPCallBackMessage. Otherwise, the client will generate a ZCL default response with status
NOT_FOUND.

On receiving a Get Overall Schedule Price Response on the server, the event E_CLD_PP_CMD_GET_
OVERALL_SCHEDULE_PRICE_RSP is generated, containing the requested price information (if available).

21.6 Power Profile Events
The Power Profile cluster has its own events that are handled through the callback mechanism described in
Chapter 3. The cluster contains its own event handler. However, if a device uses this cluster then application-
specific Power Profile event handling must be included in the user-defined callback function for the associated
endpoint, where this callback function is registered through the relevant endpoint registration function. This
callback function is then invoked when a Power Profile event occurs and needs the attention of the application.

For a Power Profile event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_PPCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
#ifdef PP_CLIENT
 bool bIsInfoAvailable;
#endif
 union
 {
 tsCLD_PP_PowerProfileReqPayload
 *psPowerProfileReqPayload;
 tsCLD_PP_GetPowerProfilePriceExtendedPayload
 *psGetPowerProfilePriceExtendedPayload;
 } uReqMessage;
 union
 {
 tsCLD_PP_GetPowerProfilePriceRspPayload
 *psGetPowerProfilePriceRspPayload;
 tsCLD_PP_GetOverallSchedulePriceRspPayload
 *psGetOverallSchedulePriceRspPayload;
 tsCLD_PP_EnergyPhasesSchedulePayload
 *psEnergyPhasesSchedulePayload;
 tsCLD_PP_PowerProfileScheduleConstraintsPayload
 *psPowerProfileScheduleConstraintsPayload;
 tsCLD_PP_PowerProfilePayload
 *psPowerProfilePayload;
 tsCLD_PP_PowerProfileStatePayload
 *psPowerProfileStatePayload;
 }uRespMessage;
} tsCLD_PPCallBackMessage;

The above structure is fully described in Section 21.10.1.

When a Power Profile event occurs, one of the command types listed in Table 30 and Table 31 is specified
through the u8CommandId field of the tsCLD_PPCallBackMessage structure. This command type
determines which command payload is used from the unions uReqMessage (for request commands) and
uRespMessage (for response and notification commands).

u8CommandId Enumeration Description/Payload Type

E_CLD_PP_CMD_POWER_PROFILE_
REQ

The server (appliance) receives a Power Profile Request. tsCLD_PP_Power
ProfileReqPayload

Table 40. Power Profile Command Types (Events on Server)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
294 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8CommandId Enumeration Description/Payload Type

E_CLD_PP_CMD_POWER_PROFILE_
STATE_REQ

The server (appliance) receives a Power Profile State Request.

E_CLD_PP_CMD_GET_POWER_
PROFILE_PRICE_RSP

The server (appliance) receives a Get Power Profile Price Response, following
a previously sent Get Power Profile Price Request. tsCLD_PP_GetPower
ProfilePriceRspPayload

E_CLD_PP_CMD_GET_POWER_
PROFILE_PRICE_EXTENDED_RSP

The server (appliance) receives a Get Power Profile Price Extended
Response, following a previously sent Get Power Profile Price Extended
Request.
tsCLD_PP_GetPowerProfilePriceRspPayload

E_CLD_PP_CMD_GET_OVERALL_
SCHEDULE_PRICE_RSP

The server (appliance) receives a Get Overall Schedule Price Response,
following a previously sent Get Overall Schedule Price Request.
tsCLD_PP_GetOverallSchedulePriceRspPayload

E_CLD_PP_CMD_ENERGY_PHASES_
SCHEDULE_NOTIFICATION

The server (appliance) receives an Energy Phases Schedule Notification.
tsCLD_PP_EnergyPhasesSchedulePayload

E_CLD_PP_CMD_ENERGY_PHASES_
SCHEDULE_RSP

The server (appliance) receives an Energy Phases Schedule Response,
following a previously sent Energy Phases Schedule Request.
tsCLD_PP_EnergyPhasesSchedulePayload

E_CLD_PP_CMD_ENERGY_PHASES_
SCHEDULE_STATE_RSP

The server (appliance) receives an Energy Phases Schedule State Response,
following a previously sent Energy Phases Schedule State Request.
tsCLD_PP_EnergyPhasesSchedulePayload

E_CLD_PP_CMD_GET_POWER_
PROFILE_SCHEDULE_CONSTRAINTS_
REQ

The server (appliance) receives a Get Power Profile Schedule Constraints
Request.
tsCLD_PP_PowerProfileReqPayload

E_CLD_PP_CMD_ENERGY_PHASES_
SCHEDULE_STATE_REQ

The server (appliance) receives an Energy Phases Schedule State Request.
tsCLD_PP_PowerProfileReqPayload

Table 40. Power Profile Command Types (Events on Server)...continued

u8CommandId Enumeration Description/Payload Type

E_CLD_PP_CMD_POWER_PROFILE_
NOTIFICATION

The client (controller) receives a Power Profile Notification.
tsCLD_PP_PowerProfilePayload

E_CLD_PP_CMD_POWER_PROFILE_
STATE_NOTIFICATION

The client (controller) receives a Power Profile State Notification.
tsCLD_PP_PowerProfileStatePayload

E_CLD_PP_CMD_POWER_PROFILE_
RSP

The client (controller) receives a Power Profile Response, following a
previously sent Power Pro-file Request.
tsCLD_PP_PowerProfilePayload

E_CLD_PP_CMD_POWER_PROFILE_
STATE_RSP

The client (controller) receives a Power Profile State Response, following a
previously sent Power Profile State Request.
tsCLD_PP_PowerProfileStatePayload

E_CLD_PP_CMD_GET_POWER_
PROFILE_PRICE

The client (controller) receives a Get Power Profile Price Request.
tsCLD_PP_PowerProfileReqPayload

E_CLD_PP_CMD_GET_OVERALL_
SCHEDULE_PRICE

The client (controller) receives a Get Overall Schedule Price Request.

Table 41. Power Profile Command Types (Events on Client)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
295 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8CommandId Enumeration Description/Payload Type

E_CLD_PP_CMD_ENERGY_PHASES_
SCHEDULE_REQ

The client (controller) receives an Energy Phases Schedule Request .
tsCLD_PP_PowerProfileReqPayload

E_CLD_PP_CMD_ENERGY_PHASES_
SCHEDULE_STATE_NOTIFICATION

The client (controller) receives an Energy Phases Schedule State Notification.
tsCLD_PP_EnergyPhasesSchedulePayload

E_CLD_PP_CMD_SCHEDULE_
CONSTRAINTS_NOTIFICATION

The client (controller) receives a Power Profile Schedule Constraints
Notification.
tsCLD_PP_PowerProfileScheduleConstraintsPayload

E_CLD_PP_CMD_GET_POWER_
PROFILE_SCHEDULE_CONSTRAINTS_
RSP

The client (controller) receives a Power Profile Schedule Constraints
Response.
tsCLD_PP_PowerProfileScheduleConstraintsPayload

E_CLD_PP_CMD_GET_POWER_
PROFILE_PRICE_EXTENDED

The client (controller) receives a Get Power Profile Price Extended Request.
tsCLD_PP_GetPowerProfilePriceExtendedPayload

Table 41. Power Profile Command Types (Events on Client)...continued

21.7 Functions
The Power Profile cluster functions are described in the following three sub-sections, according to the side(s) of
the cluster on which they can be used:

• Server/client functions are described in Section 21.7.1
• Server functions are described in Section 21.7.2
• Client functions are described in Section 21.7.3

21.7.1 Server/Client Function

The following Power Profile cluster function can be used on either a cluster server or cluster client:

eCLD_PPCreatePowerProfile

21.7.1.1 eCLD_PPCreatePowerProfile

teZCL_Status eCLD_PPCreatePowerProfile(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_PPCustomDataStructure *psCustomDataStructure);

Description

This function creates an instance of the Power Profile cluster on an endpoint. The cluster instance is created
on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a
server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard Zigbee device). This function creates a Power
Profile cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions. For more details of creating cluster instances on
custom endpoints, refer to Appendix D.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
296 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: This function must not be called for an endpoint on which a standard Zigbee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function from those described in the Zigbee Devices User Guide (JNUG3131).

When used, this function must be the first Power Profile cluster function called in the application, and must be
called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8PPAttributeControlBits[(sizeof(asCLD_PPClusterAttrDefs)/
 sizeof(tsZCL_AttributeDefinition))];
int8 au8PPAttributeControlBits[(sizeof(asCLD_PPClusterAttrDefs)/
 sizeof(tsZCL_AttributeDefinition))];

Parameters

psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.
bIsServer: Type of cluster instance (server or client) to be created:
TRUE - server
FALSE - client
psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this
case, this structure must contain the details of the Power Profile cluster. This parameter can refer to a pre-
filled structure called sCLD_PP which is provided in the PowerProfile.h file.
pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_PP, which defines the attributes of the Power Profile cluster.
The function initializes the attributes with default values.
pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above). For a cluster client, set this pointer to NULL.
psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see
Section 21.10.14)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

21.7.2 Server Functions

The following Power Profile cluster functions can be used on a cluster server only:

• eCLD_PPSchedule
• eCLD_PPSetPowerProfileState
• eCLD_PPAddPowerProfileEntry
• eCLD_PPRemovePowerProfileEntry
• eCLD_PPGetPowerProfileEntry
• eCLD_PPPowerProfileNotificationSend
• eCLD_PPEnergyPhaseScheduleStateNotificationSend

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
297 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• eCLD_PPPowerProfileScheduleConstraintsNotificationSend
• eCLD_PPEnergyPhasesScheduleReqSend
• eCLD_PPPowerProfileStateNotificationSend
• eCLD_PPGetPowerProfilePriceSend
• eCLD_PPGetPowerProfilePriceExtendedSend
• eCLD_PPGetOverallSchedulePriceSend

21.7.2.1 eCLD_PPSchedule

teZCL_Status eCLD_PPSchedule(void);

Description

This function can be used on a cluster server to update the state of the currently active power profile and the
timings required for scheduling. When called, the function automatically makes any required changes according
to the scheduled energy phases for the power profile. If no change is scheduled, the function only updates
timing information. If a change is required, it also updates the power profile state and the ID of the energy phase
currently being executed.

The function should be called once per second to progress the active power profile schedule and the application
should provide a 1-second timer to prompt these function calls.

Parameters

None

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

21.7.2.2 eCLD_PPSetPowerProfileState

teZCL_CommandStatus eCLD_PPSetPowerProfileState(
 uint8 u8SourceEndPointId,
 uint8 u8PowerProfileId,
 teCLD_PP_PowerProfileState sPowerProfileState);

Description

This function can be used on a cluster server to move the specified power profile to the specified target state.
Enumerations for the possible states are provided, and are listed and described in Section 21.9.2.

The function performs the following checks:

• Checks whether the specified Power Profile ID exists (if not, the function returns with the status
E_ZCL_CMDS_NOT_FOUND)

• Checks whether the specified target state is a valid state (if not, the function returns with the status
E_ZCL_CMDS_INVALID_VALUE)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
298 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• Checks whether the power profile is currently able move to the target state (if not, the function returns with the
status E_ZCL_CMDS_INVALID_FIELD)

Note: The power profile state can be changed by this function only if the move from the existing state to the
target state is a valid change.

If all the checks are successful, the move is implemented (and the function returns with the status
E_ZCL_CMD_SUCCESS).

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster resides
u8PowerProfileId : Identifier of the power profile
sPowerProfileState: Target state to which power profile is to be moved - enumerations are provided (see
Section 21.9.2)

Returns

E_ZCL_CMD_SUCCESS
E_ZCL_CMDS_NOT_FOUND
E_ZCL_CMDS_INVALID_VALUE
E_ZCL_CMDS_INVALID_FIELD

21.7.2.3 eCLD_PPAddPowerProfileEntry

teZCL_Status eCLD_PPAddPowerProfileEntry(
 uint8 u8SourceEndPointId,
 tsCLD_PPEntry *psPowerProfileEntry);

Description

This function can be used on a cluster server to introduce a new power profile by adding an entry to the local
power profile table.

The function checks whether there is sufficient space in the table for the new power profile entry (if not, the
function returns with the status E_ZCL_ERR_INSUFFICIENT_SPACE).

An existing power profile entry can be over-written with a new profile by specifying the same Power Profile ID (in
the new entry structure).

The function also updates two of the cluster attributes (if needed), as follows.

• If a power profile is introduced which has multiple energy phases (as indicated by the
u8NumOfScheduledEnergyPhases field of the tsCLD_PPEntry structure), the attribute
bMultipleScheduling is set to TRUE (if not already TRUE)

• If a power profile is introduced which allows remote control for energy management (as indicated by the
bPowerProfileRemoteControl field of the tsCLD_PPEntry structure), the attribute bEnergyRemote is
set to TRUE (if not already TRUE)

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster resides:
psPowerProfileEntry : Structure containing the power profile to add (see Section 21.10.2)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
299 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INSUFFICIENT_SPACE

21.7.2.4 eCLD_PPRemovePowerProfileEntry

teZCL_Status eCLD_PPRemovePowerProfileEntry(
 uint8 u8SourceEndPointId,
 uint8 u8PowerProfileId);

Description

This function can be used on a cluster server to remove a power profile by deleting the relevant entry in the
local power profile table.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster resides:
u8PowerProfileId : Identifier of power profile to be removed

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

21.7.2.5 eCLD_PPGetPowerProfileEntry

teZCL_Status eCLD_PPGetPowerProfileEntry(
 uint8 u8SourceEndPointId,
 uint8 u8PowerProfileId,
 tsCLD_PPEntry **ppsPowerProfileEntry);

Description

This function can be used on a cluster server to obtain an entry from the local power profile table. The required
entry is specified using the relevant Power Profile ID. The function obtains a pointer to the relevant entry, if it
exists - a pointer must be provided to a location to receive the pointer to the entry.

If no entry with the specified Power Profile ID is found, the function returns E_ZCL_ERR_INVALID_VALUE.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster resides
u8PowerProfileId: Identifier of power profile to be obtained
ppsPowerProfileEntry: Pointer to a location to receive a pointer to the required power profile table entry (see
Section 21.10.2)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
300 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_INVALID_VALUE

21.7.2.6 eCLD_PPPowerProfileNotificationSend

teZCL_Status eCLD_PPPowerProfileNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PP_PowerProfilePayload *psPayload);

Description

This function can be used on the cluster server to send a Power Profile Notification to a cluster client, in order to
inform the client about one power profile supported by the server. The notification contains essential information
about the power profile, including the energy phases supported by the profile (and certain details about them). If
the server supports multiple power profiles, the function must be called for each profile separately.

On receiving the notification on the client, the event E_CLD_PP_CMD_POWER_PROFILE_NOTIFICATION is
generated, containing the sent power profile information in a tsCLD_PP_PowerProfilePayload structure
(see Section 21.10.4).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster server resides
u8DestinationEndPointId : Number of remote endpoint on which cluster client resides
psDestinationAddress: Pointer to a structure containing the destination address of the client node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message
psPayload: Pointer to structure containing the payload for the request (see Section 21.10.4), including
essential information about the power profile

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.2.7 eCLD_PPEnergyPhaseScheduleStateNotificationSend

teZCL_Status eCLD_PPEnergyPhasesScheduleStateNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
301 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PP_EnergyPhasesSchedulePayload
 *psPayload);

Description

This function can be used on the cluster server to send an Energy Phases Schedule State Notification to a
cluster client, in order to inform the client of the energy phases that are in the schedule of a particular power
profile. The function is used to send an unsolicited command.

On receiving the notification on the client, the event E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_
STATE_NOTIFICATION is generated, containing the sent power profile information in a tsCLD_PP_Energy
PhasesSchedulePayload structure (see Section 21.10.6).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster server resides
u8DestinationEndPointId: Number of remote endpoint on which cluster client resides
psDestinationAddress: Pointer to a structure containing the destination address of the client node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message
psPayload: Pointer to structure containing the payload for the request (see Section 21.10.6), including the
identifier of the relevant power profile and the associated schedule of energy phases

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.2.8 eCLD_PPPowerProfileScheduleConstraintsNotificationSend

teZCL_Status eCLD_PPPowerProfileScheduleConstraintsNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PP_PowerProfileScheduleConstraintsPayload
 *psPayload);

Description

This function can be used on the cluster server to send a Power Profile Schedule Constraints Notification
to a cluster client, in order to inform the client of the schedule restrictions on a particular power profile. The
constraints are specified in a tsCLD_PP_PowerProfileScheduleConstraintsPayload structure (see
Section 21.10.7). They can subsequently be used by the client in calculating the schedule for the energy phases
of the power profile. The function is used to send an unsolicited command.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
302 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

On receiving the notification on the client, the event E_CLD_PP_CMD_SCHEDULE_CONSTRAINTS_NOTIF
ICATION is generated, containing the sent power profile constraint information in a tsCLD_PP_PowerProfile
ScheduleConstraintsPayload structure.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster server resides
u8DestinationEndPointId : Number of remote endpoint on which cluster client resides
psDestinationAddress: Pointer to a structure containing the destination address of the client node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message
psPayload: Pointer to structure containing the payload for the request (see Section 21.10.7), including the
identifier of the relevant power profile and the associated schedule constraints

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.2.9 eCLD_PPEnergyPhasesScheduleReqSend

teZCL_Status eCLD_PPEnergyPhasesScheduleReqSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PP_PowerProfileReqPayload *psPayload);

Description

This function can be used on the cluster server to send an Energy Phases Schedule Request to a cluster client,
in order to obtain the schedule of energy phases for a particular power profile.

The function is non-blocking and will return immediately. On successfully receiving an Energy Phases Schedule
Response from the client, an E_CLD_PP_CMD_ENERGY_PHASE_SCHEDULE_RSP event is generated on the
server, containing the requested schedule information in a tsCLD_PP_EnergyPhasesSchedulePayload
structure (see Section 21.10.6). For full details of handling an Energy Phases Schedule Request, refer to
Section 21.5.4.1.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster server resides:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
303 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8DestinationEndPointId: Number of remote endpoint on which cluster client resides
psDestinationAddress: Pointer to a structure containing the destination address of the client node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message
psPayload: Pointer to structure containing the payload for the request (see Section 21.10.3), including the
identifier of the relevant power profile

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.2.10 eCLD_PPPowerProfileStateNotificationSend

teZCL_Status eCLD_PPPowerProfileStateNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PP_PowerProfileStatePayload *psPayload);

Description

This function can be used on the cluster server to send a Power Profile State Notification to a cluster client, in
order to inform the client of the state of the power profile that is currently active on the server. The function is
used to send an unsolicited command.

On receiving the notification on the client, the event E_CLD_PP_CMD_POWER_PROFILE_
STATE_NOTIFICATION is generated, containing the sent power profile state information in a
tsCLD_PP_PowerProfileStatePayload structure (see Section 21.10.5).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster server resides
u8DestinationEndPointId: Number of remote endpoint on which cluster client resides
psDestinationAddress: Pointer to a structure containing the destination address of the client node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message
psPayload: Pointer to structure containing the payload for the command (see Section 21.10.5), including the
identifier and state of the relevant power profile

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
304 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.2.11 eCLD_PPGetPowerProfilePriceSend

teZCL_Status eCLD_PPGetPowerProfilePriceSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PP_PowerProfileReqPayload *psPayload);

Description

This function can be used on the cluster server to send a Get Power Profile Price Request to a cluster client,
in order to request the cost of executing the schedule of a particular power profile. Use of this function must be
enabled in the cluster compile-time options, as described in Section 21.11.

The function is non-blocking and will return immediately. On successfully receiving a Get Power Profile Price
Response from the client, an E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_RSP event is generated on
the server, containing the requested price information in a tsCLD_PP_GetPowerProfilePriceRspPayload
structure (see Section 21.10.9). For full details of handling a Get Power Profile Price Request, refer to Section
21.5.6.1.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster server resides
u8DestinationEndPointId Number of remote endpoint on which cluster client resides
psDestinationAddress Pointer to a structure containing the destination address of the client node
pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number
(TSN) of the message
psPayload Pointer to structure containing the payload for the request (see Section 21.10.5), including
the identifier of the relevant power profile

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.2.12 eCLD_PPGetPowerProfilePriceExtendedSend

teZCL_Status eCLD_PPGetPowerProfilePriceExtendedSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
305 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PP_GetPowerProfilePriceExtendedPayload
 *psPayload);

Description

This function can be used on the cluster server to send a Get Power Profile Price Extended Request to a cluster
client, in order to request specific cost information about a power profile supported by the server. The cost of
executing a power profile can be requested with either scheduled energy phases or contiguous energy phases
(no gaps between them). Use of this function must be enabled in the cluster compile-time options, as described
in Section 21.11.

The function is non-blocking and will return immediately. On successfully receiving a Get Power Profile Price
Extended Response from the client, an E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED_
RSP event is generated on the server, containing the requested price information in a tsCLD_PP_GetPower
ProfilePriceRspPayload structure (see Section 21.10.9). For full details of handling a Get Power Profile
Price Extended Request, refer to Section 21.5.6.1.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster server resides
u8DestinationEndPointId Number of remote endpoint on which cluster client resides
psDestinationAddress Pointer to a structure containing the destination address of the client node
pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number
(TSN) of the message
psPayload Pointer to structure containing the payload for the request (see Section 21.10.8), including
the type of price information required

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.2.13 eCLD_PPGetOverallSchedulePriceSend

teZCL_Status eCLD_PPGetOverallSchedulePriceSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
306 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on the cluster server to send a Get Overall Schedule Price Request to a cluster client,
in order to obtain the overall cost of all the power profiles that are executed over the next 24 hours. Use of this
function must be enabled in the cluster compile-time options, as described in Section 21.11.

The function is non-blocking and will return immediately. On successfully receiving a Get Overall Schedule Price
Response from the client, an E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE_RSP event is generated
on the server, containing the required price information in a tsCLD_PP_GetOverallSchedulePriceRspPa
yload structure (see Section 21.10.10). For full details of handling a Get Overall Schedule Price Request, refer
to Section 21.5.6.2.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster server resides
u8DestinationEndPointId: Number of remote endpoint on which cluster client resides
psDestinationAddress: Pointer to a structure containing the destination address of the client node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.3 Client Functions

The following Power Profile cluster functions can be used on a cluster client only:

• eCLD_PPPowerProfileRequestSend
• eCLD_PPEnergyPhasesScheduleNotificationSend
• eCLD_PPPowerProfileStateReqSend
• eCLD_PPEnergyPhasesScheduleStateReqSend
• eCLD_PPPowerProfileScheduleConstraintsReqSend

21.7.3.1 eCLD_PPPowerProfileRequestSend

teZCL_Status eCLD_PPPowerProfileRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PP_PowerProfileReqPayload *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
307 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on a cluster client to send a Power Profile Request to the cluster server, in order to
obtain one or more power profiles from the server. The function can be used to request a specific power profile
(specified using its identifier) or all the power profiles supported by the server (specified using an identifier of
zero).

The function is non-blocking and will return immediately. On receiving the server’s response, an
E_CLD_PP_CMD_POWER_PROFILE_RSP event is generated on the client, containing a power profile in a
tsCLD_PP_PowerProfilePayload structure (see Section 21.10.4).

When a particular Power Profile ID is specified but:

• The Power Profile ID is not in the valid range, the server will send a default response of INVALID_VALUE.
• The Power Profile ID is in the valid range but no data corresponding to this ID is available, the server will

respond with a default response of NOT_FOUND.

When all power profiles on the server are requested, a response is received for each profile separately and,
therefore, the above event is generated for each profile reported.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster client resides:
u8DestinationEndPointId : Number of remote endpoint on which cluster server resides
psDestinationAddress: Pointer to a structure containing the destination address of the server node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message
psPayload: Pointer to structure containing the payload for the request (see Section 21.10.3), including the
identifier of the required power profile

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.3.2 eCLD_PPEnergyPhasesScheduleNotificationSend

teZCL_Status eCLD_PPEnergyPhasesScheduleNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PP_EnergyPhasesSchedulePayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
308 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on a cluster client to send an Energy Phases Schedule Notification to the cluster
server, in order to start the schedule of energy phases of a power profile on the server. The function is used to
send an unsolicited command and should only be called if the server allows itself to be remotely controlled. The
command payload specifies the identifiers of the required energy phases and includes the relative start-times of
the phases (see Section 21.10.12).

On receiving the notification on the server, the event E_CLD_PP_CMD_ENERGY_PHASE_SCHEDULE_NOT
IFICATION is generated, containing the sent energy phase schedule information in a tsCLD_PP_Energy
PhasesSchedulePayload structure (see Section 21.10.6). The subsequent handling of this notification is
detailed in Section 21.5.4.2.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster client resides:
u8DestinationEndPointId : Number of remote endpoint on which cluster server resides
psDestinationAddress: Pointer to a structure containing the destination address of the server node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message
psPayload: Pointer to structure containing the payload for the command (see Section 21.10.6), including the
scheduled energy phases and start-times

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.3.3 eCLD_PPPowerProfileStateReqSend

teZCL_Status eCLD_PPPowerProfileStateReqSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on a cluster client to send a Power Profile State Request to the cluster server, in
order to obtain the identifier(s) of the power profile(s) currently supported on the server.

The function is non-blocking and returns immediately. On receiving the server’s response, an E_CLD_PP_
CMD_POWER_PROFILE_STATE_RSP event is generated on the client, containing the required identifier(s).
The response contains the power profile records of all the supported power profiles on the server in a
tsCLD_PP_PowerProfileStatePayload structure (see Section 21.10.5).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
309 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster client resides:
u8DestinationEndPointId : Number of remote endpoint on which cluster server resides
psDestinationAddress: Pointer to a structure containing the destination address of the server node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.3.4 eCLD_PPEnergyPhasesScheduleStateReqSend

teZCL_Status eCLD_PPEnergyPhasesScheduleStateReqSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_PowerProfileReqPayload *psPayload);

Description

This function can be used on a cluster client to send an Energy Phases Schedule State Request to the cluster
server, in order to obtain the schedule of energy phases for a particular power profile on the server. The
obtained schedule can be used to re-align the schedule information on the client with the information on the
server - for example, after a reset of the client device.

The function is non-blocking and returns immediately. On receiving the server’s response, an E_CLD_
PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_RSP event is generated on the client, containing the
requested schedule information in a tsCLD_PP_EnergyPhasesSchedulePayload structure (see Section
21.10.6).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster client resides
u8DestinationEndPointId : Number of remote endpoint on which cluster server resides
psDestinationAddress: Pointer to a structure containing the destination address of the server node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
310 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

psPayload: Pointer to structure containing the payload for the request (see Section 21.10.3), including the
identifier of the relevant power profile

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

21.7.3.5 eCLD_PPPowerProfileScheduleConstraintsReqSend

teZCL_Status eCLD_PPPowerProfileScheduleConstraintsReqSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_PP_PowerProfileReqPayload *psPayload);

Description

This function can be used on a cluster client to send a Power Profile Schedule Constraints Request to the
cluster server, in order to obtain the schedule restrictions on a particular power profile on the server. The
obtained constraints can subsequently be used in calculating a schedule of energy phases for the power profile
(e.g. before calling eCLD_PPEnergyPhasesScheduleNotificationSend()).

The function is non-blocking and will return immediately. The server will send a response to this request and
on receiving this response, an E_CLD_PP_CMD_GET_POWER_PROFILE_SCHEDULE_CONSTRAINTS_
RSP event is generated on the client, containing the requested schedule constraints in a tsCLD_PP_Power
ProfileScheduleConstraintsPayload structure (see Section 21.10.7).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId: Number of local endpoint on which cluster client resides
u8DestinationEndPointId : Number of remote endpoint on which cluster server resides
psDestinationAddress: Pointer to a structure containing the destination address of the server node
pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN)
of the message
psPayload: Pointer to structure containing the payload for the request (see Section 21.10.3), including the
identifier of the relevant power profile

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_ZBUFFER_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
311 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

E_ZCL_ERR_ZTRANSMIT_FAIL

21.8 Return codes
The Power Profile cluster functions use the ZCL return codes, listed in Section 7.2.

21.9 Enumerations

21.9.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the Power Profile cluster.

typedef enum PACK
{
 E_CLD_PP_ATTR_ID_TOTAL_PROFILE_NUM = 0x0000,
 E_CLD_PP_ATTR_ID_MULTIPLE_SCHEDULE,
 E_CLD_PP_ATTR_ID_ENERGY_FORMATTING,
 E_CLD_PP_ATTR_ID_ENERGY_REMOTE,
 E_CLD_PP_ATTR_ID_SCHEDULE_MODE
} teCLD_PP_Cluster_AttrID;

21.9.2 ‘Power Profile State’ Enumerations

The following enumerations represent the possible states of a power profile.

typedef enum PACK
{
 E_CLD_PP_STATE_IDLE = 0x00,
 E_CLD_PP_STATE_PROGRAMMED,
 E_CLD_PP_STATE_RUNNING = 0x02,
 E_CLD_PP_STATE_PAUSED,
 E_CLD_PP_STATE_WAITING_TO_START,
 E_CLD_PP_STATE_WAITING_PAUSED,
 E_CLD_PP_STATE_ENDED,
} teCLD_PP_PowerProfileState;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_PP_STATE_IDLE Not all parameters of the power profile have yet been defined

E_CLD_PP_STATE_
PROGRAMMED

In the programmed state, as all the parameters of the power pro-file have been defined but
there is no schedule or a schedule exists but has not been started

E_CLD_PP_STATE_
RUNNING

The power profile is active and an energy phase is running

E_CLD_PP_STATE_PAUSED The power profile is active but the current energy phase is paused

E_CLD_PP_STATE_
WAITING_TO_START

The power profile is between two energy phases - one has ended and the next one has
not yet started. If the next energy phase is the first energy phase of the schedule, this state
indicates that schedule has been started but the first energy has not yet started

E_CLD_PP_STATE_
WAITING_PAUSED

The power profile has been paused while in the ‘waiting to start’ state (described above)

E_CLD_PP_STATE_ENDED The power profile schedule has finished

Table 42. ‘Power Profile State’ Enumerations

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
312 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

21.9.3 ‘Server-Generated Command’ Enumerations

The following enumerations represent the commands that can be generated by the cluster server.

typedef enum PACK
{
 E_CLD_PP_CMD_POWER_PROFILE_NOTIFICATION = 0x00,
 E_CLD_PP_CMD_POWER_PROFILE_RSP,
 E_CLD_PP_CMD_POWER_PROFILE_STATE_RSP,
 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE,
 E_CLD_PP_CMD_POWER_PROFILE_STATE_NOTIFICATION,
 E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE,
 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_REQ,
 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_RSP,
 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_NOTIFICATION,
 E_CLD_PP_CMD_GET_POWER_PROFILE_SCHEDULE_CONSTRAINTS_NOTIFICATION,
 E_CLD_PP_CMD_GET_POWER_PROFILE_SCHEDULE_CONSTRAINTS_RSP,
 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED
 } teCLD_PP_ServerGeneratedCommandID;

The above enumerations are used to indicate types of Power Profile cluster events and are described in Section
21.6.

21.9.4 ‘Server-Received Command’ Enumerations

The following enumerations represent the commands that can be received by the cluster server (and are
therefore generated on the cluster client).

typedef enum PACK
{
 E_CLD_PP_CMD_POWER_PROFILE_REQ = 0x00,
 E_CLD_PP_CMD_POWER_PROFILE_STATE_REQ,
 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_RSP,
 E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE_RSP,
 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_NOTIFICATION,
 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_RSP,
 E_CLD_PP_CMD_POWER_PROFILE_SCHEDULE_CONSTRAINTS_REQ,
 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_REQ,
 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED_RSP
 } teCLD_PP_ServerReceivedCommandID;

The above enumerations are used to indicate types of Power Profile cluster events and are described in Section
21.6.

21.10 Structures

21.10.1 tsCLD_PPCallBackMessage

For a Power Profile event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_PPCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
#ifdef PP_CLIENT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
313 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 bool bIsInfoAvailable;
#endif
union
{
 tsCLD_PP_PowerProfileReqPayload *psPowerProfileReqPayload;
 tsCLD_PP_GetPowerProfilePriceExtendedPayload
 *psGetPowerProfilePriceExtendedPayload;
} uReqMessage;
union
{ tsCLD_PP_GetPowerProfilePriceRspPayload *psGetPowerProfilePriceRspPayload;
 tsCLD_PP_GetOverallSchedulePriceRspPayload
 *psGetOverallSchedulePriceRspPayload;
 tsCLD_PP_EnergyPhasesSchedulePayload *psEnergyPhasesSchedulePayload;
 tsCLD_PP_PowerProfileScheduleConstraintsPayload
 *psPowerProfileScheduleConstraintsPayload;
 tsCLD_PP_PowerProfilePayload *psPowerProfilePayload;
 tsCLD_PP_PowerProfileStatePayload *psPowerProfileStatePayload;
}uRespMessage;
} tsCLD_PPCallBackMessage;

where:

• u8CommandId indicates the type of Power Profile command that has been received, one of:
– E_CLD_PP_CMD_POWER_PROFILE_REQ
– E_CLD_PP_CMD_ POWER_PROFILE_STATE_REQ
– E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_RSP
– E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED_RSP
– E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE_RSP
– E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_NOTIFICATION
– E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_RSP
– E_CLD_PP_CMD_GET_POWER_PROFILE_SCHEDULE_CONSTRAINTS_REQ
– E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_REQ
– E_CLD_PP_CMD_POWER_PROFILE_NOTIFICATION
– E_CLD_PP_CMD_POWER_PROFILE_RSP
– E_CLD_PP_CMD_POWER_PROFILE_STATE_RSP
– E_CLD_PP_CMD_POWER_PROFILE_STATE_NOTIFICATION
– E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE
– E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE
– E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_REQ
– E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_RSP
– E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_NOTIFICATION
– E_CLD_PP_CMD_SCHEDULE_CONSTRAINTS_NOTIFICATION
– E_CLD_PP_CMD_GET_POWER_PROFILE_SCHEDULE_CONSTRAINTS_RSP
– E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED

• bIsInfoAvailable is a client-only boolean field which indicates whether the appropriate type of information
(to which the event relates) is held on the client:
TRUE if the information type is held on the client, FALSE otherwise

• uReqMessage is a union containing the command payload for a request, as one of (depending on the value
of u8CommandId):
– psPowerProfileReqPayload is a pointer to the payload of a Power Profile Request, a Get Power Profile

Schedule Constraints Request, an Energy Phases Schedule Request, an Energy Phases Schedule State
Request or a Get Power Profile Price Request (see Section 21.10.5).

– psGetPowerProfilePriceExtendedPayload is a pointer to the payload of a Get Power Profile Price
Extended Request (see Section 21.10.8).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
314 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• uRespMessage is a union containing the command payload for a response or notification, as one of
(depending on the value of u8CommandId):
– psGetPowerProfilePriceRspPayload is a pointer to the payload of a Get Power Profile Price

Response or a Get Power Profile Price Extended Response (see Section 21.10.9)
– psGetOverallSchedulePriceRspPayload is a pointer to the payload of a Get Overall Schedule Price

Response (seeSection 21.10.10).
– psEnergyPhasesSchedulePayload is a pointer to the payload of an Energy Phases Schedule

Response, an Energy Phases Schedule State Response, an Energy Phases Schedule Notification or an
Energy Phases Schedule State Notification (see Section 21.6).

– psPowerProfileScheduleConstraintsPayload is a pointer to the payload of a Power Profile
Schedule Constraints Response or a Power Profile Schedule Constraints Notification (see Section
21.10.10).

– psPowerProfilePayload is a pointer to the payload of a Power Profile Response or a Power Profile
Notification (see Section 21.10.4).

– psPowerProfileStatePayload is a pointer to the payload of a Power Profile State Response or a
Power Profile State Notification (see Section 21.10.5).

Note: The command payload for each command type is indicated in Table 30 and Table 31 in Section 21.6.

21.10.2 tsCLD_PPEntry

This structure contains the data for a power profile table entry.

typedef struct
{
 zuint8 u8PowerProfileId;
 zuint8 u8NumOfTransferredEnergyPhases;
 zuint8 u8NumOfScheduledEnergyPhases;
 zuint8 u8ActiveEnergyPhaseId;
 tsCLD_PP_EnergyPhaseDelay
 asEnergyPhaseDelay[CLD_PP_NUM_OF_ENERGY_PHASES];
 tsCLD_PP_EnergyPhaseInfo
 asEnergyPhaseInfo[CLD_PP_NUM_OF_ENERGY_PHASES];
 zbool bPowerProfileRemoteControl;
 zenum8 u8PowerProfileState;
 zuint16 u16StartAfter;
 zuint16 u16StopBefore;
} tsCLD_PPEntry;

where:

• u8PowerProfileId is the identifier of the power profile in the range 1 to 255 (0 is reserved)
• u8NumOfTransferredEnergyPhases is the number of energy phases supported within the power profile
• u8NumOfScheduledEnergyPhases is the number of energy phases actually scheduled within the power

profile (must be less than or equal to the value of u8NumOfTransferredEnergyPhases)
• u8ActiveEnergyPhaseId is the identifier of the energy phase that is currently active or will be active next

(if currently between energy phases)
• asEnergyPhaseDelay[] is an array containing timing information on the scheduled energy phases, where

each array element corresponds to one energy phase of the schedule (see Section 21.10.12)
• asEnergyPhaseInfo[] is an array containing various information on the supported energy phases, where

each array element corresponds to one energy phase of the profile (see Section 21.10.11)
• bPowerProfileRemoteControl is a boolean indicating whether the power profile can be remotely

controlled: TRUE if it can be remotely controlled, FALSE otherwise (this property directly affects the attribute
bEnergyRemote)

• u8PowerProfileState is a value indicating the current state of the power profile (enumerations are
provided - see Section 21.9.2)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
315 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16StartAfter is the minimum time-delay, in minutes, to be implemented between an instruction to start
the power profile schedule and actually starting the schedule

• u16StopBefore is the maximum time-delay, in minutes, to be implemented between an instruction to stop
the power profile schedule and actually stopping the schedule

21.10.3 tsCLD_PP_PowerProfileReqPayload

This structure contains the payload of various power profile requests.

typedef struct
{
 zuint8 u8PowerProfileId;
}tsCLD_PP_PowerProfileReqPayload;

where u8PowerProfileId is the identifier of the power profile of interest.

21.10.4 tsCLD_PP_PowerProfilePayload

This structure contains the payload of a Power Profile Response or of a Power Profile Notification, which reports
the details of a power profile.

typedef struct
{
 zuint8 u8TotalProfileNum;
 zuint8 u8PowerProfileId;
 zuint8 u8NumOfTransferredPhases;
 tsCLD_PP_EnergyPhaseInfo *psEnergyPhaseInfo;
}tsCLD_PP_PowerProfilePayload;

where:

• u8TotalProfileNum is the total number of power profiles supported on the originating device
• u8PowerProfileId is the identifier of the power profile being reported
• u8NumOfTransferredPhases is the number of energy phases supported within the power profile
• psEnergyPhaseInfo is a pointer to a structure or an array of structures (see Section 21.10.11) containing

information on the supported energy phases, where each array element corresponds to one energy phase of
the profile

21.10.5 tsCLD_PP_PowerProfileStatePayload

This structure contains the payload of a Power Profile State Response or of a Power Profile State Notification.

typedef struct
{
 zuint8 u8PowerProfileCount;
 tsCLD_PP_PowerProfileRecord *psPowerProfileRecord;
}tsCLD_PP_PowerProfileStatePayload;

where:

• u8PowerProfileCount is the number of power profiles in the payload
• psPowerProfileRecord is a pointer to one or more power profile records (see Section 21.10.13):

– For a Power Profile State Notification, it is a pointer to the power profile record of the currently active power
profile on the server

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
316 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– For a Power Profile State Response, it is a pointer to an array of power profile records for all the supported
power profiles on the server

21.10.6 tsCLD_PP_EnergyPhasesSchedulePayload

This structure contains the payload of an Energy Phases Schedule Response, of an Energy Phases Schedule
State Response or of an Energy Phases Schedule State Notification.

typedef struct
{
 zuint8 u8PowerProfileId;
 zuint8 u8NumOfScheduledPhases;
 tsCLD_PP_EnergyPhaseDelay
 *psEnergyPhaseDelay;
}tsCLD_PP_EnergyPhasesSchedulePayload;

where:

• u8PowerProfileId is the identifier of the power profile being reported
• u8NumOfScheduledPhases is the number of energy phases within the power profile schedule
• psEnergyPhaseDelay is a pointer to an array containing timing information on the scheduled energy

phases, where each array element corresponds to one energy phase of the schedule (see Section 21.10.12)

21.10.7 tsCLD_PP_PowerProfileScheduleConstraintsPayload

This structure contains the payload of a Power Profile Schedule Constraints Response or of a Power Profile
Schedule Constraints Notification, which reports the schedule restrictions on a particular power profile.

typedef struct
{
 zuint8 u8PowerProfileId;
 zuint16 u16StartAfter;
 zuint16 u16StopBefore;
} tsCLD_PP_PowerProfileScheduleConstraintsPayload;

where:

• u8PowerProfileId is the identifier of the power profile being reported
• u16StartAfter is the minimum time-delay, in minutes, to be implemented between an instruction to start

the power profile schedule and actually starting the schedule
• u16StopBefore is the maximum time-delay, in minutes, to be implemented between an instruction to stop

the power profile schedule and actually stopping the schedule

21.10.8 tsCLD_PP_GetPowerProfilePriceExtendedPayload

This structure contains the payload of a Get Power Profile Price Extended Request, which requests certain
price information relating to a particular power profile.

typedef struct
{
 zbmap8 u8Options;
 zuint8 u8PowerProfileId;
 zuint16 u16PowerProfileStartTime;
}tsCLD_PP_GetPowerProfilePriceExtendedPayload;

where:
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
317 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8Options is a bitmap indicating the type of request:
– If bit 0 is set to ‘1’ then the u16PowerProfileStartTime field is used, otherwise it is ignored
– If bit 1 is set to ‘0’ then an estimated price is required for contiguous energy phases (with no gaps between

them); if bit 1 is set ‘1’ then an estimated price is required for the energy phases as scheduled (with any
scheduled gaps between them)

• u8PowerProfileId is the identifier of the power profile
• u16PowerProfileStartTime is an optional value (see u8Options above) which indicates the required

start-time for execution of the power profile, in minutes, as measured from the current time

21.10.9 tsCLD_PP_GetPowerProfilePriceRspPayload

This structure contains the payload of a Get Power Profile Price Response, which is returned in reply to a Get
Power Profile Price Request and a Get Power Profile Price Extended Request.

typedef struct
{
 zuint8 u8PowerProfileId;
 zuint16 u16Currency;
 zuint32 u32Price;
 zuint8 u8PriceTrailingDigits;
}tsCLD_PP_GetPowerProfilePriceRspPayload;

where:

• u8PowerProfileId is the identifier of the power profile
• u16Currency is a value representing the currency in which the price is quoted
• u32Price is the price as an integer value (without a decimal point)
• u8PriceTrailingDigits specifies the position of the decimal point in the price u32Price, by indicating

the number of digits after the decimal point

21.10.10 tsCLD_PP_GetOverallSchedulePriceRspPayload

This structure contains the payload of a Energy Phases Schedule Response, which contains the overall cost of
all the power profiles that will be executed over the next 24 hours.

typedef struct
{
 zuint16 u16Currency;
 zuint32 u32Price;
 zuint8 u8PriceTrailingDigits;
}tsCLD_PP_GetOverallSchedulePriceRspPayload;

where:

• u16Currency is a value representing the currency in which the price is quoted
• u32Price represents the price as an integer value (without a decimal point)
• u8PriceTrailingDigits specifies the position of the decimal point in the price u32Price, by indicating

the number of digits after the decimal point

21.10.11 tsCLD_PP_EnergyPhaseInfo

This structure contains various pieces of information about a specific energy phase of a power profile.

typedef struct
{

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
318 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zuint8 u8EnergyPhaseId;
 zuint8 u8MacroPhaseId;
 zuint16 u16ExpectedDuration;
 zuint16 u16PeakPower;
 zuint16 u16Energy;
 zuint16 u16MaxActivationDelay;
}tsCLD_PP_EnergyPhaseInfo;

where:

• u8EnergyPhaseId is the identifier of the energy phase
• u8MacroPhaseId is a value that may be used to obtain a name/label for the energy phase for display

purposes - for example, it may be the index of an entry in a table of ASCII strings
• u16ExpectedDuration is the expected duration of the energy phase, in minutes
• u16PeakPower is the estimated peak power of the energy phase, in Watts
• u16Energy is the estimated total energy consumption, in Joules, during the energy phase (≤ u16PeakPower

x u16ExpectedDuration x 60)
• u16MaxActivationDelay is the maximum delay, in minutes, between the end of the previous energy

phase and the start of this energy phase - special values are as follows: 0x0000 if no delay possible, 0xFFFF
if first energy phase

Note: If u16MaxActivationDelay is non-zero, a delayed start-time for the energy phase can be set through
the structure tsCLD_PP_EnergyPhaseDelay (see Section 21.10.12).

21.10.12 tsCLD_PP_EnergyPhaseDelay

This structure contains the start-time for a particular energy phase of a power profile.

typedef struct
{
 zuint8 u8EnergyPhaseId;
 zuint16 u16ScheduleTime;
}tsCLD_PP_EnergyPhaseDelay;

where:

• u8EnergyPhaseId is the identifier of the energy phase
• u16ScheduleTime is the start-time of the energy phase expressed as a delay, in minutes, from the end of

the previous energy phase (for the first energy phase of a power profile schedule, this delay is measured from
the start of the schedule)

Note: A delayed start-time for the energy phase can only be set through this structure if the field
u16MaxActivationDelay of the structure tsCLD_PP_EnergyPhaseInfo for this energy phase is non-zero
(see Section 21.10.11).

21.10.13 tsCLD_PP_PowerProfiIeRecord

This structure contains information about the current state of a power profile.

typedef struct
{
 zuint8 u8PowerProfileId;
 zuint8 u8EnergyPhaseId;
 zbool bPowerProfileRemoteControl;
 zenum8 u8PowerProfileState;
} tsCLD_PP_PowerProfileRecord;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
319 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where:

• u8PowerProfileId is the identifier of the power profile
• u8EnergyPhaseId is the identifier of the currently running energy phase or, if currently between energy

phases, the next energy phase to be run
• bPowerProfileRemoteControl is a boolean indicating whether the power profile can be remotely

controlled (from a client device): TRUE if it can be remotely controlled, FALSE otherwise
• u8PowerProfileState is an enumeration indicating the current state of the power profile (see Section

21.9.2)

21.10.14 tsCLD_PPCustomDataStructure

The Power Profile cluster requires extra storage space to be allocated to be used by internal functions. The
structure definition for this storage is shown below:

typedef struct
{
#ifdef (CLD_PP) && (PP_SERVER)
 bool bOverrideRunning;
 uint8 u8ActSchPhaseIndex;
 tsCLD_PPEntryasPowerProfileEntry[CLD_PP_NUM_OF_POWER_PROFILES];
#endif
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_PPCallBackMessage sCallBackMessage;
} tsCLD_PPCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

21.11 Compile-time Options
This section describes the compile-time options that may be configured in the zcl_options.h file of an
application that uses the Power Profile cluster.

To enable the Power Profile cluster in the code to be built, it is necessary to add the following line to the file:

#define CLD_PP

In addition, to enable the cluster as a client or server, it is also necessary to add one of the following lines to the
same file:

#define PP_SERVER
#define PP_CLIENT

The following options can also be configured at compile-time in the zcl_options.h file.

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_PP_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_PP_CLUSTER_REVISION <n>

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
320 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

Enabling ‘Get Power Profile Price’ Command

The optional ‘Get Power Profile Price’ command can be enabled by adding:

#define CLD_PP_CMD_GET_POWER_PROFILE_PRICE

Enabling ‘Get Power Profile Price Extended’ Command

The optional ‘Get Power Profile Price Extended’ command can be enabled by adding:

#define CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED

Enable ‘Get Overall Schedule Price’ Command

The optional ‘Get Overall Schedule Price’ command can be enabled by adding:

#define CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE

Number of Power Profiles

The number of power profiles on the local device can be defined as n by adding:

#define CLD_PP_NUM_OF_PROFILES n

Maximum Number of Energy Phases

The maximum number of energy phases in a power profile can be defined as n by adding:

#define CLD_PP_NUM_OF_ENERGY_PHASES n

By default, this value is 3.

Disabling APS Acknowledgments for Bound Transmissions

APS acknowledgements for bound transmissions from this cluster can be disabled by adding:

#define CLD_PP_BOUND_TX_WITH_APS_ACK_DISABLED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
321 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

22 Diagnostics Cluster

This chapter describes the Diagnostics cluster.

The Diagnostics cluster has a Cluster ID of 0x0B05.

22.1 Overview
The Diagnostics cluster allows the operation of the ZigBee PRO stack to be followed over time. It provides a
tool for monitoring the performance of individual network nodes, including the routing of packets through these
nodes.

Note: It is strongly recommended that Diagnostics cluster server attributes are stored in persistent memory to
allow performance data to be preserved through a device reset or power interruption.

To use the functionality of this cluster, you must include the file Diagnostics.h in your application and enable
the cluster by defining CLD_DIAGNOSTICS in the zcl_options.h file.

A Diagnostics cluster instance can act as a client or a server. The inclusion of the client or server software
must be pre-defined in the application’s compile-time options (in addition, if the cluster is to reside on a custom
endpoint then the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Diagnostics cluster are fully detailed in Section 22.5.

The information that can potentially be stored in this cluster is organized into the following attribute sets:

• Hardware information
• Stack/Network information

Currently, only three attributes from the Stack/Network Information attribute set are supported (see Section
22.2).

This cluster has no associated events. However, reads and writes of the cluster attributes may give rise to ZCL
events (the application is responsible for checking that a written value is within the valid range for the target
attribute).

22.2 Diagnostics Structure and Attributes
The structure definition for the Diagnostics cluster is:

typedef struct
{
#ifdef DIAGNOSTICS_SERVER
 /* Hardware Information attribute set */
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NUMBER_OF_RESETS
 uint16 u16NumberOfResets;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_PERSISTENT_MEMORY_WRITES
 uint16 u16PersistentMemoryWrites;
 #endif
 /* Stack/Network Information attribute set */
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_RX_BCAST
 uint32 u32MacRxBcast;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_BCAST
 uint32 u32MacTxBcast;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_RX_UCAST
 uint32 u32MacRxUcast;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
322 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint32 u32MacTxUcast;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST_RETRY
 uint16 u16MacTxUcastRetry;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST_FAIL
 uint16 u16MacTxUcastFail;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_RX_BCAST
 uint16 u16ApsRxBcast;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_TX_BCAST
 uint16 u16ApsTxBcast;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_RX_UCAST
 uint16 u16ApsRxUcast;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_SUCCESS
 uint16 u16ApsTxUcastSuccess;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_RETRY
 uint16 u16ApsTxUcastRetry;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_FAIL
 uint16 u16ApsTxUcastFail;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_ROUTE_DISC_INITIATED
 uint16 u16RouteDiscInitiated;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_ADDED
 uint16 u16NeighborAdded;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_REMOVED
 uint16 u16NeighborRemoved;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_STALE
 uint16 u16NeighborStale;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_JOIN_INDICATION
 uint16 u16JoinIndication;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_CHILD_MOVED
 uint16 u16ChildMoved;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NWK_FC_FAILURE
 uint16 u16NWKFCFailure;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_FC_FAILURE
 uint16 u16APSFCFailure;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_UNAUTHORIZED_KEY
 uint16 u16APSUnauthorizedKey;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NWK_DECRYPT_FAILURE
 uint16 u16NWKDecryptFailure;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_DECRYPT_FAILURE
 uint16 u16APSDecryptFailure;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_PACKET_BUFFER_ALLOCATE_FAILURE
 uint16 u16PacketBufferAllocateFailure;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_RELAYED_UCAST
 uint16 u16RelayedUcast;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_PHY_TO_MAC_QUEUE_LIMIT_REACHED
 uint16 u16PhyToMACQueueLimitReached;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
323 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_PACKET_VALIDATE_DROP_COUNT
 uint16 u16PacketValidateDropCount;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_AVERAGE_MAC_RETRY_PER_APS_MESSAGE_SENT
 uint16 u16AverageMACRetryPerAPSMessageSent;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_LQI
 uint8 u8LastMessageLQI;
 #endif
 #ifdef CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_RSSI
 int8 i8LastMessageRSSI;
 #endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_Diagnostics;

where:

‘Hardware Information’ Attribute Set

The following two attributes can be maintained by the application using the Attribute Access functions detailed
in Section 5.2.

• u16NumberOfResets is an optional attribute which acts as a counter of device resets/restarts (note that a
factory reset clears this attribute) - thus, the attribute value must be incremented on each restart.

• u16PersistentMemoryWrites is an optional attribute which acts as a counter of the number of writes to
persistent memory - thus, the attribute value must be incremented on each write.

‘Stack/Network Information’ Attribute Set

The following attributes must be updated by the application by calling the function eCLD_DiagnosticsUpdate()
(see Section 22.3) either periodically (at the highest rate possible) or on receiving an appropriate event from the
stack.

u32MacRxBcast is reserved for future use
u32MacTxBcast is reserved for future use
u32MacRxUcast is reserved for future use
u32MacTxUcast is reserved for future use
u16MacTxUcastRetry is reserved for future use
u16MacTxUcastFail is reserved for future use
u16ApsRxBcast is reserved for future use
u16ApsTxBcast is reserved for future use
u16ApsRxUcast is reserved for future use
u16ApsTxUcastSuccess is reserved for future use
u16ApsTxUcastRetry is reserved for future use
u16ApsTxUcastFail is reserved for future use
u16RouteDiscInitiated is reserved for future use
u16NeighborAdded is reserved for future use
u16NeighborRemoved is reserved for future use
u16NeighborStale is reserved for future use
u16JoinIndication is reserved for future use
u16ChildMoved is reserved for future use
u16NWKFCFailure is reserved for future use
u16APSFCFailure is reserved for future use
u16APSUnauthorizedKey is reserved for future use
u16NWKDecryptFailure is reserved for future use
u16APSDecryptFailure is reserved for future use
u16PacketBufferAllocateFailure is reserved for future use
u16RelayedUcast is reserved for future use
u16PhyToMACQueueLimitReached is reserved for future use
u16PacketValidateDropCount is reserved for future use

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
324 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16AverageMACRetryPerAPSMessageSent is an optional attribute which is used to maintain a record of
the average number of IEEE802.15.4 MAC-level retries needed to send a message from the APS layer of the
stack.

• u8LastMessageLQI is an optional attribute containing the LQI (Link Quality Indicator) value for the last
message received, as a value in the range 0 to 255 where 0 indicates the worst link quality and 255 indicates
the best link quality.

• i8LastMessageRSSI is an optional attribute containing the RSSI (Receive Signal Strength Indication) value
of the last message received.

Note: If the value of u8LastMessageLQI or i8LastMessageRSSI is read remotely, the returned value will
relate to the received message that contained the instruction to read the attribute.

Global Attributes

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

22.3 Functions
The following Diagnostics cluster functions are provided:

• eCLD_DiagnosticsCreateDiagnostics
• eCLD_DiagnosticsUpdate

The cluster attributes can also all be accessed using the general attribute read/write functions, as described in
Section 2.3.

22.3.1 eCLD_DiagnosticsCreateDiagnostics

teZCL_Status eCLD_DiagnosticsCreateDiagnostics(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Diagnostics cluster on an endpoint. The cluster instance is created
on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a
server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected
clusters (rather than the whole set of clusters supported by a standard ZigBee device). This function creates a
Diagnostics cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
325 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this
case, this structure must contain the details of the Diagnostics cluster. This parameter can refer to a pre-filled
structure called sCLD_Diagnostics which is provided in the Diagnostics.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_Diagnostics which defines the attributes of Diagnostics
cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

22.3.2 eCLD_DiagnosticsUpdate

teZCL_Status eCLD_DiagnosticsUpdate(
 uint8 u8SourceEndPointId);

Description

This function updates the (three) Stack/Network Information attributes (see Section 22.2). It should be called
periodically by the application (on the cluster server) at the highest rate possible or when an appropriate stack
event occurs.

The attributes can otherwise be accessed (for example, read) using the Attribute Access functions detailed in
Section 5.2.

Parameters

• u8SourceEndPointId: Number of the local endpoint on which cluster server resides

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
326 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

22.4 Enumerations

22.4.1 teCLD_Diagnostics_AttributeId

The following structure contains the enumerations used to identify the attributes of the Diagnostics cluster.

typedef enum
{
 /* Hardware Information attribute IDs */
 E_CLD_DIAGNOSTICS_ATTR_ID_NUMBER_OF_RESETS = 0x0000,
 E_CLD_DIAGNOSTICS_ATTR_ID_PERSISTENT_MEMORY_WRITES,
 /* Stack/Network Information attribute IDs */
 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_RX_BCAST = 0x0100,
 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_BCAST,
 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_RX_UCAST,
 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST,
 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST_RETRY,
 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST_FAIL,
 E_CLD_DIAGNOSTICS_ATTR_ID_APS_RX_BCAST,
 E_CLD_DIAGNOSTICS_ATTR_ID_APS_TX_BCAST,
 E_CLD_DIAGNOSTICS_ATTR_ID_APS_RX_UCAST,
 E_CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_SUCCESS,
 E_CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_RETRY,
 E_CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_FAIL,
 E_CLD_DIAGNOSTICS_ATTR_ID_ROUTE_DISC_INITIATED,
 E_CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_ADDED,
 E_CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_REMOVED,
 E_CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_STALE,
 E_CLD_DIAGNOSTICS_ATTR_ID_JOIN_INDICATION,
 E_CLD_DIAGNOSTICS_ATTR_ID_CHILD_MOVED,
 E_CLD_DIAGNOSTICS_ATTR_ID_NWK_FC_FAILURE,
 E_CLD_DIAGNOSTICS_ATTR_ID_APS_FC_FAILURE,
 E_CLD_DIAGNOSTICS_ATTR_ID_APS_UNAUTHORIZED_KEY,
 E_CLD_DIAGNOSTICS_ATTR_ID_NWK_DECRYPT_FAILURE,
 E_CLD_DIAGNOSTICS_ATTR_ID_APS_DECRYPT_FAILURE,
 E_CLD_DIAGNOSTICS_ATTR_ID_PACKET_BUFFER_ALLOCATE_FAILURE,
 E_CLD_DIAGNOSTICS_ATTR_ID_RELAYED_UCAST,
 E_CLD_DIAGNOSTICS_ATTR_ID_PHY_TO_MAC_QUEUE_LIMIT_REACHED,
 E_CLD_DIAGNOSTICS_ATTR_ID_PACKET_VALIDATE_DROP_COUNT,
 E_CLD_DIAGNOSTICS_ATTR_ID_AVERAGE_MAC_RETRY_PER_APS_MESSAGE_SENT,
 E_CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_LQI,
 E_CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_RSSI
} teCLD_Diagnostics_AttributeId;

22.5 Compile-time Options
To enable the Diagnostics cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_DIAGNOSTICS

In addition, to include the software for a cluster client or server or both, it is necessary to add one of the
following to the same file:

#define DIAGNOSTICS_CLIENT
#define DIAGNOSTICS_SERVER

Optional Attributes

Add this line to enable the optional Average MAC Retry Per APS Message Sent attribute:

#define CLD_DIAGNOSTICS_ATTR_ID_AVERAGE_MAC_RETRY_PER_APS_MESSAGE_SENT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
327 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Add this line to enable the optional Last Message LQI attribute:

#define CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_LQI

Add this line to enable the optional Last Message RSSI attribute:

#define CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_RSSI

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_DIAGNOSTICS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
328 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part IV: Measurement and Sensing Clusters

This part comprises eight chapters:

• Chapter 23 details the Illuminance Measurement cluster
• Chapter 24 details the Illuminance Level Sensing cluster
• Chapter 25 details the Temperature Measurement cluster
• Chapter 26 details the Pressure Measurement cluster
• Chapter 27 details the Flow Measurement cluster
• Chapter 28 details the Relative Humidity Measurement cluster
• Chapter 29 details the Occupancy Sensing cluster
• Chapter 30 details the Electrical Measurement cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
329 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

23 Illuminance Measurement Cluster

This chapter describes the Illuminance Measurement cluster which is defined in the ZCL and provides an
interface to a light sensor that is able to make illuminance measurements.

The Illuminance Measurement cluster has a Cluster ID of 0x0400.

23.1 Overview
The Illuminance Measurement cluster provides an interface to an illuminance measuring device, allowing the
configuration of measuring and the reporting of measurements.

To use the functionality of this cluster, you must include the file IlluminanceMeasurement.h in your application
and enable the cluster by defining CLD_ILLUMINANCE_MEASUREMENT in the zcl_options.h file.

An Illuminance Measurement cluster instance can act as a client or a server. The inclusion of the client or server
software must be pre-defined in the application’s compile-time options (in addition, if the cluster is to reside on a
custom endpoint then the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Illuminance Measurement cluster are fully detailed in Section 23.6.

23.2 Illuminance Measurement Structure and Attributes
The structure definition for the Illuminance Measurement cluster is:

typedef struct
{
#ifdef ILLUMINANCE_MEASUREMENT_SERVER
 zuint16 u16MeasuredValue;
 zuint16 u16MinMeasuredValue;
 zuint16 u16MaxMeasuredValue;
#ifdef CLD_ILLMEAS_ATTR_TOLERANCE
 zuint16 u16Tolerance;
#endif
#ifdef CLD_ILLMEAS_ATTR_LIGHT_SENSOR_TYPE
 zenum8 eLightSensorType;
#endif
#ifdef CLD_ILLMEAS_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_IlluminanceMeasurement;

where:

• u16MeasuredValue is a mandatory attribute representing the measured illuminance in logarithmic form,
calculated as (10000 x log10Illuminance) + 1, where the illuminance is measured in Lux (lx). The possible
illumination values are in the range 1 lx to 3.576 x 106 lx, corresponding to attribute values of 1 to 0xFFFE.
The following attribute values have special meaning:
– 0x0000: Illuminance is too low to be measured.
– 0xFFFF: Illuminance measurement is invalid.

The valid range of values of u16MeasuredValue can be restricted using the attributes
u16MinMeasuredValue and u16MaxMeasuredValue below - in this case, the attribute can take any
value in the range u16MinMeasuredValue to u16MaxMeasuredValue.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
330 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16MinMeasuredValue is a mandatory attribute representing a lower limit on the value of the attribute
u16MeasuredValue. The value must be less than that of u16MaxMeasuredValue. The value 0xFFFF
indicates that the attribute is unused.

• u16MaxMeasuredValue is a mandatory attribute representing an upper limit on the value of the attribute
u16MeasuredValue. The value must be greater than that of u16MinMeasuredValue. The value 0xFFFF
indicates that the attribute is unused.

• u16Tolerance is an optional attribute which indicates the magnitude of the maximum possible error in
the value of the attribute u16MeasuredValue. The true value is in the range (u16MeasuredValue –
u16Tolerance) to (u16MeasuredValue + u16Tolerance) .

• eLightSensorType is an optional attribute that indicates the type of light sensor to which the cluster is
interfaced:
– 0x00: Photodiode
– 0x01: CMOS
– 0x02–0x3F: Reserved
– 0x40–0xFE: Reserved for manufacturer-specific light sensor types
– 0xFF: Unknown

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

23.3 Attributes for Default Reporting
The following attributes of the Illuminance Measurement cluster can be selected for default reporting:

u16MeasuredValue
u16Tolerance

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

23.4 Functions
The following Illuminance Measurement cluster function is provided in the NXP implementation of the ZCL:

• eCLD_IlluminanceMeasurementCreateIlluminanceMeasurement

The cluster attributes can be accessed using the general attribute read/write functions, as described in Section
2.3.

23.4.1 eCLD_IlluminanceMeasurementCreateIlluminanceMeasurement

teZCL_Status eCLD_IlluminanceMeasurementCreateIlluminanceMeasurement(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
331 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function creates an instance of the Illuminance Measurement cluster on an endpoint. The cluster instance
is created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected
clusters (rather than the whole set of clusters supported by a standard ZigBee device). This function creates an
Illuminance Measurement cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Illuminance Measurement cluster. The function initializes the array elements to zero.

Parameters

psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.
bIsServer : Type of cluster instance (server or client) to be created:
TRUE - server
FALSE - client
psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Illuminance Measurement cluster. This parameter
can refer to a pre-filled structure called sCLD_IlluminanceMeasurement which is provided in the
IlluminanceMeasurement.h file.
pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_IlluminanceMeasurement, which defines the attributes of
Illuminance Measurement cluster. The function initializes the attributes with default values.
pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

23.5 Enumerations

23.5.1 teCLD_IM_ClusterID

The following structure contains the enumerations used to identify the attributes of the Illuminance
Measurement cluster.

typedef enum
{

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
332 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_ILLMEAS_ATTR_ID_MEASURED_VALUE = 0x0000, /* Mandatory */
 E_CLD_ILLMEAS_ATTR_ID_MIN_MEASURED_VALUE, /* Mandatory */
 E_CLD_ILLMEAS_ATTR_ID_MAX_MEASURED_VALUE, /* Mandatory */
 E_CLD_ILLMEAS_ATTR_ID_TOLERANCE,
 E_CLD_ILLMEAS_ATTR_ID_LIGHT_SENSOR_TYPE
} teCLD_IM_ClusterID;

23.6 Compile-time options
To enable the Illuminance Measurement cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_ILLUMINANCE_MEASUREMENT

In addition, to include the software for a cluster client or server, it is necessary to add one of the following to the
same file:

#define ILLUMINANCE_MEASUREMENT_CLIENT
#define ILLUMINANCE_MEASUREMENT_SERVER

Optional Attributes

Add this line to enable the optional Tolerance attribute:

#define CLD_ILLMEAS_ATTR_TOLERANCE

Add this line to enable the optional Light Sensor Type attribute:

#define CLD_ILLMEAS_ATTR_LIGHT_SENSOR_TYPE

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_ILLMEAS_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_ILLMEAS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
333 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

24 Illuminance Level Sensing Cluster

This chapter describes the Illuminance Level Sensing cluster which is defined in the ZCL and provides an
interface to light-level sensing functionality.

The Illuminance Level Sensing cluster has a Cluster ID of 0x0401.

24.1 Overview
The Illuminance Level Sensing cluster provides an interface to a device that can sense the local level of
illumination. The cluster can configure notifications that are generated when the light-level is above, within or
below a certain illuminance band.

To use the functionality of this cluster, you must include the file IlluminanceLevelSensing.h in your application
and enable the cluster by defining CLD_ILLUMINANCE_LEVEL_SENSING in the zcl_options.h file.

An Illuminance Level Sensing cluster instance can act as a client or a server. The inclusion of the client or
server software must be pre-defined in the compile-time options of the application. In addition, if the cluster is
designed to reside on a custom endpoint, then the role of client or server must also be specified while creating
the cluster instance.

The compile-time options for the Illuminance Level Sensing cluster are fully detailed in Section 24.6.

The information that can potentially be stored in this cluster is organized into the following attribute sets:

• Illuminance Level Sensing Information
• Illuminance Level Sensing Settings

24.2 Cluster structure and attributes
The structure definition for the Illuminance Level Sensing cluster is:

typedef struct
{
#ifdef ILLUMINANCE_LEVEL_SENSING_SERVER zenum8 u8LevelStatus;
#ifdef CLD_ILS_ATTR_LIGHT_SENSOR_TYPE zenum8 eLightSensorType;
#endif
 zuint16 u16IlluminanceTargetLevel;
#ifdef CLD_ILS_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_IlluminanceLevelSensing;

where:

Illuminance Level Sensing Information Attributes

• u8LevelStatus is a mandatory attribute indicating whether the current illuminance is above, within or below
the target band, as follows:

Value Enumeration Description

0x00 E_CLD_ILS_LLS_ON_TARGET Measured illuminance is within the target band

0x01 E_CLD_ILS_LLS_BELOW_TARGET Measured illuminance is below the target band

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
334 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Value Enumeration Description

0x02 E_CLD_ILS_LLS_ABOVE_TARGET Measured illuminance is above the target band

0x03 - 0xFF - Reserved

• eLightSensorType is an optional attribute indicating the type of light-level sensor used, as follows:

Value Enumeration Description

0x00 E_CLD_ILS_LST_PHOTODIODE Photodiode

0x01 E_CLD_ILS_LST_CMOS CMOS

0x02 - 0x3F - Reserved

0x40 - 0xFE - Manufacturer-specific types

0xFF - Unknown

Illuminance Level Sensing Settings Attribute

• u16IlluminanceTargetLevel is a mandatory attribute representing the illuminance level at the centre of
the target band. The value of this attribute is calculated as

10000 x log10Illuminance
where Illuminance is measured in Lux (lx) and can take values in the range
1 lx ≤ Illuminance ≤ 3.576x106 lx, corresponding to attribute values in the range 0x0000 to 0xFFFE. The
value 0xFFFF is used to indicate that the attribute is invalid.

Note: Note 1: The target band is a ‘dead band’ around the above target level, in which the sensing device is
not able to differentiate between different illuminance levels. The width of this band is device-specific.

Note: Note 2: The illuminance status relative to the target band can be monitored by regularly reading the
u8LevelStatus attribute.

Global Attributes

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

24.3 Attributes for Default Reporting
The following attribute of the Illuminance Level Sensing cluster can be selected for default reporting:

u8LevelStatus

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for this attribute is
described in Appendix B.3.6.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
335 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

24.4 Functions
The following Illuminance Level Sensing cluster function is provided in the NXP implementation of the ZCL:

eCLD_IlluminanceLevelSensingCreateIlluminanceLevelSensing

The cluster attributes can be accessed using the general attribute read/write functions, as described in Section
2.3.

24.4.1 eCLD_IlluminanceLevelSensingCreateIlluminanceLevelSensing

teZCL_Status eCLD_IlluminanceLevelSensingCreateIlluminanceLevelSensing(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Illuminance Level Sensing cluster on an endpoint. The cluster instance
is created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected
clusters (rather than the whole set of clusters supported by a standard ZigBee device). This function creates an
Illuminance Level Sensing cluster instance on the endpoint, but instances of other clusters can also be created
on the same endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Illuminance Level Sensing cluster. The function initializes the array elements to zero.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Illuminance Level Sensing cluster. This parameter
can refer to a pre-filled structure called sCLD_IlluminanceLevelSensing which is provided in the
IlluminanceLevelSensing.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_IlluminanceLevelSensing, which defines the attributes of
Illuminance Level Sensing cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
336 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

24.5 Enumerations

24.5.1 teCLD_ILS_ClusterID

The following structure contains the enumerations used to identify the attributes of the Illuminance Level
Sensing cluster (see Section 24.2).

typedef enum
{
 E_CLD_ILS_ATTR_ID_LEVEL_STATUS = 0x0000, /* Mandatory */
 E_CLD_ILS_ATTR_ID_LIGHT_SENSOR_TYPE,
 E_CLD_ILS_ATTR_ID_ILLUMINANCE_TARGET_LEVEL = 0x0010, /* Mandatory */
} teCLD_ILS_ClusterID;

24.5.2 teCLD_ILS_LightSensorType

The following structure contains the enumerations used to identify the light-level sensor type in the
eLightSensorType attribute of the cluster (see Section 24.2).

typedef enum
{
 E_CLD_ILS_LST_PHOTODIODE = 0,
 E_CLD_ILS_LST_CMOS
} teCLD_ILS_LightSensorType;

24.5.3 teCLD_ILS_LightLevelStatus

The following structure contains the enumerations used to represent the light-level status in the
u8LevelStatus attribute of the cluster (see Section 24.2).

typedef enum
{
 E_CLD_ILS_LLS_ON_TARGET,
 E_CLD_ILS_LLS_BELOW_TARGET,
 E_CLD_ILS_LLS_ABOVE_TARGET,
} teCLD_ILS_LightLevelStatus;

24.6 Compile-time Options
To enable the Illuminance Level Sensing cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_ILLUMINANCE_LEVEL_SENSING

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
337 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

In addition, to include the software for a cluster client or server, it is necessary to add one of the following to the
same file:

#define ILLUMINANCE_LEVEL_SENSING_CLIENT
#define ILLUMINANCE_LEVEL_SENSING_SERVER

Optional Attribute

Add this line to enable the optional Light Sensor Type attribute:

#define E_CLD_ILS_ATTR_ID_LIGHT_SENSOR_TYPE

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_ILS_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_ILS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
338 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

25 Temperature Measurement Cluster

This chapter describes the Temperature Measurement cluster which is concerned with configuring and reporting
temperature measurement.

The Temperature Measurement cluster has a Cluster ID of 0x0402.

25.1 Overview
The Temperature Measurement cluster provides an interface to a temperature measuring device, allowing the
configuration of measuring and the reporting of measurements.

To use the functionality of this cluster, you must include the file TemperatureMeasurement.h in your application
and enable the cluster by defining CLD_TEMPERATURE_MEASUREMENT in the zcl_options.h file.

A Temperature Measurement cluster instance can act as a client or a server. The inclusion of the client or server
software must be pre-defined in the application’s compile-time options (in addition, if the cluster is to reside on a
custom endpoint then the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Temperature Measurement cluster are fully detailed in Section 25.6.

25.2 Temperature Measurement Structure and Attributes
The structure definition for the Temperature Measurement cluster (server) is:

typedef struct
{
#ifdef TEMPERATURE_MEASUREMENT_SERVER
 zint16 i16MeasuredValue;
 zint16 i16MinMeasuredValue;
 zint16 i16MaxMeasuredValue;
#ifdef CLD_TEMPMEAS_ATTR_TOLERANCE
 zuint16 u16Tolerance;
#endif
#ifdef CLD_TEMPMEAS_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_TemperatureMeasurement;

where:

• i16MeasuredValue is a mandatory attribute representing the measured temperature in degrees Celsius, as
follows:
– i16MeasuredValue = 100 x temperature in degrees Celsius
– The possible values are used as follows:

– 0x0000 to 0x7FFF represent positive temperatures from 0°C to 327.67ºC.
– 0x8000 indicates that the temperature measurement is invalid.
– 0x8001 to 0x954C are unused values.
– 0x954D to 0xFFFF represent negative temperatures from -273.15°C to -1°C (in two’s complement form).

– This attribute is updated continuously as measurements are made.
• i16MinMeasuredValue is a mandatory attribute specifying the value of the attribute i16MeasuredValue

which corresponds to the minimum possible temperature that can be measured. Its value must be less than
that of the attribute i16MaxMeasuredValue (below). The special value 0x8000 indicates that the minimum is
not known.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
339 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• i16MaxMeasuredValue is a mandatory attribute specifying the value of the attribute i16MeasuredValue
which corresponds to the maximum possible temperature that can be measured. Its value must be greater
than that of the attribute i16MinMeasuredValue (above). The special value 0x8000 indicates that the
maximum is not known.

• u16Tolerance is an optional attribute which indicates the magnitude of the maximum possible error in the
value of the attribute u16MeasuredValue. The true value is in the range (u16MeasuredValue – u16Tolerance)
to (u16MeasuredValue + u16Tolerance).

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

25.3 Attributes for Default Reporting
The following attributes of the Temperature Measurement cluster can be selected for default reporting:

i16MeasuredValue
u16Tolerance

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

25.4 Functions
The following Temperature Measurement cluster function is provided in the NXP implementation of the ZCL:e
CLD_TemperatureMeasurementCreateTemperatureMeasurement

25.4.1 eCLD_TemperatureMeasurementCreateTemperatureMeasurement

teZCL_Status eCLD_TemperatureMeasurementCreateTemperatureMeasurement(
tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Temperature Measurement cluster on an endpoint. The cluster instance
is created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected
clusters (rather than the whole set of clusters supported by a standard ZigBee device). This function creates a
Temperature Measurement cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
340 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8TemperatureMeasurementAttributeControlBits
 [(sizeof(asCLD_TemperatureMeasurementClusterAttributeDefinitions)
 / sizeof(tsZCL_AttributeDefinition))];

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
• TRUE - server
• FALSE - client
• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In

this case, this structure must contain the details of the Temperature Measurement cluster. This parameter
can refer to a pre-filled structure called sCLD_TemperatureMeasurement which is provided in the
TemperatureMeasurement.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_TemperatureMeasurementwhich defines the attributes of
Temperature Measurement cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above). For a cluster client, set this pointer to NULL.

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

25.5 Enumerations

25.5.1 teCLD_TemperatureMeasurement_AttributeID

The following structure contains the enumerations used to identify the attributes of the Temperature
Measurement cluster.

typedef enum
{
 E_CLD_TEMPMEAS_ATTR_ID_MEASURED_VALUE = 0x0000, /* Mandatory */
 E_CLD_TEMPMEAS_ATTR_ID_MIN_MEASURED_VALUE, /* Mandatory */
 E_CLD_TEMPMEAS_ATTR_ID_MAX_MEASURED_VALUE, /* Mandatory */
 E_CLD_TEMPMEAS_ATTR_ID_TOLERANCE,
} teCLD_TemperatureMeasurement_AttributeID;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
341 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

25.6 Compile-time Options
To enable the Temperature Measurement cluster in the code to be built, it is necessary to add the following to
the zcl_options.h file:

#define CLD_TEMPERATURE_MEASUREMENT

In addition, to include the software for a cluster client or server, it is necessary to add one of the following to the
same file:

#define TEMPERATURE_MEASUREMENT_CLIENT
#define TEMPERATURE_MEASUREMENT_SERVER

Optional Attribute

Add this line to enable the optional Tolerance attribute:

#define CLD_TEMPMEAS_ATTR_TOLERANCE

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_TEMPMEAS_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_TEMPMEAS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
342 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

26 Pressure Measurement Cluster

This chapter outlines the Pressure Measurement cluster, which provides an interface for configuring and
obtaining pressure measurements.

The Pressure Measurement cluster has a Cluster ID of 0x0403.

26.1 Overview
The Pressure Measurement cluster provides an interface for configuring and querying devices that perform
pressure measurements.

• The server is located on the device which makes the pressure measurements
• The client is located on another device and queries the server for measurements

The cluster is enabled by defining CLD_PRESSURE_MEASUREMENT in the zcl_options.h file. Further
compile-time options for the Pressure Measurement cluster are detailed in Section 26.9.

The information that can potentially be stored in this cluster is organized into the following attribute sets:

• Pressure Measurement Information
• Extended Pressure Measurement Information
• Global

Note that not all of the above attribute sets are currently implemented in the NXP software and not all attributes
within a supported attribute set are implemented (see Section 26.2 for the supported attribute sets and
attributes).

26.2 Cluster structure and attributes
The structure definition for the Pressure Measurement cluster (server) is:

typedef struct
{
#ifdef PRESSURE_MEASUREMENT_SERVER
 zint16 i16MeasuredValue;
 zint16 i16MinMeasuredValue;
 zint16 i16MaxMeasuredValue;
#ifdef CLD_PRESSUREMEAS_ATTR_TOLERANCE
 zuint16 u16Tolerance;
#endif
#ifdef CLD_PRESSUREMEAS_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_PressureMeasurement;

where:

‘Pressure Measurement Information’ Attribute Set

• i16MeasuredValue is a mandatory attribute corresponding to 10 times the measured pressure, in units
of kPa, in two's complement form. The range of possible values is 0x8001 (representing -3276.7 kPa)
through 0x0000 (0 kPa) to 0x7FFF (representing +3276.7 kPa). The value 0x8000 is used to indicate that the
measurement was invalid. In practice, the stored value is limited within the range i16MinMeasuredValue to
i16MaxMeasuredValue (see below).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
343 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• i16MinMeasuredValue is a mandatory attribute representing a lower limit on the value that can be stored in
i16MeasuredValue. It is a two’s complement value in the range 0x8001 to 0x7FFE, and it must be less than
the value of the attribute i16MaxMeasuredValue.

• i16MaxMeasuredValue is a mandatory attribute representing an upper limit on the value that can be stored in
i16MeasuredValue. It is a two’s complement value in the range 0x8002 to 0x7FFF, and it must be greater than
the value of the attribute i16MinMeasuredValue.

Global Attributes

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

26.3 Initialization and Operation
The Pressure Measurement cluster must be initialized on both the cluster server and client. This can be done
using the function eCLD_PressureMeasurementCreatePressureMeasurement(), which creates an instance
of the Pressure Measurement cluster on a local endpoint.

Once the cluster has been initialized, the application on the server should maintain the cluster attributes (see
Section 26.2) with the pressure measurements made by the local device. The application on a client can
remotely read these measured values using the ZCL ‘Read Attribute’ functions, as described in Section 2.3.2.

26.4 Pressure Measurement Events
There are no events specific to the Pressure Measurement cluster.

26.5 Functions
The following Pressure Measurement cluster function is provided:

eCLD_PressureMeasurementCreatePressureMeasurement

26.5.1 eCLD_PressureMeasurementCreatePressureMeasurement

teZCL_Status eCLD_PressureMeasurementCreatePressureMeasurement(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Pressure Measurement cluster on an endpoint. The cluster instance is
created on the endpoint associated with the supplied tsZCL_ClusterInstance structure and can act as a
server or a client, as specified.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
344 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function creates a Pressure
Measurement cluster instance on the endpoint, but instances of other clusters can also be created on the same
endpoint by calling their corresponding creation functions. For more details of creating cluster instances on
custom endpoints, refer to Appendix D.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function from those described in the ZigBee Devices User Guide (JNUG3131).

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8PressureMeasurementAttributeControlBits
[(sizeof(asCLD_PressureMeasurementClusterAttributeDefinitions) /
 sizeof(tsZCL_AttributeDefinition))];

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2).
In this case, this structure must contain the details of the Pressure Measurement cluster. This parameter
can refer to a pre-filled structure called sCLD_PressureMeasurement which is provided in the
PressureMeasurement.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_PressureMeasurement, which defines the attributes of
Pressure Measurement cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above). For a cluster client, set this pointer to NULL.

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

26.6 Return codes
The Pressure Measurement cluster function uses the ZCL return codes defined in Section 7.2.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
345 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

26.7 Enumerations

26.7.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the Pressure Measurement
cluster.

typedef enum
{
 E_CLD_PRESSUREMEAS_ATTR_ID_MEASURED_VALUE = 0x0000,
 E_CLD_PRESSUREMEAS_ATTR_ID_MIN_MEASURED_VALUE,
 E_CLD_PRESSUREMEAS_ATTR_ID_MAX_MEASURED_VALUE,
 E_CLD_PRESSUREMEAS_ATTR_ID_TOLERANCE,
}teCLD_PM_ClusterID;

26.8 Structures
There are no structures specific to the Pressure Measurement cluster.

26.9 Compile-time Options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the Pressure Measurement cluster.

To enable the Pressure Measurement cluster in the code to be built, it is necessary to add the following line to
the file:

#define CLD_PRESSURE_MEASUREMENT

In addition, to enable the cluster as a client or server, it is also necessary to add one of the following lines to the
same file:

#define PRESSURE_MEASUREMENT_SERVER
#define PRESSURE_MEASUREMENT_CLIENT

The Pressure Measurement cluster contains macros that may be optionally specified at compile-time by adding
one or more of the following lines to the zcl_options.h file.

Optional Attributes

Add this line to enable the optional Tolerance attribute:

#define CLD_PRESSUREMEAS_ATTR_TOLERANCE

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_PRESSUREMEAS_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_PRESSUREMEAS_CLUSTER_REVISION <n>

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
346 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
347 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

27 Flow Measurement Cluster

This chapter outlines the Flow Measurement cluster, which provides an interface for configuring and obtaining
flow measurements for a fluid (liquid or gas).

The Flow Measurement cluster has a Cluster ID of 0x0404.

27.1 Overview
The Flow Measurement cluster provides an interface for configuring and querying devices that perform flow
measurements on a fluid (for example, water).

• The server is located on the device which makes the flow measurements
• The client is located on another device and queries the server for measurements

The cluster is enabled by defining CLD_FLOW_MEASUREMENT in the zcl_options.h file. Further compile-
time options for the Flow Measurement cluster are detailed in Section 27.9.

27.2 Cluster structure and attributes
The structure definition for the Flow Measurement cluster (server) is:

typedef struct
{
#ifdef FLOW_MEASUREMENT_SERVER
 zint16 i16MeasuredValue;
 zint16 i16MinMeasuredValue;
 zint16 i16MaxMeasuredValue;
#ifdef CLD_FLOWMEAS_ATTR_TOLERANCE
 zuint16 u16Tolerance;
#endif
#ifdef CLD_FLOWMEAS_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_FlowMeasurement;

where:

‘Flow Measurement Information’ Attribute Set

• i16MeasuredValue is a mandatory attribute corresponding to 10 times the measured flow, in units of cubic
metres per hour (m3/h). The range of possible values is 0x0000 (0 m3/h) to 0xFFFE (representing 6553.4 m3/
h). The value 0xFFFF is used to indicate that the measurement was invalid. In practice, the stored value is
limited within the range i16MinMeasuredValue to i16MaxMeasuredValue (see below).

• i16MinMeasuredValue is a mandatory attribute representing a lower limit on the value that can be stored
in i16MeasuredValue. It is a value in the range 0x0000 to 0x7FFD and, it must be less than the value of the
attribute i16MaxMeasuredValue.

• i16MaxMeasuredValue is a mandatory attribute representing an upper limit on the value that can be stored
in i16MeasuredValue. It is a value in the range 0x0000 to 0x7FFE, and it must be greater than the value of the
attribute i16MinMeasuredValue.

• u16Tolerance is an optional attribute representing the maximum error associated with the measurement
stored in i16MeasuredValue. Thus, the true value of the flow is within the range represented by
i16MeasuredValue ± u16Tolerance.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
348 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Global Attributes

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

27.3 Initialization and Operation
The Flow Measurement cluster must be initialized on both the cluster server and client. Initialization can be
done using the eCLD_FlowMeasurementCreateFlowMeasurement() function, which creates an instance of
the Flow Measurement cluster on a local endpoint.

Once the cluster has been initialized, the application on the server should maintain the cluster attributes (see
Section 27.2) with the flow measurements made by the local device. The application on a client can remotely
read these measured values using the ZCL ‘Read Attribute’ functions, as described in Section 2.3.2.

27.4 Flow Measurement Events
There are no events specific to the Flow Measurement cluster.

27.5 Functions
The following Flow Measurement cluster function is provided:

eCLD_FlowMeasurementCreateFlowMeasurement

27.5.1 eCLD_FlowMeasurementCreateFlowMeasurement

teZCL_Status eCLD_FlowMeasurementCreateFlowMeasurement(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Flow Measurement cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function creates a Flow
Measurement cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions. For more details of creating cluster instances on
custom endpoints, refer to Appendix D.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
349 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function from those described in the ZigBee Devices User Guide (JNUG3131).

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8FlowMeasurementAttributeControlBits
 [(sizeof(asCLD_FlowMeasurementClusterAttributeDefinitions) /
 sizeof(tsZCL_AttributeDefinition))];

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this
case, this structure must contain the details of the Flow Measurement cluster. This parameter can refer to a
pre-filled structure called sCLD_FlowMeasurement which is provided in the FlowMeasurement.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_FlowMeasurement, which defines the attributes of Flow
Measurement cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above). For a cluster client, set this pointer to NULL.

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

27.6 Return codes
The Flow Measurement cluster function uses the ZCL return codes defined in Section 7.2.

27.7 Enumerations

27.7.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the Flow Measurement
cluster.

typedef enum
{
 E_CLD_FLOWMEAS_ATTR_ID_MEASURED_VALUE = 0x0000,
 E_CLD_FLOWMEAS_ATTR_ID_MIN_MEASURED_VALUE,
 E_CLD_FLOWMEAS_ATTR_ID_MAX_MEASURED_VALUE,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
350 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_FLOWMEAS_ATTR_ID_TOLERANCE,
} teCLD_FlowMeasurement_AttributeID;

27.8 Structures
There are no structures specific to the Flow Measurement cluster.

27.9 Compile-time Options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the Flow Measurement cluster.

To enable the Flow Measurement cluster in the code to be built, it is necessary to add the following line to the
file:

#define CLD_FLOW_MEASUREMENT

In addition, to enable the cluster as a client or server, it is also necessary to add one of the following lines to the
same file:

#define FLOW_MEASUREMENT_SERVER
#define FLOW_MEASUREMENT_CLIENT

The Flow Measurement cluster contains macros that may be optionally specified at compile-time by adding one
or more of the following lines to the zcl_options.h file.

Optional Attributes

Add this line to enable the optional Tolerance attribute:

#define CLD_FLOWMEAS_ATTR_TOLERANCE

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_FLOWMEAS_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_FLOWMEAS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
351 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

28 Relative Humidity Measurement Cluster

This chapter describes the Relative Humidity Measurement cluster which describes how to configure and report
relative humidity measurement.

The Relative Humidity Measurement cluster has a Cluster ID of 0x0405.

28.1 Overview
The Relative Humidity Measurement cluster provides an interface to a humidity measuring device, allowing the
configuration of relative humidity measuring and the reporting of measurements.

To use the functionality of this cluster, you must include the file RelativeHumidityMeasurement.h in
your application and enable the cluster by defining CLD_RELATIVE_HUMIDITY_MEASUREMENT in the
zcl_options.h file.

A Relative Humidity Measurement cluster instance can act as a client or a server. The inclusion of the client
or server software must be pre-defined in the application’s compile-time options (in addition, if the cluster is to
reside on a custom endpoint then the role of client or server must also be specified when creating the cluster
instance).

The compile-time options for the Relative Humidity Measurement cluster are fully detailed in Section 28.6.

28.2 RH Measurement Structure and Attributes
The structure definition for the Relative Humidity Measurement cluster (server) is:

typedef struct
{
 zuint16 u16MeasuredValue;
 zuint16 u16MinMeasuredValue;
 zuint16 u16MaxMeasuredValue;
#ifdef E_CLD_RHMEAS_ATTR_TOLERANCE
 zuint16 u16Tolerance;
#endif
} tsCLD_RelativeHumidityMeasurement;

where:

• u16MeasuredValue is a mandatory attribute representing the measured relatively humidity as a percentage
in steps of 0.01%, as follows:
– u16MeasuredValue = 100 x relative humidity percentage
– So, for example, 0x197C represents a relative humidity measurement of 65.24%. The possible values are

used as follows:
– 0x0000 to 0x2710 represent relative humidities from 0% to 100%
– 0x2711 to 0xFFFE are unused values
– 0xFFFF indicates an invalid measurement
– This attribute is updated continuously as measurements are made.

• u16MinMeasuredValue is a mandatory attribute specifying the value of the attribute u16MeasuredValue
which corresponds to the minimum possible relative humidity that can be measured. Its value must be less
than that of the attribute u16MaxMeasuredValue (below). The special value 0xFFFF is used to indicate that
the minimum is not defined.

• u16MaxMeasuredValue is a mandatory attribute specifying the value of the attribute u16MeasuredValue
which corresponds to the maximum possible relative humidity that can be measured. Its value must be greater

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
352 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

than that of the attribute u16MinMeasuredValue (above). The special value 0xFFFF is used to indicate that
the maximum is not defined.

• u16Tolerance is an optional attribute which indicates the magnitude of the maximum possible error in
the value of the attribute u16MeasuredValue. The true value will be in the range (u16MeasuredValue –
u16Tolerance) to (u16MeasuredValue + u16Tolerance).

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

28.3 Attributes for Default Reporting
The following attributes of the Relative Humidity Measurement cluster can be selected for default reporting:

u16MeasuredValue
u16Tolerance

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

28.4 Functions
The following Relative Humidity Measurement cluster function is provided in the NXP implementation of the
ZCL:

eCLD_RelativeHumidityMeasurementCreateRelativeHumidityMeasurement

28.4.1 eCLD_RelativeHumidityMeasurementCreateRelativeHumidityMeasurement

teZCL_Status eCLD_RelativeHumidityMeasurementCreateRelativeHumidityMeasurement(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Relative Humidity Measurement cluster on an endpoint. The cluster
instance is created on the endpoint associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function creates a Relative
Humidity Measurement cluster instance on the endpoint, but instances of other clusters may also be created on
the same endpoint by calling their corresponding creation functions.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
353 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8RelativeHumidityMeasurementAttributeControlBits
 [(sizeof(asCLD_RelativeHumidityMeasurementClusterAttributeDefinitions) /
 sizeof(tsZCL_AttributeDefinition))];

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this
case, this structure must contain the details of the Relative Humidity Measurement cluster. This parameter
can refer to a pre-filled structure called sCLD_RelativeHumidityMeasurement which is provided in the
RelativeHumidityMeasurement.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_RelativeHumidityMeasurement which defines the
attributes of Relative Humidity Measurement cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above). For a cluster client, set this pointer to NULL.

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

28.5 Enumerations

28.5.1 teCLD_RHM_ClusterID

The following structure contains the enumerations used to identify the attributes of the Relative Humidity
Measurement cluster.

typedef enum
{
 E_CLD_RHMEAS_ATTR_ID_MEASURED_VALUE = 0x0000, /* Mandatory */
 E_CLD_RHMEAS_ATTR_ID_MIN_MEASURED_VALUE, /* Mandatory */
 E_CLD_RHMEAS_ATTR_ID_MAX_MEASURED_VALUE, /* Mandatory */
 E_CLD_RHMEAS_ATTR_ID_TOLERANCE,
} teCLD_RHM_ClusterID;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
354 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

28.6 Compile-time Options
To enable the Relative Humidity Measurement cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:

#define CLD_RELATIVE_HUMIDITY_MEASUREMENT

In addition, to include the software for a cluster client or server, it is necessary to add one of the following to the
same file:

#define RELATIVE_HUMIDITY_MEASUREMENT_CLIENT
#define RELATIVE_HUMIDITY_MEASUREMENT_SERVER

Optional Attribute

Add this line to enable the optional Tolerance attribute:

#define CLD_RHMEAS_ATTR_TOLERANCE

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_RHMEAS_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_RHMEAS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
355 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

29 Occupancy Sensing Cluster

This chapter describes the Occupancy Sensing cluster which provides an interface to an occupancy sensor.

The Occupancy Sensing cluster has a Cluster ID of 0x0406.

29.1 Overview
The Occupancy Sensing cluster provides an interface to an occupany sensor, allowing the configuration of
sensing and the reporting of status.

To use the functionality of this cluster, you must include the file OccupancySensing.h in your application and
enable the cluster by defining CLD_OCCUPANCY_SENSING in the zcl_options.h file.

An Occupancy Sensing cluster instance can act as a client or a server. The inclusion of the client or server
software must be pre-defined in the application’s compile-time options (in addition, if the cluster is to reside on a
custom endpoint then the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Occupancy Sensing cluster are fully detailed in Section 29.6.

The information that can potentially be stored in this cluster is organised into the following attribute sets:

• Occupancy sensor information
• PIR configuration
• Ultrasonic configuration

This cluster has no associated events. The status of an occupancy sensor can be obtained by reading the
‘occupancy’ attribute (see Section 29.2) which is automatically maintained by the cluster server. The cluster
attributes can be accessed using the general attribute read/write functions, as described in Section 2.3.

29.2 Occupancy Sensing Structure and Attributes
The structure definition for the Occupancy Sensing cluster is:

typedef struct
{
#ifdef OCCUPANCY_SENSING_SERVER
 zbmap8 u8Occupancy;
 zenum8 eOccupancySensorType;
#ifdef CLD_OS_ATTR_PIR_OCCUPIED_TO_UNOCCUPIED_DELAY
 zuint16 u16PIROccupiedToUnoccupiedDelay;
#endif
#ifdef CLD_OS_ATTR_PIR_UNOCCUPIED_TO_OCCUPIED_DELAY
 zuint8 u8PIRUnoccupiedToOccupiedDelay;
#endif
#ifdef CLD_OS_ATTR_PIR_UNOCCUPIED_TO_OCCUPIED_THRESHOLD
 zuint8 u8PIRUnoccupiedToOccupiedThreshold;
#endif
#ifdef CLD_OS_ATTR_ULTRASONIC_OCCUPIED_TO_UNOCCUPIED_DELAY
 zuint16 u16UltrasonicOccupiedToUnoccupiedDelay;
#endif
#ifdef CLD_OS_ATTR_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_DELAY
 zuint8 u8UltrasonicUnoccupiedToOccupiedDelay;
#endif
#ifdef CLD_OS_ATTR_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_THRESHOLD
 zuint8 u8UltrasonicUnoccupiedToOccupiedThreshold;
#endif
#ifdef CLD_OS_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
356 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_OccupancySensing;

where:

‘Occupancy Sensor Information’ Attribute Set

• u8Occupancy is a mandatory attribute indicating the sensed occupancy in a bitmap in which bit 0 is used as
follows (and all other bits are reserved):
– bit 0 = 1 : occupied
– bit 0 = 0 : unoccupied

• eOccupancySensorType is a mandatory attribute indicating the type of occupancy sensor, as follows:
– 0x00 : PIR
– 0x01 : Ultrasonic
– 0x02 : PIR and ultrasonic

‘PIR Configuration’ Attribute Set

• u16PIROccupiedToUnoccupiedDelay is an optional attribute for a PIR detector representing the time
delay, in seconds, between the last detected movement and the sensor changing its occupancy state from
‘occupied’ to ‘unoccupied’

• u8PIRUnoccupiedToOccupiedDelay is an optional attribute for a PIR detector representing the time
delay, in seconds, between the detection of movement and the sensor changing its occupancy state from
‘unoccupied’ to ‘occupied’. The interpretation of this attribute changes when it is used in conjunction with the
corresponding threshold attribute (see below)

• u8PIRUnoccupiedToOccupiedThreshold is an optional threshold attribute that can be used in
conjunction with the delay attribute u8PIRUnoccupiedToOccupiedDelay to allow for false positive
detections. Use of this threshold attribute changes the interpretation of the delay attribute. The threshold
represents the minimum number of detections required within the delay-period before the sensor will change
its occupancy state from ‘unoccupied’ to ‘occupied’. The minimum valid threshold value is 1

‘Ultrasonic Configuration’ Attribute Set

• u16UltrasonicOccupiedToUnoccupiedDelay is an optional attribute for an Ultrasonic detector
representing the time delay, in seconds, between the last detected movement and the sensor changing its
occupancy state from ‘occupied’ to ‘unoccupied’

• u8UltrasonicUnoccupiedToOccupiedDelay is an optional attribute representing the time delay, in
seconds, between the detection of movement and the sensor changing its occupancy state from ‘unoccupied’
to ‘occupied’. The interpretation of this attribute changes when it is used in conjunction with the corresponding
threshold attribute (see below)

• u8UltrasonicUnoccupiedToOccupiedThreshold is an optional threshold attribute that can be used
in conjunction with the delay attribute u8UltrasonicUnoccupiedToOccupiedDelay to allow for false
positive detections. Use of this threshold attribute changes the interpretation of the delay attribute. The
threshold represents the minimum number of detections required within the delay-period before the sensor will
change its occupancy state from ‘unoccupied’ to ‘occupied’. The minimum valid threshold value is 1

Note: The 'Occupied To Unoccupied’ and 'Unoccupied To Occupied' attributes can be used to reduce sensor
'chatter' when an occupancy sensor is deployed in an area in which the occupation frequently changes

Note: (e.g. in a corridor).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
357 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Global Attributes

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also described in Section 2.4.

29.3 Attributes for Default Reporting
The following attribute of the Occupancy Sensing cluster can be selected for default reporting:

u8Occupancy

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for this attribute is
described in Appendix B.3.6.

29.4 Functions
The following Occupancy Sensing cluster function is provided in the NXP implementation of the ZCL:

eCLD_OccupancySensingCreateOccupancySensing

The cluster attributes can be accessed using the general attribute read/write functions, as described in
Section 2.3. The state of the occupancy sensor can be obtained by reading the u8Occupancy attribute in the
tsCLD_OccupancySensing structure on the cluster server (see Section 29.2).

29.4.1 eCLD_OccupancySensingCreateOccupancySensing

teZCL_Status eCLD_OccupancySensingCreateOccupancySensing(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Occupancy Sensing cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected
clusters (rather than the whole set of clusters supported by a standard ZigBee device). This function creates an
Occupancy Sensing cluster instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
358 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Occupancy Sensing cluster. The function initializes the array elements to zero.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initialising individual structure fields.

• bIsServer : Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this
case, this structure must contain the details of the Occupancy Sensing cluster. This parameter can refer to a
pre-filled structure called sCLD_OccupancySensing which is provided in the OccupancySensing.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_OccupancySensing which defines the attributes of
Occupancy Sensing cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

29.5 Enumerations

29.5.1 teCLD_OS_ClusterID

The following structure contains the enumeration used to identify the attributes of the Occupancy Sensing
cluster.

typedef enum
{
 E_CLD_OS_ATTR_ID_OCCUPANCY = 0x0000, /* Mandatory */
 E_CLD_OS_ATTR_ID_OCCUPANCY_SENSOR_TYPE, /* Mandatory */
 E_CLD_OS_ATTR_ID_PIR_OCCUPIED_TO_UNOCCUPIED_DELAY = 0x0010,
 E_CLD_OS_ATTR_ID_PIR_UNOCCUPIED_TO_OCCUPIED_DELAY,
 E_CLD_OS_ATTR_ID_PIR_UNOCCUPIED_TO_OCCUPIED_THRESHOLD,
 E_CLD_OS_ATTR_ID_ULTRASONIC_OCCUPIED_TO_UNOCCUPIED_DELAY = 0x0020,
 E_CLD_OS_ATTR_ID_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_DELAY,
 E_CLD_OS_ATTR_ID_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_THRESHOLD
} teCLD_OS_ClusterID;

29.6 Compile-time options
To enable the Occupancy Sensing cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_OCCUPANCY_SENSING

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
359 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

In addition, to include the software for a cluster client or server or both, it is necessary to add one of the
following to the same file:

#define OCCUPANCY_SENSING_CLIENT
#define OCCUPANCY_SENSING_SERVER

Optional Attributes

Add this line to enable the optional PIR Occupied To Unoccupied Delay attribute:

#define CLD_OS_ATTR_PIR_OCCUPIED_TO_UNOCCUPIED_DELAY

Add this line to enable the optional PIR Unoccupied To Occupied Delay attribute:

#define CLD_OS_ATTR_PIR_UNOCCUPIED_TO_OCCUPIED_DELAY

Add this line to enable the optional PIR Unoccupied To Occupied Threshold attribute:

#define CLD_OS_ATTR_PIR_UNOCCUPIED_TO_OCCUPIED_THRESHOLD

Add this line to enable the optional Ultrasonic Occupied To Unoccupied Delay attribute:

#define CLD_OS_ATTR_ULTRASONIC_OCCUPIED_TO_UNOCCUPIED_DELAY

Add this line to enable the optional Ultrasonic Unoccupied To Occupied Delay attribute:

#define CLD_OS_ATTR_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_DELAY

Add this line to enable the Ultrasonic PIR Unoccupied To Occupied Threshold attribute:

#define CLD_OS_ATTR_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_THRESHOLD

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_OS_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_OS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
360 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

30 Electrical Measurement Cluster

This chapter outlines the Electrical Measurement cluster, which provides an interface for obtaining electrical
measurements from a device.

The Electrical Measurement cluster has a Cluster ID of 0x0B04.

30.1 Overview
The Electrical Measurement cluster provides an interface for querying devices for electrical measurements.

• The server is located on the device which makes the electrical measurements
• The client is located on another device and queries the server for measurements

Separate instances of the Electrical Measurement cluster server can be implemented across multiple endpoints
within the same physical unit - that is, one server instance per endpoint. An example is a power extension unit
containing multiple outlets, where each power outlet allows electrical measurements to be made on the supplied
power

(e.g. AC RMS voltage and current).

The cluster is enabled by defining CLD_ELECTRICAL_MEASUREMENT in the zcl_options.h file. Further
compile-time options for the Electrical Measurement cluster are detailed in Section 30.9.

The information that can potentially be stored in this cluster is organised into the following attribute sets:

• Basic Information
• DC Measurement
• DC Formatting
• AC (Non-phase Specific) Measurements
• AC (Non-phase Specific) Formatting
• AC (Single Phase or Phase A) Measurements
• AC Formatting
• DC Manufacturer Threshold Alarms
• AC Manufacturer Threshold Alarms
• AC Phase B Measurements
• AC Phase C Measurements

Note that not all of the above attribute sets are currently implemented in the NXP software and not all attributes
within a supported attribute set are implemented (see Section 30.2 for the supported attribute sets and
attributes).

30.2 Cluster structure and attributes
The structure definition for the Electrical Measurement cluster (server) is:

typedef struct
{
#ifdef ELECTRICAL_MEASUREMENT_SERVER
 zbmap32 u32MeasurementType;
#ifdef CLD_ELECTMEAS_ATTR_AC_FREQUENCY
 zuint16 u16ACFrequency;
#endif
#ifdef CLD_ELECTMEAS_ATTR_RMS_VOLTAGE
 zuint16 u16RMSVoltage;
#endif

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
361 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#ifdef CLD_ELECTMEAS_ATTR_RMS_CURRENT
 zuint16 u16RMSCurrent;
#endif
#ifdef CLD_ELECTMEAS_ATTR_ACTIVE_POWER
 zint16 i16ActivePower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_REACTIVE_POWER
 zint16 i16ReactivePower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_APPARENT_POWER
 zuint16 u16ApparentPower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_POWER_FACTOR
 zint8 i8PowerFactor;
#endif
#ifdef CLD_ELECTMEAS_ATTR_AC_VOLTAGE_MULTIPLIER
 zuint16 u16ACVoltageMultiplier;
#endif
#ifdef CLD_ELECTMEAS_ATTR_AC_VOLTAGE_DIVISOR
 zuint16 u16ACVoltageDivisor;
#endif
#ifdef CLD_ELECTMEAS_ATTR_AC_CURRENT_MULTIPLIER
 zuint16 u16ACCurrentMultiplier;
#endif
#ifdef CLD_ELECTMEAS_ATTR_AC_CURRENT_DIVISOR
 zuint16 u16ACCurentDivisor;
#endif
#ifdef CLD_ELECTMEAS_ATTR_AC_POWER_MULTIPLIER
 zuint16 u16ACPowerMultiplier;
#endif
#ifdef CLD_ELECTMEAS_ATTR_AC_POWER_DIVISOR
 zuint16 u16ACPowerDivisor;
#endif
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC_APPARENT_POWER
 zuint32 u32ManSpecificApparentPower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC_NON_ACTIVE_POWER
 zuint32 u32NonActivePower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC_FNDMTL_REACTIVE_POWER
 zint32 i32FundamentalReactivePower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC_FNDMTL_APPARENT_POWER
 zuint32 u32FundamentalApparentPower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC_FNDMTL_POWER_FACTOR
 zuint16 u16FundamentalPowerFactor;
#endif
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC_NON_FNDMTL_APPARENT_POWER
 zuint32 u32NonFundamentalApparentPower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC_TOTAL_HARMONIC_DISTORTION
 zuint32 u32TotalHarmonicDistortion;
#endif
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC_VBIAS
 zuint32 u32VBias;
#endif
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC_DIVISOR
 zuint16 u16ManSpecDivisor;
#endif

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
362 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#endif
 zuint16 u16ClusterRevision;
}tsCLD_ElectricalMeasurement;

where:

‘Basic Information’ Attribute Set

u32MeasurementType is a mandatory attribute which is a bitmap indicating the types of electrical measurement that can be performed by the device on which the cluster server resides. The bitmap is detailed below (a bit is set to ‘1’ if the corresponding measurement type is supported, or to ‘0’ otherwise):

Bits Measurement Type

0 Active measurement (AC)

1 Reactive measurement (AC)

2 Apparent measurement (AC)

3 Phase A measurement

4 Phase B measurement

5 Phase C measurement

6 DC measurement

7 Harmonics measurement

8 Power quality measurement

9-31 Reserved

‘AC (Non-phase Specific) Measurements’ Attribute Set

u16ACFrequency is an optional attribute containing the most recent measurement of the AC frequency, in Hertz (Hz). The special value 0xFFFF is used to indicate that the frequency cannot be measured.

‘AC (Single Phase or Phase A) Measurements’ Attribute Set

Note that the attributes u16RMSVoltage, u16RMSCurrent and i16ActivePower must be enabled in
conjunction with the corresponding multiplier/divisor pair in the ‘AC Formatting’ attribute set.

u16RMSVoltage is an optional attribute containing the most recent measurement of the Root Mean Square (RMS) voltage, in Volts. The special value 0xFFFF is used to indicate that the RMS voltage cannot be measured. Note that the ‘AC Formatting’ attributes u16ACVoltageMultiplier and u16ACVoltageDivisor must be implemented with this attribute.
u16RMSCurrent is an optional attribute containing the most recent measurement of the Root Mean Square (RMS) current, in Amps. The special value 0xFFFF is used to indicate that the RMS current cannot be measured. Note that the ‘AC Formatting’ attributes u16ACCurrentMultiplier and u16ACCurrentDivisor must be implemented with this attribute.
i16ActivePower is an optional attribute containing the present single-
phase or Phase-
A demand for active power, in Watts (W). A positive value represents active power delivered to the premises and a negative value represents active power received from the premises. Note that the ‘AC Formatting’ attributes u16ACPowerMultiplier and u16ACPowerDivisor must be implemented with this attribute.
i16ReactivePower is an optional attribute containing the present single-
phase or Phase-A demand for reactive power, in Volts-Amps-
reactive (VAr). A positive value represents reactive power delivered to the premises and a negative value represents reactive power received from the premises.
u16ApparentPower is an optional attribute containing the present single-
phase or Phase-A demand for apparent power, in Volts-
Amps (VA). This value is the positive square-
root of i16ActivePower squared plus i16ReactivePower squared.
i8PowerFactor is an optional attribute containing the single-phase or
Phase-
A power factor ratio represented as a multiple of 0.01 (e.g. the attribute value 0x0C represents a ratio of 0.12).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
363 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

‘AC Formatting’ Attribute Set

The following attributes come in multiplier/divisor pairs, where each pair corresponds to an attribute of the ‘AC
(Single Phase or Phase A) Measurements’ attribute set and must only be enabled if the corresponding attribute
is enabled.

u16ACVoltageMultiplier is an optional attribute containing the multiplication factor to be applied to the value of the u16RMSVoltage attribute (above). This multiplication factor must be used in conjunction with the u16ACVoltageDivisor division factor. The value 0x0000 is not valid.
u16ACVoltageDivisor is an optional attribute containing the division factor to be applied to the value of the u16RMSVoltage attribute (above). This division factor must be used in conjunction with the u16ACVoltageMultiplier multiplication factor. The value 0x0000 is not valid.
u16ACCurrentMultiplier is an optional attribute containing the multiplication factor to be applied to the value of the u16RMSCurrent attribute (above). This multiplication factor must be used in conjunction with the u16ACCurrentDivisor division factor. The value 0x0000 is not valid.
u16ACCurrentDivisor is an optional attribute containing the division factor to be applied to the value of the u16RMSCurrent attribute (above). This division factor must be used in conjunction with the u16ACCurrentMultiplier multiplication factor. The value 0x0000 is not valid.
u16ACPowerMultiplier is an optional attribute containing the multiplication factor to be applied to the value of the i16ActivePower attribute (above). This multiplication factor must be used in conjunction with the u16ACPowerDivisor division factor. The value 0x0000 is not valid.
u16ACPowerDivisor is an optional attribute containing the division factor to be applied to the value of the i16ActivePower attribute (above). This division factor must be used in conjunction with the u16ACPowerMultiplier multiplication factor. The value 0x0000 is not valid.

Manufacturer-specific Attributes

u32ManSpecificApparentPower is an optional manufacturer-
defined attribute containing the demand for apparent power.
u32NonActivePower is an optional manufacturer-
defined attribute containing the demand for non-active power.
i32FundamentalReactivePower is an optional manufacturer-
defined attribute containing the demand for fundamental reactive power.
u32FundamentalApparentPower is an optional manufacturer-
defined attribute containing the demand for fundamental apparent power.
u16FundamentalPowerFactor is an optional manufacturer-
defined attribute representing the power factor of a fundamental power system
u32NonFundamentalApparentPower is an optional manufacturer-
defined attribute representing the power factor of a non-
fundamental (harmonic) power system.
u32TotalHarmonicDistortion is an optional manufacturer-
defined attribute representing the total harmonic distortion present in the delivered power signal.
u32VBias is an optional manufacturer-
defined attribute representing the bias voltage.
u16ManSpecDivisor is an optional manufacturer-
defined attribute representing a power divisor.

Global Attributes

u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also described in Section 2.4.

30.3 Initialisation and Operation
The Electrical Measurement cluster must be initialised on both the cluster server and client. This can be done
using the function eCLD_ElectricalMeasurementCreateElectricalMeasurement(), which creates an instance
of the Electrical Measurement cluster on a local endpoint.

Once the cluster has been initialized, the application on the server should maintain the cluster attributes (see
Section 30.2) with the electrical measurements made by the local device. The application on a client can
remotely read these measured values using the ZCL ‘Read Attribute’ functions, as described in Section 2.3.2.

30.4 Electrical Measurement Events
There are no events specific to the Electrical Measurement cluster.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
364 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

30.5 Functions
The following Electrical Measurement cluster function is provided:

Function Page
eCLD_ElectricalMeasurementCreateElectricalMeasurement 618

30.5.1 eCLD_ElectricalMeasurementCreateElectricalMeasurement

teZCL_Status eCLD_ElectricalMeasurementCreateElectricalMeasurement(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Electrical Measurement cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create an
Electrical Measurement cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions. For more details of creating cluster
instances on custom endpoints, refer to Appendix D.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function from those described in the ZigBee Devices User Guide

Note: (JNUG3131).

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8ElectricalMeasurementAttributeControlBits
[(sizeof(asCLD_ElectricalMeasurementClusterAttributeDefinitions) / sizeof(tsZCL_AttributeDefinition))];

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
 FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2).
In this case, this structure must contain the details of the Electrical Measurement cluster. This parameter
can refer to a pre-filled structure called sCLD_ElectricalMeasurement which is provided in the
ElectricalMeasurement.h file.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
365 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_ElectricalMeasurement which defines the
attributes of Electrical Measurement cluster. The function initializes the attributes with default values.
pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above). For a cluster client, set this pointer to NULL.

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

30.6 Return codes
The Electrical Measurement cluster function uses the ZCL return codes, listed in Section 7.2.

30.7 Enumerations

30.7.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the Electrical Measurement
cluster.

typedef enum
{
 E_CLD_ELECTMEAS_ATTR_ID_MEASUREMENT_TYPE
 E_CLD_ELECTMEAS_ATTR_ID_AC_FREQUENCY
 E_CLD_ELECTMEAS_ATTR_ID_RMS_VOLTAGE = 0x0505,
 E_CLD_ELECTMEAS_ATTR_ID_RMS_CURRENT = 0x0508,
 E_CLD_ELECTMEAS_ATTR_ID_ACTIVE_POWER = 0x050B,
 E_CLD_ELECTMEAS_ATTR_ID_REACTIVE_POWER = 0x050E,
 E_CLD_ELECTMEAS_ATTR_ID_APPARENT_POWER = 0x050F,
 E_CLD_ELECTMEAS_ATTR_ID_POWER_FACTOR = 0x0510,
 E_CLD_ELECTMEAS_ATTR_ID_AC_VOLTAGE_MULTIPLIER = 0x0600,
 E_CLD_ELECTMEAS_ATTR_ID_AC_VOLTAGE_DIVISOR = 0x0601,
 E_CLD_ELECTMEAS_ATTR_ID_AC_CURRENT_MULTIPLIER = 0x0602,
 E_CLD_ELECTMEAS_ATTR_ID_AC_CURRENT_DIVISOR = 0x0603,
 E_CLD_ELECTMEAS_ATTR_ID_AC_POWER_MULTIPLIER = 0x0604,
 E_CLD_ELECTMEAS_ATTR_ID_AC_POWER_DIVISOR = 0x0605,
 E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC_APPARENT_POWER = 0xFF00,
 E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC_NON_ACTIVE_POWER,
 E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC_FNDMTL_REACTIVE_POWER,
 E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC_FNDMTL_APPARENT_POWER,
 E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC_FNDMTL_POWER_FACTOR,
 E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC_NON_FNDMTL_APPARENT_POWER,
 E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC_TOTAL_HARMONIC_DISTORTION,
 E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC_VBIAS,
 E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC_DIVISOR,
} teCLD_ElectricalMeasurement_AttributeID;

30.8 Structures
There are no structures specific to the Electrical Measurement cluster.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
366 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

30.9 Compile-time options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the Electrical Measurement cluster.

To enable the Electrical Measurement cluster in the code to be built, it is necessary to add the following line to
the file:

#define CLD_ELECTRICAL_MEASUREMENT

In addition, to enable the cluster as a client or server, it is also necessary to add one of the following lines to the
same file:

#define ELECTRICAL_MEASUREMENT_SERVER
#define ELECTRICAL_MEASUREMENT_CLIENT

Optional Attributes

The optional attributes for the Electrical Measurement cluster (see Section 30.2) are enabled by defining:

• CLD_ELECTMEAS_ATTR_AC_FREQUENCY
• CLD_ELECTMEAS_ATTR_RMS_VOLTAGE
• CLD_ELECTMEAS_ATTR_RMS_CURRENT
• CLD_ELECTMEAS_ATTR_ACTIVE_POWER
• CLD_ELECTMEAS_ATTR_REACTIVE_POWER
• CLD_ELECTMEAS_ATTR_APPARENT_POWER
• CLD_ELECTMEAS_ATTR_POWER_FACTOR
• CLD_ELECTMEAS_ATTR_AC_VOLTAGE_MULTIPLIER
• CLD_ELECTMEAS_ATTR_AC_VOLTAGE_DIVISOR
• CLD_ELECTMEAS_ATTR_AC_CURRENT_MULTIPLIER
• CLD_ELECTMEAS_ATTR_AC_CURRENT_DIVISOR
• CLD_ELECTMEAS_ATTR_AC_POWER_MULTIPLIER
• CLD_ELECTMEAS_ATTR_AC_POWER_DIVISOR
• CLD_ELECTMEAS_ATTR_MAN_SPEC_APPARENT_POWER
• CLD_ELECTMEAS_ATTR_MAN_SPEC_NON_ACTIVE_POWER
• CLD_ELECTMEAS_ATTR_MAN_SPEC_FNDMTL_REACTIVE_POWER
• CLD_ELECTMEAS_ATTR_MAN_SPEC_FNDMTL_APPARENT_POWER
• CLD_ELECTMEAS_ATTR_MAN_SPEC_FNDMTL_POWER_FACTOR
• CLD_ELECTMEAS_ATTR_MAN_SPEC_NON_FNDMTL_APPARENT_POWER
• CLD_ELECTMEAS_ATTR_MAN_SPEC_TOTAL_HARMONIC_DISTORTION
• CLD_ELECTMEAS_ATTR_MAN_SPEC_VBIAS
• CLD_ELECTMEAS_ATTR_MAN_SPEC_DIVISOR

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_APPLIANCE_STATISTICS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
367 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part V: Lighting Clusters

• This part comprises two chapters:
– Chapter 31 details the Colour Control cluster
– Chapter 32 details the Ballast Configuration cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
368 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

31 Colour Control Cluster

This chapter describes the Colour Control cluster which is defined in the ZCL.

The Colour Control cluster has a Cluster ID of 0x0300.

31.1 Overview
The Colour Control cluster is used to control the colour of a light.

Note: Note 1: This cluster should normally be used with the Level Control cluster (see Chapter 16) and On/Off
cluster (see Chapter 14). This is assumed to be the case in this description.

Note: Note 2: This cluster only controls the colour balance and not the overall brightness of a light. The
brightness is adjusted using the Level Control cluster.

The Colour Control cluster provides the facility to specify the colour of a light in the colour space defined in the
Commission Internationale de l'Éclairage (CIE) specification (1931). Colour control can be performed in terms of
any of the following:

• x and y values, as defined in the CIE specification
• hue and saturation
• colour temperature

To use the functionality of this cluster, you must include the file ColourControl.h in your application and enable
the cluster by defining CLD_COLOUR_CONTROL in the zcl_options.h file - see Section 31.9.

It is also necessary to enable the cluster as a server or client, or as both:

• The cluster server is able to receive commands to change the colour on the local light device.
• The cluster client is able to send commands to change the colour on the remote light device.

The inclusion of the client or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance).

The compile-time options for the Colour Control cluster are fully detailed in Section 31.9.

The information that can potentially be stored in this cluster is organized into the following attribute sets:

• Colour Information
• Defined Primaries Information
• Additional Defined Primaries Information
• Defined Colour Point Settings
• Enhanced Colour Mode

31.2 Colour Control Cluster structure and attributes
The structure definition for the Colour Control cluster is:

typedef struct
{
#ifdef COLOUR_CONTROL_SERVER
 /* Colour information attribute set */
#ifdef CLD_COLOURCONTROL_ATTR_CURRENT_HUE
 zuint8 u8CurrentHue;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_CURRENT_SATURATION
 zuint8 u8CurrentSaturation;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
369 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#endif
#ifdef CLD_COLOURCONTROL_ATTR_REMAINING_TIME
 zuint16 u16RemainingTime;
#endif
 zuint16 u16CurrentX;
 zuint16 u16CurrentY;
#ifdef CLD_COLOURCONTROL_ATTR_DRIFT_COMPENSATION
 zenum8 u8DriftCompensation;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COMPENSATION_TEXT
 tsZCL_CharacterString sCompensationText;
 uint8 au8CompensationText[
 CLD_COLOURCONTROL_COMPENSATION_TEXT_MAX_STRING_LENGTH];
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED
 zuint16 16ColourTemperatureMired;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_MODE
 zenum8 u8ColourMode;
#endif
 zbmap8 u8Options;
 /* Defined Primaries Information attribute set */
#ifdef CLD_COLOURCONTROL_ATTR_NUMBER_OF_PRIMARIES
 zuint8 u8NumberOfPrimaries;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_1_X
 zuint16 u16Primary1X;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_1_Y
 zuint16 u16Primary1Y;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_1_INTENSITY
 zuint8 u8Primary1Intensity;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_2_X
 zuint16 u16Primary2X;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_2_Y
 zuint16 u16Primary2Y;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_2_INTENSITY
 zuint8 u8Primary2Intensity;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_3_X
 zuint16 u16Primary3X;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_3_Y
 zuint16 u16Primary3Y;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_3_INTENSITY
 zuint8 u8Primary3Intensity;
#endif
 /* Additional Defined Primaries Information attribute set */
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_4_X
 zuint16 u16Primary4X;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_4_Y
 zuint16 u16Primary4Y;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_4_INTENSITY

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
370 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zuint8 u8Primary4Intensity;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_5_X
 zuint16 u16Primary5X;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_5_Y
 zuint16 u16Primary5Y;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_5_INTENSITY
 zuint8 u8Primary5Intensity;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_6_X
 zuint16 u16Primary6X;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_6_Y
 zuint16 u16Primary6Y;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_6_INTENSITY
 zuint8 u8Primary6Intensity;
#endif
 /* Defined Colour Points Settings attribute set */
#ifdef CLD_COLOURCONTROL_ATTR_WHITE_POINT_X
 zuint16 u16WhitePointX;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_WHITE_POINT_Y
 zuint16 u16WhitePointY;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_X
 zuint16 u16ColourPointRX;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_Y
 zuint16 u16ColourPointRY;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_INTENSITY
 zuint8 u8ColourPointRIntensity;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_X
 zuint16 u16ColourPointGX;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_Y
 zuint16 u16ColourPointGY;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_INTENSITY
 zuint8 u8ColourPointGIntensity;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_X
 zuint16 u16ColourPointBX;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_Y
 zuint16 u16ColourPointBY;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_INTENSITY
 zuint8 u8ColourPointBIntensity;
#endif
/* Colour information attribute set */
#ifdef CLD_COLOURCONTROL_ATTR_ENHANCED_CURRENT_HUE
 zuint16 u16EnhancedCurrentHue;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_ENHANCED_COLOUR_MODE
 zenum8 u8EnhancedColourMode;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
371 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_ACTIVE
 zuint8 u8ColourLoopActive;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_DIRECTION
 zuint8 u8ColourLoopDirection;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_TIME
 zuint16 u16ColourLoopTime;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_START_ENHANCED_HUE
 zuint16 u16ColourLoopStartEnhancedHue;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_STORED_ENHANCED_HUE
 zuint16 u16ColourLoopStoredEnhancedHue;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_CAPABILITIES
 zuint16 u16ColourCapabilities;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED_PHY_MIN
 zuint16 u16ColourTemperatureMiredPhyMin;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED_PHY_MAX
 zuint16 u16ColourTemperatureMiredPhyMax;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_COUPLE_COLOUR_TEMPERATURE_TO_LEVEL_MIN_MIRED
 zuint16 u16CoupleColourTempToLevelMinMired;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_STARTUP_COLOUR_TEMPERATURE_MIRED
 zuint16 u16StartupColourTemperatureMired;
#endif
#ifdef CLD_COLOURCONTROL_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_ColourControl;

where:

‘Colour Information’ Attribute Set

Note that the attributes u8CurrentHue, u8CurrentSaturation, u16CurrentX, u16CurrentY and
u16ColourTemperatureMired are enabled as part of ‘Colour Capabilities’ groups - see Table 34 on page
704.

• u8CurrentHue is the current hue value of the light in the range 0-254. This value can be converted to hue in
degrees using the following formula:
hue = u8CurrentHue x 360/254. This attribute is only valid when the attributes u8CurrentSaturation
and u8ColorMode are also implemented.

• u8CurrentSaturation is the current saturation value of the light in the range 0-254. This value can be
converted to saturation as a fraction using the following formula: saturation = u8CurrentSaturation/254.
This attribute is only valid when the attributes u8CurrentHue and u8ColorMode are also implemented.

• u16RemainingTime is the time duration, in tenths of a second, before the currently active command
completes.

• u16CurrentX is the current value for the chromaticity x, as defined in the CIE xyY colour space, in the range
0-65279. The normal value of x is calculated using the following formula: x = u16CurrentX/65536.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
372 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16CurrentY is the current value for the chromaticity y, as defined in the CIE xyY colour space, in the range
0-65279. The normal value of y is calculated using the following formula: y = u16CurrentY/65536.

• u8DriftCompensation indicates the mechanism, if any, is being used to compensate for colour/intensity
drift over time. One of the following values is specified:

u8DriftCompensation Drift Compensation Mechanism

0x00 None

0x01 Other or unknown

0x02 Temperature monitoring

0x03 Optical luminance monitoring and feedback

0x04 Optical colour monitoring and feedback

0x05 - 0xFF Reserved

Table 43. u8DriftCompensation attribute bit values

• The following optional pair of attributes are used to store a textual indication of the drift compensation
mechanism used:
– sCompensationText is a tsZCL_CharacterString structure (see Section 6.1.14) for a character string

representing the drift compensation method used
– au8CompensationText[] is a byte-array which contains the character data bytes representing the drift

compensation method used
• u16ColourTemperatureMired is the colour temperature of the light expressed as a micro reciprocal

degree (mired) value. It is a scaled reciprocal of the current value of the colour temperature, in the range
1-65279
(0 is undefined and 65535 indicates an invalid value). The colour temperature, in Kelvin, is calculated using
the following formula:
T = 1000000/u16ColourTemperatureMired. This attribute is only valid when the attribute u8ColourMode
is also implemented.

• u8ColourMode indicates which method is currently being used to control the colour of the light. One of the
following values is specified:

u8ColourMode Colour Control Method/Attributes

0x00 Hue and saturation
(u8CurrentHue and u8CurrentSaturation)

0x01 Chromaticities x and y from CIE xyY colour space
(u16CurrentX and u16CurrentY)

0x02 Colour temperature (u16ColourTemperatureMired)

0x03 - 0xFF Reserved

Table 44. u8ColourMode attribute bit values

• u8Options is a bitmap which allows behaviors connected with certain commands to be defined (these
behaviors should only be defined during commissioning), as follows:

Bits Name Description

0 ChangeIfOff Defines whether changes to the Colour Control cluster can be made
from control clusters (e.g. Level Control) when the bOnOff attribute of
the On/Off cluster is zero (off):
• 1 – Allow changes
• 0 – Do not allow changes

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
373 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bits Name Description

1-7 - Reserved

‘Defined Primaries Information’ Attribute Set

• u8NumberOfPrimaries is the number of colour primaries implemented on the device, in the range 1-6
(0xFF is used if the number of primaries is unknown).
– For each colour primary, there is a set of three attributes used (see below) - for example, for the first primary

this attribute trio comprises u16Primary1X, u16Primary1Y and u8Primary1Intensity. Therefore, the
number of primaries specified determines the number of these attribute trios used.

Note: The number of primaries is set using a macro at compile-time (see Section 31.9). This automatically
enables the relevant u16PrimaryNX, u16PrimaryNY and u8PrimaryNIntensity (N=1 to 6) attributes.

• The attribute definitions below are valid for colour primary N, where N is 1, 2 or 3.
• u16PrimaryNX is the value for the chromaticity x for colour primary N, as defined in the CIE xyY colour

space, in the range 0-65279. The normalized value of x is calculated using the following formula: x =
u16PrimaryNX/65536.

• u16PrimaryNY is the value for the chromaticity y for colour primary N, as defined in the CIE xyY colour
space, in the range 0-65279. The normalized value of y is calculated using the following formula: y =
u16PrimaryNY/65536.

• u8PrimaryNIntensity is a representation of the maximum intensity of colour primary 1, normalized such
that the primary with the highest maximum intensity has the value 0xFE.

‘Additional Defined Primaries Information’ Attribute Set

• The attribute definitions for this set are as for u16PrimaryNX, u16PrimaryNY and u8PrimaryNIntensity
above, where N is 4, 5 or 6.

• As indicated in the Note above for the ‘Defined Primaries Information’ Attribute Set, these attributes are
enabled automatically according to the number of required primaries defined at compile-time (see Section
31.9).

‘Defined Colour Points Settings’ Attribute Set

• u16WhitePointX is the value for the chromaticity x for the white point of the device, as defined in the CIE
xyY colour space, in the range 0-65279. The normalized value of x is calculated using the following formula:
x = u16WhitePointX/65536.

• u16WhitePointY is the value for the chromaticity y for the white point of the device, as defined in the CIE
xyY colour space, in the range 0-65279. The normalized value of y is calculated using the following formula:
y = u16WhitePointY/65536.

• u16ColourPointRX is the value for the chromaticity x for the red colour point of the device, as defined in
the CIE xyY colour space, in the range 0-65279. The normalized value of x is calculated using the following
formula:
x = u16ColourPointRX/65536.

• u16ColourPointRY is the value for the chromaticity y for the red colour point of the device, as defined in
the CIE xyY colour space, in the range 0-65279. The normalized value of y is calculated using the following
formula:
y = u16ColourPointRY/65536.

• u8ColourPointRIntensity is a representation of the relative intensity of the red colour point of the
device, normalized such that the colour point with the highest relative intensity has the value 0xFE (the value
0xFF indicates an invalid value).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
374 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16ColourPointGX is the value for the chromaticity x for the green colour point of the device, as defined in
the CIE xyY colour space, in the range 0-65279. The normalized value of x is calculated using the following
formula:
x = u16ColourPointGX/65536.

• u16ColourPointGY is the value for the chromaticity y for the green colour point of the device, as defined in
the CIE xyY colour space, in the range 0-65279. The normalized value of y is calculated using the following
formula:
y = u16ColourPointGY/65536.

• u8ColourPointGIntensity is a representation of the relative intensity of the green colour point of the
device, normalized such that the colour point with the highest relative intensity has the value 0xFE (the value
0xFF indicates an invalid value).

• u16ColourPointBX is the value for the chromaticity x for the blue colour point of the device, as defined in
the CIE xyY colour space, in the range 0-65279. The normalized value of x is calculated using the following
formula:
x = u16ColourPointBX/65536.

• u16ColourPointBY is the value for the chromaticity y for the blue colour point of the device, as defined in
the CIE xyY colour space, in the range 0-65279. The normalized value of y is calculated using the following
formula:
y = u16ColourPointBY/65536.

• u8ColourPointBIntensity is a representation of the relative intensity of the blue colour point of the
device, normalized such that the colour point with the highest relative intensity has the value 0xFE (the value
0xFF indicates an invalid value).

Enhanced Colour Mode Attributes

These attributes are enabled as part of ‘Colour Capabilities’ groups - see Table 34 on page 704.

• u16EnhancedCurrentHue contains the current hue of the light in terms of (unequal) steps around the CIE
colour ‘triangle’:
– 8 most significant bits represent an index into the XY look-up table that contains the step values, thus

indicating the current step used
– 8 least significant bits represent a linear interpolation value between the current step and next step (up),

facilitating a colour zoom
– The value of the u8CurrentHue attribute is calculated from the above values.

• u8EnhancedColourMode indicates which method is currently being used to control the colour of the light.
One of the following values is specified:

u8ColourMode Colour Control Method/Attributes

0x00 Current hue and current saturation
(u8CurrentHue and u8CurrentSaturation)

0x01 Chromaticities x and y from CIE xyY colour space
(u16CurrentX and u16CurrentY)

0x02 Colour temperature (u16ColourTemperatureMired)

0x03 Enhanced hue and current saturation
(u16EnhancedCurrentHue and u8CurrentSaturation)

0x03 - 0xFF Reserved

Table 45. u8EnhancedColourMode attribute

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
375 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8ColourLoopActive indicates whether the colour loop is currently active: 0x01 - active, 0x00 - not active
(all other values are reserved). The colour loop follows the hue steps around the CIE colour ‘triangle’ by
incrementing or decrementing the value of u16EnhancedCurrentHue.

• u8ColourLoopDirection indicates the current direction of the colour loop in terms of the direction of
change of u16EnhancedCurrentHue:
0x01 - incrementing, 0x00 - decrementing (all other values are reserved).

• u16ColourLoopTime is the period, in seconds, of a full colour loop - that is, the time to cycle all possible
values of u16EnhancedCurrentHue.

• u16ColourLoopStartEnhancedHue indicates the value of u16EnhancedCurrentHue at which the colour
loop must be started.

• u16ColourLoopStoredEnhancedHue contains the value of u16EnhancedCurrentHue at which the last
colour loop completed (this value is stored on completing a colour loop).

• u16ColourCapabilities is a bitmap indicating the Colour Control cluster features (and attributes)
supported by the device, as detailed below (a bit is set to ‘1’ if the feature is supported or ‘0’ otherwise):

Bits Feature Attributes

0 Hue/Saturation
u8CurrentHue
u8CurrentSaturation

1 Enhanced Hue
(Hue/Saturation must also be supported)

u16EnhancedCurrentHue

2 Colour Loop
(Enhanced Hue must also be supported)

u8ColourLoopActive
u8ColourLoopDirection
u16ColourLoopTime
u16ColourLoopStartEnhancedHue
u16ColourLoopStoredEnhancedHue
u16ColourCapabilities

3 CIE XY Values
u16CurrentX
u16CurrentY

4 Colour Temperature (Mired)
u16ColourTemperatureMired
u16ColourTemperatureMiredPhyMin
u16ColourTemperatureMiredPhyMax

5-15 Reserved -

Table 46. 

Macros are provided to select the required Colour Capabilities at compile-time - see Table 34 on page 704.

• u16ColourTemperatureMiredPhyMin indicates the minimum value (supported by the hardware) of the
mired colour temperature attribute.

• u16ColourTemperatureMiredPhyMax indicates the maximum value (supported by the hardware) of the
mired colour temperature attribute.

• u16CoupleColourTempToLevelMinMired is an optional attribute that is used when the
u16ColourTemperatureMired attribute is coupled to the u8CurrentLevel attribute of the Level
Control cluster (this is the case when the CoupleColorTempToLevel bit of the u8Options attribute
of the Level Control cluster is equal to 1). u16CoupleColourTempToLevelMinMired specifies a
lower bound on the value of the u16ColourTemperatureMired attribute, where this lower bound
corresponds to a u8CurrentLevel value of 0xFE (100%). Note that because the colour temperature is
represented as a mired (reciprocal) value, a high value of u8CurrentLevel corresponds to a low value of

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
376 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u16ColourTemperatureMired and the 16CoupleColourTempToLevelMinMired attribute corresponds
to an upper bound on the value of the colour temperature supported by the device. The value of this attribute
must be at least equal to the value of u16ColourTemperatureMiredPhyMin.

• u16StartupColourTemperatureMired is an optional attribute to define the required start-
up colour temperature of a light when it is supplied with power. It determines the initial value of
u16ColourTemperatureMired on start-up.

Global Attributes

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which
this cluster instance is based. The cluster specification in the ZCLr6 corresponds to a cluster revision of 1. The
value is incremented by one for each subsequent revision of the cluster specification. This attribute is also
described inSection2.4.

31.3 Attributes for Default Reporting
The following attributes of the Colour Control cluster can be selected for default reporting:

u8CurrentHue
u8CurrentSaturation
u16CurrentX

• u16CurrentY

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

31.4 Initialization
The function eCLD_ColourControlCreateColourControl() is used to create an instance of the Colour Control
cluster. The function is generally called by the initialization function for the host device.

31.5 Sending Commands
The NXP implementation of the ZCL provides functions for sending commands between a Colour Control
cluster client and server. A command is sent from the client to one or more endpoints on the server. Multiple
endpoints can usually be targeted using binding or group addressing.

Note: Any ‘Move to’, ‘Move’ or ‘Step’ command that is currently in progress can be stopped at any time by
calling the function: eCLD_ColourControlCommandStopMoveStepCommandSend()

31.5.1 Controlling Hue

Colour can be controlled in terms of hue, which is related to the dominant wavelength (or frequency) of the
light emitted by a lighting device. On a device that supports the Colour Control cluster, the hue is controlled by
means of the ‘current hue’ attribute (u8CurrentHue) of the cluster. This attribute can take a value in the range
0-254, which can be converted to hue in degrees using the following formula:

Hue in degrees = u8CurrentHue x 360/254

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
377 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The ‘current hue’ attribute can be controlled in a number of ways using commands of the Colour Control cluster.
API functions are available to send these commands to endpoints on remote devices.

‘Move to Hue’ Command

The ‘Move to Hue’ command allows the ‘current hue’ attribute to be moved (increased or decreased) to a
specified target value in a continuous manner over a specified transition time. This command can be sent to an
endpoint on a remote device using the function

eCLD_ColourControlCommandMoveToHueCommandSend()

Since the possible hues are represented on a closed boundary, the target hue can be reached by moving the
attribute value in either direction, up or down (the attribute value wraps around). Options are also provided for
taking the ‘shortest route’ and ‘longest route’ around the boundary.

‘Move Hue’ Command

The ‘Move Hue’ command allows the ‘current hue’ attribute to be moved in a given direction (increased or
decreased) at a specified rate indefinitely, until stopped. This command can be sent to an endpoint on a remote
device using the function

eCLD_ColourControlCommandMoveHueCommandSend()

Since the possible hues are represented on a closed boundary, the movement is cyclic (the attribute value
wraps around). The above function can also be used to stop the movement.

‘Step Hue’ Command

The ‘Step Hue’ command allows the ‘current hue’ attribute to be moved (increased or decreased) by a specified
amount in a continuous manner over a specified transition time. This command can be sent to an endpoint on a
remote device using the function

eCLD_ColourControlCommandStepHueCommandSend()

Note: Hue can also be moved in conjunction with saturation, as described in Section 31.5.7. The ‘enhanced’
hue can be moved in similar ways, as described in Section 31.5.5.

31.5.2 Controlling Saturation

Colour can be controlled in terms of saturation, which is related to the spread of wavelengths (or frequencies)
in the light emitted by a lighting device. On a device that supports the Colour Control cluster, the saturation is
controlled by means of the ‘current saturation’ attribute (u8CurrentSaturation) of the cluster. This attribute
can take a value in the range 0-254, which can be converted to saturation as a fraction using the following
formula:

Saturation = u8CurrentSaturation/254

The ‘current saturation’ attribute can be controlled in a number of ways using commands of the Colour Control
cluster. API functions are available to send these commands to endpoints on remote devices.

‘Move to Saturation’ Command

The ‘Move to Saturation’ command allows the ‘current saturation’ attribute to be moved (increased or
decreased) to a specified target value in a continuous manner over a specified transition time. This command
can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandMoveToSaturationCommandSend()

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
378 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

‘Move Saturation’ Command

The ‘Move Saturation’ command allows the ‘current saturation’ attribute to be moved in a given direction
(increased or decreased) at a specified rate until stopped or until the current saturation reaches its minimum or
maximum value. This command can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandMoveSaturationCommandSend()

The above function can also be used to stop the movement.

‘Step Saturation’ Command

The ‘Step Saturation’ command allows the ‘current saturation’ attribute to be moved (increased or decreased)
by a specified amount in a continuous manner over a specified transition time. This command can be sent to an
endpoint on a remote device using the function

eCLD_ColourControlCommandStepSaturationCommandSend()

Note: Saturation can also be moved in conjunction with hue, as described in Section 31.5.7.

31.5.3 Controlling Colour (CIE x and y Chromaticities)

Colour can be controlled in terms of the x and y chromaticities defined in the CIE xyY colour space. On a
device that supports the Colour Control cluster, these values are controlled by means of the ‘current x’ attribute
(u16CurrentX) and ‘current y’ attribute (u16CurrentY) of the cluster. Each of these attributes can take a
value in the range 0-65279. The normalized x and y chromaticities can then be calculated from these values
using the following formulae:

x = u16CurrentX/65536

y = u16CurrentY/65536

The x and y chromaticity attributes can be controlled in a number of ways using commands of the Colour
Control cluster. API functions are available to send these commands to endpoints on remote devices.

‘Move to Colour’ Command

The ‘Move to Colour’ command allows the ‘current x’ and ‘current y’ attributes to be moved (increased or
decreased) to specified target values in a continuous manner over a specified transition time. This command
can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandMoveToColourCommandSend()

‘Move Colour’ Command

The ‘Move Colour’ command allows the ‘current x’ and ‘current y’ attributes to be moved in a given direction
(increased or decreased) at specified rates until stopped or until both attributes reach their minimum or
maximum value. This command can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandMoveColourCommandSend()

The above function can also be used to stop the movement.

‘Step Colour’ Command

The ‘Step Colour’ command allows the ‘current x’ and ‘current y’ attributes to be moved (increased or
decreased) by specified amounts in a continuous manner over a specified transition time. This command can be
sent to an endpoint on a remote device using the function

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
379 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

eCLD_ColourControlCommandStepColourCommandSend()

31.5.4 Controlling Colour Temperature

Colour can be controlled in terms of colour temperature, which is the temperature of an ideal black body
which radiates light of a similar hue to that of the lighting device. On a device that supports the Colour
Control cluster, the colour temperature is controlled by means of the ‘mired colour temperature’ attribute
(u16ColourTemperatureMired) of the cluster. This attribute stores a micro reciprocal degree (mired) value,
which is a scaled reciprocal of the current value of the colour temperature of the light, in the range 1-65279. The
colour temperature, in Kelvin, can be calculated from the attribute value using the following formula:

T = 1000000/u16ColourTemperatureMired

Note: The movement of colour temperature through colour space always follows the ‘Black Body Line'.

‘Move to Colour Temperature’ Command

The ‘Move to Colour Temperature’ command allows the ‘mired colour temperature’ attribute to be moved
(increased or decreased) to a specified target value in a continuous manner over a specified transition time.
This command can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandMoveToColourTemperatureCommandSend()

‘Move Colour Temperature’ Command

The ‘Move Colour Temperature’ command allows the ‘mired colour temperature’ attribute to be moved in a given
direction (increased or decreased) at a specified rate until stopped. This command can be sent to an endpoint
on a remote device using the function

eCLD_ColourControlCommandMoveColourTemperatureCommandSend()

The above function can also be used to stop the movement.

Maximum and minimum values for the ‘mired colour temperature’ attribute during the movement are also
specified. If the attribute value reaches the specified maximum or minimum before the required change has
been achieved, the movement will automatically stop.

‘Step Colour Temperature’ Command

The ‘Step Colour Temperature’ command allows the ‘mired colour temperature’ attribute to be moved (increased
or decreased) by a specified amount in a continuous manner over a specified transition time. This command
can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandStepColourTemperatureCommandSend()

Maximum and minimum values for the ‘mired colour temperature’ attribute during the movement are also
specified. If the attribute value reaches the specified maximum or minimum before the required change has
been achieved, the movement will automatically stop.

31.5.5 Controlling ‘Enhanced’ Hue

Colour can be controlled in terms of hue, which is related to the dominant wavelength (or frequency) of the
light emitted by a lighting device. The hue can alternatively be controlled by means of the ‘enhanced current
hue’ attribute (u16EnhancedCurrentHue), instead of the ‘current hue’ attribute (the ‘current hue’ attribute is
automatically adjusted when the ‘enhanced current hue’ attribute value changes).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
380 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The ‘enhanced current hue’ attribute allows hue to be controlled on a finer scale than the ‘current hue’ attribute.
Hue steps are defined in a look-up table and values between the steps can be achieved through linear
interpolation. This 16-bit attribute value therefore comprises two 8-bit components, as described below.

Bits 15-8 Bits 7-0

Index into the look-up table that
contains the hue step values, thus indicating the current step
used

Linear interpolation value between the
current step and next step (up)

Table 47. ‘Enhanced Current Hue’ Attribute Format

Thus, if the current hue step value is Hi (where i is the relevant table index) and the linear interpolation value is
interp, the ‘enhanced’ hue is given by the formula:

Enhanced hue = Hi + (interp/255) x (Hi+1 - Hi)

To convert this hue to a value in degrees, it is then necessary to multiply by 360/255.

The ‘enhanced current hue’ attribute can be controlled in a number of ways using commands of the Colour
Control cluster. API functions are available to send these commands to endpoints on remote devices.

Note: Note: These commands are issued by a cluster client and are performed on a cluster server. The look-
up table is user-defined on the server. When this command is received by the server, the user-defined callback
function that is invoked must read the entry with the specified index from the look-up table and calculate the
corresponding ‘enhanced’ hue value.

‘Enhanced Move to Hue’ Command

The ‘Enhanced Move to Hue’ command allows the ‘enhanced current hue’ attribute to be moved (increased or
decreased) to a specified target value in a continuous manner over a specified transition time (the ‘current hue’
attribute is also moved to a value based on the target ‘enhanced current hue’ value). This command can be sent
to an endpoint on a remote device using the function

eCLD_ColourControlCommandEnhancedMoveToHueCommandSend()

Since the possible hues are represented on a closed boundary, the target hue can be reached by moving the
attribute value in either direction, up or down (the attribute value wraps around). Options are also provided for
taking the ‘shortest route’ and ‘longest route’ around the boundary.

‘Enhanced Move Hue’ Command

The ‘Enhanced Move Hue’ command allows the ‘enhanced current hue’ attribute to be moved in a given
direction (increased or decreased) at a specified rate indefinitely, until stopped (the ‘current hue’ attribute is also
moved through values based on the ‘enhanced current hue’ value). This command can be sent to an endpoint
on a remote device using the function

eCLD_ColourControlCommandEnhancedMoveHueCommandSend()

The above function can also be used to stop the movement.

Since the possible hues are represented on a closed boundary, the movement is cyclic (the attribute value
wraps around). The above function can also be used to stop the movement.

‘Enhanced Step Hue’ Command

The ‘Enhanced Step Hue’ command allows the ‘enhanced current hue’ attribute to be moved (increased or
decreased) by a specified amount in a continuous manner over a specified transition time (the ‘current hue’

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
381 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

attribute is also moved through values based on the ‘enhanced current hue’ value). This command can be sent
to an endpoint on a remote device using the function

eCLD_ColourControlCommandEnhancedStepHueCommandSend()

Note: Note 1: ‘Enhanced’ hue can also be moved in conjunction with saturation, as described in Section
31.5.7.

Note: Note 2: The value of the ‘enhanced current hue’ attribute can be moved around a colour loop, as
described in Section 31.5.6.

31.5.6 Controlling a Colour Loop

The colour of a device can be controlled by moving the value of the ‘enhanced current hue’ attribute around
a colour loop corresponding to the CIE colour ‘triangle’ - refer to Section 31.5.5 for details of the ‘enhanced
current hue’ attribute.

Movement along the colour loop can be controlled using the ‘Colour Loop Set’ command of the Colour Control
cluster. A function is available to send this command to endpoints on remote devices.

‘Colour Loop Set’ Command

The ‘Colour Loop Set’ command allows movement of the ‘enhanced current hue’ attribute value around the
colour loop to be configured and started. The direction(up or down), start ‘enhanced’ hue and duration of the
movement can be specified. This command can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandColourLoopSetCommandSend()

The above function can also be used to stop the movement.

31.5.7 Controlling Hue and Saturation

Colour can be completely specified in terms of hue and saturation, which respectively represent the dominant
wavelength (or frequency) of the light and the spread of wavelengths (around the former) within the light.
Therefore, the Colour Control cluster provides commands to change both the hue and saturation at the same
time. In fact, commands are provided to control the values of the:

• ‘current hue’ and ‘current saturation’ attributes
• ‘enhanced current hue’ and ‘current saturation’ attributes

API functions are available to send these commands to endpoints on remote devices.

‘Move to Hue and Saturation’ Command

The ‘Move to Hue and Saturation’ command allows the ‘current hue’ and ‘current saturation’attributes to be
moved to specified target values in a continuous manner over a specified transition time. This command can be
sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandMoveToHueCommandSend()

‘Enhanced Move to Hue and Saturation’ Command

The ‘Enhanced Move to Hue and Saturation’ command allows the ‘enhanced current hue’ and ‘current
saturation’attributes to be moved to specified target values in a continuous manner over a specified transition
time. This command can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend()

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
382 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

31.6 Functions
The following Colour Control cluster functions are provided in the NXP implementation of the ZCL:

• eCLD_ColourControlCreateColourControl
• eCLD_ColourControlCommandMoveToHueCommandSend
• eCLD_ColourControlCommandMoveHueCommandSend
• eCLD_ColourControlCommandStepHueCommandSend
• eCLD_ColourControlCommandMoveToSaturationCommandSend
• eCLD_ColourControlCommandMoveSaturationCommandSend
• eCLD_ColourControlCommandStepSaturationCommandSend
• eCLD_ColourControlCommandMoveToHueAndSaturationCommandSend
• eCLD_ColourControlCommandMoveToColourCommandSend
• eCLD_ColourControlCommandMoveColourCommandSend
• eCLD_ColourControlCommandStepColourCommandSend
• eCLD_ColourControlCommandEnhancedMoveToHueCommandSend
• eCLD_ColourControlCommandEnhancedMoveHueCommandSend
• eCLD_ColourControlCommandEnhancedStepHueCommandSend
• eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend
• eCLD_ColourControlCommandColourLoopSetCommandSend
• eCLD_ColourControlCommandStopMoveStepCommandSend
• eCLD_ColourControlCommandMoveToColourTemperatureCommandSend
• eCLD_ColourControlCommandMoveColourTemperatureCommandSend
• eCLD_ColourControlCommandStepColourTemperatureCommandSend
• eCLD_ColourControl_GetRGB

31.6.1 eCLD_ColourControlCreateColourControl

teZCL_Status eCLD_ColourControlCreateColourControl(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_ColourControlCustomDataStructure
 *psCustomDataStructure);

Description

This function creates an instance of the Colour Control cluster on an endpoint. The cluster instance is created
on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a
server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function creates a Colour
Control cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
383 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

When used, this function must be the first Colour Control cluster function called in the application, and must be
called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Colour Control cluster. The function initializes the array elements to zero.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer : Type of cluster instance (server or client) to be created:
• TRUE - server
• FALSE - client
• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this

case, this structure must contain the details of the Colour Control cluster. This parameter can refer to a pre-
filled structure called sCLD_ColourControl which is provided in the ColourControl.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_ColourControl which defines the attributes of Colour
Control cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

• psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see
Section 31.7.1)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.2 eCLD_ColourControlCommandMoveToHueCommandSend

teZCL_Status eCLD_ColourControlCommandMoveToHueCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_MoveToHueCommandPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
384 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a Move to Hue command to instruct a device to move its ‘current hue’ attribute to a target
hue value in a continuous manner within a given time. The hue value, direction and transition time are specified
in the payload of the command (see Section 31.7.2).

Since the possible hues are represented on a closed boundary, the target hue can be reached by moving the
attribute value in either direction, up or down (the attribute value wraps around). Options are also provided for
‘shortest route’ and ‘longest route’ around the boundary.

The device receiving this message generates a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting the
‘colour mode’ attribute to 0x00, if required. It can then move the ‘current hue’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current hue’ attribute is enabled in the Colour Control cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

This function invokes the ZigBee PRO stack function to transmit the data. In case an error is returned, call the
eZCL_GetLastZpsError() function to get the error.

31.6.3 eCLD_ColourControlCommandMoveHueCommandSend

teZCL_Status eCLD_ColourControlCommandMoveHueCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_MoveHueCommandPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
385 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a Move Hue command to instruct a device to move its ‘current hue’ attribute value in a
given direction at a specified rate for an indefinite time. The direction and rate are specified in the payload of the
command (see Section 31.7.2).

The command can request that the hue is moved up or down, or that existing movement is stopped. Since the
possible hues are represented on a closed boundary, the movement is cyclic (the attribute value wraps around).
Once started, the movement will continue until it is stopped.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting the
‘colour mode’ attribute to 0x00, if required. It can then move the ‘current hue’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current hue’ attribute is enabled in the Colour Control cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.4 eCLD_ColourControlCommandStepHueCommandSend

teZCL_Status eCLD_ColourControlCommandStepHueCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_StepHueCommandPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
386 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a Step Hue command to instruct a device to increase or decrease its ‘current hue’ attribute
by a specified ‘step’ value in a continuous manner within a given time. The step size, direction and transition
time are specified in the payload of the command (see Section 31.7.2).

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting the
‘colour mode’ attribute to 0x00, if required. It can then move the ‘current hue’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current hue’ attribute is enabled in the Colour Control cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.5 eCLD_ColourControlCommandMoveToSaturationCommandSend

teZCL_Status eCLD_ColourControlCommandMoveToSaturationCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_MoveToSaturationCommandPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
387 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a Move to Saturation command to instruct a device to move its ‘current saturation’ attribute
to a target saturation value in a continuous manner within a given time. The saturation value and transition time
are specified in the payload of the command (see Section 31.7.2).

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting the
‘colour mode’ attribute to 0x00, if required. It can then move the ‘current saturation’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current saturation’ attribute is enabled in the Colour Control cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.6 eCLD_ColourControlCommandMoveSaturationCommandSend

teZCL_Status eCLD_ColourControlCommandMoveSaturationCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_MoveSaturationCommandPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
388 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a Move Saturation command to instruct a device to move its ‘current saturation’ attribute
value in a given direction at a specified rate for an indefinite time. The direction and rate are specified in the
payload of the command (see Section 31.7.2).

The command can request that the saturation is moved up or down, or that existing movement is stopped. Once
started, the movement will continue until it is stopped. If the current saturation reaches its minimum or maximum
value, the movement will automatically stop.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting the
‘colour mode’ attribute to 0x00, if required. It can then move the ‘current saturation’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current saturation’ attribute is enabled in the Colour Control cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.7 eCLD_ColourControlCommandStepSaturationCommandSend

teZCL_Status eCLD_ColourControlCommandStepSaturationCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_StepSaturationCommandPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
389 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a Step Saturation command to instruct a device to increase or decrease its ‘current
saturation’ attribute by a specified ‘step’ value in a continuous manner within a given time. The step size,
direction and transition time are specified in the payload of the command (see Section 31.7.2).

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting the
‘colour mode’ attribute to 0x00, if required. It can then move the ‘current saturation’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current saturation’ attribute is enabled in the Colour Control cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.8 eCLD_ColourControlCommandMoveToHueAndSaturationCommandSend

teZCL_Status eCLD_ColourControlCommandMoveToHueCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_MoveToHueCommandPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
390 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a Move to Hue and Saturation command to instruct a device to move its ‘current hue’
and ‘current saturation’ attributes to target values in a continuous manner within a given time. The hue value,
saturation value and transition time are specified in the payload of the command (see Section 31.7.2).

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting the
‘colour mode’ attribute to 0x00, if required. It can then move the ‘current hue’ and ‘current saturation’ values as
requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current hue’ and ‘current saturation’ attributes are enabled in the
Colour Control cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.9 eCLD_ColourControlCommandMoveToColourCommandSend

teZCL_Status eCLD_ColourControlCommandMoveToColourCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_MoveToColourCommandPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
391 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a Move to Colour command to instruct a device to move its ‘current x’ and ‘current y’
attributes to target values in a continuous manner within a given time (where x and y are the chromaticities from
the CIE xyY colour space). The x-value, y-value and transition time are specified in the payload of the command
(see Section 31.7.2).

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘chromaticities x and y’ mode is selected by setting the
‘colour mode’ attribute to 0x01, if required. It can then move the ‘current x’ and ‘current y’ values as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current x’ and ‘current y’ attributes are enabled in the Colour Control
cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.10 eCLD_ColourControlCommandMoveColourCommandSend

teZCL_Status eCLD_ColourControlCommandMoveColourCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_MoveColourCommandPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
392 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function sends a Move Colour command to instruct a device to move its ‘current x’ and ‘current y’ attribute
values at a specified rate for each attribute for an indefinite time (where x and y are the chromaticities from the
CIE xyY colour space). The rates are specified in the payload of the command (see Section 31.7.2 and each
rate can be positive (increase) or negative (decrease).

Once started, the movement will continue until it is stopped. The movement can be stopped by calling this
function with both rates set to zero. The movement will be automatically stopped when either of the attributes
reaches its minimum of maximum value.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘chromaticities x and y’ mode is selected by setting the
‘colour mode’ attribute to 0x01, if required. It can then move the ‘current x’ and ‘current y’ values as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current x’ and ‘current y’ values attributes are enabled in the Colour
Control cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.11 eCLD_ColourControlCommandStepColourCommandSend

teZCL_Status eCLD_ColourControlCommandStepColourCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_StepColourCommandPayload

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
393 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 *psPayload);

Description

This function sends a Step Colour command to instruct a device to change its ‘current x’ and ‘current y’ attribute
values by a specified ‘step’ value for each attribute in a continuous manner within a given time (where x and
y are the chromaticities from the CIE xyY colour space). The step sizes and transition time are specified in
the payload of the command (see Section 31.7.2), and each step size can be positive (increase) or negative
(decrease).

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘chromaticities x and y’ mode is selected by setting the
‘colour mode’ attribute to 0x01, if required. It can then move the ‘current x’ and ‘current y’ values as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current x’ and ‘current y’ values attributes are enabled in the Colour
Control cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.12 eCLD_ColourControlCommandEnhancedMoveToHueCommandSend

teZCL_Status eCLD_ColourControlCommandEnhancedMoveToHueCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
394 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsCLD_ColourControl_EnhancedMoveToHueCommandPayload
 *psPayload);

Description

This function sends an Enhanced Move to Hue command to instruct a device to move its ‘enhanced current
hue’ attribute to a target hue value in a continuous manner within a given time. The enhanced hue value,
direction and transition time are specified in the payload of the command (see Section 31.7.2). The ‘current hue’
attribute is also moved to a value based on the target ‘enhanced current hue’ value.

Since the possible hues are represented on a closed boundary, the target hue can be reached by moving the
attribute value in either direction, up or down (the attribute value wraps around). Options are also provided for
‘shortest route’ and ‘longest route’ around the boundary.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting
the ‘colour mode’ attribute to 0x00 and that ‘enhanced hue and saturation’ mode is selected by setting the
‘enhanced colour mode’ attribute to 0x03, if required. It can then move the ‘enhanced current hue’ value as
requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ attribute is enabled in the Colour Control
cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
395 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

31.6.13 eCLD_ColourControlCommandEnhancedMoveHueCommandSend

teZCL_Status eCLD_ColourControlCommandEnhancedMoveHueCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_EnhancedMoveHueCommandPayload
 *psPayload);

Description

This function sends an Enhanced Move Hue command to instruct a device to move its ‘enhanced current hue’
attribute value in a given direction at a specified rate for an indefinite time. The direction and rate are specified
in the payload of the command (see Section 31.7.2). The ‘current hue’ attribute is also moved through values
based on the ‘enhanced current hue’ value.

The command can request that the hue is moved up or down, or that existing movement is stopped. Since the
possible hues are represented on a closed boundary, the movement is cyclic (the attribute value wraps around).
Once started, the movement will continue until it is stopped.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting
the ‘colour mode’ attribute to 0x00 and that ‘enhanced hue and saturation’ mode is selected by setting the
‘enhanced colour mode’ attribute to 0x03, if required. It can then move the ‘enhanced current hue’ value as
requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ attribute is enabled in the Colour Control
cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
396 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.14 eCLD_ColourControlCommandEnhancedStepHueCommandSend

teZCL_Status eCLD_ColourControlCommandEnhancedStepHueCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_EnhancedStepHueCommandPayload
 *psPayload);

Description

This function sends an Enhanced Step Hue command to instruct a device to increase or decrease its ‘enhanced
current hue’ attribute by a specified ‘step’ value in a continuous manner within a given time. The step size,
direction and transition time are specified in the payload of the command (see Section 31.7.2). The ‘current hue’
attribute is also moved through values based on the ‘enhanced current hue’ value.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting
the ‘colour mode’ attribute to 0x00 and that ‘enhanced hue and saturation’ mode is selected by setting the
‘enhanced colour mode’ attribute to 0x03, if required. It can then move the ‘enhanced current hue’ value as
requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ attribute is enabled in the Colour Control
cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
397 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.15 eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend

teZCL_Status eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_EnhancedMoveToHueAndSaturation
 CommandPayload *psPayload);

Description

This function sends an Enhanced Move to Hue and Saturation command to instruct a device to move its
‘enhanced current hue’ and ‘current saturation’ attributes to target values in a continuous manner within a given
time. The enhanced hue value, saturation value and transition time are specified in the payload of the command
(see Section 31.7.2). The ‘current hue’ attribute is also moved to a value based on the target ‘enhanced current
hue’ value.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting
the ‘colour mode’ attribute to 0x00 and that ‘enhanced hue and saturation’ mode is selected by setting the
‘enhanced colour mode’ attribute to 0x03, if required. It can then move the ‘enhanced current hue’ and ‘current
saturation’ values as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ and ‘current saturation’ attributes are enabled
in the Colour Control cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
398 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.16 eCLD_ColourControlCommandColourLoopSetCommandSend

teZCL_Status eCLD_ColourControlCommandColourLoopSetCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_ColourLoopSetCommandPayload
 *psPayload);

Description

This function sends a Colour Loop Set command to instruct a device to configure the movement of the
‘enhanced current hue’ attribute value around the colour loop corresponding to the CIE colour ‘triangle’. The
configured movement can be started in either direction and for a specific duration. The start hue, direction and
duration are specified in the payload of the command (see Section 31.7.2). The ‘current hue’ attribute is also
moved through values based on the ‘enhanced current hue’ value.

The function can also be used to stop existing movement around the colour loop.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘hue and saturation’ mode is selected by setting
the ‘colour mode’ attribute to 0x00 and that ‘enhanced hue and saturation’ mode is selected by setting the
‘enhanced colour mode’ attribute to 0x03, if required. It can then move the ‘enhanced current hue’ value as
requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ attribute is enabled in the Colour Control
cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
399 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.17 eCLD_ColourControlCommandStopMoveStepCommandSend

teZCL_Status eCLD_ColourControlCommandStopMoveStepCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_StopMoveStepCommandPayload
 *psPayload);

Description

This function sends a Stop Move Step command to instruct a device to stop a ‘Move to’, ‘Move’ or ‘Step’
command that is currently in progress.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered, and stop the current action.

The ‘current hue’, ‘enhanced current hue’ and ‘current saturation’ attributes will subsequently keep the values
they have when the current action is stopped.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ attribute is enabled in the Colour Control
cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload : Pointer to a structure containing the payload for this message (see Section 31.7.2)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
400 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.18 eCLD_ColourControlCommandMoveToColourTemperatureCommandSend

teZCL_Status eCLD_ColourControlCommandMoveToColourTemperatureCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_MoveToColourTemperatureCommandPayload
 *psPayload);

Description

This function sends a Move to Colour Temperature command to instruct a device to move its ‘mired colour
temperature’ attribute to a target value in a continuous manner within a given time. The attribute value is a
scaled reciprocal of colour temperature, as indicated in Section 31.5.4. The target attribute value, direction and
transition time are specified in the payload of the command (see Section 31.7.2).

The movement through colour space will follow the ‘Black Body Line'.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘colour temperature’ mode is selected by setting the
‘colour mode’ attribute to 0x02, if required. It can then move the ‘mired colour temperature’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘mired colour temperature’ attribute is enabled in the Colour Control
cluster.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
401 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.19 eCLD_ColourControlCommandMoveColourTemperatureCommandSend

teZCL_Status eCLD_ColourControlCommandMoveColourTemperatureCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_MoveColourTemperatureCommandPayload
 *psPayload);

Description

This function sends a Move Colour Temperature command to instruct a device to move its ‘mired colour
temperature’ attribute value in a given direction at a specified rate. The attribute value is a scaled reciprocal of
colour temperature, as indicated in Section 31.5.4. The direction and rate are specified in the payload of the
command (see Section 31.7.2). Maximum and minimum attribute values for the movement are also specified in
the payload.

The command can request that the attribute value is moved up or down, or that existing movement is stopped.
Once started, the movement will automatically stop when the attribute value reaches the specified maximum or
minimum.

The movement through colour space will follow the ‘Black Body Line'.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘colour temperature’ mode is selected by setting the
‘colour mode’ attribute to 0x02, if required. It can then move the ‘mired colour temperature’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘mired colour temperature’ attribute is enabled in the Colour Control
cluster, as well as the ‘mired colour temperature maximum’ and ‘mired colour temperature minimum’ attributes.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
402 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.20 eCLD_ColourControlCommandStepColourTemperatureCommandSend

teZCL_Status eCLD_ColourControlCommandStepColourTemperatureCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ColourControl_StepColourTemperatureCommandPayload
 *psPayload);

Description

This function sends a Step Colour Temperature command to instruct a device to increase or decrease its ‘mired
colour temperature’ attribute by a specified ‘step’ value in a continuous manner within a given time. The attribute
value is a scaled reciprocal of colour temperature, as indicated in Section 31.5.4. The step size, direction and
transition time are specified in the payload of the command (see Section 31.7.2). Maximum and minimum
attribute values for the movement are also specified in the payload.

The command can request that the attribute value is moved up or down. If this value reaches the specified
maximum or minimum before the required change has been achieved, the movement will automatically stop.

The movement through colour space will follow the ‘Black Body Line'.

The device receiving this message will generate a callback event on the endpoint on which the Colour Control
cluster was registered. The device must first ensure that ‘colour temperature’ mode is selected by setting the
‘colour mode’ attribute to 0x02, if required. It can then move the ‘mired colour temperature’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘mired colour temperature’ attribute is enabled in the Colour Control
cluster, as well as the ‘mired colour temperature maximum’ and ‘mired colour temperature minimum’ attributes.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
403 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the message and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for this message (see Section 31.7.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.6.21 eCLD_ColourControl_GetRGB

teZCL_Status eCLD_ColourControl_GetRGB(
 uint8 u8SourceEndPointId,
 uint8 *pu8Red,
 uint8 *pu8Green,
 uint8 *pu8Blue);

Description

This function obtains the current colour of the device on the specified (local) endpoint in terms of the Red (R),
Green (G) and Blue (B) components.

Parameters

• u8SourceEndPointId: Number of local endpoint on which the device resides
• pu8Red: Pointer to a location to receive the red value, in the range 0-255
• pu8Green: Pointer to a location to receive the green value, in the range 0-255
• pu8Blue: Pointer to a location to receive the blue value, in the range 0-255

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
404 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_CLUSTER_NOT_FOUND

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

31.7 Structures

31.7.1 Custom Data Structure

The Colour Control cluster requires extra storage space to be allocated for use by internal functions. The
structure definition for this storage is shown below:

typedef struct
{
 teCLD_ColourControl_ColourMode eColourMode;
 uint16 u16CurrentHue;
 tsCLD_ColourControl_Transition sTransition;
 /* Matrices for XYZ <> RGB conversions */
 float afXYZ2RGB[3][3];
 float afRGB2XYZ[3][3];
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ColourControlCallBackMessage sCallBackMessage;
} tsCLD_ColourControlCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

31.7.2 Custom Command Payloads

The following structures contain the payloads for the Colour Control cluster custom commands.

Move to Hue Command Payload

typedef struct
{
 uint8 u8Hue;
 teCLD_ColourControl_Direction eDirection;
 uint16 u16TransitionTime;
} tsCLD_ColourControl_MoveToHueCommandPayload;

where:

• u8Hue is the target hue value.
• eDirection indicates the direction/path of the change in hue:

eDirection Direction/Path

0x00 Shortest path

0x01 Longest path

0x02 Up

0x03 Down

0x04 – 0xFF Reserved

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
405 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16TransitionTime is the time period, in tenths of a second, over which the change in hue should be
implemented.

Move Hue Command Payload

typedef struct
{
 teCLD_ColourControl_MoveMode eMode;
 uint8 u8Rate;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_MoveHueCommandPayload;

where:

• eMode indicates the required action and/or direction of the change in hue:

eMode Action/Direction

0x00 Stop existing movement in hue

0x01 Start increasing hue

0x02 Reserved

0x03 Start decreasing hue

0x04 – 0xFF Reserved

• u8Rate is the required rate of movement in hue steps per second (a step is one unit of hue for the device).
• OptionsMask and OptionsOverride must be either both present or both not present. These fields are

used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Step Hue Command Payload

typedef struct
{
 teCLD_ColourControl_StepMode eMode;
 uint8 u8StepSize;
 uint8 u8TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_StepHueCommandPayload;

where:

• eMode indicates the required direction of the change in hue:

eMode Action/Direction

0x00 Reserved

0x01 Increase hue

0x02 Reserved

0x03 Decrease hue

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
406 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

eMode Action/Direction

0x04 – 0xFF Reserved

• u8StepSize is the amount by which the hue is to be changed (increased or decreased), in units of hue for
the device.

• u8TransitionTime is the time period, in tenths of a second, over which the change in hue should be
implemented.

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Move To Saturation Command Payload

typedef struct
{
 uint8 u8Saturation;
 uint16 u16TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_MoveToSaturationCommandPayload;

where:

• u8Saturation is the target saturation value.
• u16TransitionTime is the time period, in tenths of a second, over which the change in saturation should

be implemented.
• OptionsMask and OptionsOverride must be either both present or both not present. These fields are

used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Move Saturation Command Payload

typedef struct
{
 teCLD_ColourControl_MoveMode eMode;
 uint8 u8Rate;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_MoveSaturationCommandPayload;

where:

• eMode indicates the required action and/or direction of the change in saturation:

eMode Action/Direction

0x00 Stop existing movement in hue

0x01 Start increasing saturation

0x02 Reserved

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
407 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

eMode Action/Direction

0x03 Start decreasing saturation

0x04 – 0xFF Reserved

• u8Rate is the required rate of movement in saturation steps per second (a step is one unit of saturation for
the device).

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Step Saturation Command Payload

typedef struct
{
 teCLD_ColourControl_StepMode eMode;
 uint8 u8StepSize;
 uint8 u8TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_StepSaturationCommandPayload;

where:

• eMode indicates the required direction of the change in saturation:

eMode Action/Direction

0x00 Reserved

0x01 Increase saturation

0x02 Reserved

0x03 Decrease saturation

0x04 – 0xFF Reserved

• u8StepSize is the amount by which the saturation is to be changed (increased or decreased), in units of
saturation for the device.

• u8TransitionTime is the time period, in tenths of a second, over which the change in hue should be
implemented.

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Move To Hue And Saturation Command Payload

typedef struct
{
 uint8 u8Hue;
 uint8 u8Saturation;
 uint16 u16TransitionTime;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
408 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_MoveToHueAndSaturationCommandPayload;

where:

• u8Hue is the target hue value.
• u8Saturation is the target saturation value.
• 16TransitionTime is the time period, in tenths of a second, over which the change in hue and saturation

should be implemented.
• OptionsMask and OptionsOverride must be either both present or both not present. These fields are

used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Move To Colour Command Payload

typedef struct
{
 uint16 u16ColourX;
 uint16 u16ColourY;
 uint16 u16TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_MoveToColourCommandPayload;

where:

• u16ColourX is the target x-chromaticity in the CIE xyY colour space
• u16ColourY is the target y-chromaticity in the CIE xyY colour space
• u16TransitionTime is the time period, in tenths of a second, over which the colour change should be

implemented.
• OptionsMask and OptionsOverride must be either both present or both not present. These fields are

used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Move Colour Command Payload

typedef struct
{
 int16 i16RateX;
 int16 i16RateY;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_MoveColourCommandPayload;

where:

• i16RateX is the required rate of movement of x-chromaticity in the CIE xyY colour space, in steps per
second (a step is one unit of x-chromaticity for the device).

• i16RateY is the required rate of movement of y-chromaticity in the CIE xyY colour space, in steps per
second (a step is one unit of y-chromaticity for the device).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
409 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Step Colour Command Payload

typedef struct
{
 int16 i16StepX;
 int16 i16StepY;
 uint16 u16TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_StepColourCommandPayload;

where:

• i16StepX is the amount by which the x-chromaticity in the CIE xyY colour space is to be changed (increased
or decreased), in units of x-chromaticity for the device.

• i16StepY is the amount by which the y-chromaticity in the CIE xyY colour space is to be changed (increased
or decreased), in units of y-chromaticity for the device.

• u16TransitionTime is the time period, in tenths of a second, over which the colour change should be
implemented.

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Move To Colour Temperature Command Payload

typedef struct
{
 uint16 u16ColourTemperatureMired;
 uint16 u16TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_MoveToColourTemperatureCommandPayload;

where:

• u16ColourTemperatureMired is the target value of the mired colour temperature attribute
u16ColourTemperatureMired (this value is a scaled reciprocal of colour temperature - for details, refer to
the attribute description in Section 31.2).

• u16TransitionTime is the time period, in tenths of a second, over which the change in colour temperature
should be implemented.

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
410 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Move Colour Temperature Command Payload

typedef struct
{
 teCLD_ColourControl_MoveMode eMode;
 uint16 u16Rate;
 uint16 u16ColourTemperatureMiredMin;
 uint16 u16ColourTemperatureMiredMax;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_MoveColourTemperatureCommandPayload;

where:

• eMode indicates the required action and/or direction of the change in the mired colour temperature attribute
value:

eMode Action/Direction

0x00 Stop existing movement in colour temperature

0x01 Start increasing mired colour temperature attribute value

0x02 Reserved

0x03 Start decreasing mired colour temperature attribute value

0x04 – 0xFF Reserved

• u16Rate is the required rate of movement in mired colour temperature steps per second (a step is one unit of
the mired colour temperature attribute).

• u16ColourTemperatureMiredMin is the lower limit for the mired colour temperature attribute during the
operation resulting from this command.

• u16ColourTemperatureMiredMax is the upper limit for the mired colour temperature attribute during the
operation resulting from this command.

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Step Colour Temperature Command Payload

typedef struct
{
 teCLD_ColourControl_StepMode eMode;
 uint16 u16StepSize;
 uint16 u16TransitionTime;
 uint16 u16ColourTemperatureMiredMin;
 uint16 u16ColourTemperatureMiredMax;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_StepColourTemperatureCommandPayload;

where:

• eMode indicates the required direction of the change in the mired colour temperature attribute value:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
411 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

eMode Action/Direction

0x00 Reserved

0x01 Increase mired colour temperature attribute value

0x02 Reserved

0x03 Decrease mired colour temperature attribute value

0x04 – 0xFF Reserved

• u16StepSize is the amount by which the mired colour temperature attribute is to be changed (increased or
decreased).

• u16TransitionTime is the time period, in tenths of a second, over which the change in the mired colour
temperature attribute should be implemented.

• u16ColourTemperatureMiredMin is the lower limit for the mired colour temperature attribute during the
operation resulting from this command.

• u16ColourTemperatureMiredMax is the upper limit for the mired colour temperature attribute during the
operation resulting from this command.

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Enhanced Move To Hue Command Payload

typedef struct
{
 uint16 u16EnhancedHue;
 teCLD_ColourControl_Direction eDirection;
 uint16 u16TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_EnhancedMoveToHueCommandPayload;

where:

• u16EnhancedHue is the target ‘enhanced’ hue value in terms of a step around the CIE colour ‘triangle’ - for
the format, refer to the description of the attribute u16EnhancedCurrentHue in Section 31.2.

• eDirection indicates the direction/path of the change in hue:

eDirection Direction/Path

0x00 Shortest path

0x01 Longest path

0x02 Up

0x03 Down

0x04 – 0xFF Reserved

• u16TransitionTime is the time period, in tenths of a second, over which the change in hue should be
implemented.

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
412 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Enhanced Move Hue Command Payload

typedef struct
{
 teCLD_ColourControl_MoveMode eMode;
 uint16 u16Rate;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_EnhancedMoveHueCommandPayload;

where:

• eMode indicates the required action and/or direction of the change in hue:

eMode Action/Direction

0x00 Stop existing movement in hue

0x01 Start increase in hue

0x02 Reserved

0x03 Start decrease in hue

0x04 – 0xFF Reserved

• u16Rate is the required rate of movement in ‘enhanced’ hue steps per second (a step is one unit of hue for
the device).

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Enhanced Step Hue Command Payload

typedef struct
{
 teCLD_ColourControl_StepMode eMode;
 uint16 u16StepSize;
 uint16 u16TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_EnhancedStepHueCommandPayload;

where:

• eMode indicates the required direction of the change in hue:

eMode Action/Direction

0x00 Reserved

0x01 Increase in hue

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
413 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

eMode Action/Direction

0x02 Reserved

0x03 Decrease in hue

0x04 – 0xFF Reserved

• u16StepSize is the amount by which the ‘enhanced’ hue is to be changed (increased or decreased) - for the
format, refer to the description of the attribute u16EnhancedCurrentHue in Section 31.2.

• u8TransitionTime is the time period, in tenths of a second, over which the change in hue should be
implemented.

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Enhanced Move To Hue And Saturation Command Payload

typedef struct
{
 uint16 u16EnhancedHue;
 uint8 u8Saturation;
 uint16 u16TransitionTime;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_EnhancedMoveToHueAndSaturationCommandPayload;

where:

• u16EnhancedHue is the target ‘enhanced’ hue value in terms of a step around the CIE colour ‘triangle’ - for
the format, refer to the description of the attribute u16EnhancedCurrentHue in Section 31.2.

• u8Saturation is the target saturation value.
• 16TransitionTime is the time period, in tenths of a second, over which the change in hue and saturation

should be implemented.
• OptionsMask and OptionsOverride must be either both present or both not present. These fields are

used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Colour Loop Set Command Payload

typedef struct
{
 uint8 u8UpdateFlags;
 teCLD_ColourControl_LoopAction eAction;
 teCLD_ColourControl_LoopDirection eDirection;
 uint16 u16Time;
 uint16 u16StartHue;
 zbmap8 u8OptionsMask;
 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_ColourLoopSetCommandPayload;

where:
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
414 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8UpdateFlags is a bitmap indicating which of the other fields of the structure must be set (a bit must be set
to ‘1’ to enable the corresponding field, and ‘0’ otherwise):

Bits Field

0
eAction

1
eDirection

2
u16Time

3
u16StartHue

4–7 Reserved

• eAction indicates the colour loop action to be taken (if enabled through u8UpdateFlags), as one of:

Enumeration Value Action

E_CLD_COLOURCONTROL_COLOURLOOP_ACTION_
DEACTIVATE

0x00 Deactivate colour loop

E_CLD_COLOURCONTROL_COLOURLOOP_ACTION_
ACTIVATE_FROM_START

0x01 Activate colour loop from specified start
(enhanced) hue value

E_CLD_COLOURCONTROL_COLOURLOOP_ACTION_
ACTIVATE_FROM_CURRENT

0x02 Activate colour from current (enhanced) hue
value

• eDirection indicates the direction to be taken around the colour loop (if enabled through u8UpdateFlags)
in terms of the direction of change of u16EnhancedCurrentHue:

Enumeration Value Direction

E_CLD_COLOURCONTROL_COLOURLOOP_
DIRECTION_DECREMENT

0x00 Decrement current (enhanced) hue value

E_CLD_COLOURCONTROL_COLOURLOOP_
DIRECTION_INCREMENT

0x01 Increment current (enhanced) hue value

• u16Time is the period, in seconds, of a full colour loop - that is, the time to cycle all possible values of
u16EnhancedCurrentHue.

• u16StartHue is the value of u16EnhancedCurrentHue at which the colour loop is to be started (if enabled
through u8UpdateFlags).

• OptionsMask and OptionsOverride must be either both present or both not present. These fields are
used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

Stop Move Step Command Payload

typedef struct
{
 zbmap8 u8OptionsMask;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
415 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zbmap8 u8OptionsOverride;
} tsCLD_ColourControl_StopMoveStepCommandPayload;

where OptionsMask and OptionsOverride must be either both present or both not present. These fields
are used in creating a temporary Options bitmap from the u8Options attribute. Each bit of the u8Options
attribute is carried across to the temporary Options bitmap unless the corresponding bit of OptionsMask is
set (to 1). In this case, the corresponding bit of OptionsOverride is used in the temporary Options bitmap
instead.

31.8 Enumerations

31.8.1 teCLD_ColourControl_ClusterID

The following structure contains the enumerations used to identify the attributes of the Colour Control cluster.

typedef enum
{
 E_CLD_COLOURCONTROL_ATTR_CURRENT_HUE = 0x0000,
 E_CLD_COLOURCONTROL_ATTR_CURRENT_SATURATION,
 E_CLD_COLOURCONTROL_ATTR_REMAINING_TIME,
 E_CLD_COLOURCONTROL_ATTR_CURRENT_X,
 E_CLD_COLOURCONTROL_ATTR_CURRENT_Y,
 E_CLD_COLOURCONTROL_ATTR_DRIFT_COMPENSATION,
 E_CLD_COLOURCONTROL_ATTR_COMPENSATION_TEXT,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_MODE,
 E_CLD_COLOURCONTROL_ATTR_OPTIONS = 0x000F,
 E_CLD_COLOURCONTROL_ATTR_NUMBER_OF_PRIMARIES = 0x0010,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_1_X,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_1_Y,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_1_INTENSITY,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_2_X = 0x0015,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_2_Y,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_2_INTENSITY,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_3_X = 0x0019,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_3_Y,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_3_INTENSITY,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_4_X = 0x0020,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_4_Y,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_4_INTENSITY,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_5_X = 0x0024,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_5_Y,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_5_INTENSITY,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_6_X = 0x0028,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_6_Y,
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_6_INTENSITY,
 E_CLD_COLOURCONTROL_ATTR_WHITE_POINT_X = 0x0030,
 E_CLD_COLOURCONTROL_ATTR_WHITE_POINT_Y,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_X,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_Y,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_INTENSITY,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_X = 0x0036,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_Y,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_INTENSITY,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_X = 0x003A,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_Y,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_INTENSITY,
 E_CLD_COLOURCONTROL_ATTR_ENHANCED_CURRENT_HUE = 0x4000,
 E_CLD_COLOURCONTROL_ATTR_ENHANCED_COLOUR_MODE,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_ACTIVE,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_DIRECTION,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_TIME,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_START_ENHANCED_HUE,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
416 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_STORED_ENHANCED_HUE,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_CAPABILITIES = 0x400a,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED_PHY_MIN,
 E_CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED_PHY_MAX,
 E_CLD_COLOURCONTROL_ATTR_COUPLE_COLOUR_TEMPERATURE_TO_LEVEL_MIN_MIRED,
 E_CLD_COLOURCONTROL_ATTR_STARTUP_COLOUR_TEMPERATURE_MIRED = 0x4010,
} teCLD_ColourControl_ClusterID;

31.9 Compile-time Options
To enable the Colour Control cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_COLOUR_CONTROL

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define COLOUR_CONTROL_CLIENT
#define COLOUR_CONTROL_SERVER

The Colour Cluster cluster attributes reside on the server only. Therefore, attributes should not be enabled in the
zcl_options.h file for the cluster client.

Optional Attributes

The optional attributes of the Colour Control cluster are enabled/disabled by defining the following in the
zcl_options.h file:

• For optional attributes from the ‘Colour Information’ attribute set:
– CLD_COLOURCONTROL_ATTR_REMAINING_TIME
– CLD_COLOURCONTROL_ATTR_DRIFT_COMPENSATION
– CLD_COLOURCONTROL_ATTR_COMPENSATION_TEXT
– CLD_COLOURCONTROL_ATTR_COLOUR_MODE

Certain attributes from this attribute set are enabled through a ‘Colour Capabilities’ Definition (see below)
- these are u8CurrentHue, u8CurrentSaturation and u16ColourTemperatureMired.

• For optional attributes from the ‘Defined Primaries Information’ and ‘Additional Defined Primaries Information’
attribute sets, the macro
– CLD_COLOURCONTROL_ATTR_NUMBER_OF_PRIMARIES

is used to define the required number of colour primaries, N, in the range 1 to 6 (0xFF can also be
specified if the number of primaries is not known). This macro is used to automatically enable the
required attributes from these attribute sets - for example, if N is set to 4 then the following attributes are
enabled:
u16Primary1X, u16Primary1Y, u8Primary1Intensity, u16Primary2X, u16Primary2Y,
u8Primary2Intensity, u16Primary3X, u16Primary3Y, u8Primary3Intensity,
u16Primary4X, u16Primary4Y, u8Primary4Intensity.

• For optional attributes from the ‘Defined Colour Points Settings’ attribute set:
– CLD_COLOURCONTROL_ATTR_WHITE_POINT_X
– CLD_COLOURCONTROL_ATTR_WHITE_POINT_Y
– CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_X
– CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_Y
– CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_INTENSITY
– CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_X

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
417 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_Y
– CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_INTENSITY
– CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_X
– CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_Y
– CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_INTENSITY

• For optional attributes from the ‘Enhanced Colour Mode’ attributes, the following must be defined:
– CLD_COLOURCONTROL_ATTR_ENHANCED_COLOUR_MODE
– CLD_COLOURCONTROL_ATTR_COLOUR_CAPABILITIES

The required ‘Enhanced Colour Mode’ attributes for a device must then be enabled through a ‘Colour
Capabilities’ Definition (see below).

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_COLOURCONTROL_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_COLOURCONTROL_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

‘Colour Capabilities’ Definition

If required, certain ‘Colour Information’ attributes and all ‘Enhanced Colour Mode’ attributes must be enabled
through a ‘Colour Capabilities’ definition. Attributes are enabled as a group according to the required capability/
functionality. The capabilities are detailed in the table below, with their corresponding attributes and macros.

Capability/
Functionality Attributes Macro

Hue/Saturation u8CurrentHue
u8CurrentSaturation

COLOUR_CAPABILITY_HUE_SATURATION_SUPPORTE
D

Enhanced Hue
(also need Hue/
Saturation)

u16EnhancedCurrentHue* COLOUR_CAPABILITY_ENHANCE_HUE_SUPPORTED

Colour Loop
(also need
Enhanced Hue)

u8ColourLoopActive*
u8ColourLoopDirection*
u16ColourLoopTime*
u16ColourLoopStartEnhancedHue*
u16ColourLoopStoredEnhancedHue*

COLOUR_CAPABILITY_COLOUR_LOOP_SUPPORTED

CIE XY Values
(this is mandatory)

u16CurrentX
u16CurrentY

COLOUR_CAPABILITY_XY_SUPPORTED

Colour
Temperature

u16ColourTemperatureMired
u16ColourTemperatureMiredPhyMin*
u16ColourTemperatureMiredPhyMax*
u16ColourTemperatureMiredMin*
u16ColourTemperatureMiredMax*
bColourCoupleTemperatureMired-
ToLevel*

COLOUR_CAPABILITY_COLOUR_TEMPERATURE_
SUPPORTED

Table 48. ‘Colour Capabilities’ Macros

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
418 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Capability/
Functionality Attributes Macro

u16StartupColourTemperatureMired*

Table 48. ‘Colour Capabilities’ Macros...continued

* The ‘Enhanced Colour Mode’ attributes also require ‘enhanced colour mode’ to be enabled through #define
CLD_COLOURCONTROL_ATTR_ENHANCED_COLOUR_MODE

The above macros will automatically invoke the macros for the individual attributes in the capability group, e.g.
E_CLD_COLOURCONTROL_ATTR_CURRENT_HUE for the attribute u8CurrentHue.

The enabled Colour Capabilities are reflected in the ‘Enhanced Colour Mode’ attribute (bitmap)
u16ColourCapabilities.

Example Colour Capabilities definitions are provided below for different devices.

ZLO Extended Colour Light:

#define CLD_COLOURCONTROL_COLOUR_CAPABILITIES
 (COLOUR_CAPABILITY_HUE_SATURATION_SUPPORTED | \\
 COLOUR_CAPABILITY_ENHANCE_HUE_SUPPORTED | \\
 COLOUR_CAPABILITY_COLOUR_LOOP_SUPPORTED | \\
 COLOUR_CAPABILITY_XY_SUPPORTED | \\
 COLOUR_CAPABILITY_COLOUR_TEMPERATURE_SUPPORTED)

ZLO Colour Light:

#define CLD_COLOURCONTROL_COLOUR_CAPABILITIES
 (COLOUR_CAPABILITY_HUE_SATURATION_SUPPORTED | \\
 COLOUR_CAPABILITY_ENHANCE_HUE_SUPPORTED | \\
 COLOUR_CAPABILITY_COLOUR_LOOP_SUPPORTED | \\
 COLOUR_CAPABILITY_XY_SUPPORTED)

ZLO Colour Temperature Light:

#define CLD_COLOURCONTROL_COLOUR_CAPABILITIES
 (COLOUR_CAPABILITY_COLOUR_TEMPERATURE_SUPPORTED)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
419 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

32 Ballast Configuration Cluster

This chapter describes the Ballast Configuration cluster, which is concerned with a configuring a lighting ballast
that restricts the amount of light emitted by a set of lamps connected to the ballast.

The Ballast Configuration cluster has a Cluster ID of 0x0301.

32.1 Overview
The Ballast Configuration cluster allows the ballast for a set of lamps to be configured.

To use the functionality of this cluster, you must include the file BallastConfiguration.h in your application and
enable the cluster by defining CLD_BALLAST_CONFIGURATION in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

• The cluster server is able to receive commands to access ballast configuration data on the local device.
• The cluster client is able to send commands to access ballast configuration data on the remote device.

The inclusion of the client or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance). The compile-time options for the Ballast Configuration cluster are fully
detailed in Section 32.5.

The information that can potentially be stored in this cluster is organised into the following attribute sets:

• Ballast Information
• Ballast Settings
• Lamp Information
• Lamp Settings
• Global

Note that not all of the above attribute sets are currently implemented in the NXP software and not all attributes
within a supported attribute set are implemented (see Section 32.2 for the supported attribute sets and
attributes).

32.2 Cluster structure and attributes
The structure definition for the Device Temperature Configuration cluster is:

typedef struct
{
#ifdef BALLAST_CONFIGURATION_SERVER
/* Ballast Information attribute set */
#ifdef CLD_BALLASTCONFIGURATION_ATTR_PHYSICAL_MIN_LEVEL
 zuint8 u8PhysicalMinLevel;
#endif
#ifdef CLD_BALLASTCONFIGURATION_ATTR_PHYSICAL_MAX_LEVEL
 zuint8 u8PhysicalMaxLevel;
#endif
 zbmap8 u8BallastStatus;
/* Ballast Settings attribute set */
#ifdef CLD_BALLASTCONFIGURATION_ATTR_MIN_LEVEL
 zuint8 u8MinLevel;
#endif
#ifdef CLD_BALLASTCONFIGURATION_ATTR_MAX_LEVEL
 zuint8 u8MaxLevel;
#endif

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
420 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#ifdef CLD_BALLASTCONFIGURATION_ATTR_POWER_ON_LEVEL
 zuint8 u8PowerOnLevel;
#endif
#ifdef CLD_BALLASTCONFIGURATION_ATTR_POWER_ON_FADE_TIME
 zuint16 u16PowerOnFadeTime;
#endif
#ifdef CLD_BALLASTCONFIGURATION_ATTR_INTRINSIC_BALLAST_FACTOR
 zuint8 u8IntrinsicBallastFactor;
#endif
#ifdef CLD_BALLASTCONFIGURATION_ATTR_BALLAST_FACTOR_ADJUSTMENT
 zuint8 u8BallastFactorAdjustment;
#endif
/* Lamp Information attribute set */
#ifdef CLD_BALLASTCONFIGURATION_ATTR_LAMP_QUANTITY
 zuint8 u8LampQuantity;
#endif
/* Lamp Settings attribute set */
#ifdef CLD_BALLASTCONFIGURATION_ATTR_LAMP_TYPE
 tsZCL_CharacterString sLampType;
 uint8 au8LampType[16];
#endif
#ifdef CLD_BALLASTCONFIGURATION_ATTR_LAMP_MANUFACTURER
 tsZCL_CharacterString sLampManufacturer;
 uint8 au8LampManufacturer[16];
#endif
#ifdef CLD_BALLASTCONFIGURATION_ATTR_LAMP_RATED_HOURS
 zuint24 u32LampRatedHours;
#endif
#ifdef CLD_BALLASTCONFIGURATION_ATTR_LAMP_BURN_HOURS
 zuint24 u32LampBurnHours;
#endif
#ifdef CLD_BALLASTCONFIGURATION_ATTR_LAMP_ALARM_MODE
 zbmap8 u8LampAlarmMode;
#endif
#ifdef CLD_BALLASTCONFIGURATION_ATTR_LAMP_BURN_HOURS_TRIP_POINT
 zuint24 u32LampBurnHoursTripPoint;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_BallastConfiguration;

In some attributes described below, a light level is specified as an 8-bit value. This is mapped to a percentage
light level by means of a manufacturer-defined light curve, where 0x01 corresponds to 0.1% and 0xFE
corresponds to 100% (0xFF is reserved).

Ballast Information Attribute Set

u8PhysicalMinLevel is an optional attribute representing the minimum light level that the lamps can physically achieve with the ballast. The valid range of values of this attribute is 0x01 to 0xFE.
u8PhysicalMaxLevel is an optional attribute representing the maximum light level that the lamps can physically achieve with the ballast. The valid range of values of this attribute is 0x01 to 0xFE.
u8BallastStatus is a mandatory attribute containing a bitmap which indicates the status of the ballast and associated lamps:

Bits Status

0 Ballast operational status:
0: Ballast is fully operational
1: Ballast is not fully operational

1 Lamp status:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
421 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bits Status
0: All associated lamps are in their sockets
1: Not all associated lamps are in their sockets

2-7 Reserved

Ballast Settings Attribute Set

u8MinLevel is an optional attribute representing the minimum light level that the lamps are allowed to achieve with the ballast. The valid range of values is 0x01 to 0xFE, but the value of this attribute must be in the range u8PhysicalMinLevel to u8MaxLevel (if implemented).
u8MaxLevel is an optional attribute representing the maximum light level that the lamps are allowed to achieve with the ballast. The valid range of values is 0x01 to 0xFE, but the value of this attribute must be in the range u8MinLevel to u8PhysicalMaxLevel (if implemented).
u8PowerOnLevel is an optional attribute representing the light level that the will be produced from the associated lamps when the ballast is switched on. The valid range of values is 0x01 to 0xFE, but the value of this attribute must be in the range u8MinLevel to u8MaxLevel (if implemented). The value 0xFF is used to indicate that the last light level (before the previous switch-
off) should be implemented on switch-on.
u16PowerOnFadeTime is an optional attribute representing the time, in tenths of a second, that the ballast will take to move the light level to the value of u8PowerOnLevel on switch-
on.
u8IntrinsicBallastFactor is an optional attribute representing the ballast factor of the ballast/
lamp combination, as a percentage. This is a multiplication factor which, if used, is applied to the light level before any adjustment via u8BallastFactorAdjustment. The value 0xFF is used to indicate an invalid ballast factor.
u8BallastFactorAdjustment is an optional attribute representing a multiplication factor, as a percentage, to be applied to the configured light output of the lamps associated with the ballast - for example, to compensate for a reduction in the efficiency of a lamp over its lifetime.

Lamp Information Attribute Set

u8LampQuantity is an optional attribute indicating the number of lamps connected to the ballast (regardless of whether the lamps are in their sockets).

Lamp Settings Attribute Set

• The following optional pair of attributes are used to store a human readable description of the type of lamp
connected to the ballast:

sLampType is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16 characters representing the lamp type
au8LampType[16] is a byte-
array which contains the character data bytes representing the lamp type

• The following optional pair of attributes are used to store a human readable name of the manufacturer of the
lamps connected to the ballast:

sLampManufacturer is a tsZCL_CharacterString structure (see Section 6.1.14) for a string of up to 16 characters representing the manufacturer name
au8LampManufacturer[16] is a byte-
array which contains the character data bytes representing the manufacturer name
u32LampRatedHours is an optional 24-
bit attribute indicating the manufacturer’s estimated lifetime of the lamps, in hours, in the range 0x00000000 to 0x00FFFFFE. The value 0x00FFFFFF is used to indicate that the lamp lifetime is unknown. All other values are invalid.
u32LampBurnHours is an optional 24-
bit attribute indicating the cumulative total hours of operation of the lamps (only the hours while the lamps are switched on are counted), in the range 0x00000000 to 0x00FFFFFE. The value 0x00FFFFFF is used to indicate that the operational hours of the lamp are unknown. All other values are invalid. The attribute value should be reset when the lamps are replaced.
u8LampAlarmMode is an optional attribute containing a bitmap that specifies the attributes that can cause an alarm condition:

Bits Alarm Trigger

0 Alarm triggered when u32LampBurnHours reaches u32LampBurnHoursTripPoint:
0: Alarm trigger disabled
1: Alarm trigger enabled

1-7 Reserved

u32LampBurnHoursTripPoint is an optional attribute specifying the number of hours of operation recorded in the attribute u32LampBurnHours that will trigger an alarm (provided that this alarm has been enabled through u8LampAlarmMode). The value 0xFFFFFFFF is used to indicate that this alarm will not be triggered.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
422 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Global Attribute Set

u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also described in Section 2.4.

32.3 Functions
The following Ballast Configuration cluster function is provided in the NXP implementation of the ZCL:

Function Page
eCLD_BallastConfigurationCreateBallastConfiguration 713

32.3.1 eCLD_BallastConfigurationCreateBallastConfiguration

teZCL_Status eCLD_BallastConfigurationCreateBallastConfiguration(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Ballast Configuration cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Ballast
Configuration cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Ballast Configuration cluster.

The function initializes the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2).
In this case, this structure must contain the details of the Ballast Configuration cluster. This parameter
can refer to a pre-filled structure called sCLD_BallastConfiguration which is provided in the
BallastConfiguration.h file.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
423 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_BallastConfigurationn which defines the
attributes of Ballast Configuration cluster. The function initializes the attributes with default values.
pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above).

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL

32.4 Enumerations

32.4.1 teCLD_BallastConfiguration_ClusterID

The following structure contains the enumerations used to identify the attributes of the Ballast Configuration
cluster.

typedef enum
{
 /* Ballast Information attribute set attribute IDs */
 E_CLD_BALLASTCONFIGURATION_ATTR_PHYSICAL_MIN_LEVEL = 0x0000,
 E_CLD_BALLASTCONFIGURATION_ATTR_PHYSICAL_MAX_LEVEL,
 E_CLD_BALLASTCONFIGURATION_ATTR_BALLAST_STATUS,
 /* Ballast Settings attribute set attribute IDs */
 E_CLD_BALLASTCONFIGURATION_ATTR_MIN_LEVEL = 0x0010,
 E_CLD_BALLASTCONFIGURATION_ATTR_MAX_LEVEL,
 E_CLD_BALLASTCONFIGURATION_ATTR_POWER_ON_LEVEL,
 E_CLD_BALLASTCONFIGURATION_ATTR_POWER_ON_FADE_TIME,
 E_CLD_BALLASTCONFIGURATION_ATTR_INTRINSIC_BALLAST_FACTOR,
 E_CLD_BALLASTCONFIGURATION_ATTR_BALLAST_FACTOR_ADJUSTMENT,
 /* Lamp Information attribute set attribute IDs */
 E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_QUANTITY = 0x0020,
 /* Lamp Settings attribute set attribute IDs */
 E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_TYPE = 0x0030,
 E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_MANUFACTURER,
 E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_RATED_HOURS,
 E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_BURN_HOURS,
 E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_ALARM_MODE,
 E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_BURN_HOURS_TRIP_POINT,
} teCLD_BallastConfiguration_ClusterID;

32.5 Compile-time options
To enable the Ballast Configuration cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_BALLASTCONFIGURATION

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define BALLASTCONFIGURATION_CLIENT
#define BALLASTCONFIGURATION_SERVER

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
424 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The Ballast Configuration cluster contains macros that may be optionally specified at compile-time by adding
some or all the following lines to the zcl_options.h file.

Optional Attributes

Add this line to enable the optional Physical Minimum Level attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_PHYSICAL_MIN_LEVEL

Add this line to enable the optional Physical Maximum Level attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_PHYSICAL_MAX_LEVEL

Add this line to enable the optional Ballast Status attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_BALLAST_STATUS

Add this line to enable the optional Minimum Level attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_MIN_LEVEL

Add this line to enable the optional Maximum Level attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_MAX_LEVEL

Add this line to enable the optional Power-on Level attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_POWER_ON_LEVEL

Add this line to enable the optional Power-on Fade Time attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_POWER_ON_FADE_TIME

Add this line to enable the optional Intrinsic Ballast Factor attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_INTRINSIC_BALLAST_FACTOR

Add this line to enable the optional Ballast Factor Adjustment attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_BALLAST_FACTOR_ADJUSTMENT

Add this line to enable the optional Lamp Quantity attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_QUANTITY

Add this line to enable the optional Lamp Type attributes:

#define E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_TYPE

Add this line to enable the optional Lamp Manufacturer attributes:

#define E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_MANUFACTURER

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
425 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Add this line to enable the optional Lamp Rated Hours attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_MANUFACTURER

Add this line to enable the optional Lamp Burn Hours attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_BURN_HOURS

Add this line to enable the optional Lamp Alarm Mode attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_ALARM_MODE

Add this line to enable the optional Lamp Burn Hours Trip Point attribute:

#define E_CLD_BALLASTCONFIGURATION_ATTR_LAMP_BURN_HOURS_TRIP_POINT

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_BALLASTCONFIGURATION_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
426 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part VI: HVAC Clusters

This part comprises three chapters:

• Chapter 33 details the Thermostat cluster
• Chapter 34 details the Fan Control cluster
• Chapter 35 details the Thermostat UI Configuration cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
427 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

33 Thermostat Cluster

This chapter outlines the Thermostat cluster, which provides an interface for configuring and controlling the
functionality of a thermostat.

The Thermostat cluster has a Cluster ID of 0x0201.

33.1 Overview
The Thermostat cluster is required in ZigBee devices as indicated in the table below.

Server-side Client-side

Mandatory in... Thermostat

Optional in... Remote Control

Table 49. Thermostat Cluster in ZigBee Devices

The Thermostat cluster is enabled by defining CLD_THERMOSTAT in the zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance).

The compile-time options for the Thermostat cluster are fully detailed in Section 33.10.

The information that can potentially be stored in this cluster is organised into the following attribute sets:

• Thermostat Information
• Thermostat Settings

The attributes are listed and described next, in Section 33.2.

33.2 Thermostat Cluster structure and attributes
The Thermostat cluster is contained in the following tsCLD_Thermostat structure:

typedef struct
{
#ifdef THERMOSTAT_SERVER
 zint16 i16LocalTemperature;
#ifdef CLD_THERMOSTAT_ATTR_OUTDOOR_TEMPERATURE
 zint16 i16OutdoorTemperature;
#endif
#ifdef CLD_THERMOSTAT_ATTR_OCCUPANCY
 zbmap8 u8Occupancy;
#endif
#ifdef CLD_THERMOSTAT_ATTR_ABS_MIN_HEAT_SETPOINT_LIMIT
 zint16 i16AbsMinHeatSetpointLimit;
#endif
#ifdef CLD_THERMOSTAT_ATTR_ABS_MAX_HEAT_SETPOINT_LIMIT
 zint16 i16AbsMaxHeatSetpointLimit;
#endif
#ifdef CLD_THERMOSTAT_ATTR_ABS_MIN_COOL_SETPOINT_LIMIT
 zint16 i16AbsMinCoolSetpointLimit;
#endif
#ifdef CLD_THERMOSTAT_ATTR_ABS_MAX_COOL_SETPOINT_LIMIT
 zint16 i16AbsMaxCoolSetpointLimit;
#endif

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
428 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#ifdef CLD_THERMOSTAT_ATTR_PI_COOLING_DEMAND
 zuint8 u8PICoolingDemand;
#endif
#ifdef CLD_THERMOSTAT_ATTR_PI_HEATING_DEMAND
 zuint8 u8PIHeatingDemand;
#endif
/* Thermostat settings attribute set attribute IDs */
#ifdef CLD_THERMOSTAT_ATTR_LOCAL_TEMPERATURE_CALIBRATION
 zint8 i8LocalTemperatureCalibration;
#endif
 zint16 i16OccupiedCoolingSetpoint;
 zint16 i16OccupiedHeatingSetpoint;
#ifdef CLD_THERMOSTAT_ATTR_UNOCCUPIED_COOLING_SETPOINT
 zint16 i16UnoccupiedCoolingSetpoint;
#endif
#ifdef CLD_THERMOSTAT_ATTR_UNOCCUPIED_HEATING_SETPOINT
 zint16 i16UnoccupiedHeatingSetpoint;
#endif
#ifdef CLD_THERMOSTAT_ATTR_MIN_HEAT_SETPOINT_LIMIT
 zint16 i16MinHeatSetpointLimit;
#endif
#ifdef CLD_THERMOSTAT_ATTR_MAX_HEAT_SETPOINT_LIMIT
 zint16 i16MaxHeatSetpointLimit;
#endif
#ifdef CLD_THERMOSTAT_ATTR_MIN_COOL_SETPOINT_LIMIT
 zint16 i16MinCoolSetpointLimit;
#endif
#ifdef CLD_THERMOSTAT_ATTR_MAX_COOL_SETPOINT_LIMIT
 zint16 i16MaxCoolSetpointLimit;
#endif
#ifdef CLD_THERMOSTAT_ATTR_MIN_SETPOINT_DEAD_BAND
 zint8 i8MinSetpointDeadBand;
#endif
#ifdef CLD_THERMOSTAT_ATTR_REMOTE_SENSING
 zbmap8 u8RemoteSensing;
#endif
 zenum8 eControlSequenceOfOperation;
 zenum8 eSystemMode;
#ifdef CLD_THERMOSTAT_ATTR_ALARM_MASK
 zbmap8 u8AlarmMask;
#endif
#ifdef CLD_THERMOSTAT_ATTR_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_Thermostat;

where:

‘Thermostat Information’ Attribute Set

• i16LocalTemperature is a mandatory attribute representing the measured temperature in degrees
Celsius, as follows:

i16LocalTemperature = 100 x temperature in degrees Celsius
The possible values are used as follows:
0x0000 to 0x7FFF represent positive temperatures from 0°C to 327.67ºC
0x8000 indicates that the temperature measurement is invalid

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
429 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

0x8001 to 0x954C are unused values
0x954D to 0xFFFF represent negative temperatures from -273.15°C to
-1°C (in two’s complement form)

• i16OutdoorTemperature is an optional attribute representing the outside temperature in degrees Celsius.
This temperature is represented as described above for i16LocalTemperature.

• u8Occupancy is an optional attribute indicating whether the heated/cooled space has been detected as
occupied. Bit 0 is used as a flag as follows (all other bits are reserved):
– 1 = occupied
– 0 = not occupied

• i16AbsMinHeatSetpointLimit is an optional attribute specifying the absolute minimum possible
temperature of the heating setpoint (as determined by the manufacturer). This temperature is represented as
described above for i16LocalTemperature.

• i16AbsMaxHeatSetpointLimit is an optional attribute specifying the absolute maximum possible
temperature of the heating setpoint (as determined by the manufacturer). This temperature is represented as
described above for i16LocalTemperature.

• i16AbsMinCoolSetpointLimit is an optional attribute specifying the absolute minimum possible
temperature of the cooling setpoint (as determined by the manufacturer). This temperature is represented as
described above for i16LocalTemperature.

• i16AbsMaxCoolSetpointLimit is an optional attribute specifying the absolute maximum possible
temperature of the cooling setpoint (as determined by the manufacturer). This temperature is represented as
described above for i16LocalTemperature.

‘Thermostat Settings’ Attribute Set

• u8PICoolingDemand is an optional attribute indicating the level of cooling required by the PI (Proportional
Integral) control loop, if any, used by the thermostat. It is a percentage value and takes the value 0 when the
thermostat is 'off' or in 'heating' mode.

• u8PIHeatingDemand is an optional attribute indicating the level of heating required by the PI (Proportional
Integral) control loop, if any, used by the thermostat. It is a percentage value and takes the value 0 when the
thermostat is 'off' or in 'cooling' mode.

• i8LocalTemperatureCalibration is an optional attribute representing a temperature offset (in the range
-2.5°C to 2.5°C) that can be added to or subtracted from the displayed temperature:

i8LocalTemperatureCalibration = 100 x offset in degrees Celsius
The possible values are used as follows:
0x00 to 0x19 represent positive offsets from 0°C to 2.5ºC
0x20 to 0xE6 are unused values
0xE7 to 0xFF represent negative offets from -2.5°C to -1°C (in two’s complement form)

• i16OccupiedCoolingSetpoint is an optional attribute specifying the cooling setpoint (target
temperature) when the cooling space is occupied. The value is calculated as described above
for the i16LocalTemperature attribute and must take a value in the range defined by the
attributes i16MinCoolSetpointLimit and i16MaxCoolSetpointLimit. If it is not known
whether the space is occupied, this attribute will be used as the cooling setpoint (rather than
i16UnoccupiedCoolingSetpoint).

• i16OccupiedHeatingSetpoint is an optional attribute specifying the heating setpoint (target
temperature) when the heating space is occupied. The value is calculated as described above
for the i16LocalTemperature attribute and must take a value in the range defined by the
attributes i16MinHeatSetpointLimit and i16MaxHeatSetpointLimit. If it is not known
whether the space is occupied, this attribute will be used as the heating setpoint (rather than
i16UnoccupiedHeatingSetpoint).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
430 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: i16OccupiedCoolingSetpoint must always be greater in value than
i16OccupiedHeatingSetpoint by an amount at least equal to the value of i8MinSetpointDeadBand
(below). An attempt to violate this condition will result in a default response with the status INVALID_VALUE.

• i16UnoccupiedCoolingSetpoint is an optional attribute specifying the cooling setpoint (target
temperature) when the cooling space is unoccupied. The value is calculated as described above for
the i16LocalTemperature attribute and must take a value in the range defined by the attributes
i16AbsMinCoolSetpointLimit and i16MaxCoolSetpointLimit. If it is not known whether the space
is occupied, this attribute will not be used (i16OccupiedCoolingSetpoint will be used instead).

• i16UnoccupiedHeatingSetpoint is an optional attribute specifying the heating setpoint (target
temperature) when the heating space is unoccupied. The value is calculated as described above for
the i16LocalTemperature attribute and must take a value in the range defined by the attributes
i16MinHeatSetpointLimit and i16MaxHeatSetpointLimit. If it is not known whether the space is
occupied, this attribute will not be used (i16OccupiedHeatingSetpoint will be used instead).

Note: i16UnoccupiedCoolingSetpoint must always be greater in value than
i16UnoccupiedHeatingSetpoint by an amount at least equal to the value of i8MinSetpointDeadBand
(below). An attempt to violate this condition will result in a default response with the status INVALID_VALUE.

• i16MinHeatSetpointLimit is an optional attribute specifying the minimum possible temperature of the
heating setpoint. This temperature is represented as described above for i16LocalTemperature. The
value set must be greater than or equal to the value of i16AbsMinHeatSetpointLimit, which is also the
default value for this attribute.

• i16MaxHeatSetpointLimit is an optional attribute specifying the maximum possible temperature of the
heating setpoint. This temperature is represented as described above for i16LocalTemperature. The
value set must be less than or equal to the value of i16AbsMaxHeatSetpointLimit, which is also the
default value for this attribute.

• i16MinCoolSetpointLimit is an optional attribute specifying the minimum possible temperature of the
cooling setpoint. This temperature is represented as described above for i16LocalTemperature. The value
set must be greater than or equal to the value of i16AbsMinCoolSetpointLimit, which is also the default
value for this attribute.

• i16MaxCoolSetpointLimit is an optional attribute specifying the maximum possible temperature of the
cooling setpoint. This temperature is represented as described above for i16LocalTemperature. The value
set must be less than or equal to the value of i16AbsMaxCoolSetpointLimit, which is also the default
value for this attribute.

Note: The above four ‘Limit’ attributes can be set in the compile-time options using macros, as described in
Section 33.10.

• i8MinSetpointDeadBand is an optional attribute specifying the minimum difference between the heating
setpoint and cooling setpoint, in steps of 0.1°C. The attribute can take a value in the range 0x0A to 0x19,
representing 1°C to 2.5°C. All other values are unused.

• u8RemoteSensing is an optional attribute comprising an 8-bit bitmap which indicates whether remote
(networked) or internal sensors are being used to measure/detect the local temperature, outside temperature
and occupancy. The bitmap is detailed in the table below.

Bit Description

0 Local temperature
1 - Remote sensor
0 - Internal sensor

1 Outside temperature
1 - Remote sensor
0 - Internal sensor

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
431 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bit Description

2 Occupancy
1 - Remote sensor
0 - Internal sensor

3-7 Reserved

• eControlSequenceOfOperation is an optional attribute representing the operational capabilities/
environment of the thermostat. The possible values are indicated in the table below:

Value Capabilities Notes (see eSystemMode)

0x00 Cooling only Heat and Emergency Heating are not possible

0x01 Cooling with Reheat Heat and Emergency Heating are not possible

0x02 Heating only Cool and Pre-cooling are not possible

0x03 Heating with Reheat Cool and Pre-cooling are not possible

0x04 Cooling and Heating
4-pipes

All modes are possible

0x05 Cooling and Heating
4-pipes with Reheat

All modes are possible

0x06 – 0xFE Reserved -

• eSystemMode is an optional attribute specifying the current operating mode of the thermostat. The possible
modes/values are indicated in the table below:

Value Description

0x00 Off

0x01 Auto

0x02 Reserved

0x03 Cool

0x04 Heat

0x05 Emergency Heating

0x06 Pre-cooling

0x07 Fan only

0x08 – 0xFE Reserved

• u8AlarmMask is an optional attribute containing a 3-bit bitmap specifying which alarms are enabled from
those listed in the table below (use of the Alarms cluster is also required):

Bit Description

0 Initialisation failure (device failed to complete initialization at power-up)
1 - Alarm enabled
0 - Alarm disabled

1 Hardware failure
1 - Alarm enabled
0 - Alarm disabled

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
432 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bit Description

2 Self-calibration failure
1 - Alarm enabled
0 - Alarm disabled

3-7 Reserved

Global Attributes

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

33.3 Attributes for Default Reporting
The following attributes of the Thermostat cluster can be selected for default reporting:

i16LocalTemperature
u8PICoolingDemand

• u8PIHeatingDemand

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

33.4 Thermostat Operations
The Thermostat cluster server is mandatory for some HVAC devices, such as the Thermostat device, while the
cluster client can be used on a controlling device, such as the Remote Control device.

The sections below describe common operations using the Thermostat cluster.

33.4.1 Initialisation

The function eCLD_ThermostatCreateThermostat() is used to create an instance of the Thermostat cluster.
The function is generally called by the initialization function for the host device.

33.4.2 Recording and Reporting the Local Temperature

A record of the local temperature is kept in the mandatory attribute i16LocalTemperature on the cluster
server - this attribute is fully detailed in Section 33.2. The value of this attribute can be updated by the
server application using the function eCLD_ThermostatSetAttribute() - for example, as the result of a local
temperature measurement.

The value of the attribute i16LocalTemperature can be regularly reported to a cluster client - for example,
to allow the local temperature to be displayed to the user. This automated reporting can be configured and
started on the server using the function eCLD_ThermostatStartReportingLocalTemperature(). Reports is
sent regularly, but not periodically - maximum and minimum time-intervals between consecutive reports can be
specified.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
433 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

33.4.3 Configuring Heating and Cooling Setpoints

Functions are provided to update the following two optional attributes that are used to specify setpoints (target
temperatures) for heating and cooling:

i16OccupiedHeatingSetpoint
i16OccupiedCoolingSetpoint

If both of these setpoints are used, the cooling setpoint value must be greater than the heating setpoint value.
These attributes are fully detailed in Section 33.2.

These server attributes can be controlled remotely from a client using the function eCLD_Thermostat
CommandSetpointRaiseOrLowerSend(), usually as the result of user input on a controlling device. This
function is used on the client to send a SetpointRaiseOrLower command to the server to increase or decrease
the value of one or both of these setpoint attributes by a specified amount. On receipt of this command, an E_
CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER event is generated on the server to notify the server
application.

The server application can modify the values of these attributes using the function
eCLD_ThermostatSetAttribute().

Note: These and other attributes of the Thermostat cluster can also be written and read using the general
attribute access functions, as described in Section 2.3.

33.5 Thermostat Events
The Thermostat cluster has its own events that are handled through the callback mechanism outlined in
Chapter 3. If a device uses the Thermostat cluster then Thermostat event handling must be included in the
callback function for the associated endpoint, where this callback function is registered through the relevant
endpoint registration function (for example, through eHA_RegisterThermostatEndPoint() for a Thermostat
device). The relevant callback function will then be invoked when a Thermostat event occurs.

For a Thermostat event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_ThermostatCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_Thermostat_SetpointRaiseOrLowerPayload
 *psSetpointRaiseOrLowerPayload;
 } uMessage;
} tsCLD_ThermostatCallBackMessage;

The u8CommandId field of the above structure specifies the type of command that has been received - only one
command type is possible and is described below.

E_CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER

In the tsCLD_ThermostatCallBackMessage structure, the u8CommandId is set to E_CLD_THERMOSTAT_
CMD_SETPOINT_RAISE_LOWER on the Thermostat cluster server when a SetpointRaiseOrLower command
has been received. On receipt of this command, the Thermostat command handler will be invoked.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
434 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

33.6 Functions
The following Thermostat cluster functions are provided:

Function Page
eCLD_ThermostatCreateThermostat 733
eCLD_ThermostatSetAttribute 735
eCLD_ThermostatStartReportingLocalTemperature 736
eCLD_ThermostatCommandSetpointRaiseOrLowerSend 737

33.6.1 eCLD_ThermostatCreateThermostat

teZCL_Status eCLD_ThermostatCreateThermostat(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 sZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_ThermostatCustomDataStructure
 psCustomDataStructure);

Description

This function creates an instance of the Thermostat cluster on an endpoint. The cluster instance is created
on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a
server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a
Thermostat cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device (e.g. the Thermostat
device) will be used. In this case, the device and its supported clusters must be registered on the endpoint using
the relevant device registration function.

When used, this function must be the first Thermostat cluster function called in the application, and must be
called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Thermostat cluster.

The function initializes the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Thermostat cluster. This parameter can refer to a pre-
filled structure called sCLD_Thermostat which is provided in the Thermostat.h file.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
435 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_Thermostat which defines the attributes of
Thermostat cluster. The function initializes the attributes with default values.
pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above).

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

33.6.2 eCLD_ThermostatSetAttribute

teZCL_Status eCLD_ThermostatSetAttribute(
 uint8 u8SourceEndPointId,
 uint8 u8AttributeId,
 int16 i16AttributeValue);

Description

This function can be used on a Thermostat cluster server to update the Thermostat attributes - specifically to
write a value to one of the following attributes:

i16LocalTemperature
i16OccupiedCoolingSetpoint
i16OccupiedHeatingSetpoint

The function first checks whether the value to be written falls within the valid range for the relevant attribute.
If not, it returns with status E_ZCL_ERR_INVALID_VALUE. If the server attempts to write to an attribute other
than those specified above, the function returns with status E_ZCL_DENY_ATTRIBUTE_ACCESS. If the cluster
does not exist, it returns with status E_ZCL_ERR_CLUSTER_NOT_FOUND.

Parameters

u8SourceEndPointId Number of the endpoint on which the Thermostat cluster resides
u8AttributeId Identifier of attribute to be updated, one of:
 E_CLD_THERMOSTAT_ATTR_ID_LOCAL_TEMPERATURE
E_CLD_THERMOSTAT_ATTR_ID_OCCUPIED_COOLING_SETPOINT
E_CLD_THERMOSTAT_ATTR_ID_OCCUPIED_HEATING_SETPOINT
i16AttributeValue Value to be written to attribute

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_INVALID_VALUE
E_ZCL_DENY_ATTRIBUTE_ACCESS
E_ZCL_ERR_CLUSTER_NOT_FOUND

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
436 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

33.6.3 eCLD_ThermostatStartReportingLocalTemperature

teZCL_Status eCLD_ThermostatStartReportingLocalTemperature(
 uint8 u8SourceEndPointId,
 uint8 u8DstEndPointId,
 uint64 u64DstAddr,
 uint16 u16MinReportInterval,
 uint16 u16MaxReportInterval,
 int16 i16ReportableChange);

Description

This function can be used on a Thermostat cluster server to start automatic reporting of the measured local
temperature to a cluster client. The change to be reported can be configured through this function. Reports
is sent regularly (but not periodically), within the specified maximum and minimum time-intervals between
consecutive reports.

Parameters

u8SourceEndPointId Number of the local endpoint on which the Thermostat cluster server resides
u8DstEndPointId Number of the endpoint to which reports are to be sent on the destination node
u64DstAddr IEEE/MAC address of destination node
u16MinReportInterval Minimum time-interval, in seconds, between reports
u16MaxReportInterval Maximum time-interval, in seconds, between reports
i16ReportableChange Specifies the change to be reported

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_CLUSTER_NOT_FOUND

33.6.4 eCLD_ThermostatCommandSetpointRaiseOrLowerSend

teZCL_Status eCLD_ThermostatCommandSetpointRaiseOrLowerSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Thermostat_SetpointRaiseOrLowerPayload
 *psPayload);

Description

This function can be used on a Thermostat cluster client to send a ‘Setpoint Raise Or Lower’ command to
the cluster server. This command is used to increase or decrease the heating setpoint and/or cooling setpoint
by requesting a change to the values of the attribute i16OccupiedHeatingSetpoint and/or the attribute
i16OccupiedCoolingSetpoint. The relevant setpoint(s) and the required temperature change are specified
in the command payload structure tsCLD_Thermostat_SetpointRaiseOrLowerPayload (see Section
33.9.3).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
437 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

A pointer must be specified to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the request is sent
u8DestinationEndPointId Number of the remote endpoint to which the request is sent
psDestinationAddress Pointer to a structure containing the address of the remote node to which the
request is sent
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to the command payload (see Section 33.9.3)

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_EP_RANGE
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_CLUSTER_NOT_FOUND
E_ZCL_ERR_ZBUFFER_FAIL
E_ZCL_ERR_ZTRANSMIT_FAIL

33.7 Return codes
The Thermostat cluster functions use the ZCL return codes defined in Section 7.2.

33.8 Enumerations

33.8.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the Thermostat cluster.

typedef enum
{
 E_CLD_THERMOSTAT_ATTR_ID_LOCAL_TEMPERATURE = 0x0000,
 E_CLD_THERMOSTAT_ATTR_ID_OUTDOOR_TEMPERATURE,
 E_CLD_THERMOSTAT_ATTR_ID_OCCUPANCY,
 E_CLD_THERMOSTAT_ATTR_ID_ABS_MIN_HEAT_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_ABS_MAX_HEAT_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_ABS_MIN_COOL_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_ABS_MAX_COOL_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_PI_COOLING_DEMAND,
 E_CLD_THERMOSTAT_ATTR_ID_PI_HEATING_DEMAND,
 E_CLD_THERMOSTAT_ATTR_ID_LOCAL_TEMPERATURE_CALIBRATION = 0x0010,
 E_CLD_THERMOSTAT_ATTR_ID_OCCUPIED_COOLING_SETPOINT,
 E_CLD_THERMOSTAT_ATTR_ID_OCCUPIED_HEATING_SETPOINT,
 E_CLD_THERMOSTAT_ATTR_ID_UNOCCUPIED_COOLING_SETPOINT,
 E_CLD_THERMOSTAT_ATTR_ID_UNOCCUPIED_HEATING_SETPOINT,
 E_CLD_THERMOSTAT_ATTR_ID_MIN_HEAT_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_MAX_HEAT_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_MIN_COOL_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_MAX_COOL_SETPOINT_LIMIT,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
438 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_THERMOSTAT_ATTR_ID_MIN_SETPOINT_DEAD_BAND,
 E_CLD_THERMOSTAT_ATTR_ID_REMOTE_SENSING,
 E_CLD_THERMOSTAT_ATTR_ID_CONTROL_SEQUENCE_OF_OPERATION,
 E_CLD_THERMOSTAT_ATTR_ID_SYSTEM_MODE,
 E_CLD_THERMOSTAT_ATTR_ID_ALARM_MASK
} teCLD_Thermostat_AttributeID;

33.8.2 ‘Operating Capabilities’ Enumerations

The following enumerations are used to set the optional attribute eControlSequenceOfOperation in the
Thermostat cluster structure tsCLD_Thermostat.

typedef enum
{
 E_CLD_THERMOSTAT_CSOO_COOLING_ONLY = 0x00,
 E_CLD_THERMOSTAT_CSOO_COOLING_WITH_REHEAT,
 E_CLD_THERMOSTAT_CSOO_HEATING_ONLY,
 E_CLD_THERMOSTAT_CSOO_HEATING_WITH_REHEAT,
 E_CLD_THERMOSTAT_CSOO_COOLING_AND_HEATING_4_PIPES,
 E_CLD_THERMOSTAT_CSOO_COOLING_AND_HEATING_4_PIPES_WITH_REHEAT,
}teCLD_Thermostat_ControlSequenceOfOperation;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_THERMOSTAT_CSOO_COOLING_ONLY Heat and Emergency Heating are not
possible

E_CLD_THERMOSTAT_CSOO_COOLING_WITH_REHEAT Heat and Emergency Heating are not
possible

E_CLD_THERMOSTAT_CSOO_HEATING_ONLY Cool and Pre-cooling are not possible

E_CLD_THERMOSTAT_CSOO_HEATING_WITH_REHEAT Cool and Pre-cooling are not possible

E_CLD_THERMOSTAT_CSOO_COOLING_AND_HEATING_
4_PIPES

All modes are possible

E_CLD_THERMOSTAT_CSOO_COOLING_AND_HEATING_
4_PIPES_WITH_REHEAT

All modes are possible

Table 50. ‘Operating Capabilities’ Enumerations

33.8.3 ‘Command ID’ Enumerations

The following enumeration is used to specify the type of command sent to a Thermostat cluster server.

typedef enum
{
 E_CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER = 0x00,
} teCLD_Thermostat_Command;

The above enumerations are described in the table below.

Enumeration Command

E_CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER Setpoint Raise Or Lower

Table 51. ‘Command ID’ Enumerations

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
439 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

33.8.4 ‘Setpoint Raise Or Lower’ Enumerations

The following enumerations are used to specify an operating mode (heating, cooling or both) or the Thermostat.

{
 E_CLD_THERMOSTAT_SRLM_HEAT = 0x00,
 E_CLD_THERMOSTAT_SRLM_COOL,
 E_CLD_THERMOSTAT_SRLM_BOTH
}teCLD_Thermostat_SetpointRaiseOrLowerMode;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_THERMOSTAT_SRLM_HEAT Heating mode

E_CLD_THERMOSTAT_SRLM_COOL Cooling mode

E_CLD_THERMOSTAT_SRLM_BOTH Heating and Cooling modes

Table 52. ‘Setpoint Raise Or Lower’ Enumerations

33.9 Structures

33.9.1 Custom Data Structure

The Thermostat cluster requires extra storage space to be allocated for use by internal functions. The structure
definition for this storage is shown below:

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ThermostatCallBackMessage sCallBackMessage;
} tsCLD_ThermostatCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

33.9.2 tsCLD_ThermostatCallBackMessage

For a Thermostat cluster event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_ThermostatCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_Thermostat_SetpointRaiseOrLowerPayload *psSetpointRaiseOrLowerPayload;
 } uMessage;
} tsCLD_ThermostatCallBackMessage;

where:

• u8CommandId indicates the type of Thermostat cluster command that has been received - there is only one
possibility: E_CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
440 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• uMessage is a union containing the command payload in the following form:
psSetpointRaiseOrLowerPayload is a pointer to a structure containing the payload of a ‘Setpoint Raise
Or Lower’ command - see Section 33.9.3.

33.9.3 tsCLD_Thermostat_SetpointRaiseOrLowerPayload

This stucture contains the payload of a ‘Setpoint Raise Or Lower’ command (from the cluster client)
which requests a change the value of the attribute i16OccupiedHeatingSetpoint and/or the attribute
i16OccupiedCoolingSetpoint.

typedef struct
{
 zenum8 eMode;
 zint8 i8Amount;
}tsCLD_Thermostat_SetpointRaiseOrLowerPayload;

where:

• eMode indicates the Thermostat operating mode to which the command relates, one of:
– E_CLD_THERMOSTAT_SRLM_HEAT (Heating)
– E_CLD_THERMOSTAT_SRLM_COOL (Cooling)
– E_CLD_THERMOSTAT_SRLM_BOTH (Heating and Cooling)

• i8Amount represents the value (in two’s complement form) by which the setpoint corresponding to the
specified operating mode is to be changed

33.10 Compile-time options
To enable the Thermostat cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_THERMOSTAT

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define THERMOSTAT_SERVER
#define THERMOSTAT_CLIENT

Optional Attributes

The optional attributes for the Thermostat cluster (see Section 33.2) are enabled by defining:

• CLD_THERMOSTAT_ATTR_ID_LOCAL_TEMPERATURE
• CLD_THERMOSTAT_ATTR_ID_OUTDOOR_TEMPERATURE
• CLD_THERMOSTAT_ATTR_ID_OCCUPANCY
• CLD_THERMOSTAT_ATTR_ID_ABS_MIN_HEAT_SETPOINT_LIMIT
• CLD_THERMOSTAT_ATTR_ID_ABS_MAX_HEAT_SETPOINT_LIMIT
• CLD_THERMOSTAT_ATTR_ID_ABS_MIN_COOL_SETPOINT_LIMIT
• CLD_THERMOSTAT_ATTR_ID_ABS_MAX_COOL_SETPOINT_LIMIT
• CLD_THERMOSTAT_ATTR_ID_PI_COOLING_DEMAND
• CLD_THERMOSTAT_ATTR_ID_PI_HEATING_DEMAND
• CLD_THERMOSTAT_ATTR_ID_LOCAL_TEMPERATURE_CALIBRATION
• CLD_THERMOSTAT_ATTR_ID_OCCUPIED_COOLING_SETPOINT
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
441 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• CLD_THERMOSTAT_ATTR_ID_OCCUPIED_HEATING_SETPOINT
• CLD_THERMOSTAT_ATTR_ID_UNOCCUPIED_COOLING_SETPOINT
• CLD_THERMOSTAT_ATTR_ID_UNOCCUPIED_HEATING_SETPOINT
• CLD_THERMOSTAT_ATTR_ID_MIN_HEAT_SETPOINT_LIMIT
• CLD_THERMOSTAT_ATTR_ID_MAX_HEAT_SETPOINT_LIMIT
• CLD_THERMOSTAT_ATTR_ID_MIN_COOL_SETPOINT_LIMIT
• CLD_THERMOSTAT_ATTR_ID_MAX_COOL_SETPOINT_LIMIT
• CLD_THERMOSTAT_ATTR_ID_MIN_SETPOINT_DEAD_BAND
• CLD_THERMOSTAT_ATTR_ID_REMOTE_SENSING
• CLD_THERMOSTAT_ATTR_ID_CONTROL_SEQUENCE_OF_OPERATION
• CLD_THERMOSTAT_ATTR_ID_SYSTEM_MODE
• CLD_THERMOSTAT_ATTR_ID_ALARM_MASK

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_THERMOSTAT_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_THERMOSTAT_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

Minimum Cooling Setpoint

The value of the attribute i16MinCoolSetpointLimit can be set as follows:

#define CLD_THERMOSTAT_MIN_COOLING_SETPOINT n

where n is the value to be set (in two’s complement form). The default value is 0x954D.

Maximum Cooling Setpoint

The value of the attribute i16MaxCoolSetpointLimit can be set as follows:

#define CLD_THERMOSTAT_MAX_COOLING_SETPOINT n

where n is the value to be set (in two’s complement form). The default value is 0x7FFF.

Minimum Heating Setpoint

The value of the attribute i16MinHeatSetpointLimit can be set as follows:

#define CLD_THERMOSTAT_MIN_HEATING_SETPOINT n

where n is the value to be set (in two’s complement form). The default value is 0x954D.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
442 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Maximum Heating Setpoint

The value of the attribute i16MaxHeatSetpointLimit can be set as follows:

#define CLD_THERMOSTAT_MAX_HEATING_SETPOINT n

 where n is the value to be set (in two’s complement form). The default value is 0x7FFF.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
443 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

34 Fan Control Cluster

This chapter describes the Fan Control cluster which is defined in the ZCL.

The Fan Control cluster has a Cluster ID of 0x0202.

34.1 Overview
The Fan Control cluster is used to control the speed of a fan which may be part of a heating or cooling system.
It allows the speed or state of the fan to be set, as well as the possible speeds/states that a thermostat can set.

To use the functionality of this cluster, you must include the file FanControl.h in your application and enable the
cluster by defining CLD_FAN_CONTROL in the zcl_options.h file.

A Fan Control cluster instance can act as a client or a server. The inclusion of the client or server software
must be pre-defined in the application’s compile-time options (in addition, if the cluster is to reside on a custom
endpoint then the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Fan Control cluster are fully detailed in Section 34.6.

34.2 Fan Control Structure and Attributes
The structure definition for the Fan Control cluster is shown below.

typedef struct
{
 #ifdef FAN_CONTROL_SERVER
 zenum8 e8FanMode;
 zenum8 e8FanModeSequence;
 #endif
 zuint16 u16ClusterRevision;
} tsCLD_FanControl;

where:

• e8FanMode is a server attribute that represents the current speed/state of the fan. The attribute can be set to
one of the enumerated values listed in Section 34.5.2, representing off, low, medium, high, on, auto or smart.

• e8FanModeSequence is a server attribute that specifies the possible fan speeds/states that a thermostat can
set. The attribute can be set to one of the enumerated values listed in Section 34.5.3, each representing a set
of possible fan speeds/states.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. For cluster
specifications that pre-date the ZCL r6, this attribute is set to 0.

34.3 Initialisation
The function eCLD_CreateFanControl() is used to create an instance of the Fan Control cluster. The function
is generally called by the initialisation function for the host device.

34.4 Functions
The following Fan Control cluster function is provided in the NXP implementation of the ZCL:

Function Page
eCLD_CreateFanControl 747

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
444 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

34.4.1 eCLD_CreateFanControl

teZCL_Status eCLD_CreateFanControl(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Fan Control cluster on an endpoint. The cluster instance is created
on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a
server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Fan
Control cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the application profile has
been initialized.

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
 FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Fan Control cluster. This parameter can refer to a pre-
filled structure called tsCLD_FanControl which is provided in the FanControl.h file.
pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_FanControl which defines the attributes of the Fan
Control cluster. The function initializes the attributes with default values.
pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above).

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
445 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

34.5 Enumerations

34.5.1 teCLD_FanControl_AttributeID

The following structure contains the enumerations used to identify the server attributes of the Fan Control
cluster.

typedef enum
{
 E_CLD_FAN_CONTROL_ATTR_ID_FAN_MODE = 0x0000,
 E_CLD_FAN_CONTROL_ATTR_ID_FAN_MODE_SEQUENCE,
} teCLD_FanControl_AttributeID;

34.5.2 teCLD_FC_FanMode

The following structure contains the enumerations used to set the value of the e8FanMode attribute in the
tsCLD_FanControl structure (see Section 34.2).

typedef enum
{
 E_CLD_FC_FAN_MODE_OFF = 0x00,
 E_CLD_FC_FAN_MODE_LOW, //0x01
 E_CLD_FC_FAN_MODE_MEDIUM, //0x02
 E_CLD_FC_FAN_MODE_HIGH, //0x03
 E_CLD_FC_FAN_MODE_ON, //0x04
 E_CLD_FC_FAN_MODE_AUTO, //0x05
 E_CLD_FC_FAN_MODE_SMART, //0x06
} teCLD_FC_FanMode;

The above enumerations are described in the table below.

Enumeration Description (Fan State/Speed)

E_CLD_FC_FAN_MODE_OFF Off

E_CLD_FC_FAN_MODE_LOW Low

E_CLD_FC_FAN_MODE_MEDIUM Medium

E_CLD_FC_FAN_MODE_HIGH High

E_CLD_FC_FAN_MODE_ON On

E_CLD_FC_FAN_MODE_AUTO Auto (fan speed is self-regulated)

E_CLD_FC_FAN_MODE_SMART Smart (when the space is occupied, the fan is always on)

Table 53. ‘Fan Mode’ Enumerations

34.5.3 teCLD_FC_FanModeSequence

The following structure contains the enumerations used to set the value of the e8FanModeSequence attribute
in the tsCLD_FanControl structure (see Section 34.2).

typedef enum
{
 E_CLD_FC_FAN_MODE_SEQUENCE_LOW_MED_HIGH = 0x00,
 E_CLD_FC_FAN_MODE_SEQUENCE_LOW_HIGH, //0x01
 E_CLD_FC_FAN_MODE_SEQUENCE_LOW_MED_HIGH_AUTO, //0x02
 E_CLD_FC_FAN_MODE_SEQUENCE_LOW_HIGH_AUTO, //0x03

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
446 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_FC_FAN_MODE_SEQUENCE_ON_AUTO, //0x04
} teCLD_FC_FanModeSequence;

The above enumerations are described in the table below (the fan speeds/states refer to those listed in Section
34.5.2).

Enumeration Description (Set of Fan Speeds/States)

E_CLD_FC_FAN_MODE_SEQUENCE_LOW_MED_HIGH Low/Med/High

E_CLD_FC_FAN_MODE_SEQUENCE_LOW_HIGH Low/High

E_CLD_FC_FAN_MODE_SEQUENCE_LOW_MED_HIGH_AUTO Low/Med/High/Auto

E_CLD_FC_FAN_MODE_SEQUENCE_LOW_HIGH_AUTO Low/High/Auto

E_CLD_FC_FAN_MODE_SEQUENCE_ON_AUTO On/Auto

Table 54. ‘Fan Mode Sequence’ Enumerations

34.6 Compile-time options
To enable the Fan Control cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_FAN_CONTROL

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define FAN_CONTROL_CLIENT
#define FAN_CONTROL_SERVER

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
447 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

35 Thermostat UI Configuration Cluster

This chapter outlines the Thermostat User Interface (UI) Configuration cluster which is defined in the ZCL
and provides an interface for configuring the user interface (keypad and/or LCD screen) of a thermostat - this
interface may be located on a controlling device which is remote from the thermostat.

The Thermostat UI Configuration cluster has a Cluster ID of 0x0204.

35.1 Overview
The Thermostat UI Configuration cluster is required in ZigBee devices as indicated in the table below.

Server-side Client-side

Mandatory in...

Optional in... Thermostat Configuration Tool
Combined Interface

Table 55. Thermostat UI Configuration Cluster in ZigBee Devices

The Thermostat UI Configuration cluster is enabled by defining CLD_THERMOSTAT_UI_CONFIG in the
zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance).

The compile-time options for the Thermostat UI Configuration cluster are fully detailed in Section 35.7.

35.2 Cluster structure and attributes
The Thermostat UI Configuration cluster is contained in the following tsCLD_ThermostatUIConfig structure:

typedef struct
{
#ifdef THERMOSTAT_UI_CONFIG_SERVER
 zenum8 eTemperatureDisplayMode;
 zenum8 eKeypadLockout;
#endif
 zuint16 u16ClusterRevision;
} tsCLD_ThermostatUIConfig;;

where:

• eTemperatureDisplayMode specifies the units (Celsius or Fahrenheit) used to display temperature on the
screen of the user interface. Enumerations are provided:
– E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_CELSIUS
– E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_FAHRENHEIT

• eKeypadLockout specifies the level of functionality that is available via the keypad of the user interface.
Enumerations are provided:
– E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_NO_LOCKOUT
– E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_1_LOCKOUT
– E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_2_LOCKOUT
– E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_3_LOCKOUT
– E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_4_LOCKOUT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
448 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_5_LOCKOUT
The functionality of each level is manufacturer-defined but level 5 represents the minimum functionality.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

35.3 Initialization
The function eCLD_ThermostatUIConfigCreateThermostatUIConfig() is used to create an instance of the
Thermostat UI Configuration cluster. The function is generally called by the initialization function for the host
device.

35.4 Functions
The following Thermostat UI Configuration cluster functions are provided:

Function Page
eCLD_ThermostatUIConfigCreateThermostatUIConfig 754
eCLD_ThermostatUIConfigConvertTemp 756

35.4.1 eCLD_ThermostatUIConfigCreateThermostatUIConfig

teZCL_Status eCLD_ThermostatUIConfigCreateThermostatUIConfig(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 sZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Thermostat UI Configuration cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure
and can act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a
Thermostat UI Configuration cluster instance on the endpoint, but instances of other clusters may also be
created on the same endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device (for example,
the Thermostat device) is used. In this case, the device and its supported clusters must be registered on the
endpoint using the relevant device registration function.

When used, this function must be the first Thermostat UI Configuration cluster function called in the application,
and must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Thermostat UI Configuration cluster.

The function initializes the array elements to zero.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
449 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer : Type of cluster instance (server or client) to be created:
• TRUE - server
• FALSE - client
• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2).

In this case, this structure must contain the details of the Thermostat UI Configuration cluster. This
parameter can refer to a pre-filled structure called sCLD_ThermostatUIConfig which is provided in the
ThermostatUIConfig.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_ThermostatUIConfig which defines the attributes of
Thermostat UI Configuration cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

35.4.2 eCLD_ThermostatUIConfigConvertTemp

teZCL_Status eCLD_ThermostatUIConfigConvertTemp(
 uint8 u8SourceEndPointId,
 bool bConvertCToF,
 int16 *pi16Temperature);

Description

This function can be used on a Thermostat UI Configuration cluster server to convert a temperature from units
of Celsius to Fahrenheit or vice-versa (the direction must be specified). The temperature value to be converted
is provided to the function as a pointer to a memory location where the input value is stored. This stored value is
replaced with the converted temperature value by the function (over-writing the input value).

Parameters

• u8SourceEndPointId: Number of the endpoint on which the Thermostat UI Configuration cluster resides
• bConvertCToF: Direction of temperature conversion:
• TRUE - Celsius to Fahrenheit
• FALSE - Fahrenheit to Celsius
• pi16Temperature: Pointer to location containing the temperature value to be converted. The converted

temperature value is also output to this location by the function

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_INVALID_VALUE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
450 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_DENY_ATTRIBUTE_ACCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND

35.5 Return codes
The Thermostat UI Configuration cluster functions use the ZCL return codes defined in Section 7.2.

35.6 Enumerations

35.6.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the Thermostat UI
Configuration cluster.

typedef enum
{
 E_CLD_THERMOSTAT_UI_CONFIG_ATTR_ID_TEMPERATURE_DISPLAY_MODE = 0x0000
 E_CLD_THERMOSTAT_UI_CONFIG_ATTR_ID_KEYPAD_LOCKOUT
} teCLD_ThermostatUIConfig_AttributeID;

35.6.2 ‘Temperature Display Mode’ Enumerations

The following enumerations are used to set the optional attribute eTemperatureDisplayMode in the
Thermostat UI Configuration cluster structure tsCLD_ThermostatUIConfig.

typedef enum
{
 E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_CELSIUS = 0x00,
 E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_FAHRENHEIT
} teCLD_ThermostatUIConfig_TemperatureDisplay;

The above enumerations represent the units of temperature available to display temperature on the screen of
the user interface and are described in the table below.

Enumeration Description

E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_
CELSIUS

Display temperature in Celsius

E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_
FAHRENHEIT

Display temperature in Fahrenheit

Table 56. ‘Temperature Display Mode’ Enumerations

35.6.3 ‘Keypad Functionality’ Enumerations

The following enumeration is used to set the optional attribute eKeypadLockout in the Thermostat UI
Configuration cluster structure tsCLD_ThermostatUIConfig.

typedef enum
{
 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_NO_LOCKOUT = 0x00,
 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_1_LOCKOUT,
 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_2_LOCKOUT,
 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_3_LOCKOUT,
 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_4_LOCKOUT,
 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_5_LOCKOUT
} teCLD_ThermostatUIConfig_KeyPadLockout;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
451 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The above enumerations represent levels of functionality available via the keypad of the user interface. The
functionality of each level is manufacturer-defined but level 5 represents the minimum functionality.

35.7 Compile-time Options
To enable the Thermostat UI Configuration cluster in the code to be built, it is necessary to add the following to
the zcl_options.h file:

#define CLD_THERMOSTAT_UI_CONFIG

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define THERMOSTAT_UI_CONFIG_SERVER
#define THERMOSTAT_UI_CONFIG_CLIENT

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_THERMOSTAT_UI_CONFIG_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
452 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part VII: Closure Clusters

This part comprises one chapter:

• Chapter 36 details the Door Lock cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
453 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

36 Door Lock Cluster

This chapter outlines the Door Lock cluster, which provides an interface to a set values representing the state of
a door lock and (optionally) the door.

The Door Lock cluster has a Cluster ID of 0x0101.

36.1 Overview
The Door Lock cluster is required in ZigBee devices as indicated in the table below.

Server-side Client-side

Mandatory in... Door Lock Door Lock Controller

Optional in... Remote Control

Table 57. Door Lock Cluster in ZigBee Devices

The Door Lock cluster is enabled by defining CLD_DOOR_LOCK in the zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance).

The compile-time options for the Door Lock cluster are fully detailed in Section 36.9.

36.2 Door Lock Cluster structure and attributes
The Door Lock cluster is contained in the following tsCLD_DoorLock structure:

typedef struct
{
#ifdef DOOR_LOCK_SERVER
 zenum8 eLockState;
 zenum8 eLockType;
 zbool bActuatorEnabled;
#ifdef CLD_DOOR_LOCK_ATTR_DOOR_STATE
 zenum8 eDoorState;
#endif
#ifdef CLD_DOOR_LOCK_ATTR_NUMBER_OF_DOOR_OPEN_EVENTS
 zuint32 u32NumberOfDoorOpenEvent;
#endif
#ifdef CLD_DOOR_LOCK_ATTR_NUMBER_OF_DOOR_CLOSED_EVENTS
 zuint32 u32NumberOfDoorClosedEvent;
#endif
#ifdef CLD_DOOR_LOCK_ATTR_NUMBER_OF_MINUTES_DOOR_OPENED
 zuint16 u16NumberOfMinutesDoorOpened;
#endif
#ifdef CLD_DOOR_LOCK_ZIGBEE_SECUTRITY_LEVEL
 zuint8 u8ZigbeeSecurityLevel;
#endif
#ifdef CLD_DOOR_LOCK_ATTRIBUTE_REPORTING_STATUS
 zuint8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_DoorLock;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
454 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where:

• eLockState is a mandatory attribute indicating the state of the lock, one of:
– E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED
– E_CLD_DOORLOCK_LOCK_STATE_LOCK
– E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

• eLockType is a mandatory attribute representing the type of door lock, one of:
– E_CLD_DOORLOCK_LOCK_TYPE_DEAD_BOLT
– E_CLD_DOORLOCK_LOCK_TYPE_MAGNETIC
– E_CLD_DOORLOCK_LOCK_TYPE_OTHER
– E_CLD_DOORLOCK_LOCK_TYPE_MORTISE
– E_CLD_DOORLOCK_LOCK_TYPE_RIM
– E_CLD_DOORLOCK_LOCK_TYPE_LATCH_BOLT
– E_CLD_DOORLOCK_LOCK_TYPE_CYLINDRICAL_LOCK
– E_CLD_DOORLOCK_LOCK_TYPE_TUBULAR_LOCK
– E_CLD_DOORLOCK_LOCK_TYPE_INTERCONNECTED_LOCK
– E_CLD_DOORLOCK_LOCK_TYPE_DEAD_LATCH
– E_CLD_DOORLOCK_LOCK_TYPE_DOOR_FURNITURE

• bActuatorEnabled is a mandatory attribute indicating whether the actuator for the door lock is enabled:
– TRUE - enabled
– FALSE - disabled

• eDoorState is an optional attribute indicating the current state of the door, one of:
– E_CLD_DOORLOCK_DOOR_STATE_OPEN
– E_CLD_DOORLOCK_DOOR_STATE_CLOSED
– E_CLD_DOORLOCK_DOOR_STATE_ERROR_JAMMED
– E_CLD_DOORLOCK_DOOR_STATE_ERROR_FORCED_OPEN
– E_CLD_DOORLOCK_DOOR_STATE_ERROR_UNSPECIFIED

• u32NumberOfDoorOpenEvent is an optional attribute representing the number of ‘door open’ events that
have occurred

• u32NumberOfDoorClosedEvent is an optional attribute representing the number of ‘door close’ events that
have occurred

• u16NumberOfMinutesDoorOpened is an optional attribute representing the length of time, in minutes, that
the door has been open since the last ‘door open’ event

• u8ZigbeeSecurityLevel is an optional attribute representing the ZigBee PRO security level that should be
applied to communications between a cluster server and client:
– 0: Network-level security only
– 1 or higher: Application-level security (in addition to Network-level security)

Application-level security is an enhancement to the Door Lock cluster and is currently not certifiable.

Note: The application must not write directly to the u8ZigbeeSecurityLevel attribute. If required,
Application-level security should be enabled only using the function eCLD_DoorLockSetSecurityLevel(). For
more information, refer to the description of this function on page 771.

u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is also described in Section 2.4.
u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also described in Section 2.4.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
455 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

36.3 Attributes for Default Reporting
The following attributes of the Door Lock cluster can be selected for default reporting:

eLockState
eDoorState

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

36.4 Door Lock Events
The Door Lock cluster has its own events that are handled through the callback mechanism outlined in Chapter
3. If a device uses the Door Lock cluster then Door Lock event handling must be included in the callback
function for the associated endpoint, where this callback function is registered through the relevant endpoint
registration function (for example, through eHA_RegisterDoorLockEndPoint() for a Door Lock device). The
relevant callback function will then be invoked when a Door Lock event occurs.

For a Door Lock event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_DoorLockCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_DoorLock_LockUnlockResponsePayload *psLockUnlockResponsePayload;
 }uMessage;
 }tsCLD_DoorLockCallBackMessage;

When a Door Lock event occurs, one of two command types could have been received. The relevant command
type is specified through the u8CommandId field of the tsCLD_DoorLockCallBackMessage structure. The
possible command types are detailed below.

u8CommandId Enumeration Description

 E_CLD_DOOR_LOCK_CMD_LOCK A lock request command has been received by the clus-ter server

E_CLD_DOOR_LOCK_CMD_UNLOCK An unlock request command has been received by the cluster server

Table 58. Door Lock Command Types

36.5 Functions
The following Door Lock cluster functions are provided:

Function Page
eCLD_DoorLockCreateDoorLock 766
eCLD_DoorLockSetLockState 768
eCLD_DoorLockGetLockState 769
eCLD_DoorLockCommandLockUnlockRequestSend 770
eCLD_DoorLockSetSecurityLevel 771

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
456 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

36.5.1 eCLD_DoorLockCreateDoorLock

teZCL_Status eCLD_DoorLockCreateDoorLock(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Door Lock cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Door
Lock cluster instance on the endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device (e.g. the Door Lock
device) will be used. In this case, the device and its supported clusters must be registered on the endpoint using
the relevant device registration function.

When used, this function must be the first Door Lock cluster function called in the application, and must be
called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the Door Lock cluster.

The function initializes the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Door Lock cluster. This parameter can refer to a pre-
filled structure called sCLD_DoorLock which is provided in the DoorLock.h file.
pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_DoorLock which defines the attributes of Door Lock
cluster. The function initializes the attributes with default values.
pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above).

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
457 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

E_ZCL_ERR_INVALID_VALUE

36.5.2 eCLD_DoorLockSetLockState

teZCL_Status eCLD_DoorLockSetLockState(
 uint8 u8SourceEndPointId,
 teCLD_DoorLock_LockState eLock);

Description

This function can be used on a Door Lock cluster server to set the value of the eLockState attribute which
represents the current state of the door lock (locked, unlocked or not fully locked).

Depending on the specified value of eLock, the attribute will be set to one of the following:

• E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED
• E_CLD_DOORLOCK_LOCK_STATE_LOCK
• E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

This function generates an update event to inform the application when the change has been made.

Parameters

u8SourceEndPointId Number of the endpoint on which the Door Lock cluster resides
eLock State in which to put the door lock, one of:
 E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED
 E_CLD_DOORLOCK_LOCK_STATE_LOCK
 E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

36.5.3 eCLD_DoorLockGetLockState

teZCL_Status eCLD_DoorLockGetLockState(
 uint8 u8SourceEndPointId,
 teCLD_DoorLock_LockState *peLock);

Description

This function can be used on a Door Lock cluster server to obtain the value of the eLockState attribute which
represents the current state of the door lock (locked, unlocked or not fully locked).

The value of the attribute is returned through the location pointed to by peLock and can be any one of the
following:

• E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED
• E_CLD_DOORLOCK_LOCK_STATE_LOCK
• E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
458 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

u8SourceEndPointId Number of the endpoint on which the Door Lock cluster resides
peLock Pointer to location to receive the obtained state of the door lock, which will be one of:
 E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED
 E_CLD_DOORLOCK_LOCK_STATE_LOCK
 E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

36.5.4 eCLD_DoorLockCommandLockUnlockRequestSend

teZCL_Status eCLD_DoorLockCommandLockUnlockRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 teCLD_DoorLock_CommandID eCommand);

Description

This function can be used on a Door Lock cluster client to send a lock or unlock command to the Door Lock
cluster server.

A pointer must be specified to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the request is sent
u8DestinationEndPointId Number of the remote endpoint to which the request is sent
psDestinationAddress Pointer to a structure containing the address of the remote node to which the
request is sent
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number
(TSN) of the request
eCommand The command to be sent, one of:
 E_CLD_DOOR_LOCK_CMD_LOCK
 E_CLD_DOOR_LOCK_CMD_UNLOCK

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_EP_RANGE
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_CLUSTER_NOT_FOUND
E_ZCL_ERR_ZBUFFER_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
459 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

E_ZCL_ERR_ZTRANSMIT_FAIL

36.5.5 eCLD_DoorLockSetSecurityLevel

teZCL_Status eCLD_DoorLockSetSecurityLevel(
 uint8 u8SourceEndPointId,
 bool bServer,
 uint8 u8SecurityLevel);

Description

This function can be used to set the level of security to be used by the Door Lock cluster: Network-level security
or Application-level security. By default, only Network-level security is implemented, but this function can be
used to enable Application-level security (in addition to Network-level security). For more information on ZigBee
security, refer to the ZigBee 3.0 Stack User Guide (JNUG3130).

Application-level security is an enhancement to the Door Lock cluster and is currently not certifiable. It is
enabled through an optional attribute of the cluster, but the application must not write directly to this attribute - if
required, Application-level security should be enabled only using this function.

To use Application-level security, it is necessary to call this function on the Door Lock cluster server and
client nodes. If an application link key is to be used which is not the default one, the new link key must be
subsequently specified on both nodes using the ZigBee PRO function ZPS_eAplZdoAddReplaceLinkKey().

Parameters

u8SourceEndPointId Number of the local endpoint on which the Door Lock cluster resides
bIsServer Type of local cluster instance (server or client):
 TRUE - server
FALSE - client
u8SecurityLevel The security level to be set:
 0: Network-level security only
1 or higher: Application-level security

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

36.6 Return codes
The Door Lock cluster functions use the ZCL return codes defined in Section 7.2.

36.7 Enumerations

36.7.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the Door Lock cluster.

typedef enum
{
 E_CLD_DOOR_LOCK_ATTR_ID_LOCK_STATE = 0x0000,
 E_CLD_DOOR_LOCK_ATTR_ID_LOCK_TYPE,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
460 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_DOOR_LOCK_ATTR_ID_ACTUATOR_ENABLED,
 E_CLD_DOOR_LOCK_ATTR_ID_DOOR_STATE,
 E_CLD_DOOR_LOCK_ATTR_ID_NUMBER_OF_DOOR_OPEN_EVENTS,
 E_CLD_DOOR_LOCK_ATTR_ID_NUMBER_OF_DOOR_CLOSED_EVENTS,
 E_CLD_DOOR_LOCK_ATTR_ID_NUMBER_OF_MINUTES_DOOR_OPENED,
 E_CLD_DOOR_LOCK_ATTR_ID_ZIGBEE_SECURITY_LEVEL = 0x0034
} teCLD_DoorLock_Cluster_AttrID;

36.7.2 ‘Lock State’ Enumerations

The following enumerations are used to set the eLockState element in the Door Lock cluster structure
tsCLD_DoorLock.

typedef enum
{
 E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED = 0x00,
 E_CLD_DOORLOCK_LOCK_STATE_LOCKED,
 E_CLD_DOORLOCK_LOCK_STATE_UNLOCKED,
 E_CLD_DOORLOCK_LOCK_STATE_UNDEFINED = 0xFF
} teCLD_DoorLock_LockState;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED Not fully locked

E_CLD_DOORLOCK_LOCK_STATE_LOCK Locked

E_CLD_DOORLOCK_LOCK_STATE_UNLOCK Unlocked

Table 59. ‘Lock State’ Enumerations

36.7.3 ‘Lock Type’ Enumerations

The following enumerations are used to set the eLockType element in the Door Lock cluster structure
tsCLD_DoorLock.

typedef enum
{
 E_CLD_DOORLOCK_LOCK_TYPE_DEAD_BOLT = 0x00,
 E_CLD_DOORLOCK_LOCK_TYPE_MAGNETIC,
 E_CLD_DOORLOCK_LOCK_TYPE_OTHER,
 E_CLD_DOORLOCK_LOCK_TYPE_MORTISE,
 E_CLD_DOORLOCK_LOCK_TYPE_RIM,
 E_CLD_DOORLOCK_LOCK_TYPE_LATCH_BOLT,
 E_CLD_DOORLOCK_LOCK_TYPE_CYLINDRICAL_LOCK,
 E_CLD_DOORLOCK_LOCK_TYPE_TUBULAR_LOCK,
 E_CLD_DOORLOCK_LOCK_TYPE_INTERCONNECTED_LOCK,
 E_CLD_DOORLOCK_LOCK_TYPE_DEAD_LATCH,
 E_CLD_DOORLOCK_LOCK_TYPE_DOOR_FURNITURE
} teCLD_DoorLock_LockType;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_DOORLOCK_LOCK_TYPE_DEAD_BOLT Dead bold lock

Table 60. ‘Lock Type’ Enumerations

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
461 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_CLD_DOORLOCK_LOCK_TYPE_MAGNETIC Magnetic lock

E_CLD_DOORLOCK_LOCK_TYPE_OTHER Other type of lock

E_CLD_DOORLOCK_LOCK_TYPE_MORTISE Mortise lock

E_CLD_DOORLOCK_LOCK_TYPE_RIM Rim lock

E_CLD_DOORLOCK_LOCK_TYPE_LATCH_BOLT Latch bolt

E_CLD_DOORLOCK_LOCK_TYPE_CYLINDRICAL_LOCK Cylindrical lock

E_CLD_DOORLOCK_LOCK_TYPE_TUBULAR_LOCK Tubular lock

E_CLD_DOORLOCK_LOCK_TYPE_INTERCONNECTED_LOCK Interconnected lock

E_CLD_DOORLOCK_LOCK_TYPE_DEAD_LATCH Dead latch

E_CLD_DOORLOCK_LOCK_TYPE_DOOR_FURNITURE Door furniture lock

Table 60. ‘Lock Type’ Enumerations...continued

36.7.4 ‘Door State’ Enumerations

The following enumerations are used to set the optional eDoorState element in the Door Lock cluster
structure tsCLD_DoorLock.

typedef enum
{
 E_CLD_DOORLOCK_DOOR_STATE_OPEN = 0x00,
 E_CLD_DOORLOCK_DOOR_STATE_CLOSED,
 E_CLD_DOORLOCK_DOOR_STATE_ERROR_JAMMED,
 E_CLD_DOORLOCK_DOOR_STATE_ERROR_FORCED_OPEN,
 E_CLD_DOORLOCK_DOOR_STATE_ERROR_UNSPECIFIED,
 E_CLD_DOORLOCK_DOOR_STATE_UNDEFINED = 0xFF
} teCLD_DoorLock_DoorState;;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_DOORLOCK_DOOR_STATE_OPEN Door is open

E_CLD_DOORLOCK_DOOR_STATE_CLOSED Door is closed

E_CLD_DOORLOCK_DOOR_STATE_ERROR_JAMMED Door is jammed

E_CLD_DOORLOCK_DOOR_STATE_ERROR_FORCED_OPEN Door has been forced open

E_CLD_DOORLOCK_DOOR_STATE_ERROR_UNSPECIFIED Door is in an unknown state

Table 61. ‘Door State’ Enumerations

36.7.5 ‘Command ID’ Enumerations

The following enumerations are used to set specify the type of command (lock or unlock) sent to a Door Lock
cluster server.

typedef enum
{
 E_CLD_DOOR_LOCK_CMD_LOCK
 E_CLD_DOOR_LOCK_CMD_UNLOCK
} teCLD_DoorLock_CommandID;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
462 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The above enumerations are described in the table below.

Enumeration Description

E_CLD_DOOR_LOCK_CMD_LOCK A lock command

E_CLD_DOOR_LOCK_CMD_UNLOCK An unlock command

Table 62. ‘Command ID’ Enumerations

36.8 Structures

36.8.1 tsCLD_DoorLockCallBackMessage

For a Door Lock event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_DoorLockCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_DoorLock_LockUnlockResponsePayload *psLockUnlockResponsePayload;
 }uMessage;
 }tsCLD_DoorLockCallBackMessage;

where:

• u8CommandId indicates the type of Door Lock command (lock or unlock) that has been received, one of:
– E_CLD_DOOR_LOCK_CMD_LOCK
– E_CLD_DOOR_LOCK_CMD_UNLOCK

• uMessage is a union containing the command payload in the following form:
– psLockUnlockResponsePayload is a pointer to a structure containing the response payload of the

received command - see Section 36.8.2

36.8.2 tsCLD_DoorLock_LockUnlockResponsePayload

This stucture contains the payload of a lock/unlock command response (from the cluster server).

typedef struct
{
 zenum8 eStatus;
}tsCLD_DoorLock_LockUnlockResponsePayload;

where eStatus indicates whether the command was received:

0x00 - SUCCESS, 0x01 - FAILURE (all other values are reserved).

36.9 Compile-time options
To enable the Door Lock cluster in the code to be built, it is necessary to add the following to the zcl_options.h
file:

#define CLD_DOOR_LOCK

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
463 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define CLD_DOOR_LOCK_SERVER
#define CLD_DOOR_LOCK_CLIENT

Optional Attributes

Add this line to enable the optional Door State attribute:

#define CLD_DOOR_LOCK_ATTR_DOOR_STATE

Add this line to enable the optional Number Of Door Open Events attribute:

#define CLD_DOOR_LOCK_ATTR_NUMBER_OF_DOOR_OPEN_EVENTS

Add this line to enable the optional Number Of Door Closed Events attribute:

#define CLD_DOOR_LOCK_ATTR_NUMBER_OF_DOOR_CLOSED_EVENTS

Add this line to enable the optional Number Of Minutes Door Opened attribute:

#define CLD_DOOR_LOCK_ATTR_NUMBER_OF_MINUTES_DOOR_OPENED

Add this line to enable the optional ZigBee Security Level attribute:

#define CLD_DOOR_LOCK_ZIGBEE_SECURITY_LEVEL

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_DOOR_LOCK_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_DOOR_LOCK_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
464 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part VIII: Security and Safety Clusters

This part comprises three chapters:

• Chapter 37 details the IAS Zone cluster
• Chapter 38 details the IAS ACE (Ancillary Control Equipment) cluster
• Chapter 39 details the IAS WD (Warning Device) cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
465 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

37 IAS Zone Cluster

This chapter describes the IAS Zone cluster which provides an interface to an IAS Zone device in an IAS
(Intruder Alarm System).

The IAS Zone cluster has a Cluster ID of 0x0500.

37.1 Overview
The IAS Zone cluster provides an interface to an IAS Zone device, which provides security alarm triggers for
a zone or region of a building (e.g. fire detection). The cluster allows an IAS Zone device to be configured/
controlled from a CIE (Control and Indicating Equipment) device. The server side of the cluster is implemented
on the IAS Zone device and the client side is implemented on the CIE device. The IAS Zone device is detailed
in the ZigBee Devices User Guide (JNUG3131).

The cluster supports the following functionality:

• Up to two alarm types per zone, Alarm1 and Alarm2
• ‘Low battery’ reports
• Supervision of the IAS network

To use the functionality of this cluster, you must include the file IASZone.h in your application and enable the
cluster by defining CLD_IASZONE in the zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance).

The compile-time options for the IAS Zone cluster are fully detailed in Section 37.7.

The information that can potentially be stored in this cluster is organised into the following attribute sets:

• Zone information
• Zone settings

37.2 IAS Zone Structure and Attributes
The structure definition for the IAS Zone cluster is:

typedef struct
{
#ifdef IASZONE_SERVER
 zenum8 e8ZoneState;
 zenum16 e16ZoneType;
 zbmap16 b16ZoneStatus;
 zuint64 u64IASCIEAddress;
 zuint8 u8ZoneId;
#ifdef CLD_IASZONE_ATTR_ID_NUMBER_OF_ZONE_SENSITIVITY_LEVELS
 zuint8 u8NumberOfZoneSensitivityLevels;
#endif
#ifdef CLD_IASZONE_ATTR_ID_CURRENT_ZONE_SENSITIVITY_LEVEL
 zuint8 u8CurrentZoneSensitivityLevel;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_IASZone;

where:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
466 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

‘Zone Information’ Attribute Set

• e8ZoneState is a mandatory attribute which indicates the membership status of the device in an IAS system
(enrolled or not enrolled) - one of:
– E_CLD_IASZONE_STATE_NOT_ENROLLED (0x00)
– E_CLD_IASZONE_STATE_ENROLLED (0x01)

‘Enrolled’ means that the cluster client will react to Zone State Change Notification commands from the
cluster server.

• e16ZoneType is a mandatory attribute which indicates the zone type and the types of security detectors that
can trigger the alarms, Alarm1 and Alarm2:

Enumeration Value Type Alarm1 Alarm2

E_CLD_IASZONE_TYPE_STANDARD_CIE 0x0000 Standard CIE System alarm -

E_CLD_IASZONE_TYPE_MOTION_
SENSOR

0x000D Motion sensor Intrusion
indication

Presence indica-
tion

E_CLD_IASZONE_TYPE_CONTACT_
SWITCH

0x0015 Contact switch First portal open
close

Second portal
open-close

E_CLD_IASZONE_TYPE_FIRE_SENSOR 0x0028 Fire sensor Fire indication -

E_CLD_IASZONE_TYPE_WATER_SENSOR 0x002A Water sensor Water overflow
indication

-

E_CLD_IASZONE_TYPE_GAS_SENSOR 0x002B Gas sensor Carbon
monoxide
indication

Cooking indica-
tion

E_CLD_IASZONE_TYPE_PERSONAL_
EMERGENCY_DEVICE

0x002C Personal
emergency
device

Fall/concussion Emergency but-
ton

E_CLD_IASZONE_TYPE_VIBRATION_
MOVEMENT_SENSOR

0x002D Vibration
movement
sensor

Movement
indication

Vibration

E_CLD_IASZONE_TYPE_REMOTE_
CONTROL

0x010F Remote control Panic Emergency

E_CLD_IASZONE_TYPE_KEY_FOB 0x0115 Key fob Panic Emergency

E_CLD_IASZONE_TYPE_KEYPAD 0x021D Keypad Panic Emergency

E_CLD_IASZONE_TYPE_STANDARD_
WARNING_DEVICE

0x0225 Standard warning
device

- -

E_CLD_IASZONE_TYPE_INVALID_ZONE 0xFFFF Invalid zone type - -

Table 63. e16ZoneType attribute description

• b16ZoneStatus is a mandatory attribute which is a 16-bit bitmap indicating the status of each of the possible
notification triggers from the device:

Bit Description

0 Alarm1:
1 - Opened or alarmed
0 - Closed or not alarned

1 Alarm2:
1 - Opened or alarmed

Table 64. 16ZoneStatus options

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
467 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bit Description
0 - Closed or not alarned

2 Tamper:
1 - Tampered with
0 - Not tampered with

3 Battery:
1 - Low
0 - OK

4 Supervision reports1:
1 - Reports
0 - No reports

5 Restore reports2:
1 - Reports
0 - No reports

6 Trouble:
1 - Trouble/failure
0 - OK

7 AC (mains):
1 - Fault
0 - OK

8 Test mode:
1 - Sensor in test mode
0 - Sensor in operational mode

9 Battery defect:
1 - Defective battery detected
0 - Battery OK

10-15 Reserved

Table 64. 16ZoneStatus options...continued

1 Bit 4 indicates whether the Zone device issues periodic Zone Status Change Notification commands that may
be used by the CIE device as evidence that the Zone device is operational.
2 Bit 5 indicates whether the Zone device issues a Zone Status Change Notification command to notify when an
alarm is no longer present (some Zone devices do not have the ability to detect when the alarm condition has
disappeared).

‘Zone Settings’ Attribute Set

• u64IASCIEAddress is a mandatory attribute containing the 64-bit IEEE/MAC address of the CIE device to
which the cluster server must send commands/ notifications

• u8ZoneId is a mandatory attribute containing the 8-bit identifier for the zone allocated by the CIE device at
the time of enrollment

• u8NumberOfZoneSensitivityLevels is an optional attribute containing the number of sensitivity levels
(for the detectable quantity) for the zone - for devices that have only one sensitivity level, this attribute need
not be enabled or can be set to 0x00 or 0x01
Note: The definition of a sensitivity level is manufacturer-specific but detector ‘sensitivity’ should increase
with higher values of this attribute.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
468 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4

37.3 Enrollment
An IAS Zone device hosting the IAS Zone cluster server must be paired with a CIE device hosting the cluster
client. This pairing is implemented by the process of ‘enrollment’ which, for extra security, provides a layer
of pairing in addition to ZigBee PRO binding - if required, binding is implemented as part of the enrollment
process.

During enrollment, the CIE device sends its IEEE/MAC address to the Zone device as well as a Zone ID,
which is a unique 8-bit identifier that the CIE device assigns to the Zone device. These values are stored in
the u64IASCIEAddress and u8ZoneId attributes on the Zone device (cluster server) - see Section 37.2. In
addition, once enrollment has completed, the e8ZoneState attribute is set to ‘enrolled’. Subsequently, the
Zone device will only communicate with the paired CIE device.

Enrollment begins just after the Zone device joins the network. This device must then periodically poll for data
(from the CIE device), ideally once every 2 seconds (or faster) but no slower than once every 7 seconds. This
polling must continue until the e8ZoneState attribute has been updated to ‘enrolled’. However, if the IAS Zone
device supports the Poll Control cluster, polling at the above rate should continue until the Poll Control cluster
configuration is changed.

Three methods of enrollment are available:

• Trip-to-Pair, described in Section 37.3.1
• Auto-Enroll-Response, described in Section 37.3.2
• Auto-Enroll-Request, described in Section 37.3.3

A cluster server and client can each implement both Trip-to-Pair and Auto-Enroll-Response or just Auto-Enroll-
Request.

37.3.1 Trip-to-Pair

The Trip-to-Pair method of enrollment is described below:

1. After the IAS Zone device joins the network, the CIE device performs a service discovery.

2. If the CIE device determines that it wants to enroll the Zone device, it sends a Write Attribute command to the
Zone device in order to write its IEEE/MAC address to the relevant attribute.

3. The Zone device may optionally create a binding table entry for the CIE device and store the CIE device’s
IEEE/MAC address there.

4. The Zone device waits for the authorization of the enrollment via a user input (for example, a button-press)
and, on this input, sends a Zone Enroll Request command to the CIE device.

5. The CIE device assigns a Zone ID to the Zone device and sends a Zone Enroll Response command to it.

6. The Zone device updates its attributes to stored the assigned Zone ID and update its zone state to ‘enrolled’.

37.3.2 Auto-Enroll-Response

The Auto-Enroll-Response method of enrollment is described below:

1. After the IAS Zone device joins the network, the CIE device performs a service discovery.

2. If the CIE device determines that it wants to enroll the Zone device, it sends a Write Attribute command to the
Zone device in order to write its IEEE/MAC address to the relevant attribute.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
469 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

3. The Zone device may optionally create a binding table entry for the CIE device and store the CIE device’s
IEEE/MAC address there.

4. The CIE device assigns a Zone ID to the Zone device and sends a Zone Enroll Response command to it.

5. The Zone device updates its attributes to stored the assigned Zone ID and update its zone state to ‘enrolled’.

Note: The above Auto-Enroll-Response process is similar to the Trip-to-Pair process (described in Section
37.3.2) except user authorization for the enrollment of the Zone device is not required and no Zone Enroll
Request command needs to be sent to the CIE device.

37.3.3 Auto-Enroll-Request

The Auto-Enroll-Request method of enrollment is described below:

1. After the IAS Zone device joins the network, the CIE device performs a service discovery.

2. If the CIE device determines that it wants to enroll the Zone device, it sends a Write Attribute command
to the Zone device in order to write its IEEE/MAC address to the relevant attribute.

3. The Zone device may optionally create a binding table entry for the CIE device and store the CIE device’s
IEEE/MAC address there.

4. The Zone device sends a Zone Enroll Request command to the CIE device.

5. The CIE device assigns a Zone ID to the Zone device and sends a Zone Enroll Response command to
it.

6. The Zone device updates its attributes to stored the assigned Zone ID and update its zone state to ‘enrolled’.

Note: The above Auto-Enroll-Request process is similar to the Trip-to-Pair process (described in Section
37.3.2) except that user authorization for the enrollment of the Zone device is not required.

37.4 IAS Zone Events
The IAS Zone cluster has its own events that are handled through the callback mechanism outlined in Chapter
3. If a device uses the IAS Zone cluster then IAS Zone event handling must be included in the callback function
for the associated endpoint, where this callback function is registered through the relevant endpoint registration
function (for example, through eHA_RegisterIASZoneEndPoint() for a Zone device). The relevant callback
function is then invoked when an IAS Zone event occurs.

For an IAS Zone event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_IASZoneCallBackMessage structure:

typedef struct
{
uint8 u8CommandId;
union
 {
 tsCLD_IASZone_TestModeUpdate *psTestModeUpdate; /*
 Internal */
 tsCLD_IASZone_EnrollRequestCallBackPayload
 sZoneEnrollRequestCallbackPayload;
 tsCLD_IASZone_EnrollResponsePayload
 *psZoneEnrollResponsePayload;
 tsCLD_IASZone_StatusChangeNotificationPayload
 *psZoneStatusNotificationPayload;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
470 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsCLD_IASZone_InitiateTestModeRequestPayload
 *psZoneInitiateTestModeRequestPayload;
 } uMessage;
} tsCLD_IASZoneCallBackMessage;

When an IAS Zone event occurs, one of several command types could have been received. The relevant
command type is specified through the u8CommandId field of the tsSM_CallBackMessage structure. The
possible command/event types are detailed in the table below (note that psTestModeUpdate is for internal
use only).

u8CommandId Enumeration Description

E_CLD_IASZONE_CMD_ZONE_ENROLL_RESP An IAS Zone Enroll Response has been received
by the cluster server

E_CLD_IASZONE_CMD_ZONE_STATUS_NOTIFICATION An IAS Zone Status Change Notification has been
received by the cluster client

E_CLD_IASZONE_CMD_ZONE_ENROLL_REQ An IAS Zone Enroll Request has been received by
the cluster client

E_CLD_IASZONE_CMD_INITIATE_NORMAL_OP_MODE_REQ An IAS Zone Normal Operation Mode Initiation
Request command has been received by the
cluster server

E_CLD_IASZONE_CMD_INITIATE_TEST_MODE_REQ An IAS Zone Initiate Test Mode Request has been
received by the cluster server

Table 65. IAS Zone Command Types

37.5 Functions
The following IAS Zone cluster functions are provided in the NXP implementation of the ZCL:

1. eCLD_IASZoneCreateIASZone
2. eCLD_IASZoneUpdateZoneStatus
3. eCLD_IASZoneUpdateZoneState
4. eCLD_IASZoneUpdateZoneType
5. eCLD_IASZoneUpdateZoneID
6. eCLD_IASZoneUpdateCIEAddress
7. eCLD_IASZoneEnrollReqSend
8. eCLD_IASZoneEnrollRespSend
9. eCLD_IASZoneStatusChangeNotificationSend

10. eCLD_IASZoneNormalOperationModeReqSend
11. eCLD_IASZoneTestModeReqSend

37.5.1 eCLD_IASZoneCreateIASZone

teZCL_Status eCLD_IASZoneCreateIASZone(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_IASZone_CustomDataStructure *psCustomDataStructure);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
471 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function creates an instance of the IAS Zone cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create an
IAS Zone cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer : Type of cluster instance (server or client) to be created: TRUE - serverFALSE - client
• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this

case, this structure must contain the details of the IAS Zone cluster. This parameter can refer to a pre-filled
structure called sCLD_IASZone which is provided in the IASZone.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_IASZone which defines the attributes of IAS Zone cluster. The
function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster.
• psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see

Section 37.6.1)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

37.5.2 eCLD_IASZoneUpdateZoneStatus

teZCL_Status eCLD_IASZoneUpdateZoneStatus(
uint8 u8SourceEndPoint,
uint16 u16StatusBitMask,
bool_t bStatusState);

Description

This function can be used on an IAS Zone cluster server to update the zone status bitmap stored in the
b16ZoneStatus attribute, described in Section 37.2.

In one call to this function, one or more selected bits in the b16ZoneStatus attribute bitmap can be to set to ‘1’
or ‘0’. The affected bits must themselves be specified in a bitmap and the value to be set must also be specified.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
472 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If the server is enrolled with a client on a CIE device, the function sends a notification of this update to the client,
in a Zone Status Change Notification. Before sending the notification and returning, the function invokes a user-
defined callback function to allow the application to validate the status change.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS Zone cluster resides
• u16StatusBitMask: 16-bit bitmap indicating the bits of the zb16ZoneStatus bitmap to be updated. There

is a one-to-one correspondence between the bits of the two bitmaps and a bit should be set to ‘1’ if the
corresponding attribute bit is to be updated. Enumerations are provided (which can be logical-ORed):

Bits Enumeration

0 CLD_IASZONE_STATUS_MASK_ALARM1

1 CLD_IASZONE_STATUS_MASK_ALARM2

2 CLD_IASZONE_STATUS_MASK_TAMPER

3 CLD_IASZONE_STATUS_MASK_BATTERY

4 CLD_IASZONE_STATUS_MASK_SUPERVISION_REPORTS

5 CLD_IASZONE_STATUS_MASK_RESTORE_REPORTS

6 CLD_IASZONE_STATUS_MASK_TROUBLE

7 CLD_IASZONE_STATUS_MASK_AC_MAINS

8 CLD_IASZONE_STATUS_MASK_TEST

9 CLD_IASZONE_STATUS_MASK_BATTERY_DEFECT

10-15 Reserved

Table 66. u16StatusBitMask enumerations

• bStatusState: Boolean indicating the value to which the attribute bits to be updated must be set -
enumerations are provided:
– CLD_IASZONE_STATUS_MASK_SET (1)
– CLD_IASZONE_STATUS_MASK_RESET (0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

37.5.3 eCLD_IASZoneUpdateZoneState

teZCL_Status eCLD_IASZoneUpdateZoneState(
uint8 u8SourceEndPoint,
 teCLD_IASZoneState eZoneState);

Description

This function can be used on an IAS Zone cluster server to update the zone state value stored in the
e8ZoneState attribute, described in Section 37.2. This attribute indicates whether or not the server is enrolled
with a client on a CIE device. The function checks that the specified state is valid.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
473 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS Zone cluster resides
• eZoneState: Zone state value to be written to the attribute, one of:

– E_CLD_IASZONE_STATE_NOT_ENROLLED (0x00)
– E_CLD_IASZONE_STATE_ENROLLED (0x01)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

37.5.4 eCLD_IASZoneUpdateZoneType

teZCL_Status eCLD_IASZoneUpdateZoneType(
 uint8 u8SourceEndPoint,
 teCLD_IASZoneType eIASZoneType);

Description

This function can be used on an IAS Zone cluster server to update the zone type value stored in the
e16ZoneType attribute. The possible values are listed in Section 37.2 and the function checks that the
specified type is one of these values.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS Zone cluster resides eIASZoneType: Zone
type value to be written to the attribute (for the possible values, refer to Section 37.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

37.5.5 eCLD_IASZoneUpdateZoneID

teZCL_Status eCLD_IASZoneUpdateZoneID(
 uint8 u8SourceEndPoint,
 uint8 u8IASZoneId);

Description

This function can be used on an IAS Zone cluster server to update the zone ID value stored in the u8ZoneId
attribute. This is an 8-bit user-defined identifier.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS Zone cluster resides
• u8IASZoneId: Zone ID value to be written to the attribute

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
474 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

37.5.6 eCLD_IASZoneUpdateCIEAddress

teZCL_Status eCLD_IASZoneUpdateCIEAddress(
 uint8 u8SourceEndPoint,
 u64IEEEAddress u64CIEAddress);

Description

This function can be used on an IAS Zone cluster server to update the 64-bit IEEE/MAC address stored in the
u64IASCIEAddress attribute. This is the address of the CIE device to which the local device should send
commands and notifications.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS Zone cluster resides
• u64CIEAddress: IEEE/MAC address to be written to the attribute

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

37.5.7 eCLD_IASZoneEnrollReqSend

teZCL_Status eCLD_IASZoneEnrollReqSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASZone_EnrollRequestPayload *psPayload);

Description

This function can be used on an IAS Zone cluster server to send an IAS Zone Enroll Request to an IAS Zone
client.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
475 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• psDestinationAddress: : Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 37.6.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

37.5.8 eCLD_IASZoneEnrollRespSend

teZCL_Status eCLD_IASZoneEnrollRespSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASZone_EnrollResponsePayload *psPayload);

Description

This function can be used on an IAS Zone cluster client to send an IAS Zone Enroll Response to the IAS Zone
server.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId Number of the local endpoint through which to send the request. This parameter
is used both to send the command and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress Pointer to a structure holding the address of the node to which the request is
sent

• pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

• psPayload Pointer to a structure containing the payload for the command (see Section 37.6.2)

Returns

• E_ZCL_SUCCESS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
476 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

37.5.9 eCLD_IASZoneStatusChangeNotificationSend

teZCL_Status eCLD_IASZoneStatusChangeNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASZone_StatusChangeNotificationPayload
 *psPayload);

Description

This function can be used on IAS Zone cluster server to send a Zone Status Change Notification to the IAS
Zone client.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 37.6.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
477 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

37.5.10 eCLD_IASZoneNormalOperationModeReqSend

teZCL_Status eCLD_IASZoneNormalOperationModeReqSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on IAS Zone cluster client to send a request the IAS Zone server to initiate normal
operation mode. If required, this command must be enabled in the compile-time options, as described in Section
37.7.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

37.5.11 eCLD_IASZoneTestModeReqSend

teZCL_Status eCLD_IASZoneTestModeReqSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
478 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsCLD_IASZone_InitiateTestModeRequestPayload
 *psPayload);

Description

This function can be used on IAS Zone cluster client to send a request to the IAS Zone server to initiate test
mode and operate in this mode for a specified time. If required, this command must be enabled in the compile-
time options, as described in Section 37.7.

Test mode allows the target device to be temporarily isolated from the IAS to allow configuration/adjustment of
the device. Alternatively, the whole IAS can be put into test mode for maintenance, but the command issued by
this function only affects the individual target IAS Zone cluster server(s).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 37.6.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

37.6 Structures

37.6.1 Custom Data Structure

The IAS Zone cluster requires extra storage space to be allocated to be used by internal functions. The
structure definition for this storage is shown below:

typedef struct
{
 tsCLD_IASZone_InitiateTestModeRequestPayload sTestMode;
 tsZCL_ReceiveEventAddress sReceiveEventAddress;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
479 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_IASZoneCallBackMessage sCallBackMessage;
} tsCLD_IASZone_CustomDataStructure;

The fields are for internal use and no knowledge of them is required.

37.6.2 Custom Command Payloads

The following structures contain the payloads for the IAS Zone cluster custom commands.

‘Enroll Request’ Payload

The following structure contains the payload of an Enroll Request command.

typedef struct
{
 zenum16 e16ZoneType;
 uint16 u16ManufacturerCode;
}tsCLD_IASZone_EnrollRequestPayload;

where:

• e16ZoneType is the zone type of the local (sending) node, as specified in the e16ZoneType attribute (see
Section 37.2)

• u16ManufacturerCode is the manufacturer ID code that is held in the Node Descriptor of the local
(sending) node

‘Enroll Response’ Payload

The following structure contains the payload of an Enroll Response command.

typedef struct
{
 teCLD_IASZoneZoneEnrollRspCode e8EnrollResponseCode;
 uint8 u8ZoneID;
}tsCLD_IASZone_EnrollResponsePayload;

where:

• e8EnrollResponseCode is a code indicating the outcome of the corresponding Enroll Request, one of:

Enumeration Description

E_CLD_IASZONE_ENROLL_RESP_SUCCESS Requested enrollment successful

E_CLD_IASZONE_ENROLL_RESP_NOT_SUPPORTED Zone type of requesting device is not known/
sup-ported by the CIE device

E_CLD_IASZONE_ENROLL_RESP_NO_ENROLL_PERMIT CIE device is not allowing new zones to be
enrolled at the present time

E_CLD_IASZONE_ENROLL_RESP_TOO_MANY_ZONES CIE device has reached its limit for the number
of zones that it can enroll

• u8ZoneID is the index of the entry for the enrollment which has been added to the Zone table on the CIE
device (only valid for a successful enrollment)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
480 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

‘Zone Status Change Notification’ Payload

The following structure contains the payload of a Zone Status Change Notification command.

typedef struct
{
 zbmap16 b16ZoneStatus;
 zbmap8 b8ExtendedStatus;
 zuint8 u8ZoneId;
 zuint16 u16Delay;
}tsCLD_IASZone_StatusChangeNotificationPayload;

where:

• b16ZoneStatus contains the new/current status of the (sending) zone device, as indicated in the
e8ZoneState attribute - one of:
– E_CLD_IASZONE_STATE_NOT_ENROLLED (0x01)
– E_CLD_IASZONE_STATE_ENROLLED (0x02)

• b8ExtendedStatus can be optionally used to indicate further status information, but otherwise should be
set to zero

• u8ZoneId is the index of the entry for the (sending) device in the Zone table on the CIE device
• u16Delay is is the time-delay, in quarter-seconds, between the status change taking place in the
e8ZoneState attribute and the successful transmission of the Zone Status Change Notification (this value
can be used in assessing network traffic congestion)

‘Initiate Test Mode Request’ Payload

The following structure contains the payload of an Initiate Test Mode Request command.

typedef struct
{
 uint8 u8TestModeDuration;
 uint8 u8CurrentZoneSensitivityLevel;
}tsCLD_IASZone_InitiateTestModeRequestPayload;

where:

• u8TestModeDuration is the duration, in seconds, for which the device should remain in test mode
• u8CurrentZoneSensitivityLevel is the current sensitivity level for the zone, as indicated in the
u8CurrentZoneSensitivityLevel attribute (see Section 37.2)

37.7 Compile-time options
To enable the IAS Zone cluster in the code to be built, it is necessary to add the following to the zcl_options.h
file:

#define CLD_IASZONE

In addition, to include the software for a cluster client or server or both, it is necessary to add one of the
following to the same file:

#define IASZONE_SERVER
#define IASZONE_CLIENT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
481 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Optional Attributes

Add this line to enable the optional Number Of Zone Sensitivity Levels attribute:

#define CLD_IASZONE_ATTR_ID_NUMBER_OF_ZONE_SENSITIVITY_LEVELS

Add this line to enable the optional Current Zone Sensitivity Level attribute:

#define CLD_IASZONE_ATTR_ID_CURRENT_ZONE_SENSITIVITY_LEVEL

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_IASZONE_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

Optional Commands

Add this line to enable the optional Initiate Normal Operation Mode command:

#define CLD_IASZONE_CMD_INITIATE_NORMAL_OPERATION_MODE

Add this line to enable the optional Initiate Test Mode command:

#define CLD_IASZONE_CMD_INITIATE_TEST_MODE

Disable APS Acknowledgements for Bound Transmissions

APS acknowledgements for bound transmissions from this cluster can be disabled by defining:

#define CLD_IASZONE_BOUND_TX_WITH_APS_ACK_DISABLED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
482 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

38 IAS Ancillary Control Equipment Cluster

This chapter describes the IAS Ancillary Control Equipment (ACE) cluster, which provides a control interface to
a CIE (Control and Indicating Equipment) device in an IAS (Intruder Alarm System).

The IAS ACE cluster has a Cluster ID of 0x0501.

38.1 Overview
The IAS ACE cluster provides a control interface to a CIE (Control and Indicating Equipment) device in an IAS
(Intruder Alarm System). For example, it allows a remote control unit to be used to configure the IAS via a CIE
device. The server side of the cluster is implemented on the CIE device and the client side is implemented on
the remote device.

To use the functionality of this cluster, you must include the file IASACE.h in your application and enable the
cluster by defining CLD_IASACE in the zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server must also be specified
when creating the cluster instance).

The compile-time options for the IAS ACE cluster are fully detailed in Section 38.9.

38.2 IAS ACE Structure and Attributes
The structure definition for the IAS ACE cluster is shown below.

typedef struct
{
 zuint16 u16ClusterRevision;
} tsCLD_IASACE;

where u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification
on which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is
also described in Section 2.4.

38.3 Table and Parameters
The IAS ACE cluster server hosts the following table and sets of parameters:

• Zone table: The Zone table contains an entry for each enrolled zone. Each entry stores the identifier and type
of the zone, as well as the IEEE/MAC address of the device which hosts the zone (see Section 38.7.2).

• Zone parameters: This set of parameters contains certain zone properties including the zone status, the
zone name/label and the zone arm/disarm code (see Section 38.7.3)

• Panel parameters: This set of parameters contains certain status information about the display panel and
alarm (see Section 38.7.4).

38.4 Command Summary
The IAS ACE cluster includes a number of commands that can be sent by the application on the client or server.
These commands are summarised below.

• Table 50 lists the commands that can be issued on the client.
• Table 51 lists the commands that can be issued on the server.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
483 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Functions are provided to send these commands - these functions are indicated in the descriptions below and
detailed in Section 38.6.

Command Description and Function

Arm Instructs the server to put all or certain enrolled zones into the ‘armed’ state or put all of them into the
‘disarmed’ state.
eCLD_IASACE_ArmSend()

Bypass Instructs the server to take one or more specified zones out of the system for the current activation
(these zones are reinstated the next time the system is dis-armed and to exclude them again the next
time the system is armed, the Bypass command must be re-sent before sending the Arm command).
eCLD_IASACE_BypassSend()

Emergency Instructs the server to put the alarm in the ‘Emergency’ state.
eCLD_IASACE_EmergencySend()

Fire Instructs the server to put the alarm in the ‘Fire’ state.
eCLD_IASACE_FireSend()

Panic Instructs the server to put the alarm in the ‘Panic’ state.
eCLD_IASACE_PanicSend()

Get Zone ID Map Requests the Zone IDs that have been allocated to zones.
eCLD_IASACE_GetZoneIDMapSend()

Get Zone
Information

Requests information on a specified zone.
eCLD_IASACE_GetZoneInfoSend()

Get Panel Status Requests the current status of the (display) panel.
eCLD_IASACE_GetPanelStatusSend()

Get Bypassed
Zone List

Requests a list of the currently bypassed zones.
eCLD_IASACE_GetBypassedZoneListSend()

Get Zone Status Requests a list of either all zones with their status or those zones with a particular status (that is, all
zones with the b16ZoneStatus attribute of the IAS Zone cluster having a certain value).
eCLD_IASACE_GetZoneStatusSend()

Table 67. IAS ACE Cluster Commands from Client to Server

Command Description and Function

Set Bypassed Zone List Informs the client which zones are currently bypassed and can be sent in response to a Get
Bypassed Zone List command.
eCLD_IASACE_SetBypassedZoneListSend()

Zone Status Changed Informs the client that the status (value of the b16ZoneStatus attribute of the IAS Zone
cluster) of a particular zone has changed.
eCLD_IASACE_ZoneStatusChangedSend()

Panel Status Changed Informs the client that the status of the (display) panel has changed.
eCLD_IASACE_PanelStatusChanged()

Table 68. IAS ACE Cluster Commands from Server to Client

38.5 IAS ACE Events
The IAS ACE cluster has its own events that are handled through the callback mechanism outlined in Chapter
3. If a device uses the IAS ACE cluster then IAS ACE event handling must be included in the callback function
for the associated endpoint, where this callback function is registered through the relevant endpoint registration

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
484 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

function (for example, through eHA_RegisterIASCIEEndPoint() for a CIE device). The relevant callback
function will then be invoked when an IAS ACE event occurs.

For an IAS ACE event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_IASACECallBackMessage structure:

typedef struct
{
uint8 u8CommandId;
 union
 {
 tsCLD_IASACE_ArmPayload *psArmPayload;
 tsCLD_IASACE_BypassPayload *psBypassPayload;
 tsCLD_IASACE_GetZoneInfoPayload *psGetZoneInfoPayload;
 tsCLD_IASACE_GetZoneStatusPayload *psGetZoneStatusPayload;
 tsCLD_IASACE_ArmRespPayload *psArmRespPayload;
 tsCLD_IASACE_GetZoneIDMapRespPayload *psGetZoneIDMapRespPayload;
 tsCLD_IASACE_GetZoneInfoRespPayload *psGetZoneInfoRespPayload;
 tsCLD_IASACE_ZoneStatusChangedPayload  *psZoneStatusChangedPayload;
 tsCLD_IASACE_PanelStatusChangedOrGetPanelStatusRespPayload
 *psPanelStatusChangedOrGetPanelStatusRespPayload;
 tsCLD_IASACE_SetBypassedZoneListPayload *psSetBypassedZoneListPayload;
 tsCLD_IASACE_BypassRespPayload *psBypassRespPayload;
 tsCLD_IASACE_GetZoneStatusRespPayload *psGetZoneStatusRespPayload;
 } uMessage;
} tsCLD_IASACECallBackMessage;

When an IAS ACE event occurs, one of twelve command types could have been received. The relevant
command type is specified through the u8CommandId field of the tsCLD_IASACECallBackMessage
structure. The possible command/event types are detailed in Table 52 below (for command descriptions, refer to
Section 38.4).

In the case where an IAS Arm or Bypass command has been received and results in a change to a Zone
parameter on the cluster server (e.g. an update of the zone status u8ZoneStatusFlag), a second event will
be generated before any response is sent. This is a ‘cluster update’ event for which the eEventType field
of the tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_UPDATE. This prompts the
application to perform any required actions such as saving persistent data and refreshing a display.

u8CommandId Enumeration Description

Server Events

E_CLD_IASACE_CMD_ARM An IAS ACE Arm command has been received by the server

E_CLD_IASACE_CMD_BYPASS An IAS ACE Bypass command has been received by the server

E_CLD_IASACE_CMD_EMERGENCY An IAS ACE Emergency command has been received by the
server

E_CLD_IASACE_CMD_FIRE An IAS ACE Fire command has been received by the server

E_CLD_IASACE_CMD_PANIC An IAS ACE Panic command has been received by the server

E_CLD_IASACE_CMD_GET_ZONE_ID_MAP An IAS ACE Get Zone ID Map command has been received by
the server

E_CLD_IASACE_CMD_GET_ZONE_INFO An IAS ACE Get Zone Information command has been
received by the server

E_CLD_IASACE_CMD_GET_PANEL_STATUS An IAS ACE Get Panel Status command has been received by
the server

Table 69. IAS ACE Command Types

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
485 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8CommandId Enumeration Description

E_CLD_IASACE_CMD_GET_BYPASSED_ZONE_LIST An IAS ACE Get Bypassed Zone List command has been
received by the server

E_CLD_IASACE_CMD_GET_ZONE_STATUS An IAS ACE Get Zone Status command has been received by
the server

Client Events

E_CLD_IASACE_CMD_ARM_RESP An IAS ACE Arm Response command has been received by
the client

E_CLD_IASACE_CMD_GET_ZONE_ID_MAP_RESP An IAS ACE Get Zone ID Map Response command has been
received by the client

E_CLD_IASACE_CMD_GET_ZONE_INFO_RESP An IAS ACE Get Zone Information Response command has
been received by the client

E_CLD_IASACE_CMD_ZONE_STATUS_CHANGED An IAS ACE Zone Status Changed command has been
received by the client

E_CLD_IASACE_CMD_PANEL_STATUS_CHANGED An IAS ACE Panel Status Changed command has been
received by the client

E_CLD_IASACE_CMD_GET_PANEL_STATUS_RESP An IAS ACE Get Panel Status Response command has been
received by the client

E_CLD_IASACE_CMD_SET_BY-PASSED_ZONE_LIST An IAS ACE Set Bypassed Zone List command has been
received by the client

E_CLD_IASACE_CMD_BYPASS_RESP An IAS ACE Bypass Response command has been received by
the client

E_CLD_IASACE_CMD_GET_ZONE_STATUS_RESP An IAS ACE Get Zone Status Response command has been
received by the client

Table 69. IAS ACE Command Types...continued

38.6 Functions
The following IAS ACE cluster functions are provided in the NXP implementation of the ZCL:

1. eCLD_IASACECreateIASACE
2. eCLD_IASACEAddZoneEntry
3. eCLD_IASACERemoveZoneEntry
4. eCLD_IASACEGetZoneTableEntry
5. eCLD_IASACEGetEnrolledZones
6. eCLD_IASACESetPanelParameter
7. eCLD_IASACEGetPanelParameter
8. eCLD_IASACESetZoneParameter
9. eCLD_IASACESetZoneParameterValue

10. eCLD_IASACEGetZoneParameter
11. eCLD_IASACE_ArmSend
12. eCLD_IASACE_BypassSend
13. eCLD_IASACE_EmergencySend
14. eCLD_IASACE_FireSend
15. eCLD_IASACE_PanicSend
16. eCLD_IASACE_GetZoneIDMapSend
17. eCLD_IASACE_GetZoneInfoSend

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
486 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

18. eCLD_IASACE_GetPanelStatusSend
19. eCLD_IASACE_SetBypassedZoneListSend
20. eCLD_IASACE_GetBypassedZoneListSend
21. eCLD_IASACE_GetZoneStatusSend
22. eCLD_IASACE_ZoneStatusChangedSend
23. eCLD_IASACE_PanelStatusChanged

38.6.1 eCLD_IASACECreateIASACE

teZCL_Status eCLD_IASACECreateIASACE(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 tsCLD_IASACECustomDataStructure
 *psCustomDataStructure);

Description

This function creates an instance of the IAS ACE cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create an IAS
ACE cluster instance on the endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created: TRUE - server , FALSE - client
• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this

case, this structure must contain the details of the IAS ACE cluster.
• pvEndPointSharedStructPtr: Set this pointer to NULL for this cluster
• psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see

Section 38.7.1)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
487 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

38.6.2 eCLD_IASACEAddZoneEntry

teZCL_CommandStatus eCLD_IASACEAddZoneEntry(
 uint8 u8SourceEndPointId,
 uint16 u16ZoneType,
 uint64 u64IeeeAddress,
 uint8 *pu8ZoneID);

Description

This function can be used on an IAS ACE cluster server to create an entry in the local Zone table - that is, to
add the details of a zone to the table after receiving a Zone Enrollment Request (and before sending a Zone
Enrollment Response).

The details of the zone are provided in the function parameters. The function checks that the supplied pointer to
the Zone ID is not NULL and that the supplied IEEE address is valid. The function can then add the zone details
to the Zone table, provided that there is a free entry in the table.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS ACE cluster resides
• u16ZoneType: Value indicating the type of zone to be added to the table (for the possible values, refer to the

description of the attribute e16ZoneType of the IAS Zone cluster in Section 37.2)
• u64IeeeAddress: IEEE address of the device which hosts the zone
• pu8ZoneID: Pointer to an identifier of the zone to be added to the table

Returns

• E_ZCL_CMDS_SUCCESS (zone successfully added to Zone table)
• E_ZCL_CMDS_FAILURE (cluster instance not found)
• E_ZCL_CMDS_INVALID_FIELD (pointer to Zone ID is NULL)
• E_ZCL_CMDS_INVALID_VALUE (IEEE address is invalid)
• E_ZCL_CMDS_INSUFFICIENT_SPACE (no free entry in Zone table)

38.6.3 eCLD_IASACERemoveZoneEntry

teZCL_CommandStatus eCLD_IASACERemoveZoneEntry(
 uint8 u8SourceEndPointId,
 uint8 u8ZoneID,
 uint64 *pu64IeeeAddress);

Description

This function can be used on an IAS ACE cluster server to remove an existing entry from the local Zone table -
that is, to delete the details of a zone in the table and release the table entry for re-use. Thus, this function can
be used to unenroll a zone.

The zone to be removed is specified by means of the Zone ID. The function checks that the supplied pointer
to a location to receive the IEEE address is not NULL. The function then searches for the relevant table entry
using the supplied Zone ID and, if found, returns its IEEE address via the supplied location and frees the table
entry by setting the IEEE address in the table entry to zero. The returned IEEE address can be used by a

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
488 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

(local) CIE device application to send a request to the relevant Zone device to set its IAS Zone cluster attribute
u64IASCIEAddress to all zeros (writing to remote attributes is described in Section 2.3.3.1).

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS ACE cluster resides
• u8ZoneID: Zone ID of zone to be removed from table
• pu64IeeeAddress: Pointer to location to receive the IEEE address found in the table entry to be removed

Returns

• E_ZCL_CMDS_SUCCESS (zone successfully removed from Zone table)
• E_ZCL_CMDS_FAILURE (cluster instance not found)
• E_ZCL_CMDS_INVALID_FIELD (pointer to IEEE address location is NULL)
• E_ZCL_CMDS_NOT_FOUND (entry with specified Zone ID not found in table)

38.6.4 eCLD_IASACEGetZoneTableEntry

teZCL_CommandStatus eCLD_IASACEGetZoneTableEntry(
 uint8 u8SourceEndPointId,
 uint8 u8ZoneID,
 tsCLD_IASACE_ZoneTable **ppsZoneTable);

Description

This function can be used on an IAS ACE cluster server to obtain the details of a specified zone from the local
Zone table.

The zone of interest is specified by means of its Zone ID. The function searches for the relevant table entry
using the supplied Zone ID and, if found, returns the zone information from the table entry via the supplied
structure (see Section 38.7.2).

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS ACE cluster resides
• u8ZoneID: Zone ID of zone for which details required from table
• ppsZoneTable: Pointer to a pointer to a structure to receive obtained zone information (see Section 38.7.2)

Returns

• E_ZCL_CMDS_SUCCESS (zone details successfully obtained from Zone table)
• E_ZCL_CMDS_FAILURE (cluster instance not found)
• E_ZCL_CMDS_NOT_FOUND (entry with specified Zone ID not found in table)

38.6.5 eCLD_IASACEGetEnrolledZones

teZCL_CommandStatus eCLD_IASACEGetEnrolledZones(
 uint8 u8SourceEndPointId,
 uint8 *pu8ZoneID,
 uint8 *pu8NumOfEnrolledZones);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
489 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on an IAS ACE cluster server to obtain a list of the enrolled zones from the local Zone
table.

The function searches the Zone table and returns a list of the Zone IDs of all the enrolled zones (for which there
are table entries). The number of enrolled zones is also returned.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS ACE cluster resides
• pu8ZoneID: Pointer to a location to receive the first Zone ID in the reported list of enrolled zones
• pu8NumOfEnrolledZones: Pointer to a location to receive the number of enrolled zones reported in the above

list

Returns

• E_ZCL_CMDS_SUCCESS (zone list successfully obtained from Zone table)
• E_ZCL_CMDS_FAILURE (cluster instance not found)
• E_ZCL_CMDS_INVALID_FIELD (a supplied pointer is NULL)

38.6.6 eCLD_IASACESetPanelParameter

teZCL_Status eCLD_IASACESetPanelParameter(
 uint8 u8SourceEndPointId,
 teCLD_IASACE_PanelParameterID eParameterId,
 uint8 u8ParameterValue);

Description

This function can be used on an IAS ACE cluster server to set the value of a Panel parameter. The Panel
parameters are held on the server in a tsCLD_IASACE_PanelParameter structure (see Section 38.7.4)
and this function can be used to write a value to one parameter in the structure. The function verifies that the
specified parameter identifier is valid before attempting the write.

If this function is used to set the Panel parameter ePanelStatus, an IAS ACE Panel Status Changed
command is automatically sent to all bound clients.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS ACE cluster resides
• eParameterId: Enumeration identifying the Panel parameter to be set, one of:

– E_CLD_IASACE_PANEL_PARAMETER_PANEL_STATUS
– E_CLD_IASACE_PANEL_PARAMETER_SECONDS_REMAINING
– E_CLD_IASACE_PANEL_PARAMETER_AUDIBLE_NOTIFICATION
– E_CLD_IASACE_PANEL_PARAMETER_ALARM_STATUS

• u8ParameterValue: Value to be written to the parameter

Returns

• E_ZCL_SUCCESS (Panel parameter successfully set)
• E_ZCL_ERR_CLUSTER_NOT_FOUND (cluster instance not found)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
490 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND (Panel parameter identifier invalid)

38.6.7 eCLD_IASACEGetPanelParameter

teZCL_Status eCLD_IASACEGetPanelParameter(
 uint8 u8SourceEndPointId,
 teCLD_IASACE_PanelParameterID eParameterId,
 uint8 *pu8ParameterValue);

Description

This function can be used on an IAS ACE cluster server to obtain the value of a Panel parameter. The Panel
parameters are held on the server in a tsCLD_IASACE_PanelParameter structure (see Section 38.7.4)
and this function can be used to read the value of one parameter in the structure. The function verifies that the
specified parameter identifier is valid before attempting the read.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS ACE cluster resides
• eParameterId : Enumeration identifying the Panel parameter to be read, one of:
• E_CLD_IASACE_PANEL_PARAMETER_PANEL_STATUS
• E_CLD_IASACE_PANEL_PARAMETER_SECONDS_REMAINING
• E_CLD_IASACE_PANEL_PARAMETER_AUDIBLE_NOTIFICATION
• E_CLD_IASACE_PANEL_PARAMETER_ALARM_STATUS
• pu8ParameterValue: Pointer to location to receive read parameter value

Returns

• E_ZCL_SUCCESS (Panel parameter successfully read)
• E_ZCL_ERR_CLUSTER_NOT_FOUND (cluster instance not found)
• E_ZCL_ERR_PARAMETER_NULL (specfied pointer is NULL)
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND (Panel parameter identifier invalid)

38.6.8 eCLD_IASACESetZoneParameter

teZCL_Status eCLD_IASACESetZoneParameter(
 uint8 u8SourceEndPointId,
 teCLD_IASACE_ZoneParameterID eParameterId,
 uint8 u8ZoneID,
 uint8 u8ParameterLength,
 uint8 *pu8ParameterValue);

Description

This function can be used on an IAS ACE cluster server to set the value of a Zone parameter. The Zone
parameters for a particular Zone ID are held on the server in a tsCLD_IASACE_ZoneParameter structure
(see Section 38.7.3) and this function can be used to write a value to one parameter in the structure. The
specified zone must have been enrolled in the local Zone table. Before attempting the write, the function verifies
that the specified Zone ID is present in the Zone table and that the specified parameter identifier is valid.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
491 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If this function is used to set the Zone parameter eZoneStatus, an IAS ACE Zone Status Changed command
is automatically sent to all bound clients.

The function requires the parameter value to be provided as a uint8 array. This is to allow one of
the array parameters, au8ZoneLabel[] or au8ArmDisarmCode[], to be set - the corresponding
string parameter, sZoneLabel or sArmDisarmCode, will be set automatically. The function
eCLD_IASACESetZoneParameterValue() provides an easier way of setting one of the non-array/non-string
parameters.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS ACE cluster resides
• eParameterId : Enumeration identifying the Zone parameter to be set, one of:
• : E_CLD_IASACE_ZONE_PARAMETER_ZONE_CONFIG_FLAG
• E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS_FLAG
• E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS
• E_CLD_IASACE_ZONE_PARAMETER_AUDIBLE_NOTIFICATION
• E_CLD_IASACE_ZONE_PARAMETER_ZONE_LABEL
• E_CLD_IASACE_ZONE_PARAMETER_ARM_DISARM_CODE
• u8ZoneID: Zone ID of zone information to be updated
• u8ParameterLength: Number of uint8 elements in the array containing the parameter value to be set
• pu8ParameterValue: Pointer to a location containing the first element of the array containing the parameter

value to be set

Returns

• E_ZCL_SUCCESS (Zone parameter successfully set)
• E_ZCL_ERR_CLUSTER_NOT_FOUND (cluster instance not found)
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND (Zone parameter identifier invalid)
• E_ZCL_ERR_NO_REPORT_ENTRIES (Zone ID not found in Zone table)
• E_ZCL_ERR_PARAMETER_NULL (Pointer to location containing value is NULL)
• E_ZCL_ERR_PARAMETER_RANGE (specified array length too long to be stored)

38.6.9 eCLD_IASACESetZoneParameterValue

teZCL_Status eCLD_IASACESetZoneParameterValue(
 uint8 u8SourceEndPointId,
 teCLD_IASACE_ZoneParameterID eParameterId,
 uint8 u8ZoneID,
 uint16 u16ParameterValue);

Description

This function can be used on an IAS ACE cluster server to set the value of a Zone parameter. The Zone
parameters for a particular Zone ID are held on the server in a tsCLD_IASACE_ZoneParameter structure
(see Section 38.7.3) and this function can be used to write a value to one of the non-string/non-array
parameters in the structure. The specified zone must have been enrolled in the local Zone table. Before
attempting the write, the function verifies that the specified Zone ID is present in the Zone table and that the
specified parameter identifier is valid.

If this function is used to set the Zone parameter eZoneStatus, an IAS ACE Zone Status Changed command
is automatically sent to all bound clients.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
492 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

This function cannot be used to set the string parameters sZoneLabel and sArmDisarmCode or the array
parameters au8ZoneLabel[] and au8ArmDisarmCode[]. The function eCLD_IASACESetZoneParameter()
must be used to set the string and array parameters.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS ACE cluster resides
• eParameterId : Enumeration identifying the Zone parameter to be set, one of:

– E_CLD_IASACE_ZONE_PARAMETER_ZONE_CONFIG_FLAG
– E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS_FLAG
– E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS
– E_CLD_IASACE_ZONE_PARAMETER_AUDIBLE_NOTIFICATION

• u8ZoneID: Zone ID of zone information to be updated
• u16ParameterValue: Value to be written to the parameter

Returns

• E_ZCL_SUCCESS (Zone parameter successfully set)
• E_ZCL_ERR_CLUSTER_NOT_FOUND (cluster instance not found)
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND (Zone parameter identifier invalid)
• E_ZCL_ERR_NO_REPORT_ENTRIES (Zone ID not found in Zone table)

38.6.10 eCLD_IASACEGetZoneParameter

teZCL_Status eCLD_IASACEGetZoneParameter(
 uint8 u8SourceEndPointId,
 teCLD_IASACE_ZoneParameterID eParameterId,
 uint8 u8ZoneID,
 uint8 *pu8ParameterLength,
 uint8 *pu8ParameterValue);

Description

This function can be used on an IAS ACE cluster server to obtain the value of a Zone parameter. The Zone
parameters for a particular Zone ID are held on the server in a tsCLD_IASACE_ZoneParameter structure
(see Section 38.7.3) and this function can be used to read the value of one parameter in the structure. Before
attempting the read, the function verifies that the specified Zone ID is present in the Zone table and that the
specified parameter identifier is valid.

The function expects the read parameter value to be returned as a uint8 array.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS ACE cluster resides
• eParameterId: Enumeration identifying the Zone parameter to be read, one of:

– E_CLD_IASACE_ZONE_PARAMETER_ZONE_CONFIG_FLAG
– E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS_FLAG
– E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS
– E_CLD_IASACE_ZONE_PARAMETER_AUDIBLE_NOTIFICATION
– E_CLD_IASACE_ZONE_PARAMETER_ZONE_LABEL
– E_CLD_IASACE_ZONE_PARAMETER_ARM_DISARM_CODE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
493 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8ZoneID: Zone ID of zone information to be accessed
• pu8ParameterLength: Pointer to location to receive the number of uint8 elements in the array containing the

parameter value obtained
• pu8ParameterValue: Pointer to location to receive the first element of the array containing the parameter

value obtained

Returns

• E_ZCL_SUCCESS (Zone parameter successfully read)
• E_ZCL_ERR_CLUSTER_NOT_FOUND (cluster instance not found)
• E_ZCL_ERR_PARAMETER_NULL (a specified pointer is NULL)
• E_ZCL_ERR_NO_REPORT_ENTRIES (Zone ID not found in Zone table)
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND (Zone parameter identifier invalid)
• E_ZCL_ERR_PARAMETER_RANGE (returned array too long to be stored)

38.6.11 eCLD_IASACE_ArmSend

teZCL_Status eCLD_IASACE_ArmSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASACE_ArmPayload *psPayload);

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Arm command to an IAS ACE
server. This command instructs the server to put all or certain enrolled zones into the ‘armed’ state or put all of
them into the ‘disarmed’ state, according to the command payload (see Section 38.7.5).

The outcome of the request will be returned by the server in a response which will generate an
E_CLD_IASACE_CMD_ARM_RESP event when received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 38.7.5)

Returns

• E_ZCL_SUCCESS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
494 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.12 eCLD_IASACE_BypassSend

teZCL_Status eCLD_IASACE_BypassSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASACE_BypassPayload *psPayload);

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Bypass command to an IAS ACE
server. This command instructs the server to take one or more specified zones out of the system for the current
activation.

Note: The bypassed zones will be reinstated the next time the system is disarmed. To exclude them again the
next time the system is armed, the Bypass command must be re-sent before sending the Arm command.

The outcome of the request will be returned by the server in a response which will generate an
E_CLD_IASACE_CMD_BYPASS_RESP event when received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 38.7.5)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
495 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.13 eCLD_IASACE_EmergencySend

teZCL_Status eCLD_IASACE_EmergencySend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Emergency command to an IAS
ACE server. This command instructs the server to put the alarm in the ‘Emergency’ state.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.14 eCLD_IASACE_FireSend

teZCL_Status eCLD_IASACE_FireSend(
 uint8 u8SourceEndPointId,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
496 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Fire command to an IAS ACE
server. This command instructs the server to put the alarm in the ‘Fire’ state.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.15 eCLD_IASACE_PanicSend

teZCL_Status eCLD_IASACE_PanicSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Panic command to an IAS ACE
server. This command instructs the server to put the alarm in the ‘Panic’ state.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
497 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.16 eCLD_IASACE_GetZoneIDMapSend

teZCL_Status eCLD_IASACE_GetZoneIDMapSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Get Zone ID Map command to an
IAS ACE server. This command requests the Zone IDs that have been allocated to zones.

The requested information is returned by the server in a response which generates an E_CLD_IASACE_CMD_
GET_ZONE_ID_MAP_RESP event when received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
498 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of
the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.17 eCLD_IASACE_GetZoneInfoSend

teZCL_Status eCLD_IASACE_GetZoneInfoSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASACE_GetZoneInfoPayload *psPayload);

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Get Zone Information command to
an IAS ACE server. This command requests information on the zone specified in the command payload.

The requested information will be returned by the server in a response which will generate an
E_CLD_IASACE_CMD_GET_ZONE_INFO_RESP event when received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 38.7.5)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
499 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.18 eCLD_IASACE_GetPanelStatusSend

teZCL_Status eCLD_IASACE_GetPanelStatusSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Get Panel Status command to an
IAS ACE server. This command requests the current status of the (display) panel.

The requested information will be returned by the server in a response which will generate an E_CLD_IASACE_
CMD_GET_PANEL_STATUS_RESP event when received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
500 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

38.6.19 eCLD_IASACE_SetBypassedZoneListSend

teZCL_Status eCLD_IASACE_SetBypassedZoneListSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASACE_SetBypassedZonelistPayload *psPayload);

Description

This function can be used on an IAS ACE cluster server to send an IAS ACE Set Bypassed Zone List command
to an IAS ACE client. This command informs the client which zones are currently bypassed - the zones are
specified in the command payload.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 38.7.5)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.20 eCLD_IASACE_GetBypassedZoneListSend

teZCL_Status eCLD_IASACE_GetBypassedZoneListSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
501 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Get Bypassed Zone List command
to an IAS ACE server. This command requests a list of the currently bypassed zones.

The requested information will be returned by the server in a response which will generate an E_CLD_IASACE_
CMD_SET_BYPASSED_ZONE_LIST event when received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.21 eCLD_IASACE_GetZoneStatusSend

teZCL_Status eCLD_IASACE_GetZoneStatusSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASACE_GetZoneStatusPayload *psPayload);

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Get Zone Status command to an
IAS ACE server. This command requests either of the following:

• a list of all enrolled zones with their status
• a list of those zones with a particular status (that is, all zones with the b16ZoneStatus attribute of the IAS

Zone cluster having a certain value)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
502 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The list required is specified in the bZoneStatusMaskFlag field of the command payload (see Section
38.7.5). If the second of the above lists is required, the status to look for is also specified in the payload.

The requested information is returned by the server in a response which generates an E_CLD_IASACE_CMD_
GET_ZONE_STATUS_RESP event when received on the client. A single response may not be able to carry
all the zone status information to be returned and more than one request (and associated response) would
be needed. For this reason, the request allows a starting zone and the number of zones to be included in the
response to be specified (in the request payload).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 38.7.5)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.22 eCLD_IASACE_ZoneStatusChangedSend

teZCL_Status eCLD_IASACE_ZoneStatusChangedSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASACE_ZoneStatusChangedPayload *psPayload);

Description

This function can be used on an IAS ACE cluster server to send an IAS ACE Zone Status Changed command
to an IAS ACE client. This command informs the client that the status of the specified zone has changed - that
is, the value of the b16ZoneStatus attribute of the IAS Zone cluster for the zone has changed.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
503 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: This command is sent automatically when the function eCLD_IASACESetZoneParameter() is called on
the server to update the u16ZoneStatus attribute for all the bound clients.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 38.7.5)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.6.23 eCLD_IASACE_PanelStatusChanged

teZCL_Status eCLD_IASACE_PanelStatusChanged(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 teCLD_IASACE_ServerCmdId eCommandId,
 tsCLD_IASACE_PanelStatusChangedOrGetPanelStatusRespPayload
 *psPayload);

Description

This function can be used on an IAS ACE cluster server to send an IAS ACE Panel Status Changed command
to an IAS ACE client. This command informs the client that the value of the panel parameter ePanelStatus
(see Section 38.7.4) on the (local) CIE device has changed.

Note:

1. The IAS ACE Panel Status Changed command is sent automatically when the function
eCLD_IASACESetPanelParameter() is called to update the ePanelStatus parameter.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
504 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

2. The function alternatively provides the option of sending an IAS ACE Get Panel Status Response but, in
practice, this response is sent automatically when a Get Panel Status Request is received.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• eCommandId: Identifier of command to be sent - for Panel Status Changed command, always set to:: E_

CLD_IASACE_CMD_PANEL_STATUS_CHANGED
• psPayload: Pointer to a structure containing the payload for the command (see Section 38.7.5)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

38.7 Structures

38.7.1 Custom Data Structure

The IAS ACE cluster requires extra storage space to be allocated to be used by internal functions. The structure
definition for this storage is shown below:

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_IASACECallBackMessage sCallBackMessage;
#if (defined CLD_IASACE) && (defined IASACE_SERVER)
 tsCLD_IASACE_PanelParameter
 sCLD_IASACE_PanelParameter;
 tsCLD_IASACE_ZoneParameter
 asCLD_IASACE_ZoneParameter[CLD_IASACE_ZONE_TABLE_SIZE];
 tsCLD_IASACE_ZoneTable
 asCLD_IASACE_ZoneTable[CLD_IASACE_ZONE_TABLE_SIZE];
#endif

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
505 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

} tsCLD_IASACECustomDataStructure;

The fields are for internal use and no knowledge of them is required.

38.7.2 Zone Table Entry

The following structure contains a Zone table entry, used to hold the enrollment details of a zone.

typedef struct
{
 zuint8 u8ZoneID;
 zbmap16 u16ZoneType;
 zieeeaddress u64IeeeAddress;
} tsCLD_IASACE_ZoneTable;

where:

• u8ZoneID is the identifier of the zone
• u16ZoneType is a value indicating the type of zone (for the possible values, refer to the description of the

attribute e16ZoneType of the IAS Zone cluster in Section 37.2)
• u64IeeeAddress is the IEEE/MAC address of the device which hosts the zone

38.7.3 Zone Parameters

The following structure is used to store the ‘zone parameters’ on the IAS ACE cluster server.

typedef struct
{
 zbmap8 u8ZoneConfigFlag;
 zbmap8 u8ZoneStatusFlag;
 zbmap16 eZoneStatus;
 zenum8 eAudibleNotification;
 tsZCL_CharacterString sZoneLabel;
 uint8
 au8ZoneLabel[CLD_IASACE_MAX_LENGTH_ZONE_LABEL];
 tsZCL_CharacterString sArmDisarmCode;
 uint8
 au8ArmDisarmCode[CLD_IASACE_MAX_LENGTH_ARM_DISARM_CODE];
}tsCLD_IASACE_ZoneParameter;

where:

• u8ZoneConfigFlag is is a bitmap used to configure the temporal role of a zone (as Day, Night or Day/Night)
and whether the zone is allowed to be bypassed. Macros are provided as follows:

Bit Macro

0 CLD_IASACE_ZONE_CONFIG_FLAG_BYPASS *

1 CLD_IASACE_ZONE_CONFIG_FLAG_DAY_HOME

2 CLD_IASACE_ZONE_CONFIG_FLAG_NIGHT_SLEEP

3 CLD_IASACE_ZONE_CONFIG_FLAG_NOT_BYPASSED **

4-7 Reserved

* Determines whether the zone is allowed to be bypassed: 1 - allowed, 0 - not allowed
** Used to configure a status of ZONE_NOT_BYPASSED in responses to Bypass commands

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
506 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8ZoneStatusFlag is a bitmap used to indicate the current status of a zone as armed or bypassed.
Macros are provided as follows:

Bit Macro

0 CLD_IASACE_ZONE_STATUS_FLAG_BYPASS

1 CLD_IASACE_ZONE_STATUS_FLAG_ARM

2-7 Reserved

• eZoneStatus is the zone status as the value of the b16ZoneStatus attribute of the IAS Zone cluster (see
Section 37.2)

• eAudibleNotification is a value specifying whether an audible notification (e.g. a chime) is required to
signal a zone status change (enumerations are available in teCLD_IASACE_AudibleNotification - see
Section 38.8.4):

Value Status

0x00 Audible notification muted

0x01 Audible notification sounded

0x02 - 0xFF Reserved

• sZoneLabel is the name/label for the zone represented as a character string
• au8ZoneLabel[] is the name/label for the zone represented as an array of ASCII values
• sArmDisarmCode is the arm/disarm code for the zone represented as a character string
• au8ArmDisarmCode[] is the arm/disarm code for the zone represented as an array of ASCII values

38.7.4 Panel Parameters

The following structure is used to store the ‘panel parameters’ on the IAS ACE cluster server.

typedef struct
{
 zenum8 ePanelStatus;
 zuint8 u8SecondsRemaining;
 zenum8 eAudibleNotification;
 zenum8 eAlarmStatus;
}tsCLD_IASACE_PanelParameter;

where:

• ePanelStatus is a value indicating the status to be displayed on the panel, as follows (enumerations are
available in teCLD_IASACE_PanelStatus - see Section 38.8.2):

Value Status

0x00 Disarmed (all zones) and ready to be armed

0x01 Armed stay

0x02 Armed night

0x03 Armed away

0x04 Exit delay

0x05 Entry delay

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
507 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Value Status

0x06 Not ready to be armed

0x07 In alarm

0x08 Arming stay

0x09 Arming night

0x0A Arming away

0x0B - 0xFF Reserved

• u8SecondsRemaining represents the time, in seconds, that the server will remain in the displayed state
when the latter is ‘Exit delay’ or ‘Entry delay’ (for other states, this field should be set to 0x00).

• eAudibleNotification is a value specifying whether an audible notification (e.g. a chime) is required to
signal a zone status change (enumerations are available in teCLD_IASACE_AudibleNotification - see
Section 38.8.4):

Value Status

0x00 Audible notification muted

0x01 Audible notification sounded

0x02 - 0xFF Reserved

• eAlarmStatus is a value indicating the alarm status/type when the panel’s state is ‘In Alarm’, as follows
(enumerations are available in teCLD_IASACE_AlarmStatus - see Section 38.8.3):

Value Status

0x00 No alarm

0x01 Burglar

0x02 Fire

0x03 Emergency

0x04 Police panic

0x05 Fire panic

0x06 Emergency panic

0x07 - 0xFF Reserved

38.7.5 Custom Command Payloads

The following structures contain the payloads for the IAS ACE cluster custom commands.

‘Arm’ Command Payload

The following structure contains the payload of a Arm command.

typedef struct
{
 zenum8 eArmMode;
 tsZCL_CharacterString sArmDisarmCode;
 zuint8 u8ZoneID;
} tsCLD_IASACE_ArmPayload;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
508 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where:

• eArmMode is a value indicating the state of armament in which to put the zone (enumerations are available in
teCLD_IASACE_ArmMode - see Section 38.8.1):

Value Status

0x00 Disarm

0x01 Arm day/home zones only

0x02 Arm night/sleep zones only

0x03 Arm all zones

0x04 - 0xFF Reserved

• sArmDisarmCode is an 8-character string containing the arm/disarm code (if a code is not required, set to
"00000000")

• u8ZoneID is the identifier of the zone to arm/disarm

‘Bypass’ Command Payload

The following structure contains the payload of a Bypass command.

typedef struct
{
 zuint8 u8NumOfZones;
 zuint8 *pu8ZoneID;
 tsZCL_CharacterString sArmDisarmCode;
} tsCLD_IASACE_BypassPayload;

where:

• u8NumOfZones is the number of zones to be ‘bypassed’ (taken out of the system)
• pu8ZoneID is a pointer to a list of identifiers specifying the zones to be bypassed (the number of zones in the

list is specified in u8NumOfZones)
• sArmDisarmCode is an 8-character string containing the arm/disarm code (if a code is not required, set to

"00000000")

‘Get Zone Information’ Command Payload

The following structure contains the payload of a Get Zone Information command.

typedef struct
{
 zuint8 u8ZoneID;
} tsCLD_IASACE_GetZoneInfoPayload;

where u8ZoneID is the identifier of the zone on which information is required.

‘Set Bypassed Zone List’ Command Payload

The following structure contains the payload of a Set Bypassed Zone List command.

typedef struct
{
 zuint8 u8NumofZones;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
509 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zuint8 *pu8ZoneID;
} tsCLD_IASACE_SetBypassedZoneListPayload;

where:

• u8NumofZones is the number of zones in the new bypassed zone list
• pu8ZoneID is a pointer to the new bypassed zone list (the number of zones in the list is specified in
u8NumOfZones)

‘Get Zone Status’ Command Payload

The following structure contains the payload of a Get Zone Status command.

typedef struct
{
 zuint8 u8StartingZoneID;
 zuint8 u8MaxNumOfZoneID;
 zbool bZoneStatusMaskFlag;
 zbmap16 u16ZoneStatusMask;
} tsCLD_IASACE_GetZoneStatusPayload;

where:

• u8StartingZoneID is the identifier of the first zone for which status information is required
• u8MaxNumOfZoneID is the maximum number of zones for which status information should be returned
• bZoneStatusMaskFlag is a Boolean indicating whether status information should be returned for all zones

or only for those zones with particular status values (specified through u16ZoneStatusMask below):
– TRUE - only zones with specific status values
– FALSE - all zones

• u16ZoneStatusMask is a 16-bit bitmap indicating the zone status values of interest (used when
bZoneStatusMaskFlag is set to TRUE) - the response to the request will contain information only for those
zones with a status value indicated in this bitmap:

Bit Description

0 Alarm1:
1 - Opened or alarmed
0 - Closed or not alarned

1 Alarm2:
1 - Opened or alarmed
0 - Closed or not alarned

2 Tamper:
1 - Tampered with
0 - Not tampered with

3 Battery:
1 - Low
0 - OK

4 Supervision reports:
1 - Reports
0 - No reports

5 Restore reports:
1 - Reports

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
510 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bit Description
0 - No reports

6 Trouble:
1 - Trouble/failure
0 - OK

7 AC (mains):
1 - Fault
0 - OK

8 Test mode:
1 - Sensor in test mode
0 - Sensor in operational mode

9 Battery defect:
1 - Defective battery detected
0 - Battery OK

10-15 Reserved

‘Panel Status Changed or Get Panel Status Response’ Payload

The following structure contains the payload of a Panel Status Changed command or Get Panel Status
Response.

typedef struct
{
 zenum8 ePanelStatus;
 zuint8 u8SecondsRemaining;
 zenum8 eAudibleNotification;
 zenum8 eAlarmStatus;
} tsCLD_IASACE_PanelStatusChangedOrGetPanelStatusRespPayload;

where:

• ePanelStatus is a value indicating the status to be displayed on the panel, as follows (enumerations are
available in teCLD_IASACE_PanelStatus - see Section 38.8.2):

Value Status

0x00 Disarmed (all zones) and ready to be armed

0x01 Armed stay

0x02 Armed night

0x03 Armed away

0x04 Exit delay

0x05 Entry delay

0x06 Not ready to be armed

0x07 In alarm

0x08 Arming stay

0x09 Arming night

0x0A Arming away

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
511 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Value Status

0x0B - 0xFF Reserved

• u8SecondsRemaining represents the time, in seconds, that the server will remain in the displayed state
when the latter is ‘Exit delay’ or ‘Entry delay’ (for other states, this field should be set to 0x00).

• eAudibleNotification is a value specifying whether an audible notification (e.g. a chime) is required to
signal a zone status change (enumerations are available in teCLD_IASACE_AudibleNotification - see
Section 38.8.4):

Value Status

0x00 Audible notification muted

0x01 Audible notification sounded

0x02 - 0xFF Reserved

• eAlarmStatus is a value indicating the alarm status/type when the panel’s state is ‘In Alarm’, as follows
(enumerations are available in teCLD_IASACE_AlarmStatus - see Section 38.8.3):

Value Status

0x00 No alarm

0x01 Burglar

0x02 Fire

0x03 Emergency

0x04 Police panic

0x05 Fire panic

0x06 Emergency panic

0x07 - 0xFF Reserved

38.7.6 Event Data Structures

The following structures hold the data contained in certain IAS ACE cluster events.

E_CLD_IASACE_CMD_ARM_RESP Data

typedef struct
{
 zenum8 eArmNotification;
} tsCLD_IASACE_ArmRespPayload;

where eArmNotification is an enumeration indicating the outcome of the Arm command, one of:

E_CLD_IASACE_ARM_NOTIF_ALL_ZONES_DISARMED
E_CLD_IASACE_ARM_NOTIF_ONLY_DAY_HOME_ZONES_ARMED
E_CLD_IASACE_ARM_NOTIF_ONLY_NIGHT_SLEEP_ZONES_ARMED
E_CLD_IASACE_ARM_NOTIF_ALL_ZONES_ARMED
E_CLD_IASACE_ARM_NOTIF_INVALID_ARM_DISARM_CODE
E_CLD_IASACE_ARM_NOTIF_NOT_READY_TO_ARM
E_CLD_IASACE_ARM_NOTIF_ALREADY_DISARMED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
512 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

E_CLD_IASACE_CMD_GET_ZONE_ID_MAP_RESP Data

typedef struct
{
 zbmap16 au16ZoneIDMap[CLD_IASACE_MAX_BYTES_FOR_NUM_OF_ZONES];
} tsCLD_IASACE_GetZoneIDMapRespPayload;

where au16ZoneIDMap[] is an array, each element being a 16-bit bitmap indicating whether each of a set of
zone identifiers is allocated - a Zone ID is represented by a single bit which is set to ‘1’ if the identifier value has
been allocated and ‘0’ otherwise.

Array Element Bit Zone ID

au16ZoneIDMap[0] 0
1
:

15

0x00
0x01
:
0x0F

au16ZoneIDMap[1] 0
1
:

15

0x10
0x11
:
0x1F

: : :

au16ZoneIDMap[N] 0
1
:
n
:

15

16N
16N + 0x1
:
16N + 0xn
:
16N + 0xF

E_CLD_IASACE_CMD_GET_ZONE_INFO_RESP Data

typedef struct
{
 zuint8 u8ZoneID;
 zbmap16 u16ZoneType;
 zieeeaddress u64IeeeAddress;
 tsZCL_CharacterString sZoneLabel;
} tsCLD_IASACE_GetZoneInfoRespPayload;

where:

• u8ZoneID is the identifier of the zone
• u16ZoneType is a value indicating the type of zone (for the possible values, refer to the description of the

attribute e16ZoneType of the IAS Zone cluster in Section 37.2)
• u64IeeeAddress is the IEEE/MAC address of the device which hosts the zone
• sZoneLabel is a character string representing a name/label for the zone

E_CLD_IASACE_CMD_ZONE_STATUS_CHANGED Data

typedef struct
{
 zuint8 u8ZoneID;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
513 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zenum16 eZoneStatus;
 zenum8 eAudibleNotification;
 tsZCL_CharacterString sZoneLabel;
} tsCLD_IASACE_ZoneStatusChangedPayload;

where:

• u8ZoneID is the identifier of the zone
• u16ZoneType is a value indicating the type of zone (for the possible values, refer to the description of the

attribute e16ZoneType of the IAS Zone cluster in Section 37.2)
• eAudibleNotification is a value specifying whether an audible notification

(e.g. a chime) to signal the change is required (enumerations are available in
teCLD_IASACE_AudibleNotification - see Section 38.8.4):

Value Status

0x00 Audible notification to be muted

0x01 Audible notification to be sounded

0x02 - 0xFF Reserved

• sZoneLabel is a character string representing a name/label for the zone

E_CLD_IASACE_CMD_PANEL_STATUS_CHANGED Data

tsCLD_IASACE_PanelStatusChangedOrGetPanelStatusRespPayload

For details of this structure, see Section 38.7.5.

E_CLD_IASACE_CMD_GET_PANEL_STATUS_RESP Data

tsCLD_IASACE_PanelStatusChangedOrGetPanelStatusRespPayload

For details of this structure, see Section 38.7.5.

E_CLD_IASACE_CMD_BYPASS_RESP Data

typedef struct
{
 zuint8 u8NumofZones;
 zuint8 *pu8BypassResult;
} tsCLD_IASACE_BypassRespPayload;

where:

• u8NumOfZones is the number of zones ‘bypassed’ (taken out of the system)
• pu8BypassResult is a pointer to a list of identifiers specifying the zones bypassed (the number of zones in

the list is specified in u8NumOfZones)

E_CLD_IASACE_CMD_GET_ZONE_STATUS_RESP Data

typedef struct
{
 zbool bZoneStatusComplete;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
514 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zuint8 u8NumofZones;
 zuint8 *pu8ZoneStatus;
} tsCLD_IASACE_GetZoneStatusRespPayload;

where:

• bZoneStatusComplete is a Boolean indicating whether the current response completes the set of zones for
which status information can be returned (if not, the client should send another Get Zone Status command to
the server):
– TRUE - no more zone status information to be returned
– FALSE - status information for more zones available to be queried

• u8NumofZones is the number of zones for which status information was returned in this response
• pu8ZoneStatus is a pointer to a list of status values for the reported zones (the number of values in the list

is indicated by u8NumofZones above) - each is a 24-bit value containing the following information:

Bits Description

0-7 Zone ID

8-23 Value of b16ZoneStatus attribute of the IAS Zone cluster for the zone

38.8 Enumerations

38.8.1 teCLD_IASACE_ArmMode

The following structure contains the enumerations used to indicate a mode of armament:

typedef enum
{
 E_CLD_IASACE_ARM_MODE_DISARM = 0x00,
 E_CLD_IASACE_ARM_MODE_ARM_DAY_HOME_ZONES_ONLY,
 E_CLD_IASACE_ARM_MODE_ARM_NIGHT_SLEEP_ZONES_ONLY,
 E_CLD_IASACE_ARM_MODE_ARM_ALL_ZONES,
} teCLD_IASACE_ArmMode;

38.8.2 teCLD_IASACE_PanelStatus

The following structure contains the enumerations used to indicate the status of the panel:

typedef enum
{
 E_CLD_IASACE_PANEL_STATUS_PANEL_DISARMED = 0x00,
 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMED_DAY,
 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMED_NIGHT,
 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMED_AWAY,
 E_CLD_IASACE_PANEL_STATUS_PANEL_EXIT_DELAY,
 E_CLD_IASACE_PANEL_STATUS_PANEL_ENTRY_DELAY,
 E_CLD_IASACE_PANEL_STATUS_PANEL_NOT_READY_TO_ARM,
 E_CLD_IASACE_PANEL_STATUS_PANEL_IN_ALARM,
 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMING_STAY,
 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMING_NIGHT,
 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMING_AWAY
} teCLD_IASACE_PanelStatus;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
515 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

38.8.3 teCLD_IASACE_AlarmStatus

The following structure contains the enumerations used to indicate the status/meaning of the alarm:

typedef enum
{
 E_CLD_IASACE_ALARM_STATUS_NO_ALARM = 0x00,
 E_CLD_IASACE_ALARM_STATUS_BURGLAR,
 E_CLD_IASACE_ALARM_STATUS_FIRE,
 E_CLD_IASACE_ALARM_STATUS_EMERGENCY,
 E_CLD_IASACE_ALARM_STATUS_POLICE_PANIC,
 E_CLD_IASACE_ALARM_STATUS_FIRE_PANIC,
 E_CLD_IASACE_ALARM_STATUS_EMERGENCY_PANIC
} teCLD_IASACE_AlarmStatus;

38.8.4 teCLD_IASACE_AudibleNotification

The following structure contains the enumerations used to indicate the configuration of the audible indication:

typedef enum
{
 E_CLD_IASACE_AUDIBLE_NOTIF_MUTE = 0x00,
 E_CLD_IASACE_AUDIBLE_NOTIF_DEFAULT_SOUND
} teCLD_IASACE_AudibleNotification;

38.9 Compile-time options
To enable the IAS ACE cluster in the code to be built, it is necessary to add the following to the zcl_options.h
file:

#define CLD_IASACE

In addition, to include the software for a cluster client or server or both, it is necessary to add one of the
following to the same file:

#define IASACE_SERVER
#define IASACE_CLIENT

The IAS ACE cluster contains macros that may be specified at compile-time by adding one or more of the
following lines to the zcl_options.h file.

Maximum Size of Zone Table

The maximum number of entries in a Zone table on the cluster server can be defined using the following line:

#define CLD_IASACE_ZONE_TABLE_SIZE n

where n is the desired maximum (e.g. 8).

Maximum Length of Arm/Disarm Code

 The maximum length of string allowed for the arm/disarm code can be defined using the following line:

#define CLD_IASACE_MAX_LENGTH_ARM_DISARM_CODE n

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
516 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where n is the desired maximum.

Maximum Length of Zone Label

 The maximum length of string allowed for a zone name/label can be defined using the following line:

#define CLD_IASACE_MAX_LENGTH_ZONE_LABEL n

where n is the desired maximum.

Disable APS Acknowledgements for Bound Transmissions

APS acknowledgements for bound transmissions from this cluster can be disabled using the following line:

#define CLD_IASACE_BOUND_TX_WITH_APS_ACK_DISABLED

Cluster Revision

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_IASACE_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
517 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

39 IAS Warning Device Cluster

This chapter describes the IAS Warning Device (WD) cluster which provides an interface to a Warning Device in
an IAS (Intruder Alarm System).

The IAS WD cluster has a Cluster ID of 0x0502.

39.1 Overview
The IAS WD cluster provides an interface to an IAS Warning Device, allowing warning indications triggered
by alarm conditions to be sent to it. The server side of the cluster is implemented on the IAS Warning Device
and the client side is implemented on the triggering device. The IAS Warning Device is detailed in the ZigBee
Devices User Guide (JNUG3131).

To use the functionality of this cluster, you must include the file IASWD.h in your application and enable the
cluster by defining CLD_IASWD in the zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the compile-time options of the application.
In addition, if the cluster resides on a custom endpoint, then the role of client or server must also be specified
when creating the cluster instance.

The compile-time options for the IAS WD cluster are fully detailed in Section 39.7.

39.2 IAS WD Structure and Attribute
The structure definition for the IAS WD cluster is:

typedef struct
{
#ifdef IASWD_SERVER
 zuint16 u16MaxDuration;
#endif
 zuint16 u16ClusterRevision;
} tsCLD_IASWD;

where:

• u16MaxDuration is the maximum duration, in seconds, for which the alarm can be continuously active (for
example, a siren sounded). The range of possible values is 0 to 65534 seconds and the default value is 240
seconds.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

39.3 Issuing Warnings
The IAS WD cluster allows a device which detects warning conditions (example, fire) to trigger a warning on an
IAS Warning Device which, in turn, initiates a physical alarm such as a siren and/or strobe. The IAS Warning
Device hosts the cluster server and the triggering device hosts the cluster client.

Two types of warning can be initiated:

• Warning mode: This mode indicates a genuine emergency, such as a fire or an intruder. On
detection of the emergency condition, the application on the triggering device must call the
eCLD_IASWDStartWarningReqSend() function, which sends a Start Warning command to the
Warning Device. The payload of this command contains the time-duration for which the Warning

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
518 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Device must remain in warning mode. The specified duration must not exceed the maximum duration
defined in the u16MaxDuration attribute on the Warning Device (see Section 39.2). The payload also
contains details of the warning and the strobe requirements, if any. On receiving this command, an
E_CLD_IASWD_CMD_WD_START_WARNING event is generated on the Warning Device (see Section 39.4)
for the attention of the application.

• Squawk mode: This mode indicates a change of state of the IAS system - that is, armed or disarmed.
Thus, this is typically a short audible beep or ‘squawk’ that is emitted when the system is armed
or disarmed. To initiate a squawk, the application on the triggering device must call the function
eCLD_IASWDSquawkReqSend(), which sends a Squawk command to the Warning Device. The payload
also contains details of the squawk and the strobe requirements, if any. On receiving this command, an
E_CLD_IASWD_CMD_WD_SQUAWK event is generated on the Warning Device (see Section 39.4) for the
attention of the application.

The payloads of the commands are detailed in Section 39.6.2.

Note: In order to maintain timing information on the cluster server, the application on the Warning Device
must periodically call the eCLD_IASWDUpdate() function every 100 ms. These calls can be prompted using a
software timer.

Note: The u16MaxDuration attribute on the Warning Device can be updated by the application on this device
by calling the function eCLD_IASWDUpdateMaxDuration().

39.4 IAS WD Events
The IAS WD cluster has its own events that are handled through the callback mechanism outlined in Chapter
3. If a device uses the IAS WD cluster then IAS WD event handling must be included in the callback function
for the associated endpoint, where this callback function is registered through the relevant endpoint registration
function (for example, through eHA_RegisterWarningDeviceEndPoint() for a Warning Device). The relevant
callback function is then invoked when an IAS WD event occurs.

For an IAS WD event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_IASWDCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_IASWD_StartWarningReqPayload *psWDStartWarningReqPayload;
 tsCLD_IASWD_SquawkReqPayload *psWDSquawkReqPayload;
 tsCLD_IASWD_StrobeUpdate *psStrobeUpdate; /* Internal */
 tsCLD_IASWD_WarningUpdate *psWarningUpdate; /* Internal */
 } uMessage;
} tsCLD_IASWDCallBackMessage;

When an IAS WD event occurs, one of several command types could have been received. The relevant
command type is specified through the u8CommandId field of the tsSM_CallBackMessage structure.
The possible command/event types are detailed in the table below (not that psStrobeUpdate and
psWarningUpdate are for internal use only).

u8CommandId Enumeration Description

E_CLD_IASWD_CMD_WD_START_WARNING A Start Warning command has been received by
the cluster server - this command requests that
the alarm is activated for a specified time. The

Table 70. IAS WD Command Types

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
519 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8CommandId Enumeration Description
command payload is contained in the event in the
tsCLD_IASWD_StartWarningReqPayload
structure, described in Section 39.6.2.

E_CLD_IASWD_CMD_WD_SQUAWK A Squawk command has been received by the
cluster server - this command requests that the
alarm is briefly activated to emit a ‘squawk’ to
indicate a status change, such as system disarmed.
The command payload is contained in the event in
the tsCLD_IASWD_SquawkReqPayload structure,
described in Section 39.6.2.

Table 70. IAS WD Command Types...continued

39.5 Functions
The following IAS WD cluster functions are provided in the NXP implementation of the ZCL:

1. eCLD_IASWDCreateIASWD
2. eCLD_IASWDUpdate
3. eCLD_IASWDUpdateMaxDuration
4. eCLD_IASWDStartWarningReqSend
5. eCLD_IASWDSquawkReqSend

39.5.1 eCLD_IASWDCreateIASWD

teZCL_Status eCLD_IASWDCreateIASWD(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_IASWDCustomDataStructure
 *psCustomDataStructure);

Description

This function creates an instance of the IAS WD cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function creates an IAS WD
cluster instance on the endpoint, but instances of other clusters may also be created on the same endpoint by
calling their corresponding creation functions.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function.

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
520 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
• TRUE - server
• FALSE - client
• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this

case, this structure must contain the details of the IAS WD cluster. This parameter can refer to a pre-filled
structure called sCLD_IASWD which is provided in the IASWarningDevice.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_IASWD which defines the attributes of IAS WD cluster. The
function initializes the attributes with default values.

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster.
• psCustomDataStructure: Pointer to a structure containing the storage for internal functions of the cluster (see

Section 39.6.1)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

39.5.2 eCLD_IASWDUpdate

teZCL_Status eCLD_IASWDUpdate(
 uint8 u8SourceEndPoint);

Description

This function can be used on an IAS WD cluster server to update the timing requirements of the Warning
Device. The function should be called by the application at a rate of once every 100 ms.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS WD cluster resides

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

39.5.3 eCLD_IASWDUpdateMaxDuration

teZCL_Status eCLD_IASWDUpdateMaxDuration(
 uint8 u8SourceEndPointId,
 uint16 u16MaxDuration);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
521 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on an IAS WD cluster server to set the value of the u16MaxDuration attribute,
which represents the maximum duration, in seconds, for which the alarm can be continuously active.

The set value is the maximum duration, in seconds, for which the alarm can be active following a received Start
Warning request.

Parameters

• u8SourceEndPointId: Number of the endpoint on which the IAS WD cluster resides
• u16MaxDuration: Value to which attribute will be set, in the range 0 to 65534

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

39.5.4 eCLD_IASWDStartWarningReqSend

teZCL_Status eCLD_IASWDStartWarningReqSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASWD_StartWarningReqPayload *psPayload);

Description

This function can be used on IAS WD cluster client to send a Start Warning command to the IAS WD server on
a Warning Device.

The receiving IAS WD server activates the alarm on the Warning Device for a specified duration.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 39.6.2)

Returns

• E_ZCL_SUCCESS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
522 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

39.5.5 eCLD_IASWDSquawkReqSend

teZCL_Status eCLD_IASWDSquawkReqSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_IASWD_SquawkReqPayload *psPayload);

Description

This function can be used on IAS WD cluster client to send a Squawk command to the IAS WD server on a
Warning Device.

The receiving IAS WD server will briefly activate the alarm on the Warning Device to emit a ‘squawk’ -
depending on the device, this could be a visible and/or audible emission. The parameters of the squawk are
specified in the command payload.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the request. This parameter is used
both to send the command and to identify the instance of the shared structure holding the required attribute
values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the request
• psPayload: Pointer to a structure containing the payload for the command (see Section 39.6.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
523 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to transmit the data,
this error may be obtained by calling eZCL_GetLastZpsError().

39.6 Structures

39.6.1 Custom Data Structure

The IAS WD cluster requires extra storage space to be allocated to be used by internal functions. The structure
definition for this storage is shown below:

typedef struct
{
 tsCLD_IASWD_SquawkReqPayload sSquawk;
 tsCLD_IASWD_StartWarningReqPayload sWarning;
 uint32 u32WarningDurationRemainingIn100MS;
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_IASWDCallBackMessage sCallBackMessage;
} tsCLD_IASWD_CustomDataStructure;

The fields are for internal use and no knowledge of them is required.

39.6.2 Custom Command Payloads

The following structures contain the payloads for the IAS WD cluster custom commands.

‘Start Warning’ Payload

The following structure contains the payload of a Start Warning command.

typedef struct
{
 uint8 u8WarningModeStrobeAndSirenLevel;
 uint16 u16WarningDuration;
 uint8 uStrobeDutyCycle;
 enum8 eStrobeLevel;
}tsCLD_IASWD_StartWarningReqPayload;

where:

• u8WarningModeStrobeAndSirenLevel is an 8-bit bitmap containing the requirements for the warning
alarm, as follows:

Bits Description

0-3 Warning Mode - indicates the meaning of the requested warning:
0 - Stop (no warning)
1 - Burglar
2 - Fire
3 - Emergency
4 - Police panic
5 - Fire panic
6 - Emergency (medical) panic
All other values are reserved

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
524 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bits Description

4-5 Strobe* - indicates whether a visual strobe indication of the warning is required:
0 - No strobe
1 - Use strobe
Other values are reserved

6-7 Siren Level - indicates the requested level of an audible siren (if enabled):
0 - Low level
1 - Medium level
2 - High level
3 - Very high level

* If ‘Strobe’ is 1 and ‘Warning Mode’ is 0, only the strobe is activated

• u16WarningDuration is the requested time-duration of the warning, in seconds, which must be less than or
equal to the value of the u16MaxDuration attribute

• uStrobeDutyCycle is the duty-cycle of the strobe pulse, expressed as a percentage in 10% steps
(example, 0x1E represents 30%) - invalid values are rounded to the nearest multiple of 10%

• eStrobeLevel is the level of the strobe (pulse)

‘Squawk’ Payload

The following structure contains the payload of a Squawk command.

typedef struct
{
 uint8 u8SquawkModeStrobeAndLevel;
}tsCLD_IASWD_SquawkReqPayload;

Where u8SquawkModeStrobeAndLevel is an 8-bit bitmap containing the requirements for the ‘squawk’, as
follows.

Bits Description

0-3 Squawk Mode - indicates the meaning of the required ‘squawk’:
0 - System is armed
1 - System is disarmed
All other values are reserved

4 Strobe - indicates whether a visual strobe indication of the ‘squawk’ is required:
0 - No strobe
1 - Use strobe

5 Reserved

6-7 Squawk Level - indicates the requested level of the audible squawk sound:
0 - Low level
1 - Medium level
2 - High level
3 - Very high level

39.6.3 Event Data Structures

The following structures hold the data contained in certain IAS WD cluster events.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
525 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

E_CLD_IASWD_CLUSTER_UPDATE_STROBE Data

typedef struct
{
 bool_t bStrobe;
 uint8 u8StrobeDutyCycle;
 zenum8 eStrobeLevel;
}tsCLD_IASWD_StrobeUpdate;

where:

bStrobe is the current (new) status of the strobe:

• TRUE - Strobe ‘on’
• FALSE - Strobe ‘off’

– uStrobeDutyCycle is the duty-cycle of the strobe pulse, expressed as a percentage in 10% steps
(example, 0x1E represents 30%) - invalid values is rounded to the nearest multiple of 10%

– eStrobeLevel is the level (brightness) of the strobe pulse:
• 0 - Low level
• 1 - Medium level
• 2 - High level
• 3 - Very high level

All other values are reserved

E_CLD_IASWD_CLUSTER_UPDATE_WARNING Data

typedef struct
{
 uint8 u8WarningMode;
 uint16 u16WarningDurationRemaining;
 zenum8 eStrobeLevel;
}tsCLD_IASWD_WarningUpdate;

where:

• u8WarningMode is a value indicating the current warning mode:
– 0 - No warning
– 1 - Burglar
– 2 - Fire
– 3 - Emergency
– 4 - Police panic
– 5 - Fire panic
– 6 - Emergency (medical) panic

All other values are reserved
• u16WarningDurationRemaining is the time, in seconds, during which the device remains in warning

mode
• eStrobeLevel is the level of the strobe (pulse)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
526 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

39.7 Compile-time Options
To enable the IAS WD cluster in the code to be built, it is necessary to add the following to the zcl_options.h
file:

#define CLD_IASWD

In addition, to include the software for a cluster client or server or both, it is necessary to add one of the
following to the same file:

#define IASWD_SERVER
#define IASWD_CLIENT

The IAS WD cluster contains macros that may be specified at compile-time by adding one or more of the
following lines to the zcl_options.h file.

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_IASWD_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
527 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part IX: Smart Energy Clusters

This part comprises three chapters:

• Chapter 40 details the Price cluster
• Chapter 41 details the Demand-Response and Load Control cluster
• Chapter 42 details the Simple Metering cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
528 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

40 Price Cluster

This chapter outlines the Price cluster, which is used to hold and exchange price information.

The Price cluster has a Cluster ID of 0x0700.

CAUTION: Important: While the Price cluster software supports Block mode, this mode is not certifiable in SE
1.1.1 (07-5356-17) or earlier and is therefore not fully documented in this chapter. Customers who wish to use
Block mode should contact NXP for direct support.

40.1 Overview
The Price cluster is required in ZigBee devices as indicated in the table below.

Server-side Client-side

Mandatory in... ESP Smart Appliance

Optional in... ESP
Metering Device
IPD
PCT
Load Control Device

Table 71. Price Cluster in ZigBee Devices

The ESP normally acts as the Price cluster server, holding price information received from the utility company.
Other devices act as clients and receive price information from the ESP. The clients’ price information must be
kept up-to-date with the server’s price information.

The Price cluster is enabled by defining CLD_PRICE in the zcl_options.h file. Further compile-time options for
the Price cluster are detailed in Section 40.13.

The Price cluster can operate in a mode in which pricing is based on the time at which the consumption occurs
- this is called Time-Of-Use (TOU) mode. The cluster allows up to fifteen price ‘tiers’, numbered 1 to 15, which
correspond to different time periods. Each price tier is given a label, which is used to identify the tier - typical
labels are "Normal", "Shoulder", "Peak", "Real-time Pricing" and "Critical Peak". The tiers must be numbered
consecutively in price order, with Tier 1 being the cheapest. Note that tiers 7 to 15 are not certifiable in SE 1.1.1
or earlier and are reserved for future use.

The information that can potentially be stored in the Price cluster is organised into the following attribute sets:
Tier Label, Block Threshold, Block Period, Commodity, Block Price Information, Billing Period Information. The
attribute sets Block Threshold, Block Period, Block Price Information and Billing Period Information are reserved
for future use (with Block mode). There is also a set of attributes exclusively for use on a Price cluster client.

The cluster includes commands for requesting and publishing (distributing) price information. The price
information that is valid for a certain time is sent from the Price cluster server (ESP) to the Price cluster clients
using Publish Price commands, which may be sent from the ESP under the following circumstances:

• Unsolicited from the server - for example, when new pricing information has been received from the utility
company or a new price tier becomes active

• In response to a Get Current Price command, sent by a client that needs the price for the current time period
• In response to a Get Scheduled Prices command, sent by a client that needs both current and future prices

Functions are provided for implementing the cluster commands. These functions are referenced in Section 40.4
and Section 40.5, and detailed in Section 40.9.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
529 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

40.2 Price cluster structure and attributes
The Price cluster is contained in the following tsCLD_Price structure:

typedef struct CLD_Price_tag
{
 /* Tier Price Label Set (D.4.2.2.1) */
#if (CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT != 0)
 tsZCL_OctetString asTierPriceLabel[CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT];
 uint8 au8TierPriceLabel[CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT][SE_PRICE_SERVER_MAX_STRING_LENGTH];
#endif
 /* Block Threshold Set (D.4.2.2) */
#if (CLD_P_ATTR_BLOCK_THRESHOLD_MAX_COUNT != 0)
 zuint48 au48BlockThreshold[CLD_P_ATTR_BLOCK_THRESHOLD_MAX_COUNT];
#endif
 /* Block Period Set (D.4.2.2.3) */
#ifdef CLD_P_ATTR_START_OF_BLOCK_PERIOD
 zutctime utctStartOfBlockPeriod;
#endif
#ifdef CLD_P_ATTR_BLOCK_PERIOD_DURATION
 zuint24 u24BlockPeriodDuration;
#endif
#ifdef CLD_P_ATTR_THRESHOLD_MULTIPLIER
 zuint24 u24ThresholdMultiplier;
#endif
#ifdef CLD_P_ATTR_THRESHOLD_DIVISOR
 zuint24 u24ThresholdDivisor;
#endif
 /* Commodity Set Set (D.4.2.2.4) */
#ifdef CLD_P_ATTR_COMMODITY_TYPE
 zenum8 e8CommodityType;
#endif
#ifdef CLD_P_ATTR_STANDING_CHARGE
 zuint32 u32StandingCharge;
#endif
#ifdef CLD_P_ATTR_CONVERSION_FACTOR
 zuint32 u32ConversionFactor;
#endif
#ifdef CLD_P_ATTR_CONVERSION_FACTOR_TRAILING_DIGIT
 zbmap8 b8ConversionFactorTrailingDigit;
#endif
#ifdef CLD_P_ATTR_CALORIFIC_VALUE
 zuint32 u32CalorificValue;
#endif
#ifdef CLD_P_ATTR_CALORIFIC_VALUE_UNIT
 zenum8 e8CalorificValueUnit;
#endif
#ifdef CLD_P_ATTR_CALORIFIC_VALUE_TRAILING_DIGIT
 zbmap8 b8CalorificValueTrailingDigit;
#endif
 /* Block Price Information Set (D.4.2.2.5) */
#if (CLD_P_ATTR_NO_TIER_BLOCK_PRICES_MAX_COUNT != 0)
 zuint32 au32NoTierBlockPrice[CLD_P_ATTR_NO_TIER_BLOCK_PRICES_MAX_COUNT];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 0)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier1BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 1)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier2BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 2)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier3BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 3)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier4BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 4)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier5BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 5)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier6BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 6)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier7BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 7)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier8BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 8)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier9BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 9)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier10BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
530 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 10)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier11BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 11)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier12BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 12)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier13BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 13)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier14BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 14)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))
 zuint32 au32Tier15BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];
#endif
#ifdef CLD_P_ATTR_START_OF_BILLING_PERIOD
 zutctime utctStartOfBillingPeriod;
#endif
#ifdef CLD_P_ATTR_BILLING_PERIOD_DURATION
 zuint24 u24BillingPeriodDuration;
#endif
#ifdef CLD_P_CLIENT_ATTR_PRICE_INCREASE_RANDOMIZE_MINUTES
 uint8 u8ClientIncreaseRandomize;
#endif
#ifdef CLD_P_CLIENT_ATTR_PRICE_DECREASE_RANDOMIZE_MINUTES
 uint8 u8ClientDecreaseRandomize;
#endif
#ifdef CLD_P_CLIENT_ATTR_COMMODITY_TYPE
 zenum8 e8ClientCommodityType;
#endif
} tsCLD_Price;

where:

40.2.1 ‘Tier Label’ Attribute Set

• The following are optional attributes that are only relevant to TOU mode (tiers 7 to 15 are not certifiable in SE
1.1.1 or earlier and are reserved for future use):
– asTierPriceLabel[CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT]

is a tsZCL_OctetString structure containing information on tier labels. The maximum size of
asTierPriceLabel is defined by assigning a value to CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT.
This optional element is paired with au8TierPriceLabel (below)

– au8TierPriceLabel[CLD_P_ATTR_TIER_PRICE_LABEL_MAX_
COUNT][SE_PRICE_SERVER_MAX_STRING_LENGTH] is an array containing the tier labels, e.g. "Peak".
This optional element is paired with the element asTierPriceLabel (above)

Note: Memory space for each (enabled) price tier label is statically allocated and comprises 13 bytes per label
(plus one byte for the ‘octet count’). Therefore, memory space remains allocated for unused bytes.

40.2.2 ‘Block Threshold’ Attribute Set

• The following are optional attributes that relate to Block mode and are fully described in the ZigBee Smart
Energy Profile Specification (these attributes are not certifiable in SE 1.1.1 or earlier and are for future use):

au48BlockThreshold[CLD_P_ATTR_BLOCK_THRESHOLD_MAX_COUNT]

40.2.3 ‘Block Period’ Attribute Set

• The following are optional attributes that relate to Block mode and are fully described in the ZigBee Smart
Energy Profile Specification (these attributes are not certifiable in SE 1.1.1 or earlier and are for future use):
– utctStartOfBlockPeriod
– u24BlockPeriodDuration
– u24ThresholdMultiplier
– u24ThresholdDivisor

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
531 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

40.2.4 ‘Commodity’ Attribute Set

• The following are optional attributes:
– e8CommodityType is an enumeration representing the type of commodity (e.g. gas) to which the prices

apply - the enumerations used are those provided in the teCLD_SM_MeteringDeviceType structure of
the Simple Metering cluster and listed in Section 42.10.6

– u32StandingCharge is the value of a fixed daily 'standing charge' associated with supplying the
commodity, expressed in the currency and with the decimal places indicated in the Publish Price command
described in Section 40.11.1 (the value 0xFFFFFFFF indicates that the field is not used)

– u32ConversionFactor is used only for gas and accounts for the variation of gas volume with
temperature and pressure (and is dimensionless). The Price server can change this conversion factor at any
time and this attribute contains the currently active value. The default value is 1. The position of the decimal
point is indicated by b8ConversionFactorTrailingDigit described below.

– b8ConversionFactorTrailingDigit is an 8-bit bitmap which indicates the location of the decimal
point in the u32ConversionFactor attribute. The most significant 4 bits indicate the number of digits after
the decimal point. The remaining bits are reserved.

– u32CalorificValue is used only for gas and indicates the quantity of energy in MJ that is generated
per unit volume or unit mass of gas burned (see e8CalorificValueUnit) - the value can be
used to calculate energy consumption in kWh. The position of the decimal point is indicated by
b8CalorificValueTrailingDigit described below.

– e8CalorificValueUnit is an enumerated value indicating whether u32CalorificValue is quantified
per unit volume or per unit mass. The possible values are 0x01 for MJ/m3 and 0x02 for MJ/kg (all other
values are reserved).

– b8CalorificValueTrailingDigit is an 8-bit bitmap which indicates the location of the decimal point
in the u32CalorificValue attribute. The most significant 4 bits indicate the number of digits after the
decimal point. The remaining bits are reserved.

40.2.5 ‘Block Price Information’ Attribute Set

• The following are optional attributes that relate to Block mode and are fully described in the ZigBee Smart
Energy Profile Specification (these attributes are not certifiable in SE 1.1.1 or earlier and are for future use):

au32NoTierBlockPrice[CLD_P_ATTR_NO_TIER_BLOCK_PRICES_MAX_COUNT]
au32Tier1BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier2BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier3BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier4BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier5BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier6BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier7BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier8BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier9BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier10BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier11BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier12BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier13BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier14BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]
au32Tier15BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
532 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

40.2.6 ‘Billing Period Information’ Attribute Set

• The following are optional attributes that relate to Block mode (both attributes are not certifiable in SE 1.1.1 or
earlier and are for future use):

utctStartOfBillingPeriod
u24BillingPeriodDuration

40.2.7 Client Attribute Set

• The following set of attributes are only for use on a Price cluster client:
– u8ClientIncreaseRandomize represents the maximum length of time, in minutes, between a client

node applying a price increase and taking a resulting action (such as reducing its power consumption). The
action may be performed before or after the price increase is implemented, and the delay (either way) must
be chosen at random by the application on the node. The maximum is set in minutes, in the range 0 to 60
minutes, but it is recommended that the random delay is selected in seconds.

– u8ClientDecreaseRandomize represents the maximum length of time, in minutes, between a client node
applying a price decrease and taking a resulting action (such as switching itself on). The action may be
performed before or after the price decrease is implemented, and the delay (either way) must be chosen at
random by the application on the node. The maximum is set in minutes, in the range 0 to 60 minutes, but it
is recommended that the random delay is selected in seconds.

– e8ClientCommodityType is an enumeration representing the commodity that is priced on the client device.
This enumeration is one from the ‘Metering Device Type’ enumerations listed in Table74.

Note: Price information for Time-Of-Use (TOU) mode is held in the tsSE_PricePublishPriceCmdPayload
structure described in Section 40.11.1. Prices are matched to tiers using the strings defined in the Tier Label
attributes.

40.3 Attribute settings
The Price cluster structure (see Section 40.2) contains no mandatory elements. All elements are optional,
each being enabled/disabled through a corresponding macro defined in the zcl_options.h file - for example,
the commodity type attribute is enabled/disabled through the macro CLD_P_ATTR_COMMODITY_TYPE.
The attributes that are used depend on the number of tiers implemented (and Block mode attributes must be
disabled).

Note:

• The Tier Label attributes are connected to the tier-related attributes in the Simple Metering cluster, e.g.
u48CurrentTier6SummationDelivered for Tier 6. For a complete list of these Simple Metering
attributes, refer to Section 42.2.

• The price information for Time-Of-Use (TOU) mode is stored in the structure
tsSE_PricePublishPriceCmdPayload described in Section 40.11.1.

40.4 Initializing and maintaining price lists
A list of prices is held on both the Price cluster server (ESP) and client(s). The price list on a client must be
maintained to mirror the price list on the server. On device startup, the Price cluster software initializes the
device’s price list as empty. The price lists are then built and maintained as described below.

The ESP receives price information from the utility company and populates its price list with this information.
The application on the ESP does this by calling the function eSE_PriceAddPriceEntry() for each new price
received from the utility company. This function also sends out a Publish Price command containing the new
price information to all Price cluster clients in the network. On receiving this command, a Price cluster client

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
533 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

automatically adds this price information to its own price list (see Section 40.5.1). However, at ESP startup,
there may be no other active nodes in the network to receive the Publish Price commands (since the ESP is
normally also the ZigBee Co-ordinator and is, therefore, the first node to be started). For this reason, the Price
cluster clients should normally request the scheduled prices from the ESP when they start up, as described in
Section 40.5.3.

Note: When initializing the price list at ESP startup, the ESP application should call
eSE_PriceAddPriceEntry() with the address mode parameter set to E_ZCL_AM_NO_TRANSMIT, so that the
price additions are not subsequently transmitted.

Note: A Price cluster server should take precautions to prevent clients from attempting to read the server
price list during ESP initialization, before the prices have been received from the utility company. This can be
achieved by adding the obtained prices to the server price list after the call to the relevant endpoint registration
function (for example, eSE_RegisterEspEndPoint()) but before the call to ZPS_eAplZdoStartStack().

A price list is maintained in time order and if there is an active price, it is positioned at the head of the list (with
index 0). Price lists on clients are updated to reflect the price list on the server, as described in Section 40.5.

Note: The Price cluster of ZigBee Smart Energy automatically deletes a price entry from a client or server
price list immediately after the price event has expired. This is because the start-time of a price event is a
universal time (UTC) and therefore corresponds to a one-off event. In practice, the price list may need a new
price schedule daily, which may be provided by the utility company. Alternatively, if a similar schedule is required
every day, the ESP application can keep a local copy of the schedule, which it can modify (e.g. start-times) and
add to the price list on a daily basis.

The active price is always at the head of the price list (entry zero). The application should check that the entry
at the head of the list is active before displaying it as the current price. If it is not active, a message may be
displayed indicating that the current price is not known. The item at the head of the list is active if both of the
following hold:

• Its start time is less than or equal to the current time, obtained by u32ZCL_GetUTCTime()
• The time on the client has been synchronized, i.e. a call to bZCL_GetTimeHasBeenSynchronised() returns

TRUE

In addition to the function eSE_PriceAddPriceEntry(), the following functions allow an ESP application to
access and manipulate its price list:

• eSE_PriceGetPriceEntry() obtains the price entry with the specified index.
• eSE_PriceDoesPriceEntryExist() checks whether there is a price entry with the specified start-time.
• eSE_PriceRemovePriceEntry() deletes the price entry with the specified

start-time.
• eSE_PriceClearAllPriceEntries() deletes all price entries in the list.

These functions are fully detailed in Section 40.9.

40.5 Publishing price information
This section and its sub-sections describe the ways in which price information can be published (distributed)
in a ZigBee network. As introduced in Section 40.1, there are three ways in which price information may be
published to the network from the Price cluster server (ESP):

• Unsolicited unicasts - refer to Section 40.5.1
• Response to a Get Current Price command - refer to Section 40.5.2
• Response to a Get Scheduled Prices command - refer to Section 40.5.3

All of the above methods require the ESP to send a Publish Price command to the relevant device(s), where the
payload of this command includes information such as resource (for example, gas), unit of measure, currency,
price, current time, start-time, and duration. On receipt of this command, if valid, the received price information

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
534 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

is automatically added to the price list on the device. If it is successfully added, an E_SE_PRICE_TABLE_ADD
event is generated on the receiving device and this event is handled by the callback function registered for the
relevant endpoint.

40.5.1 Unsolicited Price Updates

When the ESP receives updated price information from the utility company (via the backhaul network) or
a new price tier becomes active, the ESP must inform all network devices that are using the Price cluster.
The ESP therefore individually unicasts a Publish Price command to all these devices. This command is
sent out automatically - there is no need for the application on the ESP to explicitly send the command.
In the case of new prices received from the utility company, the ESP application must call the function
eSE_PriceAddPriceEntry() to add the new price to the price list held by the server, and the Publish Price
command is then automatically sent out (possibly with a ‘start-time of now’). Note that if the stack has not been
started when eSE_PriceAddPriceEntry() is called, the function’s address mode parameter should be set to
E_ZCL_AM_NO_TRANSMIT, so that no transmission is attempted.

It is recommended that price updates on the ESP are relayed to Price cluster clients with which the ESP has
been (previously) bound.

Note: Each of these bindings is initiated on the client node (e.g. IPD) using the ZigBee PRO stack function
ZPS_eAplZdpBindUnbindRequest() to add the client’s address and endpoint to the Binding table on the ESP.
Binding is described in the ZigBee 3.0 Stack User Guide (JNUG3130).

Therefore, when updating its price list, the ESP application should call eSE_PriceAddPriceEntry() with the
address mode parameter set to E_ZCL_AM_BOUND, so that the price updates are transmitted only to bound
endpoints/nodes.

As an alternative to using binding, the ESP can maintain a list of network nodes that are able to receive
unsolicited Publish Price commands at all times - that is, nodes with radio receivers that remain active during
idle periods (e.g. when sleeping). Unsolicited updates are then only sent to clients in this group. The ESP
gathers information for this group from the Get Current Price commands received from clients (see Section
40.5.2). This option requires the address node parameter to be set to ZPS_E_APL_AF_BROADCAST_RX_ON
in eSE_PriceAddPriceEntry().

The ESP can send unsolicited Publish Price commands with ‘start-time of now' when an
E_SE_PRICE_TABLE_ACTIVE event indicates that a new price has become active (see Section 40.8). This
command can be used by devices that do not implement a real-time clock.

40.5.2 Get Current Price

Any device which supports the Price cluster can request the currently active price information from the ESP by
sending a Get Current Price command. The function eSE_PriceGetCurrentPriceSend() allows a Price cluster
client to send this command to the Price cluster server and deal with the response.

• On receiving the command, the server automatically responds with a Publish Price command containing the
requested price information.

• On receiving the response, the client checks whether the received price information is currently in
the client’s price list. If it is not, the client adds the new price information to the list and generates an
E_SE_PRICE_TABLE_ADD event - this event is handled by the callback function registered for the relevant
endpoint.

The Get Current Price command contains information on whether the radio receiver of the sending device
remains active when the node is otherwise idle (e.g. sleeping). If this is true, the ESP application can use the
address of the node to update a list of such devices, which it may use when sending out unsolicited Publish
Price commands (see Section 40.5.1). The ESP application can extract this information from the event E_
SE_PRICE_GET_CURRENT_PRICE_RECEIVED which is generated when a Get Current Price command is
received by the server - this event is handled by the callback function registered for the relevant endpoint.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
535 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

40.5.3 Get Scheduled Prices

Any device which supports the Price cluster can request the current price schedule from the ESP by sending a
Get Scheduled Prices command - the schedule includes a set of prices with their start-times and durations. The
function eSE_PriceGetScheduledPricesSend() allows a Price cluster client to send this command to the Price
cluster server and deal with the responses.

• On receiving the command, the server automatically responds with a sequence of Publish Price commands,
where each of these responses contains the information for one scheduled price.

• On receiving a response, the client checks whether the received price information is currently in the
client’s price list. If it is not, the client adds the new price information to the list and generates an
E_SE_PRICE_TABLE_ADD event - this event is handled by the callback function registered for the relevant
endpoint.

40.6 Time-synchronization via Publish Price commands
As an alternative to using the Time cluster to time-synchronize a ZigBee device with the ESP (as described in
Section 18.5.3), the local application can use the time embedded in a Publish Price command from the ESP
(see Section 40.5), as described below.

Note: A device that implements the Price cluster must also implement the Time cluster.

It is the responsibility of the application on a ZigBee device to perform time-synchronization with the ESP. This
involves updating the ZCL time on the local device.

The initialization of the ZCL time on a device should be performed using the Time cluster by requesting the
current time from the ESP, as described in Section 18.5.2 (this method also gets the time-zone and daylight
saving information).

Subsequent re-synchronizations of a device with the time-master can use the time contained in Publish Price
commands from the ESP (but note that no time-zone or daylight saving information is included). Therefore, a
device can update its ZCL time whenever it receives a Publish Price command. On receiving this command, a
‘data indication’ stack event is generated, which causes a ZCL user task to be activated. The event is initially
handled by this task as described in Chapter 3, resulting in an E_ZCL_ZIGBEE_EVENT event being passed to
the ZCL via vZCL_EventHandler(). The ZCL invokes the relevant user-defined callback function (see Chapter
3) which, provided that the event is of the type E_SE_PRICE_TIME_UPDATE, must update the ZCL time using
vZCL_SetUTCTime().

Note that the utctTime field of the local copy of the Time cluster is not updated, since this should only be done
following a read of the Time cluster attributes from the server.

CAUTION: If a device is handling Publish Price commands from more than one server, the time must only
be updated with time events from one server, to prevent the time from jittering forwards and backwards if the
servers’ times are not in sync.

The time-synchronization of a device (with the time-master) should be performed regularly. As a rule, if no
Publish Price commands have been received from the ESP in the last 48 hours, the device should request the
current time from the ESP and update its own times as described in Section 18.5.3.

It is worth noting that an undefined ZCL time causes the following issues in the Price cluster:

• A Price cluster server without a ZCL time cannot issue any Publish Price commands, since the current time is
a mandatory field of this command.

• A Price cluster client without a ZCL time cannot process a Publish Price command with a ‘start-time of now',
unless the ZCL time is first set with the time extracted from the received command.

• If the price at the head of the price list has a specified start-time, it is not possible to know whether this price is
active or not.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
536 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Regarding the last point, a device should be time-synchronized with the ESP (as described in Section 18.5.2)
before an attempt is made to add scheduled prices to the device’s price list. Then, if the device receives a
scheduled price with a ‘start-time of now’, it is permissible to add this price to the list.

40.7 Conversion factor and calorific value (gas only)
The Price cluster provides attributes related to conversion factor and calorific value for use with gas (only):

• Conversion factor: Accounts for the variation of gas volume with temperature and pressure
• Calorific value: Indicates the quantity of energy in MJ that is generated per unit volume or unit mass of gas

burned

The attributes associated with the above properties are part of the ‘Commodity’ set - refer to Section 40.2.

If required, conversion factor and/or calorific value must be enabled in the compile-time options, as described in
Section 40.13.

Conversion factors and calorific values can be independently scheduled with associated start-times. The
Price cluster server (ESP) and clients each maintain a list of the scheduled conversion factors and a list of
the scheduled calorific values (along with their start-times). The maximum number of entries in each list is by
default 2 (allowing the present one and the next one to be stored), but this maximum can be re-defined in the
compile-time options.

The ESP (Price cluster server) receives a scheduled conversion factor or calorific value from the utility
company. A received value and its associated start-time are added as an entry to the relevant list on the server
by the ESP application as follows:

• A new entry is added to the conversion factor list by calling the function
eSE_PriceAddConversionFactorEntry()

• A new entry is added to the calorific value list by calling the function eSE_PriceAddCalorificValueEntry()

The entries are maintained in the list in increasing order of start-times. If an existing entry in the list has the
same start-time as the new entry, the entry with the greater value of the Issuer Event ID is included in the list
(and the other entry is discarded).

Once a new entry is added to a list on the server, a Publish Conversion Factor or Publish Calorific Value
command is automatically sent to the cluster clients to inform them that a new value is available, allowing them
to update their lists with the new information.

Initializing Conversion Factors and Calorific Values at Network Startup

Note the following issues at network startup:

• When the ESP node first starts, there may be no other active nodes in the network to receive a new
conversion factor and/or calorific value. Thus, the Price cluster clients should request this information
from the ESP when they start. They can do this using eSE_PriceGetConversionFactorSend() or
eSE_PriceGetCalorificValueSend(), as appropriate.

• When initializing the conversion factor or calorific value at ESP startup, the ESP application should call
eSE_PriceAddConversionFactorEntry() or eSE_PriceAddCalorificValueEntry() with the address mode
parameter set to E_ZCL_AM_NO_TRANSMIT. This prevents the new value from being transmitted to a
network with no other active nodes.

• Any clients that are active during ESP initialization should not request a conversion factor or calorific
value from the ESP before the values are received from the utility company. To avoid this problem,
the ESP application should obtain the values from the utility company before calling the ZigBee PRO
function ZPS_eAplZdoStartStack() and after calling the relevant endpoint register function (example,
eSE_RegisterEspMeterEndPoint()).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
537 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

40.8 Price events
The Price cluster has its own events that are handled through the callback mechanism described in Chapter
3. If a device uses the Price cluster then Price event handling must be included in the callback function for
the associated endpoint, where this callback function is registered through the relevant endpoint registration
function (for example, through eSE_RegisterEspEndPoint() for a standalone ESP). The relevant callback
function will then be invoked when a Price event occurs.

For a Price event, the eEventType field of the tsZCL_CallBackEvent structure is set
to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to a tsSE_PriceCallBackMessage structure which contains the Price parameters:

typedef struct
{
 teSE_PriceCallBackEventType eEventType;
 uint32 u32CurrentTime;
 union {
 tsSE_PriceTableCommand sPriceTableCommand;
 tsSE_PriceTableTimeEvent sPriceTableTimeEvent;
 teSE_PriceCommandOptions ePriceCommandOptions;
 tsSE_PriceAckCmdPayload *psAckCmdPayload;
 tsSE_PriceAttrReadInput sReadAttrInfo;
 tsSE_BlockPeriodTableTimeEvent sBlockPeriodTableTimeEvent;
 tsSE_ConversionFactorTableTimeEvent sConversionFactorTableTimeEvent;
 tsSE_CalorificValueTableTimeEvent sCalorificValueTableTimeEvent;
 } uMessage;
} tsSE_PriceCallBackMessage;

The eEventType field of the above structure specifies the type of Price event that has been generated - these
event types are listed and described below (also refer to Section 40.12.2 for a summary of the Price events).

Note: The field sReadAttrInfo is reserved for future use (for Block mode).

E_SE_PRICE_TABLE_ADD

The E_SE_PRICE_TABLE_ADD event is generated on a Price cluster client when an attempt has been
made to add a scheduled price (received in a Publish Price command) to the local price list. In the
tsSE_PriceCallBackMessage structure, the u32CurrentTime field is set to the current time from the
Publish Price command and the sPriceTableCommand field is used as follows:

typedef struct {
 teSE_PriceStatus ePriceStatus;
} tsSE_PriceTableCommand;

ePriceStatus contains E_SE_PRICE_SUCCESS if a new price has been successfully added to the price list.
Otherwise, the addition was rejected for the reason specified by ePriceStatus. If the addition was successful
but the new price information overlapped (in time) any existing price information in the list, this previous price
information may have been deleted from the list according to the rules in the ZigBee SE Profile specification.

E_SE_PRICE_TABLE_ACTIVE

The E_SE_PRICE_TABLE_ACTIVE event is generated when there is a new active price or the active price
expires. This event can occur due to a time update or the reception of a Publish Price command from the
server. In the tsSE_PriceCallBackMessage structure, the u32CurrentTime field is set to the current ZCL
time and the sPriceTableTimeEvent field is used as follows:

typedef struct {
 teSE_PriceStatus ePriceStatus;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
538 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8NumberOfEntriesFree;
} tsSE_PriceTableTimeEvent;

ePriceStatus contains E_SE_PRICE_SUCCESS if there is a new active price or
E_SE_PRICE_TABLE_NOT_YET_ACTIVE if the price at the head of the list is scheduled for a time in the
future.

u8NumberOfEntriesFree contains the number of free entries in the client's price list. This number can be
used to determine whether the client should issue a new Get Scheduled Prices command, in order to obtain
more price entries to fill the free space in the list.

E_SE_PRICE_GET_CURRENT_PRICE_RECEIVED

The E_SE_PRICE_GET_CURRENT_PRICE_RECEIVED event is generated on a Price cluster server when
a Get Current Price command is received from a client. In the tsSE_PriceCallBackMessage structure, the
ePriceCommandOptions field is used as follows:

typedef enum PACK
{
 E_SE_PRICE_REQUESTOR_RX_ON_IDLE = 0x01 // LSB set
} teSE_PriceCommandOptions;

This field indicates whether the client that sent the request has its radio receiver enabled when idle (e.g.
sleeping), and is used as described in Section 40.5.1 and Section 40.5.2.

E_SE_PRICE_TIME_UPDATE

The E_SE_PRICE_TIME_UPDATE event is generated on a Price cluster client when a Publish Price command
is received from the server. In the tsSE_PriceCallBackMessage structure, the u32CurrentTime field is
set to the current time from the Publish Price command. The application may then use this information to time-
synchronise the device, as described in Section 40.6.

E_SE_PRICE_ACK_RECEIVED

The E_SE_PRICE_ACK_RECEIVED event is generated on a Price cluster server when a Price
Acknowledgment command is received from a client. In the tsSE_PriceCallBackMessage structure, the
psAckCmdPayload field is a pointer to the structure tsSE_PriceAckCmdPayload defined as follows:

typedef struct {
 uint32 u32ProviderId;
 uint32 u32IssuerEventId;
 uint32 u32PriceAckTime;
 uint8 u8Control;
} tsSE_PriceAckCmdPayload;

This structure contains the Price Acknowledgement command payload.

E_SE_PRICE_NO_PRICE_TABLES

The E_SE_PRICE_NO_PRICE_TABLES event is generated when an active price expires, is deleted
from the price list and the price list becomes empty. In the tsSE_PriceCallBackMessage structure the
sPriceTableTimeEvent field is used as follows:

typedef struct {
 teSE_PriceStatus ePriceStatus;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
539 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8NumberOfEntriesFree;
} tsSE_PriceTableTimeEvent;

ePriceStatus contains E_SE_PRICE_NO_TABLES.

u8NumberOfEntriesFree contains the number of free entries in the client's price list. This number can be
used to determine whether the client should issue a new Get Scheduled Prices command, in order to obtain
more price entries to fill the free space in the list.

E_SE_PRICE_CONVERSION_FACTOR_TABLE_ACTIVE

The E_SE_PRICE_CONVERSION_FACTOR_TABLE_ACTIVE event is generated when a new conversion
factor value becomes active - that is, when the start-time of the conversion factor entry becomes less than or
equal to the present time. This event can occur due to a time update or the reception of a Publish Conversion
Factor command from the server.

In the tsSE_PriceCallBackMessage structure, the u32CurrentTime field is set to the current ZCL time
and the field tsSE_PriceConversionFactorTableTimeEvent is used as follows:

typedef struct {
 teSE_PriceStatus eConversionFactorStatus;
 uint8 u8NumberOfEntriesFree;
} tsSE_ConversionFactorTableTimeEvent;

eConversionFactorStatus takes the value E_ZCL_SUCCESS when a new conversion factor becomes
active.

u8NumberOfEntriesFree contains the present number of free entries in the conversion factor list. This value
should be checked by the client before issuing a Get Conversion Factor command to obtain a new conversion
factor value - the command should be issued only if there is free space in the list for a new entry to be added.

E_SE_PRICE_CONVERSION_FACTOR_ADD

The E_SE_PRICE_CONVERSION_FACTOR_ADD event is generated when a new conversion factor entry
is advertised by the ESP to the client application using the Publish Conversion Factor command. Note that
the event is generated even when the new entry is not successfully added to the internal conversion factor list
maintained by the cluster.

The status of the command is passed back to the user application in the ePriceStatus field of the
tsSE_PriceTableCommand structure (see above) within the tsSE_PriceCallBackMessage structure.

E_SE_PRICE_CALORIFIC_VALUE_TABLE_ACTIVE

The E_SE_PRICE_CALORIFIC_VALUE_TABLE_ACTIVE event is generated when a new calorific value
becomes active - that is, when the start-time of the calorific value entry becomes less than or equal to the
present time. This event can occur due to a time update or the reception of a Publish Calorific Value command
from the server.

In the tsSE_PriceCallBackMessage structure, the u32CurrentTime field is set to the current ZCL time
and the field tsSE_PriceCalorificValueTableTimeEvent is used as follows:

typedef struct {
 teSE_PriceStatus eCalorificValueStatus;
 uint8 u8NumberOfEntriesFree;
} tsSE_CalorificValueTableTimeEvent;

eCalorificValueStatus takes the value E_ZCL_SUCCESS when a new calorific value becomes active.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
540 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8NumberOfEntriesFree contains the present number of free entries in the calorific value list. This value
should be checked by the client before issuing a Get Calorific Value command to obtain a new calorific value -
the command should be issued only if there is free space in the list for a new entry to be added.

E_SE_PRICE_CALORIFIC_VALUE_ADD

The E_SE_PRICE_CALORIFIC_VALUE_ADD event is generated when a new calorific value entry is advertised
by the ESP to the client application using the Publish Calorific Value command. Note that this event is
generated even when the new entry is not successfully added to the internal calorific value list maintained by
the cluster.

The status of the command is passed back to the user application in the ePriceStatus field of the
tsSE_PriceTableCommand structure (see above) within the tsSE_PriceCallBackMessage structure.

40.9 Functions
The following Price cluster functions are provided:

• eSE_PriceCreate
• eSE_PriceGetCurrentPriceSend
• eSE_PriceGetScheduledPricesSend
• eSE_PriceAddPriceEntry
• eSE_PriceAddPriceEntryToClient
• eSE_PriceGetPriceEntry
• eSE_PriceDoesPriceEntryExist
• eSE_PriceRemovePriceEntry
• eSE_PriceClearAllPriceEntries
• eSE_PriceAddConversionFactorEntry
• eSE_PriceGetConversionFactorSend
• eSE_PriceGetConversionFactorEntry
• eSE_PriceDoesConversionFactorEntryExist
• eSE_PriceRemoveConversionFactorEntry
• eSE_PriceClearAllConversionFactorEntries
• eSE_PriceAddCalorificValueEntry
• eSE_PriceGetCalorificValueSend
• eSE_PriceGetCalorificValueEntry
• eSE_PriceDoesCalorificValueEntryExist
• eSE_PriceRemoveCalorificValueEntry
• eSE_PriceClearAllCalorificValueEntries

40.9.1 eSE_PriceCreate

teSE_PriceStatus eSE_PriceCreate(
 bool_t bIsServer,
 uint8 u8NumberOfRecordEntries,
 uint8 *pu8AttributeControlBits,
 uint8 *pau8RateLabel,
 tsZCL_ClusterInstance *psClusterInstance,
 tsZCL_ClusterDefinition *psClusterDefinition,
 tsSE_PriceCustomDataStructure
 *psCustomDataStructure,
 tsSE_PricePublishPriceRecord

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
541 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 *psPublishPriceRecord,
 void *pvEndPointSharedStructPtr);

Description

This function creates an instance of the Price cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Price
cluster instance on the endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions. For more details of creating cluster instances on custom
endpoints, refer to Appendix D.

Note: This function must not be called for an endpoint on which a standard ZigBee device (e.g. IPD) will be
used. In this case, the device and its supported clusters must be registered on the endpoint using the relevant
device registration function from those described in the ZigBee Devices User Guide

Note: (JNUG3131).

When used, this function must be the first Price cluster function called in the application, and must be called
after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8)
for each attribute of the cluster. The array length should therefore equate be the total number of attributes
supported by the Price cluster, which can be obtained by using the macro PRICE_NUM_OF_ATTRIBUTES.

The array declaration should be as follows:

uint8 au8AppPriceClusterAttributeControlBits[PRICE_NUM_OF_ATTRIBUTES];

The function initializes the array elements to zero.

The function also requires an array of price labels to be declared, in which each array element is a label (string)
for each price in the price list. The required declarations are different for a cluster server and client, as follows:

uint8 au8RateLabel[SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES]
[SE_PRICE_CLIENT_MAX_STRING_LENGTH];
uint8 au8RateLabel[SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES]
[SE_PRICE_CLIENT_MAX_STRING_LENGTH];

Parameters

• bIsServer Type of cluster instance (server or client) to be created:
• TRUE - server
• FALSE - client
• u8NumberOfRecordEntries Number of prices that can be stored in the price list, one of:
• SE_PRICE_NUMBER_OF_SERVER_PRICE_RECORD_ENTRIES
• SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES
• pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the cluster

(see above).
• pau8RateLabel Pointer to an array of price labels (strings), with one element for each price in the price list

(see above).
• psClusterInstance Pointer to structure containing information about the cluster instance to be created (see

Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
542 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Price cluster. This parameter can refer to a pre-filled
structure called sCLD_Price which is provided in the Price.h file.

• psCustomDataStructure Pointer to structure which contains custom data for the Price cluster. This structure is
used for internal data storage. No knowledge of the fields of this structure is required

• pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_Price which defines the attributes of Price cluster. The
function initializes the attributes with default values.

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

40.9.2 eSE_PriceGetCurrentPriceSend

teZCL_Status eSE_PriceGetCurrentPriceSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 teSE_PriceCommandOptions ePriceCommandOptions);

Description

This function can be used on a Price cluster client to send a Get Current Price command to the Price cluster
server. Therefore, it is used by a device (such as an IPD) to obtain the currently active price from the ESP.

The ESP should respond with a Publish Price command containing the active price. This response is processed
by the Price cluster. The obtained price is checked against the prices currently in the price list on the client. If
the price is not currently in the list, it is added to the list and an E_SE_PRICE_TABLE_ADD event is generated
to indicate that a price has been added.

A pointer must be specified to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request.

Parameters

• u8SourceEndPointId Number of the local endpoint through which the request is sent
• u8DestinationEndPointId Number of the remote endpoint to which the request is sent
• psDestinationAddress Pointer to a structure containing the address of the remote node to which the request is

sent
• pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of

the request
• ePriceCommandOptions Indicates whether the radio receiver on client remains on when the device is idle (for

example, asleep):
– 0x01 - receiver on when idle
– 0x00 - receiver off when idle

• An enumeration is provided for the ‘on’ case:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
543 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_SE_PRICE_REQUESTOR_RX_ON_IDLE

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL

40.9.3 eSE_PriceGetScheduledPricesSend

teZCL_Status eSE_PriceGetScheduledPricesSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint32 u32StartTime,
 uint8 u8NumberOfEvents);

Description

This function can be used on a Price cluster client to send a Get Scheduled Prices command to the Price
cluster server. Therefore, it is used by a device (such as an IPD) to obtain the current price schedule from the
ESP, either to check that its own price schedule is up-to-date or to recover the price schedule following a device
reset.

You must specify the earliest start-time for the scheduled prices to be included in the results. This is normally
set to zero or the current time (UTC). Note that you are not advised to specify the last time in the client price
list, since the server may contain updates for prices covering an earlier time-period that are already in the client
price list. You must also specify the maximum number of scheduled prices to be returned in the results.

The ESP should respond with multiple Publish Price commands containing the scheduled prices.
Each response is processed by the Price cluster. The obtained price is checked against the prices
currently in the price list on the client. If the price is not currently in the list, it is added to the list and an
E_SE_PRICE_TABLE_ADD event is generated to indicate that a price has been added.

A pointer must be specified to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request.

Parameters

• u8SourceEndPointId Number of the local endpoint through which the request is sent
• u8DestinationEndPointId Number of the remote endpoint to which the request is sent
• psDestinationAddress Pointer to a structure containing the address of the remote node to which the request is

sent
• pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of

the request
• u32StartTime The earliest start-time of any prices to be returned - this is normally set to zero or the current

time (UTC)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
544 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8NumberOfEvents The maximum number of scheduled prices to be returned in the results - this should
normally be set to: SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_ZBUFFER_FAIL

40.9.4 eSE_PriceAddPriceEntry

teSE_PriceStatus eSE_PriceAddPriceEntry(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 bool_t bOverwritePrevious,
 tsSE_PricePublishPriceCmdPayload *psPricePayload,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on the Price cluster server to add a price to the local price list. The function also
sends an unsolicited Publish Price command containing the new price information to one or more remote
endpoints. The function should be called on the ESP when a new price is received from the utility company.

On receiving the Publish Price command, a remote client will automatically add the new price to the local price
list. However, you must specify the action to be taken if the time-period of the new price overlaps with the time-
period of a price that is already in the client’s price list. You can choose to delete the existing price and add the
new price, or leave the existing price in place and not add the new price. The rules on overlapping prices are
defined in the ZigBee Smart Energy Profile specification.

A pointer must be specified to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request.

Parameters

• u8SourceEndPointId Number of the local endpoint through which the request is sent
• u8DestinationEndPointId Number of the remote endpoint to which the request is sent
• psDestinationAddress Pointer to a structure containing the address of the remote node to which the Publish

Price command is sent. It is recommended that the command is sent to all bound clients using a ZCL address
mode of E_ZCL_AM_BOUND. If the stack has not been started, the E_ZCL_AM_NO_TRANSMIT address
mode should be used

• bOverwritePrevious Action to be taken if the new price overlaps (in time) a price which is already in the price
list:
– TRUE - existing price deleted, new price added
– FALSE - new price not added and error returned

• psPricePayload Pointer to a structure containing the price information to be added (see Section 40.11.1). This
parameter only needs to remain in scope for the duration of this function call

• pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of
the command

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
545 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE
• E_ZCL_ERR_TIME_NOT_SYNCHRONISED
• E_ZCL_ERR_INSUFFICIENT_SPACE
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_SE_PRICE_OVERFLOW
• E_SE_PRICE_DUPLICATE
• E_SE_PRICE_DATA_OLD

40.9.5 eSE_PriceAddPriceEntryToClient

teSE_PriceStatus eSE_PriceAddPriceEntryToClient(
 uint8 u8SourceEndPointId,
 bool_t bOverwritePrevious,
 tsSE_PricePublishPriceCmdPayload *psPricePayload);

Description

This function can be used on a Price cluster client to add a price to the local price list directly.

Normally, price entries are automatically added to the price list on a client when a Publish Price command is
received from the server (e.g. the ESP). However, this function can be used by the local application to directly
add a price entry to the price list on the client. The function should therefore only be used on a device which
does not receive price information from the server (but by some other means, such as via the Internet).

Parameters

• u8SourceEndPointId Number of the local endpoint through which the request is sent
• bOverwritePrevious Action to be taken if the new price overlaps (in time) a price which is already in the price

list:
– TRUE - existing price deleted, new price added
– FALSE - new price not added and error returned

• psPricePayload Pointer to a structure containing the price information to be added (see Section 40.11.1). This
parameter only needs to remain in scope for the duration of this function call

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE
• E_ZCL_ERR_TIME_NOT_SYNCHRONISED
• E_ZCL_ERR_INSUFFICIENT_SPACE
• E_ZCL_ERR_EP_RANGE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
546 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZBUFFER_FAIL
• E_SE_PRICE_OVERFLOW
• E_SE_PRICE_DUPLICATE
• E_SE_PRICE_DATA_OLD

40.9.6 eSE_PriceGetPriceEntry

teSE_PriceStatus eSE_PriceGetPriceEntry(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,
 uint8 u8TableIndex,
 tsSE_PricePublishPriceCmdPayload **psPricePayload);

Description

This function can be used to obtain the entry with specified index from a price list on the local device. For
example, the function can be used on an IPD to obtain a price to display.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

Parameters

• u8SourceEndPointId Number of the local endpoint for the price list to be accessed
• bIsServer Nature of the Price cluster instance containing the price list:

– TRUE - server (for example, on ESP)
– FALSE - client (for example, on IPD)

• u8TableIndex The index of the price entry to obtain from the price list (index 0 is the entry with the oldest start-
time and may contain the currently active price)

• psPricePayload Pointer to a pointer to a structure which will be used to store the obtained price information
(see Section 40.11.1), if found. The pointer value that is returned in this parameter points to the structure in
the internal storage associated with the list. The data in the structure will be valid as long as the item remains
in the list

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_SE_PRICE_TABLE_NOT_FOUND

40.9.7 eSE_PriceDoesPriceEntryExist

teSE_PriceStatus eSE_PriceDoesPriceEntryExist(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,
 uint32 u32StartTime);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
547 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used to check whether a price entry with the specified start-time is present in a price list on
the local device.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

For a price entry to be successfully found, the specified start-time must exactly match the start-time of an entry
in the price list, otherwise the status code E_SE_PRICE_NOT_FOUND will be returned.

Parameters

• u8SourceEndPointId Number of the local endpoint for the price list to be accessed
• bIsServer Nature of the Price cluster instance containing the price list:

– TRUE - server
– FALSE - client

• u32StartTime Start-time of the price entry to search for

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_SE_PRICE_NOT_FOUND

40.9.8 eSE_PriceRemovePriceEntry

teSE_PriceStatus eSE_PriceRemovePriceEntry(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,
 uint32 u32StartTime);

Description

This function can be used to delete a price entry with specified start-time from a price list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

For the successful deletion of a price entry, the specified start-time must exactly match the start-time of an entry
in the price list, otherwise the status code E_SE_PRICE_NOT_FOUND will be returned.

Parameters

• u8SourceEndPointId Number of the local endpoint on which Price cluster resides
• bIsServer Nature of the Price cluster instance containing the price list:

– TRUE - server
– FALSE - client

• u32StartTime The start-time of the price entry to delete

Returns

• E_ZCL_SUCCESS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
548 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_SE_PRICE_NOT_FOUND
• E_SE_PRICE_TABLE_NOT_FOUND

40.9.9 eSE_PriceClearAllPriceEntries

teSE_PriceStatus eSE_PriceClearAllPriceEntries(
 uint8 u8SourceEndPointId,
 bool_t bIsServer);

Description

This function can be used to delete all entries in a price list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

Parameters

• u8SourceEndPointId Number of the local endpoint for the price list to be cleared
• bIsServer Nature of the Price cluster instance containing the price list:

– TRUE - server
– FALSE - client

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND

40.9.10 eSE_PriceAddConversionFactorEntry

teZCL_Status eSE_PriceAddConversionFactorEntry(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 bool_t bOverwritePrevious,
 tsSE_PricePublishConversionCmdPayload
 *psPublishConversionCmdPayload,
 uint8 *pu8TransactionSequenceNumber);

Description

The function can be used on a Price cluster server to add a new conversion factor entry to the internal list
of scheduled conversion factors maintained by the cluster. The function also sends an unsolicited Publish
Conversion Factor command to the Price cluster client nodes in the network, to advertise the new conversion
factor. Therefore, the function should be called on the ESP when a new conversion factor is received from the
utility company.

On receiving the Publish Conversion Factor command, a remote client automatically adds the new conversion
factor to the local conversion factor list. However, if the new entry has the same start-time as an existing entry in
the list, the outcome depends on the setting of the boolean parameter bOverwritePrevious in this function:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
549 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• If this parameter is set to TRUE then the existing entry is removed and the new entry is added
• If this parameter is set to FALSE then the Issuer Event IDs of the two conversion factor entries are compared:

– If the Event ID of the new entry is the greater, the existing entry is removed and the new entry is added
– If the Event ID of the existing entry is the greater, E_ZCL_FAIL is returned and the list is not modified

A pointer must be specified to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request.

Parameters

• u8SourceEndPointId Number of the local endpoint through which the request is sent
• u8DestinationEndPointId Number of the remote endpoint to which the request is sent
• psDestinationAddress Pointer to a structure containing the address of the remote node to which the request is

sent
• bOverwritePrevious Determines whether an existing conversion factor with the same start-time on the clients

will be over-written without comparing Event IDs (see above):
– TRUE - over-write existing entry
– FALSE - compare Event IDs first

• psPublishConversionCmdPayload Pointer to conversion factor entry to be added to list on server and
advertised to clients

• pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_TIME_NOT_SYNCHRONISED

40.9.11 eSE_PriceGetConversionFactorSend

teZCL_Status eSE_PriceGetConversionFactorSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint32 u32StartTime,
 uint8 u8NumberOfEvents);

Description

The function can be used on a Price cluster client to send a Get Conversion Factor request to the Price cluster
server. Therefore, it is used by a device (such as an IPD) to obtain scheduled conversion factor values from the
ESP. The function allows scheduled conversion factors to be obtained with start-times greater than or equal to a
specified time, u32StartTime.

The ESP should respond with a Publish Conversion Factor command containing up to u8NumberOfEvent
scheduled conversion factor values. The Price cluster on the receiving client processes the response by
updating the local conversion factor list, as follows. For each conversion factor received in the response, the
event E_SE_PRICE_CONVERSION_FACTOR_ADD is generated.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
550 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

A pointer must be specified to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request.

Parameters

• u8SourceEndPointId Number of the local endpoint through which the request is sent
• u8DestinationEndPointId Number of the remote endpoint to which the request is sent
• psDestinationAddress Pointer to a structure containing the address of the remote node to which the request is

sent
• pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of

the request
• u32StartTime Earliest start-time of scheduled conversion factors to be returned - a setting of 0 returns the

factor that is currently active and factors with start-times in the future
• u8NumberOfEvents Maximum number of conversion factors to be returned as a result of this request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZTRANSMIT_FAIL

40.9.12 eSE_PriceGetConversionFactorEntry

teSE_PriceStatus eSE_PriceGetConversionFactorEntry(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,
 uint8 u8TableIndex,
 sSE_PricePublishConversionCmdPayload
 **ppsPublishConversionCmdPayload);

Description

This function can be used to obtain the entry with the specified index from the conversion factor list on the local
device. For example, the function can be used on an IPD to obtain a conversion factor to display.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

Parameters

• u8SourceEndPointId Number of the local endpoint for the conversion factor list to be accessed
• bIsServer Nature of the Price cluster instance containing the list:

– TRUE - server (example on ESP)
– FALSE - client (example on IPD)

• u8TableIndex The index of the entry to obtain from the conversion factor list (index 0 is the entry with the
oldest start-time and may contain the currently active conversion factor)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
551 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• **ppsPublishConversionCmdPayload
• Pointer to a pointer to a structure which will be used to store the obtained conversion factor information (see

Section 40.11.2), if found. The pointer value that is returned in this parameter points to the structure in the
internal storage associated with the list. The data in the structure will be valid as long as the item remains in
the list

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_SE_PRICE_TABLE_NOT_FOUND

40.9.13 eSE_PriceDoesConversionFactorEntryExist

teSE_PriceStatus eSE_PriceDoesConversionFactorEntryExist(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,
 uint32 u32StartTime);

Description

This function can be used to check whether a conversion factor entry with the specified start-time is present in a
conversion factor list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

For a conversion factor entry to be successfully found, the specified start-time must exactly match the start-time
of an entry in the conversion factor list, otherwise the status code E_SE_PRICE_NOT_FOUND will be returned.

Parameters

• u8SourceEndPointId Number of the local endpoint for the conversion factor list to be accessed
• bIsServer Nature of the Price cluster instance containing the price list:
• TRUE - server
• FALSE - client
• u32StartTime Start-time of the conversion factor entry to search for

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_SE_PRICE_NOT_FOUND

40.9.14 eSE_PriceRemoveConversionFactorEntry

teSE_PriceStatus eSE_PriceRemoveConversionFactorEntry(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
552 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint32 u32StartTime);

Description

This function can be used to delete a conversion factor entry with specified start-time from conversion factor list
on the local device.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

For the successful deletion of a conversion factor entry, the specified start-time must exactly match the start-
time of an entry in the conversion factor list, otherwise the status code E_SE_PRICE_NOT_FOUND will be
returned.

Parameters

• u8SourceEndPointId Number of the local endpoint for the conversion factor list to be accessed
• bIsServer Nature of the Price cluster instance containing the list:

– TRUE - server
– FALSE - client

• u32StartTime The start-time of the conversion factor entry to delete

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_SE_PRICE_NOT_FOUND
• E_SE_PRICE_TABLE_NOT_FOUND

40.9.15 eSE_PriceClearAllConversionFactorEntries

teSE_PriceStatus eSE_PriceClearAllConversionFactorEntries(
 uint8 u8SourceEndPointId,
 bool_t bIsServer);

Description

This function can be used to delete all entries in a conversion factor list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

Parameters

• u8SourceEndPointId Number of the local endpoint for the conversion factor list to be cleared
• bIsServer Nature of the Price cluster instance containing the price list:
• TRUE - server
• FALSE - client

Returns

• E_ZCL_SUCCESS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
553 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_CLUSTER_NOT_FOUND

40.9.16 eSE_PriceAddCalorificValueEntry

teZCL_Status eSE_PriceAddCalorificValueEntry(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 bool_t bOverwritePrevious,
 tsSE_PricePublishCalorificValueCmdPayload
 *psPublishCalorificValueCmdPayload,
 uint8 *pu8TransactionSequenceNumber);

Description

The function can be used on a Price cluster server to add a calorific value entry to the internal list of scheduled
calorific values maintained by the cluster. The function also sends an unsolicited Publish Calorific Value
command to the Price cluster client nodes in the network, to advertise the new calorific value. Therefore, the
function should be called on the ESP when a new calorific value is received from the utility company.

On receiving the Publish Calorific Value command, a remote client automatically adds the new calorific value to
the local calorific value list. However, if the new entry has the same start-time as an existing entry in the list, the
outcome depends on the setting of the boolean parameter bOverwritePrevious in this function:

• If this parameter is set to TRUE then the existing entry is removed and the new entry is added
• If this parameter is set to FALSE then the Issuer Event IDs of the two calorific value entries are compared:

– If the Event ID of the new entry is the greater, the existing entry is removed and the new entry is added
– If the Event ID of the existing entry is the greater, E_ZCL_FAIL is returned and the list is not modified

A pointer must be specified to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent
• psDestinationAddress: Pointer to a structure containing the address of the remote node to which the request

is sent
• bOverwritePrevious: Determines whether an existing calorific value with the same start-time on the clients will

be over-written without comparing Event IDs (see above):
– TRUE - over-write existing entry
– FALSE - compare Event IDs first

• psPublishCalorificValueCmdPayload Pointer to calorific value entry to be added to list on server and
advertised to clients

• pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_TIME_NOT_SYNCHRONISED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
554 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

40.9.17 eSE_PriceGetCalorificValueSend

teZCL_Status eSE_PriceGetCalorificValueSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint32 u32StartTime,
 uint8 u8NumberOfEvents);

Description

The function can be used on a Price cluster client to send a Get Calorific Value request to the Price cluster
server. Therefore, it is used by a device (such as an IPD) to obtain scheduled calorific values from the ESP. The
function allows scheduled calorific values to be obtained with start-times greater than or equal to a specified
time, u32StartTime.

The ESP should respond with a Publish Calorific Value command containing up to u8NumberOfEvent
scheduled calorific values. The Price cluster on the receiving client processes the response by updating
the local calorific value list, as follows. For each calorific value received in the response, the event
E_SE_PRICE_CALORIFIC_VALUE_ADD is generated.

A pointer must be specified to a location to receive a Transaction Sequence Number (TSN) for the request. The
TSN in the response is set to match the TSN in the request, allowing an incoming response to be paired with a
request.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent
• psDestinationAddress: Pointer to a structure containing the address of the remote node to which the request

is sent
• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of

the request
• u32StartTime: Earliest start-time of scheduled calorific values to be returned - a setting of 0 returns the value

that is currently active and values with start-times in the future
• u8NumberOfEvents: Maximum number of calorific values to be returned as a result of this request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_ZBUFFER_FAIL
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_ZTRANSMIT_FAIL

40.9.18 eSE_PriceGetCalorificValueEntry

teSE_PriceStatus eSE_PriceGetCalorificValueEntry(
 uint8 u8SourceEndPointId,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
555 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 bool_t bIsServer,
 uint8 u8TableIndex,
 sSE_PricePublishCalorificValueCmdPayload
 **ppsPublishCalorificValueCmdPayload);

Description

This function can be used to obtain the entry with the specified index from the calorific value list on the local
device. For example, the function can be used on an IPD to obtain a calorific value to display.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

Parameters

• u8SourceEndPointId Number of the local endpoint for the calorific value list to be accessed
• bIsServer Nature of the Price cluster instance containing the list:

– TRUE - server (example on ESP)
– FALSE - client (example on IPD)

• u8TableIndex The index of the entry to obtain from the calorific value list (index 0 is the entry with the oldest
start-time and may contain the currently active calorific value)

• **ppsPublishCalorificValueCmdPayload
• Pointer to a pointer to a structure which will be used to store the obtained calorific value information (see

Section 40.11.3), if found. The pointer value that is returned in this parameter points to the structure in the
internal storage associated with the list. The data in the structure will be valid as long as the item remains in
the list

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_SE_PRICE_TABLE_NOT_FOUND

40.9.19 eSE_PriceDoesCalorificValueEntryExist

teSE_PriceStatus eSE_PriceDoesCalorificValueEntryExist(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,
 uint32 u32StartTime);

Description

This function can be used to check whether a calorific value entry with the specified start-time is present in a
calorific value list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

For a calorific value entry to be successfully found, the specified start-time must exactly match the start-time of
an entry in the calorific value list, otherwise the status code E_SE_PRICE_NOT_FOUND will be returned.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
556 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• u8SourceEndPointId Number of the local endpoint for the calorific value list to be accessed
• bIsServer Nature of the Price cluster instance containing the price list:

– TRUE - server
– FALSE - client

• u32StartTime Start-time of the calorific value entry to search for

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_SE_PRICE_NOT_FOUND

40.9.20 eSE_PriceRemoveCalorificValueEntry

teSE_PriceStatus eSE_PriceRemoveCalorificValueEntry(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,
 uint32 u32StartTime);

Description

This function can be used to delete a calorific value entry with specified start-time from calorific value list on the
local device.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

For the successful deletion of a calorific value entry, the specified start-time must exactly match the start-time of
an entry in the calorific value list, otherwise the status code E_SE_PRICE_NOT_FOUND will be returned.

Parameters

• u8SourceEndPointId Number of the local endpoint for the calorific value list to be accessed
• bIsServer Nature of the Price cluster instance containing the list:
• TRUE - server
• FALSE - client
• u32StartTime Start-time of the calorific value entry to delete

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_SE_PRICE_NOT_FOUND
• E_SE_PRICE_TABLE_NOT_FOUND

40.9.21 eSE_PriceClearAllCalorificValueEntries

teSE_PriceStatus eSE_PriceClearAllCalorificValueEntries(
 uint8 u8SourceEndPointId,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
557 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 bool_t bIsServer);

Description

This function can be used to delete all entries in a calorific value list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether this cluster instance is a
server or a client.

Parameters

• u8SourceEndPointId Number of the local endpoint for the calorific value list to be cleared
• bIsServer Nature of the Price cluster instance containing the price list:

– TRUE - server
– FALSE - client

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND

40.10 Return codes
In addition to some of the ZCL status enumerations, the following enumerations are returned by Price cluster
functions (see Section 40.9) to indicate the outcome of the function call.

typedef enum PACK
{
 E_SE_PRICE_OVERLAP =0x80,
 E_SE_PRICE_TABLE_NOT_YET_ACTIVE,
 E_SE_PRICE_DATA_OLD,
 E_SE_PRICE_NOT_FOUND,
 E_SE_PRICE_TABLE_NOT_FOUND,
 E_SE_PRICE_OVERFLOW,
 E_SE_PRICE_DUPLICATE,
 E_SE_PRICE_NO_TABLES,
 E_SE_PRICE_BLOCK_PERIOD_TABLE_NOT_YET_ACTIVE,
 E_SE_PRICE_NO_BLOCKS,
 E_SE_PRICE_NUMBER_OF_BLOCK_THRESHOLD_MISMATCH,
 E_SE_BLOCK_PERIOD_OVERFLOW,
 E_SE_BLOCK_PERIOD_DUPLICATE,
 E_SE_BLOCK_PERIOD_DATA_OLD,
 E_SE_BLOCK_PERIOD_OVERLAP,
 E_SE_PRICE_STATUS_ENUM_END
} teSE_PriceStatus;

The above enumerations are described in the table below.

Enumeration Description

E_SE_PRICE_OVERLAP New price overlaps (in time) with existing price in price list

E_SE_PRICE_TABLE_NOT_YET_ACTIVE No active price at head of price list

E_SE_PRICE_DATA_OLD Attempt made to add price which overlaps (in time) with existing
price in price list and which is older than existing price *

Table 72. Price Cluster Return Codes

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
558 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_SE_PRICE_NOT_FOUND Specified price was not found in price list

E_SE_PRICE_TABLE_NOT_FOUND Specified price list was not found

E_SE_PRICE_OVERFLOW Attempt to add price to price list failed because end-time for new
price (start-time + duration x 60) exceeds maximum permissible
time value of 0xFFFFFFFFF (UTC)

E_SE_PRICE_DUPLICATE Specified price information already exists in price list

E_SE_PRICE_NO_TABLES Reserved for future use (for Block mode)

E_SE_PRICE_BLOCK_PERIOD_TA-BLE_NOT_YE
T_ACTIVE

Reserved for future use (for Block mode)

E_SE_PRICE_NO_BLOCKS Reserved for future use (for Block mode)

E_SE_PRICE_NUMBER_OF_BLOCK_
THRESHOLD_MISMATCH

Reserved for future use (for Block mode)

E_SE_BLOCK_PERIOD_OVERFLOW Reserved for future use (for Block mode)

E_SE_BLOCK_PERIOD_DUPLICATE Reserved for future use (for Block mode)

E_SE_BLOCK_PERIOD_DATA_OLD Reserved for future use (for Block mode)

E_SE_BLOCK_PERIOD_OVERLAP Reserved for future use (for Block mode)

Table 72. Price Cluster Return Codes...continued

* Value of u32IssuerEventId in tsSE_PricePublishPriceCmdPayload structure (see Section 40.11.1)
is less for the price to be added than for the existing (overlapping) price.

40.11 Structures

40.11.1 tsSE_PricePublishPriceCmdPayload

This structure is used to hold price information to be added to a price list of a Price cluster:

typedef struct {
 uint8 u8UnitOfMeasure;
 uint8 u8PriceTrailingDigitAndPriceTier;
 uint8 u8NumberOfPriceTiersAndRegisterTiers;
 uint8 u8PriceRatio;
 uint8 u8GenerationPriceRatio;
 uint8 u8AlternateCostUnit;
 uint8 u8AlternateCostTrailingDigit;
 uint8 u8NumberOfBlockThresholds;
 uint8 u8PriceControl;
 uint16 u16Currency;
 uint16 u16DurationInMinutes;
 uint32 u32ProviderId;
 uint32 u32IssuerEventId;
 uint32 u32StartTime;
 uint32 u32Price;
 uint32 u32GenerationPrice;
 uint32 u32AlternateCostDelivered;
 tsZCL_OctetString sRateLabel;
} tsSE_PricePublishPriceCmdPayload;

where:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
559 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8UnitOfMeasure indicates the resource (e.g. electricity) and unit of measure (e.g. kWh) for the pricing (see
Section 42.10.3)

• u8PriceTrailingDigitAndPriceTier is an 8-bit bitmap indicating the price tier and the number of digits
after the decimal point in the price:
– The 4 most significant bits give the number of digits to the right of the decimal point in the price
– The 4 least significant bits give the price tier in the range 1 to 6

• u8NumberOfPriceTiersAndRegisterTiers is an 8-bit bitmap indicating the number of price tiers
available and the particular tier that the price information in the structure relates to:
– The 4 most significant bits give the number of available price tiers in the range 0 to 6
– The 4 least significant bits give the price tier used in the range 1 to 6

(this value must be less than or equal to the value in the 4 leading bits)
• u8PriceRatio (optional) is the ratio of the price quoted in u32Price to the ‘normal’ price offered by the

utility company. The actual price ratio should be multiplied by 10 for encoding this field, so that a field value of
0x01 represents 0.1 and 0xFE represents 25.4, while 0xFF indicates that the field is not used

• u8GenerationPriceRatio (optional) is the ratio of the price quoted in u32GenerationPrice to the
‘normal’ price offered by the utility company. The actual price ratio should be multiplied by 10 for encoding this
field, so that a field value of 0x01 represents 0.1 and 0xFE represents 25.4, while 0xFF is reserved to indicate
that the field is not used

• u8AlternateCostUnit (optional) is an 8-bit bitmap indicating the unit for the alternative cost in
u32AlternateCostDelivered. Currently, the only supported unit is kilograms of CO2, indicated by the
value 0x01

• u8AlternateCostTrailingDigit (optional) is an 8-bit bitmap in which the 4 most significant bits indicate
the number of digits after the decimal point in u32AlternateCostDelivered (the 4 least significant bits
are reserved)

• u8NumberOfBlockThresholds is reserved for future use (for Block mode)
• u8PriceControl is reserved for future use (for Block mode)
• u16Currency indicates the currency (e.g. Euro) used for the price - this field should be set to the appropriate

value defined by ISO 4217
• u16DurationInMinutes indicates the duration, in minutes, for which the price will be valid (0xFFFF

indicates that price will remain valid until changed)
• u32ProviderId is an identifier for the utility company
• u32IssuerEventId is a unique identifier for the price information - the higher its value, the more recently

the price information was issued (a UTC time-stamp could be used in this field)
• u32StartTime indicates the start-time (UTC) for the price, in seconds. The special value 0x00000000

denotes a start-time of ‘now’
• u32Price is the resource price per unit indicated in u8UnitOfMeasure, expressed in the

currency indicated in u16Currency, with the position of the decimal point as indicated in
u8PriceTrailingDigitAndPriceTier

• u32GenerationPrice (optional) is the resource price per unit indicated in u8UnitOfMeasure, expressed
in the currency indicated in u16Currency and with the position of the decimal point as indicated in
u8PriceTrailingDigitAndPriceTier, for a resource that is generated on the customer premises and
supplied to the utility company (e.g. solar-sourced electric power supplied to the national grid). A value of
0xFFFFFFFF indicates that this field is not used

• u32AlternateCostDelivered (optional) indicates an alternative cost (per resource consumption
unit) which is measured by a means other than monetary - for example, the amount of CO2 emitted per
unit of gas consumed This alternative cost is interpreted as specified by u8AlternateCostUnit and
u8AlternateCostTrailingDigit

• sRateLabel is a string of up to 12 characters containing a label for the price information in the structure

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
560 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

40.11.2 tsSE_PricePublishConversionCmdPayload

This structure is used to hold information to be added to a conversion factor list of a Price cluster:

typedef struct {
 uint32 u32IssuerEventId;
 uint32 u32StartTime;
 uint32 u32ConversionFactor;
 zbmap8 u8ConversionFactorTrailingDigit;
}tsSE_PricePublishConversionCmdPayload;

where:

• u32IssuerEventId is a unique identifier for the conversion factor information - the higher the value, the
more recently the information was issued

• u32StartTime is the start-time of the conversion factor value. This is the time at which the conversion factor
value is scheduled to become active

• u32ConversionFactor is used only for gas and accounts for the variation in the volume of gas with
temperature and pressure (the value is dimensionless)

• u8ConversionFactorTrailingDigit is an 8-bit bitmap which indicates the location of the decimal
point in the u32ConversionFactor field. The most significant 4 bits indicate the number of digits after the
decimal point. The remaining bits are reserved

40.11.3 tsSE_PricePublishCalorificValueCmdPayload

This structure is used to hold information to be added to a calorific value list of the Price cluster:

typedef struct {
 zenum8 u8CalorificValueUnit;
 zbmap8 u8CalorificValueTrailingDigit;
 uint32 u32IssuerEventId;
 uint32 u32StartTime;
 uint32 u32CalorificValue;
}tsSE_PricePublishCalorificValueCmdPayload;

where:

• u8CalorificValueUnit is an 8-bit enumerated value which defines the unit for the u32CalorificValue
field (below). It indicates whether the calorific value is quantified per unit volume or per unit mass - see
Section 40.12.3.

• u8CalorificValueTrailingDigit is an 8-bit bitmap which indicates the location of the decimal point
in the u32CalorificValue field (below). The most significant 4 bits indicate the number of digits after the
decimal point. The remaining bits are reserved

• u32IssuerEventId is a unique identifier for the calorific value information - the higher the value, the more
recently the information was issued

• u32StartTime is the start-time of the calorific value. This is the time at which the conversion factor value is
scheduled to become active

• u32CalorificValue is used only for gas and indicates the quantity of energy in MJ that is generated per
unit volume or unit mass of gas burned (see u8CalorificValueUnit). The position of the decimal point is
indicated by u8CalorificValueTrailingDigit described above

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
561 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

40.12 Enumerations

40.12.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the Price cluster.

Note: Only the Tier Label attributes are currently used. The remaining attributes are reserved for future use (for
Block mode).

typedef enum PACK
{
/*Price Cluster Attribute Tier Price Label Set Attr Ids (D.4.2.2.1)*/
 E_CLD_P_ATTR_TIER_1_PRICE_LABEL = 0x0000,
 E_CLD_P_ATTR_TIER_2_PRICE_LABEL,
 ...
 ...
 E_CLD_P_ATTR_TIER_15_PRICE_LABEL,
/*Price Cluster Attribute Block Threshold Set Attr IDs (D.4.2.2.2)*/
 E_CLD_P_ATTR_BLOCK1_THRESHOLD = 0x0100,
 E_CLD_P_ATTR_BLOCK2_THRESHOLD,
 ...
 ...
 E_CLD_P_ATTR_BLOCK15_THRESHOLD,
/*Price Cluster Attribute Block Period Set Attr IDs (D.4.2.2.3)*/
 E_CLD_P_ATTR_START_OF_BLOCK_PERIOD = 0x0200,
 E_CLD_P_ATTR_BLOCK_PERIOD_DURATION,
 E_CLD_P_ATTR_THRESHOLD_MULTIPLIER,
 E_CLD_P_ATTR_THRESHOLD_DIVISOR,
/*Price Cluster Attribute Commodity Set Attr IDs (D.4.2.2.4)*/
 E_CLD_P_ATTR_COMMODITY_TYPE = 0x0300,
 E_CLD_P_ATTR_STANDING_CHARGE,
 E_CLD_P_ATTR_CONVERSION_FACTOR,
 E_CLD_P_ATTR_CONVERSION_FACTOR_TRAILING_DIGIT,
 E_CLD_P_ATTR_CALORIFIC_VALUE,
 E_CLD_P_ATTR_CALORIFIC_VALUE_UNIT,
 E_CLD_P_ATTR_CALORIFIC_VALUE_TRAILING_DIGIT,
/* Price Cluster Attribute Block Price Information Set Attr IDs (D.4.2.2.5)*/
 E_CLD_P_ATTR_NOTIER_BLOCK1_PRICE = 0x0400,
 E_CLD_P_ATTR_NOTIER_BLOCK2_PRICE,
 ...
 ...
 E_CLD_P_ATTR_NOTIER_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER1_BLOCK1_PRICE = 0x0410,
 ...
 E_CLD_P_ATTR_TIER1_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER2_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER2_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER3_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER3_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER4_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER4_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER5_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER5_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER6_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER6_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER7_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER7_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER8_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER8_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER9_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER9_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER10_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER10_BLOCK16_PRICE,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
562 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_P_ATTR_TIER11_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER11_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER12_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER12_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER13_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER13_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER14_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER14_BLOCK16_PRICE,
 E_CLD_P_ATTR_TIER15_BLOCK1_PRICE,
 ...
 E_CLD_P_ATTR_TIER15_BLOCK16_PRICE
/* Price Cluster Billing Period Information Set Attr IDs */
 E_CLD_P_ATTR_START_OF_BILLING_PERIOD = 0x700,
 E_CLD_P_ATTR_BILLING_PERIOD_DURATION
} teCLD_SM_PriceAttributeID;

40.12.2 ‘Price Event’ Enumerations

The event types generated by the Price cluster are enumerated in the teSE_PriceCallBackEventType
structure below:

typedef enum PACK
{
 E_SE_PRICE_TABLE_ADD =0x00,
 E_SE_PRICE_TABLE_ACTIVE,
 E_SE_PRICE_GET_CURRENT_PRICE_RECEIVED,
 E_SE_PRICE_TIME_UPDATE,
 E_SE_PRICE_ACK_RECEIVED,
 E_SE_PRICE_NO_PRICE_TABLES,
 E_SE_PRICE_READ_BLOCK_PRICING,
 E_SE_PRICE_BLOCK_PERIOD_TABLE_ACTIVE,
 E_SE_PRICE_NO_BLOCK_PERIOD_TABLES,
 E_SE_PRICE_BLOCK_PERIOD_ADD,
 E_SE_PRICE_READ_BLOCK_THRESHOLDS,
 E_SE_PRICE_CONVERSION_FACTOR_TABLE_ACTIVE,
 E_SE_PRICE_CONVERSION_FACTOR_ADD,
 E_SE_PRICE_CALORIFIC_VALUE_TABLE_ACTIVE,
 E_SE_PRICE_CALORIFIC_VALUE_ADD,
 E_SE_PRICE_CBET_ENUM_END
} teSE_PriceCallBackEventType;

The above event types are described in Table 56 below.

Note: For further details on Price events, refer to Section 40.8.

Event Type Enumeration Description

E_SE_PRICE_TABLE_ADD Generated when a new scheduled price is added to the local
price list

E_SE_PRICE_TABLE_ACTIVE Generated when a new price becomes active or the active price
expires

E_SE_PRICE_GET_CURRENT_PRICE_RECEIVED Generated on the server when a Get Current Price command is
received from a client

E_SE_PRICE_TIME_UPDATE Generated on a client when a Publish Price command is received
from the server

Table 73. Price Event Types

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
563 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Event Type Enumeration Description

E_SE_PRICE_ACK_RECEIVED Generated on a server when a Price Acknowledgment command
is received from a client

E_SE_PRICE_NO_PRICE_TABLES Generated when an active price expires, is deleted from the price
list and the list becomes empty

E_SE_PRICE_READ_BLOCK_PRICING Reserved for future use (for Block mode)

E_SE_PRICE_BLOCK_PERIOD_TABLE_ACTIVE Reserved for future use (for Block mode)

E_SE_PRICE_NO_BLOCK_PERIOD_TABLES Reserved for future use (for Block mode)

E_SE_PRICE_BLOCK_PERIOD_ADD Reserved for future use (for Block mode)

E_SE_PRICE_READ_BLOCK_THRESHOLDS Reserved for future use (for Block mode)

E_SE_PRICE_CONVERSION_FACTOR_TABLE_ACTI
VE

Generated when a new conversion factor value becomes active

E_SE_PRICE_CONVERSION_FACTOR_ADD Generated when a new conversion factor entry is advertised by
the ESP via a Publish Conversion Factor command

E_SE_PRICE_CALORIFIC_VALUE_TABLE_ACTIVE Generated when a new calorific value becomes active

E_SE_PRICE_CALORIFIC_VALUE_ADD Generated when a new calorific value entry is advertised via a
Publish Calorific Value command

Table 73. Price Event Types...continued

40.12.3 'Calorific Value Unit' Enumerations

The possible units for the calorific value attribute of the Price cluster are enumerated in the
tsSE_PriceCalorificValueUnits structure below:

 typedef enum PACK
 {
 E_SE_MEGA_JOULES_METER_CUBE = 0x01,
 E_SE_MEGA_JOULES_KILOGRAM = 0x02
 } tsSE_PriceCalorificValueUnits;

The above enumerations are described in Table 57 below.

Enumeration Description

E_SE_MEGA_JOULES_METER_CUBE Calorific value measured in MJ/m3

E_SE_MEGA_JOULES_KILOGRAM Calorific value measured in MJ/kg

Table 74. 'Calorific Value Unit' Enumerations

40.13 Compile-time options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the Price cluster.

The Price cluster is enabled by defining CLD_PRICE.

Client and server versions of the cluster are defined by PRICE_CLIENT and PRICE_SERVER, respectively.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
564 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Price List Size

The maximum number of prices that can be stored in the price list on a server and client defaults to five and two
respectively. These default values can be over-ridden by assigning values to the corresponding macro below:

• SE_PRICE_NUMBER_OF_SERVER_PRICE_RECORD_ENTRIES
• SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES

Price Tier Label Attribute Set

The maximum number of supported Price Tier Label Attribute Sets can be defined by assigning a value
between 1 and 15 (inclusive) to CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT.

Block Threshold Attribute Set

The maximum number of supported Block Threshold Attribute Sets can be defined by assigning a value
between 1 to 15 (inclusive) to CLD_P_ATTR_BLOCK_THRESHOLD_MAX_COUNT.

Block Price Information Attribute Set

The maximum number of supported Block Price Information Attribute Sets can be defined by assigning a value
(the maximum of which is shown below in brackets) to each of the following:

• CLD_P_ATTR_NO_TIER_BLOCK_PRICES_MAX_COUNT (16)
• CLD_P_ATTR_NUM_OF_TIERS_PRICE (15)
• CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE (16)

Conversion Factor (Gas Only)

Conversion factor in the Price cluster is enabled by defining the macro PRICE_CONVERSION_FACTOR.

The attributes for conversion factor are enabled by defining the following macros:

• CLD_P_ATTR_CONVERSION_FACTOR
• CLD_P_ATTR_CONVERSION_FACTOR_TRAILING_DIGIT

The default value of the maximum number of entries that can be stored in the conversion factor list which is
maintained on the Price cluster server and client is 2. This value can be over-ridden by assigning another value
to the macro:

SE_PRICE_NUMBER_OF_CONVERSION_FACTOR_ENTRIES

Calorific Value (Gas Only)

Calorific value in the Price cluster is enabled by defining the macro PRICE_CALORIFIC_VALUE.

The attributes for calorific value are enabled by defining the following macros:

• CLD_P_ATTR_CALORIFIC_VALUE
• CLD_P_ATTR_CALORIFIC_VALUE_UNIT
• CLD_P_ATTR_CALORIFIC_VALUE_TRAILING_DIGIT

The default value of the maximum number of entries that can be stored in the calorific value list which is
maintained on the server and client is 2. This value can be over-ridden by assigning another value to the macro:

SE_PRICE_NUMBER_OF_CALORIFIC_VALUE_ENTRIES

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
565 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

41 Demand-Response and Load Control Cluster

This chapter outlines the Demand-Response and Load Control (DRLC) cluster. The cluster is able to receive
load control requests from the utility company and act upon them by controlling an attached appliance, such as
a heater or pump - this is the ‘demand-response’ functionality.

The DRLC cluster has a Cluster ID of 0x0701.

41.1 Overview
The DRLC cluster is required in ZigBee devices as indicated in the table below.

Server-side Client-side

ESP PCTMandatory in...

Load Control Device

IPDOptional in...

Smart Appliance

Table 75. DRLC Cluster in ZigBee Devices

The ESP acts as the DRLC cluster server, since it is the device which receives Load Control Events (LCEs)
from the utility company via the backhaul network. Other devices act as clients and receive the LCEs forwarded
by the ESP:

• An IPD would normally display a list of LCEs to allow the consumer to manually modify consumption.
• A Load Control Device, PCT or Smart Appliance would participate in an LCE by automatically adjusting the

consumption of the device.

Devices that participate in an LCE must report their participation back to the ESP. Participation may result in the
consumer receiving a credit on their utility bill.

Note: In the current NXP implementation, the DRLC cluster client is contained within an IPD only. This
illustrates how to incorporate the DRLC cluster in other devices which need to participate in LCEs.

The LCEs contain a time-stamp. Therefore, devices which support the DRLC cluster client and which participate
in LCEs must implement the Time cluster and maintain a real-time clock.

The DRLC cluster is enabled by defining CLD_DRLC in the zcl_options.h file. Further compile-time options for
the DRLC cluster are detailed in Section 41.12.

41.2 DRLC Cluster structure and attributes
The DRLC cluster has no server attributes but has client attributes that are contained in the following
tsCLD_DRLC structure:

typedef struct
{
 uint8 u8UtilityEnrolmentGroup;
 uint8 u8StartRandomizeMinutes;
 uint8 u8StopRandomizeMinutes;
 uint16 u16DeviceClassValue;
} tsCLD_DRLC;

where:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
566 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8UtilityEnrolmentGroup identifies the ‘enrolment’ group to which the device belongs, where a group of
devices is defined by the utility company in order to aid load management in a large system. The default value
of 0x00 is used to indicate membership of all groups.

• u8StartRandomizeMinutes specifies the largest random delay, in minutes, that can be applied to the start
of a Load Control Event (so a random delay, no greater than this value, will be applied to an individual event).
The valid range of values is 0x00 to 0x3C (0 to 60 mins), where 0x00 indicates that no delay is to be applied.

• u8StopRandomizeMinutes specifies the largest random delay, in minutes, that can be applied to the end
of a Load Control Event (so a random delay, no greater than this value, will be applied to an individual event).
The valid range of values is 0x00 to 0x3C, where 0x00 indicates that no delay is to be applied.

• u16DeviceClassValue is a bitmap specifying the relevant device classes (for example, water heater and
pool pump). Enumerations are provided for the device classes and are detailed in Section 41.10.1. If more
than one device class is required, the relevant enumerations can be bitwise-ORed.

Note: It may be desirable to refuse write access to the u16DeviceClassValue attribute on a device. To
do this, when a ‘write attributes’ request is received and an E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE
event is generated for this attribute, the application should set the eAttributeStatus field of the event to
E_ZCL_DENY_ATTRIBUTE_ACCESS.

41.3 Initialization
Provided that the DRLC cluster is enabled in the compile-time options (see Section 41.12), the cluster is
automatically initialized when the ZCL is initialized and the ZigBee device is registered in the application - that
is, by calling eZCL_Initialise() and the relevant endpoint registration function for the device, for example:

• eSE_RegisterEspEndPoint() on a standalone ESP (cluster server)
• eSE_RegisterIPDEndPoint() on an IPD (cluster client)

As part of this initialization, the DRLC cluster is created and, on the ESP, a DRLC timer server is registered to
support time-stamps in the LCEs.

A DRLC cluster client must also perform a number of other initialization steps in order to establish
communication with the cluster server. These are described below.

1. Set ‘device class’ attribute: The value of the ‘device class’ attribute (see Section 41.2) must be set
immediately after eSE_RegisterIPDEndPoint() is called and before the network is started.

2. Bind to server: A non-sleeping client should bind its endpoint to the server using the ZigBee PRO API
function ZPS_eAplZdpBindUnbindRequest(). This allows the server to send out unsolicited LCEs to the client.

Before this binding can take place, the client must obtain the IEEE/MAC address of the ESP/server. This can
be achieved by first using the function ZPS_eAplZdpMatchDescRequest() to find the ESP/Server and to
obtain its network address. The function ZPS_eAplZdpIeeeAddrRequest() can then be used to obtain the
corresponding IEEE/MAC address. Once found, both addresses must be added to the local Address Map
using the function ZPS_eAplZdoAddAddrMapEntry().
All four of the above ZPS functions are described in the ZigBee 3.0 Stack User Guide (JNUG3130).

3. Synchronize time with ESP: A client should synchronize ZCL time with the ESP using the Time cluster as
soon as initialization is complete. It is not possible to process unsolicited LCEs with a ‘start-time of now’ until
ZCL time has been synchronized.

Once the clients have been set up, the ESP/server may need to configure the enrolment groups and
randomization attributes of the DRLC clients (see Section 41.2). The ESP may use one of the following
mechanisms to determine when a DRLC client has come on-line:

• A Get Scheduled Events message is received from a new client
• A Report Event Status message is received from a new client
• A binding request is received from a new client

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
567 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

41.4 Load Control Events (LCEs)
The Load Control Event (LCE) is an instruction, which originates from the utility company, to schedule a
temporary adjustment of consumption in devices that support the DRLC cluster. The contents of an LCE are
outlined in Section 41.4.1.

An LCE is sent from the utility company to the DRLC server (ESP) of a ZigBee network, from where it is passed
to DRLC clients. The LCEs are held in lists on the server and clients, as described in Section 41.4.2.

LCE handling is described in Section 41.5.

41.4.1 LCE Contents

The information contained in an LCE includes:

• LCE ID (provided by utility company)
• Target device class and enrolment group
• Start-time
• Duration
• Criticality level
• Required adjustment(s)
• Randomization requirements (for start-time and end-time)

For a full list and description of the LCE data, refer to the description of the LCE structure
tsSE_DRLCLoadControlEvent in Section 41.11.1.

41.4.2 LCE Lists

The DRLC cluster server and clients each hold the following lists of LCEs:

• Active list: Contains LCEs that are currently being executed - it is possible for more than one LCE to be
active at the same time, provided that their device classes and enrolment groups do not clash.

• Scheduled list: Contains LCEs that are due to be executed in the future - that is, their start-time is later
than the current time.

• Cancelled list: Contains LCEs that have been canceled with a randomized end-time and whose random
end-time has not yet been reached.

• Deallocated list: Contains expired LCEs and therefore a record of the free storage for LCEs - used
internally by the cluster (and not by the application).

A new LCE is first added to the Scheduled list, unless it has a ‘start-time of now’ in which case it is added to
the Active list. An LCE in the Scheduled list is automatically moved to the Active list at the scheduled start-time
(or at the randomized start-time). At the end of an active LCE, it is automatically moved to the Deallocated
list. However, an active LCE which is canceled with a randomised end-time is automatically moved to the
Cancelled list, where it stays until the end-time has been reached (when it is moved to the Deallocated
list).

The addition of a new LCE on the cluster server is performed by the server application, as described in Section
41.5.1, but is done automatically by the cluster on the clients. All other operations on LCE lists, apart from
cancelation (see Section 41.5.3), are performed automatically by the cluster on both server and client.

Functions are provided to access entries in the local LCE lists:

• eSE_DRLCGetLoadControlEvent() can be used to obtain a particular LCE entry (with specified list index) in
any one of the local lists

• eSE_DRLCFindLoadControlEvent() can be used to search for and obtain a particular LCE (with specified
ID) in any of the local lists

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
568 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

41.5 LCE Handling
LCEs are handled on the DRLC cluster server and clients as described in Section 41.5.1 and Section 41.5.2
respectively. Canceling LCEs is described in Section 41.5.3.

Note: The DRLC callback events referred to in this section are further described in Section 41.7 and are
handled by the callback function that is registered as part of the device endpoint registration.

41.5.1 LCE Handling on Server

When a new LCE is received from the utility company, it is the responsibility of the application on the ESP
(DRLC cluster server) to add this LCE to the local ‘Scheduled’ list (or to the ‘Active’ list, if the LCE has a ‘start-
time of now’). This addition is performed using the function eSE_DRLCAddLoadControlEvent(), which also
sends the LCE (unsolicited) to the cluster clients. The LCE should normally be sent to all client endpoints with
which the cluster server has been bound (see Section 41.3).

Note:

1. Note 1:Following the initial reception of LCEs from the utility company, the addition of these
LCEs to the list(s) through eSE_DRLCAddLoadControlEvent() can be done after calling
eSE_RegisterEspMeterEndPoint() or eSE_RegisterEspEndPoint() but before calling
ZPS_eAplZdoStartStack().

2. Note 2: On receiving an LCE, the client checks the device class and enrollment group specified within the
LCE, and only accepts the LCE if these values match the corresponding DRLC cluster attributes held locally
(see Section 41.2).

The cluster server also automatically responds to Get Scheduled Events messages from cluster clients that
need current and future LCEs (see Section 41.5.2.2).

41.5.2 LCE Handling on Clients

The sub-sections below describe the various LCE handling activities that take place on a DRLC cluster client.

41.5.2.1 LCE Activation and De-activation

On receiving a new LCE from the DRLC cluster server, a cluster client first checks the device class and
enrollment group specified within the LCE. If they do not match those of the local device (see DRLC attributes in
Section 41.2), the LCE is discarded.

Note: A DRLC cluster client can opt out of an individual LCE using the eSE_DRLCSetEventUserOption()
function.

Generally, a valid LCE received from the cluster server is automatically added to the ‘Scheduled’
list on the client - the E_SE_DRLC_EVENT_COMMAND callback event containing the command
SE_DRLC_LOAD_CONTROL_EVENT is generated on the client to indicate that this has been done. However,
if the LCE has a ‘start-time of now’, it is added directly to the ‘Active’ list, provided that the start-time is not
randomized (see below).

If a new LCE is successfully added to the Scheduled (or Active) list, the client sends a Report Event Status
message to the server to confirm acceptance of the LCE.

When the start-time of an LCE in the ‘Scheduled’ list is reached, the LCE is automatically moved to the ‘Active’
list. The E_SE_DRLC_EVENT_ACTIVE callback event is generated on the client to indicate that this has been
done, allowing the application to make the required load adjustment. However, if a randomized start-time is
enabled (in the LCE), the move to the ‘Active’ list is delayed by a random time interval that is no greater than the
maximum defined by the cluster attribute u8StartRandomizeMinutes (see Section 41.2).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
569 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

When the duration of the active LCE has expired, the LCE is automatically moved to the ‘De-allocated’ list - the
E_SE_DRLC_EVENT_EXPIRED callback event is generated on the client to indicate that this has been done,
allowing the application to restore the load to the previous level. However, if a randomized end-time is enabled
(in the LCE), the move to the ‘Deallocated’ list is delayed by a random time interval that is no greater than the
maximum defined by the cluster attribute u8StopRandomizeMinutes (see Section 41.2).

Note: The above randomize attributes of the DRLC cluster also allow LCE start-time and end-time
randomization to be disabled for all LCEs on the local device. If this is the case, randomization settings within
the LCE itself are ignored.

41.5.2.2 Getting Scheduled Events

The application on the DRLC cluster client can send a Get Scheduled Events message to the cluster server in
order to obtain relevant current and future LCEs. This message may be used in the following situations:

• On a non-sleeping device, the application may send this message:
– immediately after binding with the cluster server in order to get the initial LCEs (subsequent LCEs are

received unsolicited from the server).
– at other times in order to top up its LCE list, if it has previously discarded an LCE due to lack of storage.

• On a sleeping device (End Device), the application may send this message on waking from sleep in order to
obtain new LCEs that were distributed by the cluster server during sleep (and therefore not received).

The Get Scheduled Events message can be sent from a client using the function
eSE_DRLCGetScheduledEventsSend(). The message includes the earliest start-time of the LCEs of
interest, where zero is used to indicate all LCEs - for a sleeping End Device, this time should be set to zero
or the current time, in case there are replacements on the server for LCEs already in the client’s lists. The
message also allows the maximum number of returned LCEs to be specified, where zero is used to indicate all
LCEs.

Note: The arrival of the Get Scheduled Events message results in the generation of the
E_SE_DRLC_EVENT_COMMAND callback event, containing a DRLC_GET_SCHEDULED_EVENTS
command on the cluster server. However, the cluster responds to the message automatically.

On receiving the requested LCEs from the cluster server, the cluster client automatically updates the local LCE
lists with the reported LCEs.

41.5.2.3 Reporting LCE Actions to Server

By default, a DRLC cluster client sends a Report Event Status message to the cluster server when an LCE is
actioned on the client - that is, when an LCE is moved between lists on the client, such as from ‘Scheduled’
to ‘Active’ or from ‘Active’ to ‘Deallocated’ (see Section 41.4.2). Details of the actioned LCE are sent in a
tsSE_DRLCReportEvent structure (see Section 41.11.4). The nature of the action is indicated in this structure
using an enumeration (see Section 41.10.8).

Note: The DRLC cluster server is informed of the arrival of a Report Event Status message via the callback
event E_SE_DRLC_EVENT_COMMAND, containing a SE_DRLC_REPORT_EVENT_STATUS command.
The ESP/server may inform the utility company of the reported status - if the message cannot be forwarded
immediately then it must be buffered by the application.

If a DRLC cluster client opts out of a particular LCE using the function eSE_DRLCSetEventUserOption(), a
Report Event Status message is sent to the cluster server to indicate this. On reaching the end-time of the LCE,
another Report Event Status message is sent to the server to confirm that the LCE has completed without the
participation of the local client.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
570 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

41.5.2.4 Over-riding LCE Settings

The client application can over-ride certain aspects of an LCE using the function
eSE_DRLCSetEventUserData(), which allows load control data values to be modified, including:

• Criticality level
• Cooling temperature set-point
• Heating temperature set-point
• Load adjustment percentage
• Duty cycle

For example, the ESP/server may request an HVAC device to set its cooling level to 24oC, but the user may
choose to over-ride this with a cooling level of 20oC. The above data values and their formats are detailed in the
LCE structure description in Section 41.11.1.

The function eSE_DRLCSetEventUserData() modifies one load control data value on each call. Therefore, in
order to modify more than one data value, the function must be called multiple times.

When a change is made, the cluster client automatically notifies the cluster server by sending a Report Event
Status message containing the change.

41.5.3 Canceling LCEs

An LCE can be canceled, in which case it is moved to the ‘Deallocated’ list (possibly via the ‘Cancelled’ list -
see below). A cancellation can only be performed from the DRLC cluster server and is normally sent to all client
endpoints that have been bound to the server. Two functions are provided which can be called on the cluster
server to perform LCE cancelations:

• eSE_DRLCCancelLoadControlEvent() is used to cancel a particular LCE
• eSE_DRLCCancelAllLoadControlEvents() is used to cancel all LCEs

Cancellation involves removing the LCE(s) from the ‘Scheduled’ or ‘Active’ lists on the cluster server and clients,
which is done automatically by the cluster. As a result, the callback event E_SE_DRLC_EVENT_COMMAND
is generated, containing a LOAD_CONTROL_EVENT_CANCEL or LOAD_CONTROL_EVENT_CANCEL_ALL
command, as appropriate. This indicates whether the cancellation with immediate effect or a random delay is
applied:

• If the cancellation is with immediate effect, the application should stop load control for the relevant device(s).
• If a random delay is to be applied to the cancellation, the cluster puts the LCE in the

‘Cancelled’ list until the delay has expired, when the LCE is moved to the ‘Deallocated’
list. Another E_SE_DRLC_EVENT_COMMAND callback event containing the command
LOAD_CONTROL_EVENT_CANCEL or LOAD_CONTROL_EVENT_CANCEL_ALL is then generated, this
time indicating immediate cancellation. The application should now stop load control for the relevant device(s).

41.6 Message Signing (Security)
As a security measure, Report Event Status messages can be signed by the DRLC cluster client for non-
repudiation purposes (to provide the utility company with evidence that the cluster client sent the message).
On the DRLC cluster client, the process involves generating a hash value which is based on the content of the
message, then using this value in combination with a device’s private key to generate a signature, which is then
appended to the message to be sent to the ESP.

Upon message reception on the ESP, the hash value is recalculated based on the received message and then
used in conjunction with the public key of the message originator (derived from the originator’s certificate) to
check the appended signature. To facilitate this checking, the ESP must store the certificates of any nodes that
send Report Event Status messages which require verification.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
571 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note:

1. It is recommended that signatures are supported by applications for backward compatibility.
2. Signature fields are included in the Report Event Status structure, detailed in Section 41.11.4.

Message signing must be enabled at compile-time, as described in Section 41.12.

41.7 DRLC Events
The DRLC cluster has its own events that are handled through the callback mechanism described in Chapter 3.
If a device uses the DRLC cluster then DRLC event handling must be included in the callback function for the
associated endpoint - for example:

• For an ESP (cluster server), this callback function is registered through eSE_RegisterEspMeterEndPoint()
or eSE_RegisterEspEndPoint()

• For an IPD (cluster client), this callback function is registered through eSE_RegisterIPDEndPoint()

The relevant callback function is then invoked when a DRLC event occurs.

For a DRLC event, the eEventType field of the tsZCL_CallBackEvent structure is set
to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to a tsSE_DRLCCallBackMessage structure which contains the DRLC parameters:

typedef struct
{
 teSE_DRLCCallBackEventType eEventType;
 uint8 u8CommandId;
 teSE_DRLCStatus eDRLCStatus;
 uint32 u32CurrentTime;
 union {
 tsSE_DRLCLoadControlEvent sLoadControlEvent;
 tsSE_DRLCCancelLoadControlEvent sCancelLoadControlEvent;
 tsSE_DRLCCancelLoadControlAllEvent sCancelLoadControlAllEvent;
 tsSE_DRLCReportEvent sReportEvent;
 tsSE_DRLCGetScheduledEvents sGetScheduledEvents;
 } uMessage;
} tsSE_DRLCCallBackMessage;

Information on the elements of the above structure is provided in the sub-sections below.

41.7.1 Event and Command Types

The eEventType field of the tsSE_DRLCCallBackMessage structure above specifies the type of DRLC
event that has been generated - these event types are enumerated in the teSE_DRLCCallBackEventType
structure, described below.

Note: The u8CommandId field of the tsSE_DRLCCallBackMessage structure is only required for a DRLC
event of type E_SE_DRLC_EVENT_COMMAND (see below).

typedef enum PACK
{
 E_SE_DRLC_EVENT_API =0x00,
 E_SE_DRLC_EVENT_COMMAND,
 E_SE_DRLC_EVENT_ACTIVE,
 E_SE_DRLC_EVENT_EXPIRED,
 E_SE_DRLC_EVENT_CANCELLED,
 E_SE_DRLC_EVENT_ENUM_END,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
572 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

} teSE_DRLCCallBackEventType;

E_SE_DRLC_EVENT_API

The E_SE_DRLC_EVENT_API event is reserved for internal use.

E_SE_DRLC_EVENT_COMMAND

The E_SE_DRLC_EVENT_COMMAND event is generated when a command has been received on either the
server or client. In the tsSE_DRLCCallBackMessage structure, the u8CommandId field is used to indicate the
corresponding command - one of:

Command Description

SE_DRLC_LOAD_CONTROL_EVENT Generated on a client when a new LCE has been received from the server
and added to the ‘Scheduled’ (or ‘Active’) list - the LCE is included in the
uMessage.LoadControlEvent field of the tsSE_DRLCCallBack
Message structure

SE_DRLC_LOAD_CONTROL_EVENT_
CANCEL *

Generated on a client when a command has been received to cancel an
LCE and the LCE has been moved to the ‘Cancelled’ or ‘ Deallocated’ list
- which list depends on whether an immediate or randomized end-time is
specified in the
uMessage.sCancelLoadControlEvent field of the tsSE_DRLCCall
BackMessage structure

SE_DRLC_LOAD_CONTROL_EVENT_
CANCEL_ALL *

Generated on a client when a command has been received to cancel all
LCEs and the LCEs have been moved to the ‘Cancelled’ or ‘ Deallocated’
list - which list depends on whether an immediate or randomized end-time is
specified in the
uMessage.sCancelLoadControlAllEvent field of the tsSE_
DRLCCallBackMessage structure

SE_DRLC_REPORT_EVENT_STATUS ** Generated on the server when a Report Event Status message is received
from a client - the contents of the report are included in the uMessage.s
ReportEvent field of the tsSE_DRLCCallBackMessage structure

SE_DRLC_GET_SCHEDULED_EVENTS ** Generated on the server when a Get Scheduled Events message is
received from a client - the contents of the request are included in the
uMessage.sGetScheduledEvents field of the tsSE_DRLCCallBack
Message structure

Table 76. Command Types

* If an LCE cancellation with a randomized end-time is required, the LCE is first moved to the ‘Cancelled’ list
and the event is generated with randomized end-time specified. When the randomized end-time has been
reached, the LCE is moved to the ‘Deallocated’ list and the event is generated again but with an immediate end-
time specified. The application must then stop the corresponding load control.

** The server can identify which client has sent a Report Event Status or Get Scheduled Events message by
examining the pZPSevent field of the tsZCL_CallBackEvent structure that contains the message.

E_SE_DRLC_EVENT_ACTIVE

The E_SE_DRLC_EVENT_ACTIVE event is generated when an LCE has been moved from the ‘Scheduled’ list
to the ‘Active’ list (see Section 41.4.2). The activated LCE is included in the uMessage.LoadControlEvent
field of the tsSE_DRLCCallBackMessage structure.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
573 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

E_SE_DRLC_EVENT_EXPIRED

The E_SE_DRLC_EVENT_EXPIRED event is generated when an LCE has been moved from the ‘Active’
list (see Section 41.4.2). The expired LCE is included in the uMessage.LoadControlEvent field of the
tsSE_DRLCCallBackMessage structure.

E_SE_DRLC_EVENT_CANCELLED

The E_SE_DRLC_EVENT_CANCELLED event is generated when an LCE has been put in the
‘Cancelled’ list (see Section 41.4.2) as the result of an LCE ‘cancel’ or ‘cancel all’ command.
Information on the cancelled LCE(s) is included in the uMessage.sCancelLoadControlEvent or
uMessage.sCancelLoadControlAllEvent field of the tsSE_DRLCCallBackMessage structure, as
appropriate.

41.7.2 Other Elements of tsSE_DRLCCallBackMessage

In addition to the fields eEventType and u8CommandId described in Section 41.7.1, the
tsSE_DRLCCallBackMessage structure contains the following elements.

eDRLCStatus

The eDRLCStatus field indicates the status returned from the command that has been executed (the command
identified in u8CommandId). The status codes are enumerated in the teSE_DRLCStatus structure, shown
below and described in Section 41.9.

typedef enum PACK
{
 E_SE_DRLC_DUPLICATE_EXISTS = 0x80,
 E_SE_DRLC_EVENT_LATE,
 E_SE_DRLC_EVENT_NOT_YET_ACTIVE,
 E_SE_DRLC_EVENT_OLD,
 E_SE_DRLC_NOT_FOUND,
 E_SE_DRLC_EVENT_NOT_FOUND,
 E_SE_DRLC_EVENT_IGNORED,
 E_SE_DRLC_CANCEL_DEFERRED,
 E_SE_DRLC_BAD_DEVICE_CLASS,
 E_SE_DRLC_BAD_CRITICALITY_LEVEL,
 E_SE_DRLC_DURATION_TOO_LONG,
 E_SE_DRLC_ENUM_END
} teSE_DRLCStatus;

u32CurrentTime

The u32CurrentTime field contains the time (UTC) at which the event was generated.

uMessage

This field is a union of structures, containing a structure for each of the DRLC command payloads.
The valid structure in the event is defined by the value of u8CommandId (refer to the description of the
E_SE_DRLC_EVENT_COMMAND event in Section 41.7.1).

41.8 Functions
The following DRLC cluster functions are provided:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
574 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• eSE_DRLCCreate
• eSE_DRLCAddLoadControlEvent
• eSE_DRLCGetScheduledEventsSend
• eSE_DRLCCancelLoadControlEvent
• eSE_DRLCCancelAllLoadControlEvents
• eSE_DRLCSetEventUserOption
• eSE_DRLCSetEventUserData
• eSE_DRLCGetLoadControlEvent
• eSE_DRLCFindLoadControlEvent

41.8.1 eSE_DRLCCreate

teZCL_Status eSE_DRLCCreate(
 bool_t bIsServer,
 uint8 u8NumberOfRecordEntries,
 uint8 *pu8AttributeControlBits,
 tsZCL_ClusterInstance *psClusterInstance,
 tsZCL_ClusterDefinition *psClusterDefinition,
 tsSE_DRLCCustomDataStructure
 *psCustomDataStructure,
 tsSE_DRLCLoadControlEventRecord
 *psDRLCLoadControlEventRecord,
 void *pvEndPointSharedStructPtr);

Description

This function creates an instance of the DRLC cluster on an endpoint. The cluster instance is created on the
endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a server or
a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function creates a DRLC
cluster instance on the endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions. For more details of creating cluster instances on custom
endpoints, refer to Appendix D.

Note: This function must not be called for an endpoint on which a standard ZigBee device (example, IPD)
will be used. In this case, the device and its supported clusters must be registered on the endpoint using the
relevant device registration function from those described in the ZigBee Devices User Guide

Note: (JNUG3131).

When used, this function must be the first DRLC cluster function called in the application, and must be called
after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length should therefore equate to the total number of attributes supported
by the DRLC cluster.

The function initializes the array elements to zero.

Parameters

• bIsServer: Type of cluster instance (server or client) to be created:
– TRUE - server

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
575 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– FALSE - client
• u8NumberOfRecordEntriesNumber of LCEs that can be stored in the LCE list, one of:

– SE_DRLC_NUMBER_OF_SERVER_LOAD_CONTROL_ENTRIES
– SE_DRLC_NUMBER_OF_CLIENT_LOAD_CONTROL_ENTRIES

• pu8AttributeControlBitsPointer to an array of uint8 values, with one element for each attribute in the cluster
(see above).

• psClusterInstancePointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• psClusterDefinitionPointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the DRLC cluster. This parameter can refer to a pre-filled
structure called sCLD_DRLC which is provided in the DRLC.h file.

• psCustomDataStructurePointer to structure which contains custom data for the DRLC cluster. This structure is
used for internal data storage. No knowledge of the fields of this structure is required.

• psDRLCLoadControlEventRecord
• Pointer to a structure in which an LCE is stored
• pvEndPointSharedStructPtrPointer to the shared structure used for attribute storage. This parameter should

be the address of the structure of type tsCLD_DRLC which defines the attributes of DRLC cluster. The
function initializes the attributes with default values.

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

41.8.2 eSE_DRLCAddLoadControlEvent

teSE_DRLCStatus eSE_DRLCAddLoadControlEvent(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address psDestinationAddress,
 tsSE_DRLCLoadControlEvent *psLoadControlEvent,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on the DRLC cluster server to add an LCE (received from the utility company) to the
‘Scheduled’ list. The function also sends the LCE to the specified DRLC cluster client endpoints, where it will
also be added to the ‘Scheduled’ list. Note that the LCE will be added to the ‘Active’ lists on the relevant devices
if a ‘start-time of now’ is specified in the LCE.

The LCE should normally be sent to client endpoints that have been previously bound to the cluster server. This
is done by specifying an address type of E_ZCL_AM_BOUND in the tsZCL_Address structure - in this case,
the address field of this structure and the destination endpoint in the function call are both ignored.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the LCE is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the LCE is sent. Note that this parameter is

ignored when sending to address types E_ZCL_AM_BOUND and E_ZCL_AM_GROUP

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
576 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• psDestinationAddress: Pointer to a ZCL structure containing the address of the remote node to which the LCE
is sent

• psLoadControlEvent: Pointer to a structure (see Section 41.11.1) which contains the LCE to be added and
sent

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the packet sent

Returns

Any relevant DRLC return code listed in Section 41.9 or ZCL return code listed in Section 7.2

41.8.3 eSE_DRLCGetScheduledEventsSend

teSE_DRLCStatus eSE_DRLCGetScheduledEventsSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address psDestinationAddress,
 tsSE_DRLCGetScheduledEvents *psGetScheduledEvents,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on a DRLC cluster client to send a Get Scheduled Events message to the cluster
server in order to request a list of scheduled (and active) LCEs. The function can be used to obtain the initial
schedule of LCEs and to update the local LCE lists during operation (for example, if an End Device has been
sleeping and has missed unsolicited LCE updates) - refer to Section 41.5.2.2 for more information on the use of
this function.

As part of this function call, a tsSE_DRLCGetScheduledEvents structure must be provided which specifies
the earliest start-time of the LCEs of interest and the maximum number of LCEs to be reported.

Parameters

u8SourceEndPointId: Number of the local endpoint through which the request is sent
u8DestinationEndPointId: Number of the remote endpoint to which the request is sent (this must be the
DRLC cluster server endpoint)
psDestinationAddress: Pointer to a ZCL structure containing the address of the remote node to which the
request is sent (this must be the address of the ESP)
psGetScheduledEvents: Pointer to a structure which contains the LCE requirements of the request (see
Section 41.11.2)
pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

Returns

Any relevant DRLC return code listed in Section 41.9 or ZCL return code listed in Section 7.2

41.8.4 eSE_DRLCCancelLoadControlEvent

teSE_DRLCStatus eSE_DRLCCancelLoadControlEvent(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
577 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_Address psDestinationAddress,
 tsSE_DRLCCancelLoadControlEvent
 *psCancelLoadControlEvent,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on the DRLC cluster server to cancel an LCE. The LCE is cancelled locally and the
cancellation is also sent to the specified DRLC cluster client endpoints. The LCE is ultimately moved to the
‘Deallocated’ list.

The cancellation request should normally be sent to client endpoints that have been previously bound to the
cluster server. This is done by specifying an address type of E_ZCL_AM_BOUND in the tsZCL_Address
structure - in this case, the address field of this structure and the destination endpoint in the function call are
both ignored.

The LCE cancellation requirements are specified in the structure tsSE_DRLCCancelLoadControlEvent,
including the applicable device class(es) and enrolment group(s), as well as an immediate or randomized end
(for a full description of the end-time options, refer to Section 41.5.3).

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent. Note that this

parameter is ignored when sending to address types E_ZCL_AM_BOUND and E_ZCL_AM_GROUP
• psDestinationAddress: Pointer to a ZCL structure containing the address of the remote node to which the

request is sent
• psCancelLoadControlEvent: Pointer to a structure which contains the LCE cancellation requirements (see

Section 41.11.3)
• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of

the request

Returns

Any relevant DRLC return code listed in Section 41.9 or ZCL return code listed in Section 7.2

41.8.5 eSE_DRLCCancelAllLoadControlEvents

teSE_DRLCStatus eSE_DRLCCancelAllLoadControlEvents(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address psDestinationAddress,
 teSE_DRLCCancelControl eCancelEventControl,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on the DRLC cluster server to cancel all LCEs. The LCEs are cancelled locally and
the cancellation is also sent to the specified DRLC cluster client endpoints. The LCEs are ultimately moved to
the ‘Deallocated’ list.

The cancellation request should normally be sent to client endpoints that have been previously bound to the
cluster server. This is done by specifying an address type of E_ZCL_AM_BOUND in the tsZCL_Address

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
578 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

structure - in this case, the address field of this structure and the destination endpoint in the function call are
both ignored.

The LCE cancellation end-time requirement must be specified as an immediate or randomized end (for a full
description of the end-time options, refer to Section 41.5.3).

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent
• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent. Note that this

parameter is ignored when sending to address types E_ZCL_AM_BOUND and E_ZCL_AM_GROUP
• psDestinationAddress: Pointer to a ZCL structure containing the address of the remote node to which the

request is sent
• eCancelEventControl: Enumeration indicating an immediate or randomized end, one of:
• E_SE_DRLC_CANCEL_CONTROL_IMMEDIATE
• E_SE_DRLC_CANCEL_CONTROL_USE_RANDOMISATION
• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of

the request

Returns

Any relevant DRLC return code listed in Section 41.9 or ZCL return code listed in Section 7.2

41.8.6 eSE_DRLCSetEventUserOption

teSE_DRLCStatus eSE_DRLCSetEventUserOption(
 uint32 u32IssuerId,
 uint8 u8SourceEndPointId,
 teSE_DRLCUserEventOption eEventOption);

Description

This function can be used on a DRLC cluster client to choose to participate or not participate in an individual
LCE. By default, a client participates in an LCE, so normally this function only needs to be called if the client is
to opt out of the LCE.

The function could be called following a button-press which results from a user decision to opt out of the LCE
(for which information is displayed on the IPD screen).

When this function is called, a Report Event Status message is sent to the cluster server in order to indicate
that the local client has opted out of the LCE. Once the LCE end-time has been reached, another Report Event
Status message is sent to the server in order to confirm that the LCE has completed without the participation of
the local client.

Parameters

• u32IssuerId: Identifier of the LCE (as issued by the utility company)
• u8SourceEndPointId: Number of the local endpoint where the LCE is located (endpoint corresponding to the

DRLC cluster)
• eEventOption: Required option, one of:

– E_SE_DRLC_EVENT_USER_OPT_IN (participate)
– E_SE_DRLC_EVENT_USER_OPT_OUT (do not participate)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
579 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

Any relevant DRLC return code listed in Section 41.9 or ZCL return code listed in Section 7.2

41.8.7 eSE_DRLCSetEventUserData

teSE_DRLCStatus eSE_DRLCSetEventUserData(
 uint32 u32IssuerId,
 uint8 u8SourceEndPointId,
 teSE_DRLCUserEventSet eUserEventSetID,
 uint16 u16EventData);

Description

This function can be used on a DRLC cluster client to locally modify the load control data of an LCE. Any one of
the following data values can be changed:

• Criticality level
• Cooling temperature set-point
• Heating temperature set-point
• Load adjustment percentage
• Duty cycle

The function can be called multiple times to modify more than one of the above values. The data values are fully
described in Section 41.11.1.

Parameters

• u32IssuerId: Identifier of the LCE (as issued by the utility company)
• u8SourceEndPointId: Number of the local endpoint where the LCE is located (endpoint corresponding to the

DRLC cluster)
• eUserEventSetID: Identifier of the load control data item to be modified, one of:

– E_SE_DRLC_CRITICALITY_LEVEL_APPLIED
– E_SE_DRLC_COOLING_TEMPERATURE_SET_POINT_APPLIED
– E_SE_DRLC_HEATING_TEMPERATURE_SET_POINT_APPLIED
– E_SE_DRLC_AVERAGE_LOAD_ADJUSTMENT_PERCENTAGE_APPLIED
– E_SE_DRLC_DUTY_CYCLE_APPLIED

• u16EventData: Value to which the specified data item is to be set (for formats of data values, refer to
descriptions in Section 41.11.1)

Returns

Any relevant DRLC return code listed in Section 41.9 or ZCL return code listed in Section 7.2

41.8.8 eSE_DRLCGetLoadControlEvent

teSE_DRLCStatus eDRLCGetLoadControlEvent(
 uint8 u8SourceEndPointId,
 uint8 u8TableIndex,
 teSE_DRLCEventList eEventList,
 tsSE_DRLCLoadControlEvent **ppsLoadControlEvent);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
580 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used to obtain an LCE from a local LCE list.

The required list must be specified as one of ‘Scheduled’, ‘Active’, ‘Cancelled’ and ‘Deallocated’. The
index of the required LCE in the list must also be specified. The index of zero is used to indicate that
the LCE with the oldest start-time should be retrieved. To retrieve all the LCEs in a list, repeatedly call
this function with index zero until the function indicates that there are no further LCEs in the list (returns
E_SE_DRLC_EVENT_NOT_FOUND).

Parameters

• u8SourceEndPointId: Number of the local endpoint from which the LCE is to be retrieved (endpoint
corresponding to the DRLC cluster)

• u8TableIndex: Index of required LCE in the specified LCE list (see below)
• eEventList: LCE list from which the LCE is to be retrieved, one of:

– E_SE_DRLC_EVENT_LIST_SCHEDULED
– E_SE_DRLC_EVENT_LIST_ACTIVE
– E_SE_DRLC_EVENT_LIST_CANCELLED
– E_SE_DRLC_EVENT_LIST_DEALLOCATED

• ppsLoadControlEventPointer to a pointer to a tsSE_DRLCLoadControlEvent structure to receive the
obtained LCE (see Section 41.11.1)

Returns

Any relevant DRLC return code listed in Section 41.9 or ZCL return code listed in Section 7.2

41.8.9 eSE_DRLCFindLoadControlEvent

teSE_DRLCStatus eSE_DRLCFindLoadControlEvent(
 uint8 u8SourceEndPointId,
 uint32 u32IssuerId,
 bool_t bIsServer,
 tsSE_DRLCLoadControlEvent **ppsLoadControlEvent,
 teSE_DRLCEventList *peEventList);

Description

This function can be used to obtain the specified LCE from the local LCE lists.

The required LCE must be specified in terms of its identifier issued by the utility company. The function will
search all the local LCE lists, identify the list (if any) in which the LCE was found and return the found LCE.

Parameters

• u8SourceEndPointId: Number of the local endpoint from which the LCE is to be retrieved (endpoint
corresponding to the DRLC cluster)

• u32IssuerId: Identifier of the LCE to be found (as issued by the utility company)
• bIsServer: Cluster server or client:

– TRUE - server
– FALSE - client

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
581 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• ppsLoadControlEventPointer to a pointer to a tsSE_DRLCLoadControlEvent structure to receive the
obtained LCE (see Section 41.11.1)

• peEventList: Pointer to variable to receive enumerated value of the list in which the LCE was found (see
Section 41.10.7)

Returns

Any relevant DRLC return code listed in Section 41.9 or ZCL return code listed in Section 7.2

41.9 Return codes
In addition to some of the ZCL status enumerations (detailed in Section 7.2), the following enumerations are
returned by the DRLC cluster functions (described in Section 41.8) to indicate the outcome of the function call.

typedef enum PACK
{
 E_SE_DRLC_DUPLICATE_EXISTS = 0x80,
 E_SE_DRLC_EVENT_LATE,
 E_SE_DRLC_EVENT_NOT_YET_ACTIVE,
 E_SE_DRLC_EVENT_OLD,
 E_SE_DRLC_NOT_FOUND,
 E_SE_DRLC_EVENT_NOT_FOUND,
 E_SE_DRLC_EVENT_IGNORED,
 E_SE_DRLC_CANCEL_DEFERRED,
 E_SE_DRLC_BAD_DEVICE_CLASS,
 E_SE_DRLC_BAD_CRITICALITY_LEVEL,
 E_SE_DRLC_DURATION_TOO_LONG,
 E_SE_DRLC_ENUM_END
} teSE_DRLCStatus;

The above return codes are described in the table below.

Enumeration Description

E_SE_DRLC_DUPLICATE_EXISTS An overlapping LCE (in time) has been found

E_SE_DRLC_EVENT_LATE Function call refers to a time period that is earlier than the current ZCL
time

E_SE_DRLC_EVENT_NOT_YET_ACTIVE Not used - reserved for future use

E_SE_DRLC_EVENT_OLD Not used - reserved for future use

E_SE_DRLC_NOT_FOUND LCE cannot be found in lists (used in LCE cancelation or opt out)

E_SE_DRLC_EVENT_NOT_FOUND LCE cannot be found in lists (used when searching for an LCE)

E_SE_DRLC_EVENT_IGNORED Not used - reserved for future use

E_SE_DRLC_CANCEL_DEFERRED Cancellation has been processed but is deferred to act in the future

E_SE_DRLC_BAD_DEVICE_CLASS Specified device class not recognized

E_SE_DRLC_BAD_CRITICALITY_LEVEL Specified criticaility level not recognized

E_SE_DRLC_DURATION_TOO_LONG Specified duration exceeds maximum of 1440 minutes (one day)

Table 77. Return codes

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
582 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

41.10 Enumerations

41.10.1 ‘Device Class’ Enumerations

The device classes that are used in load control are enumerated in the
teSE_DRLCDeviceClassFieldBitmap structure below:

typedef enum
{
 E_SE_DRLC_HVAC_COMPRESSOR_OR_FURNACE_BIT = 0x00,
 E_SE_DRLC_STRIP_BASEBOARD_HEATERS_BIT,
 E_SE_DRLC_WATER_HEATER_BIT,
 E_SE_DRLC_POOL_PUMP_SPA_JACUZZI_BIT,
 E_SE_DRLC_SMART_APPLIANCES_BIT,
 E_SE_DRLC_IRRIGATION_PUMP_BIT,
 E_SE_DRLC_MANAGED_COMMERCIAL_AND_INDUSTRIAL_LOADS_BIT,
 E_SE_DRLC_SIMPLE_MISC_LOADS_BIT,
 E_SE_DRLC_EXTERIOR_LIGHTING_BIT,
 E_SE_DRLC_INTERIOR_LIGHTING_BIT,
 E_SE_DRLC_ELECTRIC_VEHICLE_BIT,
 E_SE_DRLC_GENERATION_SYSTEMS_BIT,
 E_SE_DRLC_DEVICE_CLASS_FIRST_RESERVED_BIT
} teSE_DRLCDeviceClassFieldBitmap;

The device class enumerations are listed and described in the table below.

Device Class Enumeration Description

E_SE_DRLC_HVAC_COMPRESSOR_OR_FURNACE_
BIT

HVAC compressor or furnace

E_SE_DRLC_STRIP_BASEBOARD_HEATERS_BIT Strip/baseboard heater

E_SE_DRLC_WATER_HEATER_BIT Water heater

E_SE_DRLC_POOL_PUMP_SPA_JACUZZI_BIT Pool/spa/jacuzzi pump

E_SE_DRLC_SMART_APPLIANCES_BIT Smart appliance

E_SE_DRLC_IRRIGATION_PUMP_BIT Irrigation pump

E_SE_DRLC_MANAGED_COMMERCIAL_AND_
INDUSTRIAL_LOADS_BIT

Managed Commercial & Industrial (C&I)

E_SE_DRLC_SIMPLE_MISC_LOADS_BIT Simple miscellaneous (residential on/off)

E_SE_DRLC_EXTERIOR_LIGHTING_BIT Exterior lighting

E_SE_DRLC_INTERIOR_LIGHTING_BIT Interior lighting

E_SE_DRLC_ELECTRIC_VEHICLE_BIT Electric vehicle

E_SE_DRLC_GENERATION_SYSTEMS_BIT Generation systems

E_SE_DRLC_DEVICE_CLASS_FIRST_RESERVED_
BIT

Reserved

Table 78. Device Classes

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
583 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

41.10.2 ‘DRLC Event’ Enumerations

The event types generated by the DRLC cluster are enumerated in the teSE_DRLCCallBackEventType
structure below:

typedef enum PACK
{
 E_SE_DRLC_EVENT_API =0x00,
 E_SE_DRLC_EVENT_COMMAND,
 E_SE_DRLC_EVENT_ACTIVE,
 E_SE_DRLC_EVENT_EXPIRED,
 E_SE_DRLC_EVENT_CANCELLED,
 E_SE_DRLC_EVENT_ENUM_END,
} teSE_DRLCCallBackEventType;

The above event types are described in the table below.

Event Type Enumeration Description

E_SE_DRLC_EVENT_API Reserved for internal use

E_SE_DRLC_EVENT_COMMAND Generated when a command has been received from either the cluster
server or a cluster client

E_SE_DRLC_EVENT_ACTIVE Generated when an LCE has been added to the ‘Active’ list

E_SE_DRLC_EVENT_EXPIRED Generated when an LCE has been removed from the ‘Active’ list

E_SE_DRLC_EVENT_CANCELLED Generated when an LCE has been put in the ‘Cancelled’ list

Table 79. DRLC Event Types

DRLC events are described in more detail in Section 41.7.

41.10.3 ‘Criticality Level’ Enumerations

The criticality levels that are available for an LCE are enumerated in the teSE_DRLCCriticalityLevels
structure below:

typedef enum
{
 E_SE_DRLC_RESERVED_0_CRITICALITY = 0x00,
 E_SE_DRLC_GREEN_CRITICALITY,
 E_SE_DRLC_VOLUNTARY_1_CRITICALITY,
 E_SE_DRLC_VOLUNTARY_2_CRITICALITY,
 E_SE_DRLC_VOLUNTARY_3_CRITICALITY,
 E_SE_DRLC_VOLUNTARY_4_CRITICALITY,
 E_SE_DRLC_VOLUNTARY_5_CRITICALITY,
 E_SE_DRLC_EMERGENCY_CRITICALITY,
 E_SE_DRLC_PLANNED_OUTAGE_CRITICALITY,
 E_SE_DRLC_SERVICE_DISCONNECT_CRITICALITY,
 E_SE_DRLC_UTILITY_DEFINED_1_CRITICALITY,
 E_SE_DRLC_UTILITY_DEFINED_2_CRITICALITY,
 E_SE_DRLC_UTILITY_DEFINED_3_CRITICALITY,
 E_SE_DRLC_UTILITY_DEFINED_4_CRITICALITY,
 E_SE_DRLC_UTILITY_DEFINED_5_CRITICALITY,
 E_SE_DRLC_UTILITY_DEFINED_6_CRITICALITY,
 E_SE_DRLC_FIRST_RESERVED_CRITICALITY
} teSE_DRLCCriticalityLevels;

The above criticality levels are described in the table below.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
584 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Criticality Level Enumeration Description

E_SE_DRLC_RESERVED_0_CRITICALITY Reserved for future use

E_SE_DRLC_GREEN_CRITICALITY Green: Indicates that there will be a significant contribution from non-
green sources during the LCE - participation in the LCE is voluntary

E_SE_DRLC_VOLUNTARY_1_CRITICALITY

E_SE_DRLC_VOLUNTARY_2_CRITICALITY

E_SE_DRLC_VOLUNTARY_3_CRITICALITY

E_SE_DRLC_VOLUNTARY_4_CRITICALITY

E_SE_DRLC_VOLUNTARY_5_CRITICALITY

Voluntary 1-6: Represent increasing levels of load reduction as move
through levels 1 to 6, as defined by the utility company - intended
to be used in a sequence of LCEs to gradually reduce loads, where
participation in the LCEs is voluntary

E_SE_DRLC_EMERGENCY_CRITICALITY Emergency: Indicates that the LCE represents an emergency situation
(normally demanding the termination of all non-essential loads, as
defined by the utility company) - participation in the LCE is mandatory

E_SE_DRLC_PLANNED_OUTAGE_
CRITICALITY

Planned Outage: Indicates that the LCE represents an intentional
outage (normally demanding the termination of all non-essential loads, as
defined by the utility company) - participation in the LCE is mandatory

E_SE_DRLC_SERVICE_DISCONNECT_
CRITICALITY

Service Disconnect: Indicates that the LCE represents a service
disconnection (normally demanding the termination of all non-essential
loads, as defined by the utility company) - participation in the LCE is
mandatory

E_SE_DRLC_UTILITY_DEFINED_1_
CRITICALITY

E_SE_DRLC_UTILITY_DEFINED_2_
CRITICALITY

E_SE_DRLC_UTILITY_DEFINED_3_
CRITICALITY

E_SE_DRLC_UTILITY_DEFINED_4_
CRITICALITY

E_SE_DRLC_UTILITY_DEFINED_5_
CRITICALITY

E_SE_DRLC_UTILITY_DEFINED_6_
CRITICALITY

Utility-defined 1-6: Criticality levels completely defined by the utility
company - participation in the LCE is voluntary

E_SE_DRLC_FIRST_RESERVED_
CRITICALITY

Reserved for future use

Table 80. Criticality Levels

41.10.4 ‘LCE Cancellation’ Enumerations

The cancelation options (immediate or randomized) that are available for an LCE are enumerated in the
teSE_DRLCCancelControl structure below:

typedef enum PACK
{
 E_SE_DRLC_CANCEL_CONTROL_IMMEDIATE =0x00,
 E_SE_DRLC_CANCEL_CONTROL_USE_RANDOMISATION =0x10
} teSE_DRLCCancelControl;

The above options are described in the table below.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
585 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

LCE Cancellation Enumeration Description

E_SE_DRLC_CANCEL_CONTROL_IMMEDIATE LCE is cancelled immediately by moving it directly to the ‘Deallocated’
list - a randomized end-time configured in the LCE is ignored

E_SE_DRLC_CANCEL_CONTROL_USE_
RANDOMISATION

A random delay will be applied to the LCE cancellation, if a randomised
end-time was configured in the LCE - the LCE is moved to the
‘Cancelled’ list where it will stay (and remain valid) until the random
delay has expired, when it will be moved to the ‘Deallocated’ list (an
upper limit on the delay is defined in the cluster - see Section 41.2)

Table 81. LCE Cancelation Options

41.10.5 ‘LCE Participation’ Enumerations

The options to participate or not participate in an LCE are enumerated in the teSE_DRLCUserEventOption
structure below:

typedef enum PACK
{
 E_SE_DRLC_EVENT_USER_OPT_IN =0x00,
 E_SE_DRLC_EVENT_USER_OPT_OUT
} teSE_DRLCUserEventOption;

The above options are described in the table below.

LCE Participation Enumeration Description

E_SE_DRLC_EVENT_USER_OPT_OUT User has opted not to participate in the LCE. The device sends this
message and does not adjust the load when the LCE becomes active.

E_SE_DRLC_EVENT_USER_OPT_IN User has opted to participate in the LCE. The device only sends this
message following an OPT_OUT (when the user has changed their mind
and decided to participate after all)

Table 82. LCE Participation Options

41.10.6 ‘LCE Data Modification’ Enumerations

The load control data items that can be locally modified in an LCE are enumerated in the
teSE_DRLCUserEventSet structure below:

typedef enum PACK
{
 E_SE_DRLC_CRITICALITY_LEVEL_APPLIED =0x00,
 E_SE_DRLC_COOLING_TEMPERATURE_SET_POINT_APPLIED,
 E_SE_DRLC_HEATING_TEMPERATURE_SET_POINT_APPLIED,
 E_SE_DRLC_AVERAGE_LOAD_ADJUSTMENT_PERCENTAGE_APPLIED,
 E_SE_DRLC_DUTY_CYCLE_APPLIED,
 E_SE_DRLC_USER_EVENT_ENUM_END,
} teSE_DRLCUserEventSet;

The above options are described in the table below (the data items are fully described in Section 41.11.1).

LCE Participation Enumeration Description

E_SE_DRLC_CRITICALITY_LEVEL_APPLIED Specifies that ‘criticality level’ is to be modified.

E_SE_DRLC_COOLING_TEMPERATURE_SET_POINT
_APPLIED

Specifies that ‘cooling temperature set-point’ is to be modified

Table 83. LCE Data Modification Options

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
586 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

LCE Participation Enumeration Description

E_SE_DRLC_HEATING_TEMPERATURE_SET_POINT
_APPLIED

Specifies that ‘heating temperature set-point’ is to be modified

E_SE_DRLC_AVERAGE_LOAD_ADJUSTMENT_
PERCENTAGE_APPLIED

Specifies that ‘average load adjustment percentage’ is to be
modified

E_SE_DRLC_DUTY_CYCLE_APPLIED Specifies that ‘duty cycle’ is to be modified

Table 83. LCE Data Modification Options...continued

41.10.7 ‘LCE List’ Enumerations

The LCE lists are enumerated in the teSE_DRLCEventList structure below:

typedef enum PACK
{
 E_SE_DRLC_EVENT_LIST_SCHEDULED =0x00,
 E_SE_DRLC_EVENT_LIST_ACTIVE,
 E_SE_DRLC_EVENT_LIST_CANCELLED,
 E_SE_DRLC_EVENT_LIST_DEALLOCATED,
 E_SE_DRLC_EVENT_LIST_NONE
} teSE_DRLCEventList;

The above lists are described in the table below.

LCE List Enumeration Description

E_SE_DRLC_EVENT_LIST_SCHEDULED Scheduled list: Contains LCEs that are due to be executed in the future

E_SE_DRLC_EVENT_LIST_ACTIVE Active list: Contains LCEs that are currently being executed

E_SE_DRLC_EVENT_LIST_CANCELLED Cancelled list: Contains LCEs that have been cancelled with a
randomized end-time and whose random end-time has not yet been
reached

E_SE_DRLC_EVENT_LIST_DEALLOCATED Deallocated list: Contains expired LCEs and therefore a record of the
free storage for LCEs

Table 84. LCE Lists

41.10.8 ‘LCE Status’ Enumerations

LCE status is enumerated in the teSE_DRLCEventStatus structure below:

typedef enum PACK
{
 E_SE_DRLC_LOAD_CONTROL_EVENT_COMMAND_RECIEVED =0x01,
 E_SE_DRLC_EVENT_STARTED,
 E_SE_DRLC_EVENT_COMPLETED,
 E_SE_DRLC_USER_CHOSEN_OPT_OUT,
 E_SE_DRLC_USER_CHOSEN_OPT_IN,
 E_SE_DRLC_EVENT_HAS_BEEN_CANCELLED,
 E_SE_DRLC_EVENT_HAS_BEEN_SUPERSEDED,
 E_SE_DRLC_EVENT_PARTIALLY_COMPLETED_WITH_USER_OPT_OUT,
 E_SE_DRLC_EVENT_PARTIALLY_COMPLETED_WITH_USER_OPT_IN,
 E_SE_DRLC_EVENT_COMPLETED_NO_USER_PARTICIPATION,
 E_SE_DRLC_REJECTED_INVALID_CANCEL_COMMAND_DEFAULT =0xF8,
 E_SE_DRLC_REJECTED_INVALID_CANCEL_COMMAND_INVALID_EFFECTIVE_TIME,
 E_SE_DRLC_REJECTED_EVENT_RECEIVED_AFTER_IT_HAD_EXPIRED =0xFB,
 E_SE_DRLC_REJECTED_INVALID_CANCEL_COMMAND_UNDEFINED_EVENT=0xFD,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
587 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_SE_DRLC_LOAD_CONTROL_EVENT_COMMAND_REJECTED,
 E_SE_DRLC_EVENT_STATUS_ENUM_END
} teSE_DRLCEventStatus;

The above enumerations are described in the table below.

Enumeration Description

E_SE_DRLC_LOAD_CONTROL_EVENT_COM-MAND_
RECEIVED

LCE command received (to add new LCE to local lists)

E_SE_DRLC_EVENT_STARTED LCE has started

E_SE_DRLC_EVENT_COMPLETED LCE has completed

E_SE_DRLC_USER_CHOSEN_OPT_OUT Client has opted out of the LCE

E_SE_DRLC_USER_CHOSEN_OPT_IN Client has opted into the LCE

E_SE_DRLC_EVENT_HAS_BEEN_CANCELLED LCE has been cancelled

E_SE_DRLC_EVENT_HAS_BEEN_SUPERSEDED LCE has been replaced with another LCE

E_SE_DRLC_EVENT_PARTIALLY_COMPLETED_WITH_
USER_OPT_OUT

LCE has prematurely completed due to a client opt-out
during the LCE

E_SE_DRLC_EVENT_PARTIALLY_COMPLETED_WITH_
USER_OPT_IN

LCE has completed but was only partially executed due to a
client opt-in during the LCE

E_SE_DRLC_EVENT_COMPLETED_NO_USER_PART
ICIPATION

LCE has completed but there was no client participation
(due to a client opt-out from the start)

E_SE_DRLC_REJECTED_INVALID_CANCEL_COMMAND_
DEFAULT

Received ‘cancel command’ invalid and rejected (default)

E_SE_DRLC_REJECTED_INVALID_CANCEL_COMMAND_
INVALID_EFFECTIVE_TIME

Received ‘cancel command’ rejected due to invalid effective
time (start-time of cancellation)

E_SE_DRLC_REJECTED_EVENT_RECEIVED_AFTER_IT_
HAD_EXPIRED

LCE was received after it had expired (current time is
greater than start-time + duration)

E_SE_DRLC_REJECTED_INVALID_CANCEL_COMMAND_
UNDEFINED_EVENT

Received ‘cancel command’ due to undefined LCE

E_SE_DRLC_LOAD_CONTROL_EVENT_COM-MAND_
REJECTED

LCE command rejected

Table 85. LCE Status Codes

41.11 Structures

41.11.1 tsSE_DRLCLoadControlEvent

The structure of type tsSE_DRLCLoadControlEvent contains the parameters of a Load Control Event (LCE),
as shown and described below.

typedef struct {
 uint8 u8UtilityEnrolmentGroup;
 uint8 u8CriticalityLevel;
 uint8 u8CoolingTemperatureOffset;
 uint8 u8HeatingTemperatureOffset;
 uint8 u8AverageLoadAdjustmentSetPoint;
 uint8 u8DutyCycle;
 uint8 u8EventControl;
 uint16 u16DeviceClass;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
588 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint16 u16DurationInMinutes;
 uint16 u16CoolingTemperatureSetPoint;
 uint16 u16HeatingTemperatureSetPoint;
 uint32 u32IssuerId;
 uint32 u32StartTime;
}tsSE_DRLCLoadControlEvent;

where:

• u8UtilityEnrolmentGroup identifies the group of devices to which the LCE applies - an ‘enrolment group’
is defined by the utility company. The identifier 0x00 is reserved to indicate ‘all groups’.

• u8CriticalityLevel is a value representing the level of criticality of the LCE. Enumerations are provided
for the different levels and are detailed in Section 41.10.3.

• u8CoolingTemperatureOffset (optional) specifies the required temperature offset, in units of 0.1oC,
above the current temperature set-point of a cooling device (example, 0x5 represents a temperature offset of
0.5oC). The setting 0xFF is used to indicate that no offset is required.

• u8HeatingTemperatureOffset (optional) specifies the required temperature offset, in units of 0.1oC,
below the current temperature set-point of a heating device (example, 0x14 represents a temperature offset of
2.0oC). The setting 0xFF is used to indicate that no offset is required.

• u8AverageLoadAdjustmentSetPoint (optional) specifies the maximum permissible load as an offset
from the consumer’s average load, where this offset is expressed as a positive or negative percentage in
units of 1% (e.g. 20% allows loads of up to 120% of the average while -10% allows loads of up to 90% of the
average). The offset has a valid range of -100% to +100% and is represented in two’s complement form (e.g.
15% is represented by 0x0F and
-5% is represented by 0xFB). The value 0x80 is used to indicate that no such limit is required.

• u8DutyCycle (optional) specifies the percentage duty cycle for the load supplied to the device - that is, the
percentage of the LCE duration for which the load will be supplied (e.g. for a duty cycle of 80%, the supplied
device will be ‘on’ for 80% of the duration of the LCE). The manner in which the duty cycle is implemented
(e.g. periodicity) is device-specific. The valid range of duty cycle values is 0 to 100. The setting 0xFF indicates
that no duty cycling is required.

• u8EventControl specifies whether a randomised start-time and/or randomised end-time are required
for the LCE. The following bit-masks are provided to allow the start-time and end-time of an LCE to be
individually randomised (they can be bitwise-ORed to randomize both times):

#define SE_DRLC_CONTROL_RANDOMISATION_START_TIME_MASK (0x01)
#define SE_DRLC_CONTROL_RANDOMISATION_STOP_TIME_MASK (0x02)

• u16DeviceClass identifies the class(es) of device to which the LCE applies. Enumerations are provided for
the various device classes, which may be combined in a bitwise-OR operation, and are detailed in Section
41.10.1.

• u16DurationInMinutes specifies the duration, in minutes, of the LCE (although the actual duration will be
longer than the specified duration if a randomized end-time is required). The maximum possible duration that
can be specified is 1440 minutes (one day).

• u16CoolingTemperatureSetPoint (optional) specifies the required temperature set-point, in units of
0.01oC, for a cooling device, where a negative temperature is represented in two’s complement form (e.g. a
temperature of 20oC is represented by 0x07D0 and -40oC is represented by 0xF060). The valid temperature
range is -273.15°C to 327.67°C. The setting 0x8000 is used to indicate that no temperature set-point is
required.

• u16HeatingTemperatureSetPoint (optional) specifies the required temperature set-point, in units of
0.01oC, for a heating device, where a negative temperature is represented in two’s complement form (for
example, a temperature of 25oC is represented by 0x09C4 and -1oC is represented by 0xFFFF). The valid
temperature range is -273.15°C to 327.67°C. The setting 0x8000 is used to indicate that no temperature set-
point is required.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
589 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u32IssuerId is a unique identifier for the LCE, issued by the utility company (the value could be based on
the time-stamp of when the LCE was issued).

• u32StartTime represents the start-time (UTC) of the LCE (although the actual start-time is later if a
randomized start-time is required). The value 0x000000000 is used to indicate a ‘start-time of now’.

41.11.2 tsSE_DRLCGetScheduledEvents

The structure of type tsSE_DRLCGetScheduledEvents contains the parameters of a Get Scheduled Event
message, as shown and described below.

typedef struct {
 uint32 u32StartTime;
 uint8 u8numberOfEvents;
} tsSE_DRLCGetScheduledEvents;

where:

• u32StartTime is the earliest start-time (UTC) of the requested LCEs
• u8numberOfEvents is the maximum number of LCEs to report

41.11.3 tsSE_DRLCCancelLoadControlEvent

The structure of type tsSE_DRLCCancelLoadControlEvent contains the parameters of a Cancel LCE
command, as shown and described below.

typedef struct {
 uint32 u32IssuerId;
 uint16 u16DeviceClass;
 uint8 u8UtilityEnrolmentGroup;
 teSE_DRLCCancelControl eCancelControl;
 uint32 u32effectiveTime;
} tsSE_DRLCCancelLoadControlEvent;

where:

• u32IssuerId is the identifier (provided by the utility company) of the LCE to be canceled
• u16DeviceClass is a bitmap indicating the device class(es) to which the LCE cancelation applies -

enumerations for the device classes are provided, as described in Section 41.10.1
• u8UtilityEnrolmentGroup is the enrolment group of the devices to which the LCE cancelation applies
• eCancelControl indicates whether to honour a randomised end that has been configured in the LCE -

enumerations are provided, as described in Section 41.10.4
• u32effectiveTime is the time (UTC) from which the LCE cancelation is effective

41.11.4 tsSE_DRLCReportEvent

The structure of type tsSE_DRLCReportEvent contains the parameters of a Report Event Status message,
as shown and described below.

typedef struct {
 uint8 u8EventStatus;
 uint8 u8AverageLoadAdjustmentPercentageApplied;
 uint8 u8DutyCycleApplied;
 uint8 u8EventControl;
 uint8 u8SignatureType;
 uint8 u8CriticalityLevelApplied;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
590 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 bool_t bSignatureVerified;
 uint16 u16CoolingTemperatureSetPointApplied;
 uint16 u16HeatingTemperatureSetPointApplied;
 uint32 u32IssuerId;
 uint32 u32EventStatusTime;
 tsSE_DRLCOctets sSignature;
} tsSE_DRLCReportEvent;

where:

• u8EventStatus is the reported LCE status - enumerations are provided and described in Section 41.10.8
• u8AverageLoadAdjustmentPercentageApplied is an optional field containing the load adjustment

percentage applied by the sending client (if the user has chosen to over-ride the original setting in the LCE) -
for the format of this setting, refer to the equivalent field description in Section 41.11.1 (0x80 indicates that the
field is not used)

• u8DutyCycleApplied is an optional field containing the percentage duty cycle applied by the sending client
(if the user has chosen to over-ride the original setting in the LCE) - for the format of this setting, refer to the
equivalent field description in Section 41.11.1 (0xFF indicates that the field is not used)

• u8EventControl is a bitmap which specifies whether a randomised start-time and/or randomised end-time
are configured for the LCE:

Bit Description

0 1 = randomised start-time, 0 = immediate start-time

1 1 = randomised end-time, 0 = immediate end-time

2-7 Not used

• u8SignatureType is the type of algorithm, if any, used to create the signature for the Report Event Status
message (only one algorithm, ECDSA, is currently supported):

#define SE_DRLC_NO_SIGNATURE (0x00)
#define SE_DRLC_SIGNATURE_TYPE_ECDSA (0x01)

• u8CriticalityLevelApplied is the criticality level of the LCE - enumerations are provided and described
in Section 41.10.3

• bSignatureVerified is filled in by the recipient of the Report Event Status message (therefore, the DRLC
cluster server) to indicate whether the signature of the message has been verified and is valid:
TRUE - verified and valid
FALSE - verified and not valid, or not verified

• u16CoolingTemperatureSetPointApplied is an optional field containing the cooling temperature
applied by the sending client (if the user has chosen to over-ride the original setting in the LCE) - for the
format of this setting, refer to the equivalent field description in Section 41.11.1 (0x8000 indicates that the field
is not used)

• u16HeatingTemperatureSetPointApplied is an optional field containing the heating temperature
applied by the sending client (if the user has chosen to over-ride the original setting in the LCE) - for the
format of this setting, refer to the equivalent field description in Section 41.11.1 (0x8000 indicates that the field
is not used)

• u32IssuerId is the unique identifier for the LCE, as issued by the utility company
• u32EventStatusTime is the time (UTC) at which the Report Event Status message was issued
• sSignature is the signature for the Report Event Status message - this is the concatenation of two ECDSA

signature components (r,s)

Note: It is recommended that signatures are supported by your application for backward compatibility.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
591 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

41.11.5 tsSE_DRLCCallBackMessage

The structure of type tsSE_DRLCCallBackMessage contains a DRLC callback event. It is shown below but
described in Section 41.7.

typedef struct
{
 teSE_DRLCCallBackEventType eEventType;
 uint8 u8CommandId;
 teSE_DRLCStatus eDRLCStatus;
 uint32 u32CurrentTime;
 union {
 tsSE_DRLCLoadControlEvent sLoadControlEvent;
 tsSE_DRLCCancelLoadControlEvent sCancelLoadControlEvent;
 tsSE_DRLCCancelLoadControlAllEvent sCancelLoadControlAllEvent;
 tsSE_DRLCReportEvent sReportEvent;
 tsSE_DRLCGetScheduledEvents sGetScheduledEvents;
 } uMessage;
} tsSE_DRLCCallBackMessage;

41.12 Compile-time options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the DRLC cluster.

The DRLC cluster is enabled by defining CLD_DRLC.

Client and server versions of the cluster are defined by DRLC_CLIENT and DRLC_SERVER, respectively.

Length of LCE Lists

The number of LCEs that may be stored in an LCE list (see Section 41.4.2) is, by default, three. This default can
be over-ridden on the cluster server and a cluster client by assigning the desired values to the macros:

SE_DRLC_NUMBER_OF_SERVER_LOAD_CONTROL_ENTRIES (server)

SE_DRLC_NUMBER_OF_CLIENT_LOAD_CONTROL_ENTRIES (client)

LCE Re-sends

The DRLC cluster server may re-send an LCE when it becomes active in order to support clients that do not
have a clock. This facility should not be enabled unless explicitly required. To enable this functionality, define:

DRLC_SEND_LCE_AGAIN_AT_ACTIVE_TIME

Message Signing (Security)

On DRLC cluster clients that need to implement message signing (see Section 41.6), the following must be
defined:

#define SE_MESSAGE_SIGNING

For a DRLC cluster server to check a message signature, it is necessary to locally store the certificates of any
nodes that perform key establishment. The maximum number of certificates that can be stored is configured by
defining the following on the server:

#define KEC_NUM_CERTIFICATES < n>

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
592 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where n is the number of certificates that can be stored.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
593 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

42 Simple Metering Cluster

This chapter outlines the Simple Metering cluster, which is used to handle information relating to the measured
consumption of some resource, which may be electricity, gas, heat or water.

The Simple Metering cluster has a Cluster ID of 0x0702.

42.1 Overview
The Simple Metering cluster is required in ZigBee devices as indicated in the table below.

Server-side Client-side

Mandatory in... Metering Device

Optional in... ESP ESP
IPD
PCT

Table 86. Simple Metering Cluster in ZigBee Devices

Thus, a Metering Device or ESP can use this cluster to store attributes and respond to commands relating to
these attributes. An IPD or PCT may use this cluster to issue commands to interact with remote attributes held
on a Metering Device or ESP.

The Simple Metering cluster is enabled by defining CLD_SIMPLE_METERING in the zcl_options.h file. Further
compile-time options for the Simple Metering cluster are detailed in Section 42.12.

The information that can potentially be stored in this cluster is organized into the following attribute sets:

• Reading Information Set (resource measurement information)
• TOU Information Set (Time-Of-Use information)
• Meter Status
• Formatting (data formatting/interpretation guidance)
• Historical Consumption
• Load Profile Configuration
• Supply Limit
• Block Information (for future use - not certifiable in SE 1.1.1 or earlier)
• Alarms (for future use - not certifiable in SE 1.1.1 or earlier)

This information is stored in both mandatory and optional attributes - see Section 42.3.

Note: Many of the Simple Metering cluster attributes are not certifiable in SE 1.1.1 (07-5356-17) or earlier and
are reserved for future use (as indicated in Section 42.2).

42.2 Simple Metering Cluster structure and attributes
The Simple Metering cluster is contained in the following tsSE_SimpleMetering structure:

typedef struct
{
 /* Reading information attribute set attribute ID's (D.3.2.2.1) */
 zuint48 u48CurrentSummationDelivered; /
* Mandatory */
#ifdef CLD_SM_ATTR_CURRENT_SUMMATION_RECEIVED
 zuint48 u48CurrentSummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_MAX_DEMAND_DELIVERED
 zuint48 u48CurrentMaxDemandDelivered;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
594 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#endif
#ifdef CLD_SM_ATTR_CURRENT_MAX_DEMAND_RECEIVED
 zuint48 u48CurrentMaxDemandReceived;
#endif
#ifdef CLD_SM_ATTR_DFT_SUMMATION
 zuint48 u48DFTSummation;
#endif
#ifdef CLD_SM_ATTR_DAILY_FREEZE_TIME
 zuint16 u16DailyFreezeTime;
#endif
#ifdef CLD_SM_ATTR_POWER_FACTOR
 zint8 i8PowerFactor;
#endif
#ifdef CLD_SM_ATTR_READING_SNAPSHOT_TIME
 zutctime utctReadingSnapshotTime;
#endif
#ifdef CLD_SM_ATTR_CURRENT_MAX_DEMAND_DELIVERED_TIME
 zutctime utctCurrentMaxDemandDeliveredTime;
#endif
#ifdef CLD_SM_ATTR_CURRENT_MAX_DEMAND_RECEIVED_TIME
 zutctime utctCurrentMaxDemandReceivedTime;
#endif
#ifdef CLD_SM_ATTR_DEFAULT_UPDATE_PERIOD
 uint8 u8DefaultUpdatePeriod;
#endif
#ifdef CLD_SM_ATTR_FAST_POLL_UPDATE_PERIOD
 uint8 u8FastPollUpdatePeriod;
#endif
#ifdef CLD_SM_ATTR_CURRENT_BLOCK_PERIOD_CONSUMPTION_DELIVERED
 zuint48 u48CurrentBlockPeriodConsumptionDelivered;
#endif
#ifdef CLD_SM_ATTR_DAILY_CONSUMPTION_TARGET
 zuint24 u24DailyConsumptionTarget;
#endif
#ifdef CLD_SM_ATTR_CURRENT_BLOCK
 zenum8 e8CurrentBlock;
#endif
#ifdef CLD_SM_SUPPORT_GET_PROFILE
#ifdef CLD_SM_ATTR_PROFILE_INTERVAL_PERIOD
 zenum8 eProfileIntervalPeriod;
#endif
#ifdef CLD_SM_ATTR_INTERVAL_READ_REPORTING_PERIOD
 uint16 u16IntervalReadReportingPeriod;
#endif
#endif // CLD_SM_SUPPORT_GET_PROFILE
#ifdef CLD_SM_ATTR_PREVIOUS_BLOCK_PERIOD_CONSUMPTION_DELIVERED
 zuint48 u48PreviousBlockPeriodConsumptionDelivered;
#endif
#ifdef CLD_SM_ATTR_PRESET_READING_TIME
 uint16 u16PresetReadingTime;
#endif
#ifdef CLD_SM_ATTR_VOLUME_PER_REPORT
 uint16 u16VolumePerReport;
#endif
#ifdef CLD_SM_ATTR_FLOW_RESTRICTION
 uint8 u8FlowRestriction;
#endif
#ifdef CLD_SM_ATTR_SUPPLY_STATUS
 zbmap8 u8SupplyStatus;
#endif
#ifdef CLD_SM_ATTR_CURRENT_INLET_ENERGY_CARRIER_SUMMATION
 zuint48 u48CurrentInletEnergyCarrierSummation;
#endif
#ifdef CLD_SM_ATTR_CURRENT_OUTLET_ENERGY_CARRIER_SUMMATION
 zuint48 u48CurrentOutletEnergyCarrierSummation;
#endif
#ifdef CLD_SM_ATTR_INLET_TEMPERATURE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
595 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 int16 i16InletTemperature;
#endif
#ifdef CLD_SM_ATTR_OUTLET_TEMPERATURE
 int16 i16OutletTemperature;
#endif
#ifdef CLD_SM_ATTR_CONTROL_TEMPERATURE
 int16 i16ControlTemperature;
#endif
#ifdef CLD_SM_ATTR_CURRENT_INLET_ENERGY_CARRIER_DEMAND
 zint24 i24CurrentInletEnergyCarrierDemand;
#endif
#ifdef CLD_SM_ATTR_CURRENT_OUTLET_ENERGY_CARRIER_DEMAND
 zint24 i24CurrentOutletEnergyCarrierDemand;
#endif
 /* Time Of Use Information attribute attribute ID's set (D.3.2.2.2) */
#ifdef CLD_SM_ATTR_CURRENT_TIER_1_SUMMATION_DELIVERED
 zuint48 u48CurrentTier1SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_1_SUMMATION_RECEIVED
 zuint48 u48CurrentTier1SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_2_SUMMATION_DELIVERED
 zuint48 u48CurrentTier2SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_2_SUMMATION_RECEIVED
 zuint48 u48CurrentTier2SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_3_SUMMATION_DELIVERED
 zuint48 u48CurrentTier3SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_3_SUMMATION_RECEIVED
 zuint48 u48CurrentTier3SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_4_SUMMATION_DELIVERED
 zuint48 u48CurrentTier4SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_4_SUMMATION_RECEIVED
 zuint48 u48CurrentTier4SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_5_SUMMATION_DELIVERED
 zuint48 u48CurrentTier5SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_5_SUMMATION_RECEIVED
 zuint48 u48CurrentTier5SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_6_SUMMATION_DELIVERED
 zuint48 u48CurrentTier6SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_6_SUMMATION_RECEIVED
 zuint48 u48CurrentTier6SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_7_SUMMATION_DELIVERED
 zuint48 u48CurrentTier7SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_7_SUMMATION_RECEIVED
 zuint48 u48CurrentTier7SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_8_SUMMATION_DELIVERED
 zuint48 u48CurrentTier8SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_8_SUMMATION_RECEIVED
 zuint48 u48CurrentTier8SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_9_SUMMATION_DELIVERED
 zuint48 u48CurrentTier9SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_9_SUMMATION_RECEIVED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
596 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zuint48 u48CurrentTier9SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_10_SUMMATION_DELIVERED
 zuint48 u48CurrentTier10SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_10_SUMMATION_RECEIVED
 zuint48 u48CurrentTier10SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_11_SUMMATION_DELIVERED
 zuint48 u48CurrentTier11SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_11_SUMMATION_RECEIVED
 zuint48 u48CurrentTier11SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_12_SUMMATION_DELIVERED
 zuint48 u48CurrentTier12SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_12_SUMMATION_RECEIVED
 zuint48 u48CurrentTier12SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_13_SUMMATION_DELIVERED
 zuint48 u48CurrentTier13SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_13_SUMMATION_RECEIVED
 zuint48 u48CurrentTier13SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_14_SUMMATION_DELIVERED
 zuint48 u48CurrentTier14SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_14_SUMMATION_RECEIVED
 zuint48 u48CurrentTier14SummationReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_15_SUMMATION_DELIVERED
 zuint48 u48CurrentTier15SummationDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_TIER_15_SUMMATION_RECEIVED
 zuint48 u48CurrentTier15SummationReceived;
#endif
 /* Meter status attribute set attribute ID's (D.3.2.2.3) */
 zbmap8 u8MeterStatus; /* Mandatory */
#ifdef CLD_SM_ATTR_REMAINING_BATTERY_LIFE
 uint8 u8RemainingBatteryLife;
#endif
#ifdef CLD_SM_ATTR_HOURS_IN_OPERATION
 zuint24 u24HoursInOperation;
#endif
#ifdef CLD_SM_ATTR_HOURS_IN_FAULT
 zuint24 u24HoursInFault;
#endif
 /* Formatting attribute set attribute ID's (D.3.2.2.4) */
 zenum8 eUnitOfMeasure; /* Mandatory */
#ifdef CLD_SM_ATTR_MULTIPLIER
 zuint24 u24Multiplier;
#endif
#ifdef CLD_SM_ATTR_DIVISOR
 zuint24 u24Divisor;
#endif
 zbmap8 u8SummationFormatting; /* Mandatory */
#ifdef CLD_SM_ATTR_DEMAND_FORMATING
 zbmap8 u8DemandFormatting;
#endif
#ifdef CLD_SM_ATTR_HISTORICAL_CONSUMPTION_FORMATTING
 zbmap8 u8HistoricalConsumptionFormatting;
#endif
 zbmap8 eMeteringDeviceType; /* Mandatory */
#ifdef CLD_SM_ATTR_SITE_ID
 tsZCL_OctetString sSiteId;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
597 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 au8SiteId[SE_SM_SITE_ID_MAX_STRING_LENGTH];
#endif
#ifdef CLD_SM_ATTR_METER_SERIAL_NUMBER
 tsZCL_OctetString sMeterSerialNumber;
 uint8 au8MeterSerialNumber[SE_SM_METER_SERIAL_NUMBER_MAX_STRING_LENGTH];
#endif
#ifdef CLD_SM_ATTR_ENERGY_CARRIER_UNIT_OF_MEASURE
 zenum8 e8EnergyCarrierUnitOfMeasure;
#endif
#ifdef CLD_SM_ATTR_ENERGY_CARRIER_SUMMATION_FORMATTING
 zbmap8 u8EnergyCarrierSummationFormatting;
#endif
#ifdef CLD_SM_ATTR_ENERGY_CARRIER_DEMAND_FORMATTING
 zbmap8 u8EnergyCarrierDemandFormatting;
#endif
#ifdef CLD_SM_ATTR_TEMPERATURE_UNIT_OF_MEASURE
 zenum8 e8TemperatureUnitOfMeasure;
#endif
#ifdef CLD_SM_ATTR_TEMPERATURE_FORMATTING
 zbmap8 u8TemperatureFormatting;
#endif
 /* ESP Historical Consumption set attribute ID's (D.3.2.2.5) */
#ifdef CLD_SM_ATTR_INSTANTANEOUS_DEMAND
 zint24 i24InstantaneousDemand;
#endif
#ifdef CLD_SM_ATTR_CURRENT_DAY_CONSUMPTION_DELIVERED
 zuint24 u24CurrentDayConsumptionDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_DAY_CONSUMPTION_RECEIVED
 zuint24 u24CurrentDayConsumptionReceived;
#endif
#ifdef CLD_SM_ATTR_PREVIOUS_DAY_CONSUMPTION_DELIVERED
 zuint24 u24PreviousDayConsumptionDelivered;
#endif
#ifdef CLD_SM_ATTR_PREVIOUS_DAY_CONSUMPTION_RECEIVED
 zuint24 u24PreviousDayConsumptionReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_DELIVERED
 zutctime utctCurrentPartialProfileIntervalStartTimeDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_RECEIVED
 zutctime utctCurrentPartialProfileIntervalStartTimeReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_DELIVERED
 zuint24 u24CurrentPartialProfileIntervalValueDelivered;
#endif
#ifdef CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_RECEIVED
 zuint24 u24CurrentPartialProfileIntervalValueReceived;
#endif
#ifdef CLD_SM_ATTR_CURRENT_DAY_MAXIMUM_PRESSURE
 zuint48 u48CurrentDayMaxPressure;
#endif
#ifdef CLD_SM_ATTR_CURRENT_DAY_MINIMUM_PRESSURE
 zuint48 u48CurrentDayMinPressure;
#endif
#ifdef CLD_SM_ATTR_PREVIOUS_DAY_MAXIMUM_PRESSURE
 zuint48 u48PreviousDayMaxPressure;
#endif
#ifdef CLD_SM_ATTR_PREVIOUS_DAY_MINIMUM_PRESSURE
 zuint48 u48PreviousDayMinPressure;
#endif
#ifdef CLD_SM_ATTR_CURRENT_DAY_MAXIMUM_DEMAND
 zint24 i24CurrentDayMaxDemand;
#endif
#ifdef CLD_SM_ATTR_PREVIOUS_DAY_MAXIMUM_DEMAND
 zint24 i24PreviousDayMaxDemand;
#endif

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
598 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#ifdef CLD_SM_ATTR_CURRENT_MONTH_MAXIMUM_DEMAND
 zint24 i24CurrentMonthMaxDemand;
#endif
#ifdef CLD_SM_ATTR_CURRENT_YEAR_MAXIMUM_DEMAND
 zint24 i24CurrentYearMaxDemand;
#endif
#ifdef CLD_SM_ATTR_CURRENT_DAY_MAXIMUM_ENERGY_CARRIER_DEMAND
 zint24 i24CurrentDayMaxEnergyCarrierDemand;
#endif
#ifdef CLD_SM_ATTR_PREVIOUS_DAY_MAXIMUM_ENERGY_CARRIER_DEMAND
 zint24 i24PreviousDayMaxEnergyCarrierDemand;
#endif
#ifdef CLD_SM_ATTR_CURRENT_MONTH_MAXIMUM_ENERGY_CARRIER_DEMAND
 zint24 i24CurrentMonthMaxEnergyCarrierDemand;
#endif
#ifdef CLD_SM_ATTR_CURRENT_MONTH_MINIMUM_ENERGY_CARRIER_DEMAND
 zint24 i24CurrentMonthMinEnergyCarrierDemand;
#endif
#ifdef CLD_SM_ATTR_CURRENT_YEAR_MAXIMUM_ENERGY_CARRIER_DEMAND
 zint24 i24CurrentYearMaxEnergyCarrierDemand;
#endif
#ifdef CLD_SM_ATTR_CURRENT_YEAR_MINIMUM_ENERGY_CARRIER_DEMAND
 zint24 i24CurrentYearMinEnergyCarrierDemand;
#endif
/* Load Profile attribute set attribute ID's (D.3.2.2.6) */
#ifdef CLD_SM_ATTR_MAX_NUMBER_OF_PERIODS_DELIVERED
 zuint8 u8MaxNumberOfPeriodsDelivered;
#endif
/* Supply Limit attribute set attribute ID's (D.3.2.2.7) */
#ifdef CLD_SM_ATTR_CURRENT_DEMAND_DELIVERED
 zuint24 u24CurrentDemandDelivered;
#endif
#ifdef CLD_SM_ATTR_DEMAND_LIMIT
 zuint24 u24DemandLimit;
#endif
#ifdef CLD_SM_ATTR_DEMAND_INTEGRATION_PERIOD
 zuint8 u8DemandIntegrationPeriod;
#endif
#ifdef CLD_SM_ATTR_NUMBER_OF_DEMAND_SUBINTERVALS
 zuint8 u8NumberOfDemandSubintervals;
#endif
/* Block Information attribute set attribute ID's (D.3.2.2.8) */
/* No Tier Block */
#if (CLD_SM_ATTR_NO_TIER_BLOCK_CURRENT_SUMMATION_DELIVERED_MAX_COUNT != 0)
 zuint48 au48CurrentNoTierBlockSummationDelivered
[CLD_SM_ATTR_NO_TIER_BLOCK_CURRENT_SUMMATION_DELIVERED_MAX_COUNT];
#endif
 /* Tier 1 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 0)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier1BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 2 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 1)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
zuint48 au48CurrentTier2BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
/* Tier 3 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 2)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier3BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 4 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 3)&&

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
599 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier4BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 5 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 4)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier5BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 6 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 5)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier6BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 7 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 6)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier7BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 8 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 7)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier8BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 9 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 8)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier9BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 10 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 9)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier10BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 11 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 10)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier11BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 12 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 11)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier12BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 13 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 12)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier13BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 14 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 13)&&
 CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))
 zuint48 au48CurrentTier14BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Tier 15 Block Set */
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 14)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
600 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zuint48 au48CurrentTier15BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];
#endif
 /* Alarm attribute set attribute ID's (D.3.2.2.9) */
#ifdef CLD_SM_ATTR_GENERIC_ALARM_MASK
 zbmap16 u16GenericAlarmMask;
#endif
#ifdef CLD_SM_ATTR_ELECTRICITY_ALARM_MASK
 zbmap32 u32ElectricityAlarmMask;
#endif
#ifdef CLD_SM_ATTR_PRESSURE_ALARM_MASK
 zbmap16 u16PressureAlarmMask;
#endif
#ifdef CLD_SM_ATTR_WATER_SPECIFIC_ALARM_MASK
 zbmap16 u16WaterSpecificAlarmMask;
#endif
#ifdef CLD_SM_ATTR_HEAT_AND_COOLING_ALARM_MASK
 zbmap16 u16HeatAndCoolingSpecificAlarmMask;
#endif
#ifdef CLD_SM_ATTR_GAS_ALARM_MASK
 zbmap16 u16GasAlarmMask;
#endif
} tsCLD_SimpleMetering;

where:

42.2.1 ‘Reading Information’ Attribute Set

• u48CurrentSummationDelivered is the total amount of the measured resource (e.g. electrical energy)
delivered to the premises so far, expressed in the units specified in eUnitOfMeasure and in the format
specified in u8SummationFormatting

• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification:

u48CurrentSummationReceived
u48CurrentMaxDemandDelivered
u48CurrentMaxDemandReceived
u48DFTSummation
u16DailyFreezeTime
i8PowerFactor
utctReadingSnapshotTime
utctCurrentMaxDemandDeliveredTime
utctCurrentMaxDemandReceivedTime

• The following are optional attributes that relate to Fast Polling mode (both attributes are not certifiable in SE
1.1.1 or earlier and are for future use):
– u32DefaultUpdatePeriod is the default poll-period, in seconds, that is used in updating metering data

outside of fast polling episodes
– u8FastPollUpdatePeriod is the minimum poll-period, in seconds, that can be used in updating metering

data during fast polling episodes (should not be set to less than 2 seconds)
• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification

(these attributes are not certifiable in SE 1.1.1 or earlier and are for future use):

u48CurrentBlockPeriodConsumptionDelivered
u24DailyConsumptionTarget
e8CurrentBlock

• The following are optional attributes that relate to the ‘Get Profile’ feature:
– eProfileIntervalPeriod is the time-interval over which one set of consumption data will be collected

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
601 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– u32IntervalReadReportingPeriod is the time-interval, in minutes, after which a sleepy End Device
should wake up to provide metering data

• The following are optional attributes are fully described in the ZigBee Smart Energy Profile Specification (all
these attributes except u8SupplyStatus are not certifiable in SE 1.1.1 or earlier and are for future use):

u16PresetReadingTime
u16VolumePerReport
u8FlowRestriction
u8SupplyStatus
u48CurrentInletEnergyCarrierSummation
u48CurrentOutletEnergyCarrierSummation
i16InletTemperature
i16OutletTemperature
i16ControlTemperature
i24CurrentInletEnergyCarrierDemand
i24CurrentOutletEnergyCarrierDemand

42.2.2 ‘Time-Of-Use (TOU) Information’ Attribute Set

• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification
(the attributes for tiers 7 to 15 are not certifiable in SE 1.1.1 or earlier and are for future use):

u48CurrentTier1SummationDelivered
u48CurrentTier1SummationReceived
u48CurrentTier2SummationDelivered
u48CurrentTier2SummationReceived
...
...
...
...
u48CurrentTier15SummationDelivered
u48CurrentTier15SummationReceived

42.2.3 ‘Meter Status’ Attribute Set

• u8MeterStatus is an 8-bit bitmap representing the status of the meter. Enumerated masks are provided that
correspond to the possible settings - see Section 42.10.2 (this attribute is only certifiable for electricity meters
in SE 1.1.1)

• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification
(all the attributes are not certifiable in SE 1.1.1 or earlier and are for future use):

u8RemainingBatteryLife
u24HoursInOperation
u24HoursInFault

42.2.4 ‘Formatting’ Attribute Set

• eUnitOfMeasure indicates the unit of measure for the resource quantity contained above in
u48CurrentSummationDelivered and below in i24InstantaneousDemand. Enumerations for the
possible units are provided - see Section 42.10.3

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
602 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification:

u24Multiplier
u24Divisor

• u8SummationFormatting indicates the formatting for the resource quantity contained above in
u48CurrentSummationDelivered. Enumerations for the possible formats are provided - see Section
42.10.4

• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification:

u8DemandFormatting
u8HistoricalConsumptionFormatting

• eMeteringDeviceType indicates the type of Metering Device in terms of the resource type which it
measures. Enumerations for the possible device types are provided - see Section 42.10.6

• The following pair of elements represents an optional attribute which identifies the location of a Metering
Device (this attribute is not certifiable in SE 1.1.1 or earlier and is for future use):
– sSiteId is a tsZCL_OctetString structure containing information on the site identifier. This element is

paired with au8SiteId (below)
– au8SiteId is an array containing the site identifier. This element is paired with sSiteId (above)

Note: This identifier is known in the UK as the M-PAN for electricity and MPRN for gas, and in South Africa as
as the 'Stand Point'. The field is large enough to accommodate the number of characters typically used in the
UK and Europe (16 digits).

• The following pair of elements represents an optional attribute, which indicates the serial number of a
Metering Device (this attribute is not certifiable in SE 1.1.1 or earlier and is for future use):
– sMeterSerialNumber is a tsZCL_OctetString structure containing information on the serial number

of a Metering Device. This element is paired with au8SiteId (below)
– au8MeterSerialNumber is an array containing the serial number of a Metering Device. This element is

paired with sMeterSerialNumber (above)
• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification

(these attributes are not certifiable in SE 1.1.1 or earlier and are for future use):

e8EnergyCarrierUnitOfMeasure
u8EnergyCarrierSummationFormatting
u8EnergyCarrierDemandFormatting
e8TemperatureUnitOfMeasure
u8TemperatureFormatting

42.2.5 ‘Historical Consumption’ Attribute Set

• i24InstantaneousDemand is an optional attribute containing the current rate of consumption of the
metered resource with respect to time. The unit of measure for the relevant resource is as specified in
eUnitOfMeasure

If this attribute is used, the metering application should update its value on a regular basis, between once
every second and once every five seconds. The attribute value can be negative, meaning that the relevant
resource is currently being supplied from the premises to the utility company - for example, the case of
locally generated electricity from roof-mounted solar panels being supplied to the national grid.

• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification:

u24CurrentDayConsumptionDelivered
u24CurrentDayConsumptionReceived
u24PreviousDayConsumptionDelivered

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
603 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u24PreviousDayConsumptionReceived
utctCurrentPartialProfileIntervalStartTimeDelivered
utctCurrentPartialProfileIntervalStartTimeReceived
u24CurrentPartialProfileIntervalValueDelivered
u24CurrentPartialProfileIntervalValueReceived

• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification
(these attributes are not certifiable in SE 1.1.1 or earlier and are for future use):

u48CurrentDayMaxPressure
u48CurrentDayMinPressure
u48PreviousDayMaxPressure
u48PreviousDayMinPressure
i24CurrentDayMaxDemand
i24PreviousDayMaxDemand
i24CurrentMonthMaxDemand
i24CurrentYearMaxDemand
i24CurrentDayMaxEnergyCarrierDemand
i24PreviousDayMaxEnergyCarrierDemand
i24CurrentMonthMaxEnergyCarrierDemand
i24CurrentMonthMinEnergyCarrierDemand
i24CurrentYearMaxEnergyCarrierDemand
i24CurrentYearMinEnergyCarrierDemand

42.2.6 ‘Load Profile Configuration’ Attribute Set

• u8MaxNumberOfPeriodsDelivered is an optional attribute from the Simple Metering ‘Load Profile
Configuration’ attribute set and is fully described in the ZigBee Smart Energy Profile Specification.

42.2.7 ‘Supply Limit’ Attribute Set

• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification:

u24CurrentDemandDelivered
u24DemandLimit
u8DemandIntegrationPeriod
u8NumberOfDemandSubintervals

42.2.8 ‘Block Information’ Attribute Set

• The following are optional attributes and are fully described in the ZigBee Smart Energy Profile Specification
(these attributes are not certifiable in SE 1.1.1 or earlier and are for future use):

au48CurrentNoTierBlockSummationDelivered[CLD_SM_ATTR_NO_TIER_BLOCK_CU
RRENT_SUMMATION_DELIVERED_MAX_COUNT]
au48CurrentTier1BlockSummationDelivered[CLD_SM_ATTR_NUM_OF
_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier2BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier3BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier4BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier5BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier6BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
604 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

au48CurrentTier7BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier8BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier9BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier10BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier11BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier12BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier13BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier14BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
au48CurrentTier15BlockSummationDelivered[CLD_SM_ATTR_NUM_
OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED]

42.3 Attribute Settings
The Simple Metering cluster contains both mandatory and optional attributes (see Section 42.2). The cluster
structure is shown below with only the mandatory attributes (which are enabled by default):

typedef struct PACK
{
 zuint48 u48CurrentSummationDelivered;
 zbmap8 u8MeterStatus;
 teSE_UnitOfMeasure eUnitOfMeasure;
 zbmap8 u8SummationFormatting;
 teSE_MeteringDeviceType eMeteringDeviceType;
} tsSE_SimpleMetering;

The mandatory attribute settings are outlined below.

eMeteringDeviceType

The element eMeteringDeviceType of the structure tsSE_SimpleMetering indicates the type of Metering
Device in terms of the resource type which it measures: electricity, gas, water, heat, cooling or pressure. This
attribute belongs to the cluster’s Formatting attribute set.

Enumerated values are provided for the full range of possible metering devices - for example,
E_CLD_SM_MDT_GAS for a gas meter. Enumerated values are also provided for devices that mirror a
Metering Device - for example, E_CLD_SM_MDT_GAS_MIRRORED for the mirroring device of a gas
meter. All of these enumerations are defined in the structure teCLD_SM_MeteringDeviceType, detailed in
Section 42.10.6.

u8MeterStatus

The element u8MeterStatus of the structure tsSE_SimpleMetering indicates the current status of the
device by means of an 8-bit value. This attribute has its own attribute set, Meter Status.

The status value is a bitmap with the bit representations indicated in the table below:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
605 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Service
Disconnect

Open *

Leak Detect Power Quality Power
Failure

Tamper
Detect

Battery Low Check Meter

* Set to ‘1’ when service to this site has been disconnected

A bit is set (to ‘1’) to indicate the corresponding error or warning.

A number of macros are defined to reflect the above bit settings - for example, E_CLD_SM_METER_STATUS_
POWER_FAILURE_BIT contains the state of the Power Failure bit (Bit 3). There are also macros for
masking off the appropriate bit - these macros are detailed in Section 42.10.2.

eUnitOfMeasure

The element eUnitOfMeasure of the structure tsSE_SimpleMetering indicates the unit of measure in
which the relevant resource is metered, e.g. kiloWatt-hour for electricity. This attribute belongs to the cluster’s
Formatting attribute set.

Enumerated values are provided for the possible units of measure - for example,
E_CLD_SM_UOM_CUBIC_METER for cubic metre (of gas or water). This example will also configure
measurements to be expressed in binary/hex. However, enumerated values are also provided to configure
measurements to be expressed in binary coded decimal - for example, E_CLD_SM_UOM_CUBIC_METER_
BCD configures measurements in cubic metres and expressed in binary coded decimal. All of these
enumerations are defined in the structure teCLD_SM_UnitOfMeasure, detailed in Section 42.10.3.

u8SummationFormatting

The element u8SummationFormatting of the structure tsSE_SimpleMetering is an 8-bit value indicating
the position of the decimal point in the metered value (see u48CurrentSummationDelivered). This attribute
belongs to the cluster’s Formatting attribute set.

This value contains bit fields, as follows:

• Bits 2-0: 3-bit value indicating number of digits to right of point
• Bits 6-3: 3-bit value indicating number of digits to left of point
• Bit 7: Setting this bit (to ‘1’) suppresses leading zeros

A number of macros are defined to accommodate the above format information - these macros are detailed in
Section 42.10.4.

u48CurrentSummationDelivered

The element u48CurrentSummationDelivered of the structure tsSE_SimpleMetering is a 48-bit value
representing the total quantity consumed, so far, of the metered resource (e.g. electrical energy). This attribute
belongs to the Reading Information attribute set.

The attribute value is interpreted with the aid of the elements eUnitOfMeasure and
u8SummationFormatting, which indicate the unit of measure and the position of the decimal point
respectively.

42.4 Remotely Reading Simple Metering Attributes
Dedicated functions are provided for remotely reading the Simple Metering attributes:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
606 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

1. The application must first call eSE_ReadMeterAttributes() to submit a ‘read attributes’ request to the
relevant remote endpoint. The resulting read process is as described for eZCL_SendReadAttributesRequest()
in Section 2.3.2.

2. On receiving the ‘read attributes’ response, the event E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE
is generated, which causes the callback function for the local endpoint to be invoked. This callback function
should include a call to eSE_HandleReadAttributesResponse() which checks whether all the Simple Metering
attributes are included in the response. If the response is not complete, the function re-sends ‘read attributes’
requests until all attribute values are obtained.

Note that read access to cluster attributes must be explicitly enabled at compile-time as described in Section
1.3.

42.5 Mirroring Metering Data
‘Mirroring’ is a facility that stores and provides access to metering data which originates from Metering Devices
that sleep. A Metering Device cannot be accessed during periods of sleep and therefore its data cannot
normally be read at these times. Mirroring involves holding the data from sleepy Metering Devices centrally on a
server, allowing access to the data at all times.

Normally, the ESP (Co-ordinator) acts as the mirroring server. One or more sleepy Metering Devices (End
Devices) can mirror their data on this server. A Metering Device must send its latest data to the mirroring server
immediately before entering sleep mode. This is illustrated in Figure 6 below.

ESP
Mirroring
Server

HAN

Metering
Device

Metering
Device

Metering
Device

Metering Device
sends data to
mirroring server
before going to sleep

Metering
Device

Mirroring server
holds data from

all sleepy
Metering Devices

To/from
utility company

Key

Active

Sleeping

Figure 5. Mirroring of Metering Data

Every mirror (one for each Metering Device) on the mirroring server has its own endpoint. The maximum
number of mirror endpoints is defined at compile-time (see Section 42.12). Note that these endpoints
are in addition to the main endpoint for the ESP (registered using eSE_RegisterEspMeterEndPoint() or
eSE_RegisterEspEndPoint()).

Mirroring versions of the Simple Metering cluster server and/or client are implemented on the mirror endpoints.
This is illustrated in Figure 7 below where the ESP, as the mirroring server, incorporates both the Simple
Metering cluster server and client, the Metering device incorporates a cluster server and the IPD incorporates a
cluster client.

The ESP device structure tsSE_EspMeterDevice contains a section on mirroring support which includes an
array of tsSE_Mirror structures (see Section 42.11.2). This array contains one element/structure per

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
607 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

mirror endpoint, with the first mirror endpoint occupying array element 0 and the array size corresponding to
the maximum number of mirror endpoints allowed on the mirroring server. The information stored in an array
element includes the IEEE address of the Metering Device to which the mirror endpoint has been allocated.

Simple Metering
Server

Simple Metering
Client

Simple Metering
Server

Simple Metering
Client

ESP

Metering Device IPD

Figure 6. Simple Metering Cluster in Mirroring

42.5.1 Configuring Mirroring on ESP

The ESP normally acts as the mirroring server, containing a unique mirror endpoint for each (mirrored) Metering
Device. Configuration of the mirroring server is carried out both within the application that runs on the device
and as compile-time options - refer to Section 42.12 for the relevant compile-time options.

On the ESP, mirroring can be enabled in the application code when the device is registered using the function
eSE_RegisterEspMeterEndPoint() or eSE_RegisterEspEndPoint(). These functions require specification
of the first endpoint that is to be used for mirroring. Starting at this endpoint, consecutive endpoints to be
used for mirrors are reserved, up to the maximum number of mirrors defined by the compile-time option
CLD_SM_NUMBER_OF_MIRRORS. For example, if 5 is specified as the first mirror endpoint and up to 4 mirrors
can be used then endpoints 5, 6, 7 and 8 are reserved for mirrors. Note that mirroring is disabled by setting the
start endpoint to 0.

Note: The endpoints reserved for mirroring must also be included in the configuration diagram in the ZPS
Configuration Editor. However, they must not be enabled since they are enabled when mirrors are created on
them.

The tsSE_Mirror structures in the ESP device structure tsSE_EspMeterDevice contain the IEEE
addresses of the Metering Devices being mirrored on the ESP (these IEEE addresses are automatically
initialised to zero). The ESP application must save an array of these IEEE addresses to non-volatile memory
using the NVM module - this will allow the mirrored Metering Devices to be identified by the mirroring server
following a reset of the ESP.

The ESP must allocate mirror endpoints to Metering Devices in response to requests from the Metering Devices
(refer to Section 42.5.2 for details of requesting a mirror), as described below:

1. On receiving a mirror request on the ESP, the ZCL automatically allocates the next available mirror
endpoint to the Metering Device (the IEEE address of the Metering Device is automatically written to the
tsSE_Mirror structure which corresponds to the allocated mirror endpoint).

2. The event E_CLD_SM_CLIENT_RECEIVED_COMMAND containing the command
E_CLD_SM_REQUEST_MIRROR is then generated on the ESP, causing the callback function on the ESP to
be invoked.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
608 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

3. The callback function must check whether all mirror endpoints have now been exhausted, in order to update
the relevant status on the ESP. To do this, the function eSM_GetFreeMirrorEndPoint() must be called to obtain
the number of the next free mirror endpoint. If the value 0xFFFF is returned, this means that no more mirror
endpoints are available (for subsequent requests) and the attribute u8PhysicalEnvironment of the Basic
cluster must be set to zero (to indicate to other Metering Devices that no more mirrors are available on the
ESP). This step is illustrated in the code fragment below.

eSM_GetFreeMirrorEndPoint (&u16FoundEP);
if (u16FoundEP == 0xFFFF)
{
 psSE_EspMeterDevice->sBasicCluster.u8PhysicalEnvironment = 0x00;
}
else
{
 psSE_EspMeterDevice->sBasicCluster.u8PhysicalEnvironment = 0x01;
}

4. The callback function must copy the IEEE addresses from the tsSE_Mirror structures (which are
automatically kept up-to-date) to the application’s array of IEEE addresses for mirrored devices, and this array
should be re-saved in non-volatile memory using the NVM module. This step is illustrated below in the code
fragment under "Writing and Preserving Array of IEEE Addresses".

5. A response is automatically sent to the requesting Metering Device, where this response contains the number
of the assigned endpoint.

The ESP is then ready to receive metering data from the remote Metering Device, as described in Section
42.5.3.

Writing and Preserving Array of IEEE Addresses

The ESP application must maintain an array of the IEEE addresses of the mirrored Metering Devices and keep
a copy of this array in NVM. The array can be updated from the tsSE_Mirror structures for the mirror
endpoints and saved to NVM as illustrated in the code fragment below:

case E_UPDATE_EVENT_REQUEST_MIRROR:
case E_UPDATE_EVENT_REMOVE_MIRROR:
{
 uint8 u8LoopCntr;
 for (u8LoopCntr =0; u8LoopCntr < CLD_SM_NUMBER_OF_MIRRORS; u8LoopCntr++)
 {
 sMirrorState.u64ExtAddr[u8LoopCntr] =
 sMeter.sSE_Mirrors[u8LoopCntr].u64SourceAddress;
 }
 sMirrorState.bNetworkUp = TRUE;
 NvSaveOnIdle(&sMirrorState, TRUE);
}
break;

Recreating Mirrors Following an ESP Reset

If the ESP is reset, the mirrors that have been created on the device are lost. However, if the IEEE addresses
(of the mirrored Metering Devices) associated with the mirror endpoints have been preserved in NVM, this data
can be read by the ESP application following the reset and the mirrors recreated. Given the relevant endpoint
number and IEEE address, a mirror can be recreated using the function eSM_CreateMirror().

Note: A matching function eSM_RemoveMirror() also exists to allow the application to remove a mirror.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
609 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

42.5.2 Configuring Mirroring on Metering Devices

Configuration of a Metering Device for mirroring is carried out both within the application that runs on the device
and as a compile-time option - refer to Section 42.12 for the relevant compile-time options.

It is the responsibility of the Metering Device to request a mirror on the ESP, but first it must establish
whether the ESP is accepting mirror requests. To do this, the application should use the function
eZCL_SendReadAttributesRequest() to obtain the value of the u8PhysicalEnvironment attribute of the
Basic cluster on the ESP - if this value is non-zero then the ESP is open to receiving mirror requests.

Provided that the ESP is accepting mirror requests, a Metering Device application can request a mirror using
the function eSM_ServerRequestMirrorCommand(). This function sends a mirror request to the ESP with the
aim of being allocated a mirror endpoint. The handling of this request on the ESP is described in Section 42.5.1.

The Metering Device application must then wait for a response from the ESP. This response is
indicated by the event E_CLD_SM_SERVER_RECEIVED_COMMAND containing the command
E_CLD_SM_REQUEST_MIRROR_RESPONSE, causing the callback function for the receiving endpoint to be
invoked.

If the request has resulted in the successful allocation of a mirror endpoint on the ESP, the
tsSM_RequestMirrorResponseCommand structure (see Section 42.11.6) in this event will contain the
allocated endpoint number. In this case:

• The callback function should write the allocated endpoint number and mirroring server (ESP) IEEE address to
non-volatile memory for persistent data storage using the NVM module.

• The Metering Device application can now send metering data for storage on the ESP whenever required, as
described in Section 42.5.3.

Note: If the Metering Device subsequently requests another mirror on the same ESP, the same mirror endpoint
number will be returned - a Metering Device cannot have more than one mirror on the same ESP.

If the request did not result in an allocated mirror endpoint on the ESP, the endpoint number returned in the
above structure will be 0xFFFF and no action needs to be taken by the callback function.

42.5.3 Mirroring Data

Once a mirror for a Metering Device has been set up, as described in Section 42.5.1 and Section 42.5.2, the
mirror can be populated and refreshed with data in two ways:

• The ESP application can submit a ‘read attributes’ request to the Metering Device (when it is not asleep), as
described in Section 2.3.2.

• The Metering Device can send metering data as unsolicited attribute reports to the mirror at any time (for
example, before entering sleep mode). This method is described further below.

The Metering Device application sends unsolicited attribute reports for the Simple Metering cluster to the mirror
using the function eZCL_ReportAllAttributes(), described in Section 5.2.

On receiving this data, the event E_ZCL_CBET_ATTRIBUTE_REPORT_MIRROR is generated on the ESP,
causing the callback function on the ESP to be invoked. The callback function must then check that the data
has come from a valid source (a Metering Device which has a mirror on the ESP) by calling the function
eSM_IsMirrorSourceAddressValid(). According to the outcome of this check, the function updates the event
status:

sZCL_CallBackEvent.uMessage.sReportAttributeMirror.eStatus

• If eStatus is set to E_ZCL_ATTR_REPORT_OK, the reported attribute values (metering data) are
automatically stored on the relevant mirror endpoint and an E_ZCL_CBET_REPORT_INDIVIDUAL_
ATTRIBUTE event is generated for each attribute reported.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
610 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• If eStatus is set to anything else, a ZCL default response is automatically sent back to the reporting device
to indicate that mirroring is not authorised for this device (E_ZCL_CMDS_NOT_AUTHORIZED).

Maintaining the Mirrored eMeteringDeviceType Attribute

When a mirror is created on the ESP, the Simple Metering cluster attribute eMeteringDeviceType in the
mirror will be set to the appropriate value for the Metering Device to be mirrored (e.g. E_CLD_SM_MDT_GAS).
However, in order to distinguish the mirror cluster on the ESP from the original cluster on the Metering
Device, the ESP application must replace this value in the mirror with the equivalent ‘_MIRRORED’ value
(e.g. E_CLD_SM_MDT_GAS_MIRRORED). In fact, this replacement must be performed every time the ESP
receives a new set of attribute values from the Metering Device (by either of the two methods described above),
since this attribute value in the mirror will be over-written each time and must subsequently be corrected.

42.5.4 Reading Mirrored Data

A ZigBee device such as an IPD may need to obtain data from a mirror on the ESP, particularly when the
mirrored Metering Device is sleeping. The data is requested by means of the standard ‘read attributes’ method,
described in Section 2.3.2 - that is, by calling the ZCL function eZCL_SendReadAttributesRequest() on the
requesting device.

If an attempt is made to read an attribute that currently has no value in the mirror, the resulting E_
ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE event will contain the attribute status
E_ZCL_CMDS_UNSUPPORTED_ATTRIBUTE.

42.5.5 Removing a Mirror

The removal of a mirror on the ESP is initiated by the application on the corresponding Metering Device using
the function eSM_ServerRemoveMirrorCommand(). This function sends a ‘remove mirror’ request to the
relevant mirror endpoint on the ESP.

Note: A mirror can be removed from an endpoint on the ESP but the endpoint will remain reserved for mirroring
- it may later be re-assigned to another mirror.

On receiving this request, the ESP processes the request as follows:

1. The ZCL first verifies the source address of the request to ensure that it has come from the Metering
Device which corresponds to the mirror to be removed. If the source address is not valid then a ZCL default
response is automatically sent to the requesting Metering Device to indicate that the request was not authorised
(E_ZCL_CMDS_NOT_AUTHORIZED) - otherwise, the ESP continues to process the request as described in
the steps below.

2. The ZCL then removes the mirror from the specified endpoint, thus freeing the endpoint for future use by
another mirror.

3. The event E_CLD_SM_CLIENT_RECEIVED_COMMAND containing the command
E_CLD_SM_REMOVE_MIRROR is generated on the ESP, causing the callback function on the ESP to be
invoked.

4. The callback function must set the u8PhysicalEnvironment attribute of the Basic cluster to 0x01 in order
to indicate that the ESP has the capacity to accept mirror requests (since the removal of the mirror leaves at
least one mirror endpoint free).

5. The callback function must copy the IEEE addresses from the tsSE_Mirror structures (which are
automatically kept up-to-date) to the application’s array of IEEE addresses for mirrored devices, and this array
should be re-saved in non-volatile memory using the NVM module. This step is illustrated in the code fragment
under "Writing and Preserving Array of IEEE Addresses" on page 1011.

6. A response is automatically sent to the requesting Metering Device to confirm the mirror removal.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
611 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The response (reporting successful mirror removal) results in the generation of the event
E_CLD_SM_SERVER_RECEIVED_COMMAND containing the command E_CLD_SM_MIRROR_REMOVED
on the Metering Device.

Note: The function eSM_RemoveMirror() is also provided, which allows the ESP application to directly remove
a mirror.

42.6 Consumption Data Archive (‘Get Profile’)
Devices that support the Simple Metering cluster can maintain and exchange historical consumption (profiling)
data using the ‘Get Profile’ feature. A consumption data archive, which is distinct from the data of the
Simple Metering cluster attributes, is maintained in a circular buffer on the cluster server. A cluster client
can make a ‘Get Profile’ request to the server to obtain data from this archive. Normally, the cluster server is
implemented on a Metering Device and the cluster client is implemented on an IPD. Typically, the IPD requests
a consumption history from the Metering Device in order to display this information to the consumer.

The consumption data in the archive corresponds to a series of consecutive time intervals with their
corresponding consumption values. Thus, the archive consists of the last few consumption measurements - it is
the responsibility of the application running on the server device to update the archive (see Section 42.6.1).

If the ‘Get Profile’ feature is required, it must be enabled in the compile-time options as described in Section
42.12. These options include the maximum number of consumption intervals that can be archived on the server
(and therefore requested).

42.6.1 Updating Consumption Data on Server

The consumption archive is held on the Smart Metering cluster server in a circular buffer operating on a FIFO
basis. This buffer provides storage space for a sequence of entries containing consumption data for consecutive
time intervals, where each buffer entry is a structure of the type tsSEGetProfile consisting of:

• End-time of consumption interval (as UTC time)
• Units delivered to the customer
• Units received from the customer (when customer sells units to utility company)

The maximum number of entries that can be stored in the buffer is determined at compile-time (see Section
42.12). When a new entry is added to a full buffer, this entry replaces the oldest entry currently in the buffer.

The application must keep the buffer up-to-date by adding a new entry using the function
eSM_ServerUpdateConsumption(). Before this function is called, the relevant consumption data must be
updated in one or both of the following Simple Metering cluster attributes:

u24CurrentPartialProfileIntervalValueDelivered

Contains the number of units delivered to the customer over the last interval

u24CurrentPartialProfileIntervalValueReceived

Contains the number of units received from the customer over the last interval

An attribute only needs to be updated if the corresponding consumption has been implemented (for example,
the utility company often only delivers units to the customer and does not receive any from the customer).

eSM_ServerUpdateConsumption() takes the current time as an input and then adds an entry containing the
consumption data (in the above attributes) to the buffer, where the supplied current time becomes the end-time
in the entry (thus, the duration of the consumption intervals is dictated by the frequency at which this function is
called - see below).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
612 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: The current time can be obtained by the application using the function u32ZCL_GetUTCTime(),
described in Section 18.7.

eSM_ServerUpdateConsumption() must be called periodically by the application. The period must match the
value to which the Simple Metering eProfileIntervalPeriod attribute has been set (see Section 42.2).
Standard periods, ranging from 2.5 minutes to one day, are provided as a set of enumerations (see Section
42.10.10).

42.6.2 Sending and Handling a ‘Get Profile’ Request

The application on a device which supports the Simple Metering cluster as a client, such as an IPD, can send
a ‘Get Profile’ request to the cluster server by calling the function eSM_ClientGetProfileCommand(). This
function allows consumption data to be requested from the archive for one or more intervals.

The inputs for this function include:

• A value indicating whether the units delivered or units received (by the utility company) are being requested
(see Section 42.6.1)

• An end-time (as a UTC time) - the most recent consumption data will be reported which has an end-time
equal to or earlier than this end-time (a specified end-time of zero will result in the most recent consumption
data)

• The number of consumption intervals to report (this number will be reported only if data for sufficient intervals
is available) - the end-time rule, specified above, will be applied to all the reported intervals

On receiving the request, the event E_CLD_SM_SERVER_RECEIVED_COMMAND containing the
command E_CLD_SM_GET_PROFILE is generated on the server, causing the callback function
on the device to be invoked (for a Metering Device, this is the callback function registered through
eSE_RegisterEspMeterEndPoint() or eSE_RegisterMeterEndPoint()). The callback function only needs
to be concerned with this event if the archive data needs to be modified before the ZCL automatically sends
the requested data in a ‘Get Profile’ response. The response indicates the number of consumption intervals
reported and contains the consumption data for these intervals, as well as the end-time of the most recent
interval reported.

On receiving the response, the event E_CLD_SM_CLIENT_RECEIVED_COMMAND containing the
command E_CLD_SM_GET_PROFILE_RESPONSE is generated on the requesting client, causing the
callback function on the device to be invoked (for an IPD, this is the callback function registered through
eSE_RegisterIPDEndPoint()). The callback function should extract the requested data from the event using
the function u32SM_GetReceivedProfileData() in order to process or store the data. This function should be
called for each consumption interval reported in the event - the code fragment below illustrates repeated calls to
the function until all the reported data has been obtained:

for (i =0 ;i < sGetProfileResponseCommand.u8NumberOfPeriodsDelivered; i
++)
{
 //Read data from event
X(i)= u32SM_GetReceivedProfileData(tsSM_GetProfileResponseCommand *psSMGetProfileResponseCommand)
}

Alternatively, the function can be called repeatedly until it returns 0xFFFFFFFF, which indicates that there is no
more data to be extracted from the event.

42.7 Simple Metering Events
The Simple Metering cluster has its own events that are handled through the callback mechanism described in
Chapter 3. If a device uses the Simple Metering cluster then Simple Metering event handling must be included
in the callback function for the associated endpoint, where this callback function is registered through the

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
613 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

relevant endpoint registration function (for example, through eSE_RegisterMeterEndPoint() for a standalone
Metering Device). The relevant callback function will then be invoked when a Simple Metering event occurs.

For a Simple Metering event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to a tsSM_CallBackMessage structure which contains the Simple Metering parameters:

typedef struct
{
 teSM_CallBackEventType eEventType;
 uint8 u8CommandId;
 union
 {
 tsSM_GetProfileResponseCommand sGetProfileResponseCommand;
 tsSM_RequestFastPollResponseCommand sRequestFastPollResponseCommand;
 tsSM_GetProfileRequestCommand sGetProfileCommand;
 tsSM_RequestMirrorResponseCommand sRequestMirrorResponseCommand;
 tsSM_MirrorRemovedResponseCommand sMirrorRemovedResponseCommand;
 tsSM_RequestFastPollCommand sRequestFastPollCommand;
 tsSM_Error sError;
 }uMessage;
}tsSM_CallBackMessage;

Information on the elements of the above structure is provided below.

42.7.1 Event Types

The eEventType field of the tsSM_CallBackMessage structure specifies the type of Simple Metering event
that has been generated. These event types are enumerated in the teSM_CallBackEventType structure (see
Section 42.10.7) and are listed in the table below.

Event Type Enumeration Description

E_CLD_SM_CLIENT_RECEIVED_COMMAND Generated when a command has been received on a
cluster client

E_CLD_SM_SERVER_RECEIVED_COMMAND Generated when a command has been received on the
cluster server

E_CLD_SM_FAST_POLLING_TIMER_EXPIRED Generated on the cluster server at the end of a fast
polling episode (for future use)

The possible command types for the above event types are listed in Section 42.7.2.

42.7.2 Command Types

For each event type listed in Section 42.7.1, one of a number of command types could have been received. The
relevant command type is specified through the u8CommandId field of the tsSM_CallBackMessage structure.
The possible command types for each event type are detailed below.

E_CLD_SM_CLIENT_RECEIVED_COMMAND

The E_CLD_SM_CLIENT_RECEIVED_COMMAND event is generated when a command has been received
on a cluster client. The possible command types for this event type are listed in the table below, which gives the
enumerations and the associated uMessage union elements in the tsSM_CallBackMessage structure:

u8CommandId Enumeration uMessage Union Element

E_CLD_SM_GET_PROFILE_RESPONSE sGetProfileResponseCommand

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
614 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8CommandId Enumeration uMessage Union Element

E_CLD_SM_REQUEST_MIRROR sRequestMirrorAdd

E_CLD_SM_REMOVE_MIRROR sRequestMirrorRemove

E_CLD_SM_REQUEST_FAST_POLL_MODE_
RESPONSE

sRequestFastPollResponseCommand
(for future use)

E_CLD_SM_CLIENT_ERROR sError

The above command enumerations are fully described in Section 42.10.8.

E_CLD_SM_SERVER_RECEIVED_COMMAND

The E_CLD_SM_SERVER_RECEIVED_COMMAND event is generated when a command has been received
on the cluster server. The possible command types for this event type are listed in the table below, which gives
the enumerations and the associated uMessage union elements in the tsSM_CallBackMessage structure:

u8CommandId Enumeration uMessage Union Element

E_CLD_SM_GET_PROFILE sGetProfileCommand

E_CLD_SM_REQUEST_MIRROR_RESPONSE sRequestMirrorResponseCommand

E_CLD_SM_MIRROR_REMOVED sMirrorRemovedResponseCommand

E_CLD_SM_REQUEST_FAST_POLL_MODE sRequestFastPollCommand (for future use)

E_CLD_SM_SERVER_ERROR sError

The above command enumerations are fully described in Section 42.10.9.

E_CLD_SM_FAST_POLLING_TIMER_EXPIRED

The E_CLD_SM_FAST_POLLING_TIMER_EXPIRED event is generated on the cluster server at the end of a
fast polling episode. It has no associated data structure. Fast polling is not certifiable in SE 1.1.1 or earlier and
this event is reserved for future use.

42.8 Functions
The following Simple Metering cluster functions are provided:

1. eSE_SMCreate
2. eSE_ReadMeterAttributes
3. eSE_HandleReadMeterAttributesResponse
4. eSM_ServerRequestMirrorCommand
5. eSM_ServerRemoveMirrorCommand
6. eSM_CreateMirror
7. eSM_RemoveMirror
8. eSM_GetFreeMirrorEndPoint
9. eSM_IsMirrorSourceAddressValid

10. eSM_ServerUpdateConsumption
11. eSM_ClientGetProfileCommand
12. u32SM_GetReceivedProfileData

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
615 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

42.8.1 eSE_SMCreate

teZCL_Status eSE_SMCreate(
 uint8 u8Endpoint,
 bool_t bIsServer,
 uint8 *pu8AttributeControlBits,
 tsZCL_ClusterInstance *psClusterInstance,
 tsZCL_ClusterDefinition *psClusterDefinition,
 tsSM_CustomStruct *psCustomDataStruct,
 void *pvEndPointSharedStructPtr);

Description

This function creates an instance of the Simple Metering cluster on an endpoint. The cluster instance is created
on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a
server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a Simple
Metering cluster instance on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions. For more details of creating cluster instances on
custom endpoints, refer to Appendix D.

Note: This function must not be called for an endpoint on which a standard ZigBee device (for example, an
IPD) is used. In this case, the device and its supported clusters must be registered on the endpoint using the
relevant device registration function from those described in the ZigBee Devices User Guide

Note: (JNUG3131).

When used, this function must be the first Simple Metering cluster function called in the application, and must
be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type
uint8) for each attribute of the cluster. The array length should therefore equate be the total number
of attributes supported by the Simple Metering cluster, which can be obtained by using the macro
SM_NUM_OF_ATTRIBUTES.

The array declaration should be as follows:

uint8 au8AppSMClusterAttributeControlBits[SM_NUM_OF_ATTRIBUTES];

The function initializes the array elements to zero.

Parameters

• u8Endpoint: Number of local endpoint on which the cluster instance is to be created, in the range 1 to 240.
• bIsServer : Type of cluster instance (server or client) to be created:
• : TRUE - server
• : FALSE - client
• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster

(see above).
• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see

Section 6.1.16). This structure is updated by the function by initialising individual structure fields.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
616 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this
case, this structure must contain the details of the Simple Metering cluster. This parameter can refer to a pre-
filled structure called sCLD_SimpleMetering which is provided in the SimpleMetering.h file.

• psCustomDataStructure: Pointer to structure which contains custom data for the Simple Metering cluster. This
structure is used for internal data storage and also contains data relating to a received command/message.
No knowledge of the fields of this structure is required.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_SimpleMetering which defines the attributes of Simple
Metering cluster. The function will initialize the attributes with default values.

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

42.8.2 eSE_ReadMeterAttributes

teZCL_Status eSE_ReadMeterAttributes(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used to send a ‘read attributes’ request to the Simple Metering cluster on a remote
endpoint. The function requests all Simple Metering attributes to be read - alternatively, the function
eZCL_SendReadAttributesRequest() can be used if only specific attributes are required. Note that read
access to cluster attributes on the remote node (server) and local node (client) must be enabled at compile-
time, as described in Section 1.3.

You must specify the endpoint on the local node from which the request is to be sent. This is also used to
identify the instance of the local shared device structure which holds the relevant attributes. The obtained
attribute values are written to this shared structure by the function.

You must also specify the address of the destination node and the destination endpoint number. It is possible
to use this function to send a request to bound endpoints or to a group of endpoints on remote nodes - in the
latter case, a group address must be specified. Note that when sending requests to multiple endpoints through
a single call to this function, multiple responses will subsequently be received from the remote endpoints.

You are also required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for
the request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to
be paired with a request. This is useful when sending more than one request to the same destination endpoint.

Following the first response to this function call, your application should call the function
eSE_HandleReadAttributesResponse() to ensure that all the Simple Metering attributes are received from the
remote endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which the request is sent

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
617 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8DestinationEndPointId: Number of the remote endpoint to which the request is sent. Note that this
parameter is ignored when sending to address types E_ZCL_AM_BOUND and E_ZCL_AM_GROUP

• psDestinationAddress: Pointer to a structure containing the address of the remote node to which the request
is sent

• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_CLUSTER_ID_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTE_WO
• E_ZCL_ERR_ATTRIBUTES_ACCESS
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_PARAMETER_RANGE

42.8.3 eSE_HandleReadMeterAttributesResponse

teSE_Status eSE_HandleReadAttributesResponse(
 tsZCL_CallBackEvent *psEvent,
 uint8 *puTransactionSequenceNumber);

Description

This function should be called after eSE_ReadMeterAttributes(). The function examines the response to a
‘read attributes’ request for the Simple Metering cluster and determines whether the response is complete - that
is, whether it contains all the Simple Metering attributes (the response may be incomplete if the returned data
is too large to fit into a single APDU). If the response is not complete, the function will re-send ‘read attributes’
requests until all attribute values have been obtained. Any further attribute values obtained are written to the
local shared device structure containing the attributes.

This function call should normally be included in the user-defined callback function that is invoked when the
event E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE is generated. This is the callback function which is
specified when the (requesting) endpoint is registered using the appropriate endpoint registration function. The
callback function must pass the generated event into eSE_HandleReadAttributesResponse().

You are also required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for
the request/response.

Parameters

• psEvent: Pointer to the generated event E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE
• pu8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of

the request/response

Returns

• E_ZCL_SUCCESS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
618 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_CLUSTER_ID_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_ATTRIBUTE_WO
• E_ZCL_ERR_ATTRIBUTES_ACCESS
• E_ZCL_ERR_ATTRIBUTE_NOT_FOUND
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_PARAMETER_RANGE

42.8.4 eSM_ServerRequestMirrorCommand

teZCL_Status eSM_ServerRequestMirrorCommand(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress);

Description

This function can be used by a Metering Device to request a mirror on the ESP, for the central storage of its
metering data. A mirror is useful for a Metering Device which sleeps, in order to allow access to its metering
data while the device is sleeping.

The function sends an ‘Add Mirror’ request to the ESP. The address of the ESP device must be specified as
well as the endpoint that will receive and process the request - this is the main endpoint on which the ESP is
registered on the Co-ordinator. If successful, the request will result in the allocation of a mirror endpoint (on the
ESP) to the Metering Device.

Note: Before using this function to send an ‘Add Mirror’ request, the Metering Device application
should check whether the ESP is currently accepting these requests by calling the function
eZCL_SendReadAttributesRequest() to obtain the value of the u8PhysicalEnvironment attribute of the
Basic cluster on the ESP. This attribute value will be non-zero if ‘Add Mirror’ requests are being accepted.

eSM_ServerRequestMirrorCommand() is a non-blocking function and so returns immediately
after the request has been sent. The application must then wait for a response, indicated
by the event E_CLD_SM_SERVER_RECEIVED_COMMAND containing the command
E_CLD_SM_REQUEST_MIRROR_RESPONSE. If a mirror was successfully created, the number of the
allocated mirror endpoint on the ESP is included in the event.

Mirroring and mirror set-up are fully described in Section 42.5.

Parameters

• u8SourceEndpoint: Number of local endpoint through which request is sent
• u8DestinationEndpoint: Number of ESP endpoint to which request is sent (main endpoint of ESP)
• psDestinationAddress: Pointer to a structure containing the address of the ESP device (to which the request is

sent)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_ZTRANSMIT_FAIL
• E_ZCL_ERR_CLUSTER_NOT_FOUND

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
619 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• E_ZCL_ERR_CLUSTER_ID_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_EP_RANGE

42.8.5 eSM_ServerRemoveMirrorCommand

teZCL_Status eSM_ServerRemoveMirrorCommand(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress);

Description

This function can be used on a Metering Device to request the removal of the corresponding mirror on the ESP.
The function should only be used to remove a mirror that has been previously set up by the Metering Device
application using the function eSM_ServerRequestMirrorCommand().

The function sends a ‘Remove Mirror’ request to the ESP. The address of the ESP must be specified as well as
the endpoint number of the mirror to be removed.

This is a non-blocking function and so returns immediately after the request has been sent. The application
must then wait for a response.

• If the request was successful, a response will be received from the ESP resulting in the
generation of the event E_CLD_SM_SERVER_RECEIVED_COMMAND containing the command
E_CLD_SM_MIRROR_REMOVED

• If the request was unsuccessful, a ZCL default response will be received from the ESP to indicate that the
request was not authorised (E_ZCL_CMDS_NOT_AUTHORIZED)

Mirror removal is fully described in Section 42.5.5.

Parameters

• u8SourceEndpoint: Number of local endpoint through which request is sent
• u8DestinationEndpoint: Number of ESP endpoint which contains the mirror to be removed
• psDestinationAddress: Pointer to a structure containing the address of the ESP device (to which the

request is sent)

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_ZTRANSMIT_FAIL
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_CLUSTER_ID_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_EP_RANGE

42.8.6 eSM_CreateMirror

teSM_Status eSM_CreateMirror(
 uint8 u8MirrorEndpoint,
 uint64 u64RemoteIeeeAddress);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
620 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on the mirroring server (ESP) to create a mirror with the specified endpoint number
for the Metering Device with the specified IEEE address. The endpoint number must be within the valid range
for mirror endpoints on the ESP.

An error will be returned if there is no free mirror endpoint on which to create a mirror.

The function is normally used by an ESP application following a device reset, in order to recreate mirrors that
were lost during the reset. This recovery assumes that the relevant IEEE addresses (for Metering Devices)
associated with the mirror endpoints can be retrieved from non-volatile memory, where they were saved before
the reset.

Parameters

• u8MirrorEndpoint: Number of endpoint on which mirror will be created (must be within valid range for mirror
endpoints)

• u64RemoteIeeeAddress: IEEE address of Metering Device to be mirrored

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_RANGE
• E_CLD_SM_STATUS_EP_NOT_AVAILABLE

42.8.7 eSM_RemoveMirror

teSM_Status eSM_RemoveMirror(
 uint8 u8MirrorEndpoint,
 uint64 u64RemoteIeeeAddress);

Description

This function can be used on the mirroring server (ESP) to remove the mirror with the specified endpoint
number for the Metering Device with the specified IEEE address. The endpoint will then become free to be re-
allocated for another mirror.

An error will be returned if the specified mirror endpoint cannot be found.

Parameters

• u8MirrorEndpoint: Number of endpoint which hosts mirror to be removed (must be within valid range for mirror
endpoints)

• u64RemoteIeeeAddress: : IEEE address of mirrored Metering Device

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_PARAMETER_RANGE
• E_CLD_SM_STATUS_EP_NOT_AVAILABLE
• E_ZCL_FAIL

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
621 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

42.8.8 eSM_GetFreeMirrorEndPoint

teZCL_Status eSM_GetFreeMirrorEndPoint(
 uint16 *pu16FreeEP);

Description

This function can be used on the mirroring server (ESP) to obtain the number of the next available mirror
endpoint. If there are no free mirror endpoints, the function sets the returned endpoint number to 0xFFFF.

The function is normally used in the ESP callback function to check the availability of mirror endpoints before
updating the u8PhysicalEnvironment attribute of the Basic cluster (this attribute is set to zero if no more
mirror endpoints are available).

Use of this function is described in Section 42.5.1.

Parameters

• pu16FreeEP: Pointer to location to receive next free endpoint number

Returns

• E_ZCL_SUCCESS

42.8.9 eSM_IsMirrorSourceAddressValid

eSM_IsMirrorSourceAddressValid(
 tsZCL_ReportAttributeMirror *psZCL_ReportAttributeMirror);

Description

This function can be used on the ESP to handle mirroring data reported from a Metering Device. If mirroring is
enabled, the function should be included in the callback function on the ESP.

When the ESP receives mirroring data from a Metering Device, the event
E_ZCL_CBET_ATTRIBUTE_REPORT_MIRROR is generated, causing the callback function to be invoked. The
callback function should call this function to deal with the event.

The function first checks that the data comes from a Metering Device which has a mirror on the ESP (the source
IEEE address of the data is used for this check) and then updates the event status accordingly:

sZCL_CallBackEvent.uMessage.sReportAttributeMirror.eStatus

If the source device is valid then this status is set to E_ZCL_ATTR_REPORT_OK and the metering
data is automatically stored on the relevant mirror endpoint. Otherwise, a ZCL default response
is returned to the Metering Device to indicate that mirroring is not authorised for this device
(E_ZCL_CMDS_NOT_AUTHORIZED).

The mirroring of metering data is fully described in Section 42.5.3.

Parameters

• psZCL_ReportAttributeMirror: Pointer to sReportAttributeMirror element of the event

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
622 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS

42.8.10 eSM_ServerUpdateConsumption

teZCL_Status eSM_ServerUpdateConsumption(
 uint8 u8SourceEndPointId,
 uint32 u32UtcTime);

Description

This function can be used on a Simple Metering cluster server (with the ‘Get Profile’ feature enabled) to add
a new entry to the circular buffer used to store historical consumption data. The buffer stores a sequence of
entries containing consumption data for consecutive time intervals, identified by their end-times.

Before this function is called, the application must update one or both of the following Simple Metering cluster
attributes with the relevant consumption(s) over the last time interval (since the last readings were made):

u24CurrentPartialProfileIntervalValueDelivered
u24CurrentPartialProfileIntervalValueReceived

An attribute only needs to be updated if the corresponding consumption has been implemented.

The function takes the current time (UTC time) as an input and adds a buffer entry containing the consumption
measurements together with the supplied UTC time, which is saved as the end-time of the interval

The entry is stored as a tsSEGetProfile structure, described in Section 42.11.5.

The buffer can contain a limited number of entries, determined at compile-time (see Section 42.12), and
operates on a FIFO basis so that a new entry added to a full buffer will over-write the oldest entry.

The function should be called periodically by the application. The period must match the value to which the
Simple Metering eProfileIntervalPeriod attribute has been set (see Section 42.2). Standard periods,
ranging from 2.5 minutes to one day, are provided as a set of enumerations (see Section 42.10.10).

Parameters

• u8SourceEndPointId: Number of local endpoint on which the Simple Metering cluster server operates
• u32UtcTime: Current time (as UTC time which can be obtained using u32ZCL_GetUTCTime())

Returns

• E_ZCL_SUCCESS

42.8.11 eSM_ClientGetProfileCommand

teZCL_Status eSM_ClientGetProfileCommand(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 uint8 u8IntervalChannel,
 uint32 u32EndTime,
 uint8 u8NumberOfPeriods);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
623 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on a Simple Metering cluster client (with the ‘Get Profile’ feature enabled) to send a
‘Get Profile’ request to the Simple Metering cluster server in order to retrieve historical consumption data.

The server contains a circular buffer which stores a sequence of data entries containing consumption data for
consecutive time intervals, identified by their end-times. This function can request a number of entries from the
buffer, containing the consumption data over multiple intervals.

The function parameters include:

• The number of buffer entries (corresponding to consumption intervals) requested
• The most recent end-time for which a buffer entry will be reported - the most recent consumption data will be

reported which has an end-time equal to or earlier than this end-time (a specified end-time of zero will result in
the most recent consumption data)

• A value indicating whether the units delivered or units received are being requested

This is a non-blocking function and so returns immediately after the request has been sent. The application
must then wait for a response, which is accessed using the function u32SM_GetReceivedProfileData().

Parameters

• u8SourceEndpoint: Number of local endpoint through which request is sent
• u8DestinationEndpoint: Number of endpoint to which request is sent on the destination device
• psDestinationAddress: : Pointer to a structure containing the address of the destination device
• u8IntervalChannel: Required consumption data - received or delivered:
• E_CLD_SM_CONSUMPTION_RECEIVED
• E_CLD_SM_CONSUMPTION_DELIVERED
• u32EndTime: A UTC time representing the most recent interval end-time for which data will be reported (a

zero value means report data for the most recent interval)
• u8NumberOfPeriods: Number of consumption intervals to be reported

Returns

• E_ZCL_SUCCESS
• E_ZCL_ERR_ZTRANSMIT_FAIL
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_CLUSTER_ID_RANGE
• E_ZCL_ERR_EP_UNKNOWN
• E_ZCL_ERR_EP_RANGE

42.8.12 u32SM_GetReceivedProfileData

uint32 u32SM_GetReceivedProfileData(
 tsSM_GetProfileResponseCommand
 *psSMGetProfileResponseCommand);

Description

This function is used on a Simple Metering cluster client to obtain the consumption data received in a ‘Get
Profile’ response. The response is obtained from the Simple Metering cluster server (and previously requested
by the client through a call to eSM_ClientGetProfileCommand()).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
624 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

When a ‘Get Profile’ response from the server arrives, the event E_CLD_SM_CLIENT_RECEIVED_COMMAND
containing the command E_CLD_SM_GET_PROFILE_RESPONSE is generated on the client. This response
causes the callback function on the device to be invoked (for an IPD, this is the callback function registered
through eSE_RegisterIPDEndPoint()). The callback function should deal with the response.

This function can be called within the callback function to extract consumption data from the event. It is
necessary to provide the function with a pointer to the response within the event. The function returns the data
corresponding to one consumption interval on each call. Therefore, if the response contains data for multiple
intervals, the function must be called multiple times to extract all of this data. The number of intervals contained
in the response is also included in the response:

sSMCallBackMessage.uMessage.sGetProfileResponseCommand.u8NumberOfPeriodsDelivered

When there is no more data to be extracted from the event, the function returns 0xFFFFFFFF.

Parameters

• psSMGetProfileResponseCommand: Pointer to sGetProfileResponseCommand element of the event

Returns

• 32-bit value corresponding to consumption data for one interval

0xFFFFFFFF indicates that there is no more data to be read from the event.

42.9 Return codes
The Simple Metering cluster functions use the ZCL return codes, listed in Section 7.2.

42.10 Enumerations

42.10.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the Simple Metering cluster.

Note: Some of the following enumerations correspond to attributes that are not certifiable in SE 1.1.1
(07-5356-17) or earlier and are for future use (as indicated in the attribute descriptions in Section 42.2).

typedef enum PACK
{
 /* Reading information attribute set attribute IDs*/
 E_CLD_SM_ATTR_ID_CURRENT_SUMMATION_DELIVERED = 0x0000,
 E_CLD_SM_ATTR_ID_CURRENT_SUMMATION_RECEIVED,
 E_CLD_SM_ATTR_ID_CURRENT_MAX_DEMAND_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_MAX_DEMAND_RECEIVED,
 E_CLD_SM_ATTR_ID_DFT_SUMMATION,
 E_CLD_SM_ATTR_ID_DAILY_FREEZE_TIME,
 E_CLD_SM_ATTR_ID_POWER_FACTOR,
 E_CLD_SM_ATTR_ID_READING_SNAPSHOT_TIME,
 E_CLD_SM_ATTR_ID_CURRENT_MAX_DEMAND_DELIVERED_TIME,
 E_CLD_SM_ATTR_ID_CURRENT_MAX_DEMAND_RECEIVED_TIME,
 E_CLD_SM_ATTR_ID_DEFAULT_UPDATE_PERIOD,
 E_CLD_SM_ATTR_ID_FAST_POLL_UPDATE_PERIOD,
 E_CLD_SM_ATTR_ID_CURRENT_BLOCK_PERIOD_CONSUMPTION_DELIVERED,
 E_CLD_SM_ATTR_ID_DAILY_CONSUMPTION_TARGET,
 E_CLD_SM_ATTR_ID_CURRENT_BLOCK,
 E_CLD_SM_ATTR_ID_PROFILE_INTERVAL_PERIOD,
 E_CLD_SM_ATTR_ID_INTERVAL_READ_REPORTING_PERIOD,
 E_CLD_SM_ATTR_ID_PRESET_READING_TIME,
 E_CLD_SM_ATTR_ID_VOLUME_PER_REPORT,
 E_CLD_SM_ATTR_ID_FLOW_RESTRICTION,
 E_CLD_SM_ATTR_ID_SUPPLY_STATUS,
 E_CLD_SM_ATTR_ID_CURRENT_INLET_ENERGY_CARRIER_SUMMATION,
 E_CLD_SM_ATTR_ID_CURRENT_OUTLET_ENERGY_CARRIER_SUMMATION,
 E_CLD_SM_ATTR_ID_INLET_TEMPERATURE,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
625 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_SM_ATTR_ID_OUTLET_TEMPERATURE,
 E_CLD_SM_ATTR_ID_CONTROL_TEMPERATURE,
 E_CLD_SM_ATTR_ID_CURRENT_INLET_ENERGY_CARRIER_DEMAND,
 E_CLD_SM_ATTR_ID_CURRENT_OUTLET_ENERGY_CARRIER_DEMAND,
 /* Time Of Use Information attribute set attribute IDs */
 E_CLD_SM_ATTR_ID_CURRENT_TIER_1_SUMMATION_DELIVERED = 0x0100,
 E_CLD_SM_ATTR_ID_CURRENT_TIER_1_SUMMATION_RECEIVED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER_2_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER_2_SUMMATION_RECEIVED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER_15_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER_15_SUMMATION_RECEIVED,
 /* Meter status attribute set attribute IDs */
 E_CLD_SM_ATTR_ID_STATUS = 0x0200,
 E_CLD_SM_ATTR_ID_REMAINING_BATTERY_LIFE,
 E_CLD_SM_ATTR_ID_HOURS_IN_OPERATION,
 E_CLD_SM_ATTR_ID_HOURS_IN_FAULT,
 /* Formatting attribute set attribute IDs */
 E_CLD_SM_ATTR_ID_UNIT_OF_MEASURE = 0x0300,
 E_CLD_SM_ATTR_ID_MULTIPLIER,
 E_CLD_SM_ATTR_ID_DIVISOR,
 E_CLD_SM_ATTR_ID_SUMMATION_FORMATING,
 E_CLD_SM_ATTR_ID_DEMAND_FORMATING,
 E_CLD_SM_ATTR_ID_HISTORICAL_CONSUMPTION_FORMATTING,
 E_CLD_SM_ATTR_ID_METERING_DEVICE_TYPE,
 E_CLD_SM_ATTR_ID_SITE_ID,
 E_CLD_SM_ATTR_ID_METER_SERIAL_NUMBER,
 E_CLD_SM_ATTR_ID_ENERGY_CARRIER_UNIT_OF_MEASURE,
 E_CLD_SM_ATTR_ID_ENERGY_CARRIER_SUMMATION_FORMATTING,
 E_CLD_SM_ATTR_ID_ENERGY_CARRIER_DEMAND_FORMATTING,
 E_CLD_SM_ATTR_ID_TEMPERATURE_UNIT_OF_MEASURE,
 E_CLD_SM_ATTR_ID_TEMPERATURE_FORMATTING,
 /* ESP Historical Consumption set attribute IDs */
 E_CLD_SM_ATTR_ID_INSTANTANEOUS_DEMAND = 0x0400,
 E_CLD_SM_ATTR_ID_CURRENT_DAY_CONSUMPTION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_DAY_CONSUMPTION_RECEIVED,
 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_CONSUMPTION_DELIVERED,
 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_CONSUMPTION_RECEIVED,
 E_CLD_SM_ATTR_ID_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_RECEIVED,
 E_CLD_SM_ATTR_ID_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_RECEIVED,
 E_CLD_SM_ATTR_ID_CURRENT_DAY_MAXIMUM_PRESSURE,
 E_CLD_SM_ATTR_ID_CURRENT_DAY_MINIMUM_PRESSURE,
 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_MAXIMUM_PRESSURE,
 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_MINIMUM_PRESSURE,
 E_CLD_SM_ATTR_ID_CURRENT_DAY_MAXIMUM_DEMAND,
 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_MAXIMUM_DEMAND,
 E_CLD_SM_ATTR_ID_CURRENT_MONTH_MAXIMUM_DEMAND,
 E_CLD_SM_ATTR_ID_CURRENT_YEAR_MAXIMUM_DEMAND,
 E_CLD_SM_ATTR_ID_CURRENT_DAY_MAXIMUM_ENERGY_CARRIER_DEMAND,
 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_MAXIMUM_ENERGY_CARRIER_DEMAND,
 E_CLD_SM_ATTR_ID_CURRENT_MONTH_MAXIMUM_ENERGY_CARRIER_DEMAND,
 E_CLD_SM_ATTR_ID_CURRENT_MONTH_MINIMUM_ENERGY_CARRIER_DEMAND,
 E_CLD_SM_ATTR_ID_CURRENT_YEAR_MAXIMUM_ENERGY_CARRIER_DEMAND,
 E_CLD_SM_ATTR_ID_CURRENT_YEAR_MINIMUM_ENERGY_CARRIER_DEMAND,
 /* Load Profile attribute set attribute IDs */
 E_CLD_SM_ATTR_ID_MAX_NUMBER_OF_PERIODS_DELIVERED = 0x0500,
 /* Supply Limit attribute set attribute IDs */
 E_CLD_SM_ATTR_ID_CURRENT_DEMAND_DELIVERED = 0x0600,
 E_CLD_SM_ATTR_ID_DEMAND_LIMIT,
 E_CLD_SM_ATTR_ID_DEMAND_INTEGRATION_PERIOD,
 E_CLD_SM_ATTR_ID_NUMBER_OF_DEMAND_SUBINTERVALS,
 /* Block Information Attribute set attribute IDs */
 /* Block Information Attribute set: No Tier Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_NOTIER_BLOCK1_SUMMATION_DELIVERED = 0x0700,
 E_CLD_SM_ATTR_ID_CURRENT_NOTIER_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_NOTIER_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier1 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER1_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER1_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER1_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier2 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER2_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER2_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER2_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier5 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER3_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER3_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER3_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier4 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER4_BLOCK1_SUMMATION_DELIVERED,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
626 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_SM_ATTR_ID_CURRENT_TIER4_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER4_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier5 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER5_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER5_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER5_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier6 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER6_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER6_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER6_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier8 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER7_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER7_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER7_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier8 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER8_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER8_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER8_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier9 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER9_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER9_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER9_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier10 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER10_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER10_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER10_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier11 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER11_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER11_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER11_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier12 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER12_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER12_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER12_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier13 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER13_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER13_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER13_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier14 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER14_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER14_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER14_BLOCK16_SUMMATION_DELIVERED,
 /* Block Information Attribute set: Tier15 Block Set */
 E_CLD_SM_ATTR_ID_CURRENT_TIER15_BLOCK1_SUMMATION_DELIVERED,
 E_CLD_SM_ATTR_ID_CURRENT_TIER15_BLOCK2_SUMMATION_DELIVERED,
 :
 E_CLD_SM_ATTR_ID_CURRENT_TIER15_BLOCK16_SUMMATION_DELIVERED,
 /* Alarm Attribute set attribute IDs */
 E_CLD_SM_ATTR_ID_GENERIC_ALARM_MASK = 0x0800,
 E_CLD_SM_ATTR_ID_ELECTRICITY_ALARM_MASK,
 E_CLD_SM_ATTR_ID_PRESSURE_ALARM_MASK,
 E_CLD_SM_ATTR_ID_WATER_SPECIFIC_ALARM_MASK,
 E_CLD_SM_ATTR_ID_HEAT_AND_COOLING_SPECIFIC_ALARM_MASK,
 E_CLD_SM_ATTR_ID_GAS_ALARM_MASK,
} teCLD_SM_SimpleMeteringAttributeID;

42.10.2 ‘Meter Status’ Enumerations

Enumerations for the u8MeterStatus element in the Simple Metering cluster structure
tsSE_SimpleMetering are provided as #defines.

The following enumerated masks can be used to set the meter status:

Enumeration Description

E_CLD_SM_METER_STATUS_CHECK_METER_MASK Non-fatal problem detected on meter

Table 87. ‘Meter Status’ Enumerated Masks

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
627 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_CLD_SM_METER_STATUS_LOW_BATTERY_MASK Battery level is low

E_CLD_SM_METER_STATUS_TAMPER_DETECT_MASK Detected tampering with device

E_CLD_SM_METER_STATUS_POWER_FAILURE_MASK Indicates power failure on device

E_CLD_SM_METER_STATUS_POWER_QUALITY_MASK Power anomaly detected

E_CLD_SM_METER_STATUS_LEAK_DETECT_MASK Detected leak (e.g. of gas or water)

E_CLD_SM_METER_STATUS_SERVICE_DISCONNECT_OPEN_MASK Service to premises disconnected

Table 87. ‘Meter Status’ Enumerated Masks...continued

42.10.3 ‘Unit of Measure’ Enumerations

The following enumerations are used to set the teSE_UnitOfMeasure element in the Simple Metering cluster
structure tsSE_SimpleMetering. Separate sets of enumerations are provided for binary and BCD (Binary
Coded Decimal) representations.

typedef enum PACK
{
 /* Binary values */
 E_CLD_SM_UOM_KILO_WATTS = 0x00,
 E_CLD_SM_UOM_CUBIC_METER,
 E_CLD_SM_UOM_CUBIC_FEET,
 E_CLD_SM_UOM_100_CUBIC_FEET, /* ccf & ccf/h */
 E_CLD_SM_UOM_US_GALLON, /* USG & USG/h */
 E_CLD_SM_UOM_IMPERIAL_GALLON, /* IMPG & IMPG/h */
 E_CLD_SM_UOM_BTU, /* BTU & BTU/h */
 E_CLD_SM_UOM_LITERS, /* Liters & Liters/h */
 E_CLD_SM_UOM_KPA_GAUGE,
 E_CLD_SM_UOM_KPA_ABSOLUTE,
 /* BCD values */
 E_CLD_SM_UOM_KILO_WATTS_BCD = 0x80,
 E_CLD_SM_UOM_CUBIC_METER_BCD,
 E_CLD_SM_UOM_CUBIC_FEET_BCD,
 E_CLD_SM_UOM_100_CUBIC_FEET_BCD, /* ccf & ccf/h */
 E_CLD_SM_UOM_US_GALLON_BCD, /* USG & USG/h */
 E_CLD_SM_UOM_IMPERIAL_GALLON_BCD, /* IMPG & IMPG/h */
 E_CLD_SM_UOM_BTU_BCD, /* BTU & BTU/h */
 E_CLD_SM_UOM_LITERS_BCD, /* Liters & Liters/h */
 E_CLD_SM_UOM_KPA_GAUGE_BCD,
 E_CLD_SM_UOM_KPA_ABSOLUTE_BCD
} teCLD_SM_UnitOfMeasure;

The above enumerations are detailed in the table below.

Enumeration Description

Instantaneous Summation

Binary Values

E_CLD_SM_UOM_KILO_WATTS kW (kiloWatts) kWh (kiloWatt-hours)

E_CLD_SM_UOM_CUBIC_METER m3/h (cubic metres per hour) m3 (cubic metres)

E_CLD_SM_UOM_CUBIC_FEET ft3/h (cubic feet per hour) ft3 (cubic feet)

E_CLD_SM_UOM_100_CUBIC_FEET ccf/h (100 cubic feet per hour) ccf (100 cubic feet)

Table 88. Units of Measure Enumerations

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
628 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_CLD_SM_UOM_US_GALLON US gl/h (US Gallons per hour) US gl (US Gallons)

E_CLD_SM_UOM_IMPERIAL_GALLON Imperial gl/h (Imperial Gallons per
hour)

Imperial gl (Imperial Gallons)

E_CLD_SM_UOM_BTU BTU/h (British Thermal Units per
hour)

BTU (British Thermal Units)

E_CLD_SM_UOM_LITERS l/h (litres per hour) l (litres)

E_CLD_SM_UOM_KPA_GAUGE kPA (kiloPascal) gauge -

E_CLD_SM_UOM_KPA_ABSOLUTE kPA (kiloPascal) absolute -

BCD Values

E_CLD_SM_UOM_KILO_WATTS_BCD kW (kiloWatts) kWh (kiloWatt-hours)

E_CLD_SM_UOM_CUBIC_METER_BCD m3/h (cubic metres per hour) m3 (cubic metres)

E_CLD_SM_UOM_CUBIC_FEET_BCD ft3/h (cubic feet per hour) ft3 (cubic feet)

E_CLD_SM_UOM_100_CUBIC_FEET_BCD ccf/h (100 cubic feet per hour) ccf (100 cubic feet)

E_CLD_SM_UOM_US_GALLON_BCD US gl/h (US Gallons per hour) US gl (US Gallons)

E_CLD_SM_UOM_IMPERIAL_GALLON_BCD Imperial gl/h (Imperial Gallons per
hour)

Imperial gl (Imperial Gallons)

E_CLD_SM_UOM_BTU_BCD BTU/h (British Thermal Units per
hour)

BTU (British Thermal Units)

E_CLD_SM_UOM_LITERS_BCD l/h (litres per hour) l (litres)

E_CLD_SM_UOM_KPA_GAUGE_BCD kPA (kiloPascal) gauge -

E_CLD_SM_UOM_KPA_ABSOLUTE_BCD kPA (kiloPascal) absolute -

Table 88. Units of Measure Enumerations...continued

42.10.4 ‘Summation Formatting’ Enumerations

Enumerations for use with the u8SummationFormatting element in the Simple Metering cluster structure
u8SummationFormatting are provided as #defines. The enumerations allow the following formatting
information to be extracted from the u8SummationFormatting bitmap:

Enumeration Description

E_CLD_SM_FORMATTING_DIGITS_TO_RIGHT_OF_DP_LS_
BIT

Position of least significant bit of bit-field indicating
number of digits to right of decimal point

E_CLD_SM_FORMATTING_DIGITS_TO_RIGHT_OF_DP_
NUMBER_OF_BITS

Number of bits in bit-field indicating number of digits to
right of decimal point

E_CLD_SM_FORMATTING_DIGITS_TO_RIGHT_OF_DP_
MASK

Bit-mask used to extract number of digits to right of
decimal point

E_CLD_SM_FORMATTING_DIGITS_TO_LEFT_OF_DP_LS_
BIT

Position of least significant bit of bit-field indicating
number of digits to left of decimal point

E_CLD_SM_FORMATTING_DIGITS_TO_LEFT_OF_DP_
NUMBER_OF_BITS

Number of bits in bit-field indicating number of digits to
left of decimal point

E_CLD_SM_FORMATTING_DIGITS_TO_LEFT_OF_DP_
MASK

Bit-mask used to extract number of digits to left of
decimal point

Table 89. ‘Summation Formatting’ Enumerations

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
629 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_CLD_SM_FORMATTING_SUPPRESS_LEADING_ZEROS_
BIT

Bit-mask used to extract bit indicating whether lead-ing
zeros will be suppressed

Table 89. ‘Summation Formatting’ Enumerations...continued

The following are examples of the use of the above enumerations.

Extracting the number of digits to the right of the decimal point:

u8BitsToRight = (u8SummationFormatting & E_CLD_SM_FORMATTING_DIGITS_TO_RIGHT_OF_DP_MASK)
>> E_CLD_SM_FORMATTING_DIGITS_TO_RIGHT_OF_DP_LS_BIT

Extracting the number of digits to the left of the decimal point:

u8BitsToLeft = (u8SummationFormatting & E_CLD_SM_FORMATTING_DIGITS_TO_LEFT_OF_DP_MASK)
>> E_CLD_SM_FORMATTING_DIGITS_TO_LEFT_OF_DP_LS_BIT

Determining whether leading zeros will be suppressed:

bSuppressZeros = !((u8SummationFormatting & E_CLD_SM_FORMATTING_SUPPRESS_LEADING_ZEROS_BIT) == 0)

42.10.5 ‘Supply Direction’ Enumerations

The following enumerations are used to indicate the direction of supply.

typedef enum PACK
{
 E_CLD_SM_CONSUMPTION_DELIVERED,
 E_CLD_SM_CONSUMPTION_RECEIVED
}teSM_IntervalChannel;

The above enumerations are detailed in the table below.

Enumeration Description

E_CLD_SM_CONSUMPTION_DELIVERED Specifies that the supply is from the customer to the utility company (in
cases where the customer generates their own supply)

E_CLD_SM_CONSUMPTION_RECEIVED Specifies that the supply is from the utility company to the customer

Table 90. ‘Supply Direction’ Enumerations

42.10.6 ‘Metering Device Type’ Enumerations

The following enumerations are used to set the eMeteringDeviceType element in the Simple Metering
cluster structure tsSE_SimpleMetering.

typedef enum PACK
{
 E_CLD_SM_MDT_ELECTRIC = 0x00,
 E_CLD_SM_MDT_GAS,
 E_CLD_SM_MDT_WATER,
 E_CLD_SM_MDT_THERMAL, /* Deprecated */
 E_CLD_SM_MDT_PRESSURE,
 E_CLD_SM_MDT_HEAT,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
630 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_SM_MDT_COOLING,
 E_CLD_SM_MDT_GAS_MIRRORED = 0x80,
 E_CLD_SM_MDT_WATER_MIRRORED,
 E_CLD_SM_MDT_THERMAL_MIRRORED,
 E_CLD_SM_MDT_PRESSURE_MIRRORED,
 E_CLD_SM_MDT_HEAT_MIRRORED,
 E_CLD_SM_MDT_COOLING_MIRRORED,
} teCLD_SM_MeteringDeviceType;

The above enumerations are detailed in the table below.

Enumeration Description

E_CLD_SM_MDT_ELECTRIC Electric Meter

E_CLD_SM_MDT_GAS Gas Meter

E_CLD_SM_MDT_WATER Water Meter

E_CLD_SM_MDT_THERMAL Thermal Meter (deprecated)

E_CLD_SM_MDT_PRESSURE Pressure Meter

E_CLD_SM_MDT_HEAT Heat Meter

E_CLD_SM_MDT_COOLING Cooling Meter

E_CLD_SM_MDT_GAS_MIRRORED Mirrored Gas Meter

E_CLD_SM_MDT_WATER_MIRRORED Mirrored Water Meter

E_CLD_SM_MDT_THERMAL_MIRRORED Mirrored Thermal Meter (deprecated)

E_CLD_SM_MDT_PRESSURE_MIRRORED Mirrored Pressure Meter

E_CLD_SM_MDT_HEAT_MIRRORED Mirrored Heat Meter

E_CLD_SM_MDT_COOLING_MIRRORED Mirrored Cooling Meter

Table 91. ‘Metering Device Type’ Enumerations

42.10.7 ‘Simple Metering Event’ Enumerations

The event types generated by the Simple Metering cluster are enumerated in the teSM_CallBackEventType
structure below:

typedef enum PACK
{
 E_CLD_SM_CLIENT_RECEIVED_COMMAND,
 E_CLD_SM_SERVER_RECEIVED_COMMAND,
 E_CLD_SM_FAST_POLLING_TIMER_EXPIRED
}teSM_CallBackEventType;

The above event types are described in the table below.

Event Type Enumeration Description

E_CLD_SM_CLIENT_RECEIVED_COMMAND Generated on a cluster client when a command is received
from the server

E_CLD_SM_SERVER_RECEIVED_COMMAND Generated on the cluster server when a command is
received from a client

Table 92. Simple Metering Event Types

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
631 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Event Type Enumeration Description

E_CLD_SM_FAST_POLLING_TIMER_EXPIRED Generated on the cluster server when the end-time of a
fast polling episode is reached (for future use)

Table 92. Simple Metering Event Types...continued

42.10.8 ‘Server Command’ Enumerations

The comands issued by a Simple Metering cluster server and received by a client are enumerated in the
teSM_ClusterServerCommands structure below:

typedef enum PACK
{
 E_CLD_SM_GET_PROFILE_RESPONSE,
 E_CLD_SM_REQUEST_MIRROR,
 E_CLD_SM_REMOVE_MIRROR,
 E_CLD_SM_REQUEST_FAST_POLL_MODE_RESPONSE,
 E_CLD_SM_CLIENT_ERROR
}teSM_ClusterServerCommands;

Command Enumeration Description

E_CLD_SM_GET_PROFILE_RESPONSE Response to ‘Get Profile’ request - content of response is
contained in the structure tsS-M_GetProfileResponse
Command in the event (see Section 42.11.9)

E_CLD_SM_REQUEST_MIRROR An ‘Add Mirror’ request

E_CLD_SM_REMOVE_MIRROR A ‘Remove Mirror’ request

E_CLD_SM_REQUEST_FAST_POLL_MODE_-RESPONSE Response to ‘Fast Polling’ request (for future use)

E_CLD_SM_CLIENT_ERROR Error condition - content of error is contained in the structure
tsSM_Error in the event (see Section 42.11.10)

Table 93. Commands Issued by Server

42.10.9 ‘Client Command’ Enumerations

The comands issued by a Simple Metering cluster client and received by the server are enumerated in the
teSM_ClusterClientCommands structure below:

typedef enum PACK
{
 E_CLD_SM_GET_PROFILE,
 E_CLD_SM_REQUEST_MIRROR_RESPONSE,
 E_CLD_SM_MIRROR_REMOVED,
 E_CLD_SM_REQUEST_FAST_POLL_MODE,
 E_CLD_SM_SERVER_ERROR
}teSM_ClusterClientCommands;

Command Enumeration Description

E_CLD_SM_GET_PROFILE A ‘Get Profile’ request - content of request is contained in the structure ts
SM_GetProfile-RequestCommand in the event (see Section 42.11.8)

E_CLD_SM_REQUEST_MIRROR_
RESPONSE

Response to ‘Add Mirror’ request - content of response is contained in the
structure tsS-M_RequestMirrorResponseCommand in the event (see
Section 42.11.6)

Table 94. Commands Issued by Client

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
632 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Command Enumeration Description

E_CLD_SM_MIRROR_REMOVED Response to ‘Remove Mirror’ request - content of response is contained in
the structure tsS-M_MirrorRemovedResponseCommand in the event (see
Section 42.11.7)

E_CLD_SM_REQUEST_FAST_POLL_
MODE

A ‘Fast Polling’ request (for future use)

E_CLD_SM_SERVER_ERROR Error condition - content of error is contained in the structure tsSM_Error in
the event (see Section 42.11.10)

Table 94. Commands Issued by Client...continued

42.10.10 ‘Consumption Interval’ Enumerations

The following enumerations define the possible time-intervals for the consumption data captured in the ‘Get
Profile’ feature.

typedef enum PACK
{
 E_CLD_SM_TIME_FRAME_DAILY,
 E_CLD_SM_TIME_FRAME_60MINS,
 E_CLD_SM_TIME_FRAME_30MINS,
 E_CLD_SM_TIME_FRAME_15MINS,
 E_CLD_SM_TIME_FRAME_10MINS,
 E_CLD_SM_TIME_FRAME_7_5MINS,
 E_CLD_SM_TIME_FRAME_5MINS,
 E_CLD_SM_TIME_FRAME_2_5MINS
}teSM_TimeFrame;

Time Frame Enumeration Time Interval

E_CLD_SM_TIME_FRAME_DAILY One day

E_CLD_SM_TIME_FRAME_60MINS 60 minutes

E_CLD_SM_TIME_FRAME_30MINS 30 minutes

E_CLD_SM_TIME_FRAME_15MINS 15 minutes

E_CLD_SM_TIME_FRAME_10MINS 10 minutes

E_CLD_SM_TIME_FRAME_7_5MINS 7.5 minutes

E_CLD_SM_TIME_FRAME_5MINS 5 minutes

E_CLD_SM_TIME_FRAME_2_5MINS 2.5 minutes

Table 95. ‘Consumption Interval’ Enumerations

42.10.11 ‘Simple Metering Status’ Enumerations

The following enumerations are used to report status in the Simple Metering cluster.

typedef enum PACK
{
 E_CLD_SM_STATUS_SUCCESS,
 E_CLD_SM_STATUS_UNDEFINED_INTERVAL_CHANNEL,
 E_CLD_SM_STATUS_INTERVAL_NOT_SUPPORTED,
 E_CLD_SM_STATUS_INVALID_END_TIME,
 E_CLD_SM_STATUS_MORE_PERIODS_REQUESTED_THAN_SUPPORTED,
 E_CLD_SM_STATUS_NO_INTERVALS_AVAILABLE_FOR_REQUESTED_TIME,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
633 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_SM_STATUS_EP_NOT_AVAILABLE
}teSM_Status;

Status Enumeration Description

E_CLD_SM_STATUS_SUCCESS Success

E_CLD_SM_STATUS_UNDEFINED_INTERVAL_
CHANNEL

Undefined eIntervalChannel value speci-fied in ‘Get Profile’
request (see Section 42.11.8)

E_CLD_SM_STATUS_INTERVAL_NOT_
SUPPORTED

Unsupported consumption data specifed through eInterval
Channel in ‘Get Profile’ request (see Section 42.11.8)

E_CLD_SM_STATUS_INVALID_END_TIME Invalid end-time specified in ‘Get Profile’ request (Section 42.11.8)

E_CLD_SM_STATUS_MORE_PERIODS_
REQUESTED_THAN_SUPPORTED

More periods specified in ‘Get Profile’ request than can be returned

E_CLD_SM_STATUS_NO_INTERVALS_
AVAILABLE_FOR_REQUESTED_TIME

No intervals available for the end-time specified in ‘Get Profile’
request

E_CLD_SM_STATUS_EP_NOT_AVAILABLE Specified endpoint not available

Table 96. Status Enumerations

42.11 Structures

42.11.1 tsSM_CallBackMessage

For a Simple Metering event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsSM_CallBackMessage structure which contains the Simple Metering parameters:

typedef struct
{
 teSM_CallBackEventType eEventType;
 uint8 u8CommandId;
 union
 {
 tsSM_GetProfileResponseCommand sGetProfileResponseCommand;
 tsSM_RequestFastPollResponseCommand sRequestFastPollResponseCommand;
 tsSM_GetProfileRequestCommand sGetProfileCommand;
 tsSM_RequestMirrorResponseCommand sRequestMirrorResponseCommand;
 tsSM_MirrorRemovedResponseCommand sMirrorRemovedResponseCommand;
 tsSM_RequestFastPollCommand sRequestFastPollCommand;
 tsSM_Error sError;
 }uMessage;
}tsSM_CallBackMessage;

where:

• eEventType is the Simple Metering event type from those listed in Section 42.10.7
• u8CommandId is the identifier of the type of Simple Metering command received. This field is only valid for

the following Simple Metering event types:
– E_CLD_SM_CLIENT_RECEIVED_COMMAND - enumerated commands are provided, as described in

Section 42.10.8

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
634 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– E_CLD_SM_SERVER_RECEIVED_COMMAND - enumerated commands are provided, as described in
Section 42.10.9

• uMessage is a union containing the command payload in one of the following forms (depending on the
command specified in the field u8CommandId):
– sGetProfileResponseCommand is a structure containing the payload of a ‘Get Profile’ response - see

Section 42.11.9
– sRequestFastPollResponseCommand is a structure containing the payload of a ‘Fast Polling’ response

(for future use)
– sGetProfileCommand is a structure containing the payload of a ‘Get Profile’ request - see Section 42.11.8
– sRequestMirrorResponseCommand is a structure containing the payload of an ‘Add Mirror’ response -

see Section 42.11.6
– sMirrorRemovedResponseCommand is a structure containing the payload of an ‘Remove Mirror’

response - see Section 42.11.7
– sRequestFastPollCommand is a structure containing the payload of an ‘Fast Polling’ request (for future

use)
– sError is a structure containing the details of an error condition - see Section 42.11.10

42.11.2 tsSE_Mirror

Details of the mirror endpoints on the ESP are kept in an array of structures of the type tsSE_Mirror (one
structure per endpoint) within the tsSE_EspMeterDevice structure. The tsSE_Mirror structure is shown
and described below.

Note: This structure is only for use by the ZCL and should not be modified by the application.

typedef struct
{
 /*Mirrored EndPoint*/
 tsZCL_EndPointDefinition sEndPoint;
 /*Mirror Requester address*/
 uint64 u64SourceAddress;
 /*Mirror cluster instances*/
 tsSE_MirrorClusterInstances sSEMirrorClusterInstances;
 /*Event Address, Custom callback event, Custom callback message*/
 tsSM_CustomStruct sSMMirrorCustomDataStruct;
}tsSE_Mirror;

where:

• sEndPoint is a tsZCL_EndPointDefinition structure which contains details of the endpoint
corresponding to the mirror (for details of this structure, refer to Section 6.1.1)

• u64SourceAddress is the 64-bit IEEE address of the Metering Device to which the mirror endpoint is
assigned - a zero value indicates that the mirror endpoint is not currently assigned to a device

• sSEMirrorClusterInstances is a tsSE_MirrorClusterInstances structure (see Section 42.11.3)
which contains information on the Basic and Simple Metering cluster instances that are associated with the
mirror endpoint

• sSMMirrorCustomDataStruct is a tsSM_CustomStruct structure (see Section 42.11.4) which contains
data relating to a received command/message for the mirror endpoint

42.11.3 tsSE_MirrorClusterInstances

This structure contains information on the Basic and Simple Metering cluster instances that are associated with
a mirror endpoint.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
635 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: This structure is only for use by the ZCL and should not be modified by the application.

typedef struct
{
 /*Basic Cluster Instance*/
 tsZCL_ClusterInstance sBasicCluster;
 /* SM Cluster Instance */
 tsZCL_ClusterInstance sSM_Cluster;
}tsSE_MirrorClusterInstances;

where:

• sBasicCluster is a tsZCL_ClusterInstance structure which contains information on the Basic cluster
instance associated with a mirror endpoint (for details of this structure, refer to Section 6.1.16)

• sSM_Cluster is a tsZCL_ClusterInstance structure which contains information on the Simple Metering
cluster instance associated with a mirror endpoint (for details of this structure, refer to Section 6.1.16)

42.11.4 tsSM_CustomStruct

This structure contains data relating to a command/message for a mirror endpoint.

Note: This structure is only for use by the ZCL software and should not be modified by the application.

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sSMCustomCallBackEvent;
 tsSM_CallBackMessage sSMCallBackMessage;
} tsSM_CustomStruct;

where:

• sReceiveEventAddress is a tsZCL_ReceiveEventAddress structure which contains addressing
information relating to a received mirroring command/message

• sSMCustomCallBackEvent is a tsZCL_CallBackEvent structure (see Section 3.1) which contains the
event that has been generated as a result of the received command/message

• sSMCallBackMessage is a tsSM_CallBackMessage structure (see Section 42.11.1) which contains
details of the event and the command/message that caused the event

42.11.5 tsSEGetProfile

This structure is used to store historical consumption data when the ‘Get Profile’ feature is enabled. The data
within the structure corresponds to a single consumption interval.

typedef struct
{
 uint32 u32UtcTime;
 zuint24 u24ConsumptionReceived;
 zuint24 u24ConsumptionDelivered;
}tsSEGetProfile;

where:

• u32UtcTime is the end-time of the consumption interval (as a UTC time)
• u24ConsumptionReceived is the number of units received from the customer during the interval (for

customers who generate and sell their own units)
• u24ConsumptionDelivered is the number of units delivered to the customer during the interval
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
636 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

42.11.6 tsSM_RequestMirrorResponseCommand

This structure contains the details of an ‘Add Mirror’ response (from a cluster client). It is included in the
structure tsSM_CallBackMessage when an E_CLD_SM_SERVER_RECEIVED_COMMAND event containing
the command E_CLD_SM_REQUEST_MIRROR_RESPONSE is generated on the cluster server.

typedef struct
{
 uint16 u16Endpoint;
}tsSM_RequestMirrorResponseCommand;

where u16Endpoint is the number of the endpoint on which the mirror was successfully added or takes the
value 0xFFFF if the request failed because no free endpoint was available for the mirror.

42.11.7 tsSM_MirrorRemovedResponseCommand

This structure contains the details of a ‘Remove Mirror’ response (from a cluster client). It is included in the
structure tsSM_CallBackMessage when an E_CLD_SM_SERVER_RECEIVED_COMMAND event containing
the command E_CLD_SM_MIRROR_REMOVED is generated on the cluster server.

typedef struct
{
 uint16 u16Endpoint;
}tsSM_MirrorRemovedResponseCommand;

where u16Endpoint is the number of the endpoint from which the mirror was successfully removed, or takes
the value 0xFFFF if the remove request failed.

42.11.8 tsSM_GetProfileRequestCommand

This stucture contains the details of a ‘Get Profile’ request (from a cluster client). It is included in the structure
tsSM_CallBackMessage when an E_CLD_SM_SERVER_RECEIVED_COMMAND event containing the
command E_CLD_SM_GET_PROFILE is generated on the cluster server.

typedef struct
{
 teSM_IntervalChannel eIntervalChannel;
 uint8 u8NumberOfPeriods;
 uint8 u8SourceEndPoint;
 uint8 u8DestinationEndPoint;
 uint32 u32EndTime;
 tsZCL_Address sSourceAddress;
}tsSM_GetProfileRequestCommand;

where:

• eIntervalChannel is a value indicating the required consumption data:
– E_CLD_SM_CONSUMPTION_RECEIVED - units from customer
– E_CLD_SM_CONSUMPTION_DELIVERED - units to customer

• u8NumberOfPeriods is the number of consumption intervals for which data is being requested
• u8SourceEndPoint is the number of the source endpoint of the request on the client
• u8DestinationEndPoint is the number of the destination endpoint of the request on the server
• u32EndTime is the end-time for which consumption data is being requested - the most recent consumption

data will be reported which has an end-time equal to or earlier than this end-time (a zero value will result in
the most recent consumption data)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
637 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• sSourceAddress is a structure containing the source address of the request - that is, the address of the
requesting client (the structure is described in Section 6.1.4)

42.11.9 tsSM_GetProfileResponseCommand

This stucture contains the details of a ‘Get Profile’ response (from the cluster server). It is included in the
structure tsSM_CallBackMessage when an E_CLD_SM_CLIENT_RECEIVED_COMMAND event containing
the command E_CLD_SM_GET_PROFILE_RESPONSE is generated on the cluster server.

typedef struct
{
 uint32 u32Endtime;
 teSM_Status eStatus;
 teSM_TimeFrame u8ProfileIntervalPeriod;
 uint8 u8NumberOfPeriodsDelivered;
 zuint24 *pau24Intervals;
}tsSM_GetProfileResponseCommand;

where:

• u32Endtime is the end-time of the consumption data that is being reported, as a UTC time
• eStatus is the status of the response, represented by one of the enumerated values listed in Section

42.10.11
• u8ProfileIntervalPeriod is the time-interval (consumption interval) over which each set of consumption

data is collected - one of the standard enumerated values listed in Section 42.10.10
• u8NumberOfPeriodsDelivered is the number of consumption intervals being reported
• pau24Intervals is a pointer to the consumption data being reported

42.11.10 tsSM_Error

This stucture contains the details of an error response (from cluster server or client). It is included in
the structure tsSM_CallBackMessage when an E_CLD_SM_SERVER_RECEIVED_COMMAND
event is generated containing the command E_CLD_SM_SERVER_ERROR on a client or
E_CLD_SM_CLIENT_ERROR on the server.

typedef struct
{
 uint8 u8Endpoint;
 uint8 u8Status;
}tsSM_Error;

where

• u8Endpoint is the number of the endpoint from which the error is reported
• u8Status is a value representing the nature of the error

42.12 Compile-time options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the Simple Metering cluster.

The Simple Metering cluster is enabled by defining CLD_SIMPLE_METERING.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
638 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Optional Attributes

The optional attributes for the Simple Metering cluster are enabled/disabled by defining:

• For optional attributes from ‘Reading Information’ attribute set:
– CLD_SM_ATTR_CURRENT_SUMMATION_RECEIVED
– CLD_SM_ATTR_CURRENT_MAX_DEMAND_DELIVERED
– CLD_SM_ATTR_CURRENT_MAX_DEMAND_RECEIVED
– CLD_SM_ATTR_DFT_SUMMATION
– CLD_SM_ATTR_DAILY_FREEZE_TIME
– CLD_SM_ATTR_POWER_FACTOR
– CLD_SM_ATTR_READING_SNAPSHOT_TIME
– CLD_SM_ATTR_CURRENT_MAX_DEMAND_DELIVERED_TIME
– CLD_SM_ATTR_CURRENT_MAX_DEMAND_RECEIVED_TIME

• For optional attributes from ‘Time-Of-Use (TOU) Information’ attribute set:
– CLD_SM_ATTR_CURRENT_TIER_1_SUMMATION_DELIVERED
– CLD_SM_ATTR_CURRENT_TIER_1_SUMMATION_RECEIVED
– CLD_SM_ATTR_CURRENT_TIER_2_SUMMATION_DELIVERED
– CLD_SM_ATTR_CURRENT_TIER_2_SUMMATION_RECEIVED
– CLD_SM_ATTR_CURRENT_TIER_3_SUMMATION_DELIVERED
– CLD_SM_ATTR_CURRENT_TIER_3_SUMMATION_RECEIVED
– CLD_SM_ATTR_CURRENT_TIER_4_SUMMATION_DELIVERED
– CLD_SM_ATTR_CURRENT_TIER_4_SUMMATION_RECEIVED
– CLD_SM_ATTR_CURRENT_TIER_5_SUMMATION_DELIVERED
– CLD_SM_ATTR_CURRENT_TIER_5_SUMMATION_RECEIVED
– CLD_SM_ATTR_CURRENT_TIER_6_SUMMATION_DELIVERED
– CLD_SM_ATTR_CURRENT_TIER_6_SUMMATION_RECEIVED

• For optional attributes from ‘Block Information’ attribute set:
– CLD_SM_ATTR_NO_TIER_BLOCK_CURRENT_SUMMATION_DELIVERED_MAX_COUNT (maximum

value of 16)
– CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED

(maximum value of 15)
– CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED

(maximum value of 16)
• For optional attributes from ‘Formatting’ attribute set:

– CLD_SM_ATTR_MULTIPLIER
– CLD_SM_ATTR_DIVISOR
– CLD_SM_ATTR_DEMAND_FORMATING
– CLD_SM_ATTR_HISTORICAL_CONSUMPTION_FORMATTING

• For optional attributes from ‘ESP Historical Consumption’ attribute set:
– CLD_SM_ATTR_INSTANTANEOUS_DEMAND
– CLD_SM_ATTR_CURRENT_DAY_CONSUMPTION_DELIVERED
– CLD_SM_ATTR_CURRENT_DAY_CONSUMPTION_RECEIVED
– CLD_SM_ATTR_PREVIOUS_DAY_CONSUMPTION_DELIVERED
– CLD_SM_ATTR_PREVIOUS_DAY_CONSUMPTION_RECEIVED
– CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_DELIVERED
– CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_RECEIVED
– CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_DELIVERED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
639 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_RECEIVED
• For optional attribute from ‘Load Profile’ attribute set:

– CLD_SM_ATTR_MAX_NUMBER_OF_PERIODS_DELIVERED
• For optional attributes from ‘Supply Limit’ attribute set:

– CLD_SM_ATTR_CURRENT_DEMAND_DELIVERED
– CLD_SM_ATTR_DEMAND_LIMIT
– CLD_SM_ATTR_DEMAND_INTEGRATION_PERIOD
– CLD_SM_ATTR_NUMBER_OF_DEMAND_SUBINTERVALS

Mirroring

If the mirroring of metering data is to be enabled (see Section 42.5), the following options must be defined in the
zcl_options.h file.

On the Simple Metering server on the Metering Device (which will request and report to a mirror on a mirroring
server, such as the ESP), there is no need to define anything.

On the Simple Metering client on the mirroring server, such as the ESP, the mirroring option must be enabled by
including:

#define CLD_SM_SUPPORT_MIRROR

In addition, the following defines must be added on the mirroring server (e.g. ESP):

#define CLD_BAS_ATTR_PHYSICAL_ENVIRONMENT

 (flags support for mirroring via a non-zero value of the u8PhysicalEnvironment attribute of the Basic
cluster)

#define CLD_SM_NUMBER_OF_MIRRORS <n>

(sets the maximum number of mirrors supported on the mirroring server to the value n)

#define ZCL_ATTRIBUTE_REPORTING_CLIENT_SUPPORTED

(enables support for attribute reporting clients)

The Simple Metering cluster attributes that are supported by mirroring must be defined on the mirroring server
(the same set of attributes are mirrored on all endpoints):

• CLD_SM_MIRROR_ATTR_CURRENT_SUMMATION_RECEIVED
• CLD_SM_MIRROR_ATTR_CURRENT_MAX_DEMAND_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_MAX_DEMAND_RECEIVED
• CLD_SM_MIRROR_ATTR_DFT_SUMMATION
• CLD_SM_MIRROR_ATTR_DAILY_FREEZE_TIME
• CLD_SM_MIRROR_ATTR_POWER_FACTOR
• CLD_SM_MIRROR_ATTR_READING_SNAPSHOT_TIME
• CLD_SM_MIRROR_ATTR_CURRENT_MAX_DEMAND_DELIVERED_TIME
• CLD_SM_MIRROR_ATTR_CURRENT_MAX_DEMAND_RECEIVED_TIME
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_1_SUMMATION_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_1_SUMMATION_RECEIVED
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_2_SUMMATION_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_2_SUMMATION_RECEIVED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
640 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• CLD_SM_MIRROR_ATTR_CURRENT_TIER_3_SUMMATION_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_3_SUMMATION_RECEIVED
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_4_SUMMATION_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_4_SUMMATION_RECEIVED
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_5_SUMMATION_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_5_SUMMATION_RECEIVED
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_6_SUMMATION_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_TIER_6_SUMMATION_RECEIVED
• CLD_SM_MIRROR_ATTR_MULTIPLIER
• CLD_SM_MIRROR_ATTR_DIVISOR
• CLD_SM_MIRROR_ATTR_DEMAND_FORMATING
• CLD_SM_MIRROR_ATTR_HISTORICAL_CONSUMPTION_FORMATTING
• CLD_SM_MIRROR_ATTR_INSTANTANEOUS_DEMAND
• CLD_SM_MIRROR_ATTR_CURRENT_DAY_CONSUMPTION_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_DAY_CONSUMPTION_RECEIVED
• CLD_SM_MIRROR_ATTR_PREVIOUS_DAY_CONSUMPTION_DELIVERED
• CLD_SM_MIRROR_ATTR_PREVIOUS_DAY_CONSUMPTION_RECEIVED
• CLD_SM_MIRROR_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_RECEIVED
• CLD_SM_MIRROR_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_RECEIVED
• CLD_SM_MIRROR_ATTR_MAX_NUMBER_OF_PERIODS_DELIVERED
• CLD_SM_MIRROR_ATTR_CURRENT_DEMAND_DELIVERED
• CLD_SM_MIRROR_ATTR_DEMAND_LIMIT
• CLD_SM_MIRROR_ATTR_DEMAND_INTEGRATION_PERIOD
• CLD_SM_MIRROR_ATTR_NUMBER_OF_DEMAND_SUBINTERVALS

The Basic cluster attributes that are supported by mirroring must also be defined on the mirroring server (the
same set of attributes are mirrored on all endpoints), from the following:

• CLD_BAS_MIRROR_ATTR_APPLICATION_VERSION
• CLD_BAS_MIRROR_ATTR_STACK_VERSION
• CLD_BAS_MIRROR_ATTR_HARDWARE_VERSION
• CLD_BAS_MIRROR_ATTR_MANUFACTURER_NAME
• CLD_BAS_MIRROR_ATTR_MODEL_IDENTIFIER
• CLD_BAS_MIRROR_ATTR_DATE_CODE
• CLD_BAS_MIRROR_ATTR_LOCATION_DESCRIPTION
• CLD_BAS_MIRROR_ATTR_PHYSICAL_ENVIRONMENT
• CLD_BAS_MIRROR_ATTR_DEVICE_ENABLED
• CLD_BAS_MIRROR_ATTR_ALARM_MASK
• CLD_BAS_MIRROR_ATTR_DISABLE_LOCAL_CONFIG

Get Profile

If the ‘Get Profile’ feature is to be used (see Section 42.6), the following options must be defined in the
zcl_options.h file.

The ‘Get Profile’ option must be enabled on the server and clients by including:

#define CLD_SM_SUPPORT_GET_PROFILE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
641 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Then, the following must be included on the server (only):

#ifdef CLD_SM_SUPPORT_GET_PROFILE
#define CLD_SM_GETPROFILE_MAX_NO_INTERVALS <n>
#endif

where <n> is the maximum number of consumption intervals to be held on the server (and therefore determines
the amount of memory to be reserved for the circular buffer that is used to store the data for these consumption
intervals).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
642 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part X: Commissioning Clusters

This part comprises two chapters:

• Chapter 43 details the Commissioning cluster
• Chapter 44 details the Touchlink Commissioning cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
643 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

43 Commissioning Cluster

This chapter details the Commissioning cluster which is defined in the ZCL and is a optional cluster for all
ZigBee devices.

The Commissioning cluster has a Cluster ID of 0x0015.

43.1 Overview
The Commissioning cluster is used for commissioning the ZigBee stack on a device during network installation
and defining the device behaviour with respect to the ZigBee network (it does not affect applications operating
on the devices).

• The Commissioning cluster server must be implemented on a device that is to be commissioned into a
network.

• The Commissioning cluster client must be implemented on a device that can initiate the commissioning of
another device into a network - for example, on a commissioning tool.

This optional cluster is enabled by defining CLD_COMMISSIONING in the zcl_options.h file. The inclusion of
the client or server software must also be pre-defined in the application’s compile-time options (in addition, if the
cluster is to reside on a custom endpoint then the role of client or server must also be specified when creating
the cluster instance). The compile-time options for the Commissioning cluster are fully detailed in Section 43.10.

Only server attributes are supported and all are optional - the required attributes must be enabled in the
compile-time options. The information that can potentially be stored in the Commissioning cluster is organised
into the following attribute sets: Start-up Parameters, Join Parameters, End Device Parameters, Concentrator
Parameters.

Note: The attribute values are set by the application but the application must ensure that these values are
synchronized with the settings and NIB values for the ZigBee PRO stack.

The Commissioning cluster also provides optional commands, which can be enabled in the compile-time
options.

43.2 Commissioning Cluster structure and attributes
The Commissioning cluster has only server attributes that are contained in the following
tsCLD_Commissioning structure, organised as a set of structures containing the Commissioning cluster
attribute sets:

typedef struct
{
#ifdef COMMISSIONING_SERVER
/* Start- attribute setup Parameters attribute set */
 tsCLD_StartupParameters sStartupParameters;
/* Join Parameters attribute set */
 tsCLD_JoinParameters sJoinParameters;
/* End Device Parameters attribute set */
 tsCLD_EndDeviceParameters sEndDeviceParameters;
/* Concentrator Parameters attribute set */
 tsCLD_ConcentratorParameters sConcentratorParameters;
#endif
 zuint16 u16ClusterRevision;
} tsCLD_Commissioning;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
644 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where:

sStartupParameters is a structure containing the attributes of the Start-
up Parameters attribute set - this structure and the associated attributes are detailed in Section 43.2.1
sJoinParameters is a structure containing the attributes of the Join Parameters attribute set - this structure and the associated attributes are detailed in Section 43.2.2
sEndDeviceParameters is a structure containing the attributes of the End Device Parameters attribute set - this structure and the associated attributes are detailed in Section 43.2.3
sConcentratorParameters is a structure containing the attributes of the Concentrator Parameters attribute set - this structure and the associated attributes are detailed in Section 43.2.4
u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is also described in Section 2.4.

Note: Memory is allocated at compile-time for all the Commissioning cluster attributes.

43.2.1 Start-up Parameters (tsCLD_StartupParameters)

The tsCLD_StartupParameters structure below contains the attributes of the Start-up Parameters attribute
set:

typedef struct
{
#ifdef CLD_COMMISSIONING_ATTR_SHORT_ADDRESS
 uint16 u16ShortAddress;
#endif
#ifdef CLD_COMMISSIONING_ATTR_EXTENED_PAN_ID
 zieeeaddress u64ExtPanId;
#endif
#ifdef CLD_COMMISSIONING_ATTR_PAN_ID
 uint16 u16PANId;
#endif
#ifdef CLD_COMMISSIONING_ATTR_CHANNEL_MASK
 zbmap32 u32ChannelMask;
#endif
#ifdef CLD_COMMISSIONING_ATTR_PROTOCOL_VERSION
 uint8 u8ProtocolVersion;
#endif
#ifdef CLD_COMMISSIONING_ATTR_STACK_PROFILE
 uint8 u8StackProfile;
#endif
#ifdef CLD_COMMISSIONING_ATTR_START_UP_CONTROL
 zenum8 e8StartUpControl;
#endif
#ifdef CLD_COMMISSIONING_ATTR_TC_ADDR
 zieeeaddress u64TcAddr;
#endif
#ifdef CLD_COMMISSIONING_ATTR_TC_MASTER_KEY
 tsZCL_Key sTcMasterKey;
#endif
#ifdef CLD_COMMISSIONING_ATTR_NWK_KEY
 tsZCL_Key sNwkKey;
#endif
#ifdef CLD_COMMISSIONING_ATTR_USE_INSECURE_JOIN
 bool_t bUseInsecureJoin;
#endif
#ifdef CLD_COMMISSIONING_ATTR_PRE_CONFIG_LINK_KEY
 tsZCL_Key sPreConfigLinkKey;
#endif
#ifdef CLD_COMMISSIONING_ATTR_NWK_KEY_SEQ_NO
 uint8 u8NwkKeySeqNo;
#endif
#ifdef CLD_COMMISSIONING_ATTR_NWK_KEY_TYPE
 zenum8 e8NwkKeyType;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
645 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#endif
#ifdef CLD_COMMISSIONING_ATTR_NWK_MANAGER_ADDR
 uint16 u16NwkManagerAddr;
#endif
} tsCLD_StartupParameters;

where:

• u16ShortAddress is the intended 16-bit network address of the device (which will be used provided that the
address is not to be obtained from the parent - that is, on the Co-ordinator or on other ZigBee PRO devices
for which e8StartUpControl is set to 0x00).

• u64ExtPanId is the 64-bit Extended PAN ID of the network which the device should join (the special value of
0xFFFFFFFF can be used to specify no particular network).

• u16PANId is the 16-bit PAN ID of the network which the device should join (which will be used provided that
the PAN ID is not to be obtained from the parent - that is, on the Co-ordinator or on other ZigBee PRO devices
for which e8StartUpControl is set to 0x00).

• u32ChannelMask is a 32-bit bitmap representing an IEEE 802.15.4 channel mask which indicates the set of
radio channels that the device should scan as part of the network join or formation process.

• u8ProtocolVersion is used to indicate the ZigBee protocol version that the device is to support (only
needed if the device potentially supports multiple versions).

• u8StackProfile is used to indicate the stack profile to be implemented on the device - the possible values
are 0x01 for ZigBee Stack profile and 0x02 for ZigBee PRO Stack profile.

• e8StartUpControl is an enumeration which is used to indicate the start-up mode of the device (e.g. device
should form a network with the specified Extended PAN ID) and therefore determines how certain other
attributes will be used. For further information on how this attribute is used, refer to the ZCL Specification.

• u64TcAddr is the 64-bit IEEE/MAC address of the Trust Centre node for the network with the specified
Extended PAN ID (this is needed if security is to be implemented).

• sTcMasterKey is the master key to be used during key establishment with the specified Trust Centre (this
is needed if security is to be implemented). The default is a 128-bit zero value indicating that the key is
unspecified.

• sNwkKey is the network key to be used when communicating within the network with the specified Extended
PAN ID (this is needed if security is to be implemented). The default is a 128-bit zero value indicating that the
key is unspecified.

• bUseInsecureJoin is a Boolean flag which, when set to TRUE, allows an unsecured join as a fall-back
(even if security is enabled).

• sPreConfigLinkKey is the pre-configured link key between the device and the Trust Centre (this is needed
if security is to be implemented). The default is a 128-bit zero value indicating that the key is unspecified.

• u8NwkKeySeqNo is the 8-bit sequence number for the network key. The default value is 0x00.
• e8NwkKeyType is the type of the network key. The default value is 0x01 when u8StackProfile is 0x01

and 0x05 when u8StackProfile is 0x02.
• u16NwkManagerAddr is the 16-bit network address of the Network Manager. The default value is 0x0000,

indicating that the Network Manager is the ZigBee Co-ordinator.

43.2.2 Join Parameters (tsCLD_JoinParameters)

The tsCLD_JoinParameters structure below contains the attributes of the Join Parameters attribute set:

typedef struct
{
#ifdef CLD_COMMISSIONING_ATTR_SCAN_ATTEMPTS
 uint8 u8ScanAttempts;
#endif
#ifdef CLD_COMMISSIONING_ATTR_TIME_BW_SCANS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
646 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint16 u16TimeBwScans;
#endif
#ifdef CLD_COMMISSIONING_ATTR_REJOIN_INTERVAL
 uint16 u16RejoinInterval;
#endif
#ifdef CLD_COMMISSIONING_ATTR_MAX_REJOIN_INTERVAL
 uint16 u16MaxRejoinInterval;
#endif
} tsCLD_JoinParameters;

where:

• u8ScanAttempts is the number of scan attempts to make before selecting a parent to join. The default value
is 0x05.

• u16TimeBwScans is the time-interval, in milliseconds, between consecutive scan attempts. The default value
is 0x64.

• u16RejoinInterval is the time-interval, in seconds, between consecutive attempts to rejoin the network for
an End Device which has lost its network connection. The default value is 0x3C.

• u16MaxRejoinInterval is an upper limit, in seconds, on the value of the u16RejoinInterval attribute.
The default value is 0x0E10.

43.2.3 End Device Parameters (tsCLD_EndDeviceParameters)

The tsCLD_EndDeviceParameters structure below contains the attributes of the End Device Parameters
attribute set:

typedef struct
{
#ifdef CLD_COMMISSIONING_ATTR_INDIRECT_POLL_RATE
 uint16 u16IndirectPollRate;
#endif
#ifdef CLD_COMMISSIONING_ATTR_PARENT_RETRY_THRSHLD
 uint8 u8ParentRetryThreshold;
#endif
} tsCLD_EndDeviceParameters;

where:

• u16IndirectPollRate is the time-interval, in milliseconds, between consecutive polls from an End Device
which polls its parent while awake (an End Device with a receiver that is inactive while sleeping).

• u8ParentRetryThreshold is the number of times that an End Device should attempt to re-contact its
parent before initiating the rejoin process.

43.2.4 Concentrator Parameters (tsCLD_ConcentratorParameters)

The sCLD_ConcentratorParameters structure below contains the attributes of the Concentrator
Parameters attribute set:

typedef struct
{
#ifdef CLD_COMMISSIONING_ATTR_CONCENTRATOR_FLAG
 bool_t bConcentratorFlag;
#endif
#ifdef CLD_COMMISSIONING_ATTR_CONCENTRATOR_RADIUS
 uint8 u8ConcentratorRadius;
#endif
#ifdef CLD_COMMISSIONING_ATTR_CONCENTRATOR_DISCVRY_TIME

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
647 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8ConcentratorDiscoveryTime;
#endif
} tsCLD_ConcentratorParameters;

where:

• bConcentratorFlag is a Boolean flag which, when set to TRUE, enables the device as a concentrator for
many-to-one routing. The default value is FALSE.

• u8ConcentratorRadius is the hop-count radius for concentrator route discoveries. The default value is
0x0F.

• u8ConcentratorDiscoveryTime is the time-interval, in seconds, between consecutive discoveries of
inbound routes initiated by the concentrator. The default value is 0x0000, indicating that this time-interval is
unknown and the discoveries must be triggered by the application.

43.3 Attribute Settings
The Commissioning cluster structure contains only optional attributes. Each attribute is enabled/disabled
through a corresponding macro defined in the zcl_options.h file (see Section 43.10) - for example,
u16ShortAddress is enabled/disabled through the macro CLD_COMM_ATTR_SHORT_ADDRESS.

The function eCLD_CommissioningSetAttribute() can be used on the cluster server to write values to any one
of the four attribute sets of the Commissioning cluster.

43.4 Initialisation
The function eCLD_CommissioningClusterCreateCommissioning() is used to create an instance of the
Commissioning cluster. The function is generally called by the initialization function for the host device.

43.5 Commissioning Commands
A number of commissioning commands are provided to allow a Commissioning cluster client to remotely
request actions relating to the Start-up Parameters attribute set (see Section 43.2.1) on a cluster server. This
includes initiating a device restart from the current Start-up Parameter values, as well as the management of
these attributes.

43.5.1 Device Start-up

The ‘current’ set of Start-up Parameter values on a cluster server are those used in the start-up procedure,
which can be remotely initiated from a cluster client using the function eCLD_CommissioningCommand
RestartDeviceSend(). This function sends a Restart Device command to the remote device hosting the cluster
server. This command provides a number of options concerning the timing of the restart:

• Without delay: The start-up procedure is invoked as soon as the command is received. This option requires
both the delay and jitter to be specified as zero.

• With delay: The start-up procedure is invoked after a specified delay (in seconds). If no delay is required, the
delay period must be specified as zero.

• With delay and jitter: The start-up procedure is invoked after a specified delay (in seconds) with a random
jitter period added. It is necessary to indicate a maximum jitter period but the actual period will be randomly
generated. If no jitter is required, the maximum jitter period must be specified as zero.

Note: If only jitter is required, the delay period must be specified as zero and the maximum jitter period must be
non-zero.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
648 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

In all of the above cases, it is possible to configure the start-up procedure to begin either without any further
delay or at a ‘convenient’ moment (when there are no pending actions that should be completed before the
restart).

The above options are configured in the command payload (see Section 43.9.2).

The cluster server will send a Restart Device Response to the requesting client before invoking the start-up
procedure or starting the countdown (for the delay).

43.5.2 Stored Start-up Parameters

In addition to the ‘current’ set of values for the Start-up Parameters attribute set, the cluster server can store
other sets of values for these attributes in non-volatile memory. Each stored set of Start-up Parameter values is
assigned a unique index number. At any time, a particular stored set of values can be retrieved and loaded to
become the current set. Functions are provided for managing the saved sets of Start-up Parameter values.

43.5.2.1 Saving Start-up Parameters

In order to save a set of Start-up Parameter values, it is first necessary to set them as the current attribute
values - this must be done locally by the application on the device hosting the server, possibly using the function
eCLD_CommissioningSetAttribute().

The application on a device hosting a cluster client can send a Save Start-up Parameters command to the
cluster server in order to request that the current set of Start-up Parameter values is saved to non-volatile
memory. This can be done by calling eCLD_CommissioningCommandSaveStartupParamsSend () or,
alternatively, eCLD_CommissioningCommandModifyStartupParamsSend (). The index number of the
saved record must be specified in the request. If this number has already been used, the existing stored values
will be over-written with the new values.

It is the responsibility of the user application on the device hosting the server to perform the save. When the
command arrives, a ZCL custom event will be generated and the request should be handled by the user-defined
callback function for the endpoint on which the application is located. The server will automatically send a Save
Start-up Parameters Response to the requesting client.

43.5.2.2 Retrieving Stored Start-up Parameters

A set of Start-up Parameter values that have been stored by in non-volatile memory (as described in Section
43.5.2.1) can be retrieved and loaded as the current set of values. The required stored set of values is specified
using its unique index number.

The application on a device hosting a cluster client can send a Restore Start-up Parameters command to the
cluster server in order to request that the specified set of Start-up Parameter values is loaded from non-volatile
memory. This can be done by calling eCLD_CommissioningCommandRestoreStartupParamsSend ()
or, alternatively, eCLD_CommissioningCommandModifyStartupParamsSend (). The index number of
the relevant set must be specified in the request.

It is the responsibility of the user application on the device hosting the server to retrieve the relevant set
of values and load them as the current values. When the command arrives, a ZCL custom event will be
generated and the request should be handled by the user-defined callback function for the endpoint on which
the application is located. The server will automatically send a Restore Start-up Parameters Response to the
requesting client.

A device restart is required in order to implement the loaded values, as described in Section 43.5.1.

43.5.3 Reset Start-up Parameters to Default Values

A set of Start-up Parameters on the cluster server can be reset to their default values.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
649 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The application on a device hosting a cluster client can send a Reset Start-up Parameters command to the
cluster server in order to request that the Start-up Parameters are reset to their default values. This can be
done by calling eCLD_CommissioningCommandResetStartupParamsSend () or, alternatively, eCLD_
CommissioningCommandModifyStartupParamsSend (). Options are available concerning the set(s) of
Start-up Parameters to reset - any combination of the following can be performed:

• Reset the current set of Start-up Parameters
• Reset all stored sets of Start-up Parameters or the stored set with given index
• Erase the stored set of Start-up Parameters with given index

The required options must be specified in the request. The option to erase a stored set of Start-up Parameters
allows storage space to be freed up.

It is the responsibility of the user application on the device hosting the server to reset the relevant set(s) of
values. When the command arrives, a ZCL custom event will be generated and the request should be handled
by the user-defined callback function for the endpoint on which the application is located. The server will
automatically send a Reset Start-up Parameters Response to the requesting client.

A device restart is required in order to implement the reset (current) values, as described in Section 43.5.1.

43.6 Commissioning Events
The Commissioning cluster has its own events that are handled through the callback mechanism outlined
in Chapter 3. If a device uses this cluster then application-specific Commissioning event handling must be
included in the user-defined callback function for the associated endpoint, where this callback function is
registered through the relevant endpoint registration function. This callback function will then be invoked when a
Commissioning event occurs and needs the attention of the application.

For a Commissioning event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_CommissioningCallBackMessage structure (fully detailed in Section 43.9.6).

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_Commissioning_RestartDevicePayload
 *psRestartDevicePayload;
 tsCLD_Commissioning_ModifyStartupParametersPayload
 *psModifyStartupParamsPayload;
 } uReqMessage;
 union
 {
 tsCLD_Commissioning_ResponsePayload
 *psCommissioningResponsePayload;
 } uRespMessage;
} tsCLD_CommissioningCallBackMessage;

When a Commissioning event occurs, one of a number of command types could have been
received. The relevant command type is specified through the u8CommandId field of the
tsCLD_CommissioningCallBackMessage structure. The possible command types are detailed below.

The table below details the command types that can be received by the cluster server.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
650 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8CommandId Enumeration Description

E_CLD_COMMISSIONING_CMD_RESTART_DEVICE A Restart Device command has been
received

E_CLD_COMMISSIONING_CMD_SAVE_STARTUP_PARAMS A Save Start-up Parameters command has
been received

E_CLD_COMMISSIONING_CMD_RESTORE_STARTUP_PARAMS A Restore Start-up Parameters command has
been received

E_CLD_COMMISSIONING_CMD_RESET_STARTUP_PARAMS A Reset Start-up Parameters command has
been received

Table 97. Commissioning Command Types (on Server)

The table below details the command types that can be received by the cluster client.

u8CommandId Enumeration Description

E_CLD_COMMISSIONING_CMD_RESTART_DEVICE A Restart Device response has been received

E_CLD_COMMISSIONING_CMD_SAVE_STARTUP_PARAMS A Save Start-up Parameters response has
been received

E_CLD_COMMISSIONING_CMD_RESTORE_STARTUP_PARAMS A Restore Start-up Parameters response has
been received

E_CLD_COMMISSIONING_CMD_RESET_STARTUP_PARAMS A Reset Start-up Parameters response has
been received

Table 98. Commissioning Command Types (on Client)

43.7 Functions
The following Commissioning cluster function is provided:

1. eCLD_CommissioningClusterCreateCommissioning
2. eCLD_CommissioningCommandRestartDeviceSend
3. eCLD_CommissioningCommandSaveStartupParamsSend
4. eCLD_CommissioningCommandRestoreStartupParamsSend
5. eCLD_CommissioningCommandResetStartupParamsSend
6. eCLD_CommissioningCommandModifyStartupParamsSend
7. eCLD_CommissioningSetAttribute

43.7.1 eCLD_CommissioningClusterCreateCommissioning

teZCL_Status eCLD_CommissioningClusterCreateCommissioning(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_CommissioningCustomDataStructure
 *psCustomDataStructure);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
651 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function creates an instance of the Commissioning cluster on an endpoint. The cluster instance is created
on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can act as a
server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create a
Commissioning cluster instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions. For more details of creating cluster instances
on custom endpoints, refer to Appendix D.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function from those described in the ZigBee Devices User Guide

Note: (JNUG3131).

When used, this function must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8CommissioningAttributeControlBits
[(sizeof(asCLD_CommissioningClusterAttributeDefinitions) / sizeof(tsZCL_AttributeDefinition))];

Parameters

psClusterInstance Pointer to structure containing information about the cluster instance to be created
(see Section 6.1.16). This structure is updated by the function by initialising individual structure fields.
bIsServer Type of cluster instance (server or client) to be created:
 TRUE - server
 FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In
this case, this structure must contain the details of the Commissioning cluster. This parameter can refer to a
pre-filled structure called sCLD_Commissioning which is provided in the Commissioning.h file.
pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter
should be the address of the structure of type tsCLD_Commissioning which defines the attributes of
Commissioning cluster. The function initializes the attributes with default values.
pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the
cluster (see above). For a cluster client, set this pointer to NULL.
psCustomDataStructure Pointer to a structure containing the storage for internal functions of the cluster
(see Section 43.9.5)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
652 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

43.7.2 eCLD_CommissioningCommandRestartDeviceSend

teZCL_Status eCLD_CommissioningCommandRestartDeviceSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber, tsCLD_Commissioning_RestartDevicePayload
 *psPayload);

Description

This function can be used on a Commissioning cluster client to send a Restart Device command to a cluster
server on a remote device. This command is used to run the start-up procedure with a new set of values for the
Start-up Parameters attributes (these values must already be installed). The new values may be implemented
immediately or after a specified delay with an optional jitter.

When the command arrives, a ZCL custom event will be generated and the request should be handled by the
user-defined callback function for the endpoint on which the application is located (see Section 43.6). Before
running the start-up procedure or starting the countdown (for the delay), the server will send a Restart Device
Response to the requesting client, where a ZCL custom event will be generated.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to send the request. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values
u8DestinationEndPointId Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP
psDestinationAddress Pointer to a structure holding the address of the node to which the request is sent
pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to a structure containing the payload for this message (see Section 43.9.2)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

43.7.3 eCLD_CommissioningCommandSaveStartupParamsSend

teZCL_Status eCLD_CommissioningCommandSaveStartupParamsSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber, tsCLD_Commissioning_ModifyStartupParametersPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
653 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on a Commissioning cluster client to send a Save Start-up Parameters command
to a cluster server on a remote device. This command instructs the server to locally save a set of values for
the attributes of the Start-up Parameters attribute set. A device can store different sets of start-up parameters
(in non-volatile memory), with each set being referenced using an index number. This index number must be
specified and if a set has already been stored with the same index number then the stored values will be over-
written with the new values.

It is the responsibility of the user application on the device hosting the server to implement the command. When
the command arrives, a ZCL custom event will be generated and the request should be handled by the user-
defined callback function for the endpoint on which the application is located (see Section 43.6). The server
will automatically send a Save Start-up Parameters Response to the client, where a ZCL custom event will be
generated.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to send the request. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values
u8DestinationEndPointId Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP
psDestinationAddress Pointer to a structure holding the address of the node to which the request is sent
pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to a structure containing the payload for this message (see Section 43.9.3)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

43.7.4 eCLD_CommissioningCommandRestoreStartupParamsSend

teZCL_Status eCLD_CommissioningCommandRestoreStartupParamsSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber, tsCLD_Commissioning_ModifyStartupParametersPayload
 *psPayload);

Description

This function can be used on a Commissioning cluster client to send a Restore Start-up Parameters command
to a cluster server on a remote device. This command instructs the server to load a saved set of values for the
attributes of the Start-up Parameters attribute set. The index of the required set of Start-up Parameters must be

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
654 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

specified in the command payload. Note that the command does not instruct the server to implement the loaded
values using the start-up procedure - a Restart Device command is required to do this.

It is the responsibility of the user application on the device hosting the server to implement the command. When
the command arrives, a ZCL custom event will be generated and the request should be handled by the user-
defined callback function for the endpoint on which the application is located (see Section 43.6). The server will
automatically send a Restore Start-up Parameters Response to the client, where a ZCL custom event will be
generated.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to send the request. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values
u8DestinationEndPointId Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP
psDestinationAddress Pointer to a structure holding the address of the node to which the request is sent
pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to a structure containing the payload for this message (see Section 43.9.3)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

43.7.5 eCLD_CommissioningCommandResetStartupParamsSend

teZCL_Status eCLD_CommissioningCommandResetStartupParamsSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber, tsCLD_Commissioning_ModifyStartupParametersPayload
 *psPayload);

Description

This function can be used on a Commissioning cluster client to send a Reset Start-up Parameters command to
a cluster server on a remote device. This command instructs the server to set the current Start-up Parameters
to their default values. It is also possible to set one or all of any saved sets of Start-up Parameters to the
defaults. The command can also be used to delete a specified set of saved Start-up Parameters.

It is the responsibility of the user application on the device hosting the server to implement the command. When
the command arrives, a ZCL custom event will be generated and the request should be handled by the user-
defined callback function for the endpoint on which the application is located (see Section 43.6). The server
will automatically send a Reset Start-up Parameters Response to the client, where a ZCL custom event will be
generated.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
655 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to send the request. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values
u8DestinationEndPointId Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP
psDestinationAddress Pointer to a structure holding the address of the node to which the request is sent
pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to a structure containing the payload for this message (see Section 43.9.3)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

43.7.6 eCLD_CommissioningCommandModifyStartupParamsSend

teZCL_Status eCLD_CommissioningCommandModifyStartupParamsSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Commissioning_ModifyStartupParametersPayload
 *psPayload,
 teCLD_Commissioning_Command
 eCLD_Commissioning_Command);

Description

This function can be used on a Commissioning cluster client to send a command to modify a set of values for
the Start-up Parameters attributes in the cluster server on a remote device. One of four commands can be
specified and sent, as listed and described in the table below:

Command Description

Restart Device Used to run the start-up procedure with the current set of values for the Start-up Parameters
attributes, as described for the function eCLD_Com-missioningCommandRestartDevice
Send(). These values may have been loaded using the Restore Start-up Parameters or Reset
Start-up Parameters command.

Save Start-up Parameters Used to save the current set of Start-up Parameter values with the speci-fied index, as
described for the function eCLD_CommissioningCom-mandSaveStartupParamsSend().

Restore Start-up
Parameters

Used to load the saved set of Start-up Parameter values with the specified index, such that
these values become the current Start-up Parameter val-ues, as described for the function e

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
656 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Command Description
CLD_CommissioningCommandRe-storeStartupParamsSend(). Note that these values are
not implemented, which requires a Restart Device command.

Reset Start-up Parameters Used to reset the current Start-up Parameters to their defaults. One or all of any stored sets
of Start-up Parameter values can also be reset to the defaults, as described for the function e
CLD_CommissioningComman-dResetStartupParamsSend(). The command can also be
used to delete a particular set of stored Start-up Parameters.

It is the responsibility of the user application on the device hosting the server to implement the command. When
the command arrives, a ZCL custom event will be generated and the request should be handled by the user-
defined callback function for the endpoint on which the application is located (see Section 43.6). The server
will automatically send a response for the relevant command to the client, where a ZCL custom event will be
generated.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to send the request. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values
u8DestinationEndPointId Number of the endpoint on the remote node to which the request is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP
psDestinationAddress Pointer to a structure holding the address of the node to which the request is sent
pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to a structure containing the payload for this message (see Section 43.9.3)
eCLD_Commissioning_Command Type of command to send, one of:
E_CLD_COMMISSIONING_CMD_RESTART_DEVICE
E_CLD_COMMISSIONING_CMD_SAVE_STARTUP_PARAMS
E_CLD_COMMISSIONING_CMD_RESTORE_STARTUP_PARAMS
E_CLD_COMMISSIONING_CMD_RESET_STARTUP_PARAMS

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

43.7.7 eCLD_CommissioningSetAttribute

teZCL_Status eCLD_CommissioningSetAttribute(
 uint8 u8SourceEndPointId,
 teCLD_Commissioning_AttributeSet eAttributeSet,
 void *vptrAttributeSetStructure);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
657 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on a Commissioning cluster server to write values to a particular attribute set of the
Commissioning cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to issue the request.
eAttributeSet Enumeration indicating attribute set to write to, one of:
E_CLD_COMMISSIONING_ATTR_SET_STARTUP_PARAMS
E_CLD_COMMISSIONING_ATTR_SET_JOIN_PARAMS
E_CLD_COMMISSIONING_ATTR_SET_ENDDEVICE_PARAMS
E_CLD_COMMISSIONING_ATTR_SET_CONCENTRATOR_PARAMS
vptrAttributeSetStructure Pointer to a structure containing the new values for the attribute set - the
relevant structures are detailed in Section 43.2

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

43.8 Enumerations

43.8.1 teCLD_Commissioning_AttributeID

The following structure contains the enumerations used to identify the attributes of the Commissioning cluster.

typedef enum
{
 E_CLD_COMMISSIONING_ATTR_ID_SHORT_ADDRESS = 0x0000,
 E_CLD_COMMISSIONING_ATTR_ID_EXT_PANID,
 E_CLD_COMMISSIONING_ATTR_ID_PANID,
 E_CLD_COMMISSIONING_ATTR_ID_CHANNEL_MASK,
 E_CLD_COMMISSIONING_ATTR_ID_PROTOCOL_VERSION,
 E_CLD_COMMISSIONING_ATTR_ID_STACK_PROFILE,
 E_CLD_COMMISSIONING_ATTR_ID_STARTUP_CONTROl,
 E_CLD_COMMISSIONING_ATTR_ID_TC_ADDR = 0x0010,
 E_CLD_COMMISSIONING_ATTR_ID_TC_MASTER_KEY,
 E_CLD_COMMISSIONING_ATTR_ID_NETWORK_KEY,
 E_CLD_COMMISSIONING_ATTR_ID_USE_INSECURE_JOIN,
 E_CLD_COMMISSIONING_ATTR_ID_PRECONFIG_LINK_KEY,
 E_CLD_COMMISSIONING_ATTR_ID_NWK_KEY_SEQ_NO,
 E_CLD_COMMISSIONING_ATTR_ID_NWK_KEY_TYPE,
 E_CLD_COMMISSIONING_ATTR_ID_NWK_MANAGER_ADDR,
 E_CLD_COMMISSIONING_ATTR_ID_SCAN_ATTEMPTS = 0x0020,
 E_CLD_COMMISSIONING_ATTR_ID_TIME_BW_SCANS,
 E_CLD_COMMISSIONING_ATTR_ID_REJOIN_INTERVAL,
 E_CLD_COMMISSIONING_ATTR_ID_MAX_REJOIN_INTERVAL,
 E_CLD_COMMISSIONING_ATTR_ID_INDIRECT_POLL_RATE = 0x0030,
 E_CLD_COMMISSIONING_ATTR_ID_PARENT_RETRY_THRSHOLD,
 E_CLD_COMMISSIONING_ATTR_ID_CONCENTRATOR_FLAG = 0x0040,
 E_CLD_COMMISSIONING_ATTR_ID_CONCENTRATOR_RADIUS,
 E_CLD_COMMISSIONING_ATTR_ID_CONCENTRATOR_DISCVRY_TIME,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
658 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

} teCLD_Commissioning_AttributeID;;

43.8.2 teCLD_Commissioning_AttributeSet

The following structure contains the enumerations used to identify the attribute sets of the Commissioning
cluster.

typedef enum
{
 E_CLD_COMMISSIONING_ATTR_SET_STARTUP_PARAMS = 0x00,
 E_CLD_COMMISSIONING_ATTR_SET_JOIN_PARAMS,
 E_CLD_COMMISSIONING_ATTR_SET_ENDDEVICE_PARAMS,
 E_CLD_COMMISSIONING_ATTR_SET_CONCENTRATOR_PARAMS
} teCLD_Commissioning_AttributeSet;

43.8.3 teCLD_Commissioning_Command

The following structure contains the enumerations used to identify commands of the Commissioning cluster (the
same enumerations are used for requests and their corresponding responses).

typedef enum
{
 E_CLD_COMMISSIONING_CMD_RESTART_DEVICE = 0x00,
 E_CLD_COMMISSIONING_CMD_SAVE_STARTUP_PARAMS,
 E_CLD_COMMISSIONING_CMD_RESTORE_STARTUP_PARAMS,
 E_CLD_COMMISSIONING_CMD_RESET_STARTUP_PARAMS
} teCLD_Commissioning_Command;

The above enumerations are described in the table below:

Enumeration Command

E_CLD_COMMISSIONING_CMD_RESTART_DEVICE Restart Device request or response

E_CLD_COMMISSIONING_CMD_SAVE_STARTUP_PARAMS Save Start-up Parameters request or
response

E_CLD_COMMISSIONING_CMD_RESTORE_STARTUP_PARAMS Restore Start-up Parameters request or
response

E_CLD_COMMISSIONING_CMD_RESET_STARTUP_PARAMS Reset Start-up Parameters request or
response

Table 99. Commissioning Command Enumerations

43.9 Structures

43.9.1 Attribute Set Structures

The following structures contain the Commissioning cluster attribute sets and are detailed in the referenced
sections:

• tsCLD_StartupParameters - see Section 43.2.1
• tsCLD_JoinParameters - see Section 43.2.2
• tsCLD_EndDeviceParameters - see Section 43.2.3
• tsCLD_ConcentratorParameters - see Section 43.2.4

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
659 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

43.9.2 tsCLD_Commissioning_RestartDevicePayload

The following structure contains the payload of a Restart Device command.

typedef struct
{
 zbmap8 u8Options;
 uint8 u8Delay;
 uint8 u8Jitter;
} tsCLD_Commissioning_RestartDevicePayload;

where:

u8Options is a 8-bit bitmap specifying the required start-up options:

Bits Option Description

0-2 Start-up Mode Determines the starting state of the device restart:
• 0b000: Restart with current Start-up Parameter values
• 0b001: Restart from existing stack state
All other values are reserved.

3 Immediate Determines how quickly the start-up procedure will begin follow-ing receipt of the
command or the specified delay/jitter:
• 1: Immediately
• 0: At a convenient moment (e.g. following any pending actions)

4-7 - Reserved

u8Delay specifies the time-delay, in seconds, before the start-
up procedure should be executed.
u8Jitter is a value which determines the possible range of values of the jitter that is added to the delay u8Delay - the jitter, in milliseconds, is a random value in the range 0 to u8Jitter x 80.

43.9.3 tsCLD_Commissioning_ModifyStartupParametersPayload

The following structure contains the payload of the following commands: Save Start-up Parameters, Restore
Start-up Parameters and Reset Start-up Parameters.

typedef struct
{
 zbmap8 u8Options;
 uint8 u8Index;
} tsCLD_Commissioning_ModifyStartupParametersPayload;

where:

u8Options is an 8-
bit bitmap specifying the required reset options for the Reset Start-
up Parameters command (it is not used by the other commands):

Bits Option Description

0 Reset Current Determines whether the current Start-up Parameters will be reset to their default
values:
• 1: Reset to default values

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
660 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bits Option Description
• 0: Do not reset (remain unchanged)

1 Reset All Determines whether all stored Start-up Parameter sets will be reset to their default
values:
• 1: Reset all stored Start-up Parameter sets
• 0: Reset the stored Start-up Parameter set with specified index

2 Erase Index Determines whether the stored Start-up Parameter set with speci-fied index will be
erased:
• 1: Erase Start-up Parameter set with specified index
• 0: Do not erase Start-up Parameter set with specified index

3-7 - Reserved

u8Index is the index of the saved Start-
up Parameter set to which actions specified in u8Options relate (this index is ignored if no actions are specified).

43.9.4 tsCLD_Commissioning_ResponsePayload

The following structure contains the payload of the responses to the following commands: Save Start-up
Parameters, Restore Start-up Parameters and Reset Start-up Parameters.

typedef struct
{
 zenum8 u8Status;
} tsCLD_Commissioning_ResponsePayload;

where u8Status contains one of the ZCL command status codes listed and described in Section 7.1.4.

43.9.5 tsCLD_CommissioningCustomDataStructure

The Commissioning cluster requires extra storage space to be allocated to be used by internal functions. The
structure definition for this storage is shown below:

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_CommissioningCallBackMessage sCallBackMessage;
} tsCLD_CommissioningCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

43.9.6 tsCLD_CommissioningCallBackMessage

For a Commissioning event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_CommissioningCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
661 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 {
 tsCLD_Commissioning_RestartDevicePayload
 *psRestartDevicePayload;
 tsCLD_Commissioning_ModifyStartupParametersPayload
 *psModifyStartupParamsPayload;
 } uReqMessage;
 union
 {
 tsCLD_Commissioning_ResponsePayload
 *psCommissioningResponsePayload;
 } uRespMessage;
} tsCLD_CommissioningCallBackMessage;

where:

• u8CommandId indicates the type of Commissioning command that has been received by a cluster server or
client (the same enumerations are used for requests on the server and responses on the client), one of:
– E_CLD_COMMISSIONING_CMD_RESTART_DEVICE
– E_CLD_COMMISSIONING_CMD_SAVE_STARTUP_PARAMS
– E_CLD_COMMISSIONING_CMD_RESTORE_STARTUP_PARAMS
– E_CLD_COMMISSIONING_CMD_RESET_STARTUP_PARAMS

• uReqMessage is a union containing the payload of a request command in the following form:
– psRestartDevicePayload is a pointer to a structure containing the Restart Device command payload -

see Section 43.9.2
– psModifyStartupParamsPayload is a pointer to a structure containing the (common) payload for the

Save Start-up Parameters, Restore Start-up Parameters and Reset Start-up Parameters commands - see
Section 43.9.3

• uRespMessage is a union containing the payload of a response command in the following form:
– psCommissioningResponsePayload is a pointer to a structure containing the (common) payload for the

Save Start-up Parameters, Restore Start-up Parameters and Reset Start-up Parameters responses - see
Section 43.9.4

For further information on Commissioning cluster events, refer to Section 43.6.

43.10 Compile-time options
To enable the Commissioning cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_COMMISSIONING

In addition, to include the software for a cluster client or server or both, it is necessary to add one or both of the
following to the same file:

#define COMMISSIONING_CLIENT
#define COMMISSIONING_SERVER

Optional Attributes

The Commissioning cluster contains attributes that may be optionally enabled at compile-time by adding some
or all of the following lines to the zcl_options.h file (see Section 43.2 and Section 43.3):

#define CLD_COMM_ATTR_SHORT_ADDRESS
#define CLD_COMM_ATTR_EXTENED_PAN_ID

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
662 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#define CLD_COMM_ATTR_PAN_ID
#define CLD_COMM_ATTR_CHANNEL_MASK
#define CLD_COMM_ATTR_PROTOCOL_VERSION
#define CLD_COMM_ATTR_STACK_PROFILE
#define CLD_COMM_ATTR_START_UP_CONTROL
 #define CLD_COMM_ATTR_TC_ADDR
#define CLD_COMM_ATTR_TC_MASTER_KEY
 #define CLD_COMM_ATTR_NWK_KEY
#define CLD_COMM_ATTR_USE_INSECURE_JOIN
 #define CLD_COMM_ATTR_PRE_CONFIG_LINK_KEY
#define CLD_COMM_ATTR_NWK_KEY_SEQ_NO
 #define CLD_COMM_ATTR_NWK_KEY_TYPE
#define CLD_COMM_ATTR_NWK_MANAGER_ADDR
#define CLD_COMM_ATTR_SCAN_ATTEMPTS
#define CLD_COMM_ATTR_TIME_BW_SCANS
#define CLD_COMM_ATTR_REJOIN_INTERVAL
#define CLD_COMM_ATTR_MAX_REJOIN_INTERVAL
 #define CLD_COMM_ATTR_INDIRECT_POLL_RATE
#define CLD_COMM_ATTR_PARENT_RETRY_THRSHLD
#define CLD_COMM_ATTR_CONCENTRATOR_FLAG
#define CLD_COMM_ATTR_CONCENTRATOR_RADIUS
#define CLD_COMM_ATTR_CONCENTRATOR_DISCVRY_TIME

Optional Commands

The Commissioning cluster contains commands that may be optionally enabled at compile-time by adding some
or all of the following lines to the zcl_options.h file.

To enable the Save Start-up Parameters command, add the following line:

#define CLD_COMMISSIONING_CMD_SAVE_STARTUP_PARAMS

To enable the Restore Start-up Parameters command, add the following line:

#define CLD_COMMISSIONING_CMD_RESTORE_STARTUP_PARAMS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
663 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

44 Touchlink Commissioning Cluster

This chapter describes the Touchlink Commissioning cluster, which can be used when forming a network or
adding a new node to an existing network.

The Touchlink Commissioning cluster has a Cluster ID of 0x1000.

44.1 Overview
The Touchlink Commissioning cluster is associated with a node as a whole, rather than with individual ZigBee
devices on the node. It must be used on nodes that incorporate one or more of the ZigBee devices indicated in
Table 83 below, which shows the supported devices when the Touchlink Commissioning cluster acts as a client,
server and combined client/server.

Client Client/Server Server

Colour Controller
Colour Scene Controller
Non-Colour Controller
Non-Colour Scene Controller
Control Bridge
On/Off Sensor

Colour Controller
Colour Scene Controller
Non-Colour Controller
Non-Colour Scene Controller
Control Bridge
On/Off Sensor
On/Off Light
On/Off Plug-in Unit
Dimmable Light
Dimmable Plug-in Unit
Colour Light
Extended Colour Light
Colour Temperature Light

Colour Controller
Colour Scene Controller
Non-Colour Controller
Non-Colour Scene Controller
Control Bridge
On/Off Sensor
On/Off Light
On/Off Plug-in Unit
Dimmable Light
Dimmable Plug-in Unit
Colour Light
Extended Colour Light
Colour Temperature Light

Table 100. Touchlink Commissioning Cluster in ZigBee Devices

This cluster supports two sets of functionality, corresponding to two distinct commands sets:

• Touchlink
• Commissioning Utility

Functions are provided for implementing both sets of commands. These functions are referenced in Section
44.4 and Section 44.5, and detailed in Section 44.7.

The Commissioning Utility functionality is not required on Lighting devices.

For the compile-time options for enabling the Touchlink Commissioning cluster for Touchlink and the
Commissioning Utility, refer to Section 44.10.

44.2 Cluster structure and attributes
This cluster has no attributes, as a server or a client. Therefore, the cluster structure tsCLD_ZllCommission
is referred to using a null pointer.

44.3 Commissioning operations
Commissioning involves forming a network or adding a new node to an existing network. A node from which
commissioning can be initiated is referred to as an ‘initiator’ - this may be a remote control unit, but could also
be a lamp.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
664 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• An ‘initiator’ node must support the Touchlink Commissioning cluster as a client.
• A node to be added to the network must support the Touchlink Commissioning cluster as a server (or as both

a server and client).

Note that commissioning a new network involves adding at least one node to the new network (as well as the
initiator).

Commissioning may involve two stages, depending on the type of node added to the network by the initiator:

1. The node is added to the network using the Touchlink commands of the Touchlink Commissioning cluster.
In practice for the user, this typically involves bringing the initiator node physically close to the target node and
pressing a button.

2. If the initiator node and the new node will both be used to control lights in the network, the new node must
learn certain information (such as controlled endpoints and configured groups) from the initiator. This exchange
of information uses the Commissioning Utility commands of the Touchlink Commissioning cluster.

Note: Note: The Touchlink Commissioning cluster instance for Touchlink must reside on its own endpoint on
a node. Therefore, a Touchlink commissioning application must be provided which is distinct from the main
application. However, the cluster instance for the Commissioning Utility can reside on the same endpoint as the
main application (and be used in this application).

Commissioning using the supplied functions for Touchlink and the Commissioning Utilty is described in Section
44.4 and Section 44.5.

44.4 Using Touchlink
Touchlink is used for the basic commissioning of a new network or adding a new node to an existing network. A
dedicated Touchlink application (which is distinct from the main application on the node) must reside on its own
endpoint. This requires:

• a Touchlink Commissioning cluster instance as a client to be created on the endpoint on the initiator node.
• a Touchlink Commissioning cluster instance as a server to be created on the endpoint on the target node.

The initiator node also requires a Touchlink Commissioning cluster instance as a server (on the same endpoint),
since the node also needs the capability to join an existing network.

An endpoint is registered for Touchlink (on both nodes) using the function
eZLL_RegisterCommissionEndPoint(). This function also creates a Touchlink Commissioning cluster instance
of the type (server, client or both) determined by the compile-time options in the header file zcl_options.h (see
Section 44.10).

The initiator must then send a sequence of request commands to the target node. The Touchlink request
command set is summarized in Table 101. Touchlink functions for issuing these commands are provided and
are detailed in Section 44.7.1.

Command Identifier Description

Scan Request * 0x00 Requests other devices (potential nodes) in the local
neighbourhood to respond. A scan request is first performed on
channel 11, up to five times until a response is received. If no
response is received, a scan request is then performed once
on each of channels 15, 20 and 25, and then the remaining
channels (12, 13, 14, 16, etc) until a response is detected.

Device Information Request * 0x02 Requests information about the devices on a remote node

Identify Request 0x06 Requests a remote node to physically identify itself (for
example, visually by flashing an LED)

Table 101. Touchlink Request Commands

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
665 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Command Identifier Description

Reset To Factory New Request 0x07 Requests a factory reset of a remote node

Network Start Request * 0x10 Requests a new network to be created comprising the initiator
and a detected Router

Network Join Router Request * 0x12 Requests a Router to join the network

Network Join End Device Request * 0x14 Requests an End Device to join the network

Network Update Request * 0x16 Requests an update of the network settings on a remote node
(if the supplied Network Update Identifier is more recent than
the one on the node)

Table 101. Touchlink Request Commands...continued

* These commands have corresponding responses.

All Touchlink commands are sent as inter-PAN messages.

Use of the above commands and associated functions is described in the sub-sections below.

44.4.1 Creating a network

A network is formed from an initiator node and a Router node (usually the initiator is an End Device and will
have no routing capability in the network). The Touchlink network creation process is described below and is
illustrated in Figure 7 (also refer to the command list in Table 101).

Note: Received Touchlink requests and responses are handled as ZigBee PRO events. The event handling is
not detailed below but is outlined in Section 44.6.

1. Scan Request: The initiator sends a Scan Request to nodes in its vicinity. The required function is:

eCLD_ZllCommissionCommandScanReqCommandSend()

2. Scan Response: A receiving node replies to the Scan Request by sending a Scan Response, which includes
the device type of the responding node (e.g. Router). The required function is:

eCLD_ZllCommissionCommandScanRspCommandSend()

3. Device Information Request: The initiator sends a Device Information Request to the detected Routers that
are of interest. The required function is:

eCLD_ZllCommissionCommandDeviceInfoReqCommandSend()

4. Device Information Response: A receiving Router replies to the Device Information Request by sending a
Device Information Response. The required function is:

eCLD_ZllCommissionCommandDeviceInfoRspCommandSend()

5. Identify Request (Optional): The initiator may send an Identify Request to the node which has been chosen
as the first Router of the new network, in order to confirm that the correct physical node is being commissioned.
The required function is:

eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend()

6. Network Start Request: The intiator sends a Network Start Request to the chosen Router in order to create
and start the network. The required function is:

eCLD_ZllCommissionCommandNetworkStartReqCommandSend()

7. Network Start Response: The Router replies to the Network Start Request by sending a Network Start
Response. The required function is:

eCLD_ZllCommissionCommandNetworkStartRspCommandSend()
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
666 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Once the Router has started the network, the initiator joins the network (Router). The initiator then collects
endpoint and cluster information from the Lighting device(s) on the Router node, and stores this information in a
local lighting database.

Once the network (consisting of the initiator and one Router) is up and running, further nodes may be added as
described in Section 44.4.2.

Scan Request

Scan Response

Device Information Request

Device Information Response

Identify Request

Network Start Request

Network Start Response

RouterInitiator

Figure 7. Creating a Network

Table 102. Creating a Network

44.4.2 Adding to an existing network

A network (that has been set up as described in Section 44.4.1) can be extended by adding a node. The
Touchlink extension process is described below and illustrated in Figure 8 (also refer to the command list in
Table 101).

Note: Received Touchlink requests and responses are handled as ZigBee PRO events. The event handling is
not detailed below but is outlined in Section 44.6.

1. Scan Request: The initiator sends a Scan Request to nodes in its vicinity. The required function is:

eCLD_ZllCommissionCommandScanReqCommandSend()

2. Scan Response: A receiving node replies to the Scan Request by sending a Scan Response. The required
function is:

eCLD_ZllCommissionCommandScanRspCommandSend()

3. Device Information Request: The initiator sends a Device Information Request to those detected nodes that
are of interest. The required function is:

eCLD_ZllCommissionCommandDeviceInfoReqCommandSend()

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
667 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

4. Device Information Response: A receiving node replies to the Device Information Request by sending a
Device Information Response. The required function is:

eCLD_ZllCommissionCommandDeviceInfoRspCommandSend()

5. Identify Request (Optional): The initiator may send an Identify Request to the node which has been chosen
to be added to the network, in order to confirm that the correct physical node is being commissioned. The
required function is:

eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend()

6. Network Join Request: Depending on the target node type, the initiator sends a Network Join Router
Request or Network Join End Device Request, as appropriate, to the target node. The required function is one
of:

eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend()
eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend()

7. Network Join Response: Depending on the receiving node type, the node replies to the join request by
sending a Network Join Router Response or Network Join End Device Response. The required function is one
of:

eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend()
eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend()

The node should now be a member of the network. The initiator then collects endpoint and cluster information
from any Lighting device(s) on the new node, and stores this information in its local lighting database.

If the new node is to be used to control the light nodes of the network then it will need to learn certain
information (such as controlled endpoints and configured groups) from the initiator - this is done using the
Commissioning Utility commands, as described in Section 44.5.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
668 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Scan Request

Scan Response

Device Information Request

Device Information Response

Identify Request

Network Start Request

Network Start Response

RouterInitiator

Figure 8. Extending a Network (Adding a Node)

44.4.3 Updating network settings

If one or more of the network settings change (e.g. the radio channel used), all nodes of the network need to be
updated with the new settings.

To allow nodes to keep track of the status of the network settings, the Network Update Identifier is used. This
identifier takes a value in the range 0x00 to 0xFF and is incremented when a network update has occurred (the
value wraps around at 0xFF).

A node can be instructed to update its network settings by sending a Network Update Request to it. The
required function is:

eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend()

The payload of the sent command contains the latest network settings and the current value of the Network
Update Identifier (see Section 44.8.17). If the payload value is more recent than the value held by the target
node, the node should update its network settings with those in the payload.

44.4.4 Stealing a node

A node that is already part of a network can be taken or ‘stolen’ by another network using Touchlink (in which
case, the stolen node will cease to be a member of its previous network). This transfer can only be performed
on a node which supports one or more Lighting devices (and not Controller devices).

The node is stolen using an initiator in the new network, e.g. from a remote control unit. The ‘stealing’ process is
as follows:

1. The initiator sends a Scan Request to nodes in its vicinity. The required function is:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
669 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

eCLD_ZllCommissionCommandScanReqCommandSend()

2. A receiving node replies to the Scan Request by sending a Scan Response. The required function is:

eCLD_ZllCommissionCommandScanRspCommandSend()

3. The initiator receives Scan Responses from one or more nodes and, based on these responses, selects a
node (containing a Lighting device) that is already a member of another network.

4. The initiator then sends a Reset To Factory New Request to the desired node. The required function is:

eCLD_ZllCommissionCommandFactoryResetReqCommandSend()

5. On receiving this request on the target node, the event E_CLD_COMMISSION_CMD_FACTORY_RESET_
REQ is generated and the function ZPS_eAplZdoLeaveNetwork() should be called. In addition, all persistent
data should be reset.

6. The node can then be commissioned into the new network by following the process in Section 44.4.2 from
Step3.

Alternatively, instead of following the above process, a node can be stolen by either:

• Following the full process for creating a network in Section 44.4.1 and calling ZPS_eAplZdoLeaveNetwork()
on the target node when a Network Start Request is received.

• Following the full process for adding a node in Section 44.4.2 and calling ZPS_eAplZdoLeaveNetwork() on
the target node when a Network Join Router Request or Network Join End Device Request is received.

Note: If a node containing a Controller device (e.g. a remote control unit) is to be used in another network, it
must first be reset using a Reset To Factory New Request. It can then be used to create a new network (see
Section 44.4.1) or to learn the control information of an existing network (see Section 44.5).

44.5 Using the Commissioning Utility
The Commissioning Utility is used when a network node needs to learn lighting control information (such as
controlled endpoints and configured groups) from another node in the network. It is typically used when a new
remote control unit is introduced into the network and needs to learn information from an existing remote control
unit.

Unlike Touchlink, the Commissioning Utility can be incorporated in the main application on the node (and
therefore use the same endpoint). This requires:

• a Touchlink Commissioning cluster instance as a client to be created on the endpoint on the ‘learner’ node
• a Touchlink Commissioning cluster instance as a server to be created on the endpoint on the ‘teacher’ node

A Touchlink Commissioning cluster instance for the Commissioning Utility can be created using the function
eCLD_ZllUtilityCreateUtility(), on both nodes.

It is the responsibility of the learner node to request the required information from the teacher node. The
Commissioning Utility command set is summarised in Table 85. Commissioning Utility functions for issuing
these commands are provided and are detailed in Section 44.7.2.

Command Identifier Description

Endpoint information 0x40 Sends information about local endpoint
(from teacher to learner)

Get Group Identifiers Request 0x41 Requests Group information from a remote node
(from learner to teacher)

Get Endpoint List Request 0x42 Requests endpoint information from a remote node

Table 103. Commissioning Utility commands

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
670 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Command Identifier Description
(from learner to teacher)

Table 103. Commissioning Utility commands...continued

Use of the above commands and associated functions is described below and is illustrated in Figure 9.

Note: Received Commissioning Utility requests and responses are handled as ZigBee PRO events by the ZCL
(this event handling is therefore transparent to the application).

1. Endpoint Information command: The teacher node first sends an Endpoint Information command
containing basic information about its local endpoint (IEEE address, network address endpoint number, Profile
ID, Device ID) to the learner node. The required function is:

eCLD_ZllUtilityCommandEndpointInformationCommandSend()
Note that the teacher node will already have the relevant target endpoint on the learner node from the joining
process (described in Section 44.4).

2. Get Endpoint List Request: The learner node then sends a Get Endpoint List Request to the teacher node
to request information about the remote endpoints that the teacher node controls. The required function is:

eCLD_ZllUtilityCommandGetEndpointListReqCommandSend()
The teacher node automatically replies to the Get Endpoint List Request by sending a Get Endpoint List
Response containing the requested information.

3. Get Group Identifiers Request: The learner node then sends a Get Group Identifiers Request to the teacher
node to request a list of the lighting groups configured on the teacher node. The required function is:

eCLD_ZllUtilityCommandGetGroupIdReqCommandSend()
The teacher node automatically replies to the Get Group Identifiers Request by sending a Get Group
Identifiers Response containing the requested information.

Endpoint Information

Get Endpoint List Request

Get Endpoint List Response

Get Group Identifiers Request

Get Group Identifiers Response

LearnerTeacher

Figure 9. Learning Process

To complete the learning process, the learner node may need other information which can be acquired using
commands/functions of the relevant cluster.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
671 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

44.6 Touchlink Commissioning events
Touchlink Commissioning cluster events that result from receiving Touchlink requests and responses must be
handled at the application level (while events that result from Commissioning Utility requests and responses are
handled by the ZCL).

When a Touchlink request or response command (e.g. a Scan Request) is received by a node, a stack event is
generated which is wrapped in a tsZCL_CallBackEvent structure. In this structure:

• eEventType field is set to E_ZCL_CBET_CLUSTER_CUSTOM
• sClusterCustomMessage field’s tsZCL_ClusterCustomMessage structure is filled in by:

– setting u16ClusterId to ZLL_CLUSTER_ID_COMMISSIONING
– pointing pvCustomData to the payload data of the received command

The above structure is described in Section 6.1.15.

The payload data contains a command ID, which uses one of the enumerations listed in Section 44.6.1.
The event is passed to the ZCL event handler which checks that the command ID is valid for the target
endpoint. If it is valid, the user-defined callback function is invoked that was specified through the function
eZLL_RegisterCommissionEndPoint(). The callback function can access the payload through the tsCLD_
ZllCommissionCustomDataStructure structure, which is created when the above function is called.

Thus, the above user-defined callback function must be designed to handle the relevant Touchlink events:

• For a request, the callback function may need to populate a structure with the required data and send a
response using the appropriate response function, e.g. by calling eCLD_ZllCommissionCommandScanRsp
CommandSend() to respond to a Scan Request.

• For a response, the callback function may just need to extract the returned data from the event.

Alternatively, the callback function may simply notify the main application of the received command and provide
the payload, so that the application can process the command.

44.6.1 Touchlink command events

The events that can be generated for Touchlink are listed and described below (the enumerations are defined in
the structure teCLD_ZllCommission_Command, shown in Section 44.9.1).

Event Description

E_CLD_COMMISSION_CMD_SCAN_REQ A Scan Request has been received (by server)

E_CLD_COMMISSION_CMD_SCAN_RSP A Scan Response has been received (by client)

E_CLD_COMMISSION_CMD_DEVICE_INFO_REQ A Device Information Request has been received (by
server)

E_CLD_COMMISSION_CMD_DEVICE_INFO_RSP A Device Information Response has been received (by
client)

E_CLD_COMMISSION_CMD_IDENTIFY_REQ An Identify Request has been received (by server)

E_CLD_COMMISSION_CMD_FACTORY_RESET_REQ A Reset To Factory New Request has been received (by
server)

E_CLD_COMMISSION_CMD_NETWORK_START_REQ A Network Start Request has been received (by server)

E_CLD_COMMISSION_CMD_NETWORK_START_RSP A Network Start Response has been received (by cli-ent)

E_CLD_COMMISSION_CMD_NETWORK_JOIN_
ROUTER_REQ

A Network Join Router Request has been received (by
server)

Table 104. Touchlink Events

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
672 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Event Description

E_CLD_COMMISSION_CMD_NETWORK_JOIN_
ROUTER_RSP

A Network Join Router Response has been received (by
client)

E_CLD_COMMISSION_CMD_NETWORK_JOIN_
END_DEVICE_REQ

A Network Join End Device Request has been received
(by server)

E_CLD_COMMISSION_CMD_NETWORK_JOIN_
END_DEVICE_RSP

A Network Join End Device Response has been received
(by client)

E_CLD_COMMISSION_CMD_NETWORK_UPDATE_REQ A Network Update Request has been received (by
server)

Table 104. Touchlink Events...continued

44.6.2 Commissioning Utility Command Events

The events that can be generated for the Commissioning Utility are listed and described below (the
enumerations are defined in the structure teCLD_ZllUtility_Command, shown in Section 44.9.2).

Event Description

E_CLD_UTILITY_CMD_ENDPOINT_INFO An Endpoint Information command has been received
(by client)

E_CLD_UTILITY_CMD_GET_GROUP_ID_REQ_RSP A Get Group Identifiers Request has been received (by
server) or a Get Group Identifiers Response has been
received (by client)

E_CLD_UTILITY_CMD_GET_ENDPOINT_LIST_REQ_RSP A Get Endpoint List Request has been received (by
server) or a Get Endpoint List Response has been
received (by client)

Table 105. Touchlink Events

44.7 Functions
The functions of the Touchlink Commissioning cluster are divided into two categories:

• Touchlink functions, detailed in Section 44.7.1
• Commissioning Utility functions, detailed in Section 44.7.2

44.7.1 Touchlink functions

The following Touchlink functions are provided:

1. eZLL_RegisterCommissionEndPoint
2. eCLD_ZllCommissionCreateCommission
3. eCLD_ZllCommissionCommandScanReqCommandSend
4. eCLD_ZllCommissionCommandScanRspCommandSend
5. eCLD_ZllCommissionCommandDeviceInfoReqCommandSend
6. eCLD_ZllCommissionCommandDeviceInfoRspCommandSend
7. eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend
8. eCLD_ZllCommissionCommandFactoryResetReqCommandSend
9. eCLD_ZllCommissionCommandNetworkStartReqCommandSend

10. eCLD_ZllCommissionCommandNetworkStartRspCommandSend
11. eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend
12. eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
673 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

13. eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend
14. eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend
15. eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend

44.7.1.1 eZLL_RegisterCommissionEndPoint

teZCL_Status eZLL_RegisterCommissionEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_CommissionEndpoint *psDeviceInfo);

Description

This function registers a ‘commissioning’ endpoint for Touchlink and creates a Touchlink Commissioning cluster
instance on the endpoint.

Touchlink must have its own application (separate from the main application) on its own endpoint.

This function uses eCLD_ZllCommissionCreateCommission() to create the cluster instance. The type of
cluster instance to be created (server or client, or both) is determined using the compile-time options in the
header file zcl_options.h (refer to Section 44.10).

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint number in the range 1 to
240
cbCallBack Pointer to a callback function to handle events associated with the registered endpoint
psDeviceInfo Pointer to structure to be used to hold Touchlink endpoint information (see Section 44.8.1)

Returns

E_ZCL_SUCCESS

44.7.1.2 eCLD_ZllCommissionCreateCommission

teZCL_Status eCLD_ZllCommissionCreateCommission(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvSharedStructPtr,
 tsZCL_AttributeStatus *psAttributeStatus,
 tsCLD_ZllCommissionCustomDataStructure
 *psCustomDataStructure);

Description

This function creates a Touchlink Commissioning cluster instance for Touchlink on the endpoint of the calling
application. The type of cluster instance (server or client) to be created must be specified.

In practice, this function does not need to be called explicitly by the application, as the function
eZLL_RegisterCommissionEndPoint() calls this function to create the cluster instance.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
674 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

psClusterInstance Pointer to cluster instance structure on local endpoint
bIsServer Type of cluster instance (server or client) to be created:
TRUE - server
FALSE - client
psClusterDefinition Pointer to cluster definition structure containing information about the cluster
pvSharedStructPtr Pointer to structure containing the shared storage for the cluster
psAttributeStatus Pointer to a structure containing the storage for each attribute's status
psCustomDataStructure Pointer to custom data to be provided to the cluster (see Section 44.8.3)

Returns

E_ZCL_SUCCESS

44.7.1.3 eCLD_ZllCommissionCommandScanReqCommandSend

teZCL_Status eCLD_ZllCommissionCommandScanReqCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_ScanReqCommandPayload
 *psPayload);

Description

This function is used to send a Scan Request command to initiate a scan for other nodes in the local
neighbourhood. The command is sent as an inter-PAN message.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target
node(s)
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to structure containing payload data for the Scan Request command (see Section
44.8.5)

Returns

E_ZCL_SUCCESS

44.7.1.4 eCLD_ZllCommissionCommandScanRspCommandSend

PUBLIC teZCL_Status eCLD_ZllCommissionCommandScanRspCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_ScanRspCommandPayload

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
675 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 *psPayload);

Description

This function is used to send a Scan Response command containing information about the local node in reply to
a received Scan Request from a remote node. The command is sent as an inter-PAN message.

A pointer must be provided to a structure containing the data to be returned.

The specified Transaction Sequence Number (TSN) of the response must match the TSN of the corresponding
request, as this will allow the response to be paired with the request at the destination.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target
node
pu8TransactionSequenceNumber Pointer to location containing the Transaction Sequence Number
(TSN) of the response
psPayload Pointer to structure containing payload data for the Scan Response command (see Section
44.8.6)

Returns

E_ZCL_SUCCESS

44.7.1.5 eCLD_ZllCommissionCommandDeviceInfoReqCommandSend

teZCL_Status eCLD_ZllCommissionCommandDeviceInfoReqCommandSend(
ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber, tsCLD_ZllCommission_DeviceInfoReqCommandPayload
 *psPayload);

Description

This function is used to send a Device Information Request command to obtain information about the devices
on a remote node. The command is sent as an inter-PAN message.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target
node
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to structure containing payload data for the Device Information Request command
(see Section 44.8.7)

Returns

E_ZCL_SUCCESS

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
676 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

44.7.1.6 eCLD_ZllCommissionCommandDeviceInfoRspCommandSend

PUBLIC teZCL_Status eCLD_ZllCommissionCommandDeviceInfoRspCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_DeviceInfoRspCommandPayload
 *psPayload);

Description

This function is used to send a Device Information Response command containing information about the
devices on the local node in reply to a received Device Information Request from a remote node. The command
is sent as an inter-PAN message.

A pointer must be provided to a structure containing the data to be returned.

The specified Transaction Sequence Number (TSN) of the response must match the TSN of the corresponding
request, as this will allow the response to be paired with the request at the destination.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target
node
pu8TransactionSequenceNumber Pointer to location containing the Transaction Sequence Number
(TSN) of the response
psPayload Pointer to structure containing payload data for the Device Information Response command
(see Section 44.8.8)

Returns

E_ZCL_SUCCESS

44.7.1.7 eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend

abcdef

teZCL_Status eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_IdentifyReqCommandPayload
 *psPayload);

Description

This function is used to send an Identify Request command to ask a remote node to identify itself by entering
‘identify mode’ (this is a visual indication, such as flashing a LED). The command is sent as an inter-PAN
message.

The command payload contains a value indicating the length of time, in seconds, that the target device should
remain in identify mode. It is also possible to use this command to instruct the target node to immediately exit
identify mode (if it is already in this mode).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
677 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target node
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of
the request
psPayload Pointer to structure containing payload data for the Identify Request command (see Section
44.8.9)

Returns

E_ZCL_SUCCESS

44.7.1.8 eCLD_ZllCommissionCommandFactoryResetReqCommandSend

teZCL_Status eCLD_ZllCommissionCommandFactoryResetReqCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_FactoryResetReqCommandPayload
 *psPayload);

Description

This function is used to send a Reset to Factory New Request command to ask a remote node to return to its
‘factory new’ state. The command is sent as an inter-PAN message.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target
node
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to structure containing payload data for the Reset to Factory New Request command
(see Section 44.8.10)

Returns

E_ZCL_SUCCESS

44.7.1.9 eCLD_ZllCommissionCommandNetworkStartReqCommandSend

teZCL_Status eCLD_ZllCommissionCommandNetworkStartReqCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_NetworkStartReqCommandPayload

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
678 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 *psPayload);

Description

This function is used to send a Network Start Request command to create a new network with a detected
Router. The command is sent as an inter-PAN message.

The function is called once the results of a Scan Request command have been received and a detected Router
has been selected.

The command payload contains information about the network and the local node, as well as certain data for
the target node. This payload information is detailed in Section 44.8.11.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target
node
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to structure containing payload data for the Network Start Request command (see
Section 44.8.11)

Returns

E_ZCL_SUCCESS

44.7.1.10 eCLD_ZllCommissionCommandNetworkStartRspCommandSend

PUBLIC teZCL_Status eCLD_ZllCommissionCommandNetworkStartRspCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_NetworkStartRspCommandPayload
 *psPayload);

Description

This function is used to send a Network Start Response command to confirm that the local (Router) node is
ready to be the first node to join a newly created network in reply to a received Network Start Request from a
remote node. The command is sent as an inter-PAN message.

A pointer must be provided to a structure containing the data to be returned.

The specified Transaction Sequence Number (TSN) of the response must match the TSN of the corresponding
request, as this will allow the response to be paired with the request at the destination.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target
node

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
679 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

pu8TransactionSequenceNumber Pointer to location containing the Transaction Sequence Number
(TSN) of the response
psPayload Pointer to structure containing payload data for the Network Start Response command (see
Section 44.8.12)

Returns

E_ZCL_SUCCESS

44.7.1.11 eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend

teZCL_Status eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_NetworkJoinRouterReqCommandPayload
 *psPayload);

Description

This function is used to send a Network Join Router Request command to allow a detected Router to join the
created network. The command is sent as an inter-PAN message.

The function can be called once a network has been created. The target Router is distinct from the Router that
was included when network was created.

The command payload contains information about the network and the local node, as well as certain data for
the target node. This payload information is detailed in Section 44.8.13.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target
node
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number
(TSN) of the request
psPayload Pointer to structure containing payload data for the Network Join Router Request command
(see Section 44.8.13)

Returns

E_ZCL_SUCCESS

44.7.1.12 eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend

PUBLIC teZCL_Status eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend(
 ZPS_tsInterPanAddress psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_NetworkJoinRouterRspCommandPayload
 *psPayload);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
680 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function is used to send a Network Join Router Response command to confirm that the local (Router)
node is ready to join a network in reply to a received Network Join Router Request from a remote node. The
command is sent as an inter-PAN message.

A pointer must be provided to a structure containing the data to be returned.

The specified Transaction Sequence Number (TSN) of the response must match the TSN of the corresponding
request, as this will allow the response to be paired with the request at the destination.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target
node
pu8TransactionSequenceNumber Pointer to location containing the Transaction Sequence Number
(TSN) of the response
psPayload Pointer to structure containing payload data for the Network Join Router Response command
(see Section 44.8.14)

Returns

E_ZCL_SUCCESS

44.7.1.13 eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend

teZCL_Status eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_NetworkJoinEndDeviceReqCommandPayload
 *psPayload);

Description

This function is used to send a Network Join End Device Request command to allow a detected End Device to
join the created network. The command is sent as an inter-PAN message.

The function can be called once a network has been created.

The command payload contains information about the network and the local node, as well as certain data for
the target node. This data includes a range of network addresses and a range of group IDs from which the
target End Device can assign values to the other nodes - in this case, the End Device would typically be a
remote control unit. This payload information is detailed in Section 44.8.15.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target
node
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number
(TSN) of the request

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
681 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

psPayload Pointer to structure containing payload data for the Network Join End Device Request
command (see Section 44.8.15)

Returns

E_ZCL_SUCCESS

44.7.1.14 eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend

PUBLIC teZCL_Status eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_NetworkJoinEndDeviceRspCommandPayload
 *psPayload);

Description

This function is used to send a Network Join End Device Response command to confirm that the local (End
Device) node is ready to join a network in reply to a received Network Join End Device Request from a remote
node. The command is sent as an inter-PAN message.

A pointer must be provided to a structure containing the data to be returned.

The specified Transaction Sequence Number (TSN) of the response must match the TSN of the corresponding
request, as this will allow the response to be paired with the request at the destination.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target node
pu8TransactionSequenceNumber Pointer to location containing the Transaction Sequence Number (TSN) of
the response
psPayload Pointer to structure containing payload data for the Network Join End Device Response
command (see Section 44.8.16)

Returns

E_ZCL_SUCCESS

44.7.1.15 eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend

teZCL_Status eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend(
 ZPS_tsInterPanAddress *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllCommission_NetworkUpdateReqCommandPayload
 *psPayload);

Description

This function is used to send a Network Update Request command to bring a node that has missed a network
update back into the network. The command is sent as an inter-PAN message.

The command payload contains information about the network, including the current value of the Network
Update Identifier. This identifier takes a value in the range 0x00 to 0xFF and is incremented when a network

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
682 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

update has occurred (the value wraps around at 0xFF). Thus, if this value in the payload is more recent than the
value of this identifier held by the target node, the node should update its network settings using the values in
the rest of the payload. The payload information is detailed in Section 44.8.17.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and address information for target node
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of
the request
psPayload Pointer to structure containing payload data for the Network Update Request command (see
Section 44.8.17)

Returns

E_ZCL_SUCCESS

44.7.2 Commissioning Utility functions

The following Commissioning Utility functions are provided:

1. eCLD_ZllUtilityCreateUtility
2. eCLD_ZllUtilityCommandEndpointInformationCommandSend
3. eCLD_ZllUtilityCommandGetGroupIdReqCommandSend
4. eCLD_ZllUtilityCommandGetGroupIdRspCommandSend
5. eCLD_ZllUtilityCommandGetEndpointListReqCommandSend
6. eCLD_ZllUtilityCommandGetEndpointListRspCommandSend
7. eCLD_ZllUtilityCommandHandler

44.7.2.1 eCLD_ZllUtilityCreateUtility

teZCL_Status eCLD_ZllUtilityCreateUtility(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvSharedStructPtr,
 tsZCL_AttributeStatus psAttributeStatus,
 tsCLD_ZllUtilityCustomDataStructure
 *psCustomDataStructure);

Description

This function creates a Touchlink Commissioning cluster instance for the Commissioning Utility. The cluster
instance is created on the endpoint of the calling application, which should be the main application on the node.
The type of cluster instance (server or client) to be created must be specified.

Parameters

psClusterInstance Pointer to cluster instance structure on local endpoint
bIsServer Type of cluster instance (server or client) to be created:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
683 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

TRUE - server
FALSE - client
psClusterDefinition Pointer to cluster definition structure containing information about the cluster
pvSharedStructPtr Pointer to structure containing the shared storage for the cluster
psAttributeStatus Pointer to a structure containing the storage for each attribute's status
psCustomDataStructure Pointer to custom data to be provided to the cluster (see Section 44.8.20)

Returns

E_ZCL_SUCCESS

44.7.2.2 eCLD_ZllUtilityCommandEndpointInformationCommandSend

teZCL_Status eCLD_ZllUtilityCommandEndpointInformationCommandSend(
 uint8 u8SrcEndpoint,
 uint8 u8DstEndpoint,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ZllUtility_EndpointInformationCommandPayload
 *psPayload);

Description

This function is used to send an Endpoint Information command to provide a remote endpoint with general
information about the local endpoint (this may prompt the remote endpoint to request further information about
the local endpoint). The function would typically be used to send local endpoint information from a ‘teacher’
node to a ‘learner’ node, in order to facilitate two-way communication between the Commissioning Utilities on
the two nodes.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
command. The TSN in the response is set to match the specified TSN, allowing an incoming response to be
paired with the original command. This is useful when sending more than one command to the same destination
endpoint.

Parameters

u8SrcEndpoint Number of local endpoint (1-240)
u8DstEndpoint Number of destination endpoint (1-240)
psDestinationAddress Pointer to stucture containing address information for target node
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of
the command
psPayload Pointer to structure to contain payload data for the Endpoint Information command (see Section
44.8.20)

Returns

E_ZCL_SUCCESS

44.7.2.3 eCLD_ZllUtilityCommandGetGroupIdReqCommandSend

teZCL_Status eCLD_ZllUtilityCommandGetGroupIdReqCommandSend(
 uint8 u8Srcendpoint,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
684 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8DstEndpoint,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8StartIndex);

Description

This function is used to send a Get Group Identifiers Request command to obtain information about the groups
(of lights) that have been configured on a remote endpoint. The function would typically be used on a ‘learner’
node to request the groups that have been configured on a ‘teacher’ node.

The first group from the groups list to be included in the returned information must be specified in terms of an
index.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SrcEndpoint Number of local endpoint (1-240)
u8DstEndpoint Number of destination endpoint (1-240)
psDestinationAddress Pointer to stucture containing address information for target node
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of
the request
u8StartIndex Index in group list of the first group to include in the returned information

Returns

E_ZCL_SUCCESS

44.7.2.4 eCLD_ZllUtilityCommandGetGroupIdRspCommandSend

PUBLIC teZCL_Status eCLD_ZllUtilityCommandGetGroupIdRspCommandSend(
 uint8 u8SrcEndpoint,
 uint8 u8DstEndpoint,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8StartIndex);

Description

This function is used to send a Get Group Identifiers Response command containing information about the
groups (of lights) that have been configured on the local endpoint. The function would typically be used on a
‘teacher’ node to respond to a Get Group Identifiers Request from a ‘learner’ node.

The first group from the groups list to be included in the returned information must be specified in terms of
an index. The returned information includes this index, the number of (consecutive) groups included and the
identifier of each group.

The specified Transaction Sequence Number (TSN) of the response must match the TSN of the corresponding
request, as this will allow the response to be paired with the request at the destination.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
685 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

u8SrcEndpoint Number of local endpoint (1-240)
u8DstEndpoint Number of destination endpoint (1-240)
psDestinationAddress Pointer to stucture containing address information for target node
pu8TransactionSequenceNumber Pointer to location containing the Transaction Sequence Number (TSN) of
the response
u8StartIndex Index in group list of the first group to include in the returned information

Returns

E_ZCL_SUCCESS

44.7.2.5 eCLD_ZllUtilityCommandGetEndpointListReqCommandSend

teZCL_Status eCLD_ZllUtilityCommandGetEndpointListReqCommandSend(
 uint8 u8SrcEndpoint,
 uint8 u8DstEndpoint,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8StartIndex);

Description

This function is used to send a Get Endpoint List Request command to obtain information about controlled
endpoints. The function would typically be used on a ‘learner’ node to request the remote endpoints that a
‘teacher’ node controls.

The first endpoint from the endpoints list to be included in the returned information must be specified in terms of
an index.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SrcEndpoint Number of local endpoint (1-240)
u8DstEndpoint Number of destination endpoint (1-240)
psDestinationAddress Pointer to stucture containing address information for target node
pu8TransactionSequenceNumber Pointer to a location to store the Transaction Sequence Number (TSN) of
the request
u8StartIndex Index in endpoint list of the first endpoint to include in the returned information

Returns

E_ZCL_SUCCESS

44.7.2.6 eCLD_ZllUtilityCommandGetEndpointListRspCommandSend

PUBLIC teZCL_Status eCLD_ZllUtilityCommandGetEndpointListRspCommandSend(
 uint8 u8SrcEndpoint,
 uint8 u8DstEndpoint,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
686 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 uint8 u8StartIndex);

Description

This function is used to send a Get Endpoint List Response command containing information about controlled
endpoints. The function would typically be used on a ‘teacher’ node to respond to a Get Endpoint List Request
from a ‘learner’ node.

The first endpoint from the endpoints list to be included in the returned information must be specified in terms
of an index. The returned information will include this index, the number of (consecutive) endpoints included
and the information about each endpoint (including endpoint number, identifier of resident ZigBee device and
version of this device).

The specified Transaction Sequence Number (TSN) of the response must match the TSN of the corresponding
request, as this will allow the response to be paired with the request at the destination.

Parameters

u8SrcEndpoint Number of local endpoint (1-240)
u8DstEndpoint Number of destination endpoint (1-240)
psDestinationAddress Pointer to stucture containing address information for target node
pu8TransactionSequenceNumber Pointer to location containing the Transaction Sequence Number (TSN) of
the response
u8StartIndex Index in endpoint list of the first endpoint to include in the returned information

Returns

E_ZCL_SUCCESS

44.7.2.7 eCLD_ZllUtilityCommandHandler

teZCL_Status eCLD_ZllUtilityCommandHandler(
 ZPS_tsAfEvent *pZPSevent,
 tsZCL_EndPointDefinition *psEndPointDefinition,
 tsZCL_ClusterInstance *psClusterInstance);

Description

This function parses a ZigBee PRO event and invokes the user-defined callback function that has been
registered for the device (using the relevant endpoint registration function).

The registered user-defined callback function must be designed to handle events associated with the
Commissioning Utility.

Parameters

pZPSevent Pointer to received ZigBee PRO event
psEndPointDefinition Pointer to structure which defines endpoint on which the Commissioning Utility
resides
psClusterInstance Pointer to Touchlink Commissioning cluster instance structure

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
687 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

E_ZCL_SUCCESS

44.8 Structures
This section details the structures used in the Touchlink Commissioning cluster (both Touchlink and
Commissioning Utility parts).

44.8.1 tsZLL_CommissionEndpoint

This structure is used to hold endpoint information for a Touchlink application.

typedef struct
{
tsZCL_EndPointDefinition sEndPoint;
tsZLL_CommissionEndpointClusterInstances sClusterInstance;
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
 tsCLD_ZllCommission sZllCommissionServerCluster;
 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)
 tsCLD_ZllCommission sZllCommissionClientCluster;
 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionClientCustomDataStructure;
#endif
} tsZLL_CommissionEndpoint;

where:

• sEndPoint is a ZCL structure containing information about the endpoint (refer to Section 6.1.1).
• sClusterInstance is a structure containing information about the Touchlink Commissioning cluster

instance on the endpoint (see Section 44.8.2).
• For a Touchlink server, the following fields are used:

– sZllCommissionServerCluster is the Touchlink Commissioning cluster structure (which contains no
attributes).

– sZllCommissionServerCustomDataStructure is a structure containing custom data for the cluster
server (see Section 44.8.3).

• For a Touchlink client, the following fields are used:
– sZllCommissionClientCluster is the Touchlink Commissioning cluster structure (which contains no

attributes).
– sZllCommissionClientCustomDataStructure is a structure containing custom data for the cluster

client (see Section 44.8.3).

44.8.2 tsZLL_CommissionEndpointClusterInstances

This structure holds information about the Touchlink Commissioning cluster instance on an endpoint.

typedef struct PACK
{
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
 tsZCL_ClusterInstance sZllCommissionServer;
#endif
#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
688 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_ClusterInstance sZllCommissionClient;
#endif
} tsZLL_CommissionEndpointClusterInstances;

where:

• sZllCommissionServer is a ZCL structure containing information about the Touchlink Commissioning
cluster server instance (refer to Section 6.1.16).

• sZllCommissionClient is a ZCL structure containing information about the Touchlink Commissioning
cluster client instance (refer to Section 6.1.16).

44.8.3 tsCLD_ZllCommissionCustomDataStructure

This structure is used to hold the data for a Touchlink command received by a node.

typedef struct
{
 tsZCL_ReceiveEventAddressInterPan sRxInterPanAddr;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ZllCommissionCallBackMessage sCallBackMessage;
} tsCLD_ZllCommissionCustomDataStructure;

where:

• RxInterPanAddr is a ZCL structure containing the Inter-PAN addresses of the source and destination nodes
of the command.

• sCustomCallBackEvent is the ZCL event structure for the command.
• sCallBackMessage is a structure containing the command ID and payload (see Section 44.8.4).

44.8.4 tsCLD_ZllCommissionCallBackMessage

This structure contains the command ID and payload for a received Touchlink command.

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_ZllCommission_ScanReqCommandPayload
 *psScanReqPayload;
 tsCLD_ZllCommission_ScanRspCommandPayload
 *psScanRspPayload;
 tsCLD_ZllCommission_IdentifyReqCommandPayload
 *psIdentifyReqPayload;
 tsCLD_ZllCommission_DeviceInfoReqCommandPayload
 *psDeviceInfoReqPayload;
 tsCLD_ZllCommission_DeviceInfoRspCommandPayload
 *psDeviceInfoRspPayload;
 tsCLD_ZllCommission_FactoryResetReqCommandPayload
 *psFactoryResetPayload;
 tsCLD_ZllCommission_NetworkStartReqCommandPayload
 *psNwkStartReqPayload;
 tsCLD_ZllCommission_NetworkStartRspCommandPayload
 *psNwkStartRspPayload;
 tsCLD_ZllCommission_NetworkJoinRouterReqCommandPayload
 *psNwkJoinRouterReqPayload;
 tsCLD_ZllCommission_NetworkJoinRouterRspCommandPayload
 *psNwkJoinRouterRspPayload;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
689 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsCLD_ZllCommission_NetworkJoinEndDeviceReqCommandPayload
 *psNwkJoinEndDeviceReqPayload;
 tsCLD_ZllCommission_NetworkJoinEndDeviceRspCommandPayload
 *psNwkJoinEndDeviceRspPayload;
 tsCLD_ZllCommission_NetworkUpdateReqCommandPayload
 *psNwkUpdateReqPayload;
 } uMessage;
} tsCLD_ZllCommissionCallBackMessage;

where:

• u8CommandId is the command ID - enumerations are provided, as detailed in Section 44.6.1.
• uMessage contains the payload of the command, where the structure used depends on the command ID (the

structures are detailed in the sections below).

44.8.5 tsCLD_ZllCommission_ScanReqCommandPayload

This structure is used to hold the payload data for a Touchlink Scan Request command.

typedef struct
{
 uint32 u32TransactionId;
 uint8 u8ZigbeeInfo;
 uint8 u8ZllInfo;
} tsCLD_ZllCommission_ScanReqCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the request. This is a random number
generated and inserted automatically.

• u8ZigbeeInfo is a bitmap of ZigBee information which indicates the ZigBee device type of the sending node
and whether the radio receiver remains on when the node is idle. This information is inserted by the ZigBee
stack.

• u8ZllInfo is a bitmap indicating properties of the sending node, including whether the node is factory
new, whether the node is able to assign addresses to other nodes and whether the node is able to initiate
a link operation (supports Touchlink Commissioning cluster on the client side). This information is inserted
automatically.

44.8.6 tsCLD_ZllCommission_ScanRspCommandPayload

This structure is used to hold the payload data for a Touchlink Scan Response command.

typedef struct
{
 uint32 u32TransactionId;
 uint8 u8RSSICorrection;
 uint8 u8ZigbeeInfo;
 uint8 u8ZllInfo;
 uint16 u16KeyMask;
 uint32 u32ResponseId;
 uint64 u64ExtPanId;
 uint8 u8NwkUpdateId;
 uint8 u8LogicalChannel;
 uint16 u16PanId;
 uint16 u16NwkAddr;
 uint8 u8NumberSubDevices;
 uint8 u8TotalGroupIds;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
690 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8Endpoint;
 uint16 u16ProfileId;
 uint16 u16DeviceId;
 uint8 u8Version;
 uint8 u8GroupIdCount;
} tsCLD_ZllCommission_ScanRspCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the response, which must take the same
value as the identifier in the corresponding request.

• u8RSSICorrection is the 8-bit RSSI correction offset for the node, in the range 0x00 to 0x20.
• u8ZigbeeInfo is an 8-bit field containing the following ZigBee-related information:

– Bits 1-0: Node type (00 - Co-ordinator, 01 - Router, 10 - End Device)
– Bit 2: Rx on when idle (1 - On, 0 - Off)
– Bits 7-3: Reserved

• u8ZllInfo is an 8-bit field containing the following information:
– Bit 0: Factory new (1 - Yes, 0 - No)
– Bit 1: Address assignment capability (1 - Yes, 0 - No)
– Bits 3-2: Reserved
– Bit 4: Touchlink initiator (1 - Yes, 0 - No)
– Bit 5: Touchlink priority request (1 - Yes, 0 - No)
– Bits 7-6: Reserved

• u16KeyMask is a 16-bit bitmap indicating which link key is installed on the node - only one bit should be set to
‘1’, corresponding to the key that is in use. The possible values and keys are:
– 0x0001 (bit 0 set): Development key (defined by developer for use during application development)
– 0x0010 (bit 4 set): Master key (obtained from the ZigBee Alliance after successful certification and

agreement with the terms of the ‘ZLL Security Key Licence and Confidentialty Agreement’)
– 0x8000 (bit 15 set): Certification key (defined in the ZLL Specification for use during development and

during certification at test houses)
• u32ResponseId is a 32-bit random identifier for the response, used during network key transfer.
• u64ExtPanId is the 64-bit Extended PAN ID of a network to which the node already belongs, if any (a zero

value indicates no network membership).
• u8NwkUpdateId is the current value of the Network Update Identifier on the node (see Section 44.4.3).
• u8LogicalChannel is the number of the IEEE 802.15.4 radio channel used by a network to which the

node already belongs, if any (a zero value indicates no network membership and therefore that no particular
channel is used).

• u16PanId is the 16-bit PAN ID of a network to which the node already belongs, if any (a zero value indicates
no network membership).

• u16NwkAddr is the 16-bit network address currently assigned to the node (the value 0xFFFF indicates that
the node is ‘factory new’ and has no assigned network address).

• u8NumberSubDevices is the number of ZigBee devices on the node.
• u8TotalGroupIds is the total number of groups (of lights) supported on the node (across all devices).
• u8Endpoint is number of the endpoint (in the range 1-240) on which the ZigBee device is resident (this field

is only used when there is only one ZigBee device on the node).
• u16ProfileId is the 16-bit identifier of the ZigBee application profile that is supported by the device (this

field is only used when there is only one ZigBee device on the node).
• u16DeviceId is the 16-bit Device Identifier supported by the device (this field is only used when there is only

one ZigBee device on the node).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
691 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8Version is an 8-bit version number for the device - the four least significant bits are from the Application
Device Version field of the appropriate Simple Descriptor and the four most significant bits are zero (this field
is only used when there is only one ZigBee device on the node).

• u8GroupIdCount is the number of groups (of lights) supported by the device (this field is only used when
there is only one ZigBee device on the node).

44.8.7 tsCLD_ZllCommission_DeviceInfoReqCommandPayload

This structure is used to hold the payload data for a Touchlink Device Information Request command.

typedef struct
{
 uint32 u32TransactionId;
 uint8 u8StartIndex;
} tsCLD_ZllCommission_DeviceInfoReqCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the request. This is a random number
generated and inserted automatically.

• u8StartIndex specifies the index (starting from 0) of the first entry in the device table from which device
information should be obtained.

44.8.8 tsCLD_ZllCommission_DeviceInfoRspCommandPayload

This structure is used to hold the payload data for a Touchlink Device Information Response command.

typedef struct
{
 uint32 u32TransactionId;
 uint8 u8NumberSubDevices;
 uint8 u8StartIndex;
 uint8 u8DeviceInfoRecordCount;
 tsCLD_ZllDeviceRecord asDeviceRecords[ZLL_MAX_DEVICE_RECORDS];
} tsCLD_ZllCommission_DeviceInfoRspCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the response, which must take the same
value as the identifier in the corresponding request.

• u8NumberSubDevices is the number of ZigBee devices on the node (as reported in the Scan Response).
• u8StartIndex is the index (starting from 0) of the first entry in the device table from which device

information has been obtained (this value should be as specified in the corresponding request).
• u8DeviceInfoRecordCount indicates the number of device information records included in the response

(in the range 0 to 5).
• asDeviceRecords[] is an array, where each array element is a tsCLD_ZllDeviceRecord structure

containing a device information record for one ZigBee device on the node.

44.8.9 tsCLD_ZllCommission_IdentifyReqCommandPayload

This structure is used to hold the payload data for a Touchlink Identify Request command.

typedef struct
{
 uint32 u32TransactionId;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
692 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint16 u16Duration;
} tsCLD_ZllCommission_IdentifyReqCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the request. This is a random number
generated and inserted automatically.

• u16Duration specifies the length of time (in seconds) that the target node is to remain in identify mode. The
possible values are:
– 0x0000: Exit identify mode immediately
– 0x0001–0xFFFE: Number of seconds to remain in identify mode
– 0xFFFF: Remain in identify mode for the default time for the target node

If the target node is unable to provide accurate timings, it will attempt to remain in identify mode for as
close to the requested time as possible

44.8.10 tsCLD_ZllCommission_FactoryResetReqCommandPayload

This structure is used to hold the payload data for a Touchlink Reset to Factory New Request command.

typedef struct
{
 uint32 u32TransactionId;
} tsCLD_ZllCommission_FactoryResetReqCommandPayload;

where u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the request. This is a random
number generated and inserted automatically.

44.8.11 tsCLD_ZllCommission_NetworkStartReqCommandPayload

This structure is used to hold the payload data for a Touchlink Network Start Request command.

typedef struct
{
 uint32 u32TransactionId;
 uint64 u64ExtPanId;
 uint8 u8KeyIndex;
 uint8 au8NwkKey[16];
 uint8 u8LogicalChannel;
 uint16 u16PanId;
 uint16 u16NwkAddr;
 uint16 u16GroupIdBegin;
 uint16 u16GroupIdEnd;
 uint16 u16FreeNwkAddrBegin;
 uint16 u16FreeNwkAddrEnd;
 uint16 u16FreeGroupIdBegin;
 uint16 u16FreeGroupIdEnd;
 uint64 u64InitiatorIEEEAddr;
 uint16 u16InitiatorNwkAddr;
} tsCLD_ZllCommission_NetworkStartReqCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the request. This is a random number
generated and inserted automatically.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
693 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u64ExtPanId is the Extended PAN ID (EPID) of the new network (if set to zero, the target node will choose
the EPID).

• u8KeyIndex is a value indicating the type of security key used to encrypt the randomly generated network
key in au8NwkKey. The valid values are as follows (all other values are reserved for future use):
– 0: Development key, used during development before ZigBee certification
– 4: Master key, used after successful ZigBee certification
– 15: Certification key, used during ZigBee certification testing

• au8NwkKey[16] is the 128-bit randomly generated network key encrypted using the key specified in
u8KeyIndex.

• u8LogicalChannel is the number of the IEEE 802.15.4 radio channel to be used by the network (if set to
zero, the target node will choose the channel).

• u16PanId is the PAN ID of the new network (if set to zero, the target node will choose the PAN ID).
• u16NwkAddr is the 16-bit network (short) address assigned to the target node
• u16GroupIdBegin is the start value of the range of group identifiers that the target node can use for its own

endpoints (if set to zero, no range of group identifiers has been allocated).
• u16GroupIdEnd is the end value of the range of group identifiers that the target node can use for its own

endpoints (if set to zero, no range of group identifiers has been allocated).
• u16FreeNwkAddrBegin is the start address of the range of network addresses that the target node can

assign to other nodes (if set to zero, no range of network addresses has been allocated).
• u16FreeNwkAddrEnd is the end address of the range of network addresses that the target node can assign

to other nodes (if set to zero, no range of network addresses has been allocated).
• u16FreeGroupIdBegin is the start value of the range of free group identifiers that the target node can

assign to other nodes (if set to zero, no range of free group identifiers has been allocated).
• u16FreeGroupIdEnd is the end value of the range of free group identifiers that the target node can assign

to other nodes (if set to zero, no range of free group identifiers has been allocated).
• u64InitiatorIEEEAddr is the IEEE (MAC) address of the local node (network initiator)
• u16InitiatorNwkAddr is the network (short) address of the local node (network initiator)

44.8.12 tsCLD_ZllCommission_NetworkStartRspCommandPayload

This structure is used to hold the payload data for a Touchlink Network Start Response command.

typedef struct
{
 uint32 u32TransactionId;
 uint8 u8Status;
 uint64 u64ExtPanId;
 uint8 u8NwkUpdateId;
 uint8 u8LogicalChannel;
 uint16 u16PanId;
} tsCLD_ZllCommission_NetworkStartRspCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the response, which must take the same
value as the identifier in the corresponding request.

• u8Status indicates the outcome of the corresponding Network Start Request: 0x00 for success, 0x01 for
failure.

• u64ExtPanId is the Extended PAN ID (EPID) of the new network (this will be the value specified in the
corresponding request or a value chosen by the local node).

• u8NwkUpdateId is the current value of the Network Update Identifier, which will be set to zero for a new
network (see Section 44.4.3).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
694 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8LogicalChannel is the number of the IEEE 802.15.4 radio channel to be used by the network (this will be
the value specified in the corresponding request or a value chosen by the local node).

• u16PanId is the PAN ID of the new network (this will be the value specified in the corresponding request or a
value chosen by the local node).

44.8.13 tsCLD_ZllCommission_NetworkJoinRouterReqCommandPayload

This structure is used to hold the payload data for a Touchlink Network Join Router Request command.

typedef struct
{
 uint32 u32TransactionId;
 uint64 u64ExtPanId;
 uint8 u8KeyIndex;
 uint8 au8NwkKey[16];
 uint8 u8NwkUpdateId;
 uint8 u8LogicalChannel;
 uint16 u16PanId;
 uint16 u16NwkAddr;
 uint16 u16GroupIdBegin;
 uint16 u16GroupIdEnd;
 uint16 u16FreeNwkAddrBegin;
 uint16 u16FreeNwkAddrEnd;
 uint16 u16FreeGroupIdBegin;
 uint16 u16FreeGroupIdEnd;
} tsCLD_ZllCommission_NetworkJoinRouterReqCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the request. This is a random number
generated and inserted automatically.

• u64ExtPanId is the Extended PAN ID (EPID) of the network.
• u8KeyIndex is a value indicating the type of security key used to encrypt the network key in au8NwkKey.

The valid values are as follows (all other values are reserved for future use):
– 0: Development key, used during development before ZigBee certification
– 4: Master key, used after successful ZigBee certification
– 15: Certification key, used during ZigBee certification testing

• au8NwkKey[16] is the 128-bit network key encrypted using the key specified in u8KeyIndex.
• u8NwkUpdateId is the current value of the Network Update Identifier. This identifier takes a value in the

range 0x00 to 0xFF and is incremented when a network update has occurred which requires the network
settings on the nodes to be changed.

• u8LogicalChannel is the number of the IEEE 802.15.4 radio channel used by the network.
• u16PanId is the PAN ID of the network
• u16NwkAddr is the 16-bit network (short) address assigned to the target node
• u16GroupIdBegin is the start value of the range of group identifiers that the target node can use for its own

endpoints (if set to zero, no range of group identifiers has been allocated).
• u16GroupIdEnd is the end value of the range of group identifiers that the target node can use for its own

endpoints (if set to zero, no range of group identifiers has been allocated).
• u16FreeNwkAddrBegin is the start address of the range of network addresses that the target node can

assign to other nodes (if set to zero, no range of network addresses has been allocated).
• u16FreeNwkAddrEnd is the end address of the range of network addresses that the target node can assign

to other nodes (if set to zero, no range of network addresses has been allocated).
• u16FreeGroupIdBegin is the start value of the range of free group identifiers that the target node can

assign to other nodes (if set to zero, no range of free group identifiers has been allocated).
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
695 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16FreeGroupIdEnd is the end value of the range of free group identifiers that the target node can assign
to other nodes (if set to zero, no range of free group identifiers has been allocated).

44.8.14 tsCLD_ZllCommission_NetworkJoinRouterRspCommandPayload

This structure is used to hold the payload data for a Touchlink Network Join Router Response command.

typedef struct
{
 uint32 u32TransactionId;
 uint8 u8Status;
} tsCLD_ZllCommission_NetworkJoinRouterRspCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the response, which must take the same
value as the identifier in the corresponding request.

• u8Status indicates the outcome of the corresponding Network Join Router Request: 0x00 for success, 0x01
for failure.

44.8.15 tsCLD_ZllCommission_NetworkJoinEndDeviceReqCommandPayload

This structure is used to hold the payload data for a Touchlink Network Join End Device Request command.

typedef struct
{
 uint32 u32TransactionId;
 uint64 u64ExtPanId;
 uint8 u8KeyIndex;
 uint8 au8NwkKey[16];
 uint8 u8NwkUpdateId;
 uint8 u8LogicalChannel;
 uint16 u16PanId;
 uint16 u16NwkAddr;
 uint16 u16GroupIdBegin;
 uint16 u16GroupIdEnd;
 uint16 u16FreeNwkAddrBegin;
 uint16 u16FreeNwkAddrEnd;
 uint16 u16FreeGroupIdBegin;
 uint16 u16FreeGroupIdEnd;
} tsCLD_ZllCommission_NetworkJoinEndDeviceReqCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the request. This is a random number
generated and inserted automatically.

• u64ExtPanId is the Extended PAN ID (EPID) of the network.
• u8KeyIndex is a value indicating the type of security key used to encrypt the network key in au8NwkKey.

The valid values are as follows (all other values are reserved for future use):
– 0: Development key, used during development before ZigBee certification
– 4: Master key, used after successful ZigBee certification
– 15: Certification key, used during ZigBee certification testing

• au8NwkKey[16] is the 128-bit network key encrypted using the key specified in u8KeyIndex.
• u8NwkUpdateId is the current value of the Network Update Identifier. This identifier takes a value in the

range 0x00 to 0xFF and is incremented when a network update has occurred which requires the network
settings on the nodes to be changed.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
696 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8LogicalChannel is the number of the IEEE 802.15.4 radio channel used by the network.
• u16PanId is the PAN ID of the network.
• u16NwkAddr is the 16-bit network (short) address assigned to the target node.
• u16GroupIdBegin is the start value of the range of group identifiers that the target node can use for its own

endpoints (if set to zero, no range of group identifiers has been allocated).
• u16GroupIdEnd is the end value of the range of group identifiers that the target node can use for its own

endpoints (if set to zero, no range of group identifiers has been allocated).
• u16FreeNwkAddrBegin is the start address of the range of network addresses that the target node can

assign to other nodes (if set to zero, no range of network addresses has been allocated).
• u16FreeNwkAddrEnd is the end address of the range of network addresses that the target node can assign

to other nodes (if set to zero, no range of network addresses has been allocated).
• u16FreeGroupIdBegin is the start value of the range of free group identifiers that the target node can

assign to other nodes (if set to zero, no range of free group identifiers has been allocated).
• u16FreeGroupIdEnd is the end value of the range of free group identifiers that the target node can assign

to other nodes (if set to zero, no range of free group identifiers has been allocated).

44.8.16 tsCLD_ZllCommission_NetworkJoinEndDeviceRspCommandPayload

This structure is used to hold the payload data for a Touchlink Network Join End Device Response command.

typedef struct
{
 uint32 u32TransactionId;
 uint8 u8Status;
} tsCLD_ZllCommission_NetworkJoinEndDeviceRspCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the response, which must take the same
value as the identifier in the corresponding request.

• u8Status indicates the outcome of the corresponding Network Join End Device Request: 0x00 for success,
0x01 for failure.

44.8.17 tsCLD_ZllCommission_NetworkUpdateReqCommandPayload

This structure is used to hold the payload data for a Touchlink Network Update Request command.

typedef struct
{
 uint32 u32TransactionId;
 uint64 u64ExtPanId;
 uint8u8NwkUpdateId;
 uint8u8LogicalChannel;
 uint16 u16PanId;
 uint16 u16NwkAddr;
} tsCLD_ZllCommission_NetworkUpdateReqCommandPayload;

where:

• u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the request. This is a random number
generated and inserted automatically.

• u64ExtPanId is the Extended PAN ID (EPID) of the network.
• u8NwkUpdateId is the current value of the Network Update Identifier (see Section 44.4.3).
• u8LogicalChannel is the number of the IEEE 802.15.4 radio channel used by the network.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
697 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16PanId is the PAN ID of the network.
• u16NwkAddr is the 16-bit network (short) address assigned to the target node.

44.8.18 tsCLD_ZllUtilityCustomDataStructure

This structure is used to hold custom data for a Commissioning Utility instance of the Touchlink Commissioning
cluster.

typedef struct
{
 tsZCL_ReceiveEventAddress sRxAddr;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ZllUtilityCallBackMessage sCallBackMessage;
} tsCLD_ZllUtilityCustomDataStructure;

where:

• sRxAddr is a ZCL structure containing the destination address of the command.
• sCustomCallBackEvent is the ZCL event structure for the command.
• sCallBackMessage is a structure containing the command ID and payload (see Section 44.8.19).

44.8.19 tsCLD_ZllUtilityCallBackMessage

This structure contains the command ID and payload for a received Commissioning Utility command.

typedef struct
{
 uint8u8CommandId;
 union
 {
 tsCLD_ZllUtility_EndpointInformationCommandPayload
 *psEndpointInfoPayload;
 tsCLD_ZllUtility_GetGroupIdReqCommandPayload
 *psGetGroupIdReqPayload;
 tsCLD_ZllUtility_GetGroupIdRspCommandPayload
 *psGetGroupIdRspPayload;
 tsCLD_ZllUtility_GetEndpointListReqCommandPayload
 *psGetEndpointlistReqPayload;
 tsCLD_ZllUtility_GetEndpointListRspCommandPayload
 *psGetEndpointListRspPayload;
 } uMessage;
} tsCLD_ZllUtilityCallBackMessage;

where:

• u8CommandId is the command ID - enumerations are provided, as detailed in Section 44.6.2.
• uMessage contains the payload of the command, where the structure used depends on the command ID (the

structures are detailed in the sections below).

44.8.20 tsCLD_ZllUtility_EndpointInformationCommandPayload

This structure is used to hold the payload data for a Commissioning Utility Endpoint Information command.

typedef struct
{
 uint64 u64IEEEAddr;
 uint16 u16NwkAddr;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
698 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8u8Endpoint;
 uint16 u16ProfileID;
 uint16 u16DeviceID;
 uint8u8Version;
} tsCLD_ZllUtility_EndpointInformationCommandPayload;

where:

• u64IEEEAddr is the IEEE (MAC) address of the local node.
• u16NwkAddr is the network (short) address of the local node.
• u8Endpoint is the number of the local endpoint (1-240).
• u16ProfileID is the identifier of the ZigBee application profile supported on the local endpoint.
• u16DeviceID is identifier of the ZigBee device on the local endpoint.
• u8Version specifies the version number of the ZigBee device on the local endpoint.

44.9 Enumerations

44.9.1 Touchlink event enumerations

The event types generated by the Touchlink part of the Touchlink Commissioning cluster are enumerated in the
teCLD_ZllCommission_Command structure below:

typedef enum PACK
{
 E_CLD_COMMISSION_CMD_SCAN_REQ 0x00,
 E_CLD_COMMISSION_CMD_SCAN_RSP,
 E_CLD_COMMISSION_CMD_DEVICE_INFO_REQ,
 E_CLD_COMMISSION_CMD_DEVICE_INFO_RSP,
 E_CLD_COMMISSION_CMD_IDENTIFY_REQ 0x06,
 E_CLD_COMMISSION_CMD_FACTORY_RESET_REQ,
 E_CLD_COMMISSION_CMD_NETWORK_START_REQ 0x10,
 E_CLD_COMMISSION_CMD_NETWORK_START_RSP,
 E_CLD_COMMISSION_CMD_NETWORK_JOIN_ROUTER_REQ,
 E_CLD_COMMISSION_CMD_NETWORK_JOIN_ROUTER_RSP,
 E_CLD_COMMISSION_CMD_NETWORK_JOIN_END_DEVICE_REQ,
 E_CLD_COMMISSION_CMD_NETWORK_JOIN_END_DEVICE_RSP,
 E_CLD_COMMISSION_CMD_NETWORK_UPDATE_REQ,
} teCLD_ZllCommission_Command;

44.9.2 Commissioning utility event enumerations

The event types generated by the Commissioning Utility part of the Touchlink Commissioning cluster are
enumerated in the teCLD_ZllUtility_Command structure below:

 typedef enum PACK
{
 E_CLD_UTILITY_CMD_ENDPOINT_INFO = 0x40,
 E_CLD_UTILITY_CMD_GET_GROUP_ID_REQ_RSP,
 E_CLD_UTILITY_CMD_GET_ENDPOINT_LIST_REQ_RSP,
} teCLD_ZllUtility_Command;

44.10 Compile-time options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the Touchlink Commissioning cluster.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
699 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The Touchlink Commissioning cluster is enabled as follows:

• Touchlink - To enable the cluster, define CLD_ZLL_COMMISSION, then:
– to enable the cluster as a server, define ZLL_COMMISSION_SERVER
– to enable the cluster as a client, define ZLL_COMMISSION_CLIENT

• Commissioning Utility - To enable the cluster, define CLD_ZLL_UTILITY, then:
– to enable the cluster as a server, define ZLL_UTILITY_SERVER
– to enable the cluster as a client, define ZLL_UTILITY_CLIENT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
700 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part XI: Appliances Clusters

This part comprises four chapters:

• Chapter 45 details the Appliance Control cluster
• Chapter 46 details the Appliance Identification cluster
• Chapter 47 details the Appliance Events and Alerts cluster
• Chapter 48 details the Appliance Statistics cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
701 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

45 Appliance Control Cluster

This chapter outlines the Appliance Control cluster which provides an interface for remotely controlling
appliances in the home.

The Appliance Control cluster has a Cluster ID of 0x001B.

45.1 Overview
The Appliance Control cluster provides an interface for the remote control and programming of home appliances
(e.g. a washing machine) by sending basic operational commands such as start, pause, stop.

The cluster is enabled by defining CLD_APPLIANCE_CONTROL in the zcl_options.h file. Further compile-time
options for the Appliance Control cluster are detailed in Section 45.10.

All attributes of the Appliance Control cluster are in the ‘Appliance Functions’ attribute set.

45.2 Cluster structure and attributes
The structure definition for the Appliance Control cluster (server) is:

typedef struct
{
#ifdef APPLIANCE_CONTROL_SERVER
 zuint16 u16StartTime;
 zuint16 u16FinishTime;
#ifdef CLD_APPLIANCE_CONTROL_REMAINING_TIME
 zuint16 u16RemainingTime;
#endif
#ifdef CLD_APPLIANCE_CONTROL_ATTRIBUTE_REPORTING_STATUS
 zenum8 u8AttributeReportingStatus;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_ApplianceControl;

where:

• u16StartTime is a bitmap representing the start-time of a ‘running’ cycle of the appliance, as follows:

Bits Description

0-5 Minutes part of the start-time, in the range 0 to 59
(may be absolute or relative time - see below)

6-7 Type of time encoding:
• 0x0: Relative time - start-time is a delay from the time that the attribute was set
• 0x1: Absolute time - start-time is an actual time of the 24-hour clock
• 0x2-0x3: Reserved
The defaults are absolute time for ovens and relative time for other appliances.

8-15 Hours part of the start-time:
• in the range 0 to 255, if relative time selected
• in the range 0 to 23, if absolute time selected

• u16FinishTime is a bitmap representing the stop-time of a ‘running’ cycle of the appliance, as follows:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
702 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bits Description

0-5 Minutes part of the stop-time, in the range 0 to 59
(may be absolute or relative time - see below)

6-7 Type of time encoding:
• 0x0: Relative time - stop-time is a delay from the time that the attribute was set
• 0x1: Absolute time - stop-time is an actual time of the 24-hour clock
• 0x2-0x3: Reserved
The defaults are absolute time for ovens and relative time for other appliances.

8-15 Hours part of the stop-time:
• in the range 0 to 255, if relative time selected
• in the range 0 to 23, if absolute time selected

• u16RemainingTime is an optional attribute indicating the time, in minutes, remaining in the current ‘running’
cycle of the appliance (time until the end of the cycle) - this attribute is constantly updated during the running
cycle and is zero when the appliance is not running

• u8AttributeReportingStatus is an optional attribute that should be enabled when attribute reporting is
used for the cluster (see Section 2.3.5). The value of this attribute indicates whether there are attribute reports
still pending (0x00) or the attribute reports are complete (0x01) - all other values are reserved. This attribute is
also described in Section 2.4.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

45.3 Attributes for default reporting
The following attributes of the Appliance Control cluster can be selected for default reporting:

u16StartTime
u16FinishTime

• u16RemainingTime

Attribute reporting (including default reporting) is described in Appendix B. Enabling reports for these attributes
is described in Appendix B.3.6.

45.4 Sending commands
The Appliance Control cluster server resides on the appliance to be controlled (e.g. a washing machine) and the
cluster client resides on the controlling device (normally a remote control unit).

The commands from the client to the server can be of two types:

• ‘Execution’ commands, requesting appliance operations
• ‘Status’ commands, requesting appliance status information

In addition, status notification messages can be sent unsolicited from the server to the client.

Sending the above messages is described in the sub-sections below.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
703 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

45.4.1 Execution Commands from Client to Server

An ‘execution’ command can be sent from the client to request that an operation is performed on the appliance
(server) - the request is sent in an ‘Execution of Command’ message. The application on the client can send
this message by calling the function eCLD_ACExecutionOfCommandSend().

The possible operations depend on the target appliance but the following operations are available to be
specified in the message payload (described in Section 45.9.2):

• Start appliance cycle
• Stop appliance cycle
• Pause appliance cycle
• Start superfreezing cycle
• Stop superfreezing cycle
• Start supercooling cycle
• Stop supercooling cycle
• Disable gas
• Enable gas

In the start and stop commands, the start-time and end-time can be specified. The commands are fully detailed
in the British Standards document BS EN 50523.

The application on the server (appliance) will be notified of the received command by an E_CLD_APPLIANCE_
CONTROL_CMD_EXECUTION_OF_COMMAND event (Appliance Control events are described in Section
45.5). The required command is specified in the payload of the message, which is contained in the above event.
The application must then perform the requested command (if possible).

45.4.2 Status Commands from Client to Server

The application on the cluster client can request the current status of the appliance by sending a ‘Signal
State’ message to the cluster server on the appliance. This message can be sent by calling the function
eCLD_ACSignalStateSend(). This function returns immediately and the requested status information is
later returned in an E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_RESPONSE event, which is
generated when a response arrives from the server (Appliance Control events are described in Section 45.5).

Note: The cluster server handles the ‘Signal State’ message automatically and returns the requested status
information in a ‘Signal State Response’ message to the client.

The appliance status information from the message payload is contained in the above event - for details of this
payload and the status information, refer to Section 45.9.3.

45.4.3 Status Notifications from Server to Client

The cluster server on the appliance can send unsolicited status notifications to the client in ‘Signal State
Notification’ messages. A message of this kind can be sent by the application on the server by calling either of
the following functions:

• eCLD_ACSignalStateNotificationSend()
• eCLD_ACSignalStateResponseORSignalStateNotificationSend()

Note: The latter function is also used internally by the cluster server to send a ‘Signal State Response’
message - see Section 45.4.2.

The appliance status information from the ‘Signal State Notification’ message is reported to the application on
the cluster client through the event E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_NOTIFICATION,
which is generated when the notification arrives from the server (Appliance Control events are described in

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
704 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Section 45.5). The appliance status information from the message payload is contained in the above event - for
details of this payload and the status information, refer to Section 45.9.3.

45.5 Appliance control events
The Appliance Control cluster has its own events that are handled through the callback mechanism described
in Chapter 3. The cluster contains its own event handler. If a device uses this cluster then application-specific
Appliance Control event handling must be included in the user-defined callback function for the associated
endpoint, where this callback function is registered through the relevant endpoint registration function. This
callback function will then be invoked when an Appliance Control event occurs and needs the attention of the
application.

For an Appliance Control event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_ApplianceControlCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 bool *pbApplianceStatusTwoPresent;
 union
 {
 tsCLD_AC_ExecutionOfCommandPayload *psExecutionOfCommandPayload;
 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload

 *psSignalStateResponseAndNotificationPayload;
 } uMessage;
} tsCLD_ApplianceControlCallBackMessage;

When an Appliance Control event occurs, one of four command types could have been received. The relevant
command type is specified through the u8CommandId field of the tsSM_CallBackMessage structure. The
possible command types are detailed the tables below for events generated on a server and a client.

u8CommandId Enumeration Description

E_CLD_APPLIANCE_CONTROL_
CMD_EXECUTION_OF_COMMAND

An ‘Execution of Command’ message has been received by the
server (appliance), requesting an opera-tion on the appliance

E_CLD_APPLIANCE_CONTROL_
CMD_SIGNAL_STATE

A ‘Signal State’ message has been received by the server
(appliance), requesting the status of the appli-ance

Table 106. Appliance Control Command Types (Events on Server)

u8CommandId Enumeration Description

E_CLD_APPLIANCE_CONTROL_CM-D_SIGNAL_
STATE_RESPONSE

A response to a ‘Signal State’ message has been received by the
client, containing the requested appli-ance status

E_CLD_APPLIANCE_CONTROL_CM-D_SIGNAL_
STATE_NOTIFICATION

A ‘Signal State’ notification message has been received by the client,
containing unsolicited status information

Table 107. Appliance Control Command Types (Events on Client)

45.6 Functions
The following Appliance Control cluster functions are provided:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
705 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

1. eCLD_ApplianceControlCreateApplianceControl
2. eCLD_ACExecutionOfCommandSend
3. eCLD_ACSignalStateSend
4. eCLD_ACSignalStateResponseORSignalStateNotificationSend
5. eCLD_ACSignalStateNotificationSend
6. eCLD_ACChangeAttributeTime

45.6.1 eCLD_ApplianceControlCreateApplianceControl

teZCL_Status eCLD_ApplianceControlCreateApplianceControl(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_ApplianceControlCustomDataStructure
 *psCustomDataStructure);

Description

This function creates an instance of the Appliance Control cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create an
Appliance Control cluster instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions. For more details of creating cluster instances
on custom endpoints, refer to Appendix D.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function from those described in the ZigBee Devices User Guide (JNUG3131).

When used, this function must be the first Appliance Control cluster function called in the application, and must
be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8ApplianceControlAttributeControlBits
[(sizeof(asCLD_ApplianceControlClusterAttributeDefinitions) /
 sizeof(tsZCL_AttributeDefinition))];

Parameters

• psClusterInstance Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initialising individual structure fields.

• bIsServer Type of cluster instance (server or client) to be created:
– TRUE - server
– FALSE - client

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
706 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• psClusterDefinition Pointer to structure indicating the type of cluster to be created (see Section 6.1.2). In this
case, this structure must contain the details of the Appliance Control cluster. This parameter can refer to a
pre-filled structure called sCLD_ApplianceControl which is provided in the ApplianceControl.h file.

• pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_ApplianceControl which defines the attributes of Appliance
Control cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above). For a cluster client, set this pointer to NULL.

• psCustomDataStructure Pointer to a structure containing the storage for internal functions of the cluster (see
Section 45.9.4)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

45.6.2 eCLD_ACExecutionOfCommandSend

teZCL_Status eCLD_ACExecutionOfCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_AC_ExecutionOfCommandPayload *psPayload);

Description

This function can be used on an Appliance Control cluster client to send an ‘Execution of Command’ message
to a cluster server (appliance), where this message may specify one of the following control commands:

• Start appliance cycle
• Stop appliance cycle
• Pause appliance cycle
• Start superfreezing cycle
• Stop superfreezing cycle
• Start supercooling cycle
• Stop supercooling cycle
• Disable gas
• Enable gas

The required command is specified in the payload of the message (a pointer to this payload must be provided).
The commands are fully detailed in the British Standards document BS EN 50523.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
707 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameter

• u8SourceEndPointId Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId Number of the endpoint on the remote node to which the message is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress Pointer to a structure holding the address of the node to which the request is sent
• pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message
• psPayload Pointer to a structure containing the payload for the message (see Section 45.9.2).

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

45.6.3 eCLD_ACSignalStateSend

teZCL_Status eCLD_ACSignalStateSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on an Appliance Control cluster client to send a ‘Signal State’ message to a cluster
server (appliance), which requests the status of the appliance. The function returns immediately and the
requested status information is later returned in the following event, which is generated when a response is
received from the server:

E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_RESPONSE

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the message is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the message is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
708 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

45.6.4 eCLD_ACSignalStateResponseORSignalStateNotificationSend

teZCL_Status eCLD_ACSignalStateResponseORSignalStateNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 teCLD_ApplianceControl_ServerCommandId eCommandId,
 bool bApplianceStatusTwoPresent,
 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload
 *psPayload);

Description

This function can be used on an Appliance Control cluster server to send a ‘Signal State Response’ message
(in reply to a ‘Signal State Request’ message) or an unsolicited ‘Signal State Notification’ message to a cluster
client.

The command to be sent must be specified as one of:

• E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_RESPONSE
• E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_NOTIFICATION

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId Number of the endpoint on the remote node to which the message is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress Pointer to a structure holding the address of the node to which the message is sent
• pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message
• eCommandId Enumeration indicating the command to be sent (see above and Section 45.8.3)
• bApplianceStatusTwoPresent Boolean indicating whether additional appliance status data is present in

payload:
– TRUE - Present
– FALSE - Not present

• psPayload Pointer to structure containing payload for message (see above and Section 45.9.3)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
709 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

45.6.5 eCLD_ACSignalStateNotificationSend

teZCL_Status eCLD_ACSignalStateNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 bool bApplianceStatusTwoPresent,
 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload
 *psPayload);

Description

This function can be used on an Appliance Control cluster server to send an unsolicited ‘Signal State
Notification’ message to a cluster client. The function is an alternative to eCLD_ACSignalStateResponse
ORSignalStateNotificationSend().

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId: Number of the endpoint on the remote node to which the message is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress: Pointer to a structure holding the address of the node to which the message is sent
• pu8TransactionSequenceNumber: Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message
• bApplianceStatusTwoPresent: Boolean indicating whether additional appliance status data is present in

payload:
– TRUE - Present
– FALSE - Not present

• psPayload: Pointer to structure containing payload for message (see above and Section 45.9.3)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
710 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

45.6.6 eCLD_ACChangeAttributeTime

teZCL_Status eCLD_ACChangeAttributeTime(
 uint8 u8SourceEndPointId,
 teCLD_ApplianceControl_Cluster_AttrID eAttributeTimeId,
 uint16 u16TimeValue);

Description

This function can be used on an Appliance Control cluster server (appliance) to update the time attributes of the
cluster (start time, finish time, remaining time). This is particularly useful if the host node has its own timer.

The target attribute must be specified using one of:

• E_CLD_APPLIANCE_CONTROL_ATTR_ID_START_TIME
• E_CLD_APPLIANCE_CONTROL_ATTR_ID_FINISH_TIME
• E_CLD_APPLIANCE_CONTROL_ATTR_ID_REMAINING_TIME

Parameters

• u8SourceEndPointId: Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• eAttributeTimeId: Identifier of attribute to be updated (see above and Section 45.9.1)
• u16TimeValue: UTC time to set

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

45.7 Return codes
The Appliance Control cluster functions use the ZCL return codes, listed in Section 7.2.

45.8 Enumerations

45.8.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the Appliance Control cluster.

typedef enum PACK
{
 E_CLD_APPLIANCE_CONTROL_ATTR_ID_START_TIME = 0x0000,
 E_CLD_APPLIANCE_CONTROL_ATTR_ID_FINISH_TIME,
 E_CLD_APPLIANCE_CONTROL_ATTR_ID_REMAINING_TIME
} teCLD_ApplianceControl_Cluster_AttrID;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
711 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

45.8.2 ‘Client Command ID’ Enumerations

The following enumerations are used in commands issued on a cluster client.

typedef enum PACK
{
 E_CLD_APPLIANCE_CONTROL_CMD_EXECUTION_OF_COMMAND = 0x00,
 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE,
} teCLD_ApplianceControl_ClientCommandId;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_APPLIANCE_CONTROL_CMD_EXECUTION_OF_COMMAND ‘Execution of Command’ message

E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE ‘Signal State’ message

Table 108. ‘Client Command ID’ Enumerations

45.8.3 ‘Server command ID’ enumerations

The following enumerations are used in commands issued on a cluster server.

typedef enum PACK
{
 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_RESPONSE = 0x00,
 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_NOTIFICATION
} teCLD_ApplianceControl_ServerCommandId;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_
RESPONSE

A response to a ‘Signal State’ request

E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_
NOTIFICATION

A ‘Signal State’ notification

Table 109. ‘Server command ID’ enumerations

45.9 Structures

45.9.1 tsCLD_ApplianceControlCallBackMessage

For an Appliance Control event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_ApplianceControlCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 bool *pbApplianceStatusTwoPresent;
 union
 {
 tsCLD_AC_ExecutionOfCommandPayload
 *psExecutionOfCommandPayload;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
712 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload

 *psSignalStateResponseAndNotificationPayload;
 } uMessage;
} tsCLD_ApplianceControlCallBackMessage;

where:

• u8CommandId indicates the type of Appliance Control command that has been received, one of:
– E_CLD_APPLIANCE_CONTROL_CMD_EXECUTION_OF_COMMAND
– E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE
– E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_RESPONSE
– E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_NOTIFICATION

• pbApplianceStatusTwoPresent is a pointer to a boolean indicating whether a second set of non-
standard or proprietary status data is available:
– TRUE - additional status data available
– FALSE - additional status data unavailable

• uMessage is a union containing the command payload as one of (depending on the value of u8CommandId):
• psExecutionOfCommandPayload is a pointer to the payload of an ‘Execution of Command’ message (see

Section 45.9.2)
• psSignalStateResponseAndNotificationPayload is a pointer to the payload of a ‘Signal State’

response or notification message (see Section 45.9.3)

45.9.2 tsCLD_AC_ExecutionOfCommandPayload

This structure contains the payload for an "Execution of Command" message.

typedef struct
{
 zenum8 eExecutionCommandId;
} stsCLD_AC_ExecutionOfCommandPayload;

where eExecutionCommandId is a value representing the command to be executed - the commands are
detailed in the British Standards document BS EN 50523.

45.9.3 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload

This structure contains the payload for a "Signal State" response or notification message.

typedef struct
{
 zenum8 eApplianceStatus;
 zuint8 u8RemoteEnableFlagAndDeviceStatus;
 zuint24 u24ApplianceStatusTwo;
} tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload;

where:

• eApplianceStatus is a value indicating the reported appliance status (the relevant status values depend
on the appliance):

Status Value Description

0x00 Reserved

0x01 Appliance in off state

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
713 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Status Value Description

0x02 Appliance in stand-by

0x03 Appliance already programmed

0x04 Appliance already programmed and ready to start

0x05 Appliance is running

0x06 Appliance is in pause state

0x07 Appliance end programmed tasks

0x08 Appliance is in a failure state

0x09 Appliance programmed tasks have been interrupted

0x0A Appliance in idle state

0x0B Appliance rinse hold

0x0C Appliance in service state

0x0D Appliance in superfreezing state

0x0E Appliance in supercooling state

0x0F Appliance in superheating state

0x10-0x3F Reserved

0x40-0x7F Non-standardised

0x80-0xFF Proprietary

• u8RemoteEnableFlagAndDeviceStatus is a bitmap value indicating the status of the relationship
between the appliance and the remote control unit as well as the type of additional status information reported
in u24ApplianceStatusTwo:

Bits Field Values/Description

0-3 Remote Enable Flags Status of remote control link:
• 0x0: Disabled
• 0x1: Enabled remote and energy control
• 0x2-0x06: Reserved
• 0x7: Temporarily locked/disabled
• 0x8-0xE: Reserved
• 0xF: Enabled remote control

4-7 Device Status 2 Type of information in u24ApplianceStatusTwo:
• 0x0: Proprietary
• 0x1: Proprietary
• 0x2: IRIS symptom code
• 0x3-0xF: Reserved

• u24ApplianceStatusTwo is a value indicating non-standard or proprietary status information about the
appliance. The type of status information represented by this value is indicated in the ‘Device Status 2’ field
of u8RemoteEnableFlagAndDeviceStatus. In the case of an IRIS symptom code, the three bytes of this
value represent a 3-digit code.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
714 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

45.9.4 tsCLD_ApplianceControlCustomDataStructure

The Appliance Control cluster requires extra storage space to be allocated to be used by internal functions. The
structure definition for this storage is shown below:

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ApplianceControlCallBackMessage sCallBackMessage;
} tsCLD_ApplianceControlCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

45.10 Compile-time options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the Appliance Control cluster.

To enable the Appliance Control cluster in the code to be built, it is necessary to add the following line to the file:

#define CLD_APPLIANCE_CONTROL

In addition, to enable the cluster as a client or server, it is also necessary to add one of the following lines to the
same file:

#define APPLIANCE_CONTROL_SERVER
#define APPLIANCE_CONTROL_CLIENT

The Appliance Control cluster contains macros that may be optionally specified at compile-time by adding one
or more of the following lines to the zcl_options.h file.

Optional attributes

Add this line to enable the optional Time Remaining attribute:

#define CLD_APPLIANCE_CONTROL_REMAINING_TIME

Global Attributes

Add this line to enable the optional Attribute Reporting Status attribute:

#define CLD_LEVELCONTROL_ATTR_ID_ATTRIBUTE_REPORTING_STATUS

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_LEVELCONTROL_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
715 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

46 Appliance Identification Cluster

This chapter outlines the Appliance Identification cluster, which provides an interface for obtaining and setting
basic appliance information.

The Appliance Identification cluster has a Cluster ID of 0x0B00.

46.1 Overview
The Appliance Identification cluster provides an interface for obtaining and setting information about an
appliance, such as product type and manufacturer.

The cluster is enabled by defining CLD_APPLIANCE_IDENTIFICATION in the zcl_options.h file. Further
compile-time options for the Appliance Identification cluster are detailed in Section 46.6.

The information that can potentially be stored in this cluster is organized into the following attribute sets:

• Basic Appliance Identification
• Extended Appliance Identification

46.2 Cluster structure and attributes
The structure definition for the Appliance Identification cluster (server) is:

typedef struct
{
#ifdef APPLIANCE_IDENTIFICATION_SERVER
 zbmap56 u64BasicIdentification;
#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_COMPANY_NAME
tsZCL_CharacterString sCompanyName;
uint8 au8CompanyName[16];
#endif
#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_COMPANY_ID
 zuint16 u16CompanyId;
#endif
#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_BRAND_NAME
 tsZCL_CharacterString sBrandName;
 uint8 au8BrandName[16];
#endif
#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_BRAND_ID
 zuint16 u16BrandId;
#endif
#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_MODEL
 tsZCL_OctetStrings Model;
 uint8 au8Model[16];
#endif
#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_PART_NUMBER
 tsZCL_OctetString sPartNumber;
 uint8 au8PartNumber[16];
#endif
#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_PRODUCT_REVISION
 tsZCL_OctetString sProductRevision;
 uint8 au8ProductRevision[6];
#endif
#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_SOFTWARE_REVISION
 tsZCL_OctetString sSoftwareRevision;
 uint8 au8SoftwareRevision[6];
#endif
#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_PRODUCT_TYPE_NAME
 tsZCL_OctetString sProductTypeName;
 uint8 au8ProductTypeName[2];
#endif

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
716 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_PRODUCT_TYPE_ID
 zuint16 u16ProductTypeId;
#endif
#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_CECED_SPEC_VERSION
 zuint8 u8CECEDSpecificationVersion;
#endif
#endif
 zuint16 u16ClusterRevision;
} tsCLD_ApplianceIdentification;

where:

‘Basic Appliance Identification’ Attribute Set

• u64BasicIdentification is a mandatory attribute which is a 56-bit bitmap containing the following
information about the appliance:

Bits Information

0-15 Company (manufacturer) ID

16-31 Brand ID

32-47 Product Type ID, one of:
• 0x0000: White Goods
• 0x5601: Dishwasher
• 0x5602: Tumble Dryer
• 0x5603: Washer Dryer
• 0x5604: Washing Machine
• 0x5E03: Hob
• 0x5E09: Induction Hob
• 0x5E01: Oven
• 0x5E06: Electrical Oven
• 0x6601: Refrigerator/Freezer
For enumerations, see Section 46.5.2.

48-55 Specification Version

‘Extended Appliance Identification’ Attribute Set

• The following optional pair of attributes are used to store human readable versions of the company
(manufacturer) name:
– sCompanyName is a tsZCL_OctetString structure which contains a character string representing the

company name of up to 16 characters
– au8CompanyName[16] is a byte-array which contains the character data bytes representing the company

name
• u16CompanyId is an optional attribute which contains the company ID
• The following optional pair of attributes are used to store human readable versions of the brand name:

– sBrandName is a tsZCL_OctetString structure which contains a character string representing the brand
name of up to 16 characters

– au8BrandName[16] is a byte-array which contains the character data bytes representing the brand name
• u16BrandId is an optional attribute which contains the brand ID
• The following optional pair of attributes are used to store human readable versions of the manufacturer-

defined model name:
– sModel is a tsZCL_OctetString structure which contains a character string representing the model

name of up to 16 characters
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
717 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– au8Model[16] is a byte-array which contains the character data bytes representing the model name
• The following optional pair of attributes are used to store human readable versions of the manufacturer-

defined part number/code:
– sPartNumber is a tsZCL_OctetString structure which contains a character string representing the part

number/code of up to 16 characters
– au8PartNumber[16] is a byte-array which contains the character data bytes representing the part

number/code
• The following optional pair of attributes are used to store human readable versions of the manufacturer-

defined product revision number:
– sProductRevision is a tsZCL_OctetString structure which contains a character string representing

the product revision number of up to 6 characters
– au8ProductRevision[6] is a byte-array which contains the character data bytes representing the

product revision number
• The following optional pair of attributes are used to store human readable versions of the manufacturer-

defined software revision number:
– sSoftwareRevision is a tsZCL_OctetString structure which contains a character string representing

the software revision number of up to 6 characters
– au8SoftwareRevision[6] is a byte-array which contains the character data bytes representing the

software revision number
• The following optional pair of attributes are used to store human readable versions of the 2-character product

type name (e.g. "WM" for washing machine):
– sProductTypeName is a tsZCL_OctetString structure which contains a character string representing

the product type name of up to 2 characters
– au8ProductTypeName[2] is a byte-array which contains the character data bytes representing the

product type name
• u16ProductTypeId is an optional attribute containing the product type ID (from those listed above in the

description of u64BasicIdentification)
• u8CECEDSpecificationVersion is an optional attribute which indicates the version of the CECED

specification to which the appliance conforms, from the following:

Value Specification

0x10 Compliant with v1.0, not certified

0x1A Compliant with v1.0, certified

0xX0 Compliant with vX.0, not certified

0xXA Compliant with vX.0, certified

Global Attributes

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

46.3 Functions
The following Appliance Identification cluster function is provided:

eCLD_ApplianceIdentificationCreateApplianceIdentification

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
718 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: The attributes of this cluster can be accessed using the attribute read/write functions detailed in Section
5.2.

46.3.1 eCLD_ApplianceIdentificationCreateApplianceIdentification

teZCL_Status eCLD_ApplianceIdentificationCreateApplianceIdentification(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Appliance Identification cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create an
Appliance Identification cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions. For more details of creating cluster
instances on custom endpoints, refer to Appendix D.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function from those described in the ZigBee Devices User Guide (JNUG3131).

When used, this function must be the first Appliance Identification cluster function called in the application, and
must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8ApplianceIdentificationAttributeControlBits
[(sizeof(asCLD_ApplianceIdentificationClusterAttributeDefinitions)
 / sizeof(tsZCL_AttributeDefinition))];

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initializing individual structure fields.

• bIsServer: Type of cluster instance (server or client) to be created:
• TRUE - server
• FALSE - client
• psClusterDefinition: Pointer to structure indicating the type of cluster to be created (see Section 6.1.2).

In this case, this structure must contain the details of the Appliance Identification cluster. This parameter
can refer to a pre-filled structure called sCLD_ApplianceIdentification which is provided in the
ApplianceIdentification.h file.

• pvEndPointSharedStructPtr: Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of the tsCLD_ApplianceIdentification type which defines the attributes
of Appliance Identification cluster. The function initializes the attributes with default values.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
719 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• pu8AttributeControlBits: Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above). For a cluster client, set this pointer to NULL.

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_INVALID_VALUE

46.4 Return codes
The Appliance Identification cluster function uses the ZCL return codes, listed in Section 7.2.

46.5 Enumerations

46.5.1 ‘Attribute ID’ enumerations

The following structure contains the enumerations used to identify the attributes of the Appliance Identification
cluster.

typedef enum PACK
{
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_BASIC_IDENTIFICATION = 0x0000,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_COMPANY_NAME = 0x0010,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_COMPANY_ID,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_BRAND_NAME,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_BRAND_ID,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_MODEL,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_PART_NUMBER,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_PRODUCT_REVISION,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_SOFTWARE_REVISION,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_PRODUCT_TYPE_NAME,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_PRODUCT_TYPE_ID,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_CECED_SPEC_VERSION
} teCLD_ApplianceIdentification_Cluster_AttrID;

46.5.2 ‘Product Type ID’ enumerations

The following enumerations are used to represent the set of product type IDs.

typedef enum PACK
{
 E_CLD_AI_PT_ID_WHITE_GOODS = 0x0000,
 E_CLD_AI_PT_ID_DISHWASHER = 0x5601,
 E_CLD_AI_PT_ID_TUMBLE_DRYER,
 E_CLD_AI_PT_ID_WASHER_DRYER,
 E_CLD_AI_PT_ID_WASHING_MACHINE,
 E_CLD_AI_PT_ID_HOBS = 0x5E03,
 E_CLD_AI_PT_ID_INDUCTION_HOBS = 0x5E09,
 E_CLD_AI_PT_ID_OVEN = 0x5E01,
 E_CLD_AI_PT_ID_ELECTRICAL_OVEN = 0x5E06,
 E_CLD_AI_PT_ID_REFRIGERATOR_FREEZER = 0x6601
} teCLD_ApplianceIdentification_ProductTypeId;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
720 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

46.6 Compile-time options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the Appliance Identification cluster.

To enable the Appliance Identification cluster in the code to be built, it is necessary to add the following line to
the file:

#define CLD_APPLIANCE_IDENTIFICATION

In addition, to enable the cluster as a client or server, it is also necessary to add one of the following lines to the
same file:

#define APPLIANCE_IDENTIFICATION_SERVER
#define APPLIANCE_IDENTIFICATION_CLIENT

The Appliance Identification cluster contains macros that may be optionally specified at compile-time by adding
one or more of the following lines to the zcl_options.h file.

Optional Attributes

Add this line to enable the optional Company Name attributes:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_COMPANY_NAME

Add this line to enable the optional Company ID attributes:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_COMPANY_ID

Add this line to enable the optional Brand Name attributes:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_BRAND_NAME

Add this line to enable the optional Brand ID attribute:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_BRAND_ID

Add this line to enable the optional Model attributes:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_MODEL

Add this line to enable the optional Part Number attributes:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_PART_NUMBER

Add this line to enable the optional Product Revision attributes:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_PRODUCT_REVISION

Add this line to enable the optional Software Revision attributes:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_SOFTWARE_REVISION

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
721 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Add this line to enable the optional Product Type Name attributes:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_PRODUCT_TYPE_NAME

Add this line to enable the optional Product Type ID attribute:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_PRODUCT_TYPE_ID

Add this line to enable the optional CECED Specification Version attribute:

#define CLD_APPLIANCE_IDENTIFICATION_ATTR_CECED_SPEC_VERSION

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_APPLIANCE_IDENTIFICATION_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
722 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

47 Appliance Events and Alerts Cluster

This chapter outlines the Appliance Events and Alerts cluster, which provides an interface for the notification of
significant events and alert situations.

The Appliance Events and Alerts cluster has a Cluster ID of 0x0B02.

47.1 Overview
The Appliance Events and Alerts cluster provides an interface for sending notifications of appliance events (for
example, target temperature reached) and alerts (for example, alarms).

The cluster is enabled by defining CLD_APPLIANCE_EVENTS_AND_ALERTS in the zcl_options.h file.
Further compile-time options for the Appliance Events and Alerts cluster are detailed in Section 47.9.

Events are notified in terms of header and event identifier fields (an event may occur when the appliance
reaches a certain state, such as the end of its operational cycle).

Alerts are notified in terms of the following fields:

• Alert identification value
• Alert category, one of: Warning, Danger, Failure
• Presence/recovery flag (indicating alert has been either detected or recovered)

47.2 Cluster structure and attribute
The structure definition for the Appliance Events and Alerts cluster (server) is.

typedef struct
{
 zuint16 u16ClusterRevision;
} tsCLD_ApplianceEventsAndAlerts;

where u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification
on which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute is
also described in Section 2.4.

47.3 Sending Messages
The Appliance Events and Alerts cluster server resides on the appliance (for example, a washing machine) and
the cluster client resides on a controlling device (normally a remote control unit).

Messages can be sent between the client and the server in the following ways:

• Alerts that are active on the appliance can be requested by the client by sending a ‘Get Alerts’ message to the
server (which replies with a ‘Get Alerts Response’ message).

• Alerts that are active on the appliance can be sent unsolicited from the server to the client in an ‘Alerts
Notification’ message.

• The server can notify the client of an appliance event by sending an unsolicited ‘Event Notification’ message
to the client

Sending the above messages is described in the sub-sections below.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
723 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

47.3.1 ‘Get Alerts’ Messages from Client to Server

The application on the cluster client can request the alerts that are currently active on the appliance
by sending a ‘Get Alerts’ message to the server - this message is sent by calling the function
eCLD_AEAAGetAlertsSend(). This function returns immediately and the requested alerts are later returned
in an E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_GET_ALERTS event, which is generated when a
response arrives from the server (Appliance Events and Alerts events are described in Section 47.4).

Note: The cluster server handles the ‘Get Alerts’ message automatically and returns the requested alerts in a
‘Get Alerts Response’ message to the client.

The appliance alerts from the message payload are contained in the above event - for details of this payload
and the alert information, refer to Section 47.8.2. Up to 15 alerts can be reported in a single response.

47.3.2 ‘Alerts Notification’ Messages from Server to Client

The cluster server on the appliance can send unsolicited alert notifications to the client in ‘Alerts Notification’
messages. The application on the server can send a message of this kind by calling either of the following
functions:

• eCLD_AEAAAlertsNotificationSend()
• eCLD_AEAAGetAlertsResponseORAlertsNotificationSend()

Note: The latter function is also used internally by the cluster server to send a ‘Get Alerts Response’ message -
see Section 47.3.1.

The appliance status information from the ‘Alerts Notification’ message is reported to the application on
the cluster client through the event E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_
NOTIFICATION, which is generated when the notification arrives from the server (Appliance Events and Alerts
events are described in Section 47.4). The appliance alerts from the message payload are contained in the
above event - for details of this payload and the alert information, refer to Section 47.8.2. Up to 15 alerts can be
reported in a single notification.

47.3.3 ‘Event Notification’ Messages from Server to Client

The cluster server on the appliance can send unsolicited event notifications to the client in ‘Event Notification’
messages, where each message reports a single appliance event (for example, oven has reached its target
temperature). A message of this kind can be sent by the application on the server by calling the function
eCLD_AEAAEventNotificationSend().

The appliance event information from the ‘Event Notification’ message is reported to the application on
the cluster client through the event E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_
NOTIFICATION, which is generated when the notification arrives from the server (Appliance Events and Alerts
events are described in Section 47.4). The appliance event from the message payload is contained in the above
client event - for details of this payload and the embedded appliance event information, refer to Section 47.8.3.

47.4 Appliance Events and Alerts Events
The Appliance Events and Alerts cluster has its own events that are handled through the callback mechanism
described in Chapter 3. The cluster contains its own event handler. If a device uses this cluster then application-
specific Appliance Events and Alerts event handling must be included in the user-defined callback function for
the associated endpoint, where this callback function is registered through the relevant endpoint registration
function. This callback function is then invoked when an Appliance Events and Alerts event occurs and needs
the attention of the application.

For an Appliance Events and Alerts event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
724 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_ApplianceEventsAndAlertsCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId
 union
 {
 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload
 *psGetAlertsResponseORAlertsNotificationPayload;
 tsCLD_AEAA_EventNotificationPayload
 *psEventNotificationPayload;
 }uMessage;
} tsCLD_ApplianceEventsAndAlertsCallBackMessage;

When an Appliance Events and Alerts event occurs, one of four command types could have been received. The
relevant command type is specified through the u8CommandId field of the tsSM_CallBackMessage structure.
The possible command types are detailed the tables below for events generated on a server and a client.

u8CommandId Enumeration Description

E_CLD_APPLIANCE_EVENTS_AND_ALERTS_
CMD_GET_ALERTS

A ‘Get Alerts’ request has been received by the server (appliance)

Table 110. Appliance Events and Alerts Command Types (Events on Server)

u8CommandId Enumeration Description

E_CLD_APPLIANCE_EVENTS_AND_ALERTS_
CMD_GET_ALERTS

A response to a ‘Get Alerts’ request has been received by the client,
containing the requested alerts (up to 15)

E_CLD_APPLIANCE_EVENTS_AND_ALERTS_
CMD_ALERTS_NOTIFICATION

An ‘Alerts Notification’ message has been received by the client,
containing unsolicited alerts (up to 15)

E_CLD_APPLIANCE_EVENTS_AND_ALERTS_
CMD_EVENT_NOTIFICATION

An ‘Event Notification’ message has been received by the client

Table 111. Appliance Events and Alerts Command Types (Events on Client)

47.5 Functions
The following Appliance Events and Alerts cluster functions are provided:

1. eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts
2. eCLD_AEAAGetAlertsSend
3. eCLD_AEAAGetAlertsResponseORAlertsNotificationSend
4. eCLD_AEAAAlertsNotificationSend
5. eCLD_AEAAEventNotificationSend

47.5.1 eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts

teZCL_Status eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_ApplianceEventsAndAlertsCustomDataStructure

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
725 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 *psCustomDataStructure);

Description

This function creates an instance of the Appliance Events and Alerts cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure
and can act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected
clusters (rather than the whole set of clusters supported by a standard ZigBee device). This function creates
an Appliance Events and Alerts cluster instance on the endpoint, but instances of other clusters may also be
created on the same endpoint by calling their corresponding creation functions. For more details of creating
cluster instances on custom endpoints, refer to Appendix D.

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function from those described in the ZigBee Devices User Guide (JNUG3131).

When used, this function must be the first Appliance Events and Alerts cluster function called in the application,
and must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8ApplianceEventsAndAlertsAttributeControlBits
 [(sizeof(asCLD_ApplianceEventsAndAlertsClusterAttributeDefinitions)
 / sizeof(tsZCL_AttributeDefinition))];

Parameters

Returns

47.5.2 eCLD_AEAAGetAlertsSend

teZCL_Status eCLD_AEAAGetAlertsSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on an Appliance Events and Alerts cluster client to send a ‘Get Alerts’ message to a
cluster server (appliance).

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
726 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameter

Returns

47.5.3 eCLD_AEAAGetAlertsResponseORAlertsNotificationSend

teZCL_Status eCLD_AEAAGetAlertsResponseORAlertsNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 teCLD_ApplianceEventsAndAlerts_CommandId eCommandId,
 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload
 *psPayload);

Description

This function can be used on an Appliance Events and Alerts cluster server to send a ‘Get Alerts Response’
message (in reply to a ‘Get Alerts’ message) or an unsolicited ‘Alerts Notification’ message to a cluster client.

The command to be sent must be specified as one of:

• E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_GET_ALERTS
• E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_NOTIFICATION

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

Returns

47.5.4 eCLD_AEAAAlertsNotificationSend

teZCL_Status eCLD_AEAAAlertsNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload
 *psPayload);

Description

This function can be used on an Appliance Events and Alerts cluster server to send an unsolicited ‘Alerts
Notification’ message to a cluster client. The function is an alternative to eCLD_AEAAGetAlertsResponse
ORAlertsNotificationSend().

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
727 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

Returns

47.5.5 eCLD_AEAAEventNotificationSend

teZCL_Status eCLD_AEAAEventNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_AEAA_EventNotificationPayload *psPayload);

Description

This function can be used on an Appliance Events and Alerts cluster server (appliance) to send an ‘Event
Notification’ message to a cluster client, to indicate that an incident has occurred.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

Returns

47.6 Return codes
The Appliance Events and Alerts cluster functions use the ZCL return codes, listed in Section 7.2.

47.7 Enumerations

47.7.1 ‘Command ID’ Enumerations

The following enumerations are used in commands received on a cluster server or client.

typedef enum PACK
{
 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_GET_ALERTS = 0x00,
 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_NOTIFICATION,
 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_EVENT_NOTIFICATION
} teCLD_ApplianceEventsAndAlerts_CommandId;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_APPLIANCE_EVENTS_AND_ALERTS_
CMD_GET_ALERTS

‘Get Alerts’ request (on server) or response (on client)

E_CLD_APPLIANCE_EVENTS_AND_ALERTS_
CMD_ALERTS_NOTIFICATION

Alerts notification (on client)

Table 112. ‘Command ID’ Enumerations

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
728 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_CLD_APPLIANCE_EVENTS_AND_ALERTS_
CMD_EVENT_NOTIFICATION

Events notification (on server)

Table 112. ‘Command ID’ Enumerations...continued

47.8 Structures

47.8.1 tsCLD_ApplianceEventsAndAlertsCallBackMessage

For an Appliance Events and Alerts event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_ApplianceEventsAndAlertsCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId
 union
 {
 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload
 *psGetAlertsResponseORAlertsNotificationPayload;
 tsCLD_AEAA_EventNotificationPayload
 *psEventNotificationPayload;
 } uMessage;
} tsCLD_ApplianceEventsAndAlertsCallBackMessage;

where:

• u8CommandId indicates the type of Appliance Events and Alerts command that has been received, one of:
– E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_GET_ALERTS
– E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_NOTIFICATION
– E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_EVENT_NOTIFICATION

• uMessage is a union containing the command payload as one of (depending on the value of u8CommandId):
– psGetAlertsResponseORAlertsNotificationPayload is a pointer to the payload of an "Get Alerts"

response message or an alerts notification message (see Section 47.8.2)
– psEventNotificationPayload is a pointer to the payload of an events notification message (see

Section 47.8.3)

47.8.2 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload

This structure contains the payload for a ‘Get Alerts Response’ message or an ‘Alerts Notification’ message.

typedef struct
{
 zuint8 u8AlertsCount;
 zuint24 au24AlertStructure[
 CLD_APPLIANCE_EVENTS_AND_ALERTS_MAXIMUM_NUM_OF_ALERTS];
} tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload;

where:

• u8AlertsCount is an 8-bit bitmap containing the following alerts information:

Bits Description

0-3 Number of reported alerts

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
729 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Bits Description

4-7 Type of alert:
• 0x0: Unstructured
• 0x1-0xF: Reserved

• au24AlertStructure[] is an array of 24-bit bitmaps, with one bitmap for each reported alert, containing
the following information:

Bits Description

0-7 Alert ID:
• 0x0: Reserved
• 0x01-0x3F: Standardized
• 0x40-0x7F: Non-standardized
• 0x80-0xFF: Proprietary

8-11 Category:
• 0x0: Reserved
• 0x1: Warning
• 0x2: Danger
• 0x3: Failure
• 0x4–0xF: Reserved

12-13 Presence or recovery:
• 0x0: Presence (alert detected)
• 0x1: Recovery (alert recovered)
• 0x2–0x3: Reserved

14-15 Reserved (set to 0x0)

16-23 Non-standardized or proprietary

47.8.3 tsCLD_AEAA_EventNotificationPayload

This structure contains the payload for an ‘Event Notification’ message.

typedef struct
{
 zuint8 u8EventHeader;
 zuint8 u8EventIdentification;
} tsCLD_AEAA_EventNotificationPayload;

where:

• u8EventHeader is reserved and set to 0
• u8EventIdentification is the identifier of the event being notified:

– 0x01: End of operational cycle reached
– 0x02: Reserved
– 0x03: Reserved
– 0x04: Target temperature reached
– 0x05: End of cooking process reached
– 0x06: Switching off
– 0xF7: Wrong data

(Values 0x00 to 0x3F are standardised, 0x40 to 0x7F are non-standardised, and 0x80 to 0xFF except
0xF7 are proprietary)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
730 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

47.8.4 tsCLD_ApplianceEventsAndAlertsCustomDataStructure

The Appliance Events and Alerts cluster requires extra storage space to be allocated to be used by internal
functions. The structure definition for this storage is shown below:

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ApplianceEventsAndAlertsCallBackMessage sCallBackMessage;
} tsCLD_ApplianceEventsAndAlertsCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

47.9 Compile-time options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the Appliance Events and Alerts cluster.

To enable the Appliance Events and Alerts cluster in the code to be built, it is necessary to add the following line
to the file:

#define CLD_APPLIANCE_EVENTS_AND_ALERTS

In addition, to enable the cluster as a client or server, it is also necessary to add one of the following lines to the
same file:

#define APPLIANCE_EVENTS_AND_ALERTS_SERVER
#define APPLIANCE_EVENTS_AND_ALERTS_CLIENT

The Appliance Identification cluster contains macros that may be optionally specified at compile-time by adding
one or more of the following lines to the zcl_options.h file.

Maximum Number of Alerts Reported

The maximum number of alerts that can be reported in a response or notification can be defined (as n) using
the following definition in the zcl_options.h file:

#define CLD_APPLIANCE_EVENTS_AND_ALERTS_MAXIMUM_NUM_OF_ALERTS n

The default value is 16, which is the upper limit on this value, and n must therefore not be greater than 16.

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_APPLIANCE_EVENTS_AND_ALERTS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
731 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

48 Appliance Statistics Cluster

This chapter outlines the Appliance Statistics cluster, which provides an interface for supplying statistical
information about an appliance.

The Appliance Statistics cluster has a Cluster ID of 0x0B03.

48.1 Overview
The Appliance Statistics cluster provides an interface for sending appliance statistics in the form of data logs to
a collector node, which may be a gateway.

The cluster is enabled by defining CLD_APPLIANCE_STATISTICS in the zcl_options.h file. Further compile-
time options for the Appliance Statistics cluster are detailed in Section 48.10.

The cluster client may obtain logs from the server (appliance) in any of the following ways:

• Unsolicited log notifications sent by the server
• Solicited responses obtained by:

– Client sending ‘Log Queue Request’ to enquire whether logs are available
– Client sending ‘Log Request’ for each log available

• Semi-solicited responses obtained by:
– Server sending ‘Statistics Available’ notification to indicate that logs are available
– Client sending ‘Log Request’ for each log available

48.2 Cluster structure and attributes
The structure definition for the Appliance Statistics cluster (server) is:

typedef struct
{
#ifdef APPLIANCE_STATISTICS_SERVER
 zuint32 u32LogMaxSize;
 zuint8 u8LogQueueMaxSize;
#endif
 zuint16 u16ClusterRevision;
} tsCLD_ApplianceStatistics;

where:

• u32LogMaxSize is a mandatory attribute which specifies the maximum size, in bytes, of the payload of a log
notification and log response. This value should not be greater than 70 bytes (otherwise the Partition cluster is
needed)

• u8LogQueueMaxSize is a mandatory attribute which specifies the maximum number of logs in the queue on
the cluster server that are available to be requested by the client

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

48.3 Sending messages
The Appliance Statistics cluster server resides on the appliance (e.g. a washing machine) and the cluster client
resides on a controlling device (normally a remote control unit).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
732 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Messages can be sent between the client and the server in the following ways:

• The client can enquire whether any data logs are available on the appliance (server) by sending a ‘Log Queue
Request’ to the server (which will reply with a ‘Log Queue Response’ message)

• The server can notify the client that data logs are available by sending an unsolicited ‘Statistics Available’
message to the client

• The client can request a current data log from the appliance (server) by sending a ‘Log Request’ message to
the server (which will reply with a ‘Log Response’ message)

• The server can send an unsolicited data log to the client in a ‘Log Notification’ message

Sending the above messages is described in the sub-sections below.

48.3.1 ‘Log Queue Request’ messages from client to server

The application on the cluster client can enquire about the availability of data logs on the appliance by
sending a ‘Log Queue Request’ message to the server. This message is sent by calling the function
eCLD_ASCLogQueueRequestSend(). This function returns immediately and the log availability is later
returned in an E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE event, which is generated
when a response arrives from the server (Appliance Statistics events are described in Section 48.5).

Note: The cluster server handles the ‘Log Queue Request’ message automatically and returns the requested
information in a ‘Log Queue Response’ message to the client.

The log availability information from the message payload is contained in the above event, and comprises
the number of logs currently in the log queue and their log IDs - for details of this payload and the availability
information, refer to Section 48.9.4.

48.3.2 ‘Statistics Available’ messages from server to client

The cluster server can notify the client when data logs are available by sending an unsolicited ‘Statistics
Available’ message to the client. This message contains the number of logs in the log queue and the log IDs. A
message of this kind can be sent by the application on the server by calling either of the following functions:

• eCLD_ASCStatisticsAvailableSend()
• eCLD_ASCLogQueueResponseORStatisticsAvailableSend()

Note:

1. The latter function is also used internally by the cluster server to send a ‘Log Queue Response’ message -
see Section 48.3.1.

2. Before calling either function, the relevant log(s) should be added to the local log queue as described in
Section 48.4.1. This is because the logs need to be in the queue to allow the server to perform further
actions on them - for example, to process a ‘Log Request’.

The log availability information from the ‘Statistics Available’ message is reported to the application on the
cluster client through the event E_CLD_APPLIANCE_STATISTICS_CMD_STATISTICS_AVAILABLE, which
is generated when the message arrives from the server (Appliance Statistics events are described in Section
48.5). The availability information from the message payload is contained in the above event - for details of this
payload and the availability information, refer to Section 48.9.4.

48.3.3 ‘Log Request’ messages from client to server

The application on the cluster client can request the log with a particular log ID from the appliance
by sending a ‘Log Request’ message to the server. This message is sent by calling the function
eCLD_ASCLogRequestSend(). This function returns immediately and the requested log information is later
returned in an E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE event, which is generated
when a response arrives from the server (Appliance Statistics events are described in Section 48.5).
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
733 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note:

1. This function should normally be called after a ‘Log Queue Response’ or ‘Statistics Available’ message has
been received by the client, indicating that logs are available on the server.

2. The cluster server handles the ‘Log Request’ message automatically and returns the requested log
information in a ‘Log Response’ message to the client.

The log information from the message payload is contained in the above event - for details of this payload and
the supplied log information, refer to Section 48.9.3.

48.3.4 ‘Log Notification’ messages from server to client

The cluster server can supply the client with an individual data log by sending an unsolicited ‘Log Notification’
message to the client. This message is sent by the application on the server by calling either of the following
functions:

• eCLD_ASCLogNotificationSend()
• eCLD_ASCLogNotificationORLogResponseSend()

Note:

1. The latter function is also used internally by the cluster server to send a ‘Log Response’ message - see
Section 48.3.1.

2. Before calling either function, the relevant log should be in the local log queue (see Section 48.4.1). This is
because the log needs to be in the queue to allow the server to perform further actions on it - for example,
to process a ‘Log Request’.

3. The function eCLD_ASCAddLog() used to add a log to the local log queue (see Section 48.4.1)
automatically sends a ‘Log Notification’ message to all bound Appliance Statistics cluster clients.

The log information from the ‘Log Notification’ message is reported to the application on the cluster client
through the event E_CLD_APPLIANCE_STATISTICS_CMD_LOG_NOTIFICATION, which is generated when
the message arrives from the server (Appliance Statistics events are described in Section 48.5). The log
information from the message payload is contained in the above event - for details of this payload and the
supplied log information, refer to Section 48.9.3.

48.4 Log Operations on Server
Appliance Statistics cluster functions are provided to allow the application on the cluster server (appliance) to
perform the following local log operations:

• Add a log to the log queue
• Remove a log from the log queue
• Obtain a list of the logs in the log queue
• Obtain an individual log from the log queue

These operations are described in the sub-sections below.

48.4.1 Adding and Removing Logs

A data log can be added to the local log queue (on the cluster server) using the function eCLD_ASCAddLog().
The log must be given an identifier and the UTC time at which the log was added must be specified. The length
of the log, in bytes, must be less than the value of CLD_APPLIANCE_STATISTICS_ATTR_LOG_MAX_SIZE,
which is defined in the zcl_options.h files (and must be less than or equal to 70).

The above function also sends a ‘Log Notification’ message to all bound Appliance Statistics cluster clients.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
734 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

An existing log can be removed from the local log queue using the function eCLD_ASCRemoveLog(). The log
is specified using its identifier.

48.4.2 Obtaining Logs

A list of the logs that are currently in the local log queue (on the cluster server) can be obtained by calling the
function eCLD_ASCGetLogsAvailable(). This function provides the number of logs in the queue and a list of
the log identifiers.

An individual log from the local log queue can be obtained using the function eCLD_ASCGetLogEntry(). The
required log is specified by means of its identifier.

Normally, eCLD_ASCGetLogsAvailable() is called first to obtain a list of the available logs and then
eCLD_ASCGetLogEntry() is called for each log.

48.5 Appliance statistics events
The Appliance Statistics cluster has its own events that are handled through the callback mechanism described
in Chapter 3. The cluster contains its own event handler. If a device uses this cluster then application-specific
Appliance Statistics event handling must be included in the user-defined callback function for the associated
endpoint, where this callback function is registered through the relevant endpoint registration function. This
callback function will then be invoked when an Appliance Statistics event occurs and needs the attention of the
application.

For an Appliance Statistics event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_ApplianceStatisticsCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_ASC_LogNotificationORLogResponsePayload
 *psLogNotificationORLogResponsePayload;
 tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload

 *psLogQueueResponseORStatisticsAvailabePayload;
 tsCLD_ASC_LogRequestPayload *psLogRequestPayload;
 } uMessage;
} tsCLD_ApplianceStatisticsCallBackMessage;

When an Appliance Statistics event occurs, one of four command types could have been received. The relevant
command type is specified through the u8CommandId field of the tsSM_CallBackMessage structure. The
possible command types are detailed the tables below for events generated on a server and a client.

u8CommandId Enumeration Description

E_CLD_APPLIANCE_STATISTICS_
CMD_LOG_REQUEST

A ‘Log Request’ message has been received by the server
(appliance)

E_CLD_APPLIANCE_STATISTICS_
CMD_LOG_QUEUE_REQUEST

A ‘Log Queue Request’ message has been received by the server
(appliance)

Table 113. Appliance Statistics Command Types (Events on Server)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
735 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

u8CommandId Enumeration Description

E_CLD_APPLIANCE_STATISTICS_
CMD_LOG_NOTIFICATION

A ‘Log Notification’ message has been received by the client

E_CLD_APPLIANCE_STATISTICS_
CMD_LOG_RESPONSE

A ‘Log Response’ message has been received by the client

E_CLD_APPLIANCE_STATISTICS_
CMD_LOG_QUEUE_RESPONSE

A ‘Log Queue Response’ message has been received by the client

E_CLD_APPLIANCE_STATISTICS_
CMD_STATISTICS_AVAILABLE

A ‘Statistics Available’ message has been received by the client

Table 114. Appliance Statistics Command Types (Events on Client)

48.6 Functions
The following Appliance Statistics cluster functions are provided:

1. eCLD_ApplianceStatisticsCreateApplianceStatistics
2. eCLD_ASCAddLog
3. eCLD_ASCRemoveLog
4. eCLD_ASCGetLogsAvailable
5. eCLD_ASCGetLogEntry
6. eCLD_ASCLogQueueRequestSend
7. eCLD_ASCLogRequestSend
8. eCLD_ASCLogQueueResponseORStatisticsAvailableSend
9. eCLD_ASCStatisticsAvailableSend

10. eCLD_ASCLogNotificationORLogResponseSend
11. eCLD_ASCLogNotificationSend

48.6.1 eCLD_ApplianceStatisticsCreateApplianceStatistics

teZCL_Status eCLD_ApplianceStatisticsCreateApplianceStatistics(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_ApplianceStatisticsCustomDataStructure
 *psCustomDataStructure);

Description

This function creates an instance of the Appliance Statistics cluster on an endpoint. The cluster instance is
created on the endpoint which is associated with the supplied tsZCL_ClusterInstance structure and can
act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one or more selected clusters
(rather than the whole set of clusters supported by a standard ZigBee device). This function will create an
Appliance Statistics cluster instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions. For more details of creating cluster instances
on custom endpoints, refer to Appendix D.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
736 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: This function must not be called for an endpoint on which a standard ZigBee device is used. In this case,
the device and its supported clusters must be registered on the endpoint using the relevant device registration
function from those described in the ZigBee Devices User Guide

Note: (JNUG3131).

When used, this function must be the first Appliance Statistics cluster function called in the application, and
must be called after the stack has been started and after the ZCL has been initialized.

The function requires an array to be declared for internal use, which contains one element (of type uint8) for
each attribute of the cluster. The array length is automatically adjusted by the compiler using the following
declaration:

uint8 au8ApplianceStatisticsAttributeControlBits
[(sizeof(asCLD_ApplianceStatisticsClusterAttributeDefinitions) /
 sizeof(tsZCL_AttributeDefinition))];

Parameters

• psClusterInstance Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16). This structure is updated by the function by initialising individual structure fields.

• bIsServer Type of cluster instance (server or client) to be created:
• TRUE - server
• FALSE - client
• psClusterDefinition Pointer to structure indicating the type of cluster to be created (see see Section 6.1.2). In

this case, this structure must contain the details of the Appliance Statistics cluster. This parameter can refer to
a pre-filled structure called sCLD_ApplianceStatistics which is provided in the ApplianceStatistics.h
file.

• pvEndPointSharedStructPtr Pointer to the shared structure used for attribute storage. This parameter should
be the address of the structure of type tsCLD_ApplianceStatistics which defines the attributes of
Appliance Statistics cluster. The function initializes the attributes with default values.

• pu8AttributeControlBits Pointer to an array of uint8 values, with one element for each attribute in the cluster
(see above). For a cluster client, set this pointer to NULL.

• psCustomDataStructure Pointer to a structure containing the storage for internal functions of the cluster (see
Section 48.9.6).

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

48.6.2 eCLD_ASCAddLog

teZCL_CommandStatus eCLD_ASCAddLog(
 uint8 u8SourceEndPointId,
 uint32 u32LogId,
 uint8 u8LogLength,
 uint32 u32Time,
 uint8 *pu8LogData);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
737 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on an Appliance Statistics cluster server to add a data log to the log queue. The
function also sends out a ‘Log Notification’ message to all bound Appliance Statistics cluster clients.

The length of the data log, in bytes, must be less than the defined value of CLD_APPLIANCE_STATISTICS_
ATTR_LOG_MAX_SIZE (which must be less than or equal to 70).

Parameter

• u8SourceEndPointId Number of the local endpoint on which the Appliance Statistics cluster server resides
• u32LogId Identifier of log
• u8LogLength Length of log, in bytes
• u32Time UTC time at which log was produced
• pu8LogData Pointer to log data

Returns

• E_ZCL_CMDS_SUCCESS
• E_ZCL_CMDS_FAIL
• E_ZCL_CMDS_INVALID_VALUE (log too long)
• E_ZCL_CMDS_INVALID_FIELD (NULL pointer to log data)
• E_ZCL_CMDS_INSUFFICIENT_SPACE

48.6.3 eCLD_ASCRemoveLog

teZCL_CommandStatus eCLD_ASCRemoveLog(
 uint8 u8SourceEndPointId,
 uint32 u32LogId);

Description

This function can be used on an Appliance Statistics cluster server to remove the specified data log from the log
queue.

Parameter

• u8SourceEndPointId Number of the local endpoint on which the Appliance Statistics cluster server resides
• u32LogId Identifier of log

Returns

• E_ZCL_CMDS_SUCCESS
• E_ZCL_CMDS_FAIL

48.6.4 eCLD_ASCGetLogsAvailable

teZCL_CommandStatus eCLD_ASCGetLogsAvailable(
 uint8 u8SourceEndPointId,
 uint32 *pu32LogId,
 uint8 *pu8LogIdCount);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
738 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on an Appliance Statistics cluster server to obtain a list of the data logs in the log
queue. The number of available logs and a list of their log IDs will be obtained.

Parameter

• u8SourceEndPointId Number of the local endpoint on which the Appliance Statistics cluster server resides
• pu32LogId Pointer to an area of memory to receive the list of 32-bit log IDs
• pu8LogIdCount Pointer to an area of memory to receive the number of logs in the queue

Returns

• E_ZCL_CMDS_SUCCESS
• E_ZCL_CMDS_FAIL

48.6.5 eCLD_ASCGetLogEntry

teZCL_CommandStatus eCLD_ASCGetLogEntry(
 uint8 u8SourceEndPointId,
 uint32 u32LogId,
 tsCLD_LogTable **ppsLogTable);

Description

This function can be used on an Appliance Statistics cluster server to obtain the data log with the specified log
ID.

Parameter

• u8SourceEndPointId Number of the local endpoint on which the Appliance Statistics cluster server resides
• u32LogId Log ID of the required data log
• ppsLogTable Pointer to a memory location to receive a pointer to the required data log

Returns

• E_ZCL_CMDS_SUCCESS
• E_ZCL_CMDS_FAIL
• E_ZCL_CMDS_NOT_FOUND (specified log not present)

48.6.6 eCLD_ASCLogQueueRequestSend

teZCL_Status eCLD_ASCLogQueueRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
739 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on an Appliance Statistics cluster client to send a ‘Log Queue Request’ message to a
cluster server (appliance), in order enquire about the availability of logs on the server.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId Number of the endpoint on the remote node to which the message is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress Pointer to a structure holding the address of the node to which the message is sent
• pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

48.6.7 eCLD_ASCLogRequestSend

teZCL_Status eCLD_ASCLogRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ASC_LogRequestPayload *psPayload);

Description

This function can be used on an Appliance Statistics cluster client to send a ‘Log Request’ message to a cluster
server (appliance), in order request the data log with a specified log ID.

The function should normally be called after enquiring about log availability using the function
eCLD_ASCLogQueueRequestSend() or after receiving an unsolicited ‘Statistics Available’ notification from the
server.

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
740 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8DestinationEndPointId Number of the endpoint on the remote node to which the message is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress Pointer to a structure holding the address of the node to which the message is sent
• pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message
• psPayload Pointer to a structure containing the payload for the ‘Log Request’, including the relevant log ID

(see Section 48.9.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

48.6.8 eCLD_ASCLogQueueResponseORStatisticsAvailableSend

teZCL_Status eCLD_ASCLogQueueResponseORStatisticsAvailableSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 teCLD_ApplianceStatistics_ServerCommandId
 eCommandId);

Description

This function can be used on an Appliance Statistics cluster server to send a ‘Log Queue Response’ message
(in reply to a ‘Log Queue Request’ message) or an unsolicited ‘Statistics Available’ message to a cluster client.

The command to be sent must be specified as one of:

• E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE
• E_CLD_APPLIANCE_STATISTICS_CMD_STATISTICS_AVAILABLE

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId Number of the endpoint on the remote node to which the message is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress Pointer to a structure holding the address of the node to which the message is sent
• pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message
• eCommandId Enumeration indicating the command to be sent (see above and Section 48.8.3)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
741 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

48.6.9 eCLD_ASCStatisticsAvailableSend

teZCL_Status eCLD_ASCStatisticsAvailableSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);

Description

This function can be used on an Appliance Statistics cluster server to send an unsolicited ‘Statistics Available’
message to a cluster client. The function is an alternative to eCLD_ASCLogQueueResponseORStatisticsAva
ilableSend().

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId Number of the endpoint on the remote node to which the message is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress Pointer to a structure holding the address of the node to which the message is sent
• pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

48.6.10 eCLD_ASCLogNotificationORLogResponseSend

teZCL_Status eCLD_ASCLogNotificationORLogResponseSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 teCLD_ApplianceStatistics_ServerCommandId
 eCommandId,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
742 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsCLD_ASC_LogNotificationORLogResponsePayload
 *psPayload);

Description

This function can be used on an Appliance Statistics cluster server to send a ‘Log Response’ message (in reply
to a ‘Log Request’ message) or an unsolicited ‘Log Notification’ message to a cluster client.

The command to be sent must be specified as one of:

• E_CLD_APPLIANCE_STATISTICS_CMD_LOG_NOTIFICATION
• E_CLD_APPLIANCE_STATISTICS_CMD_LOG_RESPONSE

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId Number of the endpoint on the remote node to which the message is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress Pointer to a structure holding the address of the node to which the message is sent
• pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message
• eCommandId Enumeration indicating the command to be sent (see above and Section 48.8.3)
• psPayload Pointer to structure containing payload for message (see Section 48.9.3)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

48.6.11 eCLD_ASCLogNotificationSend

teZCL_Status eCLD_ASCLogNotificationSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ASC_LogNotificationORLogResponsePayload
 *psPayload);

Description

This function can be used on an Appliance Statistics cluster server to send an unsolicited ‘Log Notification’
message to a cluster client. The function is an alternative to eCLD_ASCLogNotificationORLogResponseSen
d().

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
743 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

You are required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for the
message. The TSN in the response is set to match the TSN in the request, allowing an incoming response to be
paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

• u8SourceEndPointId Number of the local endpoint through which to send the message. This parameter
is used both to send the message and to identify the instance of the shared structure holding the required
attribute values

• u8DestinationEndPointId Number of the endpoint on the remote node to which the message is sent. This
parameter is ignored when sending to address types eZCL_AMBOUND and eZCL_AMGROUP

• psDestinationAddress Pointer to a structure holding the address of the node to which the message is sent
• pu8TransactionSequenceNumber Pointer to a location to receive the Transaction Sequence Number (TSN) of

the message
• psPayload Pointer to structure containing payload for message (see Section 48.9.3)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_PARAMETER_NULL
• E_ZCL_ERR_INVALID_VALUE

48.7 Return codes
The Appliance Statistics cluster functions use the ZCL return codes, listed in Section 7.2.

48.8 Enumerations

48.8.1 ‘Attribute ID’ enumerations

The following structure contains the enumerations used to identify the attributes of the Appliance Statistics
cluster.

typedef enum PACK
{
 E_CLD_APPLIANCE_STATISTICS_ATTR_ID_LOG_MAX_SIZE = 0x0000,
 E_CLD_APPLIANCE_STATISTICS_ATTR_ID_LOG_QUEUE_MAX_SIZE
} teCLD_ApplianceStatistics_Cluster_AttrID;

48.8.2 ‘Client Command ID’ enumerations

The following enumerations are used in commands issued on a cluster client.

typedef enum PACK
{
 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_REQUEST = 0x00,
 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_REQUEST
} teCLD_ApplianceStatistics_ClientCommandId;

The above enumerations are described in the table below.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
744 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Description

E_CLD_APPLIANCE_STATISTICS_CMD_LOG_REQUEST ‘Log Request’ message

E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_REQUEST ‘Log Queue Request’ message

Table 115. ‘Client Command ID’ Enumerations

48.8.3 ‘Server Command ID’ enumerations

The following enumerations are used in commands issued on a cluster server.

typedef enum PACK
{
 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_NOTIFICATION = 0x00,
 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_RESPONSE,
 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE,
 E_CLD_APPLIANCE_STATISTICS_CMD_STATISTICS_AVAILABLE
} teCLD_ApplianceStatistics_ServerCommandId;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_APPLIANCE_STATISTICS_CMD_LOG_NOTIFICATION A ‘Log Notification’ message

E_CLD_APPLIANCE_STATISTICS_CMD_LOG_RESPONSE A ‘Log Response’ message

E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE A ‘Log Queue Response’ message

E_CLD_APPLIANCE_STATISTICS_CMD_STATISTICS_AVAILABLE A ‘Statistics Available’ message

Table 116. ‘Server Command ID’ Enumerations

48.9 Structures

48.9.1 tsCLD_ApplianceStatisticsCallBackMessage

For an Appliance Statistics event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsCLD_ApplianceStatisticsCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_ASC_LogNotificationORLogResponsePayload
 *psLogNotificationORLogResponsePayload;
 tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload

 *psLogQueueResponseORStatisticsAvailabePayload;
 tsCLD_ASC_LogRequestPayload *psLogRequestPayload;
 } uMessage;
} tsCLD_ApplianceStatisticsCallBackMessage;

where:

• u8CommandId indicates the type of Appliance Statistics command that has been received, one of:
– E_CLD_APPLIANCE_STATISTICS_CMD_LOG_REQUEST

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
745 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_REQUEST
– E_CLD_APPLIANCE_STATISTICS_CMD_LOG_NOTIFICATION
– E_CLD_APPLIANCE_STATISTICS_CMD_LOG_RESPONSE
– E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE
– E_CLD_APPLIANCE_STATISTICS_CMD_STATISTICS_AVAILABLE

• uMessage is a union containing the command payload as one of (depending on the value of u8CommandId):
– psLogNotificationORLogResponsePayload is a pointer to the payload of a ‘Log Notification’ or ‘Log

Response’ message (see Section 48.9.3)
– psLogQueueResponseORStatisticsAvailabePayload is a pointer to the payload of a ‘Log Queue

Response’ or ‘Statistics Available’ message (see Section 48.9.4)
– psLogRequestPayload is a pointer to the payload of a ‘Log Request’ message (see Section 48.9.2)

48.9.2 tsCLD_ASC_LogRequestPayload

This structure contains the payload for the ‘Log Request’ message.

typedef struct
{
 zuint32 u32LogId;
} tsCLD_ASC_LogRequestPayload;

where u32LogId is the identifier of the data log being requested.

48.9.3 tsCLD_ASC_LogNotificationORLogResponsePayload

This structure contains the payload for the ‘Log Notification’ and ‘Log Response’ messages.

typedef struct
{
 zutctime utctTime;
 zuint32 u32LogId;
 zuint32 u32LogLength;
 uint8 *pu8LogData;
} tsCLD_ASC_LogNotificationORLogResponsePayload;

where:

• utctTime is the UTC time at which the reported log was produced
• u32LogId is the identifier of the reported log
• u32LogLength is the length, in bytes, of the reported log
• pu8LogData is a pointer to an area of memory to receive the data of the reported log

48.9.4 tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload

This structure contains the payload for the ‘Log Queue Response’ and ‘Statistics Available’ messages.

typedef struct
{
 zuint8 u8LogQueueSize;
 zuint32 *pu32LogId;
} tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload;

where:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
746 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u8LogQueueSize indicates the number of logs currently in the log queue
• pu32LogId is a pointer to an area of memory to receive the sequence of 32-bit log IDs of the logs in the

queue

48.9.5 tsCLD_LogTable

This structure is used to store the details of a data log.

typedef struct
{
 zutctime utctTime;
 uint32 u32LogID;
 uint8 u8LogLength;
 uint8 *pu8LogData;
} tsCLD_LogTable;

where:

• utctTime is the UTC time at which the log was produced
• u32LogId is the identifier of the log
• u32LogLength is the length, in bytes, of the log
• pu8LogData is a pointer to an area of memory to receive the data of the log

48.9.6 tsCLD_ApplianceStatisticsCustomDataStructure

The Appliance Statistics cluster requires extra storage space to be allocated to be used by internal functions.
The structure definition for this storage is shown below:

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ApplianceStatisticsCallBackMessage sCallBackMessage;
#if (defined CLD_APPLIANCE_STATISTICS) && (defined APPLIANCE_STATISTICS_SERVER)
 tsCLD_LogTable asLogTable[CLD_APPLIANCE_STATISTICS_ATTR_LOG_QUEUE_MAX_SIZE];
#endif
} tsCLD_ApplianceStatisticsCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

48.10 Compile-time options
This section describes the compile-time options that may be enabled in the zcl_options.h file of an application
that uses the Appliance Statistics cluster.

To enable the Appliance Statistics cluster in the code to be built, it is necessary to add the following line to the
file:

#define CLD_APPLIANCE_STATISTICS

In addition, to enable the cluster as a client or server, it is also necessary to add one of the following lines to the
same file:

#define APPLIANCE_STATISTICS_SERVER
#define APPLIANCE_STATISTICS_CLIENT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
747 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The Appliance Statistics cluster contains macros that may be optionally specified at compile-time by adding
some or all the following lines to the zcl_options.h file.

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_APPLIANCE_STATISTICS_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

Maximum Log Size

Add this line to configure the maximum size n, in bytes, of a data log:

#define CLD_APPLIANCE_STATISTICS_ATTR_LOG_MAX_SIZE n

The default value is 70 bytes, which is the upper limit on this value, and n must therefore not be greater than 70.

The same value must be defined on the cluster server and client.

Maximum Log Queue Length

Add this line to configure the maximum number of logs n in a log queue:

#define CLD_APPLIANCE_STATISTICS_ATTR_LOG_QUEUE_MAX_SIZE n

The default value is 15, which is the upper limit on this value, and n must therefore not be greater than 15.

The same value must be defined on the cluster server and client.

Enable Insertion of UTC Time

Add this line to enable the application to insert UTC time data into logs:

#define CLD_APPLIANCE_STATISTICS_ATTR_LOG_QUEUE_MAX_SIZE n

Disable APS Acknowledgements for Bound Transmissions

Add this line to disable APS acknowledgements for bound transmissions from this cluster:

#define CLD_ASC_BOUND_TX_WITH_APS_ACK_DISABLED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
748 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part XII: Over-The-Air Upgrade

This part comprises only one chapter:

• Chapter 49 details the OTA (Over-the-Air) Upgrade cluster

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
749 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

49 OTA Upgrade cluster

This chapter describes the Over-The-Air (OTA) Upgrade cluster. The OTA Upgrade cluster has a Cluster ID of
0x0019.

Note: This chapter assumes that the ZigBee 3.0 network consists of nodes which contain only one processor
- such as a JN518x, K32W041, K32W061, MCXW71, or MCXW72 microcontroller. However, the OTA Upgrade
cluster can also be used with dual-processor nodes (containing a JN518x, K32W041, K32W061, MCXW71,
MCXW72 device and a coprocessor), as described in Appendix F.

49.1 Overview
The Over-The-Air (OTA) Upgrade cluster provides the facility to upgrade (or downgrade or re-install) application
software on the nodes of a ZigBee PRO network by:

1. Distributing the replacement software through the network (over the air) from a designated node.

2. Updating the software in a node with minimal interruption to the operation of the node.

The OTA Upgrade cluster acts as a server on the node that distributes the software and as a client on the
nodes that receive software updates from the server. The cluster server receives the software from outside the
network.

An application that uses the OTA Upgrade cluster must include the header files zcl_options.h and OTA.h.

The OTA Upgrade cluster is enabled by defining CLD_OTA in the zcl_options.h file. Further compile-time
options for the OTA Upgrade cluster are detailed in Section 49.13.

When including the OTA Upgrade facility in your application, you should increase the CPU stack size from the
default value (as described in Section 49.5).

49.2 OTA Upgrade Images in Internal Flash Memory
This section provides guidance on how to organize Over-The-Air (OTA) upgrade images in internal Flash
memory on the target node (OTA Upgrade client). The OTA Upgrade cluster is described in Chapter 49.

By default, OTA upgrade images are downloaded to a Flash memory device that is internal to the device of
the OTA Upgrade client. However, the images can optionally be downloaded directly to devices internal Flash
memory - this is enabled using the compile-time option, OTA_INTERNAL_STORAGE (see Section 49.13).

The function eOTA_AllocateEndpointOTASpace() is used in the application to allocate locations in Flash
memory to store application images as part of the OTA upgrade process. The OTA code then uses these
locations to store the upgrade image before switching to it, after validation.

There are two issues relating to OTA upgrade and Flash memory remapping:

• Whether the size of the OTA upgrade binary file is larger than the previous version, such that it must use
another sector

• Where in the memory space the OTA image is written to

Consider the following cases.

We have a 154 KB image (5 sectors) and download a new image of the same size, starting at sector 8:

Logical
Sector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Physical
Sector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
750 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Contents Running image Empty New image Empty

When we switch to the new image, the physical sectors are moved in the memory map by the bootloader so
that the new image becomes the running image and the previous running image becomes the old image. Only
the sectors that must be moved are actually moved by the bootloader, and the other sectors are left alone:

Logical
Sector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Physical
Sector

8 9 10 11 12 5 6 7 0 1 2 3 4 13 14 15

Contents New running image Empty Old image Empty

If we now download a further new image that is 161KB (6 sectors) in size, it would replace the old running
image and be placed into logical sectors 8 to 13, which are physical sectors 0, 1, 2, 3, 4 and 13. However, this
new image is then unusable because the physical sectors are not contiguous and the bootloader does not
take this into account when it remaps the memory (if the new image was less than 160KB, there would be no
problem).

The simple solution to this problem is to replace the remapping that the bootloader has chosen with our own
remapping in which logical sector 13 becomes physical sector 5, thus allowing the new image to be stored in
contiguous physical sectors (0 to 5).

Logical
Sector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Physical
Sector

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

Contents Running image Empty New image Empty

However, this does not leave any space for permanent data and it also assumes that the new image is stored at
logical sector 8.

You may choose to put the new image anywhere in the Flash memory (ZigBee allows this to be configured, and
a user-developed solution is free to do what it requires). So you need to adjust the remapping to match. For
example, if the OTA image was placed at logical sector 7:

Logical
Sector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Physical
Sector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Contents Running image Empty New image Empty

The purpose of this is to leave some sectors at the end of Flash memory for permanent data (otherwise you
could always start the OTA image at sector 8).

In such cases, the sensible approach is to:

1. Calculate how much permanent data space is required and reserve the end sectors for this data.

2. Divide the remaining space into two equal blocks of sectors

3. Configure the OTA upgrade to start at the beginning of the second block of sectors.

4. Force the remapping to swap the two blocks, regardless of the actual image size.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
751 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Consider the example in which a user wants 64KB for permanent data, which requires 2 sectors. This leaves 14
sectors for applications, so we have two blocks of 7 sectors for each application (even though the application
may be smaller than this):

Logical
Sector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Physical
Sector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Contents Running image Empty New image Empty Data

To avoid any problem with the new image growing and needing 6 sectors rather than 5 sectors, we force the
remapping to swap all 7 sectors over:

Logical
Sector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Physical
Sector

7 8 9 10 11 12 13 0 1 2 3 4 5 6 14 15

Contents New running image Empty Old image Empty Data

This leaves sectors 14 and 15 in a fixed location.

The code to achieve this is as follows:

 if (u8CurrentImageSector > 0)
 {
 /* Remapping will not affect the current running image,
 which was already running in a continuous block at the base
 application Flash address */
 vREG_SysWrite(REG_SYS_FLASH_REMAP, 0x0dcba987);
 vREG_SysWrite(REG_SYS_FLASH_REMAP2, 0xfe654321);
 }

49.3 OTA Upgrade Cluster structure and attributes
The attributes of the OTA Upgrade cluster are contained in the following structure, which is located only on
cluster clients:

typedef struct
{
#ifdef OTA_CLIENT
 uint64 u64UgradeServerID;
 uint32 u32FileOffset;
 uint32 u32CurrentFileVersion;
 uint16 u16CurrentStackVersion;
 uint32 u32DownloadedFileVersion;
 uint16 u16DownloadedStackVersion;
 uint8 u8ImageUpgradeStatus;
 uint16 u16ManfId;
 uint16 u16ImageType;
 uint16 u16MinBlockRequestDelay;
#endif
 uint16 u16ClusterRevision;
} tsCLD_AS_Ota;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
752 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where:

• u64UgradeServerID contains the 64-bit IEEE/MAC address of the OTA Upgrade server for the client. This
address can be fixed during manufacture or discovered during network formation/operation. If not pre-set, the
default value is 0xFFFFFFFFFFFFFFFF. This attribute is mandatory.

• u32FileOffset contains the start address in local Flash memory of the upgrade image (that may be
currently in transfer from server to client). This attribute is optional.

• u32CurrentFileVersion contains the file version of the firmware currently running on the client. This
attribute is optional.

• u16CurrentStackVersion contains the version of the ZigBee stack currently running on the client. This
attribute is optional.

• u32DownloadedFileVersion contains the file version of the downloaded upgrade image on the client. This
attribute is optional.

• u16DownloadedStackVersion contains the version of the ZigBee stack for which the downloaded upgrade
image was built. This attribute is optional.

• u8ImageUpgradeStatus contains the status of the client device in relation to image downloads and
upgrades. This attribute is mandatory and the possible values are shown in the table below.

u8ImageUpgradeStatus Status Notes

0x00 Normal Has not participated in a download/upgrade or the
previous download/upgrade was unsuccessful

0x01 Download in progress Client is requesting and successfully receiving
blocks of image data from server

0x02 Download complete All image data received and image saved to
memory

0x03 Waiting to upgrade Waiting for instruction from server to upgrade
from the saved image

0x04 Count down Server instructs the Client to count down to start
of upgrade

0x05 Wait for more Client is waiting for further upgrade image(s)
from server - relevant to multi-processor devices,
where each processor requires a different image

0x06 - 0xFF Reserved -

• u16ManfId contains the device’s manufacturer code, assigned by the ZigBee Alliance. This attribute is
optional.

• u16ImageType contains an image type identifier for the upgrade image that is currently being downloaded
to the client or waiting on the client for the upgrade process to begin. When neither of these cases apply, the
attribute is set to 0xFFFF. This attribute is optional.

• u16MinBlockRequestDelay is the minimum time, in seconds, that the local client must wait between
submitting consecutive block requests to the server during an image download. It is used by the ‘rate limiting’
feature to control the average download rate to the client. The attribute can take values in the range 0 to
OTA_BLOCK_REQUEST_DELAY_MAX_VALUE seconds, where this upper limit can be defined in the
zcl_options.h file (see Section 49.13) - if undefined, its default value is 5 seconds. The value 0x0000
(default) indicates that the download can be performed at the full rate with no minimum delay between block
requests. This attribute is optional.

• u16ClusterRevision is a mandatory attribute that specifies the revision of the cluster specification on
which this cluster instance is based. The cluster specification in the ZCL r6 corresponds to a cluster revision
of 1. The value is incremented by one for each subsequent revision of the cluster specification. This attribute
is also described in Section 2.4.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
753 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Thus, the OTA Upgrade cluster structure contains only two mandatory elements, u64UgradeServerID and
u8ImageUpgradeStatus. The remaining elements are optional, each being enabled/disabled through a
corresponding macro defined in the zcl_options.h file (see Section 49.13).

49.4 Basic Principles
Over-the-Air (OTA) Upgrade allows the application software on a ZigBee node to be upgraded with minimal
disruption to node operation and without physical intervention by the user/installer. For example, there is no
need for a cabled connection to the node. Using this technique, the replacement software is distributed to nodes
through the wireless network, allowing application upgrades to be performed remotely.

The software upgrade is performed from a node which acts as an OTA Upgrade cluster server, which is able to
obtain the upgrade software from an external source. The nodes that receive the upgrade software act as OTA
Upgrade cluster clients. The server node and client node(s) may be from different manufacturers.

The download of an application image from the server to the network is done on a per client basis and follows
normal network routes (including routing via Routers). This is illustrated in the figure below.

Connected to external
software provider Server For example Co-ordinator

Download to client is unicast via
normal network routes, for example,
via Router to End Device client

Client End Device Client Router

End Device Client Client End Device

Figure 10. OTA Download Example

The upgrade application is downloaded into Flash memory internal to the device on the client node. Note that
the upper section of Flash memory should normally be reserved for persistent data storage - for example, in
an 8-sector Flash device, Sector 7 is used for persistent data storage, leaving Sectors 0-6 available to store
application software.

The requirements of the devices which act as the OTA Upgrade cluster server and clients are detailed in the
sub-sections below. See Connectivity Framework Reference Manual for details of the Non-Volatile Memory
Manager (NVM).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
754 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

49.4.1 OTA Upgrade Cluster Server

The OTA Upgrade cluster server is a network node that distributes application upgrades to other nodes of the
network (as well as performing its own functions). The server must, therefore, be connected to the provider of
the upgrade software. The server would also usually be the Coordinator of the ZigBee network.

The server may need to store different upgrade images for different nodes (possibly from different
manufacturers) and must have ample Flash memory space for this purpose. Therefore, the server must keep a
record of the software required by each client in the network and the software version number that the client is
currently on. When a new version of an application image becomes available, the server may notify the relevant
client(s) or respond to poll requests for software upgrades from the clients (see Section 49.4.2 below).

49.4.2 OTA Upgrade Cluster Client

An OTA Upgrade cluster client is a node which receives software upgrades from the server and can be any type
of node in a ZigBee network. However, an End Device client which sleeps is not always available to receive
notifications of software upgrades from the server and must therefore, periodically poll the server for upgrades.
In fact, all types of client can poll the server, if preferred.

During a software download from server to client, the upgrade image is transferred over the air in a series of
data blocks. It is the responsibility of the client (and not the server) to keep track of the blocks received and then
to validate the final image. The upgrade image is initially saved to the relevant sectors of Flash memory on the
client. There must be enough Flash memory space on the client to store the upgrade image and the image of
the currently running software.

An OTA upgrade image is downloaded into a Flash memory of the device, utilizing Flash sectors is currently not
used for the running image.

49.5 Application Requirements
In order to implement OTA upgrades, the application images for the server and clients must be designed and
built according to certain requirements.

These requirements include the following:

• Inclusion of the header files zcl_options.h and OTA.h
• Inclusion of the relevant #defines in the file zcl_options.h, as described in Section 49.13
• Specific application initialization requirements, as outlined in Section 49.6
• Use of the Non-Volatile Memory Manager (NVM) to preserve context data, as outlined in Section 49.8.5
• Organization of Flash memory, as outlined in Section 49.8.6
• It is necessary to remove references to the Certicom security certificate, as indicated in Section 49.13

Note: Some of above requirements differ between the server image, the first client image and client upgrade
images. These differences are pointed out, where relevant, in Section 49.6 and Section 49.8.

In addition, you should increase the CPU stack size from the default value. With OTA Upgrade, the
recommended stack size is 6000 bytes. This can be done by including the following line in your application
makefile:

__stack_size = 6000;

49.6 Initialization
Initialization of the various software components used with the OTA Upgrade cluster (see Section 49.5) must
be performed in a particular order in the application code. The initialization could be incorporated in a function
APP_vInitialise(), as is the case in the NXP ZigBee PRO Application Template (JN-AN-1248).
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
755 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Initialization must be performed in the following order:

1. The NVM module must first be initialized using the function NvModuleInit().

2. The persistent data record(s) should then be initialized using the function and registered
NVM_RegisterDataSet().

3. The ZigBee PRO stack must now be started by first calling the function
ZPS_vSetOverrideLocalMacAddress() to over-ride the existing MAC address, followed by ZPS_eAplAfInit()
to initialize the Application Framework and then ZPS_eAplZdoStartStack() to start the stack.

4. The ZCL initialization function, eZCL_Initialise(), can now be called. An OTA Upgrade cluster instance
should then be created using eOTA_Create(), followed by a call to eOTA_UpdateClientAttributes() or
eOTA_RestoreClientData() on a client to initialize the cluster attributes.

5. The Flash programming of the OTA Upgrade cluster must now be initialized using the function
vOTA_FlashInit().

6. The required device endpoint(s) can now be registered (for example, a Simple Sensor device).

7. The function eOTA_AllocateEndpointOTASpace() must be called to allocate Flash memory space to an
endpoint. The information provided to this function includes the numbers of the start sectors for storage of
application images and the maximum number of sectors per image.

8. On the server, a set of client devices can be defined for which OTA upgrades are authorized - that is, a
list of clients that are allowed to use the server for OTA upgrades. This client list is set up using the function
eOTA_SetServerAuthorisation().

9. For a client, a server must be found (provided this is a first-time start or a reboot with no persisted data,
and so there is no record of a previous server address). This can be done by sending out a Match Descriptor
Request using the function ZPS_eAplZdpMatchDescRequest(), described in the ZigBee 3.0 Stack User Guide
(JNUG3130). Once a server has been found, its address must be registered with the OTA Upgrade cluster using
the function eOTA_SetServerAddress().

The coding that is then required to implement OTA upgrade in the server and client applications is outlined in
Section 49.7.

49.7 Implementing OTA Upgrade Mechanism
The OTA upgrade mechanism is implemented in code as described below.

Note: The stack automatically handles part of an OTA upgrade and calls some of the OTA functions. However,
if preferred, the application can handle all aspects of an OTA upgrade and filter all OTA data indications. In this
case, the application must call all the relevant OTA functions (these are indicated below).

1. On the server, when a new client image is available for download, the function eOTA_NewImageLoaded()
should be called to request the OTA Upgrade cluster to validate the image.

Then, optionally, the function eOTA_SetServerParams() can be called to set the server parameter values
for the new image. Otherwise, the default parameter values will be used.

2. The server must then notify the relevant client(s) of the availability of the new image. The notification method
depends on the ZigBee node type of the client:

• Coordinator or Router client: The server can notify the Coordinator or a Router client directly by sending an
Image Notify message to the client through a call to the function eOTA_ServerImageNotify(). This message
can be unicast, multicast or broadcast. On arrival at a client, this message will trigger an Image Notify event.
If the new software is required, the client can request the upgrade image by sending a Query Next Image
Request to the server through a call to eOTA_ClientQueryNextImageRequest().

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
756 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• All clients: The server cannot notify an End Device client directly, since the End Device may be asleep when
a notification message is sent. Therefore, an End Device client must poll the server periodically (during wake
periods) in order to establish whether new software is available. In fact, any client can implement polling of
the server. The client does this by sending a Query Next Image Request to the server through a call to the
function eOTA_ClientQueryNextImageRequest().

On arrival at the server, the Query Next Image Request message triggers a Query Next Image Request
event.

3. The server automatically replies to the request with a Query Next Image Response (the application can also
send this response by calling the function eOTA_ServerQueryNextImageResponse()). The contents of this
response message depend on whether the client is using notifications or polling:

• Coordinator or Router client (notifications): The response contains details of the upgrade image, such as
manufacturer, image type, image size, and file version.

• All clients (polling): If upgrade software is available, the response reports success and the message
contains details of the upgrade image, as indicated above. If no upgrade software is available, the response
simply reports failure (the client must then poll again later).

On arrival at the client, the Query Next Image Response message triggers a Query Next Image Response
event.

4. The OTA Upgrade cluster on the client now automatically requests the upgrade image one block at a time by
sending an Image Block Request to the server (this request can also be sent by the application through a call to
the function eOTA_ClientImageBlockRequest()). The maximum size of a block and the time interval between
requests can both be configured in the header file zcl-_options.h - see Section 49.13.

On arrival at the server, the Image Block Request message triggers an Image Block Request event.

5. The server automatically responds to each block request with an Image Block Response
containing a block of data (the application can also send this response by calling the function
eOTA_ServerImageBlockResponse()).

On arrival at the client, the Image Block Response message triggers an Image Block Response event.

6. The client determines when the entire image has been received (by referring to the image size that was
quoted in the Query Next Image Response before the download started). Once the final block of image data has
been received, the client application should transmit an Upgrade End Request to the server (that is, by calling
eOTA_HandleImageVerification()).

This Upgrade End Request may report success or an invalid image. In the case of an invalid image, the
image will be discarded by the client, which may initiate a new download of the image by sending a Query
Next Image Request to the server.
On arrival at the server, the Upgrade End Request message triggers an Upgrade End Request event.

Note: An Upgrade End Request may also be sent to the server during a download in order to abort the
download.

7. The server replies to the request with an Upgrade End Response containing an instruction of when the client
should use the downloaded image to upgrade the running software on the node (the message contains both the
current time and the upgrade time, and hence an implied delay).

On arrival at the client, the Upgrade End Response message triggers an Upgrade End Response event.

8. The client will then count down to the upgrade time (in the Upgrade End Response) and on reaching it,
start the upgrade. If the upgrade time has been set to an indefinite value (represented by 0xFFFFFFFF), the
client should poll the server for an Upgrade Command at least once per minute and start the upgrade once this
command has been received.

9. Once triggered on the client, the upgrade process proceeds as follows (although the details will be
manufacturer-specific):

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
757 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

a) A reboot of the device is initiated causing the default bootloader to run.

b) The bootloader scans through Flash looking for various image headers, including the running one and the
one received via OTA. If the OTA image in newer, indicated by version number in the header, this is selected as
the new running image.

Note: The client automatically invalidates the existing image and validates the new upgrade image once the
allotted upgrade time is reached.

c) The new software image is then executed.

Query Jitter

The 'query jitter' mechanism can be used to prevent a flood of replies to an Image Notify broadcast or multicast
(Step 2 above). The server includes a number, n, in the range 1-100 in the notification. If interested in the
image, the receiving client generates a random number in the range 1-100. If this number is greater than n,
the client discards the notification, otherwise it responds with a Query Next Image Request. This results in
only a fraction of interested clients responding to each broadcast/multicast and therefore helps to avoid traffic
congestion.

49.8 Ancillary Features and Resources for OTA Upgrade
As indicated in Section 49.5, in order to implement OTA upgrades, a number of other software features and
resources are available. These are described in the sub-sections below.

49.8.1 Rate Limiting

During busy periods when the OTA Upgrade server is downloading images to multiple clients, it is possible
to prevent OTA traffic congestion by limiting the download rates to individual clients. This is achieved by
introducing a minimum time-delay between consecutive Image Block Requests from a client - for example, if
this delay is set to 500 ms for a particular client then after sending one block request to the server, the client
must wait at least 500 ms before sending the next block request. This has the effect of restricting the average
OTA download rate from the server to the client.

This ‘block request delay’ can be set to different values for different clients. This allows OTA downloads to be
prioritized by granting more download bandwidth to some clients than to others. This delay for an individual
client can also be modified by the server during a download, allowing the server to react in real-time to varying
OTA traffic levels.

The implementation of the above rate limiting is described below and is illustrated in Figure 11.

‘Block Request Delay’ Attribute

The download rate to an individual client is controlled using the optional attribute u16MinBlockRequestDelay
of the OTA Upgrade cluster (see Section 49.3) on the client. This attribute contains the ‘block request delay’ for
the client (described above), in milliseconds, and must be enabled on the client only (see below).

Note: The u16MinBlockRequestDelay attribute is the minimum time-interval between block requests. The
application on the client can implement longer intervals between these requests (a slower download rate), if
required.

Enabling the Rate Limiting Feature

In order to use the rate limiting feature during an OTA upgrade, the macro
OTA_CLD_ATTR_REQUEST_DELAY must be defined in the zcl_options.h file for both the participating
client(s). This enables the u16MinBlockRequestDelay attribute in the OTA Upgrade cluster structure.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
758 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Implementation in the Server Application

The application on the OTA Upgrade server device can control the OTA download rate to an individual client
by remotely setting the value of the ‘block request delay’ attribute on the client. However, first the server must
determine whether the client supports the rate limiting feature. The server can do this in either of two ways:

• It can attempt to read the u16MinBlockRequestDelay attribute in the OTA Upgrade cluster on the client - if
rate limiting is not enabled on the client, this read will yield an error.

• It can check whether the first Image Block Request received from the client contains a
‘block request delay’ field - if present, this value is passed to the application in the event
E_CLD_OTA_COMMAND_BLOCK_REQUEST.

The server can change the value of the ‘block request delay’ attribute on the client at any time, even
during a download. To do this, the server includes the new attribute value in an Image Block Response
with status OTA_STATUS_WAIT_FOR_DATA. This is achieved in the application code through a call
to the function eOTA_SetWaitForDataParams() following an Image Block Request (indicated by an
E_CLD_OTA_COMMAND_BLOCK_REQUEST event). The new attribute value specified in this function call is
included in the subsequent Image Block Response and is automatically written to the OTA Upgrade cluster on
the client.

The server may update the ‘block request delay’ attribute on a client multiple times during a download in order
to react to changing OTA traffic conditions. If the server is downloading an image to only one client then it
may choose to allow this download to proceed at the full rate (specified by a zero value of the attribute on the
client). However, if two or more clients request downloads at the same time, the server may choose to limit their
download rates (by setting the attribute to non-zero values on the clients). The download to one client can be
given higher priority than other downloads by setting the attribute on this client to a lower value.

Implementation in the Client Application

The application on the OTA Upgrade client device must control a millisecond timer (a timer with a resolution of
one millisecond) to support rate limiting. This timer is used to time the delay between receiving an Image Block
Response and submitting the next Image Block Request.

During an image download, a received Image Block Response with the status
OTA_STATUS_WAIT_FOR_DATA may contain a new value for the ‘block request delay’ attribute (this type of
response may arrive at the start of a download or at any time during the download). The client will automatically
write this new value to the u16MinBlockRequestDelay attribute in the local OTA Upgrade cluster structure
and will also generate the event E_ZCL_CBET_ENABLE_MS_TIMER (provided that the new attribute value is
non-zero).

The E_ZCL_CBET_ENABLE_MS_TIMER event prompts the application to start the millisecond timer for a
timed interval greater than or equal to the new value of the ‘block request delay’ attribute. The application can
obtain this new attribute value (in milliseconds) from the event via:

sZCL_CallBackEvent.uMessage.u32TimerPeriodMs

The millisecond timer is started for a particular timed interval. The expiry of this timer is indicated by an
E_ZCL_CBET_TIMER_MS event, which is handled as described in Section 3.2. The client will then send the
next Image Block Request.

After sending an Image Block Request:

• If the client now generates an E_ZCL_CBET_DISABLE_MS_TIMER event, this indicates that the last of
the Image Block Request (for the required image) has been sent and the application should disable the
millisecond timer.

• Otherwise, the application must start the next timed interval (until the next request).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
759 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

OTA Upgrade
Cluster Server

OTA Upgrade
Cluster Client

Image Block Request

MinBlockRequestDelay=0

Image Block Response
Status=WAIT_FOR_DATA

MinBlockRequestDelay=500ms

Image Block Request

MinBlockRequestDelay=500ms

Image Block Response
Status=SUCCESS

Data

Image Block Request

MinBlockRequestDelay=500ms

Image Block Response
Status=SUCCESS

Data

time=0

time=5 ms

time=505 ms

time=510 ms

time=1010 ms

time=1015 ms

Figure 11. Example of Rate limiting exchange

49.8.2 Device-Specific File Downloads

An OTA Ugrade client can request a file (from the server) that is specific to the client device. This file may
contain non-firmware data such as security credentials, configuration data or log data. The process of making
this request and receiving the file is described in the table below for both the client and server sides.

On Client On Server

1 Client application sends a Query Specific File Request to
the server through a call to eOTA_ClientQuerySpecific
FileRequest().

2 On arrival at the server, the Query Specific File Request
triggers the event E_CLD_OTA_COMMAND_QUERY_
SPECI-FIC_FILE_REQUEST.

3 Server automatically replies to the request with a Query
Specific File Response - the application can also send

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
760 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

On Client On Server
a response using eOTA_ServerQuerySpecificFile
Response().

4 On arrival at the client, the Query Specific File Response
triggers the event E_CLD_OTA_COMMAND_QUERY_
SPECIFIC_FILE_RESPONSE.

5 Client obtains status from Query Specific File Response.
If status is SUCCESS, the client automatically requests
the device-specific file one block at a time by sending
Image Block Requests to the server.

6 On arrival at the server, each Image Block Request
triggers an Image Block Request event.

7 Server automatically responds to each block request with
an Image Block Response containing a block of device-
specific file data.

8 After receiving each Image Block Response, the
client generates the event E_CLD_OTA_INTERNAL_
COMMAND_SPECIFIC_FILE_BLOCK_RESPONSE.

9 A callback function is invoked on the client to handle the
event and store the data block (it is the responsibility of
the application to store the data in a convenient place).

10 Client determines when the entire file has been received
(by referring to the file size that was quoted in the Query
Specific File Response before the download started).
Once all the file blocks have been received:
• E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FIL

E_DL_COMPLETE event is generated by the client to
indicate that the file transfer is complete.

• The file can optionally be verified by application.
• Client sends an Upgrade End Request to the server

to indicate that the download is complete, where
this request is the result of an application call to the
function eOTA_SpecificFileUpgradeEndRequest().

11 On arrival at the server, the Upgrade End Request
triggers an Upgrade End Request event.

12 Server may reply to the Upgrade End Request with an
Upgrade End Response containing an instruction of
when the client should use the device-specific file (the
message contains both the current time and the upgrade
time, and hence an implied delay) - see Footnotes 1 and
2 below.

13 On arrival at the client, the Upgrade End Response
triggers an Upgrade End Response event - see
Footnotes 1 and 2 below.

14 Client will then count down to the upgrade time (in
the Upgrade End Response) and, on reaching it,
will generate the event E_CLD_OTA_INTERNAL_
COMMAND_SPECIFIC_FILE_USE_NEW_FILE. Finally,
it is the responsibility of the application to use device-
specific file as appropriate.

Footnotes
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
761 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

1. For a device-specific file download, it is not mandatory for the server to send an Upgrade End Response to
the client. In the case of a client which has just finished retrieving a log file from the server, the Upgrade End
Response may not be needed. However, if the client has just retrieved a file containing security credentials or
configuration data, the Upgrade End Response may be needed to notify the client of when to apply the file. The
decision of whether to send an Upgrade End Response for a device-specific file download is manufacturer-
specific.

2. If an Upgrade End Response is not received from the server, the client will perform 3 retries to get the
response. If it still does not receive a response, the client will generate the event E_CLD_OTA_INTERNAL_
COMMAND_SPECIFIC_FILE_NO_UPGRADE_END_RESPONSE.

49.8.3 Image Block Size and Fragmentation

An OTA Upgrade image is normally requested by the OTA Upgrade client one block at a time. The ZigBee
frame for the OTA transfer contains various header data as well as payload data and, for this reason, the
payload data is limited to about 48 bytes. Therefore, to transfer one image block per frame, the block size
must be restricted to 48 bytes or less. The maximum block size can be configured at compile-time through the
OTA_MAX_BLOCK_SIZE define in the zcl_options.h file (see Section 49.13).

A block size of greater than 48 bytes can be used but the image block will need to be transferred across two
or more ZigBee frames. In this case, fragmentation must be enabled in which the image block data that is
assembled in an APDU (Application Protocol Data Unit) on the server is fragmented into multiple NPDUs
(Network Protocol Data Unit) for OTA transfer, where one NPDU is transferred in a single ZigBee frame.
Fragmentation is enabled on the OTA Upgrade server and client using network parameters of the ZigBee PRO
stack, as follows:

• On the server: Set the parameter Maximum Number of Transmitted Simultaneous Fragmented Messages to
a non-zero value to allow transmitted messages to be fragmented.

• On the client: Set the parameter Maximum Number of Received Simultaneous Fragmented Messages to a
non-zero value to allow received fragmented messages to be re-assembled.

The network parameter values are set using the ZPS Configuration Editor and are described in the ZigBee 3.0
Stack User Guide (JNUG3130).

Note: Note: The 48-byte limit on the payload data in a ZigBee frame is also applicable when image data is
requested and transferred one page at a time (see Section 49.8.4). In this case, fragmentation may need to be
enabled.

The maximum APDU size must always be greater than the size of an Image Block Response. It is set through
the APDU Size parameter of the PDU Manager, where this parameter is amongst the Advanced Device
Parameters that can be configured using the ZPS Configuration Editor.

Depending on the image block size, fragmentation is not always an efficient way of transferring image blocks,
as the payload of the final NPDU fragment may contain little data and be mostly empty. For example, if the
image block size is set to 64 bytes and fragmentation is enabled, each block is transferred in two ZigBee
frames, the first may contain 48 bytes of data and the second may contain only 16 bytes of data, leaving
32 empty bytes in the payload. In contrast, if the block size is set to 48 bytes without fragmentation, two
consecutive frames would carry 96 bytes of data, and the image transfer would require fewer frames. This is
particularly important when transferring an application image to a battery-powered End Device that needs to
conserve energy.

49.8.4 Page Requests

An OTA Upgrade client normally requests image data from the server one block at a time, by sending an Image
Block Request when it is ready for the next block. The number of requests can be reduced by requesting the
image data one page at a time, where a page may contain many blocks of data. Requesting data by pages
reduces the OTA traffic and, in the case of battery-powered client device, extends battery life.
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
762 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

A page of data is requested by sending an Image Page Request to the server. This request contains a page
size, which indicates the number of data bytes that should be returned by the server following the request
(and before the next request is sent, if any). The server still sends the data one block at a time in Image Block
Responses. The Image Page Request also specifies the maximum number of bytes that the client device can
receive in any one OTA message and the block size must therefore not exceed this limit (in general, the page
size should be a multiple of this limit).

It is the responsibility of the client to keep track of the amount of data so far received since the last Image
Page Request was issued - this count is updated after each Image Block Response received. Once this count
reaches the page size in the request, the client will issue the next Image Page Request (if the download is not
yet complete).

During a download that uses page requests:

• If the client fails to receive one or more of the requested blocks then the next Image Page Request will
request data starting from the offset which corresponds to the first missing block.

• If the client fails to receive all the blocks requested in an Image Page Request then the same request will be
repeated up to two more times - if the requested data still fails to arrive, the client will switch to using Image
Block Requests to download the remaining image data.

An Image Page Request also contains a ‘response spacing’ value. This indicates the minimum time-interval,
in milliseconds, that the server should insert between consecutive Image Block Responses. If the client is a
sleepy End Device, it may specify a long response spacing so that it can sleep between consecutive Image
Block Responses, or it may specify a short response spacing so that it can quickly receive all blocks requested
in a page and sleep between consecutive Image Page Requests.

The implementation of the above page requests in an application is described below. The OTA image download
process using page requests is similar to the one described in Section 49.7, except the client submits Image
Page Requests to the server instead of Image Block Requests.

Enabling the Page Requests Feature

In order to use page requests, the macro OTA_PAGE_REQUEST_SUPPORT must be defined in the
zcl_options.h file for the server and client.

In addition, values for the page size and response spacing can also be defined in this file for the client (if non-
default values are required) - see below and Section 49.13.

Implementation in the Server Application

The application on the OTA Upgrade server device must control a millisecond timer (a timer with a resolution
of one millisecond) to support page requests. This timer is used to implement the ‘response spacing’ specified
in an Image Page Request - that is, to time the interval between the transmissions of consecutive Image Block
Responses (sent out in response to the Image Page Request).

When the server receives an Image Page Request, it will generate the event
E_ZCL_CBET_ENABLE_MS_TIMER to prompt the application to start the millisecond timer for a timed interval
equal in value to the ‘response spacing’ in the request. The application can obtain this value (in milliseconds)
from the event via:

sZCL_CallBackEvent.uMessage.u32TimerPeriodMs

The millisecond timer is started for a particular timed interval. The expiry of this timer is indicated by an
E_ZCL_CBET_TIMER_MS event, which is handled as described in Section 3.2. The server will then send the
next Image Block Response.

After sending an Image Block Response:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
763 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• If the server now generates an E_ZCL_CBET_DISABLE_MS_TIMER event, this indicates that the last of the
Image Block Responses (for the Image Page Request) has been sent and the application should disable the
millisecond timer.

• Otherwise, the application must start the next timed interval (until the next response).

Implementation in the Client Application

There is nothing specific to do in the client application to implement page requests. Provided that page requests
have been enabled in the zcl_options.h file for the client (see above), page requests will be automatically
implemented by the stack instead of block requests for OTA image downloads. The page size (in bytes) and
response spacing (in milliseconds) for these requests can be specified through the following macros in the
zcl_options.h file (see Section 49.13):

• OTA_PAGE_REQ_PAGE_SIZE
• OTA_PAGE_REQ_RESPONSE_SPACING

The default values are 512 bytes and 300 ms, respectively.

However, the client application can itself submit an Image Page Request to the server by calling the function
eOTA_ClientImagePageRequest(). In this case, the page size and response spacing are specified in the
Image Page Request payload structure as part of this function call.

The client handles the resulting Image Block Responses as described in Section 49.7 for standard OTA
downloads.

49.8.5 Persistent Data Management

The OTA Upgrade cluster on a client requires context data to be preserved in non-volatile memory to facilitate
a recovery of the OTA Upgrade status following a device reboot. The Non-Volatile Memory Manager (NVM)
module should be used to perform this data saving and recovery. The NVM module is implemented as
described in the Connectivity Framework Reference Manual.

Persistent data is normally be stored in the upper sector of the devices Flash memory. Thus, when the NVM
module is initialized, these sectors should be specified (just these sectors should be managed by the NVM
module).

When it needs to save context data, the OTA Upgrade cluster will generate the event E_CLD_OTA_INTERNAL_
COMMAND_SAVE_CONTEXT, which will also contain the data to be saved. A user-defined callback function
can then be invoked to perform the data storage using functions of the NVM module.

The OTA Upgrade cluster is implemented for an individual application/endpoint. Therefore, the NVM module
should also be implemented per endpoint. The following code illustrates the reservation of memory space for
persistent data per endpoint.

typedef struct
{
 uint8 u8Endpoints[APP_NUM_OF_ENDPOINTS];
 uint8 eState; // Current application state to re-instate
 tsOTA_PersistedData sPersistedData[APP_NUM_OF_ENDPOINTS];
} tsDevice;
PUBLIC tsDevice s_sDevice;

If a client is restarted and persisted data is available on the device, the OTA Upgrade cluster data should be
restored using the function eOTA_RestoreClientData().

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
764 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

49.8.6 Flash Memory Organization

Flash memory should be organized such that the application images are stored from Sector 0 and, if required,
persistent data is stored in the final sectors.

The storage of applications and persistent data in Flash memory is described further below. Guidance on the
organization of OTA upgrade applications in the devices internal Flash memory is also provided Appendix.

Application Images

As part of application initialization (see Section 49.6), the OTA Upgrade cluster must be informed of
the storage arrangements for application images in Flash memory. This is done through the function
eOTA_AllocateEndpointOTASpace(), which applies to a specified endpoint (normally the endpoint of the
application which calls the function). The information provided via this function includes:

• Start sector for each image that can be stored (specified through an array with one element per image). s
• Number of images for the endpoint (the maximum number of images per endpoint is specified in the

zcl_options.h file - see Section 49.13)
• Maximum number of sectors per image
• Type of node (server or client)
• Public key for signed images

Persistent Data

The storage of persistent data is handled by the NVM module (see Section 49.8.5) and the sector used is
specified as part of the NVM initialization through NvModuleInit() - the final sector of Flash memory should be
specified.

49.8.7 Low-Voltage Flag

An OTA Upgrade cluster client should not attempt to participate in an OTA upgrade if the supply voltage to
the host hardware device is low (below the normal operating voltage for the device). On the device, sufficient
voltage is required to write to the internal Flash There may be a number of reasons for a sudden drop in supply
voltage - for example, the voltage on a battery-powered node may fall when the battery is near the end of its life.

The OTA Upgrade cluster incorporates a mechanism which, if enabled, stops the cluster client from sending
Image Block Requests to the server when the local supply voltage becomes low. This mechanism allows the
application to set a low-voltage flag which, when set, automatically suspends the block requests. When the flag
is cleared, the block requests are automatically resumed.

If required, use of the low-voltage flag and associated mechanism must be enabled at compile-time by including
the following line in the zcl_options.h file:

#define OTA_UPGRADE_VOLTAGE_CHECK

It is the responsibility of the application to check the supply voltage. This check is system-specific and may be
performed periodically or using a voltage monitoring feature - for example, on the device, the Supply Voltage
Monitor (SVM) can be used, which is described in the MCUXpresso SDK API Reference Manual.

The application can use the function vOTA_SetLowVoltageFlag() to configure the low-voltage flag. This
function is detailed in Section 49.10.3.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
765 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

When a low voltage is detected, the application should make the following function call to set the low-voltage
flag and suspend Image Block Requests:

vOTA_SetLowVoltageFlag(TRUE);

When the voltage is restored to a normal level, the application should make the following function call to clear
the low-voltage flag and resume Image Block Requests:

vOTA_SetLowVoltageFlag(FALSE);

49.9 OTA Upgrade events
The events that can be generated on an OTA Upgrade cluster server or client are defined in the structure
teOTA_UpgradeClusterEvents (see Section 49.12.2). The events are listed in the table below, which also
indicates on which side of the cluster (server or client) the events can occur:

Cluster Side(s) Event

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_REQUEST

E_CLD_OTA_COMMAND_BLOCK_REQUEST

E_CLD_OTA_COMMAND_PAGE_REQUEST

E_CLD_OTA_COMMAND_UPGRADE_END_REQUEST

E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_REQUEST

Server

E_CLD_OTA_INTERNAL_COMMAND_SEND_UPGRADE_END_RESPONSE

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_BLOCK_REQUEST

E_CLD_OTA_COMMAND_IMAGE_NOTIFY

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE

E_CLD_OTA_COMMAND_BLOCK_RESPONSE

E_CLD_OTA_COMMAND_UPGRADE_END_RESPONSE

E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_RESPONSE

E_CLD_OTA_INTERNAL_COMMAND_TIMER_EXPIRED

E_CLD_OTA_INTERNAL_COMMAND_POLL_REQUIRED

E_CLD_OTA_INTERNAL_COMMAND_RESET_TO_UPGRADE

E_CLD_OTA_INTERNAL_COMMAND_SAVE_CONTEXT

E_CLD_OTA_INTERNAL_COMMAND_OTA_DL_ABORTED

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_BLOCK_RESPONSE

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_DL_ABORT

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_DL_COMPLETE

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_SWITCH_TO_NEW_IMAGE

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_BLOCK_RESPONSE

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_COMPLETE

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_ABORT

Client

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_USE_NEW_FILE

Table 117. OTA Upgrade Events

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
766 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Cluster Side(s) Event

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_NO_UPGRADE_END_RESPONSE

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE_ERROR

E_CLD_OTA_INTERNAL_COMMAND_VERIFY_SIGNER_ADDRESS

E_CLD_OTA_INTERNAL_COMMAND_RCVD_DEFAULT_RESPONSE

E_CLD_OTA_INTERNAL_COMMAND_VERIFY_IMAGE_VERSION

E_CLD_OTA_INTERNAL_COMMAND_SWITCH_TO_UPGRADE_DOWNGRADE

E_CLD_OTA_INTERNAL_COMMAND_REQUEST_QUERY_NEXT_IMAGES

E_CLD_OTA_INTERNAL_COMMAND_OTA_START_IMAGE_VERIFICATION_IN_LOW_PRIORITY

E_CLD_OTA_INTERNAL_COMMAND_FAILED_VALIDATING_UPGRADE_IMAGE

E_CLD_OTA_INTERNAL_COMMAND_FAILED_COPYING_SERIALIZATION_DATA

E_CLD_OTA_BLOCK_RESPONSE_TAG_OTHER_THAN_UPGRADE_IMAGE

E_CLD_OTA_INTERNAL_COMMAND_LOCK_FLASH_MUTEXBoth

E_CLD_OTA_INTERNAL_COMMAND_FREE_FLASH_MUTEX

Table 117. OTA Upgrade Events...continued

OTA Upgrade events are treated as ZCL events. Thus, an event is received by the application, which
wraps the event in a tsZCL_CallBackEvent structure and passes it into the ZCL using the function
vZCL_EventHandler() - for further details of ZCL event processing, refer to Chapter 3.

The above events are outlined in the sub-sections below.

49.9.1 Server-side Events

• E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_REQUEST
This event is generated on the server when a Query Next Image Request is received from a client to
enquire whether a new application image is available for download. The event may result from a poll
request from the client or may be a consequence of an Image Notify message previously sent by the
server. The server reacts to this event by returning a Query Next Image Response.

• E_CLD_OTA_COMMAND_BLOCK_REQUEST
This event is generated on the server when an Image Block Request is received from a client to request a
block of image data as part of a download. The application reacts to this event by returning an Image Block
Response containing a data block.

• E_CLD_OTA_COMMAND_PAGE_REQUEST
This event is generated on the server when an Image Page Request is received from a client to request a
page of image data as part of a download.

• E_CLD_OTA_COMMAND_UPGRADE_END_REQUEST
This event is generated on the server when an Upgrade End Request is received from a client to indicate
that the complete image has been downloaded and verified. The application reacts to this event by
returning an Upgrade End Response.

• E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_REQUEST
This event is generated on the server when a Query Specific File Request is received from a client to
request a particular application image. The server reacts to this event by returning a Query Specific File
Response.

• E_CLD_OTA_INTERNAL_COMMAND_SEND_UPGRADE_END_RESPONSE
This event is generated on the server to notify the application that the stack is going to send an Upgrade
End Response to a client. No specific action is required by the application on the server.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
767 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

49.9.2 Client-side Events

• E_CLD_OTA_COMMAND_IMAGE_NOTIFY
This event is generated on the client when an Image Notify message is received from the server to indicate
that a new application image is available for download. If the client decides to download the image, the
application should react to this event by sending a Query Next Image Request to the server using the
function eOTA_ClientQueryNextImageRequest().

• E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE
This event is generated on the client when a Query Next Image Response is received from the server
(in response to a Query Next Image Request) to indicate whether a new application image is available
for download. If a suitable image is reported, the client initiates a download by sending an Image Block
Request to the server.

• E_CLD_OTA_COMMAND_BLOCK_RESPONSE
This event is generated on the client when an Image Block Response is received from the server (in
response to an Image Block Request) and contains a block of image data which is part of a download.
Following this event, the client can request the next block of image data by sending an Image Block
Request to the server or, if the entire image has been received and verified, the client can close the
download by sending an Upgrade End Request to the server.

• E_CLD_OTA_COMMAND_UPGRADE_END_RESPONSE
This event is generated on the client when an Upgrade End Response is received from the server (in
response to an Upgrade End Request) to confirm the end of a download. This event contains the time
delay before the upgrade of the running application must be performed.

• E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_RESPONSE
This event is generated on the client when a Query Specific File Response is received from the server
(in response to a Query Specific File Request) to indicate whether the requested application image is
available for download.

• E_CLD_OTA_INTERNAL_COMMAND_TIMER_EXPIRED
This event is generated on the client when the local one-second timer has expired. It is an internal event
and is not passed to the application.

• E_CLD_OTA_INTERNAL_COMMAND_POLL_REQUIRED
This event is generated on the client to prompt the application to poll the server for a new application
image by calling the function eOTA_ClientQueryNextImageRequest().

• E_CLD_OTA_INTERNAL_COMMAND_RESET_TO_UPGRADE
This event is generated on the client to notify the application that the stack is going to reset the device. No
specific action is required by the application.

• E_CLD_OTA_INTERNAL_COMMAND_SAVE_CONTEXT
This event prompts the client application to store context data in Flash memory. The data to be stored is
passed to the application within this event.

• E_CLD_OTA_INTERNAL_COMMAND_OTA_DL_ABORTED
This event is generated on a client if the received image is invalid or the client has aborted the image
download. This allows the application to request the new image again.

• E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_BLOCK_RESPONSE
This event is generated on the client when an Image Block Response is received from the server in
response to an Image Block Request for a device-specific file. The event contains a block of file data which
is part of a download. Following this event, the client stores the data block in an appropriate location and
can request the next block of file data by sending an Image Block Request to the server (if the complete
image has not yet been received and verified).

• E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_COMPLETE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
768 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

This event is generated on the client when the final Image Block Response of a device-specific file
download has been received from the server - the event indicates that all the data blocks that make up the
file have been received.

• E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_USE_NEW_FILE
This event is generated on the client following a device-specific file download to indicate that the file can
now be used by the client. At the end of the download, the server sends an Upgrade End Response
that may include an ‘upgrade time’ - this is the UTC time at which the new file can be applied. Thus, on
receiving this response, the client starts a timer and, on reaching the upgrade time, generates this event.

• E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_ABORT
This event is generated to indicate that the OTA Upgrade cluster needs to abort a device-specific file
download. Following this event, the application should discard data that has already been received as part
of the aborted download.

• E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_NO_UPGRADE_
END_RESPONSE

This event is generated when no Upgrade End Response has been received for a device-specific file
download. The client makes three attempts to obtain an Upgrade End Response. If no response is
received, the client raises this event.

Note: For a device-specific file download, it is not mandatory for the server to send an Upgrade End Response.
The decision of whether to send the Upgrade End Response is manufacturer-specific.

• E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE_ERROR
This event is generated on the client when a Query Next Image Response message is received from the
server, in response to a Query Next Image Request with a status of Invalid Image Size.

• E_CLD_OTA_INTERNAL_COMMAND_RCVD_DEFAULT_RESPONSE
This event is generated on the client when a default response message is received from the server, in
response to a Query Next Image Request, Image Block Request or Upgrade End Request. This is an
internal ZCL event that results in an OTA download being aborted, thus activating the callback function for
the E_CLD_OTA_INTERNAL_COMMAND_OTA_DL_ABORTED event.

• E_CLD_OTA_INTERNAL_COMMAND_VERIFY_IMAGE_VERSION
This event is generated to prompt the application to verify the image version received in a Query Next
Image Response. This event allows the application to verify that the new upgrade image has a valid
image version. After checking the image version, the application should set the status field of the event to
E_ZCL_SUCCESS (valid version) or E_ZCL_FAIL (invalid version).

• E_CLD_OTA_INTERNAL_COMMAND_SWITCH_TO_UPGRADE_
DOWNGRADE

This event is generated to prompt the application to verify the image version received in an upgrade
end response. This event allows the application to verify that the new upgrade image has a valid image
version.
After checking the image version, the application should set the status field of the event to
E_ZCL_SUCCESS (valid version) or E_ZCL_FAIL (invalid version).

• E_CLD_OTA_INTERNAL_COMMAND_FAILED_VALIDATING_UPGRADE_
IMAGE

This event is generated on the client when the validation of a new upgrade image fails. This validation
takes place when the upgrade time is reached.

• E_CLD_OTA_INTERNAL_COMMAND_FAILED_COPYING_SERIALIZATION_DATA
This event is generated on the client when the copying of serialisation data from the active image to the
new upgrade image fails. This process takes place after image validation (if applicable) is completed
successfully.

• E_CLD_OTA_BLOCK_RESPONSE_TAG_OTHER_THAN_UPGRADE_
IMAGE

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
769 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

This event is generated on the client when an Image Block Response is received from the server but the
response contains a block of data that is not upgrade image data (it may contain tags such as an integrity
code or ECDA signature).Thus, this event can help the application to process tags or data other than
upgrade image data.

49.9.3 Server-side and Client-side Events

• E_CLD_OTA_INTERNAL_COMMAND_LOCK_FLASH_MUTEX
This event prompts the application to lock the mutex used for accesses to external Flash memory (via the
SPI bus).

• E_CLD_OTA_INTERNAL_COMMAND_FREE_FLASH_MUTEX
This event prompts the application to unlock the mutex used for accesses to external Flash memory (via
the SPI bus).

49.10 Functions
The OTA Upgrade cluster functions that are provided in the NXP implementation of the ZCL are divided into the
following three categories:

• General functions (used on server and client) - see Section 49.10.1
• Server functions - see Section 49.10.2
• Client functions - see Section 49.10.3

49.10.1 General Functions

The following OTA Upgrade cluster functions can be used on the cluster server and the cluster client:

1. eOTA_Create
2. vOTA_FlashInit
3. eOTA_AllocateEndpointOTASpace
4. vOTA_GenerateHash
5. eOTA_GetCurrentOtaHeader

49.10.1.1 eOTA_Create

teZCL_Status eOTA_Create(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 u8Endpoint,
 uint8 *pu8AttributeControlBits,
 tsOTA_Common *psCustomDataStruct);

Description

This function creates an instance of the OTA Upgrade cluster on the specified endpoint. The cluster instance
can act as a server or a client, as specified. The shared structure of the device associated with cluster must also
be specified.

The function must be the first OTA function called in the application, and must be called after the stack has been
started and after the ZCL has been initialized.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
770 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• psClusterInstance: Pointer to structure containing information about the cluster instance to be created (see
Section 6.1.16)

• bIsServer: Side of cluster to be implemented on this device:
– TRUE - Server
– FALSE - Client

• psClusterDefinition: Pointer to structure indicating the type of cluster (see Section 6.1.2) - this structure must
contain the details of the OTA Upgrade cluster

• pvEndPointSharedStructPtr: Pointer to shared device structure for relevant endpoint (depends on device type,
e.g. Door Lock)

• u8Endpoint: Number of endpoint with which cluster will be associated
• pu8AttributeControlBits: Pointer to an array of bitmaps, one for each attribute in the relevant cluster - for

internal cluster definition use only, array should be initialised to 0
• tpsCustomDataStruct: Pointer to structure containing custom data for OTA Upgrade cluster (see Section

49.11.2)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.1.2 vOTA_FlashInit

void vOTA_FlashInit(void *pvFlashTable,
 tsNvmDefs *psNvmStruct);

Description

This function initializes the Flash memory device to be used by the OTA Upgrade cluster. Information about the
device must be provided, such as the device type and sector size.

If a custom or unsupported Flash memory device is used then user-defined callback functions must be provided
to perform Flash memory read, write, erase and initialization operations (if an NXP-supported device is used,
standard callback functions will be used):

• A general set of functions (for use by all software components) can be specified through pvFlashTable.
• Optionally, an additional set of functions specifically for use by the OTA Upgrade cluster can be specified in

the structure referenced by psNvmStruct.

This function must be called after the OTA Upgrade cluster has been created (after eOTA_Create() has been
called either directly or indirectly) and before any other OTA Upgrade functions are called.

Parameters

pvFlashTable: Pointer to general set of callback functions to perform Flash memory read, write, erase and
initialization operations. If using an NXP-supported Flash memory device, set a null pointer to use standard
callback functions
psNvmStruct: Pointer to structure containing information on Flash memory device - see Section 49.11.4

Returns

None
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
771 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

49.10.1.3 eOTA_AllocateEndpointOTASpace

teZCL_Status eOTA_AllocateEndpointOTASpace(
 uint8 u8Endpoint,
 uint8 *pu8Data,
 uint8 u8NumberOfImages,
 uint8 u8MaxSectorsPerImage,
 bool_t bIsServer,
 uint8 *pu8CAPublicKey);

Description

This function is used to allocate Flash memory space to store application images as part of the OTA upgrade
process for the specified endpoint. The maximum number of images that are held at any one time must be
specified as well the Flash memory start sector of every image. The maximum number of sectors used to store
an image must also be specified.

The start sectors of the image space allocations are provided in an array. The index of an element of this array
will subsequently be used to identify the stored image in other function calls.

Advice about the allocation of internal Flash memory space to OTA upgrade images on the client is provided in
Appendix E.2

Parameters

• u8Endpoint: Number of endpoint for which Flash memory space is to be allocated
• pu8Data: Pointer to array containing the Flash memory start sector of each image (array index identifies

image)
• u8NumberOfImages: Maximum number of application images that are stored in Flash memory at any one

time
• u8MaxSectorsPerImage: Maximum number of sectors to be used to store an individual application image
• bIsServer: Side of cluster implemented on this device:
• TRUE - Server
• FALSE - Client
• pu8CAPublicKey: Pointer to Certificate Authority public key (provided in the security certificate from a

company such as Certicom)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL
• E_ZCL_ERR_INVALID_VALUE
• E_ZCL_ERR_EP_RANGE
• E_ZCL_ERR_CLUSTER_NOT_FOUND
• E_ZCL_ERR_PARAMETER_NULL

49.10.1.4 vOTA_GenerateHash

void vOTA_GenerateHash(
 tsZCL_EndPointDefinition *psEndPointDefinition,
 tsOTA_Common *psCustomData,
 bool bIsServer,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
772 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 bool bHeaderPresent,
 AESSW_Block_u *puHash,
 uint8 u8ImageLocation);

Description

This function can be used to generate a hash checksum for an application image in Flash memory, using the
Matyas-Meyer-Oseas cryptographic hash.

Parameters

psEndPointDefinition Pointer to structure which defines endpoint corresponding to the application (see
Section 6.1.1)
psCustomData Pointer to data structure connected with event associated with the checksum (see
Section 49.11.2)
bIsServer Side of cluster implemented on this device:
 TRUE - Server
 FALSE - Client
bHeaderPresent Presence of image header:
 TRUE - Present
 FALSE - Absent
puHash Pointer to structure to receive calculated hash checksum
u8ImageLocation Number of sector where image starts in Flash memory

Returns

None

49.10.1.5 eOTA_GetCurrentOtaHeader

teZCL_Status eOTA_GetCurrentOtaHeader(
 uint8 u8Endpoint,
 bool_t bIsServer,
 tsOTA_ImageHeader *psOTAHeader);

Description

This function can be used to obtain the OTA header of the application image which is currently running on the
local node.

The obtained parameter values are received in a tsOTA_ImageHeader structure.

Parameters

u8Endpoint Number of endpoint on which cluster operates
bIsServer Side of the cluster implemented on this device:
 TRUE - Server
 FALSE - Client
psOTAHeader Pointer to structure to receive the current OTA header (see Section 49.11.1)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
773 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_EP_RANGE
E_ZCL_ERR_CLUSTER_NOT_FOUND
E_ZCL_ERR_PARAMETER_NULL

49.10.2 Server Functions

The following OTA Upgrade cluster functions can be used on the cluster server only:

1. eOTA_SetServerAuthorisation
2. eOTA_SetServerParams
3. eOTA_GetServerData
4. eOTA_EraseFlashSectorsForNewImage
5. eOTA_FlashWriteNewImageBlock
6. eOTA_NewImageLoaded
7. eOTA_ServerImageNotify
8. eOTA_ServerQueryNextImageResponse
9. eOTA_ServerImageBlockResponse

10. eOTA_SetWaitForDataParams
11. eOTA_ServerUpgradeEndResponse
12. eOTA_ServerSwitchToNewImage
13. eOTA_InvalidateStoredImage
14. eOTA_ServerQuerySpecificFileResponse

49.10.2.1 eOTA_SetServerAuthorisation

teZCL_Status eOTA_SetServerAuthorisation(
 uint8 u8Endpoint,
 eOTA_AuthorisationState eState,
 uint64 *pu64WhiteList,
 uint8 u8Size);

Description

This function can be used to define a set of clients to which the server is authorized to download application
images. The function allows all clients to be authorized or a list of selected authorized clients to be provided.
Clients are specified in this list by means of their 64-bit IEEE/MAC addresses.

Parameters

• u8Endpoint: Number of endpoint (on server) on which cluster operates
• eState: Indicates whether a list of authorized clients is used or all clients are authorized - one of:

– E_CLD_OTA_STATE_USE_LIST
– E_CLD_OTA_STATE_ALLOW_ALL

• pu64WhiteList: Pointer to list of IEEE/MAC addresses of authorized clients (ignored if all clients are authorized
through eState parameter)

• u8Size Number of clients in list
• (ignored if all clients are authorized through eState parameter)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
774 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.2.2 eOTA_SetServerParams

teZCL_Status eOTA_SetServerParams(
: uint8 u8Endpoint,
: uint8 u8ImageIndex,
: tsCLD_PR_Ota *psOTAData);

Description

This function can be used to set server parameter values (including query jitter, data size, image data, current
time and upgrade time) for a particular image stored on the server. The parameter values to be set are specified
in a structure, described in Section 49.11.22. For detailed descriptions of these parameters, refer to the ZigBee
Over-the-Air Upgrading Cluster Specification (095264) from the ZigBee Alliance.

If this function is not called, default values are used for these parameters.

The current values of these parameters can be obtained using the function eOTA_GetServerData().

The index of the image for which server parameter values are to be set must be specified. For an image stored
in Flash memory, this index will take a value in the range 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1).

Parameters

u8Endpoint: Number of endpoint (on server) on which cluster operates
u8ImageIndex: Index number of image
psOTAData: Pointer to structure containing parameter values to be set (see Section 49.11.22)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

49.10.2.3 eOTA_GetServerData

teZCL_Status eOTA_GetServerData(
 uint8 u8Endpoint,
 uint8 u8ImageIndex,
 tsCLD_PR_Ota *psOTAData);

Description

This function can be used to obtain server parameter values (including query jitter, data size, image data,
current time and upgrade time). The obtained parameter values are received in a structure, described in Section
49.11.22. For detailed descriptions of these parameters, refer to the ZigBee Over-the-Air Upgrading Cluster
Specification (095264) from the ZigBee Alliance.

The values of these parameters can be set by the application using the function eOTA_SetServerParams().

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
775 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The index of the image for which server parameter values are to be obtained must be specified.
For an image stored in the Flash memory, this index will take a value in the range 0 to
(OTA_MAX_IMAGES_PER_ENDPOINT - 1).

Parameters

u8Endpoint: Number of endpoint (on server) on which cluster operates
u8ImageIndex: Index number of image
psOTAData: Pointer to structure to receive parameter values (see Section 49.11.22)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

49.10.2.4 eOTA_EraseFlashSectorsForNewImage

teZCL_Status eOTA_EraseFlashSectorsForNewImage(
 uint8 u8Endpoint,
 uint8 u8ImageIndex);

Description

This function can be used to erase certain sectors of the Flash memory of the device in the OTA server node.
The sectors allocated to the specified image index number will be erased so that the sectors (and index
number) can be re-used. The function is normally called before writing a new upgrade image to Flash memory.

The specified image index number must be in the range 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1).

Parameters

u8Endpoint: Number of endpoint (on server) on which cluster operates
u8ImageIndex: Index number of image

Returns

E_ZCL_ERR_EP_RANGE
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_CLUSTER_NOT_FOUND
E_ZCL_SUCCESS

49.10.2.5 eOTA_FlashWriteNewImageBlock

teZCL_Status eOTA_FlashWriteNewImageBlock(
 uint8 u8Endpoint,
 uint8 u8ImageIndex,
 bool bIsServerImage,
 uint8 *pu8UpgradeBlockData,
 uint8 u8UpgradeBlockDataLength,
 uint32 u32FileOffSet);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
776 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used to write a block of an upgrade image to the devices internal Flash memory in the OTA
server node. The image may be either of the following:

• An upgrade image for the server itself (the server will later be rebooted from this image)
• An upgrade image for one or more clients, which will later be made available for OTA distribution through the

wireless network

The image in Flash memory to which the block belongs is identified by its index number. The specified image
index number must be in the range 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1).

Note that for JN518x, K32W041, and K32W061, internal Flash memory, writes must be 512-byte aligned.

Parameters

u8Endpoint: Number of endpoint (on server) on which cluster operates
u8ImageIndex: Index number of image
bIsServerImage: Indicates whether new image is for the server or a client:
TRUE - Server image
FALSE - Client image
pu8UpgradeBlockData: Pointer to image block to be written
u8UpgradeBlockDataLength: Size, in bytes, of image block to be written
u32FileOffSet: Offset of block from start of image file (in terms of number of bytes)

Returns

E_ZCL_ERR_EP_RANGE
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_CLUSTER_NOT_FOUND
E_ZCL_FAIL
E_ZCL_SUCCESS

49.10.2.6 eOTA_NewImageLoaded

teZCL_Status eOTA_NewImageLoaded(
 uint8 u8Endpoint,
 bool bIsImageOnCoProcessorMedia,
 tsOTA_CoProcessorOTAHeader
 *psOTA_CoProcessorOTAHeader);

Description

This function can be used for two purposes which relate to a new application image and which depend on
whether the image has been stored in the internal Flash memory of the device or in the external storage device
of a co-processor (if any) within the server node:

• For an image stored in internal Flash memory, the function can be used to notify the OTA Upgrade cluster
server on the specified endpoint that a new application image has been loaded into Flash memory and is
available for download to clients. The server then validates the new image.

• For one or more images stored in the co-processor’s external storage device, the function can be used to
provide OTA header information for the image(s) to the cluster server. In the case of more than one image

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
777 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

stored in co-processor storage, this function may replicate OTA header information for older images already
registered with the server.

Note: The co-processor option is currently not supported for JN518x, K32W041, or K32W061.

Parameters

u8Endpoint: Number of endpoint (on server) on which cluster operates
bIsImageOnCoProcessorMedia: Flag indicating whether image is stored in co-processor external storage
device:
TRUE - Stored in co-processor
FALSE - Stored in internal Flash memory
psOTA_CoProcessorOTAHeader: Pointer to OTA headers of images which are held in co-processor storage
device

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

49.10.2.7 eOTA_ServerImageNotify

teZCL_Status eOTA_ServerImageNotify(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 tsOTA_ImageNotifyCommand *psImageNotifyCommand);

Description

This function issues an Image Notify message to one or more clients to indicate that a new application image is
available for download.

The message can be unicast to an individual client or multicast to selected clients (but cannot be broadcast to
all clients, for security reasons).

Parameters

u8SourceEndpoint: Number of endpoint (on server) from which the message is sent
u8DestinationEndpoint: Number of endpoint (on client) to which the message is sent
psDestinationAddress: Pointer to structure containing the address of the target client for the message - a
multicast to more than one client is also possible (see Section 6.1.4)
psImageNotifyCommand: Pointer to structure containing payload for message (see Section 49.11.5)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

49.10.2.8 eOTA_ServerQueryNextImageResponse

teZCL_Status eOTA_ServerQueryNextImageResponse(

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
778 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 tsOTA_QueryImageResponse
 *psQueryImageResponsePayload,
 uint8 u8TransactionSequenceNumber);

Description

This function issues a Query Next Image Response to a client which has sent a Query Next Image Request (the
arrival of this request triggers the event E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_REQUEST on the
server).

The Query Next Image Response contains information on the latest application image available for download to
the client, including the image size and file version.

Note: The cluster server responds automatically to a Query Next Image Request, so it is not normally
necessary for the application to call this function.

You are also required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for
the request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to
be paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndpoint: Number of endpoint (on server) from which the response is sent
u8DestinationEndpoint: Number of endpoint (on client) to which the response is sent
psDestinationAddress: Pointer to structure containing the address of the target client for the response (see
Section 6.1.4)
psQueryImageResponsePayload: Pointer to structure containing payload for response (see Section 49.11.7)
u8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

49.10.2.9 eOTA_ServerImageBlockResponse

teZCL_Status eOTA_ServerImageBlockResponse(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 tsOTA_ImageBlockResponsePayload
 *psImageBlockResponsePayload,
 uint8 u8BlockSize,
 uint8 u8TransactionSequenceNumber);

Description

This function issues an Image Block Response, containing a block of image data, to a client to which the server
is downloading an application image. The function is called after receiving an Image Block Request from the

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
779 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

client, indicating that the client is ready to receive the next block of the application image (the arrival of this
request triggers the event E_CLD_OTA_COMMAND_BLOCK_REQUEST on the server).

The size of the block, in bytes, is specified as part of the function call. This must be less than or equal to the
maximum possible block size defined in the zcl_options.h file (see Section 49.13).

Note: The cluster server responds automatically to an Image Block Request, so it is not normally necessary for
the application to call this function.

You are also required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for
the request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to
be paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndpoint: Number of endpoint (on server) from which the response is sent
u8DestinationEndpoint: Number of endpoint (on client) to which the response is sent
psDestinationAddress: Pointer to structure containing the address of the target client for the response (see
Section 6.1.4)
psImageBlockResponsePayload: Pointer to structure containing payload for response (see Section 49.11.10)
u8BlockSize: Size, in bytes, of block to be transferred
u8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

49.10.2.10 eOTA_SetWaitForDataParams

teZCL_Status eOTA_SetWaitForDataParams(
 uint8 u8Endpoint,
 uint16 u16ClientAddress,
 tsOTA_WaitForData *sWaitForDataParams);

Description

This function can be used to send an Image Block Response with a status of OTA_STATUS_WAIT_FOR_DATA
to a client, in response to an Image Block Request from the client.

The payload of this response includes a new value for the ‘block request delay’ attribute on the client. This value
can be used by the client for ‘rate limiting’ -that is, to control the rate at which the client requests data blocks
from the server and therefore the average OTA download rate from the server to the client.

Rate limiting is described in more detail in Section 49.8.1.

Parameters

u8Endpoint: Number of endpoint (on server) from which the response is sent
u16ClientAddress: Network address of client device to which the response is sent
sWaitForDataParams: Pointer to structure containing ‘Wait for Data’ parameter values for Image Block
Response payload (see Section 49.11.15)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
780 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

49.10.2.11 eOTA_ServerUpgradeEndResponse

teZCL_Status eOTA_ServerUpgradeEndResponse(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 tsOTA_UpgradeEndResponsePayload
 *psUpgradeResponsePayload,
 uint8 u8TransactionSequenceNumber);

Description

This function issues an Upgrade End Response to a client to which the server has been downloading an
application image. The function is called after receiving an Upgrade End Request from the client, indicating that
the client has received the entire application image and verified it (the arrival of this request triggers the event
E_CLD_OTA_COMMAND_UPGRADE_END_REQUEST on the server).

The Upgrade End Response includes the upgrade time for the downloaded image as well as the current time
(the client will use this information to implement a delay before upgrading the running application image).

Note: The cluster server responds automatically to an Upgrade End Request, so it is not normally necessary
for the application to call this function.

You are also required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for
the request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to
be paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndpoint: Number of endpoint (on server) from which the response is sent
u8DestinationEndpoint: Number of endpoint (on client) to which the response is sent
psDestinationAddress: Pointer to structure containing the address of the target client for the response (see
Section 6.1.4)
psUpgradeResponsePayload: Pointer to structure containing payload for response (see Section 49.11.12)
u8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

49.10.2.12 eOTA_ServerSwitchToNewImage

teZCL_Status eOTA_ServerSwitchToNewImage(
 uint8 u8Endpoint,
 uint8 u8ImageIndex);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
781 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used to force a reset of the device in the OTA server node and, on reboot, run a new
application image that has been saved in the attached Flash memory.

Before forcing the reset of the remove device, the function checks whether the version of the new image is
greater than the version of the current image. If this is the case, the function invalidates the currently running
image in Flash memory and initiates a software reset - otherwise, it returns an error.

The new application image is identified by its index number. The specified image index number must be in the
range 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1).

Parameters

u8Endpoint: Number of endpoint (on server) on which cluster operates
u8ImageIndex: Index number of image

Returns

E_ZCL_ERR_EP_RANGE
E_ZCL_ERR_CLUSTER_NOT_FOUND
E_ZCL_FAIL
E_ZCL_SUCCESS

49.10.2.13 eOTA_InvalidateStoredImage

teZCL_Status eOTA_InvalidateStoredImage(
 uint8 u8Endpoint,
 uint8 u8ImageIndex);

Description

This function can be used to invalidate an application image that is held in the Flash memory of the device.
Once the image has been invalidated, it will no longer to available for OTA upgrade.

The image to be invalidated is identified by its index number. The specified image index number must be in the
range 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1).

Parameters

u8Endpoint: Number of endpoint (on server) on which cluster operates
u8ImageIndex: Index number of image to be invalidated

Returns

E_ZCL_ERR_EP_RANGE
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_CLUSTER_NOT_FOUND
E_ZCL_SUCCESS

49.10.2.14 eOTA_ServerQuerySpecificFileResponse

teZCL_Status eOTA_ServerQuerySpecificFileResponse(

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
782 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 tsOTA_QuerySpecificFileResponsePayload
 *psQuerySpecificFileResponsePayload,
 uint8 u8TransactionSequenceNumber);

Description

This function can be used to issue a Query Specific File Response to a client which has sent a Query Specific
File Request (the arrival of this request triggers the event E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_
REQUEST on the server). The Query Specific File Response contains information on the latest device-specific
file available for download to the client, including the file size and file version.

You are also required to provide a pointer to a location to receive a Transaction Sequence Number (TSN) for
the request. The TSN in the response is set to match the TSN in the request, allowing an incoming response to
be paired with a request. This is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndpoint: Number of endpoint (on server) from which the response is sent
u8DestinationEndpoint: Number of endpoint (on client) to which the response is sent
psDestinationAddress: Pointer to structure containing the address of the target client
psQuerySpecificFileResponsePayload:
Pointer to structure containing payload for Query Specific File Response (see Section 49.11.20)
u8TransactionSequenceNumber: Pointer to a location to store the Transaction Sequence Number (TSN) of
the request

Returns

E_ZCL_SUCCESS
E_ZCL_FAIL

49.10.3 Client Functions

The following OTA Upgrade cluster functions can be used on the cluster client only:

1. eOTA_SetServerAddress
2. eOTA_ClientQueryNextImageRequest
3. eOTA_ClientImageBlockRequest
4. eOTA_ClientImagePageRequest
5. eOTA_ClientUpgradeEndRequest
6. eOTA_HandleImageVerification
7. eOTA_UpdateClientAttributes
8. eOTA_RestoreClientData
9. vOTA_SetImageValidityFlag

10. eOTA_ClientQuerySpecificFileRequest
11. eOTA_SpecificFileUpgradeEndRequest
12. vOTA_SetLowVoltageFlag

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
783 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

49.10.3.1 eOTA_SetServerAddress

teZCL_Status eOTA_SetServerAddress(
 uint8 u8Endpoint,
 uint64 u64IeeeAddress,
 uint16 u16ShortAddress);

Description

This function sets the addresses (64-bit IEEE/MAC address and 16-bit network address) of the OTA Upgrade
cluster server that will be used to provide application upgrade images to the local client.

The function should be called after a server discovery has been performed to find a suitable server - this is
done by sending out a Match Descriptor Request using the function ZPS_eAplZdpMatchDescRequest()
described in the ZigBee 3.0 Stack User Guide (JNUG3130). The server discovery must be completed and a
server address set before any OTA-related message exchanges can occur (e.g. image request).

Parameters

• u8Endpoint: Number of endpoint corresponding to application
• u64IeeeAddress: IEEE/MAC address of server
• u16ShortAddress: Network address of server

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.3.2 eOTA_ClientQueryNextImageRequest

teZCL_Status eOTA_ClientQueryNextImageRequest(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 tsOTA_QueryImageRequest
 *psQueryImageRequest);

Description

This function issues a Query Next Image Request to the server and should be called in either of the following
situations:

• to poll for a new application image (typically used in this way by an End Device) - in this case, the function
should normally be called periodically

• to respond to an Image Notify message from the server, which indicated that a new application
image is available for download - in this case, the function call should be prompted by the event
E_CLD_OTA_COMMAND_IMAGE_NOTIFY

The payload of the request includes the relevant image type, current file version, hardware version and
manufacturer code.

As a result of this function call, a Query Next Image Response will (eventually) be received from the server. The
arrival of this response will trigger an E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE event.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
784 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Parameters

• u8SourceEndpoint: Number of endpoint (on client) from which the request is sent
• u8DestinationEndpoint: Number of endpoint (on server) to which the request is sent
• psDestinationAddress: Pointer to structure containing the address of the target server (see Section 6.1.4)
• psQueryImageRequest: Pointer to structure containing payload for request (see Section 49.11.6)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.3.3 eOTA_ClientImageBlockRequest

teZCL_Status eOTA_ClientImageBlockRequest(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 tsOTA_BlockRequest
 *psOtaBlockRequest);

Description

This function can be used during an image download to send an Image Block Request to the server, in order to
request the next block of image data.

As a result of this function call, an Image Block Response containing the requested data block will (eventually)
be received from the server. The arrival of this response will trigger an E_CLD_OTA_COMMAND_QUERY_
NEXT_IMAGE_RESPONSE event.

Note: The cluster client automatically sends Image Block Requests to the server during a download, so it is not
normally necessary for the application to call this function.

Parameters

• u8SourceEndpoint: Number of endpoint (on client) from which the request is sent
• u8DestinationEndpoint: Number of endpoint (on server) to which the request is sent
• psDestinationAddress: Pointer to structure containing the address of the target server (see Section 6.1.4)
• psOtaBlockRequest: Pointer to structure containing payload for request (see Section 49.11.8)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.3.4 eOTA_ClientImagePageRequest

teZCL_Status eOTA_ClientImagePageRequest(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 tsOTA_ImagePageRequest *psOtaPageRequest);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
785 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used during an image download to send an Image Page Request to the server, in order
to request the next page of image data. In this function call, a structure must be supplied which contains the
payload data for the request. This data includes the page size, in bytes.

Note: Note 1: Image Page Requests can be used instead of Image Block Requests if page requests have
been enabled in the zcl_options.h file for the client and server (see Section 49.13).

Note: Note 2: The cluster client automatically sends Image Page Requests (if enabled) to the server during a
download, so it is not normally necessary for the application to call this function.

As a result of this function call, a sequence of Image Block Responses containing the requested
data will (eventually) be received from the server. The arrival of each response will trigger an
E_CLD_OTA_COMMAND_BLOCK_RESPONSE event on the client. If this function is used (rather than the
stack) to issue Image Page Requests, it is the responsibility of the application to keep a count of the number of
data bytes received since the Image Page Request was issued - when all the requested page data has been
received, this count will equal the specified page size.

Page requests are described in more detail Section 49.8.4.

Parameters

• u8SourceEndpoint: Number of endpoint (on client) from which the request is sent
• u8DestinationEndpoint: Number of endpoint (on server) to which the request is sent
• psDestinationAddress: Pointer to structure containing the address of the target server (see Section 6.1.4)
• psOtaPageRequest: Pointer to structure containing payload for request (see Section 49.11.9)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.3.5 eOTA_ClientUpgradeEndRequest

teZCL_Status eOTA_ClientUpgradeEndRequest(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 tsOTA_UpgradeEndRequestPayload
 *psUpgradeEndRequestPayload);

Description

This function can be used during an image download to send an Upgrade End Request to the server. This is
normally used to indicate that all the image data has been received and that the image has been successfully
verified - it is the responsibility of the client to determine when all the image data has been received (using the
image size quoted in the original Query Next Image Response) and then to verify the image.

In addition to the status OTA_STATUS_SUCCESS described above, the function can be used by the client to
report other conditions to the server:

• OTA_REQUIRE_MORE_IMAGE: The downloaded image was successfully received and verified, but the
client requires multiple images before performing an upgrade

• OTA_STATUS_INVALID_IMAGE: The downloaded image failed the verification checks and will be discarded

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
786 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• OTA_STATUS_ABORT The image download that is currently in progress should be cancelled

In all three of the above cases, the client may then request another download.

When the function is called to report success, an Upgrade End Response will (eventually) be received from
the server, indicating when the image upgrade should be implemented (a time delay may be indicated in the
response). The arrival of this response will trigger an E_CLD_OTA_COMMAND_UPGRADE_END_RESPONSE
event.

Note: The cluster client automatically sends an Upgrade End Request to the server on completion of a
download, so it is not normally necessary for the application to call this function.

Parameters

• u8SourceEndpoint: Number of endpoint (on client) from which the request is sent
• u8DestinationEndpoint: Number of endpoint (on server) to which the request is sent
• psDestinationAddress: Pointer to structure containing the address of the target server (see Section 6.1.4)
• psUpgradeEndRequestPayload: Pointer to structure containing payload for request, including reported status

(see Section 49.11.11)

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.3.6 eOTA_HandleImageVerification

teZCL_Status eOTA_HandleImageVerification(
uint8 u8SourceEndPointId,
uint8 u8DstEndpoint,
teZCL_Status eImageVerificationStatus);

Description

This function transmits an upgrade end request with the specified status.

Parameters

• u8SourceEndPointId: Identifier of endpoint on which the cluster client operates
• u8DstEndpoint: Identifier of endpoint (on the server) to which the upgrade end request is sent
• eImageVerificationStatus: Image status code

Returns

• E_ZCL_FAIL
• E_ZCL_SUCCESS

49.10.3.7 eOTA_UpdateClientAttributes

teZCL_Status eOTA_UpdateClientAttributes(
 uint8 u8Endpoint);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
787 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used on a client to set the OTA Upgrade cluster attributes to their default values. It should
be called during application initialization after the cluster instance has been created using eOTA_Create().

Following subsequent resets, provided that context data has been saved, the application should call
eOTA_RestoreClientData() instead of this function.

Parameters

• u8Endpoint: Number of endpoint corresponding to context data

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.3.8 eOTA_RestoreClientData

teZCL_Status eOTA_RestoreClientData(
 uint8 u8Endpoint,
 tsOTA_PersistedData *psOTAData,
 bool_t bReset);

Description

This function can be used to restore OTA Upgrade context data that has been previously saved to Flash
memory (using the NVM) on the local client - for example, it restores the OTA Upgrade attribute values. The
function can be used to restore the data in RAM following a device reset or simply to refresh the data in RAM.

Parameters

• 8Endpoint: Number of endpoint corresponding to context data
• psOTAData: Pointer to structure containing the context data to be restored (see Section 49.11.13)
• bReset: Indicates whether the data restoration follows a reset:
• TRUE - Follows a reset
• FALSE - Does not follow a reset

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.3.9 vOTA_SetImageValidityFlag

void vOTA_SetImageValidityFlag(
 uint8 u8Location,
 tsOTA_Common *psCustomData,
 bool bSet,
 tsZCL_EndPointDefinition *psEndPointDefinition);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
788 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used to set an image validity flag once a downloaded upgrade image has been received
and verified by the client.

Parameters

• u8Location: Number of sector where image starts in Flash memory
• psCustomData: Pointer to custom data for image (see Section 49.11.2)
• bSet: Flag state to be set:
• TRUE - Reset
• FALSE - No reset
• psEndPointDefinition: Pointer to endpoint definition (see Section 6.1.1)

Returns

• None

49.10.3.10 eOTA_ClientQuerySpecificFileRequest

eOTA_ClientQuerySpecificFileRequest(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress,
 tsOTA_QuerySpecificFileRequestPayload
 *psQuerySpecificFileRequestPayload);

Description

This function can be used to issue a Query Specific File Request to the server. It should be called to request
a device-specific file from the server. As a result of this function call, a Query Specific File Response will
(eventually) be received in reply.

Parameters

• u8SourceEndpoint: Number of endpoint (on client) from which the request is sent
• u8DestinationEndpoint: Number of endpoint (on server) to which the request is sent
• psDestinationAddress: Pointer to structure containing the address of the target server
• psQuerySpecificFileRequestPayload: Pointer to structure containing payload for Query Specific File Request

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.3.11 eOTA_SpecificFileUpgradeEndRequest

eOTA_SpecificFileUpgradeEndRequest(
 uint8 u8SourceEndPointId,
 uint8 u8Status);

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
789 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Description

This function can be used to issue an Upgrade End Request for the device-specific file download that is in
progress in order to indicate to the server that the download has completed. This request can be issued by the
client optionally after the downloaded image has been verified and found to be valid.

Parameters

• u8SourceEndPointId: Number of endpoint (on client) from which the request is sent
• u8Status: Download status of device-specific file - if the file has been completely and successfully received,

this parameter must be set to OTA_STATUS_SUCCESS

Returns

• E_ZCL_SUCCESS
• E_ZCL_FAIL

49.10.3.12 vOTA_SetLowVoltageFlag

void vOTA_SetLowVoltageFlag(bool bValue);

Description

This function can be used to configure the low-voltage flag on a node hosting an OTA Upgrade cluster client.
This flag should be set when the supply voltage to the underlying hardware is below that required for normal
operation and the node should not participate in an OTA upgrade.

• When the flag is set, the client stops sending Image Block Requests to the server
• When the flag is cleared, the client resumes sending Image Block Requests to the server

Use of the low-voltage flag must be enabled at compile-time by including the macro
OTA_UPGRADE_VOLTAGE_CHECK in the zcl_options.h file.

Use of the low-voltage flag is described further in Section 49.8.7.

Parameters

• bValue: Determines the state of the low-voltage flag, as follows:
– TRUE - Sets the flag
– FALSE - Clears the flag

Returns

• None

49.11 Structures

49.11.1 tsOTA_ImageHeader

The following structure contains information for the OTA header:

typedef struct
{

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
790 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint32 u32FileIdentifier;
 uint16 u16HeaderVersion;
 uint16 u16HeaderLength;
 uint16 u16HeaderControlField;
 uint16 u16ManufacturerCode;
 uint16 u16ImageType;
 uint32 u32FileVersion;
 uint16 u16StackVersion;
 uint8 stHeaderString[OTA_HEADER_STRING_SIZE];
 uint32 u32TotalImage;
 uint8 u8SecurityCredVersion;
 uint64 u64UpgradeFileDest;
 uint16 u16MinimumHwVersion;
 uint16 u16MaxHwVersion;
}tsOTA_ImageHeader;

where:

• u32FileIdentifier is a 4-byte value equal to 0x0BEEF11E which indicates that the file contains an OTA
upgrade image

• u16HeaderVersion is the version of the OTA header expressed as a 2-byte value in which the most
significant byte contains the major version number and the least significant byte contains the minor version
number

• u16HeaderLength is the full length of the OTA header, in bytes
• u16HeaderControlField is a bitmap indicating certain information about the file, as detailed in table

below.

Bit Information

0 Security credential version (in OTA header):
1: Field present in header
0: Field not present in header

1 Device-specific file (also see u64UpgradeFileDest):
1: File is device-specific
0: File is not device-specific

2 Maximum and minimum hardware version (in OTA header):
1: Field present in header
0: Field not present in header

3-15 Reserved

Table 118. u16HeaderControlField bitmap

• u16ManufacturerCode is the ZigBee-assigned manufacturer code (0xFFFF is a wildcard value,
representing any manufacturer)

• u16ImageType is a unique value representing the image type, where this value is normally manufacturer-
specific but certain values have been reserved for specific file types, as indicated below (the wildcard value of
0xFFFF represents any file type):

Value File Type

0x0000 – 0xFFBF Manufacturer-specific

0xFFC0 Security credential

0xFFC1 Configuration

Table 119. u16ImageType values

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
791 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Value File Type

0xFFC2 Log

0xFFC3 – 0xFFFE Reserved

0xFFFF Wildcard

Table 119. u16ImageType values...continued

• u32FileVersion contains the release and build numbers of the application and stack used to produce
the application image - for details of the file version format, refer to the ZigBee Over-the-Air Upgrading
Cluster Specification (095264)

• u16StackVersion contains ZigBee stack version that is used by the application (this is 0x0002 for ZigBee
PRO)

• stHeaderString[] is a manufacturer-specific string that can be used to store any useful human-readable
information

• u32TotalImage is the total size, in bytes, of the image that will be transferred over-the air (including the OTA
header and any optional data)

• u8SecurityCredVersion indicates the security credential version type that is required by the client in order
to install the image - the possibilities are SE1.0 (0x0), SE1.1 (0x1) and SE2.0 (0x2)

• u64UpgradeFileDest contains the IEEE/MAC address of the destination device for the file, in the case
when the file is device-specific (as indicated by bit 1 of u16HeaderControlField)

• u16MinimumHwVersion indicates the earliest hardware platform on which the image should be used,
expressed as a 2-byte value in which the most significant byte contains the hardware version number and the
least significant byte contains the revision number

• u16MaxHwVersion indicates the latest hardware platform on which the image should be used, expressed
as a 2-byte value in which the most significant byte contains the hardware version number and the least
significant byte contains the revision number

49.11.2 tsOTA_Common

The following structure contains data relating to an OTA message received by the cluster (server or client) - this
data is used for callback functions and the local OTA state machine:

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sOTACustomCallBackEvent;
 tsOTA_CallBackMessage sOTACallBackMessage;
} tsOTA_Common;

The fields are for internal use and no knowledge of them is required. The tsOTA_CallBackMessage structure
is described in Section 49.11.21.

49.11.3 tsOTA_HwFncTable

The following structure contains pointers to callback functions to be used by the OTA Upgrade cluster to perform
initialization, erase, write and read operations on Flash memory (if these functions are not specified, standard
NXP functions will be used):

typedef struct
{
 void (*prInitHwCb)(uint8, void*);
 void (*prEraseCb) (uint8 u8Sector);
 void (*prWriteCb) (uint32 u32FlashByteLocation,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
792 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint16 u16Len,
 uint8 *pu8Data);
 void (*prReadCb) (uint32 u32FlashByteLocation,
 uint16 u16Len,
 uint8 *pu8Data);
} tsOTA_HwFncTable;

where:

• prInitHwCb is a pointer to a callback function that is called after a cold or warm start to perform any
initialization required for the Flash memory device

• prEraseCb is a pointer to a callback function that is called to erase a specified sector of Flash memory
• prWriteCb is a pointer to a callback function that is called to write a block of data to a sector, starting the

write at a specified byte location in the sector (address zero is the start of the sector)
• prReadCb is a pointer to a callback function that is called to read a block of data from a sector, starting the

read at a specified byte location in the sector (address zero is the start of the sector)

49.11.4 tsNvmDefs

The following structure contains information used to configure access to Flash memory:

typedef struct
{
 tsOTA_HwFncTable sOtaFnTable;
 uint32 u32SectorSize;
 uint8 u8FlashDeviceType;
}tsNvmDefs;

where:

• sOtaFnTable is a structure specifying the callback functions to be used by the cluster to perform
initialization, erase, write and read operations on the Flash memory device (see Section 49.11.3) - if user-
defined callback functions are not specified, standard NXP functions will be used

• u32SectorSize is the size of a sector of the Flash memory device, in bytes
• u8FlashDeviceType is a value indicating the type of Flash memory device, one of:

– E_FL_CHIP_INTERNAL (Device internal Flash- default)

49.11.5 tsOTA_ImageNotifyCommand

The following structure contains the payload data for an Image Notify message issued by the server when a
new upgrade image is available for download:

typedef struct
{
 teOTA_ImageNotifyPayloadType ePayloadType;
 uint32 u32NewFileVersion;
 uint16 u16ImageType;
 uint16 u16ManufacturerCode;
 uint8 u8QueryJitter;
}tsOTA_ImageNotifyCommand;

where:

• ePayloadType is a value indicating the type of payload of the command (enumerations are available - see
Section 49.12.4)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
793 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u32NewFileVersion is the file version of the client upgrade image that is currently available for download
(the wild card of 0xFFFFFFFF is used to indicate that all clients should upgrade to this image)

• u16ImageType is a number indicating the type of image that is available for download (the wild card of
0xFFFF is used to indicate that all image types are involved)

• u16ManufacturerCode is a ZigBee-assigned number identifying the manufacturer to which the available
image is connected (if all manufacturers are involved, this value should not be set)

• u8QueryJitter is a value between 1 and 100 (inclusive) which is used by the receiving client to decide
whether to reply to this Image Notify message - for information on ‘Query Jitter’, refer to Section 49.7

49.11.6 tsOTA_QueryImageRequest

The following structure contains payload data for a Query Next Image Request issued by a client to poll the
server for an upgrade image or to respond to an Image Notify message from the server:

typedef struct
{
 uint32 u32CurrentFileVersion;
 uint16 u16HardwareVersion;
 uint16 u16ImageType;
 uint16 u16ManufacturerCode;
 uint8 u8FieldControl;
}tsOTA_QueryImageRequest;

where:

• u32CurrentFileVersion is the file version of the application image that is currently running on the client
that sent the request

• u16HardwareVersion is the hardware version of the client device (this information is optional - see
u8FieldControl below)

• u16ImageType is a value in the range 0x0000-0xFFBF which identifies the type of image currently running
on the client

• u16ManufacturerCode is the ZigBee-assigned number identifying the manufacturer of the client device
• u8FieldControl is a bitmap indicating whether certain optional information about the client is included in

this Query Next Image Request message. Currently, this optional information consists only of the hardware
version (contained in u16HardwareVersion above) - bit 0 is set to ‘1’ if the hardware version is included or
to ‘0’ otherwise (all other bits are reserved)

49.11.7 tsOTA_QueryImageResponse

The following structure contains payload data for a Query Next Image Response issued by the server (as the
result of a Query Next Image Request from a client):

typedef struct
{
 uint32 u32ImageSize;
 uint32 u32FileVersion;
 uint16 u16ManufacturerCode;
 uint16 u16ImageType;
 uint8 u8Status;
}tsOTA_QueryImageResponse;

where:

• u32ImageSize is the total size of the available image, in bytes
• u32FileVersion is the file version of the available image

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
794 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u16ManufacturerCode is the manufacturer code that was received from the client in the Query Next Image
Request message

• u16ImageType is the image type that was received from the client in the Query Next Image Request
message

• u8Status indicates whether a suitable image is available for download:
– OTA_STATUS_SUCCESS: A suitable image is available
– OTA_STATUS_NO_IMAGE_AVAILABLE: No suitable image is available

The other elements of the structure are only included in the case of success.

49.11.8 tsOTA_BlockRequest

The following structure contains payload data for an Image Block Request issued by a client to request an
image data block from the server:

typedef struct
{
 uint64 u64RequestNodeAddress;
 uint32 u32FileOffset;
 uint32 u32FileVersion;
 uint16 u16ImageType;
 uint16 u16ManufactureCode;
 uint16 u16BlockRequestDelay;
 uint8 u8MaxDataSize;
 uint8 u8FieldControl;
}tsOTA_BlockRequest;

where:

• u64RequestNodeAddress is the IEEE/MAC address of the client device from which the request originates
(this information is optional - see u8FieldControl below)

• u32FileOffset specifies the offset from the beginning of the upgrade image, in bytes, of the requested data
block (this value is therefore determined by the amount of image data previously received)

• u32FileVersion is the file version of the upgrade image for which a data block is being requested
• u16ImageType is a value in the range 0x0000-0xFFBF which identifies the type of image for which a data

block is being requested
• u16ManufactureCode is the ZigBee-assigned number identifying the manufacturer of the client device from

which the request originates
• u16BlockRequestDelay is used in ‘rate limiting’ to specify the value of the ‘block request delay’ attribute for

the client - this is minimum time, in milliseconds, that the client must wait between consecutive block requests
(the client will update the local attribute with this value). If the server does not support rate limiting or does not
need to limit the download rate to the client, this field will be set to 0

• u8MaxDataSize specifies the maximum size, in bytes, of the data block that the client can receive in one
transfer (the server must therefore not send a data block that is larger than indicated by this value)

• u8FieldControl is a bitmap indicating whether certain optional information about the client is included
in this Image Block Request message. Currently, this optional information consists only of the IEEE/MAC
address of the client (contained in 64RequestNodeAddress above) - bit 0 is set to ‘1’ if this address is
included or to ‘0’ otherwise (all other bits are reserved)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
795 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

49.11.9 tsOTA_ImagePageRequest

The following structure contains payload data for an Image Page Request issued by a client to request a page
of image data (multiple blocks) from the server:

typedef struct
{
 uint64 u64RequestNodeAddress;
 uint32 u32FileOffset;
 uint32 u32FileVersion;
 uint16 u16PageSize;
 uint16 u16ResponseSpacing;
 uint16 u16ImageType;
 uint16 u16ManufactureCode;
 uint8 u8MaxDataSize;
 uint8 u8FieldControl;
}tsOTA_ImagePageRequest;

where:

• u64RequestNodeAddress is the IEEE/MAC address of the client device from which the request originates
(this information is optional - see u8FieldControl below)

• u32FileOffset specifies the offset from the beginning of the upgrade image, in bytes, of the first data block
of the requested page (this value is therefore determined by the amount of image data previously received)

• u32FileVersion is the file version of the upgrade image for which data is being requested
• u16PageSize is the total number of data bytes (in the page) to be returned by the server before the next

Image Page Request can be issued (this must be larger than the value of u8MaxDataSize below)
• u16ResponseSpacing specifies the time-interval, in milliseconds, that the server should introduce between

consecutive transmissions of Image Block Responses (which is sent in response to the Image Page Request)
• u16ImageType is a value in the range 0x0000-0xFFBF which identifies the type of image for which data is

being requested
• u16ManufactureCode is the ZigBee-assigned number identifying the manufacturer of the client device from

which the request originates
• u8MaxDataSize specifies the maximum size, in bytes, of the data block that the client can receive in one

transfer (the server must therefore not send a data block in an Image Block Response that is larger than
indicated by this value)

• u8FieldControl is a bitmap indicating whether certain optional information about the client is included
in this Image Page Request message. Currently, this optional information consists only of the IEEE/MAC
address of the client (contained in 64RequestNodeAddress above) - bit 0 is set to ‘1’ if this address is
included or to ‘0’ otherwise (all other bits are reserved)

49.11.10 tsOTA_ImageBlockResponsePayload

The following structure contains payload data for an Image Block Response issued by the server (as the result
of an Image Block Request from a client):

typedef struct
{
 uint8 u8Status;
 union
 {
 tsOTA_WaitForData sWaitForData;
 tsOTA_SuccessBlockResponsePayload sBlockPayloadSuccess;
 }uMessage;
}tsOTA_ImageBlockResponsePayload;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
796 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

where:

• u8Status indicates whether a data block is included in the response:
– OTA_STATUS_SUCCESS: A data block is included
– OTA_STATUS_WAIT_FOR_DATA: No data block is included - client should re-request a data block after a

waiting time
• The element used from the union depends on the status reported above:

– sWaitForData is a structure containing information used to instruct the requesting client to wait for a
time before requesting the data block again or requesting the next data block (see Section 49.11.15) - this
information is only provided in the case of the status OTA_STATUS_WAIT_FOR_DATA

– sBlockPayloadSuccess is a structure containing a requested data block and associated information (see
Section 49.11.13) - this data is only provided in the case of the status OTA_STATUS_SUCCESS

49.11.11 tsOTA_UpgradeEndRequestPayload

The following structure contains payload data for an Upgrade End Request issued by a client to terminate/close
an image download from the server:

typedef struct
{
 uint32 u32FileVersion;
 uint16 u16ImageType;
 uint16 u16ManufacturerCode;
 uint8 u8Status;
}tsOTA_UpgradeEndRequestPayload;

where:

• u32FileVersion is the file version of the upgrade image which has been downloaded
• u16ImageType is the type of the upgrade image which has been downloaded
• u16ManufacturerCode is the ZigBee-assigned number identifying the manufacturer of the client device

from which the request originates
• u8Status is the reported status of the image download, one of:

– OTA_STATUS_SUCCESS (successfully downloaded and verified)
– OTA_STATUS_INVALID_IMAGE (downloaded but failed verification)
– OTA_REQUIRE_MORE_IMAGE (other images needed)
– OTA_STATUS_ABORT (download in progress is to be aborted)

49.11.12 tsOTA_UpgradeEndResponsePayload

The following structure contains payload data for an Upgrade End Response issued by the server (as the result
of an Upgrade End Request from a client):

typedef struct
{
 uint32 u32UpgradeTime;
 uint32 u32CurrentTime;
 uint32 u32FileVersion;
 uint16 u16ImageType;
 uint16 u16ManufacturerCode;
}tsOTA_UpgradeEndResponsePayload;

where:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
797 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• u32UpgradeTime is the UTC time, in seconds, at which the client should upgrade the running image
with the downloaded image. If the server does not support UTC time (indicated by a zero value for
u32CurrentTime), the client should interpret this value as a time delay before performing the image
upgrade

• u32CurrentTime is the current UTC time, in seconds, on the server. If UTC time is not supported by the
server, this value should be set to zero. If this value is set to 0xFFFFFFFF, this indicates that the client should
wait for an upgrade command from the server before performing the image upgrade

Note: If the client does not support UTC time but both of the above time values are non-zero, the client will take
the difference between the two times as a time delay before performing the image upgrade.

• u32FileVersion is the file version of the downloaded application image (a wild card value of 0xFFFFFFFF
can be used when the same response is sent to client devices from different manufacturers)

• u16ImageType is the type of the downloaded application image (a wild card value of 0xFFFF can be used
when the same response is sent to client devices from different manufacturers)

• u16ManufacturerCode is the manufacturer code that was received from the client in the Upgrade End
Request message (a wild card value of 0xFFFF can be used when the same response is sent to client
devices from different manufacturers)

49.11.13 tsOTA_SuccessBlockResponsePayload

The following structure contains payload data for an Image Block Response which reports ‘success’ and
therefore contains a block of image data (see Section 49.11.10):

typedef struct
{
 uint8* pu8Data;
 uint32 u32FileOffset;
 uint32 u32FileVersion;
 uint16 u16ImageType;
 uint16 u16ManufacturerCode;
 uint8 u8DataSize;
}tsOTA_SuccessBlockResponsePayload;

where:

• pu8Data is a pointer to the start of the data block being transferred
• u32FileOffset is the offset, in bytes, of the start of the data block from the start of the image (normally, the

same offset as specified in the Image Block Request)
• u32FileVersion is the file version of the upgrade image to which the included data block belongs
• u16ImageType is the type of the upgrade image to which the included data block belongs
• u16ManufacturerCode is the manufacturer code that was received from the client in the Image Block

Request
• u8DataSize is the length, in bytes, of the included data block (this must be less than or equal to the

maximum data block length for the client, specified in the Image Block Request)

49.11.14 tsOTA_BlockResponseEvent

The following structure contains payload data for an Image Block Response containing data other than upgrade
image data.

typedef struct
{
 uint8 u8Status;
 uint8 *pu8Data;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
798 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint8 u8DataSize;
}tsOTA_BlockResponseEvent;

where:

• u8Status indicates whether a suitable upgrade image is available:
– OTA_STATUS_SUCCESS: A suitable image is available
– OTA_STATUS_NO_IMAGE_AVAILABLE: No suitable image is available

• pu8Data is a pointer to the start of the data block being transferred
• u8DataSize is the length, in bytes, of the included data block (this must be less than or equal to the

maximum data block length for the client, specified in the Image Block Request)

49.11.15 tsOTA_WaitForData

The following structure contains time information for an Image Block Response. It can be used by a response
which reports ‘failure’, to instruct the client to re-request the data block after a certain waiting time (see Section
49.11.10). It can also be used in ‘rate limiting’ to specify a new value for the ‘block request delay’ attribute on the
client.

typedef struct
{
 uint32 u32CurrentTime;
 uint32 u32RequestTime;
 uint16 u16BlockRequestDelayMs;
}tsOTA_WaitForData;

where:

• u32CurrentTime is the current UTC time, in seconds, on the server. If UTC time is not supported by the
server, this value should be set to zero

• u32RequestTime is the UTC time, in seconds, at which the client should re-issue an Image Block
Request. If the server does not support UTC time (indicated by a zero value for u32CurrentTime), the client
should interpret this value as a time delay before re-issuing an Image Block Request

Note: If the client does not support UTC time but both of the above values are non-zero, the client will take the
difference between the two times as a time delay before re-issuing an Image Block Request.

• u16BlockRequestDelayMs is used in ‘rate limiting’ to specify the value of the ‘block request delay’ attribute
for the client - this is minimum time, in milliseconds, that the client must wait between consecutive block
requests (the client will update the local attribute with this value). If the server does not support rate limiting or
does not need to limit the download rate to the client, this field must be set to 0

49.11.16 tsOTA_WaitForDataParams

The following structure is used in the tsOTA_CallBackMessage structure (see Section 49.11.21) on an OTA
Upgrade server. It contains the data needed to notify a client that rate limiting is required or the client must wait
to receive an upgrade image.

typedef struct
{
 bool_t bInitialized;
 uint16   u16ClientAddress;
 tsOTA_WaitForData sWaitForDataPyld;
}tsOTA_WaitForDataParams;

where:

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
799 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• bInitialized is a boolean flag indicating the server’s request to the client:
TRUE - Implement rate limiting or wait to receive upgrade image
 FALSE - Otherwise

• u16ClientAddress contains the 16-bit network address of the client
• sWaitForDataPyld is a structure containing the payload for an Image Block Response with status

OTA_STATUS_WAIT_FOR_DATA (see Section 49.11.15)

49.11.17 tsOTA_PageReqServerParams

The following structure is used in the tsOTA_CallBackMessage structure (see Section 49.11.21) on an OTA
Upgrade server. It contains the data from an Image Page Request received from a client.

typedef struct
{
 uint8 u8TransactionNumber;
 bool_t bPageReqRespSpacing;
 uint16 u16DataSent;
 tsOTA_ImagePageRequest sPageReq;
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
}tsOTA_PageReqServerParams;

where:

• u8TransactionNumber is the Transaction Sequence Number (TSN) which is used in the Image Page
Request

• bPageReqRespSpacing is a boolean used to request a spacing between consecutive Image Block
Responses:

TRUE - Implement spacing
 FALSE - Otherwise

• u16DataSent indicates the number of data bytes contained in the Image Page Request
• sPageReq is a structure containing the payload data from the Image Page Request (see Section 49.11.9)
• sReceiveEventAddress contains the address of the OTA Upgrade client that made the page request

49.11.18 tsOTA_PersistedData

The following structure contains the persisted data that is stored in Flash memory using the NVM module:

typedef struct
{
 tsCLD_AS_Ota sAttributes;
 uint32 u32FunctionPointer;
 uint32 u32RequestBlockRequestTime;
 uint32 u32CurrentFlashOffset;
 uint32 u32TagDataWritten;
 uint32 u32Step;
 uint16 u16ServerShortAddress;
#ifdef OTA_CLD_ATTR_REQUEST_DELAY
 bool_t bWaitForBlockReq;
#endif
 uint8 u8ActiveTag[OTA_TAG_HEADER_SIZE];
 uint8 u8PassiveTag[OTA_TAG_HEADER_SIZE];
 uint8 au8Header[OTA_MAX_HEADER_SIZE];
 uint8 u8Retry;
 uint8 u8RequestTransSeqNo;
 uint8 u8DstEndpoint;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
800 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 bool_t bIsCoProcessorImage;
 bool_t bIsSpecificFile;
 bool_t bIsNullImage;
 uint8 u8CoProcessorOTAHeaderIndex;
 uint32 u32CoProcessorImageSize;
 uint32 u32SpecificFileSize;
#ifdef OTA_PAGE_REQUEST_SUPPORT
 tsOTA_PageReqParams sPageReqParams;
#endif
#if (OTA_MAX_CO_PROCESSOR_IMAGES != 0)
 uint8 u8NumOfDownloadableImages;
#endif
#ifdef OTA_INTERNAL_STORAGE
 uint8 u8Buf[4];
#endif
}tsOTA_PersistedData;

The fields are for internal use and no knowledge of them is required.

49.11.19 tsOTA_QuerySpecificFileRequestPayload

The following structure contains the payload for a Query Specific File Request which is issued by an OTA
Upgrade client to request a device-specific file from the server.

typedef struct
{
 uint64 u64RequestNodeAddress;
 uint16 u16ManufacturerCode;
 uint16 u16ImageType;
 uint32 u32FileVersion;
 uint16 u16CurrentZibgeeStackVersion;
}tsOTA_QuerySpecificFileRequestPayload;

where:

• u64RequestNodeAddress is the IEEE/MAC address of the node requesting the device-specific file from the
server

• u16ManufactuerCode is the ZigBee-assigned manufacturer code of the requesting node (0xFFFF is used
to indicate any manufacturer)

• u16ImageType indicates the requested file type - one of the reserved values that are assigned to the device-
specific file types (the value should be in the range 0xFFC0 to 0xFFFE, but only 0xFFC0 to 0xFFC2 are
currently in use)

• 32FileVersion contains the release and build numbers of the application and stack that correspond to the
device-specific file - for details of the format, refer to the ZigBee Over-the-Air Upgrading Cluster Specification
(095264)

• u16CurrentZigbeeStackVersion contains the version of ZigBee stack that is currently running on the
client

49.11.20 tsOTA_QuerySpecificFileResponsePayload

The following structure contains the payload for a Query Specific File Response which is issued by an OTA
Upgrade server in response to a request for a device-specific file.

typedef struct
{
 uint32 u32FileVersion;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
801 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint32 u32ImageSize;
 uint16 u16ImageType;
 uint16 u16ManufacturerCode;
 uint8 u8Status;
}tsOTA_QuerySpecificFileResponsePayload;

where:

• 32FileVersion contains the release and build numbers of the application and stack that correspond to
the device-specific file - this field will take the same value as the equivalent field in the corresponding Query
Specific File Request (see Section 49.11.19)

• u32ImageSize is the size of the requested file, in bytes
• u16ImageType indicates the requested file type - this field will take the same value as the equivalent field in

the corresponding Query Specific File Request (see Section 49.11.19)
• u16ManufactuerCode is the ZigBee-assigned manufacturer code of the requesting node - this field will

take the same value as the equivalent field in the corresponding Query Specific File Request (see Section
49.11.19)

• u8Status indicates whether a suitable file is available for download:
– OTA_STATUS_SUCCESS: A suitable file is available
– OTA_STATUS_NO_IMAGE_AVAILABLE: No suitable file is available

The other elements of the structure are only included in the case of success.

49.11.21 tsOTA_CallBackMessage

For an OTA event, the eEventType field of the tsZCL_CallBackEvent structure is set
to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an element
sClusterCustomMessage, which is itself a structure containing a field pvCustomData. This field is a pointer
to the following tsOTA_CallBackMessage structure:

typedef struct
{
 teOTA_UpgradeClusterEvents eEventId;
#ifdef OTA_CLIENT
 tsOTA_PersistedData sPersistedData;
 uint8 au8ReadOTAData[OTA_MAX_BLOCK_SIZE];
 uint8 u8NextFreeImageLocation;
 uint8 u8CurrentActiveImageLocation;
#endif
#ifdef OTA_SERVER
 tsCLD_PR_Ota aServerPrams[OTA_MAX_IMAGES_PER_ENDPOINT
+OTA_MAX_CO_PROCESSOR_IMAGES];
 tsOTA_AuthorisationStruct sAuthStruct;
 uint8 u8ServerImageStartSector;
 bool bIsOTAHeaderCopied;
 uint8 au8ServerOTAHeader[OTA_MAX_HEADER_SIZE+OTA_TAG_HEADER_SIZE];
 tsOTA_WaitForDataParams sWaitForDataParams;
#ifdef OTA_PAGE_REQUEST_SUPPORT
 tsOTA_PageReqServerParams sPageReqServerParams;
#endif
#endif
 uint8 u8ImageStartSector[OTA_MAX_IMAGES_PER_ENDPOINT];
 uint8 au8CAPublicKey[22];
 uint8 u8MaxNumberOfSectors;
 union
 {
 tsOTA_ImageNotifyCommand sImageNotifyPayload;
 tsOTA_QueryImageRequest sQueryImagePayload;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
802 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsOTA_QueryImageResponse sQueryImageResponsePayload;
 tsOTA_BlockRequest sBlockRequestPayload;
 tsOTA_ImagePageRequest sImagePageRequestPayload;
 tsOTA_ImageBlockResponsePayload sImageBlockResponsePayload;
 tsOTA_UpgradeEndRequestPayload sUpgradeEndRequestPayload;
 tsOTA_UpgradeEndResponsePayload sUpgradeResponsePayload;
 tsOTA_QuerySpecificFileRequestPayload sQuerySpFileRequestPayload;
 tsOTA_QuerySpecificFileResponsePayload
 sQuerySpFileResponsePayload;
 teZCL_Status eQueryNextImgRspErrStatus;
 tsOTA_SignerMacVerify sSignerMacVerify;
 tsOTA_ImageVersionVerify sImageVersionVerify;
 tsOTA_UpgradeDowngradeVerify sUpgradeDowngradeVerify;
 }uMessage;
}tsOTA_CallBackMessage;

where:

• eEventId is the OTA event type (enumerations are detailed in Section 49.12.2)
• sPersistedData is the structure (see Section 49.11.18) which contains the persisted data that is

stored in Flash memory using the NVM module on the client
• au8ReadOTAData is an array containing the payload data from an Image Block Response
• u8NextFreeImageLocation identifies the next free image location where a new upgrade image can

be stored
• u8CurrentActiveImageLocation identifies the location of the currently active image on the client
• aServerPrams is an array containing the server data for each image which can be updated by

application
• sAuthStruct is a structure which stores the authorisation state and list of client devices that are authorised

for OTA upgrade
• u8ServerImageStartSector identifies the server self-image start-sector
• bIsOTAHeaderCopied specifies whether the new OTA header is copied (TRUE) or not (FALSE)
• au8ServerOTAHeader specifies the current server OTA header
• sWaitForDataParams is a structure containing time information that may need to be modified by the server

for inclusion in an Image Block Response (for more information, refer to Section 49.11.15)
• sPageReqServerParams is a structure containing page request information that may need to be modified by

the server
• u8ImageStartSector is used to store the image start-sector for each image which is stored or will be

stored in the devices internal Flash memory - note that this variable assumes a 32-Kbyte sector size and so,
for example, if
64-Kbyte sectors are used, its value will be twice the actual start-sector value

• au8CAPublicKey specifies the CA public key
• u8MaxNumberOfSectors specifies the maximum number of sectors to be used per image
• uMessage is a union containing the command payload in one of the following forms (depending on the

command specified by eEventId):
– sImageNotifyPayload is a structure containing the payload of an Image Notify command
– sQueryImagePayload is a structure containing the payload of a Query Next Image Request
– sQueryImageResponsePayload is a structure containing the payload of a Query Next Image

Response
– sBlockRequestPayload is a structure containing the payload of an Image Block Request
– sImagePageRequestPayload is a structure containing the payload of an Image Page Request
– sImageBlockResponsePayload is a structure containing the payload of an Image Block Response
– sUpgradeEndRequestPayload is a structure containing the payload of an Upgrade End Request

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
803 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

– sUpgradeResponsePayload is a structure containing the payload of an Upgrade End Response
– sQuerySpFileRequestPayload is a structure containing the payload of a Query Specific File

Request
– sQuerySpFileResponsePayload is a structure containing the payload of a Query Specific File

Response
– eQueryNextImgRspErrStatus is the status returned from the query image response command handler

and can be passed up to the application when there is an error via the callback event E_CLD_OTA_
COMMAND_QUERY_NEXT_IMAGE_RESPONSE_
ERROR. The returned status value will be either E_ZCL_ERR_INVALID_IMAGE_SIZE or
E_ZCL_ERR_INVALID_IMAGE_VERSION

– sSignerMacVerify is a structure containing the signer’s IEEE/MAC address from a new upgrade image
and a status field (which is set by the application after verifying the signer’s address)

– sImageVersionVerify is a structure containing the image version received in the query next image
response and status field (which is set by the application after verifying the image version)

– sUpgradeDowngradeVerify is a structure containing the image version received in the upgrade end
response and a status field (which is set by the application after verifying the image version)

49.11.22 tsCLD_PR_Ota

The following structure contains server parameter data that can be pre-set using the function
eOTA_SetServerParams() and obtained using eOTA_GetServerData():

typedef struct
{
 uint8* pu8Data;
 uint32 u32CurrentTime;
 uint32 u32RequestOrUpgradeTime;
 uint8 u8QueryJitter;
 uint8 u8DataSize;
} tsCLD_PR_Ota;

where:

• pu8Data is a pointer to the start of a block of data
• u32CurrentTime is the current UTC time, in seconds, on the server. If UTC time is not supported by the

server, this value should be set to zero
• u32RequestOrUpgradeTime is used by the server as the ‘request time’ and the ‘upgrade time’ when

sending responses to clients:
– As a ‘request time’, the value may be included in an Image Block Response (see Section 49.11.10 and

Section 49.11.15)
– As an ‘upgrade time’, the value will be included in an Upgrade End Response (see Section 49.11.12)

• u8QueryJitter is a value between 1 and 100 (inclusive) which is used by a receiving client to decide
whether to reply to an Image Notify message - for information on ‘Query Jitter’, refer to Section 49.7

• u8DataSize is the length, in bytes, of the data block pointed to by pu8Data

49.11.23 tsCLD_AS_Ota

This structure contains attribute values which are stored as part of the persisted data in Flash memory:

typedef struct
{
 uint64 u64UgradeServerID;
 uint32 u32FileOffset;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
804 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 uint32 u32CurrentFileVersion;
 uint16 u16CurrentStackVersion;
 uint32 u32DownloadedFileVersion;
 uint16 u16DownloadedStackVersion;
 uint8 u8ImageUpgradeStatus;
 uint16 u16ManfId;
 uint16 u16ImageType;
 uint16 u16MinBlockRequestDelay;
} tsCLD_AS_Ota;
where the structure elements are OTA Upgrade cluster attribute values, as described in Section 49.3.

49.11.24 tsOTA_ImageVersionVerify

The following structure contains the data for an event of the type E_CLD_OTA_INTERNAL_COMMAND_
VERIFY_IMAGE_VERSION.

typedef struct
{
 uint32 u32NotifiedImageVersion;
 uint32 u32CurrentImageVersion;
 teZCL_Status eImageVersionVerifyStatus;
}tsOTA_ImageVersionVerify;

where:

• u32NotifiedImageVersion is the version received in the query next image response
• u32CurrentImageVersion is the version of the running image
• eImageVersionVerifyStatus is a status field which should be updated to E_ZCL_SUCCESS or

E_ZCL_FAIL by the application after checking the received image version, to indicate whether the upgrade
image has a valid image version

49.11.25 tsOTA_UpgradeDowngradeVerify

The following structure contains the data for an event of the type E_CLD_OTA_INTERNAL_COMMAND_
SWITCH_TO_UPGRADE_DOWNGRADE.

typedef struct
{
 uint32 u32DownloadImageVersion;
 uint32 u32CurrentImageVersion;
 teZCL_Status eUpgradeDowngradeStatus;
}tsOTA_UpgradeDowngradeVerify;

where:

• u32DownloadImageVersion is the version received in upgrade end response
• u32CurrentImageVersion is the version of running image
• eImageVersionVerifyStatus is a status field which should be updated to E_ZCL_SUCCESS or

E_ZCL_FAIL by the application after checking the received image version, to indicate whether the upgrade
image has a valid image version

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
805 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

49.12 Enumerations

49.12.1 teOTA_Cluster

The following enumerations represent the OTA Upgrade cluster attributes:

typedef enum
{
 E_CLD_OTA_ATTR_UPGRADE_SERVER_ID,
 E_CLD_OTA_ATTR_FILE_OFFSET,
 E_CLD_OTA_ATTR_CURRENT_FILE_VERSION,
 E_CLD_OTA_ATTR_CURRENT_ZIGBEE_STACK_VERSION,
 E_CLD_OTA_ATTR_DOWNLOADED_FILE_VERSION,
 E_CLD_OTA_ATTR_DOWNLOADED_ZIGBEE_STACK_VERSION,
 E_CLD_OTA_ATTR_IMAGE_UPGRADE_STATUS,
 E_CLD_OTA_ATTR_MANF_ID,
 E_CLD_OTA_ATTR_IMAGE_TYPE,
 E_CLD_OTA_ATTR_REQUEST_DELAY
}teOTA_Cluster;

The above enumerations are described in the table below.

Enumeration Attribute

E_CLD_OTA_ATTR_UPGRADE_SERVER_ID Upgrade Server ID

E_CLD_OTA_ATTR_FILE_OFFSET File Offset

E_CLD_OTA_ATTR_CURRENT_FILE_VERSION Current File Version

E_CLD_OTA_ATTR_CURRENT_ZIGBEE_STACK_VERSION Current ZigBee Stack Version

E_CLD_OTA_ATTR_DOWNLOADED_FILE_VERSION Downloaded File Version

E_CLD_OTA_ATTR_DOWNLOADED_ZIGBEE_STACK_VERSION Downloaded ZigBee Stack Version

E_CLD_OTA_ATTR_IMAGE_UPGRADE_STATUS Image Upgrade Status

E_CLD_OTA_ATTR_MANF_ID Manufacturer ID

E_CLD_OTA_ATTR_IMAGE_TYPE Image Type

E_CLD_OTA_ATTR_REQUEST_DELAY Minimum Block Request Delay

Table 120. OTA Upgrade Cluster Attributes

The above attributes are described in Section 49.3.

49.12.2 teOTA_UpgradeClusterEvents

The following enumerations represent the OTA Upgrade cluster events:

typedef enum
{
 E_CLD_OTA_COMMAND_IMAGE_NOTIFY,
 E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_REQUEST,
 E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE,
 E_CLD_OTA_COMMAND_BLOCK_REQUEST,
 E_CLD_OTA_COMMAND_PAGE_REQUEST,
 E_CLD_OTA_COMMAND_BLOCK_RESPONSE,
 E_CLD_OTA_COMMAND_UPGRADE_END_REQUEST,
 E_CLD_OTA_COMMAND_UPGRADE_END_RESPONSE,
 E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_REQUEST,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
806 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_RESPONSE,
 E_CLD_OTA_INTERNAL_COMMAND_TIMER_EXPIRED,
 E_CLD_OTA_INTERNAL_COMMAND_SAVE_CONTEXT,
 E_CLD_OTA_INTERNAL_COMMAND_OTA_DL_ABORTED,
 E_CLD_OTA_INTERNAL_COMMAND_POLL_REQUIRED,
 E_CLD_OTA_INTERNAL_COMMAND_RESET_TO_UPGRADE,
 E_CLD_OTA_INTERNAL_COMMAND_LOCK_FLASH_MUTEX,
 E_CLD_OTA_INTERNAL_COMMAND_FREE_FLASH_MUTEX,
 E_CLD_OTA_INTERNAL_COMMAND_SEND_UPGRADE_END_RESPONSE,
 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_BLOCK_RESPONSE,
 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_DL_ABORT,
 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_DL_COMPLETE,
 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_SWITCH_TO_NEW_IMAGE,
 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_BLOCK_REQUEST,
 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_BLOCK_RESPONSE,
 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_ABORT,
 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_COMPLETE,
 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_USE_NEW_FILE,
 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_NO_UPGRADE_END_RESPONSE,
 E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE_ERROR,
 E_CLD_OTA_INTERNAL_COMMAND_VERIFY_SIGNER_ADDRESS,
 E_CLD_OTA_INTERNAL_COMMAND_RCVD_DEFAULT_RESPONSE,
 E_CLD_OTA_INTERNAL_COMMAND_VERIFY_IMAGE_VERSION,
 E_CLD_OTA_INTERNAL_COMMAND_SWITCH_TO_UPGRADE_DOWNGRADE,
 E_CLD_OTA_INTERNAL_COMMAND_REQUEST_QUERY_NEXT_IMAGES,
 E_CLD_OTA_INTERNAL_COMMAND_OTA_START_IMAGE_VERIFICATION_IN_LOW_PRIORITY,
 E_CLD_OTA_INTERNAL_COMMAND_FAILED_VALIDATING_UPGRADE_IMAGE,
 E_CLD_OTA_INTERNAL_COMMAND_FAILED_COPYING_SERIALIZATION_DATA
}teOTA_UpgradeClusterEvents;

The above enumerations are described in the table below.

Enumeration Event Description

E_CLD_OTA_COMMAND_IMAGE_NOTIFY Generated on client when an Image Notify message is
received from the server to indicate that a new application
image is available for download

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_REQ
UEST

Generated on server when a Query Next Image Request is
received from a client to enquire whether a new application
image is available for download

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RES
PONSE

Generated on client when a Query Next Image Response
is received from the server (in response to a Query Next
Image Request) to indicate whether a new application
image is available for download

E_CLD_OTA_COMMAND_BLOCK_REQUEST Generated on server when an Image Block Request is
received from a client to request a block of image data as
part of a download

E_CLD_OTA_COMMAND_PAGE_REQUEST Generated on server when an Image Page Request is
received from a client to request a page of image data as
part of a download

E_CLD_OTA_COMMAND_BLOCK_RESPONSE Generated on client when an Image Block Response is
received from the server (in response to an Image Block
Request) and contains a block of image data which is part
of a download

Table 121. OTA Upgrade Cluster Events

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
807 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Event Description

E_CLD_OTA_COMMAND_UPGRADE_END_REQUEST Generated on server when an Upgrade End Request is
received from a client to indicate that the complete image
has been downloaded and verified

E_CLD_OTA_COMMAND_UPGRADE_END_RESPONSE Generated on client when an Upgrade End Response is
received from the server (in response to an Upgrade End
Request) to confirm the end of a download

E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_
REQUEST

Generated on server when a Query Specific File Request
is received from a client to request a particular application
image

E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_
RESPONSE

Generated on client when a Query Specific File Response
is received from the server (in response to a Query Specific
File Request) to indicate whether the requested application
image is available for download

E_CLD_OTA_INTERNAL_COMMAND_TIMER_EXPIRED Generated on client to notify the application that the local
one-second timer has expired

E_CLD_OTA_INTERNAL_COMMAND_SAVE_CONTEXT Generated on server or client to prompt the application to
store context data in Flash memory

E_CLD_OTA_INTERNAL_COMMAND_OTA_DL_ABORTED Generated on a client if the received image is invalid or
the client has aborted the image download (allowing the
application to request the new image again)

E_CLD_OTA_INTERNAL_COMMAND_POLL_REQUIRED Generated on client to prompt the application to poll the
server for a new application image

E_CLD_OTA_INTERNAL_COMMAND_RESET_TO_UP
GRADE

Generated on client to notify the application that the stack
is going to reset the device

E_CLD_OTA_INTERNAL_COMMAND_LOCK_-FLASH_
MUTEX

Generated on server or client to prompt the application to
lock the mutex used for accesses to external Flash
memory

E_CLD_OTA_INTERNAL_COMMAND_FREE_-FLASH_
MUTEX

Generated on server or client to prompt the application
to unlock the mutex used for accesses to external Flash
memory

E_CLD_OTA_INTERNAL_COMMAND_SEND_UPGRADE_
END_RESPONSE

Generated on server to notify the application that the stack
is going to send an Upgrade End Response to a client

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_
BLOCK_RESPONSE

Generated on client to notify the application that Image
Block Response has been received for co-processor image

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_
DL_ABORT

Generated on client to notify the application that download
of co-processor image from the server has been aborted

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_
IMAGE_DL_COMPLETE

Generated on client to notify the application that download
of co-processor image from the server has completed

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_
SWITCH_TO_NEW_IMAGE

Generated on client to notify the application that the
upgrade time for a previously downloaded co-processor
image has been reached (this event is generated after
receiving the Upgrade End Response which contains the
upgrade time)

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_
IMAGE_BLOCK_REQUEST

Generated on server when an Image Block Request is
received from a client to request a block of image data

Table 121. OTA Upgrade Cluster Events...continued

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
808 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Event Description
as part of a download and the server finds that the required
image is stored in the co-processor’s external storage
device

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_
BLOCK_RESPONSE

Generated on client when an Image Block Response
is received from server as part of a device-specific file
download - the event contains a block of file data which the
client stores in an appropriate location

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_
ABORT

Generated on client when the final Image Block Response
of a device-specific file download has been received from
the server

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_
COMPLETE

Generated on client following a device-specific file
download to indicate that the upgrade time has been
reached and the file can now be used by the client

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_
USE_NEW_FILE

Generated to indicate that a device-specific file download is
being aborted and any received data must be discarded by
the application

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_
NO_UPGRADE_END_RESPONSE

Generated to indicate that no Upgrade End Response has
been received for a device-specific file download (after
three attempts to obtain one)

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RES
PONSE_ERROR

This event is generated on the client when a Query Next
Image Response message is received from the server, in
response to a Query Next Image Request with a status of
Invalid Image Size.

E_CLD_OTA_INTERNAL_COMMAND_VERIFY_SIGNER_
ADDRESS

This event is generated to prompt the application to verify
the signer address received in a new OTA upgrade image.
This event gives control to the application to verify that
the new upgrade image came from a trusted source. After
checking the signer address, the application should set
the status field of the event to E_ZCL_SUCCESS (valid
source) or E_ZCL_FAIL (invalid source).

E_CLD_OTA_INTERNAL_COMMAND_RCVD_DEFAULT_
RESPONSE

This event is generated on the client when a default
response message is received from the server, in response
to a Query Next Image Request, Image Block Request
or Upgrade End Request. This is an internal ZCL event
that results in an OTA download being aborted, thus
activating the callback function for the event E_CLD_OTA_
INTERNAL_COMMAND_OTA_DL_ABORTED.

E_CLD_OTA_INTERNAL_COMMAND_VERIFY_IMAGE_
VERSION

This event is generated to prompt the application to
verify the image version received in a Query Next Image
Response. This event allows the application to verify that
the new upgrade image has a valid image version. After
checking the image version, the application should set
the status field of the event to E_ZCL_SUCCESS (valid
version) or E_ZCL_FAIL (invalid version).

E_CLD_OTA_INTERNAL_COMMAND_SWITCH_TO_U
PGRADE_DOWNGRADE

This event is generated to prompt the application to verify
the image version received in an upgrade end response.
This event allows the application to verify that the new
upgrade image has a valid image version.
After checking the image version, the application should
set the status field of the event to E_ZCL_SUCCESS (valid
version) or E_ZCL_FAIL (invalid version).

Table 121. OTA Upgrade Cluster Events...continued

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
809 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Enumeration Event Description

E_CLD_OTA_INTERNAL_COMMAND_REQUEST_QUERY_
NEXT_IMAGES

This event is generated on the client when a co-processor
image also requires the client to update its own image.
After the first file is downloaded (co-processor image) this
event notifies the application to allow it to send a Query
Next Image command for its own upgrade image, using the
function eOTA_ClientQueryNextImageRequest().

E_CLD_OTA_INTERNAL_COMMAND_OTA_START_I
MAGE_VERIFICATION_IN_LOW_PRIORITY

This event is generated to prompt the application to verify
the downloaded JN516x client image from a low priority
task. Once the low priority task is running, the application
should call eOTA_VerifyImage() to start image verification.

E_CLD_OTA_INTERNAL_COMMAND_FAILED_VALID
ATING_UPGRADE_IMAGE

This event is generated on the client when the validation
of a new upgrade image fails. This validation takes place
when the upgrade time is reached.

E_CLD_OTA_INTERNAL_COMMAND_FAILED_COPYING_
SERIALIZATION_DATA

This event is generated on the client when the copying of
serialization data from the active image to the new upgrade
image fails. This process takes place after image validation
(if applicable) are completed successfully.

Table 121. OTA Upgrade Cluster Events...continued

The above events are described in more detail in Section 49.9.

49.12.3 eOTA_AuthorisationState

The following enumerations represent the authorisation options concerning which clients are allowed to obtain
upgrade images from the server:

typedef enum
{
 E_CLD_OTA_STATE_ALLOW_ALL,
 E_CLD_OTA_STATE_USE_LIST
}eOTA_AuthorisationState;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_OTA_STATE_ALLOW_ALL Allow all clients to obtain upgrade images from this server

E_CLD_OTA_STATE_USE_LIST Only allow clients in authorisation list to obtain upgrade images from this
server

Table 122. Client Authorisation Options

49.12.4 teOTA_ImageNotifyPayloadType

The following enumerations represent the payload options for an Image Notify message issued by the server:

typedef enum
{
 E_CLD_OTA_QUERY_JITTER,
 E_CLD_OTA_MANUFACTURER_ID_AND_JITTER,
 E_CLD_OTA_ITYPE_MDID_JITTER,
 E_CLD_OTA_ITYPE_MDID_FVERSION_JITTER
}teOTA_ImageNotifyPayloadType;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
810 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The above enumerations are described in the table below.

Enumeration Description

E_CLD_OTA_QUERY_JITTER Include only ‘Query Jitter’ in payload

E_CLD_OTA_MANUFACTURER_ID_AND_JITTER Include ‘Manufacturer Code’ and ‘Query Jitter’ in payload

E_CLD_OTA_ITYPE_MDID_JITTER Include ‘Image Type’, ‘Manufacturer Code’ and ‘Query Jit-ter’ in
payload

E_CLD_OTA_ITYPE_MDID_FVERSION_JITTER Include ‘Image Type’, ‘Manufacturer Code’, ‘File Version’ and
‘Query Jitter’ in payload

Table 123. Image Notify Payload Options

49.13 Compile-time options
To enable the OTA Upgrade cluster in the code to be built, it is necessary to add the following to the
zcl_options.h file:

#define CLD_OTA

In addition, to enable the cluster as a client or server or both, it is also necessary to add one or both of the
following to the same file:

#define OTA_CLIENT
#define OTA_SERVER

Note: The OTA Upgrade cluster must be enabled as a client or server, as appropriate, in the application images
to be downloaded using the cluster. The relevant cluster options (see below) should also be enabled for the
image.

The following may also be defined in the zcl_options.h file.

Optional Attributes (Client only)

The OTA Upgrade cluster has attributes on the client side only. The optional attributes may be specified by
defining some or all of the following.

Add this line to enable the optional File Offset attribute:

#define OTA_CLD_ATTR_FILE_OFFSET

Add this line to enable the optional Current File Version attribute:

#define OTA_CLD_ATTR_CURRENT_FILE_VERSION

Add this line to enable the optional Current ZigBee Stack Version attribute:

#define OTA_CLD_ATTR_CURRENT_ZIGBEE_STACK_VERSION

Add this line to enable the optional Downloaded File Version attribute:

#define OTA_CLD_ATTR_DOWNLOADED_FILE_VERSION

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
811 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Add this line to enable the optional Downloaded ZigBee Stack Version attribute:

#define OTA_CLD_ATTR_DOWNLOADED_ZIGBEE_STACK_VERSION

Add this line to enable the optional Manufacturer ID attribute:

#define OTA_CLD_MANF_ID

Add this line to enable the optional Image Type attribute:

#define OTA_CLD_IMAGE_TYPE

Add this line to enable the optional Minimum Block Request Delay attribute:

#define OTA_CLD_ATTR_REQUEST_DELAY

Global Attributes

Add this line to define the value (n) of the Cluster Revision attribute:

#define CLD_THERMOSTAT_CLUSTER_REVISION <n>

The default value is 1, which corresponds to the revision of the cluster in the ZCL r6 specification (see Section
2.4).

Number of Images

The maximum number of images that can be stored in the Flash memory of the device of a server or client node
must be specified as follows, where in this example the maximum is two images:

#define OTA_MAX_IMAGES_PER_ENDPOINT 2

Note that the active image should not be included.

OTA Block Size

The maximum size of a block of image data to be transferred over the air is defined, in bytes, as follows:

#define OTA_MAX_BLOCK_SIZE 100

If a large maximum block size is configured, it is recommended to enable fragmentation for data transfers
between nodes. Fragmentation is enabled and configured on the sending and receiving nodes as described in
the ‘Application Design Notes’ appendix of the ZigBee 3.0 Stack User Guide (JNUG3130).

Page Requests

The ‘page request’ feature can be enabled on the server and client by adding the line:

#define OTA_PAGE_REQUEST_SUPPORT

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
812 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If the page request feature is enabled then the page size (in bytes) and ‘response spacing’ (in milliseconds) to
be inserted into the Image Page Requests can be configured by defining the following macros on the client:

#define OTA_PAGE_REQ_PAGE_SIZE 512
#define OTA_PAGE_REQ_RESPONSE_SPACING 300

The above example definitions contain the default values of 512 bytes and 300 ms.

Hardware Versions in OTA Header

If hardware versions will be present in the OTA header then in order to enable checks of the hardware versions
on the OTA server and client, add:

#define OTA_CLD_HARDWARE_VERSIONS_PRESENT

Custom Serialization Data

To maintain custom serialization data associated with binary images during upgrades on the server or client,
add:

#define OTA_MAINTAIN_CUSTOM_SERIALISATION_DATA

OTA Command Acks

To disable APS acknowledgements for OTA commands on the server or client, add:

 #define OTA_ACKS_ON FALSE

If the above define is not included, APS acknowledgements are enabled by default. They must be enabled for
ZigBee certification, but for increased download speed it may be convenient to disable them during application
development. However, they must not be disabled if using fragmentation.

Frequency of Requests (Client only)

To avoid flooding the network with continuous packet exchanges, the request messages from the client can
be throttled by defining a time interval, in seconds, between consecutive requests. For example, a one-second
interval is defined as follows:

#define OTA_TIME_INTERVAL_BETWEEN_REQUESTS 1

If this time interval is not defined then the time interval, in seconds, between consecutive retries of an
unthrottled message request should be defined. For example, a ten-second retry interval is defined as follows:

#define OTA_TIME_INTERVAL_BETWEEN_RETRIES 10

(valid only if OTA_TIME_INTERVAL_BETWEEN_REQUESTS is not defined)

Upper Limit on Minimum Block Request Delay

An upper limit on the value of the Minimum Block Request Delay attribute is defined, in seconds, as follows:

#define OTA_BLOCK_REQUEST_DELAY_MAX_VALUE 2

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
813 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

In the above example, the limit is set to 2 seconds. If no value is defined, the default value of this limit is 5
seconds.

Device Address Copying

On a device whose application image is to be upgraded (client or server), the OTA Upgrade cluster must copy
the IEEE/MAC address of the device from the old image to the new image. This copy must be enabled on the
device by adding the line:

#define OTA_COPY_MAC_ADDRESS

No Security Certificate

If no security certificate is to be used, it is necessary to remove references to the Certicom security certificate by
including the following definition:

#define OTA_NO_CERTIFICATE

Internal Storage of OTA Upgrade Image on Client

An OTA upgrade image can be stored in the devices internal Flash memory on an OTA Upgrade cluster client
by including the following definition:

#define OTA_INTERNAL_STORAGE

In addition, if the OTA upgrade image is encrypted then it needs to be decrypted before being stored in internal
Flash memory. This decryption can be enabled by including the following definition:

#define INTERNAL_ENCRYPTED

49.14 Build Process
Special build requirements must be implemented when building applications that are to participate in OTA
upgrades:

1. Certain lines must be included in the makefiles for the applications - see Section 49.14.1

2. The server and client applications must then be built - see Section 49.14.2

3. The (initial) client application must now be prepared and loaded into Flash memory of the client device - see
Section 49.14.3

4. The server application must now be prepared and loaded into Flash memory of the server device - see
Section 49.14.4

49.14.1 Modifying Makefiles

In the makefiles for all applications (for server and all clients), replace the following lines:

$(OBJCOPY) -j .version -j .bir -j .flashheader -j .vsr_table
-j .vsr_handlers -j .rodata -j .text -j .data -j .bss -j .heap
-j .stack -S -O binary $< $@

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
814 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

with:

 $(OBJCOPY) -j .version -j .bir -j .flashheader -j .vsr_table
-j .vsr_handlers -j .ro_mac_address -j .ro_ota_header -j .rodata
-j .text -j .data -j .bss -j .heap -j .stack -S -O binary $< $@

49.14.2 Building Applications

The server and client applications must be built with the makefiles adapted for OTA upgrade (see Section
49.14.1). A build can be conducted from MCUXpresso as for any ZigBee PRO application - refer to the
MCUXpresso Installation and User Guide (JNUG3136).

The resulting binary files must then be prepared and loaded into Flash memory as described in Section 49.14.3
and Section 49.14.4.

49.14.3 Preparing and Downloading Initial Client Image

The first time that the client is programmed with an application, the binary image must be loaded into
Flash memory on the client device using a Flash programming tool such as the Flash Programmer within
MCUXpresso (normally only used in a development environment) or the DK6 Production Flash Programmer
(JN-SW-4407).

After this initial image has been loaded, all subsequent client images will be downloaded from the server to the
client via the OTA Upgrade cluster.

49.14.4 Preparing and Downloading Server Image

The server device is programmed by loading a binary image into Flash memory using a Flash programming tool
such as the Flash Programmer within MCUXpresso (normally only used in a development environment) or the
DK6 Production Flash Programmer (JN-SW-4407).

When a new client image becomes available for the server to distribute, this image must be loaded into the
server.

• In a deployed and running system, this image may be supplied via a backhaul network.
• In a development environment, it may be loaded into Flash memory using the Flash Programmer within

MCUXpresso.
However, this Flash Programmer only allows programming from the start of Flash memory. Therefore, the
server application must be re-programmed into the Flash memory as well as the new client image. The
server application binary and client application binary must be combined into a single binary image using
the DK6 Encryption Tool (JET) before being loaded into the server. This tool is provided in the SDK and is
described in the JET User Guide (JNUG3135).

Note: If desired, the initial server image can also include the initial client application. Although there is no need
for the server to download this first client application to the client(s), it may be stored in the server in case there
is any subsequent need to re-load it into a client.

49.15 OTA Configuration for Internal Flash
OTA cluster is enabled through the ZCL_options.h file.

The OTA cluster requires initialization of the location where the upgrade image can be stored. The application
provides this through eOTA_AllocateEndpointOTASpace API.

Each page on the device is 512 bytes. The usable flash size is 632 K, with 32 K typically reserved for NVM
(start page 1152) and 24 K for customer data. This leaves a usable flash size for image at 576 K.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
815 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

If we split it into two sections to support OTA. It means 288 K becomes maximum image size. Each 288 K
section would be 576 flash pages.

This could be represented as 32 K sectors to keep in line with legacy devices.

So, for allocation to the OTA cluster:

uint8 u8MaxSectorPerImage = 0;
uint8 u8StartSector[1] = {9}; /
* So next image starts at 9*32*1024 = 288K offset*/
u8MaxSectorPerImage = 9 ; /
* 9 *32* 1024 = 288K is the maximum size of the image */
sNvmDefs.u32SectorSize = 512; /* Sector Size = 512 bytes*/

The OTA checks for the presence of the well-known Zigbee09 key at a fixed location within the image.

This provides a convenient mechanism to test the decryption of an encrypted image and an additional sanity
check to make sure the image is a valid image to progress downloading.

Note: This is not the mechanism for a full image validation. For a better validation of an OTA image, it is
recommended that for OTA an encrypted image with the CRC check is used.

Each application note has an OTA_BUILD folder which holds the OTA compatible images.

LinkKey_3.txt is required for creation of the OTA image. It holds the Key which can be used for validation
purpose as described above.

The config OTA_JN518x_Cer_Keys_HA_Light.txt and config OTA_JN518x_Cer_Keys_HA_Light_Generic.
txt files provide the OTA image generator with the offset for the key.

Prior to this release the values were LinkKey_3.txt,02c0,16, which should now be LinkKey_3.txt,01b0,16.

49.15.1 Switching to a new image

After an image is programmed into flash and validated as a correct image to switch to, the following steps
should then be performed. These are already done as part of the OTA cluster. However, for custom applications
not using the OTA cluster, it would be a requirement to switch and run a new image.

 /* Offset in bytes into flash for the new image. In this example, new image
 is at 288K boundary*/
 u32Offset = 0x48000;
 /* Set the active image location */
 psector_SetEscoreImageData(u32Offset, 0);
 /* Disable any interrupts during the switching of the images */
 __disable_irq();
 /* Remap the vector table to point to the ROM instead of the application */
 SYSCON->MEMORYREMAP &= ~(SYSCON_MEMORYREMAP_MAP_MASK <<
 SYSCON_MEMORYREMAP_MAP_SHIFT);
 /* Prevent entering into Low Power Mode when we reset */
 PMC->CTRL &= ~(PMC_CTRL_LPMODE_MASK << PMC_CTRL_LPMODE_SHIFT);
 /* Initiate reset */
 NVIC_SystemReset();

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
816 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Part XIII: Appendices

This part comprises nine appendices covering topics that include mutex callbacks, attribute reporting, attribute
discovery, custom endpoints, manufacturer-specific attributes and commands, the storage of OTA upgrade
applications in the devices Internal or External Flash memory, the OTA upgrade of nodes comprising two
processors, example code fragments and a glossary of terms.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
817 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

50 Appendix A: Mutex callbacks

The mutexes are designed such that a call to ZPS_u8GrabMutexLock() must be followed by a
call to ZPS_u8ReleaseMutexLock(). In addition, the call must not be followed by another call to
ZPS_u8GrabMutexLock(), which means the mutexes are binary rather than counting. This can cause
problems if the ZCL takes a mutex via the callback function and then the application wants to lock the
mutex to access the shared device structures. Some ZCL clusters also invoke the callback function
with E_ZCL_CBET_LOCK_MUTEX multiple times. The counting mutex code below should be used
in the application code. When the application wants to access the shared structure, it should call the
vLockZCLMutex() function (shown in the code extract below), rather than ZPS_u8GrabMutexLock(), so that it
also participates in the counting mutex rather than directly taking the binary ZPS mutex-protection. Similarly, the
shared structure should be released using vUnlockZCLMutex().

The code below uses a single resource for all endpoints and the general callback function. It defines a file scope
counter that is the mutex count related to the resource.

At the top of the application source file, create the count and lock/unlock mutex function prototypes (these
prototypes may be placed in a header file, if desired):

uint32 u32ZCLMutexCount = 0;
void vLockZCLMutex(void);
void vUnlockZCLMutex(void);

In both cbZCL_GeneralCallback() and cbZCL_EndpointCallback(), make the calls:

switch(psEvent->eEventType)
 {
 case E_ZCL_CBET_LOCK_MUTEX:
 vLockZCLMutex();
 break;
 case E_ZCL_CBET_UNLOCK_MUTEX:
 vUnlockZCLMutex();
 break;

Define the lock/unlock mutex functions and call them from the application when accessing any ZCL shared
structure:

void vLockZCLMutex(void)
{
 if (u32ZCLMutexCount == 0)
 {
 ZPS_u8GrabMutexLock(mutexZCL,0);
 }
 u32ZCLMutexCount++;
}
void vUnlockZCLMutex(void)
{
 u32ZCLMutexCount--;
 if (u32ZCLMutexCount == 0)
 {
 ZPS_u8ReleaseMutexLock(mutexZCL,0);
 }
}

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
818 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

51 Appendix B: Attribute reporting

Attribute reporting involves sending attribute values unsolicited from the cluster server to a client - that is,
pushing values from server to client without the client needing to request the values. This mechanism reduces
network traffic compared with the client polling the server for attribute values. It also allows a sleeping server to
report its attribute values while it is awake.

The server sends an ‘attribute report’ to the client, where this report can be issued in one of the following ways:

• by a function call in the user application (on the server device)
• automatically by the ZCL (triggered by a change in the attribute value or periodically)

The rules for automatic reporting (see Appendix B.1) can be configured by a remote client by sending a
‘configure reporting’ command to the server. The same rules apply to ‘default reporting’ (see Appendix B.2),
but are configured locally on the server. The configuration of attribute reporting is described in Appendix B.3.
Remote devices can also query the attribute reporting configuration of the server, as described in Appendix B.6.

Sending and receiving attribute reports are described in Appendix B.4 and Appendix B.5.

Attention: Attribute reporting is an optional feature and is not supported by all devices.

51.1 Appendix B.1: Automatic attribute reporting
Automatic attribute reporting involves two mechanisms:

• A report is triggered by a change in the attribute value of at least a configured minimum amount
• Reports are issued for the attribute periodically at a configured frequency

These mechanisms can operate at the same time. In this case, reports will be issued periodically and additional
reports will be issued between periodic reports if triggered by changes in the attribute value.

If reports are triggered by frequent changes in the attribute value, they may add significantly to the network
traffic. To manage this traffic, the production of reports for an attribute can be ‘throttled’. This involves defining
a minimum time-interval between consecutive reports for the attribute. If the attribute value changes within this
time-interval since the last report, a new report will not be generated.

Note: If triggered reports are throttled, periodic reports will still be produced as scheduled.

Periodic reporting can be disabled, leaving only triggered reports to be automatically generated. Automatic
reporting can also be disabled altogether (both mechanisms). For information on the configuration of automatic
reporting, refer to Appendix B.3.

51.2 Appendix B.2: Default reporting
For each cluster, the ZCL specification states that certain attributes must be reportable. These attributes are
specified in the cluster descriptions in this manual. Reports on these attributes are optional and can be enabled
on an individual basis using a ‘reportable flag’, as described in Appendix B.3.6. The attributes for which the flag
is set will always be reported, defining a set of attributes for ‘default reporting’.

Default reporting is a form of automatic reporting (see Appendix B.1) for the restricted set of attributes described
above. It is configured on the cluster server as described in Appendix B.3.6. The attributes enabled for default
reporting are also included in attribute reporting initiated by the server application though a call to the function
eZCL_ReportAllAttributes().

51.3 Appendix B.3: Configuring attribute reporting
If attribute reporting is to be used by a cluster then the feature must be enabled at compile-time, as detailed in
Appendix B.3.1. Then:
UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
819 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• If automatic attribute reporting is to be implemented then the reports must be configured as described in
Appendix B.3.5.

• If default reporting is to be implemented then the reports must be configured as described in Appendix B.3.6.

The ZCL configuration for attribute reporting is described in Appendix B.3.7 for users who wish to modify this
configuration.

51.3.1 B.3.1: Compile-time Options

Attribute reporting is enabled at compile-time by setting the appropriate macros in zcl_options.h. The compile-
time options relevant to the cluster server and client are listed separately below.

51.3.2 B.3.2: Server Options

Generate Attribute Reports

To enable a server to generate attribute reports according to configured reporting rules, add the following option:

#define ZCL_ATTRIBUTE_REPORTING_SERVER_SUPPORTED

Note: Attribute reporting does not need to be enabled with this macro if the reports are generated only via
function calls.

Handle ‘Configure Reporting’ Commands

To enable a server to handle ‘configure reporting’ commands and reply with ‘configure reporting’ responses, add
the following option:

#define ZCL_CONFIGURE_ATTRIBUTE_REPORTING_SERVER_SUPPORTED

Handle ‘Read Reporting Configuration’ Commands

To enable a server to handle ‘read reporting configuration’ commands and reply with ‘read reporting
configuration’ responses, add the following option:

#define ZCL_READ_ATTRIBUTE_REPORTING_CONFIGURATION_SERVER_SUPPORTED

Number of Attribute Reports

The number of reportable attributes can be set (to n) using the following line:

#define ZCL_NUMBER_OF_REPORTS n

The default value is 10.

Number of String Attribute Reports

The number of reportable string attributes can be set (to n) using the following line:

#define ZCL_NUMBER_OF_STRING_REPORTS n

The default value is 0 (meaning that string attribute reports are disabled by default).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
820 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Maximum Size of Reportable String Attribute

The maximum size, in bytes, of a string attribute that can be reported can be set (to n) using the following line:

#define ZCL_ATTRIBUTE_REPORT_STRING_MAXIMUM_SIZE n

The default value is 32 bytes.

Minimum Attribute Reporting Interval

The minimum time-interval, in seconds, between consecutive attribute reports can be set (to n) using the
following line:

#define ZCL_SYSTEM_MIN_REPORT_INTERVAL n

The default value is 1 second.

Maximum Attribute Reporting Interval

The maximum time-interval, in seconds, between consecutive attribute reports can be set (to n) using the
following line:

#define ZCL_SYSTEM_MAX_REPORT_INTERVAL n

The default value is 61 seconds.

51.3.3 B.3.3: Client Options

Receive Attribute Reports

To enable a client to receive attribute reports from a server, add the following option:

#define ZCL_ATTRIBUTE_REPORTING_CLIENT_SUPPORTED

Send ‘Configure Reporting’ Commands

To enable a client to send ‘configure reporting’ commands and handle the ‘configure reporting’ responses, add
the following option:

#define ZCL_CONFIGURE_ATTRIBUTE_REPORTING_CLIENT_SUPPORTED

Send ‘Read Reporting Configuration’ Commands

To enable a client to send ‘read reporting configuration’ commands and handle the ‘read reporting configuration’
responses, add the following option:

#define ZCL_READ_ATTRIBUTE_REPORTING_CONFIGURATION_CLIENT_SUPPORTED

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
821 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

51.3.4 B.3.4: General (Server and Client) Options

If attribute reporting is to report any attributes of the ‘floating point’ type, the following macro must also be
enabled in zcl_options.h on both the server and client:

#define ZCL_ENABLE_FLOAT

This enables the use of the floating point library to calculate differences in attribute values. If this library is
not already used by the application code, enabling it in this way increases the build size of the application by
approximately 5 Kbytes.

51.3.5 B.3.5: Configuring Automatic Attribute Reports (from Client)

If automatic attribute reporting is to be employed between a cluster server and client, the reporting rules must
be configured. These rules include the following parameters for each attribute:

• Time-interval between consecutive reports in periodic reporting
• Minimum time-interval between consecutive triggered attribute reports
• Minimum change in the attribute value that will trigger an attribute report

Note: Note 1: Setting the periodic reporting time-interval to the special value of 0x0000 disables periodic
reporting for the attribute. Setting this time-interval to the special value of 0xFFFF disables automatic reporting
completely (periodic and triggered) for the attribute.

Note: Note 2: Automatic attributes reports are normally produced on a timescale of seconds. However, reports
generated on the change of an attribute value can be speeded up to occur on a timescale of milliseconds, as
described in Appendix B.3.8.

Note: Note 3: Before automatic reporting can be configured on an attribute, the ‘reportable flag’ must be set for
the attribute on the cluster server using the function eZCL_SetReportableFlag().

This configuration is conducted on the cluster server but is normally directed from a remote device via ‘configure
reporting’ commands.

The configuration of automatic attribute reporting follows the process:

1. The client sends a ‘configure reporting’ command to the server.

2. The server receives and processes the command, configures the attribute reporting and generates a
‘configure reporting’ response, which it sends back to the requesting client.

3. The client receives the ‘configure reporting’ response and the ZCL generates events to indicate the status of
the request to the client.

These steps are described separately below.

1. Sending a ‘Configure Reporting’ Command (from Client)

The application on the cluster client device can configure attribute reporting for a set of attributes on the cluster
server using the function eZCL_SendConfigureReportingCommand(). This function sends a ‘configure
reporting’ command to the server.

In this function call, a pointer must be provided to an array of tsZCL_AttributeReportingConfiguration
Record structures, where each structure contains the configuration details for one attribute on which reporting
is to be configured (see Section 6.1.5).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
822 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

2. Receiving a ‘Configure Reporting’ Command (on Server)

The server will automatically process an incoming ‘configure reporting’ command and perform the required
configuration without assistance from the application. For each attribute (in the configuration request), the
reporting configuration values are parsed, after which the ZCL generates an event of the type:

E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE

In the tsZCL_CallBackEvent structure (see Section 6.2) for this event:

• The uMessage field contains a structure of the type tsZCL_AttributeReportingConfigurationRec
ord (see Section 6.1.5).

• The eZCL_Status field indicates the outcome of parsing the configuration values for the attribute (success or
failure)

Thus, the configuration of reporting for a set of attributes will result in a sequence of events of the above
type, one for each attribute. The application should copy the contents of the tsZCL_AttributeReporting
ConfigurationRecord structure for each attribute to RAM (for information on storage format, refer to
Appendix B.7.2).

Note that the tsZCL_AttributeReportingConfigurationRecord structure for an attribute contains
the field u16MaximumReportingInterval which specifies a time-period for periodic reporting. Periodic
reporting should not be too frequent, since a sleepy device must wake to send a report and frequent reports
are be a significant drain on power resources. Therefore, the period for periodic reporting is not allowed to
be set to a value less than sConfig.u16SystemMaximumReportingInterval in the ZCL configuration
(see Appendix B.3.7). If a ‘configure reporting’ command attempts to set a smaller (non-zero) value, the
ZCL discards the reporting configuration for this attribute and set the status for this attribute configuration to
E_ZCL_CMDS_INVALID_VALUE in the ‘configure reporting’ response (see below).

Once attribute reporting has been configured (or not) for all the attributes (in the request), a single event is
generated of the type:

E_ZCL_CBET_REPORT_ATTRIBUTES_CONFIGURE

Finally, the server generates a ‘configure reporting’ response and sends it back to the requesting client.

Note: The application and ZCL hold the attribute reporting configuration data in RAM. To preserve this data
through episodes of power loss, the application should also save the data to NVM, as described in Appendix
B.7.

3. Receiving a ‘Configure Reporting’ Response (on Client)

A ‘configure reporting’ response from the cluster server contains an Attribute Status Record for each attribute
that was included in the corresponding ‘configure reporting’ command. For each attribute in the response, the
ZCL on the client generates an event of the type:

E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE_RESPONSE

In the tsZCL_CallBackEvent structure (see Section 6.2) for this event, the uMessage field contains a
structure of the type tsZCL_AttributeReportingConfigurationResponse (see Section 6.1.6). In this
structure:

• The eCommandStatus field indicates the status of the attribute reporting configuration for the attribute.
• The tsZCL_AttributeReportingConfigurationRecord structure (Section 6.1.5) contains other data

but only the following fields are used:
– u16AttributeEnum which identifies the attribute
– u8DirectionIsReceived which should read 0x01 to indicate that reports of the attribute value are

received by the client

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
823 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Once the above event has been generated for each valid attribute in the response, a single E_ZCL_CBET_
REPORT_ATTRIBUTES_CONFIGURE_RESPONSE event is generated to conclude the response.

51.3.6 B.3.6: Configuring Default Reporting (on Server)

Default reporting is a form of automatic reporting for a restricted set of attributes (see Appendix B.2). It is
configured on the cluster server.

An individual attribute can be configured as potentially reportable through default reporting by setting the
‘reportable flag’ E_ZCL_AF_RP in either of the following ways:

• The flag can be incorporated in the line for the attribute in the tsZCL_AttributeDefinition structure for
the cluster server. For example, in the following line of code, attribute reporting is enabled for the bOnOff
attribute of the On/Off cluster:

E_CLD_ONOFF_ATTR_ID_ONOFF, (E_ZCL_AF_RD|
E_ZCL_AF_SE|E_ZCL_AF_RP), E_ZCL_BOOL,
 (uint32)(&((tsCLD_OnOff*)(0))->bOnOff),0},

• The flag can be set by the server application by calling the function eZCL_SetReportableFlag().

The reporting of these attributes can be configured by the server application by calling the function
eZCL_CreateLocalReport() for each attribute. The configuration values are similar to those for automatic
reporting, described in Appendix B.3.5. The reporting configuration is passed to the function in a sZCL_
AttributeReportingConfigurationRecord structure. The application can then enable default
reporting for reportable attributes using the function vZCL_SetDefaultReporting(), which checks whether the
E_ZCL_AF_RP flag has been set for each attribute and, if so, sets the ‘default reporting flag’ E_ZCL_ACF_RP.

51.3.7 B.3.7: ZCL Configuration for Attribute Reporting

This section describes aspects of ZCL configuration related to attribute reporting.

Note: The information in this section is only useful to developers who wish to adjust the standard ZCL
configuration for attribute reporting.

Each attribute for which automatic reporting is enabled requires a tsZCL_ReportRecord structure. These
structures are maintained internally by the ZCL and space for them is allocated on the ZCL heap. The heap is
allocated using the u32ZCL_Heap macro - for example:

PRIVATE uint32 u32ZCL_Heap[

 ZCL_HEAP_SIZE(ZCL_NUMBER_OF_ENDPOINTS,

 ZCL_NUMBER_OF_TIMERS,

 ZCL_NUMBER_OF_REPORTS)];

The number of reportable attributes and the maximum/minimum reporting intervals are passed into the internal
eZCL_CreateZCL structure via the sConfig parameter - for example:

sConfig.u8NumberOfReports = ZCL_NUMBER_OF_REPORTS;
sConfig.u16SystemMinimumReportingInterval =
 ZCL_SYSTEM_MIN_REPORT_INTERVAL;
sConfig.u16SystemMaximumReportingInterval =
 ZCL_SYSTEM_MAX_REPORT_INTERVAL;

The above macros have default values that can be over-ridden in the application’s zcl_options.h file, as
indicated in Appendix B.3.1.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
824 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

A server that supports automatic attribute reporting should have the ‘reportable flag’ E_ZCL_AF_RP set for
any attributes that are reportable. While creating a cluster instance, the vZCL_SetDefaultReporting() function
should be called, which will set the ‘default reporting flag’ E_ZCL_ACF_RP to enable default reporting for
all the attributes that have the E_ZCL_AF_RP flag set. If a server receives a ‘configure reporting’ command
for an attribute that does not have E_ZCL_ACF_RP flag set, it will return an error and not allow the attribute
to be reported. This bit setting is also required for attribute reports generated through calls to the function
eZCL_ReportAllAttributes().

Attribute definitions will normally have the ‘reportable flag’ set only for the mandatory reportable attribute.
The application on the server can set the E_ZCL_ACF_RP flag for those attributes on which reporting is not
mandatory. This can be done using the function eZCL_SetReportableFlag().

51.3.8 B.3.8: Speeding Up Automatic Attribute Reports

Automatic attribute reports (configured as described in Appendix B.3.5) that are produced on changes in
attribute values can be speeded up to occur with millisecond resolution. Normally, these reports can occur on
a timescale of seconds, as they are dependent on the E_ZCL_CBET_TIMER (one second) ticks for sampling.
However, they can be made to occur on a timescale of milliseconds by providing E_ZCL_CBET_TIMER_MS
(one millisecond) ticks.

In order to do this, the following code must be included in the application:

sCallBackEvent.eEventType = E_ZCL_CBET_TIMER_MS;
vZCL_EventHandler(&sCallBackEvent);

Note that the E_ZCL_CBET_TIMER ticks still need to be generated, as they are used by UTC time and by the
ZCL report manager to keep track of time.

51.4 Appendix B.4: Sending attribute reports
If automatic attribute reporting has been configured between the cluster server and a client (as described in
Appendix B.3), the reporting of the relevant attributes will begin immediately after configuration. Attribute reports
are automatically generated:

• periodically with the configured time-interval between consecutive reports
• when the attribute value changes by at least the configured minimum amount

Automatic reporting normally employs both of the above mechanisms simultaneously but can be configured to
operate without periodic reporting, if required.

If a periodic report becomes overdue, the event E_ZCL_CBET_REPORT_TIMEOUT is generated on the server.

The application on the server can also generate an attribute report, when needed, by calling one of the following
functions:

• eZCL_ReportAllAttributes(), which sends an attribute report for all the reportable attributes
• eZCL_ReportAttribute(), which sends an attribute report for an individual reportable attribute

The above functions send an attribute report containing the current attribute value(s) to one or more clients
specified in the function call. Only the standard attributes can be reported - this does not include manufacturer-
specific attributes. Use of these functions for attribute reporting requires no special configuration on the server
(but a recipient client will need attribute reporting to be enabled in its compile-time options).

Note: The event E_ZCL_CBET_REPORT_REQUEST is automatically generated on the server before sending
an attribute report, allowing the application to update the attribute values in the shared structure, if required.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
825 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

CAUTION: The application must not rely on the above event as a prompt to update the shared structure when
an attribute changes its value. The event is only generated when the change in attribute value is large enough
for an attribute report to be produced. Smaller changes will not result in the event or a report.

51.5 Appendix B.5: Receiving attribute reports
In order to receive and parse attribute reports from the cluster server, a client must have attribute reporting
enabled in its compile-time options (see Appendix B.3.1).

When an attribute report is received from the server, events are generated and the ZCL software performs the
following steps:

1. For each attribute in the attribute report, the ZCL generates an E_ZCL_CBET_REPORT_INDIVIDUAL_
ATTRIBUTE message for the endpoint callback function, which may or may not take action on this message.

2. On completion of the parsing of the attribute response, the ZCL generates a single
E_ZCL_CBET_REPORT_ATTRIBUTES message for the endpoint callback function, which may or may not take
action on this message.

Note that:

• The E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTE event has the same fields as the E_
ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE event. In the uMessage field of the
tsZCL_CallBackEvent structure (see Section 6.2) for these events, the same structure is used, which is of
the type tsZCL_IndividualAttributesResponse. However, the eAttributeStatus field is not
updated for an attribute report (only for a ‘read attributes’ response).

• The E_ZCL_CBET_REPORT_ATTRIBUTES event has the same fields as the
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE event.

51.6 Appendix B.6: Querying attribute reporting configuration
Any authorised device in a ZigBee wireless network can obtain the attribute reporting configuration of a cluster
server. Such a query follows the process below:

1. The cluster client sends a ‘read reporting configuration’ command to the server.

2. The server receives and processes the command, retrieves the required configuration information and
generates a ‘read reporting configuration’ response, which it sends back to requesting client.

3. The client receives the ‘read reporting configuration’ response and the ZCL generates events to inform the
application of the reporting configuration.

These steps are described separately below.

Sending a ‘Read Reporting Configuration’ Command (from Client)

The application on the cluster client device can request the attribute reporting configuration on the server using
eZCL_SendConfigureReportingCommand(). This function sends a ‘read reporting configuration’ command to
the server.

In this function call, a tsZCL_AttributeReadReportingConfigurationRecord structure must be
specified which indicates the required configuration information - this structure includes a pointer to an array of
records, one per attribute for which reporting configuration information is needed (see Section 6.1.7).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
826 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Receiving a ‘Read Reporting Configuration’ Command (on Server)

The server automatically processes an incoming ‘read reporting configuration’ command without assistance
from the application. Callback events are not generated. However, the server generates a ‘read reporting
configuration’ response and send it back to the requesting client.

Receiving a ‘Read Reporting Configuration’ Response (on Client)

A ‘read reporting configuration’ response from the cluster server contains an Attribute Reporting Configuration
Record for each attribute that was included in the corresponding ‘read reporting configuration’ command. For
each attribute in the response, the ZCL on the client generates an event of the type:

E_ZCL_CBET_REPORT_READ_INDIVIDUAL_ATTRIBUTE_CONFIGURATION_RESPONSE

In the tsZCL_CallBackEvent structure (see Section 6.2) for this event, the uMessage field contains a
structure of the type tsZCL_AttributeReportingConfigurationResponse (see Section 6.1.6) - this is
the same structure as used in attribute reporting configuration, described in Appendix B.3.5.

In this structure:

• The eCommandStatus field indicates the status of the request.
• The tsZCL_AttributeReportingConfigurationRecord structure (see Section 6.1.5) includes:

– u16AttributeEnum which identifies the attribute
– other fields containing the attribute reporting configuration information

Once the above event has been generated for each valid attribute in the response, a single E_ZCL_CBET_
REPORT_READ_ATTRIBUTE_CONFIGURATION_RESPONSE event is generated to conclude the response.

51.7 Appendix B.7: Storing an attribute reporting configuration
During the configuration of automatic attribute reporting, described in Appendix B.3.5, the application on the
server must store attribute reporting configuration data in RAM and, optionally, in Non-Volatile Memory (NVM).
The storage of this data is described in the sub-sections below.

51.7.1 Persisting an attribute reporting configuration

The attribute reporting configuration data is stored in RAM on the cluster server. To allow the server device to
recover from an interruption of service involving a loss of power, this configuration data should also be saved in
Non-Volatile Memory (NVM). In this case, the attribute reporting configuration data can be recovered from NVM
during a ‘cold start’ of the device and automatic attribute reporting can resume without further configuration.

The storage of attribute reporting configuration data in NVM should be performed during the updates of this data
on the server, described in Appendix B.3.5. When an E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_
CONFIGURE event is generated for an attribute, the contents of the incorporated structure tsZCL_Attribute
ReportingConfigurationRecord should be saved to NVM as well as to RAM (for information on storage
format, refer to Appendix B.7.2). Data storage in NVM can be performed under application control using the
Non-Volatile Memory Manager (NVM), described in the Connectivity Framework Reference Manual.

On a ‘cold start’ of the device, the application must retrieve the Attribute Reporting Configuration Record for
each attribute from NVM and update the ZCL with the reporting configuration (this must be done after the ZCL
has been initialized). To do this, the NVM can be used to retrieve the configuration record for an attribute and
the function eZCL_CreateLocalReport() must then be called to register this data with the ZCL. This function
must not be called for attributes that have not been configured for automatic attribute reporting (e.g. those for
which the maximum reporting interval is set to REPORTING_MAXIMUM_TURNED_OFF).

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
827 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note: The maximum reporting interval in NVM must be set to REPORTING_MAXIMUM_TURNED_OFF
(0xFFFF) during a factory reset in order to prevent reporting from being enabled for attributes for which
reporting was not previously enabled.

51.7.2 Formatting an attribute reporting configuration record

The format in which the server application stores attribute reporting configuration data in RAM and, optionally, in
NVM is at the discretion of the application developer.

The most general method is to store this data in an array of structures, in which there is one array element for
each attribute for which automatic reporting is implemented (the size of this array should correspond to the
value of the compile-time option SE_NUMBER_OF_REPORTS - see Appendix B.3.1). The information stored
for each attribute may include the relevant cluster ID and endpoint number, as well as details of the configured
change that can result in an attribute report. However, this method of data storage may require significant
memory space and may only be necessary for more complex applications.

Alternative storage formats for this data are possible which economize on the memory requirements. These
methods are outlined below.

Reduced Data Storage

A simple extension of the above general scheme uses application knowledge of the attributes being reported.
In this case, certain static information about the reportable attributes is built into the compiled application and
only the changeable information about these attributes is saved to an array in RAM (and NVM). In this way, the
required memory space to store the attribute reporting configuration data is reduced.

An example of this method with five reportable attributes is given below.

#define SE_NUMBER_OF_REPORTS 5
typedef struct
 {
 uint16 u16Min;
 uint16 u16Max;
 tuZCL_AttributeReportable uChangeValue;
 } tsLocalStruct;
static tsLocalStruct asLocalConfigStruct[SE_NUMBER_OF_REPORTS];
typedef struct
 {
 uint16 u16AttEnum;
 teZCL_ZCLAttributeType eAttType;
 }tsLocalDefs;
static const tsLocalDefs asLocalDefs[SE_NUMBER_OF_REPORTS] = {
 {TPRC_MATCH_1,E_ZCL_UINT32},
 {TPRC_MATCH_6,E_ZCL_BMAP48},
 {TPRC_MATCH_7,E_ZCL_GINT56},
 {TPRC_MATCH_5,E_ZCL_UINT56},
 {TPRC_MATCH_3,E_ZCL_BOOL}
 };

In the above example:

• The fixed data (attribute identifier and type) is held in an array of tsLocalDefs structures, with one array
element per attribute - this array is defined at compile-time and therefore does not need to be updated in RAM
or persisted in NVM.

• The attribute reporting configuration data is held in an array of tsLocalStruct structures, with one array
element per attribute - only this array needs to be updated in RAM and persisted in NVM, thus saving storage
space.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
828 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Note that both arrays have SE_NUMBER_OF_REPORTS elements and there is a one-to-one correspondence
between the elements of the two arrays - elements with the same number relate to the same attribute.

Minimized Data Storage

It may be possible to optimize the format in which the attribute reporting configuration data is saved in order to
suit the attributes reported. For example, if there are only two attributes to be reported, then it may be sufficient
to store the attribute reporting configuration data in a single structure, like the following:

typedef struct
{
 uint16 u16MinimumReportingIntervalForAttA;
 uint16 u16MaximumReportingIntervalForAttA;
 zint32 u32AttAReportableChange;
 uint16 u16MinimumReportingIntervalForAttB;
 uint16 u16MaximumReportingIntervalForAttB;
 // Attribute B is a discrete type (for example, a bitmap), so does not
 have a reportable change
} tsZCL_PersistedAttributeReportingConfigurationRecord;

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
829 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

52 Appendix C: Extended attribute discovery

‘Extended’ attribute discovery is similar to the normal attribute discovery described in Section 2.3.4 except the
accessibility of each attribute is additionally indicated as being ‘read’, ‘write’ or ‘reportable’. The application
coding details and compile-time options are different, and are described below.

52.1 Appendix C.1: Compile-time options
If required, the extended attribute discovery feature must be explicitly enabled on the cluster server and client at
compile-time by respectively including the following defines in the zcl_options.h files:

#define ZCL_ATTRIBUTE_DISCOVERY_EXTENDED_SERVER_SUPPORTED
#define ZCL_ATTRIBUTE_DISCOVERY_EXTENDED_CLIENT_SUPPORTED

52.2 Appendix C.2: Application coding
The application on a cluster client can initiate an extended attribute discovery on the cluster server by calling
the eZCL_SendDiscoverAttributesExtendedRequest() function, which sends a ‘discover attributes extended’
request to the server. This function allows a range of attributes to be searched for, defined by:

• The ‘start’ attribute in the range (the attribute identifier must be specified).
• The number of attributes in the range.

Initially, the start attribute should be set to the first attribute of the cluster. If the discovery request does not
return all the attributes used on the cluster server, the above function should be called again with the start
attribute set to the next ‘undiscovered’ attribute. Multiple function calls may be required to discover all of the
attributes used on the server.

On receiving a discover attributes extended request, the server handles the request automatically (provided
that extended attribute discovery has been enabled in the compile-time options - see above) and replies with a
‘discover attributes extended’ response containing the requested information.

The arrival of the response at the client results in the event E_ZCL_CBET_DISCOVER_INDIVIDUAL_
ATTRIBUTE_EXTENDED_RESPONSE for each attribute reported in the response. Therefore, multiple events
normally result from a single discover attributes extended request. This event contains details of the reported
attribute in a tsZCL_AttributeDiscoveryExtendedResponse structure (see Section 6.1.11).

Following the event for the final attribute reported, the event E_ZCL_CBET_DISCOVER_ATTRIBUTES_
EXTENDED_RESPONSE is generated to indicate that all attributes from the discover attributes extended
response have been reported.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
830 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

53 Appendix D: Custom endpoints

A ZigBee device and its associated clusters can be registered on an endpoint using the relevant device
registration function, from those listed and described in the ZigBee Devices User Guide (JNUG3131). However,
it is also possible to set up a custom endpoint which supports selected clusters (rather than a whole ZigBee
device and all of its associated clusters). Custom endpoints are particularly useful when using multiple
endpoints on a single node - for example, the first endpoint may support a complete ZigBee device (such as a
Light Sensor) while one or more custom endpoints are used to support selected clusters.

53.1 Appendix D.1: Devices and Endpoints
When using custom endpoints, it is important to note the difference between the following ‘devices’:

• Physical device: This is the physical entity which is the network node
• Logical device: This is a software entity which implements a specific set of functionality on the node, e.g. On/

Off Switch device

A ZigBee network node may contain multiple endpoints, where one endpoint is used to represent the ‘physical
device’ and other endpoints are used to support ‘logical devices’. The following rules apply to cluster instances
on endpoints:

• All cluster instances relating to a single ‘logical device’ must reside on a single endpoint.
• The Basic cluster relates to the ‘physical device’ rather than a ‘logical device’ instance. There can be only one

Basic cluster server for the entire node, which can be implemented in either of the following ways:
– A single cluster instance on a dedicated ‘physical device’ endpoint
– A separate cluster instance on each ‘logical device’ endpoint, but each cluster instance must use the same
tsZCL_ClusterInstance structure (and the same attribute values)

53.2 Appendix D.2: Cluster Creation Functions
For each of the following clusters, a creation function is provided which creates an instance of the cluster on an
endpoint:

• Basic: eCLD_BasicCreateBasic()
• Power Configuration: eCLD_PowerConfigurationCreatePowerConfiguration()
• Device Temperature Configuration: eCLD_DeviceTemperatureConfigurationCreateDeviceTemperature

Configuration()
• Identify: eCLD_IdentifyCreateIdentify()
• Groups: eCLD_GroupsCreateGroups()
• Scenes: eCLD_ScenesCreateScenes()
• On/Off: eCLD_OnOffCreateOnOff()
• On/Off Switch Configuration: eCLD_OOSCCreateOnOffSwitchConfig()
• Level Control: eCLD_LevelControlCreateLevelControl()
• Alarms: eCLD_AlarmsCreateAlarms()
• Time: eCLD_TimeCreateTime()
• Analogue Input (Basic): eCLD_AnalogInputBasicCreateAnalogInputBasic()
• Analogue Output (Basic): eCLD_AnalogOutputBasicCreateAnalogOutputBasic()
• Binary Input (Basic): eCLD_BinaryInputBasicCreateBinaryInputBasic()
• Binary Output (Basic): eCLD_BinaryOutputBasicCreateBinaryOutputBasic()
• Multistate Input (Basic): eCLD_MultistateInputBasicCreateMultistateInputBasic()
• Multistate Output (Basic): eCLD_MultistateOutputBasicCreateMultistateOutputBasic()
• Poll Control: eCLD_PollControlCreatePollControl()

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
831 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

• Power Profile: eCLD_PPCreatePowerProfile()
• Diagnostics: eCLD_DiagnosticsCreateDiagnostics()
• Illuminance Measurement: eCLD_IlluminanceMeasurementCreateIlluminanceMeasurement()
• Illuminance Level Sensing: eCLD_IlluminanceLevelSensingCreateIlluminanceLevelSensing()
• Temperature Measurement: eCLD_TemperatureMeasurementCreateTemperatureMeasurement()
• Pressure Measurement: eCLD_PressureMeasurementCreatePressureMeasurement()
• Flow Measurement: eCLD_FlowMeasurementCreateFlowMeasurement()
• Relative Humidity Measurement: eCLD_RelativeHumidityMeasurementCreateRelativeHumidity

Measurement()
• Occupancy Sensing: eCLD_OccupancySensingCreateOccupancySensing()
• Electrical Measurement: eCLD_ElectricalMeasurementCreateElectricalMeasurement()
• Colour Control: eCLD_ColourControlCreateColourControl()
• Ballast Configuration: eCLD_BallastConfigurationCreateBallastConfiguration()
• Thermostat: eCLD_ThermostatCreateThermostat()
• Thermostat User Interface Configuration: eCLD_ThermostatUIConfigCreateThermostatUIConfig()
• Door Lock: eCLD_DoorLockCreateDoorLock()
• IAS Zone: eCLD_IASZoneCreateIASZone()
• IAS Ancillary Control Equipment (ACE): eCLD_IASACECreateIASACE()
• IAS Warning Device (WD): eCLD_IASWDCreateIASWD()
• Price: eSE_PriceCreate()
• Demand-Response and Load Control (DRLC): eSE_DRLCCreate()
• Simple Metering: eSE_SMCreate()
• Commissioning: eCLD_CommissioningClusterCreateCommissioning()
• Touchlink Commissioning: eCLD_ZllCommissionCreateCommission()
• Appliance Control: eCLD_ApplianceControlCreateApplianceControl()
• Appliance Identification: eCLD_ApplianceIdentificationCreateApplianceIdentification()
• Appliance Events and Alerts: eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts()
• Appliance Statistics: eCLD_ApplianceStatisticsCreateApplianceStatistics()
• Over-The-Air (OTA) Upgrade: eOTA_Create()

More than one of the above functions can be called for the same endpoint in order to create multiple cluster
instances on the endpoint.

Note: No more than one server instance and one client instance of a given cluster can be created on a single
endpoint (e.g. one Identify cluster server and one Identify cluster client, but no further Identify cluster instances).

The creation functions for clusters are described in the corresponding chapters of this manual.

53.3 Appendix D.3: Custom Endpoint Set-up
In order to set up a custom endpoint (supporting selected clusters), you must do the following in your application
code:

1. Create a structure for the custom endpoint containing details of the cluster instances and attributes supported
- see Custom Endpoint Structure below.

2. Initialise the fields of the tsZCL_EndPointDefinition structure for the endpoint.

3. Call the relevant cluster creation function(s) for the cluster(s) to be supported on the endpoint - see Appendix
D.2.

4. Call the ZCL function eZCL_Register() for the endpoint.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
832 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Custom Endpoint Structure

In your application code, to set up a custom endpoint you must create a structure containing details of the
cluster instances and attributes to be supported on the endpoint. This structure must include the following:

• A definition of the custom endpoint through a tsZCL_EndPointDefinition structure - for example:
 tsZCL_EndPointDefinition sEndPoint

• A structure containing a set of tsZCL_ClusterInstance structures for the supported cluster instances - for
example:

typedef struct
{
 tsZCL_ClusterInstance sBasicServer;
 tsZCL_ClusterInstance sBasicClient;
 tsZCL_ClusterInstance sIdentifyServer;
 tsZCL_ClusterInstance sOnOffCluster;
 tsZCL_ClusterInstance sDoorLockCluster;
} tsHA_AppCustomDeviceClusterInstances

For each cluster instance that is not shared with another endpoint, the following should be specified via the
relevant tsZCL_ClusterInstance structure:
Attribute definitions, if any - for example, the tsCLD_Basic structure for the Basic cluster
 Custom data structures, if any - for example, the tsIdentify_CustomStruct structure for the
Identify cluster
 Memory for tables or any other resources, if required by the cluster creation function

Note: If a custom endpoint is to co-exist with a device endpoint, the endpoints can share the structures for
the clusters that they have in common. Therefore, it is not necessary to define these cluster structures for the
custom endpoint, since they already exist for the device endpoint.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
833 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

54 Appendix E: Manufacturer-specific attributes and commands

This appendix describes how a manufacturer can add their own custom attributes and commands to a cluster.
Attributes and commands are covered in separate sections.

54.1 Appendix E.1: Adding Manufacturer-specific Attributes
To add a manufacturer-specific attribute to a cluster:

1. Specify your manufacturer ID code in the Node descriptor. Do this in the ZPS Configuration Editor by clicking
on Node Descriptor for the relevant node and editing the Manufacturer Code field on the Properties tab.

2. In the zcl_options.h file:

a) Define your manufacturer ID code - for example, for a code of 0x1234, add the line:

#define ZCL_MANUFACTURER_CODE 0x1234

b) Define the macro that enables the use of manufacturer-specific attributes for the cluster - this macro is
cluster-specific but for the Electrical Measurement cluster, the relevant line is:

#define CLD_ELECTMEAS_ATTR_MAN_SPEC

c) Define an Attribute ID for the new attribute (you must not use a value already used by another attribute) - for
example, to add an attribute with an ID of 0x0B00 to the Electrical Measurement cluster, the relevant line is:

#define E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC 0x0B00

3. Add the new attribute to the cluster structure in the cluster’s header file - for example, the code below
shows the attribute i16ManufacturerSpecific added to the Electrical Measurement cluster (in
ElectricalMeasurement.h):

typedef struct
{
 zbmap32 u32MeasurementType;
#ifdef CLD_ELECTMEAS_ATTR_AC_FREQUENCY
 zuint16 u16ACFrequency;
#endif
#ifdef CLD_ELECTMEAS_ATTR_RMS_VOLTAGE
 zuint16 u16RMSVoltage;
#endif
#ifdef CLD_ELECTMEAS_ATTR_RMS_CURRENT
 zuint16 u16RMSCurrent;
#endif
#ifdef CLD_ELECTMEAS_ATTR_ACTIVE_POWER
 zint16 i16ActivePower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_REACTIVE_POWER
 zint16 i16ReactivePower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_APPARENT_POWER
 zuint16 u16ApparentPower;
#endif
#ifdef CLD_ELECTMEAS_ATTR_POWER_FACTOR
 zint8 i8PowerFactor;
#endif
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
834 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 zint16 i16ManufacturerSpecific;
#endif
} tsCLD_ElectricalMeasurement;

4. Add the new attribute to the source (.c) file for the cluster, being careful to add the attribute
in the correct sequential position - for example, the following code fragment shows the attribute
i16ManufacturerSpecific added to the Electrical Measurement cluster (in ElectricalMeasurement.c):

const tsZCL_AttributeDefinition
asCLD_ElectricalMeasurementClusterAttributeDefinitions[] = {
/* ZigBee Cluster Library Version */
 :

#ifdef CLD_ELECTMEAS_ATTR_POWER_FACTOR
{E_CLD_ELECTMEAS_ATTR_ID_POWER_FACTOR,
E_ZCL_AF_RD,
E_ZCL_INT8,
(uint16)(&((tsCLD_ElectricalMeasurement*)(0))->i8PowerFactor),
0}, /* Optional */
#endif

/* Manufacturer-specific Read-only Attribute */
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC
{E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC,
(E_ZCL_AF_RD|E_ZCL_AF_MS),
E_ZCL_INT16,
(uint16)(&((tsCLD_ElectricalMeasurement*)(0))->i16ManufacturerSpecific),
0}, /* Optional */
#endif

/* Manufacturer-specific Read/Write Attribute */
#ifdef CLD_ELECTMEAS_ATTR_MAN_SPEC
{E_CLD_ELECTMEAS_ATTR_ID_MAN_SPEC,
(E_ZCL_AF_RD|E_ZCL_AF_WR|E_ZCL_AF_MS),
E_ZCL_INT16,
(uint16)(&((tsCLD_ElectricalMeasurement*)(0))->i16ManufacturerSpecific),
0}, /* Optional */
#endif

Within your application code, you can remotely read the value of the new attribute using the following function
call:

eStatus = eZCL_SendReadAttributesRequest(1, 1, <Add cluster here>, FALSE,
&sSendAddress, &u8SequenceNumber, u8NumAtts, TRUE, HA_MANUFACTURER_CODE,
<Add your attribute to the list here>);

54.2 Appendix E.2: Adding Manufacturer-specific Commands
To add a manufacturer-specific command to a cluster:

1. Ensure that a manufacturer ID code has been specified, as described in Appendix E.1.

2. In the zcl_options.h file, define a Command ID for the new command (you must not use a value already
used by another command) - for example, to add a command with an ID of 0x20 to the Basic cluster, the
relevant line is:

#define E_CLD_BASIC_CMD_MANU_SPEC 0x20

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
835 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

3. In your application code, introduce a handling routine for the new command into the command handler
function that is registered when the cluster instance is created - for example, in the case of the Basic
cluster, this handler function is eCLD_BasicCommandHandler(), which is registered when the function
eCLD_BasicCreateBasic() is called. Do this as follows:

a) Define a handler routine specifically for the new command - for example, in the case of the Basic cluster, this
function may be eCLD_BasicHandleManuSpecCommand() and has the prototype:

teZCL_Status eCLD_BasicHandleManuSpecCommand(
 ZPS_tsAfEvent *pZPSevent,
 tsZCL_EndPointDefinition *psEndPointDefinition,
 tsZCL_ClusterInstance *psClusterInstance);

b) Add the Command ID and the above command-specific handler function into the registered command
handler function - for example, in the case of the Basic cluster, the code for eCLD_BasicCommandHandler()
would be modified as shown in the fragment below:

PUBLIC teZCL_Status eCLD_BasicCommandHandler(
 ZPS_tsAfEvent *pZPSevent,
 tsZCL_EndPointDefinition *psEndPointDefinition,
 tsZCL_ClusterInstance *psClusterInstance)
{
.
.
.
 // SERVER
 switch(u8CommandIdentifier)
 {
 case(E_CLD_BASIC_CMD_RESET_TO_FACTORY_DEFAULTS):
 {
eCLD_BasicHandleResetToFactoryDefaultsCommand(pZPSevent, psEndPointDefinition, psClusterInstance);
 break;
 }
 case(E_CLD_BASIC_CMD_MANU_SPEC):
eCLD_BasicHandleManuSpecCommand(pZPSevent, psEndPointDefinition, psClusterInstance);
 break;
 default:
 {
 // unlock
 eZCL_ReleaseMutex(psEndPointDefinition);
 return(E_ZCL_FAIL);
 break;
 }
 }
 .
 .
 .
}

4. Add a command payload structure for the new command into the source (.c) file for the cluster - for example:

typedef struct
{
 uint8 u8PayloadField1;
 uint16 u16PayloadField2;
 uint16 u16PayloadField3;
 uint32 u32PayloadField4;
}tsMS_ManuSpecCommand;

5. Add a function for sending the command to a remote node into the header (.h) and source (.c) files for the
cluster - for example, in the case of the Basic cluster, the function might be:

PUBLIC teZCL_Status eCLD_BasicCommandManuSpecSend(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
836 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

 tsZCL_Address *psDestinationAddress,
 tsMS_ManuSpecCommand *psManuSpecPayload,
 uint8 *pu8TransactionSequenceNumber)
{
 teZCL_Status eZCL_Status;
 tsZCL_TxPayloadItem asPayloadDefinition[] =
 {
 {1, E_ZCL_UINT8, &psManuSpecPayload->u8PayloadField1},
 {1, E_ZCL_UINT16, &psManuSpecPayload->u16PayloadField2},
 {1, E_ZCL_UINT16, &psManuSpecPayload->u16PayloadField3},
 {1, E_ZCL_UINT32, &psManuSpecPayload->u32PayloadField4}
 };
 eZCL_Status = eZCL_CustomCommandSend(u8SourceEndpoint,
 u8DestinationEndpoint,
 psDestinationAddress,
 GENERAL_CLUSTER_ID_BASIC,
 TRUE,
 E_CLD_BASIC_CMD_MANU_SPEC,
 pu8TransactionSequenceNumber,
 asPayloadDefinition,
 TRUE,
 HA_MANUFACTURER_CODE,
 sizeof(asPayloadDefinition) / sizeof(tsZCL_TxPayloadItem));
 return eZCL_Status;
}

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
837 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

55 Appendix F: OTA extension for dual-processor nodes

This appendix describes use of the Over-the-Air (OTA) Upgrade cluster (introduced in Chapter 49) for a ZigBee
PRO network consisting of dual-processor nodes that each contain a JN518x, K32W041, K32W061, MCXW71,
or MCXW72 wireless microcontroller and a co-processor.

The co-processor is connected to the device via a serial interface and may have its own external storage
device, as depicted in Figure 13 below.

Figure 12. Dual-Processor Node

The OTA Upgrade cluster may be used to upgrade the application which runs on the co-processor as well as
the application which runs on the JN518x, K32W041, K32W061, MCXW71, or MCXW72 device. In this case,
the OTA upgrade process is outlined below.

1. On the OTA server node (which is typically also the ZigBee Co-ordinator), the co-processor receives a new
software image for the ZigBee PRO network.

2. The co-processor on the OTA server node saves the received software image in its own storage device.

3. The OTA Upgrade cluster server running on the JN518x, K32W041, or K32W061 device distributes the
software update over-the-air to the appropriate ZigBee PRO network nodes, as described in Section 49.4.

4. On a target node, the OTA Upgrade cluster client running on the JN518x/K32W041/61 microcontroller either
stores the received software image in its own Flash memory device or passes it to the co-processor for storage
in the co-processor’s own storage device, depending on whether the application in the update is destined for the
device or the co-processor.

5. The OTA Upgrade cluster client running on the JN518x, K32W041, or K32W061 device then either performs
the upgrade of the application running on itself or signals to the co-processor to initiate an upgrade of its own
application, as appropriate.

The above process is illustrated in Figure 14 below for the case of a ZigBee 3.0 network in which the co-
processor application on a Dimmable Light (OTA client) is updated from an external source via an ‘Internet of
Things’ (IoT) Gateway (OTA server) and the image is stored in the target co-processor’s own storage device.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
838 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Table 124. Example of OTA Upgrade of Co-processor Application

55.1 Appendix F.1: Application Upgrades for Different Target Processors
In a ZigBee PRO network containing dual-processor nodes (with a JN518x, K32W041, or K32W061 Wireless
microcontroller and a co-processor), an application upgrade can be targeted at any of the following processors:

• OTA server node processors:
– Wireless Microcontroller (JN518x, K32W041, or K32W061)
– Co-processor

• OTA client node processors:
– Wireless Microcontroller (JN518x, K32W041, or K32W061)
– Co-processor

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
839 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Only application upgrades for the OTA client node processors need the new software image to be distributed
over-the-air.

The following table describes the roles of the different processors (and their associated memory devices) during
the different application upgrades.

Intermediate Processors during Application Upgrade

OTA Server OTA ClientTarget Processor for
Application Upgrade

Co-processor JN518x/K32
W041/K32W061

JN518x/K32
W041/K32W061 Co-processor

OTA Server
Co-processor

Co-processor saves
new image to its
internal storage and
performs update

- - -

OTA Server
Wireless
Micro-controller

Co-processor
passes new image
to server Wireless
Microcontroller device *

Wireless Microcon-
troller saves image
to Flash memory and
performs update *

- -

OTA Client
Wireless
Micro-controller

Co-processor
passes new image
to server Wireless
Microcontroller device *

Wireless Microcon-
troller saves image
to Flash memory and
then sends it over-the-
air to client *

Wireless Microcon-
troller receives image,
saves it to Flash
memory and performs
update

-

OTA Client
Co-processor

Co-processor
passes new image
to server Wireless
Microcontroller *

Wireless Microcon-
troller saves image
to Flash memory and
then sends it over-the-
air to client *

Wireless Microcon-
troller receives image
and saves it to Flash
memory or to co-
processor storage
device

Co-processor per-
forms update

Table 125. Processor Roles in Application Upgrade

* If insufficient space in Flash memory, image may be stored in co-processor storage - see Appendix F.2

The case of the co-processor on the OTA server node updating its own application is not described any further
in this manual, as this upgrade mechanism is specific to the co-processor. The other three application upgrade
scenarios are described in Appendix F.2.

55.2 Appendix F.2: Storing Upgrade Images in Co-processor Storage on Server
When the co-processor on the OTA server node receives a new OTA upgrade image from an external source
(such as a utility company), if the image is not for the co-processor itself then it is normally passed to the
Wireless Microcontroller device for storage in the attached Flash memory device. However, if there is insufficient
storage space in Flash memory then the new image will need to be stored in the storage device of the co-
processor:

• When the co-processor application notifies the Wireless Microcontroller application of the arrival of a new
image, the Wireless Microcontroller application must check whether there is sufficient Flash memory space for
the image.

• If there is insufficient Flash memory space, the Wireless Microcontroller application must inform the co-
processor that it should store the image in its own storage device.

The maximum number of images that can be stored in the co-processor’s storage device on the OTA
server node must be specified as a compile-time option in the zcl_options.h file through the macro
OTA_MAX_CO_PROCESSOR_IMAGES.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
840 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

The OTA Upgrade cluster server will require knowledge of any OTA upgrade images stored in the co-
processor’s storage device - the cluster server must be able to advertise the availability of the image to cluster
clients and be able to process requests for the image from clients. To facilitate this role, once the image has
been saved, the co-processor must provide the OTA image header information to the Wireless Microcontroller
application. The latter application can then register this header information with the cluster server by calling the
function eOTA_NewImageLoaded().

When an Image Block Request from a cluster client is received by the cluster server for an image stored in the
co-processor’s storage device, the event E_CLD_OTA_INTERNAL_COMMAND_CO_PRECOSSOR_IMAGE_
BLOCK_REQUEST is generated on the Wireless Microcontroller. After requesting and receiving the required
image block from the co-processor, the application must send the block to the relevant client by calling the
function eOTA_ServerImageBlockResponse() to issue an Image Block Response.

55.3 Appendix F.3: Use of Image Indices
Each OTA upgrade image that is stored in non-volatile memory in a node is identified by an index number. This
image index number is actually associated with the memory space allocated to a single image, rather than with
a particular image. For example, the image index number 1 may correspond to sectors 3 and 4 of the Flash
memory attached to the device.

Note: In the case of external Flash memory, an image index number is linked with the start sector of the
memory allocated to a single image when the function eOTA_AllocateEndpointOTASpace() is called.

• The maximum number of images that can be stored in the external Flash memory is set at compile-time
by defining a value for OTA_MAX_IMAGES_PER_ENDPOINT in the zcl_options.h file. The minimum value
that can be used is 1, since the active image is held in the internal Flash memory and does not need to be
included.

• Since the image indices are numbered from zero, they can take values in the range:
– 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1)

In the case of a dual-processor node, OTA upgrade images may also be stored in the co-processor’s external
storage device. The maximum number images that can be stored in this device is set at compile-time by
defining a value for OTA_MAX_CO_PROCESSOR_IMAGES in the zcl_options.h file.

• The maximum number of images that can be stored across the two storage devices is:
– OTA_MAX_IMAGES_PER_ENDPOINT + OTA_MAX_CO_PROCESSOR_IMAGES

• The image indices can take values in the range:
– 0 to (OTA_MAX_IMAGES_PER_ENDPOINT + OTA_MAX_CO_PROCESSOR_IMAGES - 1)

• The indices of the images stored in the external Flash memory still take values in the range:
– 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1)

• The indices of the images stored in co-processor external storage take values in the range:
– OTA_MAX_IMAGES_PER_ENDPOINT to (OTA_MAX_IMAGES_PER_ENDPOINT +
OTA_MAX_CO_PROCESSOR_IMAGES - 1)

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
841 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

56 Appendix G: Glossary

Term Description

Address A numeric value that is used to identify a network node. In ZigBee, the device’s 64-bit IEEE/MAC
address or 16-bit network address is used.

AIB APS Information Base: A database for the Application Support (APS) layer of the ZigBee stack,
containing attributes concerned with system security.

APDU Application Protocol Data Unit: Part of a wireless network message that is handled by the
application and contains user data.

API Application Programming Interface: A set of programming functions that can be incorporated in
application code to provide an easy-to-use interface to underlying functionality and resources.

APS Application Support: A sub-layer of the Application layer of the ZigBee stack, relating to
communications with applications, binding and security.

Application The program that deals with the input/output/processing requirements of the node, as well as
high-level interfacing to the network.

Application Profile A collection of device descriptors that characterise an application for a par-ticular market sector.
An application profile can be public or private. A pub-lic profile is identified by a 16-bit number,
assigned by the ZigBee Alliance.

Attribute A data entity used by an application, e.g. a temperature measurement. It is part of a ‘cluster’
along with a set of commands which can be used to pass attribute values between applications
or modify attributes.

Binding The process of associating an endpoint on one node with an endpoint on another node, so that
communications from the source endpoint are auto-matically routed to the destination endpoint
without specifying addresses.

Channel A narrow frequency range within the designated radio band - for example, the IEEE 802.15.4
2400-MHz band is divided into 16 channels. A wireless network operates in a single channel
which is determined at network initial-isation.

Child A node which is connected directly to a parent node and for which the par-ent node provides
routing functionality. A child can be an End Device or Router. Also see Parent.

Cluster A collection of attributes and commands that define a functional building block for a ZigBee
device. The commands are used to communicate or modify attribute values. A cluster has input/
server and output/client sides - a cluster client issues a command which is received and acted on
by a cluster server.

Context Data Data which reflects the current state of the node. The context data must be preserved during
sleep (of an End Device).

Co-ordinator The node through which a network is started, initialised and formed - the Co-ordinator acts as the
seed from which the network grows, as it is joined by other nodes. The Co-ordinator also usually
provides a routing function. All networks must have one and only one Co-ordinator.

End Device A node which has no networking role (such as routing) and is only con-cerned with data input/
output/processing. As such, an End Device cannot be a parent but can sleep to conserve power.

Endpoint A software entity that acts as a communications port for an application on a ZigBee node. A node
can support up to 240 endpoints, numbered 1 to 240. Two special endpoints are also supported
- endpoint 0 is used by the ZDO and endpoint 255 is used for a broadcast to all endpoints on the
node.

Extended PAN ID
(EPID)

A 64-bit identifier for a ZigBee PRO network that is assigned when the net-work is started. A
value can be pre-set or, alternatively, the IEEE/MAC address of the Co-ordinator can be used as
the EPID.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
842 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Term Description

IEEE 802.15.4 A standard network protocol that is used as the lowest level of the ZigBee software stack. Among
other functionality, it provides the physical interface to the network’s transmission medium
(radio).

IEEE/MAC Address A unique 64-bit address that is allocated to a device at the time of manufac-ture and is retained
by the device for its lifetime. No two devices in the world can have the same IEEE/MAC address.

Joining The process by which a device becomes a node of a network. The device transmits a joining
request. If this is received and accepted by a parent node (Co-ordinator or Router), the device
becomes a child of the parent. Note that the parent must have "permit joining" enabled.

Mesh Network A wireless network topology in which all routing nodes (Routers and the Co-ordinator) can
communicate directly with each other, provided that they are within radio range. This allows
optimal and flexible routing, with alterna-tive routes if the most direct route is not available.

Network Address A 16-bit address that is allocated to a ZigBee node when it joins a network. The Co-ordinator
always has the network address 0x0000. In IEEE 802.15.4 terminology, it is called the short
address.

NIB NWK Information Base: A database containing attributes needed in the management of the
Network (NWK) layer of the ZigBee stack.

Node Descriptor A set of information about the capabilities of a node.

Node Power Descriptor A set of information about a node’s current and potential power supply.

NPDU Network Protocol Data Unit: The transmitted form of a wireless network message (incorporates
APDU and header/footer information from stack).

PAN ID Personal Area Network Identifier: This is a 16-bit value that uniquely identi-fies the network - all
neighbouring networks must have different PAN IDs.

Parent A node which allows other nodes (children) to join the network through it and provides a routing
function for these child nodes. A parent can be a Router or the Co-ordinator. Also see Child.

Router A node which provides routing functionality (in addition to input/output/pro-cessing) if used as a
parent node. Also see Routing.

Routing The ability of a node to pass messages from one node to another, acting as a stepping stone
from the source node to the target node. Routing function-ality is provided by Routers and
the Co-ordinator. Routing is handled by the network level software and is transparent to the
application on the node.

Simple Descriptor A set of assorted information about a particular application/endpoint.

Sleep Mode An operating state of a node in which the device consumes minimal power. During sleep, the
only activity of the node may be to time the sleep duration to determine when to wake up and
resume normal operation. Only End Devices can sleep.

Stack The hierarchical set of software layers used to operate a system. The high-level user application
is at the top of the stack and the low-level interface to the transmission medium is at the bottom
of the stack.

Stack Profile The set of features implemented from the ZigBee specification - that is, all the mandatory
features together with a subset of the optional features. The ZigBee Alliance define two Stack
Profiles for use with public Application Profiles - ZigBee and ZigBee PRO.

UART Universal Asynchronous Receiver Transmitter: A standard interface used for cabled serial
communications between two devices (each device must have a UART).

User Descriptor A user-defined description of a node (e.g. "KitchenLight").

ZigBee Base Device A framework for the use of ZigBee device types that provides basic func-tionality such as
commissioning. Its functionality is defined in the ZigBee Base Device Behaviour (BDB)
specification from the ZigBee Alliance.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
843 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Term Description

ZigBee Certified Product An end-product that uses ZigBee Compliant Platforms and public Applica-tion Profiles, and
which has been tested for ZigBee compliance and subse-quently authorised to carry the ZigBee
Alliance logo.

ZigBee Cluster Library
(ZCL)

A collection of clusters that can be individually employed in ZigBee devices, as required, to
implement the functionality of a device.

ZigBee Compliant
Platform

A component (such as a module) that has been tested for ZigBee compli-ance and authorised to
be used as a building block for a ZigBee end-prod-uct.

ZigBee Device Objects
(ZDO)

A special application which resides in the Application Layer on all nodes and performs various
standard tasks (e.g. device discovery, binding). The ZDO communicates via endpoint 0.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
844 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

57 Revision history

The table below lists the revisions to this document.

Document
ID Release date Description

3.1 24 January 2025 Added support for MCXW71 and MCXW72 devices

3.0 1 March 2023 • Added support for K32W1 device
• Updated to latest NXP Documentation template

2.0 18 November 2019 Updated for JN518x and K32W041/K32W061

1.0 20 June 2018 First release

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
845 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
846 / 860

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

Contents
1 ZigBee Cluster Library (ZCL)7
1.1 ZCL Member Clusters 7
1.1.1 General .. 7
1.1.2 Measurement and Sensing9
1.1.3 Lighting .. 9
1.1.4 Heating, Ventilation, and Air-Conditioning

(HVAC) ...10
1.1.5 Closures ...10
1.1.6 Security and Safety ... 10
1.1.7 Smart Energy ...11
1.1.8 Commissioning .. 11
1.1.9 Appliances ... 11
1.1.10 Over-The-Air (OTA) Upgrade12
1.2 General ZCL Resources12
1.3 ZCL Compile-time Options 12
2 ZCL Fundamentals and Features 15
2.1 Initializing the ZCL ...15
2.2 Shared Device Structures15
2.3 Accessing Attributes .. 16
2.3.1 Attribute Access Permissions 16
2.3.2 Reading Attributes ... 17
2.3.2.1 Reading a set of attributes of a remote

cluster .. 18
2.3.2.2 Reading an Attribute of a Local Cluster 19
2.3.3 Writing Attributes ... 19
2.3.3.1 Writing to Attributes of a Remote Cluster19
2.3.3.2 Writing an Attribute Value to a Local Cluster21
2.3.4 Attribute Discovery ...22
2.3.5 Attribute Reporting ...23
2.4 Global Attributes .. 23
2.5 Default Responses .. 24
2.6 Handling Commands for Unsupported

Clusters ..24
2.7 Handling Commands from Other

Manufacturers .. 25
2.8 Bound Transmission Management 25
2.9 Command Discovery 26
2.9.1 Discovering Command Sets 26
2.9.2 Compile-time Options 27
3 Event Handling ...28
3.1 Event Structure ..28
3.2 Processing Events ...28
3.3 Events ..29
4 Error Handling ... 34
4.1 Last Stack Error ...34
4.2 Error/Command Status on Receiving

Command .. 34
5 ZCL Functions ... 37
5.1 General Functions ... 37
5.1.1 eZCL_Initialise ... 37
5.1.2 eZCL_Register ...38
5.1.3 vZCL_EventHandler ...38
5.1.4 eZCL_Update100mS 39
5.1.5 vZCL_DisableAPSACK39
5.1.6 eZCL_GetLastZpsError40

5.1.7 vZCL_
RegisterHandleGeneralCmdCallBack40

5.1.8 vZCL_
RegisterCheckForManufCodeCallBack 41

5.2 Attribute Access Functions 42
5.2.1 eZCL_SendReadAttributesRequest42
5.2.2 eZCL_SendWriteAttributesRequest 44
5.2.3 eZCL_

SendWriteAttributesNoResponseRequest 45
5.2.4 eZCL_

SendWriteAttributesUndividedRequest46
5.2.5 eZCL_SendDiscoverAttributesRequest 48
5.2.6 eZCL_

SendDiscoverAttributesExtendedRequest 49
5.2.7 eZCL_SendConfigureReportingCommand 51
5.2.8 eZCL_

SendReadReportingConfigurationCommand
.. 52

5.2.9 eZCL_ReportAllAttributes 53
5.2.10 eZCL_ReportAttribute 54
5.2.11 eZCL_CreateLocalReport 55
5.2.12 eZCL_SetReportableFlag 56
5.2.13 vZCL_SetDefaultReporting 57
5.2.14 eZCL_HandleReadAttributesResponse 57
5.2.15 eZCL_ReadLocalAttributeValue58
5.2.16 eZCL_WriteLocalAttributeValue 59
5.2.17 eZCL_OverrideClusterControlFlags60
5.2.18 eZCL_SetSupportedSecurity 61
5.3 Command Discovery Functions61
5.3.1 eZCL_

SendDiscoverCommandReceivedRequest61
5.3.2 eZCL_

SendDiscoverCommandGeneratedRequest63
6 ZCL Structures ...65
6.1 General Structures ...65
6.1.1 tsZCL_EndPointDefinition65
6.1.2 tsZCL_ClusterDefinition 65
6.1.3 tsZCL_AttributeDefinition 66
6.1.4 tsZCL_Address .. 67
6.1.5 tsZCL_

AttributeReportingConfigurationRecord 67
6.1.6 tsZCL_

AttributeReportingConfigurationResponse68
6.1.7 tsZCL_

AttributeReadReportingConfigurationRecord
.. 69

6.1.8 tsZCL_IndividualAttributesResponse 69
6.1.9 tsZCL_DefaultResponse69
6.1.10 tsZCL_AttributeDiscoveryResponse 70
6.1.11 tsZCL_

AttributeDiscoveryExtendedResponse70
6.1.12 tsZCL_ReportAttributeMirror71
6.1.13 tsZCL_OctetString ... 71
6.1.14 tsZCL_CharacterString 72
6.1.15 tsZCL_ClusterCustomMessage 72
6.1.16 tsZCL_ClusterInstance 73

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
847 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

6.1.17 tsZCL_
CommandDiscoveryIndividualResponse 73

6.1.18 tsZCL_CommandDiscoveryResponse 73
6.1.19 tsZCL_CommandDefinition74
6.1.20 tsZCL_SceneExtensionTable74
6.1.21 tsZCL_WriteAttributeRecord 75
6.2 Event Structure (tsZCL_CallBackEvent)75
7 Enumerations and Status Codes 77
7.1 General Enumerations77
7.1.1 Addressing Modes (teZCL_AddressMode) 77
7.1.2 Broadcast Modes (ZPS_

teAplAfBroadcastMode) 78
7.1.3 Attribute Types (teZCL_ZCLAttributeType) 78
7.1.4 Command Status (teZCL_CommandStatus) ... 79
7.1.5 Report Attribute Status (teZCL_

ReportAttributeStatus) 81
7.1.6 Security Level (teZCL_ZCLSendSecurity) 81
7.2 General Return codes (ZCL Status) 82
7.3 ZCL Event Enumerations 85
8 Basic Cluster ..91
8.1 Overview ..91
8.2 Basic Cluster structure and attributes91
8.3 Mandatory Attribute Settings 94
8.4 Functions ... 94
8.4.1 eCLD_BasicCreateBasic 95
8.4.2 eCLD_

BasicCommandResetToFactoryDefaultsSend
.. 96

8.5 Enumerations ...96
8.5.1 teCLD_BAS_ClusterID96
8.5.2 teCLD_BAS_PowerSource 97
8.5.3 teCLD_BAS_GenericDeviceClass 98
8.5.4 eCLD_BAS_GenericDeviceType 98
8.5.5 teCLD_BAS_PhysicalEnvironment 99
8.6 Compile-time options 101
9 Power Configuration Cluster 104
9.1 Overview .. 104
9.2 Power Configuration Cluster structure and

attributes .. 104
9.3 Attributes for Default Reporting 111
9.4 Functions ... 111
9.4.1 eCLD_

PowerConfigurationCreatePowerConfiguration
.. 111

9.5 Enumerations and Defines 112
9.5.1 teCLD_PWRCFG_AttributeId112
9.5.2 teCLD_PWRCFG_BatterySize114
9.5.3 Defines for Voltage Alarms 114
9.6 Compile-time options 114
10 Device Temperature Configuration

Cluster ...119
10.1 Overview .. 119
10.2 Cluster structure and attributes119
10.3 Functions ... 121
10.3.1 eCLD_

DeviceTemperatureConfigurationCreateDeviceTemperatureConfiguration
.. 121

10.4 Enumerations and Defines 122
10.4.1 teCLD_DEVTEMPCFG_AttributeId122

10.4.2 Defines for Device Temperature Alarms 122
10.5 Compile-time options 122
11 Identify Cluster ...124
11.1 Overview .. 124
11.2 Identify Cluster Structure and Attribute 124
11.3 Initialization .. 125
11.4 Sending Commands 125
11.4.1 Starting and Stopping Identification Mode 125
11.4.2 Requesting Identification Effects125
11.4.3 Inquiring about Identification Mode126
11.4.4 Using EZ-mode Commissioning Features 126
11.5 Sleeping Devices in Identification Mode 127
11.6 Functions ... 127
11.6.1 eCLD_IdentifyCreateIdentify127
11.6.2 eCLD_

IdentifyCommandIdentifyRequestSend128
11.6.3 eCLD_IdentifyCommandTriggerEffectSend ... 129
11.6.4 eCLD_

IdentifyCommandIdentifyQueryRequestSend
.. 131

11.6.5 eCLD_
IdentifyEZModeInvokeCommandSend 131

11.6.6 eCLD_
IdentifyUpdateCommissionStateCommandSend
.. 133

11.7 Structures ...134
11.7.1 Custom Data Structure 134
11.7.2 Custom Command Payloads 134
11.7.3 Custom Command Responses134
11.7.4 EZ-mode Commissioning Command

Payloads .. 135
11.8 Enumerations ...136
11.8.1 teCLD_Identify_ClusterID 136
11.9 Compile-time options 136
12 Groups Cluster ...138
12.1 Overview .. 138
12.2 Groups Cluster structure and attributes 138
12.3 Initialization .. 138
12.4 Sending Commands 139
12.4.1 Adding Endpoints to Groups139
12.4.2 Removing Endpoints from Groups139
12.4.3 Obtaining Information about Groups139
12.5 Functions ... 139
12.5.1 eCLD_GroupsCreateGroups 140
12.5.2 eCLD_GroupsAdd ..141
12.5.3 eCLD_

GroupsCommandAddGroupRequestSend141
12.5.4 eCLD_

GroupsCommandViewGroupRequestSend ... 142
12.5.5 eCLD_

GroupsCommandGetGroupMembershipRequestSend
.. 143

12.5.6 eCLD_
GroupsCommandRemoveGroupRequestSend
.. 144

12.5.7 eCLD_
GroupsCommandRemoveAllGroupsRequestSend
.. 145

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
848 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

12.5.8 eCLD_
GroupsCommandAddGroupIfIdentifyingRequestSend
.. 146

12.6 Structures ...147
12.6.1 Custom Data Structure 147
12.6.2 Group Table Entry ... 148
12.6.3 Custom Command Payloads 148
12.6.4 Custom Command Responses149
12.7 Enumerations ...150
12.7.1 teCLD_Groups_ClusterID 150
12.8 Compile-time Options 150
13 Scenes Cluster ...152
13.1 Overview .. 152
13.2 Scenes Cluster structure and attributes152
13.3 Initialization .. 153
13.4 Sending Remote Commands153
13.4.1 Creating a Scene ...153
13.4.2 Copying a Scene ... 154
13.4.3 Applying a Scene .. 154
13.4.4 Deleting a Scene ... 154
13.4.5 Obtaining Information about Scenes154
13.5 Issuing Local Commands 155
13.5.1 Creating a Scene ...155
13.5.2 Applying a Scene .. 155
13.6 Functions ... 155
13.6.1 eCLD_ScenesCreateScenes 155
13.6.2 eCLD_ScenesAdd ... 157
13.6.3 eCLD_ScenesStore 157
13.6.4 eCLD_ScenesRecall158
13.6.5 eCLD_

ScenesCommandAddSceneRequestSend 158
13.6.6 eCLD_

ScenesCommandViewSceneRequestSend ...159
13.6.7 eCLD_

ScenesCommandRemoveSceneRequestSend
.. 160

13.6.8 eCLD_
ScenesCommandRemoveAllScenesRequestSend
.. 161

13.6.9 eCLD_
ScenesCommandStoreSceneRequestSend .. 162

13.6.10 eCLD_
ScenesCommandRecallSceneRequestSend
.. 163

13.6.11 eCLD_
ScenesCommandGetSceneMembershipRequestSend
.. 164

13.6.12 eCLD_
ScenesCommandEnhancedAddSceneRequestSend
.. 165

13.6.13 eCLD_
ScenesCommandEnhancedViewSceneRequestSend
.. 166

13.6.14 eCLD_
ScenesCommandCopySceneSceneRequestSend
.. 167

13.7 Structures ...168
13.7.1 Custom Data Structure 168
13.7.2 Custom Command Payloads 169

13.7.3 Custom Command Responses171
13.7.4 Scenes Table Entry 174
13.8 Enumerations ...175
13.8.1 teCLD_Scenes_ClusterID175
13.9 Compile-time options 176
14 On/Off Cluster .. 177
14.1 Overview .. 177
14.2 On/Off Cluster Structure and Attribute 177
14.3 Attributes for Default Reporting 178
14.4 Initialization .. 178
14.5 Sending Commands 179
14.5.1 Switching On and Off 179
14.5.1.1 Timeout on the ‘On’ Command179
14.5.1.2 On/Off with Transition Effect179
14.5.2 Switching Off Lights with Effect 180
14.5.3 Switching On Timed Lights180
14.6 Saving Light Settings180
14.7 Functions ... 181
14.7.1 eCLD_OnOffCreateOnOff 181
14.7.2 eCLD_OnOffCommandSend 182
14.7.3 eCLD_OnOffCommandOffWithEffectSend 183
14.7.4 eCLD_

OnOffCommandOnWithTimedOffSend 184
14.8 Structures ...185
14.8.1 Custom Data Structure 185
14.8.2 Custom Command Payloads 185
14.9 Enumerations ...186
14.9.1 teCLD_OnOff_ClusterID 186
14.9.2 teCLD_OOSC_SwitchType (On/Off Switch

Types) .. 187
14.9.3 teCLD_OOSC_SwitchAction (On/Off Switch

Actions) ..187
14.10 Compile-time options 187
15 On/Off Switch Configuration Cluster 189
15.1 Overview .. 189
15.2 On/Off Switch Config Cluster Structure and

Attribute ..189
15.3 Initialisation .. 190
15.4 Functions ... 190
15.4.1 eCLD_OOSCCreateOnOffSwitchConfig 190
15.5 Enumerations ...191
15.5.1 teCLD_OOSC_ClusterID 191
15.5.2 teCLD_OOSC_SwitchType191
15.5.3 teCLD_OOSC_SwitchAction192
15.6 Compile-time options 192
16 Level Control Cluster 193
16.1 Overview .. 193
16.2 Level Control Cluster structure and

attributes .. 193
16.3 Attributes for Default Reporting 195
16.4 Initialization .. 195
16.5 Sending Remote Commands195
16.5.1 Changing Level ..195
16.5.2 Stopping a Level Change 196
16.6 Issuing Local Commands 196
16.6.1 Setting Level ..196
16.6.2 Obtaining Level ..196
16.7 Functions ... 196
16.7.1 eCLD_LevelControlCreateLevelControl196

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
849 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

16.7.2 eCLD_LevelControlSetLevel197
16.7.3 eCLD_LevelControlGetLevel 198
16.7.4 eCLD_

LevelControlCommandMoveToLevelCommandSend
.. 199

16.7.5 eCLD_
LevelControlCommandMoveCommandSend
.. 200

16.7.6 eCLD_
LevelControlCommandStepCommandSend .. 201

16.7.7 eCLD_
LevelControlCommandStopCommandSend .. 202

16.8 Structures ...203
16.8.1 Level Control Transition Structure 203
16.8.2 Custom Data Structure 204
16.8.3 Custom Command Payloads 204
16.8.3.1 Move To Level Command Payload 204
16.8.3.2 Move Command Payload 205
16.8.3.3 Step Command Payload205
16.8.3.4 Stop Command Payload205
16.9 Enumerations ...206
16.9.1 teCLD_LevelControl_ClusterID206
16.9.2 teCLD_LevelControl_Transition 206
16.9.3 teCLD_LevelControl_MoveMode206
16.10 Compile-time options 207
17 Alarms Cluster ... 209
17.1 Overview .. 209
17.2 Alarms Cluster structure and attributes209
17.3 Initialization .. 210
17.4 Alarm Operations ...210
17.4.1 Raising an Alarm ... 210
17.4.2 Resetting Alarms (from Client)210
17.5 Alarms Events ... 210
17.6 Functions ... 211
17.6.1 eCLD_AlarmsCreateAlarms211
17.6.2 eCLD_

AlarmsCommandResetAlarmCommandSend
.. 212

17.6.3 eCLD_
AlarmsCommandResetAllAlarmsCommandSend
.. 213

17.6.4 eCLD_
AlarmsCommandGetAlarmCommandSend ... 214

17.6.5 eCLD_
AlarmsCommandResetAlarmLogCommandSend
.. 215

17.6.6 eCLD_AlarmsResetAlarmLog216
17.6.7 eCLD_AlarmsAddAlarmToLog 217
17.6.8 eCLD_AlarmsGetAlarmFromLog 217
17.6.9 eCLD_AlarmsSignalAlarm 218
17.7 Structures ...219
17.7.1 Event Callback Message Structure219
17.7.2 Custom Data Structure 220
17.7.3 Custom Command Payloads 220
17.7.3.1 Reset Alarm Command Payload 220
17.7.3.2 Alarm Notification Payload220
17.7.4 Custom Response Payloads 221
17.7.4.1 Get Alarm Response Payload 221
17.7.5 Alarms Table Entry .. 221

17.8 Enumerations ...222
17.8.1 teCLD_Alarms_AttributeID222
18 Time Cluster and ZCL Time 223
18.1 Overview .. 223
18.2 Time Cluster structure and attributes223
18.3 Attribute Settings ... 225
18.3.1 Mandatory Attributes225
18.3.2 Optional Attributes ... 225
18.4 Maintaining ZCL Time227
18.4.1 Updating ZCL Time Following Sleep 227
18.4.2 ZCL Time Synchronization 227
18.5 Time-Synchronization of Devices 227
18.5.1 Initialising and Maintaining Master Time 229
18.5.2 Initial Synchronisation of Devices 230
18.5.3 Re-synchronisation of Devices 230
18.6 Time Event ...231
18.7 Functions ... 231
18.7.1 eCLD_TimeCreateTime 231
18.7.2 vZCL_SetUTCTime ..232
18.7.3 u32ZCL_GetUTCTime 233
18.7.4 bZCL_GetTimeHasBeenSynchronised 233
18.7.5 vZCL_ClearTimeHasBeenSynchronised233
18.8 Return codes ... 234
18.9 Enumerations ...234
18.9.1 teCLD_TM_AttributeID234
18.10 Compile-time Options 234
19 Input and Output Clusters 236
19.1 Analogue Input (Basic) 236
19.1.1 Overview .. 236
19.1.2 Analogue Input (Basic) Structure and

Attributes ..236
19.1.3 Attributes for Default Reporting 238
19.1.4 Functions ... 238
19.1.4.1 eCLD_

AnalogInputBasicCreateAnalogInputBasic 239
19.1.5 Enumerations ...240
19.1.5.1 teCLD_AnalogInputBasicCluster_AttrID 240
19.1.5.2 teCLD_AnalogInputBasic_Reliability240
19.1.6 Compile-time Options 240
19.2 Analogue Output (Basic) 241
19.2.1 Overview .. 241
19.2.2 Analogue Output (Basic) Structure and

Attributes ..242
19.2.3 Attributes for Default Reporting 244
19.2.4 Functions ... 244
19.2.4.1 eCLD_

AnalogOutputBasicCreateAnalogOutputBasic
.. 244

19.2.5 Enumerations ...245
19.2.5.1 teCLD_AnalogOutputBasicCluster_AttrID245
19.2.5.2 teCLD_AnalogOutputBasic_Reliability246
19.2.6 Compile-time options 246
19.3 Binary Input (Basic) Cluster247
19.3.1 Overview .. 247
19.3.2 Binary Input (Basic) Structure and

Attributes ..247
19.3.3 Attributes for Default Reporting 249
19.3.4 Functions ... 250

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
850 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

19.3.4.1 eCLD_
BinaryInputBasicCreateBinaryInputBasic 250

19.3.5 Enumerations ...251
19.3.5.1 teCLD_BinaryInputBasicCluster_AttrID 251
19.3.5.2 teCLD_BinaryInputBasic_Polarity251
19.3.5.3 teCLD_BinaryInputBasic_Reliability251
19.3.6 Compile-time options 252
19.4 Binary Output (Basic) 252
19.4.1 Overview .. 253
19.4.2 Binary Output (Basic) Structure and

Attributes ..253
19.4.3 Attributes for Default Reporting 255
19.4.4 Functions ... 255
19.4.4.1 eCLD_

BinaryOutputBasicCreateBinaryOutputBasic
.. 256

19.4.5 Enumerations ...257
19.4.5.1 teCLD_BinaryOutputBasicCluster_AttrID257
19.4.5.2 teCLD_BinaryOutputBasic_Polarity 257
19.4.5.3 teCLD_BinaryOutputBasic_Reliability257
19.4.6 Compile-time options 258
19.5 Multistate Input (Basic) 258
19.5.1 Overview .. 258
19.5.2 Multistate Input (Basic) Structure and

Attributes ..259
19.5.3 Attributes for Default Reporting 260
19.5.4 Functions ... 261
19.5.4.1 eCLD_

MultistateInputBasicCreateMultistateInputBasic
.. 261

19.5.5 Enumerations ...262
19.5.5.1 teCLD_MultistateInputBasicCluster_AttrID 262
19.5.5.2 teCLD_MultistateInputBasic_Reliability 262
19.5.6 Compile-time options 262
19.6 Multistate Output (Basic) 263
19.6.1 Overview .. 263
19.6.2 Multistate Output (Basic) Structure and

Attributes ..264
19.6.3 Attributes for Default Reporting 265
19.6.4 Functions ... 265
19.6.4.1 eCLD_

MultistateOutputBasicCreateMultistateOutputBasic
.. 266

19.6.5 Enumerations ...267
19.6.5.1 teCLD_MultistateOutputBasicCluster_AttrID . 267
19.6.5.2 teCLD_MultistateOutputBasic_Reliability267
19.6.6 Compile-time options 267
20 Poll Control Cluster269
20.1 Overview .. 269
20.2 Cluster structure and attributes269
20.3 Attribute Settings ... 270
20.4 Poll Control Operations 271
20.4.1 Initialization .. 271
20.4.2 Configuration ..271
20.4.3 Operation ... 272
20.4.3.1 Fast Poll Mode Timeout273
20.4.3.2 Invalid Check-in Responses 273
20.5 Poll Control Events ..273
20.6 Functions ... 274

20.6.1 Server/Client Function 275
20.6.1.1 eCLD_PollControlCreatePollControl 275
20.6.2 Server Functions ..276
20.6.2.1 eCLD_PollControlUpdate276
20.6.2.2 eCLD_PollControlSetAttribute276
20.6.2.3 eCLD_PollControlUpdateSleepInterval277
20.6.3 Client Functions ...277
20.6.3.1 eCLD_PollControlSetLongPollIntervalSend ...278
20.6.3.2 eCLD_PollControlSetShortPollIntervalSend .. 279
20.6.3.3 eCLD_PollControlFastPollStopSend279
20.7 Return codes ... 280
20.8 Enumerations ...280
20.8.1 ‘Attribute ID’ enumerations 280
20.8.2 ‘Command’ Enumerations 281
20.9 Structures ...281
20.9.1 tsCLD_PPCallBackMessage281
20.9.2 tsCLD_PollControl_

CheckinResponsePayload282
20.9.3 tsCLD_PollControl_

SetLongPollIntervalPayload282
20.9.4 tsCLD_PollControl_

SetShortPollIntervalPayload 283
20.9.5 tsCLD_PollControlCustomDataStructure 283
20.10 Compile-time Options 283
21 Power Profile Cluster 287
21.1 Overview .. 287
21.2 Cluster structure and attributes287
21.3 Attributes for default reporting 288
21.4 Power profiles ..288
21.5 Power profile operations289
21.5.1 Initialization .. 289
21.5.2 Adding and removing a power profile

(server only) ...289
21.5.2.1 Adding a power profile entry289
21.5.2.2 Removing a power profile entry290
21.5.2.3 Obtaining a Power Profile Entry 290
21.5.3 Communicating power profiles 290
21.5.3.1 Requesting a power profile (by client) 290
21.5.3.2 Notification of a power profile (by server)290
21.5.4 Communicating schedule information291
21.5.4.1 Requesting a schedule (by server) 291
21.5.4.2 Notification of a Schedule (by Client)291
21.5.4.3 Notification of Energy Phases in Power

Profile Schedule (by Server)292
21.5.4.4 Requesting the Scheduled Energy Phases

(by Client) .. 292
21.5.5 Executing a Power Profile Schedule292
21.5.6 Communicating Price Information293
21.5.6.1 Requesting Cost of a Power Profile

Schedule (by Server)293
21.5.6.2 Requesting Cost of Power Profile

Schedules Over a Day (by Server)293
21.6 Power Profile Events 294
21.7 Functions ... 296
21.7.1 Server/Client Function 296
21.7.1.1 eCLD_PPCreatePowerProfile296
21.7.2 Server Functions ..297
21.7.2.1 eCLD_PPSchedule .. 298
21.7.2.2 eCLD_PPSetPowerProfileState298

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
851 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

21.7.2.3 eCLD_PPAddPowerProfileEntry 299
21.7.2.4 eCLD_PPRemovePowerProfileEntry 300
21.7.2.5 eCLD_PPGetPowerProfileEntry300
21.7.2.6 eCLD_PPPowerProfileNotificationSend301
21.7.2.7 eCLD_

PPEnergyPhaseScheduleStateNotificationSend
.. 301

21.7.2.8 eCLD_
PPPowerProfileScheduleConstraintsNotificationSend
.. 302

21.7.2.9 eCLD_PPEnergyPhasesScheduleReqSend ..303
21.7.2.10 eCLD_

PPPowerProfileStateNotificationSend 304
21.7.2.11 eCLD_PPGetPowerProfilePriceSend 305
21.7.2.12 eCLD_

PPGetPowerProfilePriceExtendedSend 305
21.7.2.13 eCLD_PPGetOverallSchedulePriceSend 306
21.7.3 Client Functions ...307
21.7.3.1 eCLD_PPPowerProfileRequestSend 307
21.7.3.2 eCLD_

PPEnergyPhasesScheduleNotificationSend ..308
21.7.3.3 eCLD_PPPowerProfileStateReqSend 309
21.7.3.4 eCLD_

PPEnergyPhasesScheduleStateReqSend310
21.7.3.5 eCLD_

PPPowerProfileScheduleConstraintsReqSend
.. 311

21.8 Return codes ... 312
21.9 Enumerations ...312
21.9.1 ‘Attribute ID’ Enumerations312
21.9.2 ‘Power Profile State’ Enumerations 312
21.9.3 ‘Server-Generated Command’

Enumerations ...313
21.9.4 ‘Server-Received Command’ Enumerations .. 313
21.10 Structures ...313
21.10.1 tsCLD_PPCallBackMessage313
21.10.2 tsCLD_PPEntry ..315
21.10.3 tsCLD_PP_PowerProfileReqPayload 316
21.10.4 tsCLD_PP_PowerProfilePayload316
21.10.5 tsCLD_PP_PowerProfileStatePayload316
21.10.6 tsCLD_PP_

EnergyPhasesSchedulePayload317
21.10.7 tsCLD_PP_

PowerProfileScheduleConstraintsPayload317
21.10.8 tsCLD_PP_

GetPowerProfilePriceExtendedPayload317
21.10.9 tsCLD_PP_

GetPowerProfilePriceRspPayload 318
21.10.10 tsCLD_PP_

GetOverallSchedulePriceRspPayload 318
21.10.11 tsCLD_PP_EnergyPhaseInfo318
21.10.12 tsCLD_PP_EnergyPhaseDelay319
21.10.13 tsCLD_PP_PowerProfiIeRecord 319
21.10.14 tsCLD_PPCustomDataStructure320
21.11 Compile-time Options 320
22 Diagnostics Cluster 322
22.1 Overview .. 322
22.2 Diagnostics Structure and Attributes322
22.3 Functions ... 325

22.3.1 eCLD_DiagnosticsCreateDiagnostics 325
22.3.2 eCLD_DiagnosticsUpdate326
22.4 Enumerations ...327
22.4.1 teCLD_Diagnostics_AttributeId327
22.5 Compile-time Options 327
23 Illuminance Measurement Cluster330
23.1 Overview .. 330
23.2 Illuminance Measurement Structure and

Attributes ..330
23.3 Attributes for Default Reporting 331
23.4 Functions ... 331
23.4.1 eCLD_

IlluminanceMeasurementCreateIlluminanceMeasurement
.. 331

23.5 Enumerations ...332
23.5.1 teCLD_IM_ClusterID332
23.6 Compile-time options 333
24 Illuminance Level Sensing Cluster334
24.1 Overview .. 334
24.2 Cluster structure and attributes334
24.3 Attributes for Default Reporting 335
24.4 Functions ... 336
24.4.1 eCLD_

IlluminanceLevelSensingCreateIlluminanceLevelSensing
.. 336

24.5 Enumerations ...337
24.5.1 teCLD_ILS_ClusterID 337
24.5.2 teCLD_ILS_LightSensorType337
24.5.3 teCLD_ILS_LightLevelStatus337
24.6 Compile-time Options 337
25 Temperature Measurement Cluster339
25.1 Overview .. 339
25.2 Temperature Measurement Structure and

Attributes ..339
25.3 Attributes for Default Reporting 340
25.4 Functions ... 340
25.4.1 eCLD_

TemperatureMeasurementCreateTemperatureMeasurement
.. 340

25.5 Enumerations ...341
25.5.1 teCLD_TemperatureMeasurement_

AttributeID .. 341
25.6 Compile-time Options 342
26 Pressure Measurement Cluster343
26.1 Overview .. 343
26.2 Cluster structure and attributes343
26.3 Initialization and Operation 344
26.4 Pressure Measurement Events 344
26.5 Functions ... 344
26.5.1 eCLD_

PressureMeasurementCreatePressureMeasurement
.. 344

26.6 Return codes ... 345
26.7 Enumerations ...346
26.7.1 ‘Attribute ID’ Enumerations346
26.8 Structures ...346
26.9 Compile-time Options 346
27 Flow Measurement Cluster 348
27.1 Overview .. 348

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
852 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

27.2 Cluster structure and attributes348
27.3 Initialization and Operation 349
27.4 Flow Measurement Events 349
27.5 Functions ... 349
27.5.1 eCLD_

FlowMeasurementCreateFlowMeasurement
.. 349

27.6 Return codes ... 350
27.7 Enumerations ...350
27.7.1 ‘Attribute ID’ Enumerations350
27.8 Structures ...351
27.9 Compile-time Options 351
28 Relative Humidity Measurement Cluster ... 352
28.1 Overview .. 352
28.2 RH Measurement Structure and Attributes 352
28.3 Attributes for Default Reporting 353
28.4 Functions ... 353
28.4.1 eCLD_

RelativeHumidityMeasurementCreateRelativeHumidityMeasurement
.. 353

28.5 Enumerations ...354
28.5.1 teCLD_RHM_ClusterID354
28.6 Compile-time Options 355
29 Occupancy Sensing Cluster 356
29.1 Overview .. 356
29.2 Occupancy Sensing Structure and

Attributes ..356
29.3 Attributes for Default Reporting 358
29.4 Functions ... 358
29.4.1 eCLD_

OccupancySensingCreateOccupancySensing
.. 358

29.5 Enumerations ...359
29.5.1 teCLD_OS_ClusterID359
29.6 Compile-time options 359
30 Electrical Measurement Cluster 361
30.1 Overview .. 361
30.2 Cluster structure and attributes361
30.3 Initialisation and Operation 364
30.4 Electrical Measurement Events 364
30.5 Functions ... 365
30.5.1 eCLD_

ElectricalMeasurementCreateElectricalMeasurement
.. 365

30.6 Return codes ... 366
30.7 Enumerations ...366
30.7.1 ‘Attribute ID’ Enumerations366
30.8 Structures ...366
30.9 Compile-time options 367
31 Colour Control Cluster369
31.1 Overview .. 369
31.2 Colour Control Cluster structure and

attributes .. 369
31.3 Attributes for Default Reporting 377
31.4 Initialization .. 377
31.5 Sending Commands 377
31.5.1 Controlling Hue ..377
31.5.2 Controlling Saturation 378

31.5.3 Controlling Colour (CIE x and y
Chromaticities) ... 379

31.5.4 Controlling Colour Temperature380
31.5.5 Controlling ‘Enhanced’ Hue 380
31.5.6 Controlling a Colour Loop382
31.5.7 Controlling Hue and Saturation382
31.6 Functions ... 383
31.6.1 eCLD_ColourControlCreateColourControl383
31.6.2 eCLD_

ColourControlCommandMoveToHueCommandSend
.. 384

31.6.3 eCLD_
ColourControlCommandMoveHueCommandSend
.. 385

31.6.4 eCLD_
ColourControlCommandStepHueCommandSend
.. 386

31.6.5 eCLD_
ColourControlCommandMoveToSaturationCommandSend
.. 387

31.6.6 eCLD_
ColourControlCommandMoveSaturationCommandSend
.. 388

31.6.7 eCLD_
ColourControlCommandStepSaturationCommandSend
.. 389

31.6.8 eCLD_
ColourControlCommandMoveToHueAndSaturationCommandSend
.. 390

31.6.9 eCLD_
ColourControlCommandMoveToColourCommandSend
.. 391

31.6.10 eCLD_
ColourControlCommandMoveColourCommandSend
.. 392

31.6.11 eCLD_
ColourControlCommandStepColourCommandSend
.. 393

31.6.12 eCLD_
ColourControlCommandEnhancedMoveToHueCommandSend
.. 394

31.6.13 eCLD_
ColourControlCommandEnhancedMoveHueCommandSend
.. 396

31.6.14 eCLD_
ColourControlCommandEnhancedStepHueCommandSend
.. 397

31.6.15 eCLD_
ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend
.. 398

31.6.16 eCLD_
ColourControlCommandColourLoopSetCommandSend
.. 399

31.6.17 eCLD_
ColourControlCommandStopMoveStepCommandSend
.. 400

31.6.18 eCLD_
ColourControlCommandMoveToColourTemperatureCommandSend
.. 401

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
853 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

31.6.19 eCLD_
ColourControlCommandMoveColourTemperatureCommandSend
.. 402

31.6.20 eCLD_
ColourControlCommandStepColourTemperatureCommandSend
.. 403

31.6.21 eCLD_ColourControl_GetRGB 404
31.7 Structures ...405
31.7.1 Custom Data Structure 405
31.7.2 Custom Command Payloads 405
31.8 Enumerations ...416
31.8.1 teCLD_ColourControl_ClusterID416
31.9 Compile-time Options 417
32 Ballast Configuration Cluster 420
32.1 Overview .. 420
32.2 Cluster structure and attributes420
32.3 Functions ... 423
32.3.1 eCLD_

BallastConfigurationCreateBallastConfiguration
.. 423

32.4 Enumerations ...424
32.4.1 teCLD_BallastConfiguration_ClusterID424
32.5 Compile-time options 424
33 Thermostat Cluster428
33.1 Overview .. 428
33.2 Thermostat Cluster structure and attributes ...428
33.3 Attributes for Default Reporting 433
33.4 Thermostat Operations 433
33.4.1 Initialisation .. 433
33.4.2 Recording and Reporting the Local

Temperature ...433
33.4.3 Configuring Heating and Cooling Setpoints ... 434
33.5 Thermostat Events ...434
33.6 Functions ... 435
33.6.1 eCLD_ThermostatCreateThermostat435
33.6.2 eCLD_ThermostatSetAttribute436
33.6.3 eCLD_

ThermostatStartReportingLocalTemperature
.. 437

33.6.4 eCLD_
ThermostatCommandSetpointRaiseOrLowerSend
.. 437

33.7 Return codes ... 438
33.8 Enumerations ...438
33.8.1 ‘Attribute ID’ Enumerations438
33.8.2 ‘Operating Capabilities’ Enumerations439
33.8.3 ‘Command ID’ Enumerations439
33.8.4 ‘Setpoint Raise Or Lower’ Enumerations 440
33.9 Structures ...440
33.9.1 Custom Data Structure 440
33.9.2 tsCLD_ThermostatCallBackMessage 440
33.9.3 tsCLD_Thermostat_

SetpointRaiseOrLowerPayload441
33.10 Compile-time options 441
34 Fan Control Cluster 444
34.1 Overview .. 444
34.2 Fan Control Structure and Attributes 444
34.3 Initialisation .. 444
34.4 Functions ... 444

34.4.1 eCLD_CreateFanControl 445
34.5 Enumerations ...446
34.5.1 teCLD_FanControl_AttributeID 446
34.5.2 teCLD_FC_FanMode446
34.5.3 teCLD_FC_FanModeSequence446
34.6 Compile-time options 447
35 Thermostat UI Configuration Cluster448
35.1 Overview .. 448
35.2 Cluster structure and attributes448
35.3 Initialization .. 449
35.4 Functions ... 449
35.4.1 eCLD_

ThermostatUIConfigCreateThermostatUIConfig
.. 449

35.4.2 eCLD_ThermostatUIConfigConvertTemp 450
35.5 Return codes ... 451
35.6 Enumerations ...451
35.6.1 ‘Attribute ID’ Enumerations451
35.6.2 ‘Temperature Display Mode’ Enumerations ... 451
35.6.3 ‘Keypad Functionality’ Enumerations451
35.7 Compile-time Options 452
36 Door Lock Cluster 454
36.1 Overview .. 454
36.2 Door Lock Cluster structure and attributes454
36.3 Attributes for Default Reporting 456
36.4 Door Lock Events .. 456
36.5 Functions ... 456
36.5.1 eCLD_DoorLockCreateDoorLock 457
36.5.2 eCLD_DoorLockSetLockState 458
36.5.3 eCLD_DoorLockGetLockState458
36.5.4 eCLD_

DoorLockCommandLockUnlockRequestSend
.. 459

36.5.5 eCLD_DoorLockSetSecurityLevel460
36.6 Return codes ... 460
36.7 Enumerations ...460
36.7.1 ‘Attribute ID’ Enumerations460
36.7.2 ‘Lock State’ Enumerations461
36.7.3 ‘Lock Type’ Enumerations 461
36.7.4 ‘Door State’ Enumerations462
36.7.5 ‘Command ID’ Enumerations462
36.8 Structures ...463
36.8.1 tsCLD_DoorLockCallBackMessage463
36.8.2 tsCLD_DoorLock_

LockUnlockResponsePayload 463
36.9 Compile-time options 463
37 IAS Zone Cluster ... 466
37.1 Overview .. 466
37.2 IAS Zone Structure and Attributes 466
37.3 Enrollment ..469
37.3.1 Trip-to-Pair ... 469
37.3.2 Auto-Enroll-Response469
37.3.3 Auto-Enroll-Request470
37.4 IAS Zone Events ... 470
37.5 Functions ... 471
37.5.1 eCLD_IASZoneCreateIASZone 471
37.5.2 eCLD_IASZoneUpdateZoneStatus472
37.5.3 eCLD_IASZoneUpdateZoneState473
37.5.4 eCLD_IASZoneUpdateZoneType 474

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
854 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

37.5.5 eCLD_IASZoneUpdateZoneID474
37.5.6 eCLD_IASZoneUpdateCIEAddress 475
37.5.7 eCLD_IASZoneEnrollReqSend475
37.5.8 eCLD_IASZoneEnrollRespSend476
37.5.9 eCLD_

IASZoneStatusChangeNotificationSend 477
37.5.10 eCLD_

IASZoneNormalOperationModeReqSend478
37.5.11 eCLD_IASZoneTestModeReqSend 478
37.6 Structures ...479
37.6.1 Custom Data Structure 479
37.6.2 Custom Command Payloads 480
37.7 Compile-time options 481
38 IAS Ancillary Control Equipment Cluster .. 483
38.1 Overview .. 483
38.2 IAS ACE Structure and Attributes483
38.3 Table and Parameters 483
38.4 Command Summary483
38.5 IAS ACE Events .. 484
38.6 Functions ... 486
38.6.1 eCLD_IASACECreateIASACE487
38.6.2 eCLD_IASACEAddZoneEntry488
38.6.3 eCLD_IASACERemoveZoneEntry488
38.6.4 eCLD_IASACEGetZoneTableEntry489
38.6.5 eCLD_IASACEGetEnrolledZones489
38.6.6 eCLD_IASACESetPanelParameter 490
38.6.7 eCLD_IASACEGetPanelParameter 491
38.6.8 eCLD_IASACESetZoneParameter 491
38.6.9 eCLD_IASACESetZoneParameterValue 492
38.6.10 eCLD_IASACEGetZoneParameter 493
38.6.11 eCLD_IASACE_ArmSend494
38.6.12 eCLD_IASACE_BypassSend495
38.6.13 eCLD_IASACE_EmergencySend 496
38.6.14 eCLD_IASACE_FireSend 496
38.6.15 eCLD_IASACE_PanicSend 497
38.6.16 eCLD_IASACE_GetZoneIDMapSend498
38.6.17 eCLD_IASACE_GetZoneInfoSend 499
38.6.18 eCLD_IASACE_GetPanelStatusSend 500
38.6.19 eCLD_IASACE_SetBypassedZoneListSend . 501
38.6.20 eCLD_IASACE_

GetBypassedZoneListSend 501
38.6.21 eCLD_IASACE_GetZoneStatusSend 502
38.6.22 eCLD_IASACE_ZoneStatusChangedSend ... 503
38.6.23 eCLD_IASACE_PanelStatusChanged504
38.7 Structures ...505
38.7.1 Custom Data Structure 505
38.7.2 Zone Table Entry ... 506
38.7.3 Zone Parameters ...506
38.7.4 Panel Parameters ..507
38.7.5 Custom Command Payloads 508
38.7.6 Event Data Structures 512
38.8 Enumerations ...515
38.8.1 teCLD_IASACE_ArmMode 515
38.8.2 teCLD_IASACE_PanelStatus 515
38.8.3 teCLD_IASACE_AlarmStatus 516
38.8.4 teCLD_IASACE_AudibleNotification 516
38.9 Compile-time options 516
39 IAS Warning Device Cluster 518
39.1 Overview .. 518

39.2 IAS WD Structure and Attribute518
39.3 Issuing Warnings ... 518
39.4 IAS WD Events ..519
39.5 Functions ... 520
39.5.1 eCLD_IASWDCreateIASWD520
39.5.2 eCLD_IASWDUpdate 521
39.5.3 eCLD_IASWDUpdateMaxDuration 521
39.5.4 eCLD_IASWDStartWarningReqSend 522
39.5.5 eCLD_IASWDSquawkReqSend 523
39.6 Structures ...524
39.6.1 Custom Data Structure 524
39.6.2 Custom Command Payloads 524
39.6.3 Event Data Structures 525
39.7 Compile-time Options 527
40 Price Cluster .. 529
40.1 Overview .. 529
40.2 Price cluster structure and attributes 530
40.2.1 ‘Tier Label’ Attribute Set 531
40.2.2 ‘Block Threshold’ Attribute Set531
40.2.3 ‘Block Period’ Attribute Set 531
40.2.4 ‘Commodity’ Attribute Set 532
40.2.5 ‘Block Price Information’ Attribute Set532
40.2.6 ‘Billing Period Information’ Attribute Set533
40.2.7 Client Attribute Set .. 533
40.3 Attribute settings ..533
40.4 Initializing and maintaining price lists533
40.5 Publishing price information534
40.5.1 Unsolicited Price Updates 535
40.5.2 Get Current Price .. 535
40.5.3 Get Scheduled Prices536
40.6 Time-synchronization via Publish Price

commands ... 536
40.7 Conversion factor and calorific value (gas

only) ... 537
40.8 Price events ...538
40.9 Functions ... 541
40.9.1 eSE_PriceCreate ... 541
40.9.2 eSE_PriceGetCurrentPriceSend543
40.9.3 eSE_PriceGetScheduledPricesSend 544
40.9.4 eSE_PriceAddPriceEntry 545
40.9.5 eSE_PriceAddPriceEntryToClient 546
40.9.6 eSE_PriceGetPriceEntry547
40.9.7 eSE_PriceDoesPriceEntryExist 547
40.9.8 eSE_PriceRemovePriceEntry 548
40.9.9 eSE_PriceClearAllPriceEntries 549
40.9.10 eSE_PriceAddConversionFactorEntry 549
40.9.11 eSE_PriceGetConversionFactorSend550
40.9.12 eSE_PriceGetConversionFactorEntry551
40.9.13 eSE_

PriceDoesConversionFactorEntryExist 552
40.9.14 eSE_PriceRemoveConversionFactorEntry 552
40.9.15 eSE_PriceClearAllConversionFactorEntries .. 553
40.9.16 eSE_PriceAddCalorificValueEntry 554
40.9.17 eSE_PriceGetCalorificValueSend 555
40.9.18 eSE_PriceGetCalorificValueEntry 555
40.9.19 eSE_PriceDoesCalorificValueEntryExist556
40.9.20 eSE_PriceRemoveCalorificValueEntry 557
40.9.21 eSE_PriceClearAllCalorificValueEntries 557
40.10 Return codes ... 558

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
855 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

40.11 Structures ...559
40.11.1 tsSE_PricePublishPriceCmdPayload559
40.11.2 tsSE_PricePublishConversionCmdPayload ...561
40.11.3 tsSE_

PricePublishCalorificValueCmdPayload561
40.12 Enumerations ...562
40.12.1 ‘Attribute ID’ Enumerations562
40.12.2 ‘Price Event’ Enumerations563
40.12.3 'Calorific Value Unit' Enumerations 564
40.13 Compile-time options 564
41 Demand-Response and Load Control

Cluster ...566
41.1 Overview .. 566
41.2 DRLC Cluster structure and attributes 566
41.3 Initialization .. 567
41.4 Load Control Events (LCEs)568
41.4.1 LCE Contents .. 568
41.4.2 LCE Lists ... 568
41.5 LCE Handling .. 569
41.5.1 LCE Handling on Server569
41.5.2 LCE Handling on Clients 569
41.5.2.1 LCE Activation and De-activation 569
41.5.2.2 Getting Scheduled Events 570
41.5.2.3 Reporting LCE Actions to Server570
41.5.2.4 Over-riding LCE Settings571
41.5.3 Canceling LCEs ...571
41.6 Message Signing (Security)571
41.7 DRLC Events ...572
41.7.1 Event and Command Types 572
41.7.2 Other Elements of tsSE_

DRLCCallBackMessage 574
41.8 Functions ... 574
41.8.1 eSE_DRLCCreate ..575
41.8.2 eSE_DRLCAddLoadControlEvent 576
41.8.3 eSE_DRLCGetScheduledEventsSend 577
41.8.4 eSE_DRLCCancelLoadControlEvent577
41.8.5 eSE_DRLCCancelAllLoadControlEvents578
41.8.6 eSE_DRLCSetEventUserOption579
41.8.7 eSE_DRLCSetEventUserData580
41.8.8 eSE_DRLCGetLoadControlEvent580
41.8.9 eSE_DRLCFindLoadControlEvent581
41.9 Return codes ... 582
41.10 Enumerations ...583
41.10.1 ‘Device Class’ Enumerations 583
41.10.2 ‘DRLC Event’ Enumerations 584
41.10.3 ‘Criticality Level’ Enumerations584
41.10.4 ‘LCE Cancellation’ Enumerations 585
41.10.5 ‘LCE Participation’ Enumerations 586
41.10.6 ‘LCE Data Modification’ Enumerations 586
41.10.7 ‘LCE List’ Enumerations 587
41.10.8 ‘LCE Status’ Enumerations587
41.11 Structures ...588
41.11.1 tsSE_DRLCLoadControlEvent588
41.11.2 tsSE_DRLCGetScheduledEvents590
41.11.3 tsSE_DRLCCancelLoadControlEvent590
41.11.4 tsSE_DRLCReportEvent590
41.11.5 tsSE_DRLCCallBackMessage592
41.12 Compile-time options 592
42 Simple Metering Cluster594

42.1 Overview .. 594
42.2 Simple Metering Cluster structure and

attributes .. 594
42.2.1 ‘Reading Information’ Attribute Set 601
42.2.2 ‘Time-Of-Use (TOU) Information’ Attribute

Set ..602
42.2.3 ‘Meter Status’ Attribute Set602
42.2.4 ‘Formatting’ Attribute Set 602
42.2.5 ‘Historical Consumption’ Attribute Set603
42.2.6 ‘Load Profile Configuration’ Attribute Set 604
42.2.7 ‘Supply Limit’ Attribute Set604
42.2.8 ‘Block Information’ Attribute Set604
42.3 Attribute Settings ... 605
42.4 Remotely Reading Simple Metering

Attributes ..606
42.5 Mirroring Metering Data607
42.5.1 Configuring Mirroring on ESP608
42.5.2 Configuring Mirroring on Metering Devices610
42.5.3 Mirroring Data ..610
42.5.4 Reading Mirrored Data 611
42.5.5 Removing a Mirror ...611
42.6 Consumption Data Archive (‘Get Profile’) 612
42.6.1 Updating Consumption Data on Server 612
42.6.2 Sending and Handling a ‘Get Profile’

Request ..613
42.7 Simple Metering Events613
42.7.1 Event Types ...614
42.7.2 Command Types ..614
42.8 Functions ... 615
42.8.1 eSE_SMCreate .. 616
42.8.2 eSE_ReadMeterAttributes 617
42.8.3 eSE_HandleReadMeterAttributesResponse ..618
42.8.4 eSM_ServerRequestMirrorCommand619
42.8.5 eSM_ServerRemoveMirrorCommand620
42.8.6 eSM_CreateMirror ... 620
42.8.7 eSM_RemoveMirror621
42.8.8 eSM_GetFreeMirrorEndPoint622
42.8.9 eSM_IsMirrorSourceAddressValid 622
42.8.10 eSM_ServerUpdateConsumption 623
42.8.11 eSM_ClientGetProfileCommand623
42.8.12 u32SM_GetReceivedProfileData 624
42.9 Return codes ... 625
42.10 Enumerations ...625
42.10.1 ‘Attribute ID’ Enumerations625
42.10.2 ‘Meter Status’ Enumerations627
42.10.3 ‘Unit of Measure’ Enumerations628
42.10.4 ‘Summation Formatting’ Enumerations629
42.10.5 ‘Supply Direction’ Enumerations630
42.10.6 ‘Metering Device Type’ Enumerations 630
42.10.7 ‘Simple Metering Event’ Enumerations 631
42.10.8 ‘Server Command’ Enumerations632
42.10.9 ‘Client Command’ Enumerations 632
42.10.10 ‘Consumption Interval’ Enumerations 633
42.10.11 ‘Simple Metering Status’ Enumerations 633
42.11 Structures ...634
42.11.1 tsSM_CallBackMessage 634
42.11.2 tsSE_Mirror .. 635
42.11.3 tsSE_MirrorClusterInstances 635
42.11.4 tsSM_CustomStruct 636

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
856 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

42.11.5 tsSEGetProfile ... 636
42.11.6 tsSM_RequestMirrorResponseCommand 637
42.11.7 tsSM_MirrorRemovedResponseCommand ... 637
42.11.8 tsSM_GetProfileRequestCommand 637
42.11.9 tsSM_GetProfileResponseCommand 638
42.11.10 tsSM_Error ...638
42.12 Compile-time options 638
43 Commissioning Cluster644
43.1 Overview .. 644
43.2 Commissioning Cluster structure and

attributes .. 644
43.2.1 Start-up Parameters (tsCLD_

StartupParameters) ..645
43.2.2 Join Parameters (tsCLD_JoinParameters) 646
43.2.3 End Device Parameters (tsCLD_

EndDeviceParameters)647
43.2.4 Concentrator Parameters (tsCLD_

ConcentratorParameters) 647
43.3 Attribute Settings ... 648
43.4 Initialisation .. 648
43.5 Commissioning Commands648
43.5.1 Device Start-up ..648
43.5.2 Stored Start-up Parameters649
43.5.2.1 Saving Start-up Parameters 649
43.5.2.2 Retrieving Stored Start-up Parameters649
43.5.3 Reset Start-up Parameters to Default

Values .. 649
43.6 Commissioning Events 650
43.7 Functions ... 651
43.7.1 eCLD_

CommissioningClusterCreateCommissioning
.. 651

43.7.2 eCLD_
CommissioningCommandRestartDeviceSend
.. 653

43.7.3 eCLD_
CommissioningCommandSaveStartupParamsSend
.. 653

43.7.4 eCLD_
CommissioningCommandRestoreStartupParamsSend
.. 654

43.7.5 eCLD_
CommissioningCommandResetStartupParamsSend
.. 655

43.7.6 eCLD_
CommissioningCommandModifyStartupParamsSend
.. 656

43.7.7 eCLD_CommissioningSetAttribute657
43.8 Enumerations ...658
43.8.1 teCLD_Commissioning_AttributeID 658
43.8.2 teCLD_Commissioning_AttributeSet659
43.8.3 teCLD_Commissioning_Command659
43.9 Structures ...659
43.9.1 Attribute Set Structures 659
43.9.2 tsCLD_Commissioning_

RestartDevicePayload 660
43.9.3 tsCLD_Commissioning_

ModifyStartupParametersPayload 660
43.9.4 tsCLD_Commissioning_ResponsePayload ... 661

43.9.5 tsCLD_
CommissioningCustomDataStructure 661

43.9.6 tsCLD_CommissioningCallBackMessage661
43.10 Compile-time options 662
44 Touchlink Commissioning Cluster 664
44.1 Overview .. 664
44.2 Cluster structure and attributes664
44.3 Commissioning operations 664
44.4 Using Touchlink ... 665
44.4.1 Creating a network .. 666
44.4.2 Adding to an existing network667
44.4.3 Updating network settings 669
44.4.4 Stealing a node ... 669
44.5 Using the Commissioning Utility 670
44.6 Touchlink Commissioning events672
44.6.1 Touchlink command events 672
44.6.2 Commissioning Utility Command Events 673
44.7 Functions ... 673
44.7.1 Touchlink functions .. 673
44.7.1.1 eZLL_RegisterCommissionEndPoint 674
44.7.1.2 eCLD_ZllCommissionCreateCommission674
44.7.1.3 eCLD_

ZllCommissionCommandScanReqCommandSend
.. 675

44.7.1.4 eCLD_
ZllCommissionCommandScanRspCommandSend
.. 675

44.7.1.5 eCLD_
ZllCommissionCommandDeviceInfoReqCommandSend
.. 676

44.7.1.6 eCLD_
ZllCommissionCommandDeviceInfoRspCommandSend
.. 677

44.7.1.7 eCLD_ZllCommission
CommandDeviceIdentify
ReqCommandSend 677

44.7.1.8 eCLD_
ZllCommissionCommandFactoryResetReqCommandSend
.. 678

44.7.1.9 eCLD_
ZllCommissionCommandNetworkStartReqCommandSend
.. 678

44.7.1.10 eCLD_
ZllCommissionCommandNetworkStartRspCommandSend
.. 679

44.7.1.11 eCLD_
ZllCommissionCommandNetworkJoinRouterReqCommandSend
.. 680

44.7.1.12 eCLD_
ZllCommissionCommandNetworkJoinRouterRspCommandSend
.. 680

44.7.1.13 eCLD_
ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend
.. 681

44.7.1.14 eCLD_
ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend
.. 682

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
857 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

44.7.1.15 eCLD_
ZllCommissionCommandNetworkUpdateReqCommandSend
.. 682

44.7.2 Commissioning Utility functions 683
44.7.2.1 eCLD_ZllUtilityCreateUtility683
44.7.2.2 eCLD_

ZllUtilityCommandEndpointInformationCommandSend
.. 684

44.7.2.3 eCLD_
ZllUtilityCommandGetGroupIdReqCommandSend
.. 684

44.7.2.4 eCLD_
ZllUtilityCommandGetGroupIdRspCommandSend
.. 685

44.7.2.5 eCLD_
ZllUtilityCommandGetEndpointListReqCommandSend
.. 686

44.7.2.6 eCLD_
ZllUtilityCommandGetEndpointListRspCommandSend
.. 686

44.7.2.7 eCLD_ZllUtilityCommandHandler 687
44.8 Structures ...688
44.8.1 tsZLL_CommissionEndpoint 688
44.8.2 tsZLL_

CommissionEndpointClusterInstances 688
44.8.3 tsCLD_

ZllCommissionCustomDataStructure 689
44.8.4 tsCLD_ZllCommissionCallBackMessage689
44.8.5 tsCLD_ZllCommission_

ScanReqCommandPayload690
44.8.6 tsCLD_ZllCommission_

ScanRspCommandPayload690
44.8.7 tsCLD_ZllCommission_

DeviceInfoReqCommandPayload692
44.8.8 tsCLD_ZllCommission_

DeviceInfoRspCommandPayload 692
44.8.9 tsCLD_ZllCommission_

IdentifyReqCommandPayload 692
44.8.10 tsCLD_ZllCommission_

FactoryResetReqCommandPayload693
44.8.11 tsCLD_ZllCommission_

NetworkStartReqCommandPayload 693
44.8.12 tsCLD_ZllCommission_

NetworkStartRspCommandPayload 694
44.8.13 tsCLD_ZllCommission_

NetworkJoinRouterReqCommandPayload 695
44.8.14 tsCLD_ZllCommission_

NetworkJoinRouterRspCommandPayload696
44.8.15 tsCLD_ZllCommission_

NetworkJoinEndDeviceReqCommandPayload
.. 696

44.8.16 tsCLD_ZllCommission_
NetworkJoinEndDeviceRspCommandPayload
.. 697

44.8.17 tsCLD_ZllCommission_
NetworkUpdateReqCommandPayload 697

44.8.18 tsCLD_ZllUtilityCustomDataStructure 698
44.8.19 tsCLD_ZllUtilityCallBackMessage698

44.8.20 tsCLD_ZllUtility_
EndpointInformationCommandPayload 698

44.9 Enumerations ...699
44.9.1 Touchlink event enumerations 699
44.9.2 Commissioning utility event enumerations699
44.10 Compile-time options 699
45 Appliance Control Cluster 702
45.1 Overview .. 702
45.2 Cluster structure and attributes702
45.3 Attributes for default reporting 703
45.4 Sending commands 703
45.4.1 Execution Commands from Client to Server .. 704
45.4.2 Status Commands from Client to Server 704
45.4.3 Status Notifications from Server to Client 704
45.5 Appliance control events 705
45.6 Functions ... 705
45.6.1 eCLD_

ApplianceControlCreateApplianceControl706
45.6.2 eCLD_ACExecutionOfCommandSend 707
45.6.3 eCLD_ACSignalStateSend 708
45.6.4 eCLD_

ACSignalStateResponseORSignalStateNotificationSend
.. 709

45.6.5 eCLD_ACSignalStateNotificationSend 710
45.6.6 eCLD_ACChangeAttributeTime 711
45.7 Return codes ... 711
45.8 Enumerations ...711
45.8.1 ‘Attribute ID’ Enumerations711
45.8.2 ‘Client Command ID’ Enumerations712
45.8.3 ‘Server command ID’ enumerations712
45.9 Structures ...712
45.9.1 tsCLD_ApplianceControlCallBackMessage ... 712
45.9.2 tsCLD_AC_ExecutionOfCommandPayload ... 713
45.9.3 tsCLD_AC_

SignalStateResponseORSignalStateNotificationPayload
.. 713

45.9.4 tsCLD_
ApplianceControlCustomDataStructure 715

45.10 Compile-time options 715
46 Appliance Identification Cluster 716
46.1 Overview .. 716
46.2 Cluster structure and attributes716
46.3 Functions ... 718
46.3.1 eCLD_ApplianceIdentificationCreate

ApplianceIdentification 719
46.4 Return codes ... 720
46.5 Enumerations ...720
46.5.1 ‘Attribute ID’ enumerations 720
46.5.2 ‘Product Type ID’ enumerations720
46.6 Compile-time options 721
47 Appliance Events and Alerts Cluster 723
47.1 Overview .. 723
47.2 Cluster structure and attribute 723
47.3 Sending Messages .. 723
47.3.1 ‘Get Alerts’ Messages from Client to Server .. 724
47.3.2 ‘Alerts Notification’ Messages from Server

to Client ... 724
47.3.3 ‘Event Notification’ Messages from Server

to Client ... 724

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
858 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

47.4 Appliance Events and Alerts Events724
47.5 Functions ... 725
47.5.1 eCLD_

ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts
.. 725

47.5.2 eCLD_AEAAGetAlertsSend726
47.5.3 eCLD_

AEAAGetAlertsResponseORAlertsNotificationSend
.. 727

47.5.4 eCLD_AEAAAlertsNotificationSend 727
47.5.5 eCLD_AEAAEventNotificationSend 728
47.6 Return codes ... 728
47.7 Enumerations ...728
47.7.1 ‘Command ID’ Enumerations728
47.8 Structures ...729
47.8.1 tsCLD_

ApplianceEventsAndAlertsCallBackMessage
.. 729

47.8.2 tsCLD_AEAA_
GetAlertsResponseORAlertsNotificationPayload
.. 729

47.8.3 tsCLD_AEAA_EventNotificationPayload730
47.8.4 tsCLD_

ApplianceEventsAndAlertsCustomDataStructure
.. 731

47.9 Compile-time options 731
48 Appliance Statistics Cluster 732
48.1 Overview .. 732
48.2 Cluster structure and attributes732
48.3 Sending messages .. 732
48.3.1 ‘Log Queue Request’ messages from client

to server ...733
48.3.2 ‘Statistics Available’ messages from server

to client .. 733
48.3.3 ‘Log Request’ messages from client to

server ...733
48.3.4 ‘Log Notification’ messages from server to

client ...734
48.4 Log Operations on Server 734
48.4.1 Adding and Removing Logs 734
48.4.2 Obtaining Logs .. 735
48.5 Appliance statistics events735
48.6 Functions ... 736
48.6.1 eCLD_

ApplianceStatisticsCreateApplianceStatistics
.. 736

48.6.2 eCLD_ASCAddLog .. 737
48.6.3 eCLD_ASCRemoveLog 738
48.6.4 eCLD_ASCGetLogsAvailable 738
48.6.5 eCLD_ASCGetLogEntry 739
48.6.6 eCLD_ASCLogQueueRequestSend739
48.6.7 eCLD_ASCLogRequestSend740
48.6.8 eCLD_

ASCLogQueueResponseORStatisticsAvailableSend
.. 741

48.6.9 eCLD_ASCStatisticsAvailableSend 742
48.6.10 eCLD_

ASCLogNotificationORLogResponseSend 742
48.6.11 eCLD_ASCLogNotificationSend 743

48.7 Return codes ... 744
48.8 Enumerations ...744
48.8.1 ‘Attribute ID’ enumerations 744
48.8.2 ‘Client Command ID’ enumerations 744
48.8.3 ‘Server Command ID’ enumerations745
48.9 Structures ...745
48.9.1 tsCLD_

ApplianceStatisticsCallBackMessage 745
48.9.2 tsCLD_ASC_LogRequestPayload 746
48.9.3 tsCLD_ASC_

LogNotificationORLogResponsePayload746
48.9.4 tsCLD_ASC_

LogQueueResponseORStatisticsAvailablePayload
.. 746

48.9.5 tsCLD_LogTable .. 747
48.9.6 tsCLD_

ApplianceStatisticsCustomDataStructure 747
48.10 Compile-time options 747
49 OTA Upgrade cluster750
49.1 Overview .. 750
49.2 OTA Upgrade Images in Internal Flash

Memory ..750
49.3 OTA Upgrade Cluster structure and

attributes .. 752
49.4 Basic Principles ... 754
49.4.1 OTA Upgrade Cluster Server755
49.4.2 OTA Upgrade Cluster Client 755
49.5 Application Requirements755
49.6 Initialization .. 755
49.7 Implementing OTA Upgrade Mechanism 756
49.8 Ancillary Features and Resources for OTA

Upgrade ... 758
49.8.1 Rate Limiting ..758
49.8.2 Device-Specific File Downloads 760
49.8.3 Image Block Size and Fragmentation762
49.8.4 Page Requests .. 762
49.8.5 Persistent Data Management 764
49.8.6 Flash Memory Organization765
49.8.7 Low-Voltage Flag ...765
49.9 OTA Upgrade events 766
49.9.1 Server-side Events .. 767
49.9.2 Client-side Events ..768
49.9.3 Server-side and Client-side Events 770
49.10 Functions ... 770
49.10.1 General Functions ... 770
49.10.1.1 eOTA_Create ... 770
49.10.1.2 vOTA_FlashInit .. 771
49.10.1.3 eOTA_AllocateEndpointOTASpace772
49.10.1.4 vOTA_GenerateHash772
49.10.1.5 eOTA_GetCurrentOtaHeader773
49.10.2 Server Functions ..774
49.10.2.1 eOTA_SetServerAuthorisation 774
49.10.2.2 eOTA_SetServerParams775
49.10.2.3 eOTA_GetServerData775
49.10.2.4 eOTA_EraseFlashSectorsForNewImage 776
49.10.2.5 eOTA_FlashWriteNewImageBlock776
49.10.2.6 eOTA_NewImageLoaded777
49.10.2.7 eOTA_ServerImageNotify 778
49.10.2.8 eOTA_ServerQueryNextImageResponse 778

UG10204 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Rev. 3.1 — 24 January 2025 Document feedback
859 / 860

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

NXP Semiconductors JNUG3132
ZigBee Cluster Library (for ZigBee 3.0)

49.10.2.9 eOTA_ServerImageBlockResponse 779
49.10.2.10eOTA_SetWaitForDataParams 780
49.10.2.11eOTA_ServerUpgradeEndResponse 781
49.10.2.12eOTA_ServerSwitchToNewImage781
49.10.2.13eOTA_InvalidateStoredImage 782
49.10.2.14eOTA_ServerQuerySpecificFileResponse 782
49.10.3 Client Functions ...783
49.10.3.1 eOTA_SetServerAddress784
49.10.3.2 eOTA_ClientQueryNextImageRequest 784
49.10.3.3 eOTA_ClientImageBlockRequest785
49.10.3.4 eOTA_ClientImagePageRequest 785
49.10.3.5 eOTA_ClientUpgradeEndRequest 786
49.10.3.6 eOTA_HandleImageVerification 787
49.10.3.7 eOTA_UpdateClientAttributes 787
49.10.3.8 eOTA_RestoreClientData788
49.10.3.9 vOTA_SetImageValidityFlag 788
49.10.3.10eOTA_ClientQuerySpecificFileRequest 789
49.10.3.11eOTA_SpecificFileUpgradeEndRequest 789
49.10.3.12vOTA_SetLowVoltageFlag 790
49.11 Structures ...790
49.11.1 tsOTA_ImageHeader 790
49.11.2 tsOTA_Common .. 792
49.11.3 tsOTA_HwFncTable 792
49.11.4 tsNvmDefs ... 793
49.11.5 tsOTA_ImageNotifyCommand 793
49.11.6 tsOTA_QueryImageRequest 794
49.11.7 tsOTA_QueryImageResponse 794
49.11.8 tsOTA_BlockRequest795
49.11.9 tsOTA_ImagePageRequest 796
49.11.10 tsOTA_ImageBlockResponsePayload 796
49.11.11 tsOTA_UpgradeEndRequestPayload797
49.11.12 tsOTA_UpgradeEndResponsePayload797
49.11.13 tsOTA_SuccessBlockResponsePayload798
49.11.14 tsOTA_BlockResponseEvent 798
49.11.15 tsOTA_WaitForData 799
49.11.16 tsOTA_WaitForDataParams799
49.11.17 tsOTA_PageReqServerParams 800
49.11.18 tsOTA_PersistedData800
49.11.19 tsOTA_QuerySpecificFileRequestPayload801
49.11.20 tsOTA_QuerySpecificFileResponsePayload ..801
49.11.21 tsOTA_CallBackMessage 802
49.11.22 tsCLD_PR_Ota .. 804
49.11.23 tsCLD_AS_Ota .. 804
49.11.24 tsOTA_ImageVersionVerify 805
49.11.25 tsOTA_UpgradeDowngradeVerify 805
49.12 Enumerations ...806
49.12.1 teOTA_Cluster ... 806
49.12.2 teOTA_UpgradeClusterEvents806
49.12.3 eOTA_AuthorisationState810
49.12.4 teOTA_ImageNotifyPayloadType 810
49.13 Compile-time options 811
49.14 Build Process ...814
49.14.1 Modifying Makefiles 814
49.14.2 Building Applications815
49.14.3 Preparing and Downloading Initial Client

Image ...815

49.14.4 Preparing and Downloading Server Image 815
49.15 OTA Configuration for Internal Flash 815
49.15.1 Switching to a new image816
50 Appendix A: Mutex callbacks 818
51 Appendix B: Attribute reporting819
51.1 Appendix B.1: Automatic attribute reporting ...819
51.2 Appendix B.2: Default reporting819
51.3 Appendix B.3: Configuring attribute

reporting ...819
51.3.1 B.3.1: Compile-time Options820
51.3.2 B.3.2: Server Options 820
51.3.3 B.3.3: Client Options821
51.3.4 B.3.4: General (Server and Client) Options ... 822
51.3.5 B.3.5: Configuring Automatic Attribute

Reports (from Client) 822
51.3.6 B.3.6: Configuring Default Reporting (on

Server) ... 824
51.3.7 B.3.7: ZCL Configuration for Attribute

Reporting ... 824
51.3.8 B.3.8: Speeding Up Automatic Attribute

Reports .. 825
51.4 Appendix B.4: Sending attribute reports 825
51.5 Appendix B.5: Receiving attribute reports826
51.6 Appendix B.6: Querying attribute reporting

configuration .. 826
51.7 Appendix B.7: Storing an attribute reporting

configuration .. 827
51.7.1 Persisting an attribute reporting

configuration .. 827
51.7.2 Formatting an attribute reporting

configuration record 828
52 Appendix C: Extended attribute

discovery .. 830
52.1 Appendix C.1: Compile-time options830
52.2 Appendix C.2: Application coding 830
53 Appendix D: Custom endpoints 831
53.1 Appendix D.1: Devices and Endpoints831
53.2 Appendix D.2: Cluster Creation Functions 831
53.3 Appendix D.3: Custom Endpoint Set-up 832
54 Appendix E: Manufacturer-specific

attributes and commands 834
54.1 Appendix E.1: Adding Manufacturer-

specific Attributes ...834
54.2 Appendix E.2: Adding Manufacturer-

specific Commands 835
55 Appendix F: OTA extension for dual-

processor nodes ..838
55.1 Appendix F.1: Application Upgrades for

Different Target Processors 839
55.2 Appendix F.2: Storing Upgrade Images in

Co-processor Storage on Server 840
55.3 Appendix F.3: Use of Image Indices 841
56 Appendix G: Glossary842
57 Revision history ...845

Legal information ...846

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 24 January 2025
Document identifier: UG10204

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10204

	1 ZigBee Cluster Library (ZCL)
	1.1 ZCL Member Clusters
	1.1.1 General
	1.1.2 Measurement and Sensing
	1.1.3 Lighting
	1.1.4 Heating, Ventilation, and Air-Conditioning (HVAC)
	1.1.5 Closures
	1.1.6 Security and Safety
	1.1.7 Smart Energy
	1.1.8 Commissioning
	1.1.9 Appliances
	1.1.10 Over-The-Air (OTA) Upgrade

	1.2 General ZCL Resources
	1.3 ZCL Compile-time Options

	2 ZCL Fundamentals and Features
	2.1 Initializing the ZCL
	2.2 Shared Device Structures
	2.3 Accessing Attributes
	2.3.1 Attribute Access Permissions
	2.3.2 Reading Attributes
	2.3.2.1 Reading a set of attributes of a remote cluster
	2.3.2.2 Reading an Attribute of a Local Cluster

	2.3.3 Writing Attributes
	2.3.3.1 Writing to Attributes of a Remote Cluster
	2.3.3.2 Writing an Attribute Value to a Local Cluster

	2.3.4 Attribute Discovery
	2.3.5 Attribute Reporting

	2.4 Global Attributes
	2.5 Default Responses
	2.6 Handling Commands for Unsupported Clusters
	2.7 Handling Commands from Other Manufacturers
	2.8 Bound Transmission Management
	2.9 Command Discovery
	2.9.1 Discovering Command Sets
	2.9.2 Compile-time Options

	3 Event Handling
	3.1 Event Structure
	3.2 Processing Events
	3.3 Events

	4 Error Handling
	4.1 Last Stack Error
	4.2 Error/Command Status on Receiving Command

	5 ZCL Functions
	5.1 General Functions
	5.1.1 eZCL_Initialise
	5.1.2 eZCL_Register
	5.1.3 vZCL_EventHandler
	5.1.4 eZCL_Update100mS
	5.1.5 vZCL_DisableAPSACK
	5.1.6 eZCL_GetLastZpsError
	5.1.7 vZCL_RegisterHandleGeneralCmdCallBack
	5.1.8 vZCL_RegisterCheckForManufCodeCallBack

	5.2 Attribute Access Functions
	5.2.1 eZCL_SendReadAttributesRequest
	5.2.2 eZCL_SendWriteAttributesRequest
	5.2.3 eZCL_SendWriteAttributesNoResponseRequest
	5.2.4 eZCL_SendWriteAttributesUndividedRequest
	5.2.5 eZCL_SendDiscoverAttributesRequest
	5.2.6 eZCL_SendDiscoverAttributesExtendedRequest
	5.2.7 eZCL_SendConfigureReportingCommand
	5.2.8 eZCL_SendReadReportingConfigurationCommand
	5.2.9 eZCL_ReportAllAttributes
	5.2.10 eZCL_ReportAttribute
	5.2.11 eZCL_CreateLocalReport
	5.2.12 eZCL_SetReportableFlag
	5.2.13 vZCL_SetDefaultReporting
	5.2.14 eZCL_HandleReadAttributesResponse
	5.2.15 eZCL_ReadLocalAttributeValue
	5.2.16 eZCL_WriteLocalAttributeValue
	5.2.17 eZCL_OverrideClusterControlFlags
	5.2.18 eZCL_SetSupportedSecurity

	5.3 Command Discovery Functions
	5.3.1 eZCL_SendDiscoverCommandReceivedRequest
	5.3.2 eZCL_SendDiscoverCommandGeneratedRequest

	6 ZCL Structures
	6.1 General Structures
	6.1.1 tsZCL_EndPointDefinition
	6.1.2 tsZCL_ClusterDefinition
	6.1.3 tsZCL_AttributeDefinition
	6.1.4 tsZCL_Address
	6.1.5 tsZCL_AttributeReportingConfigurationRecord
	6.1.6 tsZCL_AttributeReportingConfigurationResponse
	6.1.7 tsZCL_AttributeReadReportingConfigurationRecord
	6.1.8 tsZCL_IndividualAttributesResponse
	6.1.9 tsZCL_DefaultResponse
	6.1.10 tsZCL_AttributeDiscoveryResponse
	6.1.11 tsZCL_AttributeDiscoveryExtendedResponse
	6.1.12 tsZCL_ReportAttributeMirror
	6.1.13 tsZCL_OctetString
	6.1.14 tsZCL_CharacterString
	6.1.15 tsZCL_ClusterCustomMessage
	6.1.16 tsZCL_ClusterInstance
	6.1.17 tsZCL_CommandDiscoveryIndividualResponse
	6.1.18 tsZCL_CommandDiscoveryResponse
	6.1.19 tsZCL_CommandDefinition
	6.1.20 tsZCL_SceneExtensionTable
	6.1.21 tsZCL_WriteAttributeRecord

	6.2 Event Structure (tsZCL_CallBackEvent)

	7 Enumerations and Status Codes
	7.1 General Enumerations
	7.1.1 Addressing Modes (teZCL_AddressMode)
	7.1.2 Broadcast Modes (ZPS_teAplAfBroadcastMode)
	7.1.3 Attribute Types (teZCL_ZCLAttributeType)
	7.1.4 Command Status (teZCL_CommandStatus)
	7.1.5 Report Attribute Status (teZCL_ReportAttributeStatus)
	7.1.6 Security Level (teZCL_ZCLSendSecurity)

	7.2 General Return codes (ZCL Status)
	7.3 ZCL Event Enumerations

	8 Basic Cluster
	8.1 Overview
	8.2 Basic Cluster structure and attributes
	8.3 Mandatory Attribute Settings
	8.4 Functions
	8.4.1 eCLD_BasicCreateBasic
	8.4.2 eCLD_BasicCommandResetToFactoryDefaultsSend

	8.5 Enumerations
	8.5.1 teCLD_BAS_ClusterID
	8.5.2 teCLD_BAS_PowerSource
	8.5.3 teCLD_BAS_GenericDeviceClass
	8.5.4 eCLD_BAS_GenericDeviceType
	8.5.5 teCLD_BAS_PhysicalEnvironment

	8.6 Compile-time options

	9 Power Configuration Cluster
	9.1 Overview
	9.2 Power Configuration Cluster structure and attributes
	9.3 Attributes for Default Reporting
	9.4 Functions
	9.4.1 eCLD_PowerConfigurationCreatePowerConfiguration

	9.5 Enumerations and Defines
	9.5.1 teCLD_PWRCFG_AttributeId
	9.5.2 teCLD_PWRCFG_BatterySize
	9.5.3 Defines for Voltage Alarms

	9.6 Compile-time options

	10 Device Temperature Configuration Cluster
	10.1 Overview
	10.2 Cluster structure and attributes
	10.3 Functions
	10.3.1 eCLD_DeviceTemperatureConfigurationCreateDeviceTemperatureConfiguration

	10.4 Enumerations and Defines
	10.4.1 teCLD_DEVTEMPCFG_AttributeId
	10.4.2 Defines for Device Temperature Alarms

	10.5 Compile-time options

	11 Identify Cluster
	11.1 Overview
	11.2 Identify Cluster Structure and Attribute
	11.3 Initialization
	11.4 Sending Commands
	11.4.1 Starting and Stopping Identification Mode
	11.4.2 Requesting Identification Effects
	11.4.3 Inquiring about Identification Mode
	11.4.4 Using EZ-mode Commissioning Features

	11.5 Sleeping Devices in Identification Mode
	11.6 Functions
	11.6.1 eCLD_IdentifyCreateIdentify
	11.6.2 eCLD_IdentifyCommandIdentifyRequestSend
	11.6.3 eCLD_IdentifyCommandTriggerEffectSend
	11.6.4 eCLD_IdentifyCommandIdentifyQueryRequestSend
	11.6.5 eCLD_IdentifyEZModeInvokeCommandSend
	11.6.6 eCLD_IdentifyUpdateCommissionStateCommandSend

	11.7 Structures
	11.7.1 Custom Data Structure
	11.7.2 Custom Command Payloads
	11.7.3 Custom Command Responses
	11.7.4 EZ-mode Commissioning Command Payloads

	11.8 Enumerations
	11.8.1 teCLD_Identify_ClusterID

	11.9 Compile-time options

	12 Groups Cluster
	12.1 Overview
	12.2 Groups Cluster structure and attributes
	12.3 Initialization
	12.4 Sending Commands
	12.4.1 Adding Endpoints to Groups
	12.4.2 Removing Endpoints from Groups
	12.4.3 Obtaining Information about Groups

	12.5 Functions
	12.5.1 eCLD_GroupsCreateGroups
	12.5.2 eCLD_GroupsAdd
	12.5.3 eCLD_GroupsCommandAddGroupRequestSend
	12.5.4 eCLD_GroupsCommandViewGroupRequestSend
	12.5.5 eCLD_GroupsCommandGetGroupMembershipRequestSend
	12.5.6 eCLD_GroupsCommandRemoveGroupRequestSend
	12.5.7 eCLD_GroupsCommandRemoveAllGroupsRequestSend
	12.5.8 eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend

	12.6 Structures
	12.6.1 Custom Data Structure
	12.6.2 Group Table Entry
	12.6.3 Custom Command Payloads
	12.6.4 Custom Command Responses

	12.7 Enumerations
	12.7.1 teCLD_Groups_ClusterID

	12.8 Compile-time Options

	13 Scenes Cluster
	13.1 Overview
	13.2 Scenes Cluster structure and attributes
	13.3 Initialization
	13.4 Sending Remote Commands
	13.4.1 Creating a Scene
	13.4.2 Copying a Scene
	13.4.3 Applying a Scene
	13.4.4 Deleting a Scene
	13.4.5 Obtaining Information about Scenes

	13.5 Issuing Local Commands
	13.5.1 Creating a Scene
	13.5.2 Applying a Scene

	13.6 Functions
	13.6.1 eCLD_ScenesCreateScenes
	13.6.2 eCLD_ScenesAdd
	13.6.3 eCLD_ScenesStore
	13.6.4 eCLD_ScenesRecall
	13.6.5 eCLD_ScenesCommandAddSceneRequestSend
	13.6.6 eCLD_ScenesCommandViewSceneRequestSend
	13.6.7 eCLD_ScenesCommandRemoveSceneRequestSend
	13.6.8 eCLD_ScenesCommandRemoveAllScenesRequestSend
	13.6.9 eCLD_ScenesCommandStoreSceneRequestSend
	13.6.10 eCLD_ScenesCommandRecallSceneRequestSend
	13.6.11 eCLD_ScenesCommandGetSceneMembershipRequestSend
	13.6.12 eCLD_ScenesCommandEnhancedAddSceneRequestSend
	13.6.13 eCLD_ScenesCommandEnhancedViewSceneRequestSend
	13.6.14 eCLD_ScenesCommandCopySceneSceneRequestSend

	13.7 Structures
	13.7.1 Custom Data Structure
	13.7.2 Custom Command Payloads
	13.7.3 Custom Command Responses
	13.7.4 Scenes Table Entry

	13.8 Enumerations
	13.8.1 teCLD_Scenes_ClusterID

	13.9 Compile-time options

	14 On/Off Cluster
	14.1 Overview
	14.2 On/Off Cluster Structure and Attribute
	14.3 Attributes for Default Reporting
	14.4 Initialization
	14.5 Sending Commands
	14.5.1 Switching On and Off
	14.5.1.1 Timeout on the ‘On’ Command
	14.5.1.2 On/Off with Transition Effect

	14.5.2 Switching Off Lights with Effect
	14.5.3 Switching On Timed Lights

	14.6 Saving Light Settings
	14.7 Functions
	14.7.1 eCLD_OnOffCreateOnOff
	14.7.2 eCLD_OnOffCommandSend
	14.7.3 eCLD_OnOffCommandOffWithEffectSend
	14.7.4 eCLD_OnOffCommandOnWithTimedOffSend

	14.8 Structures
	14.8.1 Custom Data Structure
	14.8.2 Custom Command Payloads

	14.9 Enumerations
	14.9.1 teCLD_OnOff_ClusterID
	14.9.2 teCLD_OOSC_SwitchType (On/Off Switch Types)
	14.9.3 teCLD_OOSC_SwitchAction (On/Off Switch Actions)

	14.10 Compile-time options

	15 On/Off Switch Configuration Cluster
	15.1 Overview
	15.2 On/Off Switch Config Cluster Structure and Attribute
	15.3 Initialisation
	15.4 Functions
	15.4.1 eCLD_OOSCCreateOnOffSwitchConfig

	15.5 Enumerations
	15.5.1 teCLD_OOSC_ClusterID
	15.5.2 teCLD_OOSC_SwitchType
	15.5.3 teCLD_OOSC_SwitchAction

	15.6 Compile-time options

	16 Level Control Cluster
	16.1 Overview
	16.2 Level Control Cluster structure and attributes
	16.3 Attributes for Default Reporting
	16.4 Initialization
	16.5 Sending Remote Commands
	16.5.1 Changing Level
	16.5.2 Stopping a Level Change

	16.6 Issuing Local Commands
	16.6.1 Setting Level
	16.6.2 Obtaining Level

	16.7 Functions
	16.7.1 eCLD_LevelControlCreateLevelControl
	16.7.2 eCLD_LevelControlSetLevel
	16.7.3 eCLD_LevelControlGetLevel
	16.7.4 eCLD_LevelControlCommandMoveToLevelCommandSend
	16.7.5 eCLD_LevelControlCommandMoveCommandSend
	16.7.6 eCLD_LevelControlCommandStepCommandSend
	16.7.7 eCLD_LevelControlCommandStopCommandSend

	16.8 Structures
	16.8.1 Level Control Transition Structure
	16.8.2 Custom Data Structure
	16.8.3 Custom Command Payloads
	16.8.3.1 Move To Level Command Payload
	16.8.3.2 Move Command Payload
	16.8.3.3 Step Command Payload
	16.8.3.4 Stop Command Payload

	16.9 Enumerations
	16.9.1 teCLD_LevelControl_ClusterID
	16.9.2 teCLD_LevelControl_Transition
	16.9.3 teCLD_LevelControl_MoveMode

	16.10 Compile-time options

	17 Alarms Cluster
	17.1 Overview
	17.2 Alarms Cluster structure and attributes
	17.3 Initialization
	17.4 Alarm Operations
	17.4.1 Raising an Alarm
	17.4.2 Resetting Alarms (from Client)

	17.5 Alarms Events
	17.6 Functions
	17.6.1 eCLD_AlarmsCreateAlarms
	17.6.2 eCLD_AlarmsCommandResetAlarmCommandSend
	17.6.3 eCLD_AlarmsCommandResetAllAlarmsCommandSend
	17.6.4 eCLD_AlarmsCommandGetAlarmCommandSend
	17.6.5 eCLD_AlarmsCommandResetAlarmLogCommandSend
	17.6.6 eCLD_AlarmsResetAlarmLog
	17.6.7 eCLD_AlarmsAddAlarmToLog
	17.6.8 eCLD_AlarmsGetAlarmFromLog
	17.6.9 eCLD_AlarmsSignalAlarm

	17.7 Structures
	17.7.1 Event Callback Message Structure
	17.7.2 Custom Data Structure
	17.7.3 Custom Command Payloads
	17.7.3.1 Reset Alarm Command Payload
	17.7.3.2 Alarm Notification Payload

	17.7.4 Custom Response Payloads
	17.7.4.1 Get Alarm Response Payload

	17.7.5 Alarms Table Entry

	17.8 Enumerations
	17.8.1 teCLD_Alarms_AttributeID

	18 Time Cluster and ZCL Time
	18.1 Overview
	18.2 Time Cluster structure and attributes
	18.3 Attribute Settings
	18.3.1 Mandatory Attributes
	18.3.2 Optional Attributes

	18.4 Maintaining ZCL Time
	18.4.1 Updating ZCL Time Following Sleep
	18.4.2 ZCL Time Synchronization

	18.5 Time-Synchronization of Devices
	18.5.1 Initialising and Maintaining Master Time
	18.5.2 Initial Synchronisation of Devices
	18.5.3 Re-synchronisation of Devices

	18.6 Time Event
	18.7 Functions
	18.7.1 eCLD_TimeCreateTime
	18.7.2 vZCL_SetUTCTime
	18.7.3 u32ZCL_GetUTCTime
	18.7.4 bZCL_GetTimeHasBeenSynchronised
	18.7.5 vZCL_ClearTimeHasBeenSynchronised

	18.8 Return codes
	18.9 Enumerations
	18.9.1 teCLD_TM_AttributeID

	18.10 Compile-time Options

	19 Input and Output Clusters
	19.1 Analogue Input (Basic)
	19.1.1 Overview
	19.1.2 Analogue Input (Basic) Structure and Attributes
	19.1.3 Attributes for Default Reporting
	19.1.4 Functions
	19.1.4.1 eCLD_AnalogInputBasicCreateAnalogInputBasic

	19.1.5 Enumerations
	19.1.5.1 teCLD_AnalogInputBasicCluster_AttrID
	19.1.5.2 teCLD_AnalogInputBasic_Reliability

	19.1.6 Compile-time Options

	19.2 Analogue Output (Basic)
	19.2.1 Overview
	19.2.2 Analogue Output (Basic) Structure and Attributes
	19.2.3 Attributes for Default Reporting
	19.2.4 Functions
	19.2.4.1 eCLD_AnalogOutputBasicCreateAnalogOutputBasic

	19.2.5 Enumerations
	19.2.5.1 teCLD_AnalogOutputBasicCluster_AttrID
	19.2.5.2 teCLD_AnalogOutputBasic_Reliability

	19.2.6 Compile-time options

	19.3 Binary Input (Basic) Cluster
	19.3.1 Overview
	19.3.2 Binary Input (Basic) Structure and Attributes
	19.3.3 Attributes for Default Reporting
	19.3.4 Functions
	19.3.4.1 eCLD_BinaryInputBasicCreateBinaryInputBasic

	19.3.5 Enumerations
	19.3.5.1 teCLD_BinaryInputBasicCluster_AttrID
	19.3.5.2 teCLD_BinaryInputBasic_Polarity
	19.3.5.3 teCLD_BinaryInputBasic_Reliability

	19.3.6 Compile-time options

	19.4 Binary Output (Basic)
	19.4.1 Overview
	19.4.2 Binary Output (Basic) Structure and Attributes
	19.4.3 Attributes for Default Reporting
	19.4.4 Functions
	19.4.4.1 eCLD_BinaryOutputBasicCreateBinaryOutputBasic

	19.4.5 Enumerations
	19.4.5.1 teCLD_BinaryOutputBasicCluster_AttrID
	19.4.5.2 teCLD_BinaryOutputBasic_Polarity
	19.4.5.3 teCLD_BinaryOutputBasic_Reliability

	19.4.6 Compile-time options

	19.5 Multistate Input (Basic)
	19.5.1 Overview
	19.5.2 Multistate Input (Basic) Structure and Attributes
	19.5.3 Attributes for Default Reporting
	19.5.4 Functions
	19.5.4.1 eCLD_MultistateInputBasicCreateMultistateInputBasic

	19.5.5 Enumerations
	19.5.5.1 teCLD_MultistateInputBasicCluster_AttrID
	19.5.5.2 teCLD_MultistateInputBasic_Reliability

	19.5.6 Compile-time options

	19.6 Multistate Output (Basic)
	19.6.1 Overview
	19.6.2 Multistate Output (Basic) Structure and Attributes
	19.6.3 Attributes for Default Reporting
	19.6.4 Functions
	19.6.4.1 eCLD_MultistateOutputBasicCreateMultistateOutputBasic

	19.6.5 Enumerations
	19.6.5.1 teCLD_MultistateOutputBasicCluster_AttrID
	19.6.5.2 teCLD_MultistateOutputBasic_Reliability

	19.6.6 Compile-time options

	20 Poll Control Cluster
	20.1 Overview
	20.2 Cluster structure and attributes
	20.3 Attribute Settings
	20.4 Poll Control Operations
	20.4.1 Initialization
	20.4.2 Configuration
	20.4.3 Operation
	20.4.3.1 Fast Poll Mode Timeout
	20.4.3.2 Invalid Check-in Responses

	20.5 Poll Control Events
	20.6 Functions
	20.6.1 Server/Client Function
	20.6.1.1 eCLD_PollControlCreatePollControl

	20.6.2 Server Functions
	20.6.2.1 eCLD_PollControlUpdate
	20.6.2.2 eCLD_PollControlSetAttribute
	20.6.2.3 eCLD_PollControlUpdateSleepInterval

	20.6.3 Client Functions
	20.6.3.1 eCLD_PollControlSetLongPollIntervalSend
	20.6.3.2 eCLD_PollControlSetShortPollIntervalSend
	20.6.3.3 eCLD_PollControlFastPollStopSend

	20.7 Return codes
	20.8 Enumerations
	20.8.1 ‘Attribute ID’ enumerations
	20.8.2 ‘Command’ Enumerations

	20.9 Structures
	20.9.1 tsCLD_PPCallBackMessage
	20.9.2 tsCLD_PollControl_CheckinResponsePayload
	20.9.3 tsCLD_PollControl_SetLongPollIntervalPayload
	20.9.4 tsCLD_PollControl_SetShortPollIntervalPayload
	20.9.5 tsCLD_PollControlCustomDataStructure

	20.10 Compile-time Options

	21 Power Profile Cluster
	21.1 Overview
	21.2 Cluster structure and attributes
	21.3 Attributes for default reporting
	21.4 Power profiles
	21.5 Power profile operations
	21.5.1 Initialization
	21.5.2 Adding and removing a power profile (server only)
	21.5.2.1 Adding a power profile entry
	21.5.2.2 Removing a power profile entry
	21.5.2.3 Obtaining a Power Profile Entry

	21.5.3 Communicating power profiles
	21.5.3.1 Requesting a power profile (by client)
	21.5.3.2 Notification of a power profile (by server)

	21.5.4 Communicating schedule information
	21.5.4.1 Requesting a schedule (by server)
	21.5.4.2 Notification of a Schedule (by Client)
	21.5.4.3 Notification of Energy Phases in Power Profile Schedule (by Server)
	21.5.4.4 Requesting the Scheduled Energy Phases (by Client)

	21.5.5 Executing a Power Profile Schedule
	21.5.6 Communicating Price Information
	21.5.6.1 Requesting Cost of a Power Profile Schedule (by Server)
	21.5.6.2 Requesting Cost of Power Profile Schedules Over a Day (by Server)

	21.6 Power Profile Events
	21.7 Functions
	21.7.1 Server/Client Function
	21.7.1.1 eCLD_PPCreatePowerProfile

	21.7.2 Server Functions
	21.7.2.1 eCLD_PPSchedule
	21.7.2.2 eCLD_PPSetPowerProfileState
	21.7.2.3 eCLD_PPAddPowerProfileEntry
	21.7.2.4 eCLD_PPRemovePowerProfileEntry
	21.7.2.5 eCLD_PPGetPowerProfileEntry
	21.7.2.6 eCLD_PPPowerProfileNotificationSend
	21.7.2.7 eCLD_PPEnergyPhaseScheduleStateNotificationSend
	21.7.2.8 eCLD_PPPowerProfileScheduleConstraintsNotificationSend
	21.7.2.9 eCLD_PPEnergyPhasesScheduleReqSend
	21.7.2.10 eCLD_PPPowerProfileStateNotificationSend
	21.7.2.11 eCLD_PPGetPowerProfilePriceSend
	21.7.2.12 eCLD_PPGetPowerProfilePriceExtendedSend
	21.7.2.13 eCLD_PPGetOverallSchedulePriceSend

	21.7.3 Client Functions
	21.7.3.1 eCLD_PPPowerProfileRequestSend
	21.7.3.2 eCLD_PPEnergyPhasesScheduleNotificationSend
	21.7.3.3 eCLD_PPPowerProfileStateReqSend
	21.7.3.4 eCLD_PPEnergyPhasesScheduleStateReqSend
	21.7.3.5 eCLD_PPPowerProfileScheduleConstraintsReqSend

	21.8 Return codes
	21.9 Enumerations
	21.9.1 ‘Attribute ID’ Enumerations
	21.9.2 ‘Power Profile State’ Enumerations
	21.9.3 ‘Server-Generated Command’ Enumerations
	21.9.4 ‘Server-Received Command’ Enumerations

	21.10 Structures
	21.10.1 tsCLD_PPCallBackMessage
	21.10.2 tsCLD_PPEntry
	21.10.3 tsCLD_PP_PowerProfileReqPayload
	21.10.4 tsCLD_PP_PowerProfilePayload
	21.10.5 tsCLD_PP_PowerProfileStatePayload
	21.10.6 tsCLD_PP_EnergyPhasesSchedulePayload
	21.10.7 tsCLD_PP_PowerProfileScheduleConstraintsPayload
	21.10.8 tsCLD_PP_GetPowerProfilePriceExtendedPayload
	21.10.9 tsCLD_PP_GetPowerProfilePriceRspPayload
	21.10.10 tsCLD_PP_GetOverallSchedulePriceRspPayload
	21.10.11 tsCLD_PP_EnergyPhaseInfo
	21.10.12 tsCLD_PP_EnergyPhaseDelay
	21.10.13 tsCLD_PP_PowerProfiIeRecord
	21.10.14 tsCLD_PPCustomDataStructure

	21.11 Compile-time Options

	22 Diagnostics Cluster
	22.1 Overview
	22.2 Diagnostics Structure and Attributes
	22.3 Functions
	22.3.1 eCLD_DiagnosticsCreateDiagnostics
	22.3.2 eCLD_DiagnosticsUpdate

	22.4 Enumerations
	22.4.1 teCLD_Diagnostics_AttributeId

	22.5 Compile-time Options

	23 Illuminance Measurement Cluster
	23.1 Overview
	23.2 Illuminance Measurement Structure and Attributes
	23.3 Attributes for Default Reporting
	23.4 Functions
	23.4.1 eCLD_IlluminanceMeasurementCreateIlluminanceMeasurement

	23.5 Enumerations
	23.5.1 teCLD_IM_ClusterID

	23.6 Compile-time options

	24 Illuminance Level Sensing Cluster
	24.1 Overview
	24.2 Cluster structure and attributes
	24.3 Attributes for Default Reporting
	24.4 Functions
	24.4.1 eCLD_IlluminanceLevelSensingCreateIlluminanceLevelSensing

	24.5 Enumerations
	24.5.1 teCLD_ILS_ClusterID
	24.5.2 teCLD_ILS_LightSensorType
	24.5.3 teCLD_ILS_LightLevelStatus

	24.6 Compile-time Options

	25 Temperature Measurement Cluster
	25.1 Overview
	25.2 Temperature Measurement Structure and Attributes
	25.3 Attributes for Default Reporting
	25.4 Functions
	25.4.1 eCLD_TemperatureMeasurementCreateTemperatureMeasurement

	25.5 Enumerations
	25.5.1 teCLD_TemperatureMeasurement_AttributeID

	25.6 Compile-time Options

	26 Pressure Measurement Cluster
	26.1 Overview
	26.2 Cluster structure and attributes
	26.3 Initialization and Operation
	26.4 Pressure Measurement Events
	26.5 Functions
	26.5.1 eCLD_PressureMeasurementCreatePressureMeasurement

	26.6 Return codes
	26.7 Enumerations
	26.7.1 ‘Attribute ID’ Enumerations

	26.8 Structures
	26.9 Compile-time Options

	27 Flow Measurement Cluster
	27.1 Overview
	27.2 Cluster structure and attributes
	27.3 Initialization and Operation
	27.4 Flow Measurement Events
	27.5 Functions
	27.5.1 eCLD_FlowMeasurementCreateFlowMeasurement

	27.6 Return codes
	27.7 Enumerations
	27.7.1 ‘Attribute ID’ Enumerations

	27.8 Structures
	27.9 Compile-time Options

	28 Relative Humidity Measurement Cluster
	28.1 Overview
	28.2 RH Measurement Structure and Attributes
	28.3 Attributes for Default Reporting
	28.4 Functions
	28.4.1 eCLD_RelativeHumidityMeasurementCreateRelativeHumidityMeasurement

	28.5 Enumerations
	28.5.1 teCLD_RHM_ClusterID

	28.6 Compile-time Options

	29 Occupancy Sensing Cluster
	29.1 Overview
	29.2 Occupancy Sensing Structure and Attributes
	29.3 Attributes for Default Reporting
	29.4 Functions
	29.4.1 eCLD_OccupancySensingCreateOccupancySensing

	29.5 Enumerations
	29.5.1 teCLD_OS_ClusterID

	29.6 Compile-time options

	30 Electrical Measurement Cluster
	30.1 Overview
	30.2 Cluster structure and attributes
	30.3 Initialisation and Operation
	30.4 Electrical Measurement Events
	30.5 Functions
	30.5.1 eCLD_ElectricalMeasurementCreateElectricalMeasurement

	30.6 Return codes
	30.7 Enumerations
	30.7.1 ‘Attribute ID’ Enumerations

	30.8 Structures
	30.9 Compile-time options

	31 Colour Control Cluster
	31.1 Overview
	31.2 Colour Control Cluster structure and attributes
	31.3 Attributes for Default Reporting
	31.4 Initialization
	31.5 Sending Commands
	31.5.1 Controlling Hue
	31.5.2 Controlling Saturation
	31.5.3 Controlling Colour (CIE x and y Chromaticities)
	31.5.4 Controlling Colour Temperature
	31.5.5 Controlling ‘Enhanced’ Hue
	31.5.6 Controlling a Colour Loop
	31.5.7 Controlling Hue and Saturation

	31.6 Functions
	31.6.1 eCLD_ColourControlCreateColourControl
	31.6.2 eCLD_ColourControlCommandMoveToHueCommandSend
	31.6.3 eCLD_ColourControlCommandMoveHueCommandSend
	31.6.4 eCLD_ColourControlCommandStepHueCommandSend
	31.6.5 eCLD_ColourControlCommandMoveToSaturationCommandSend
	31.6.6 eCLD_ColourControlCommandMoveSaturationCommandSend
	31.6.7 eCLD_ColourControlCommandStepSaturationCommandSend
	31.6.8 eCLD_ColourControlCommandMoveToHueAndSaturationCommandSend
	31.6.9 eCLD_ColourControlCommandMoveToColourCommandSend
	31.6.10 eCLD_ColourControlCommandMoveColourCommandSend
	31.6.11 eCLD_ColourControlCommandStepColourCommandSend
	31.6.12 eCLD_ColourControlCommandEnhancedMoveToHueCommandSend
	31.6.13 eCLD_ColourControlCommandEnhancedMoveHueCommandSend
	31.6.14 eCLD_ColourControlCommandEnhancedStepHueCommandSend
	31.6.15 eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend
	31.6.16 eCLD_ColourControlCommandColourLoopSetCommandSend
	31.6.17 eCLD_ColourControlCommandStopMoveStepCommandSend
	31.6.18 eCLD_ColourControlCommandMoveToColourTemperatureCommandSend
	31.6.19 eCLD_ColourControlCommandMoveColourTemperatureCommandSend
	31.6.20 eCLD_ColourControlCommandStepColourTemperatureCommandSend
	31.6.21 eCLD_ColourControl_GetRGB

	31.7 Structures
	31.7.1 Custom Data Structure
	31.7.2 Custom Command Payloads

	31.8 Enumerations
	31.8.1 teCLD_ColourControl_ClusterID

	31.9 Compile-time Options

	32 Ballast Configuration Cluster
	32.1 Overview
	32.2 Cluster structure and attributes
	32.3 Functions
	32.3.1 eCLD_BallastConfigurationCreateBallastConfiguration

	32.4 Enumerations
	32.4.1 teCLD_BallastConfiguration_ClusterID

	32.5 Compile-time options

	33 Thermostat Cluster
	33.1 Overview
	33.2 Thermostat Cluster structure and attributes
	33.3 Attributes for Default Reporting
	33.4 Thermostat Operations
	33.4.1 Initialisation
	33.4.2 Recording and Reporting the Local Temperature
	33.4.3 Configuring Heating and Cooling Setpoints

	33.5 Thermostat Events
	33.6 Functions
	33.6.1 eCLD_ThermostatCreateThermostat
	33.6.2 eCLD_ThermostatSetAttribute
	33.6.3 eCLD_ThermostatStartReportingLocalTemperature
	33.6.4 eCLD_ThermostatCommandSetpointRaiseOrLowerSend

	33.7 Return codes
	33.8 Enumerations
	33.8.1 ‘Attribute ID’ Enumerations
	33.8.2 ‘Operating Capabilities’ Enumerations
	33.8.3 ‘Command ID’ Enumerations
	33.8.4 ‘Setpoint Raise Or Lower’ Enumerations

	33.9 Structures
	33.9.1 Custom Data Structure
	33.9.2 tsCLD_ThermostatCallBackMessage
	33.9.3 tsCLD_Thermostat_SetpointRaiseOrLowerPayload

	33.10 Compile-time options

	34 Fan Control Cluster
	34.1 Overview
	34.2 Fan Control Structure and Attributes
	34.3 Initialisation
	34.4 Functions
	34.4.1 eCLD_CreateFanControl

	34.5 Enumerations
	34.5.1 teCLD_FanControl_AttributeID
	34.5.2 teCLD_FC_FanMode
	34.5.3 teCLD_FC_FanModeSequence

	34.6 Compile-time options

	35 Thermostat UI Configuration Cluster
	35.1 Overview
	35.2 Cluster structure and attributes
	35.3 Initialization
	35.4 Functions
	35.4.1 eCLD_ThermostatUIConfigCreateThermostatUIConfig
	35.4.2 eCLD_ThermostatUIConfigConvertTemp

	35.5 Return codes
	35.6 Enumerations
	35.6.1 ‘Attribute ID’ Enumerations
	35.6.2 ‘Temperature Display Mode’ Enumerations
	35.6.3 ‘Keypad Functionality’ Enumerations

	35.7 Compile-time Options

	36 Door Lock Cluster
	36.1 Overview
	36.2 Door Lock Cluster structure and attributes
	36.3 Attributes for Default Reporting
	36.4 Door Lock Events
	36.5 Functions
	36.5.1 eCLD_DoorLockCreateDoorLock
	36.5.2 eCLD_DoorLockSetLockState
	36.5.3 eCLD_DoorLockGetLockState
	36.5.4 eCLD_DoorLockCommandLockUnlockRequestSend
	36.5.5 eCLD_DoorLockSetSecurityLevel

	36.6 Return codes
	36.7 Enumerations
	36.7.1 ‘Attribute ID’ Enumerations
	36.7.2 ‘Lock State’ Enumerations
	36.7.3 ‘Lock Type’ Enumerations
	36.7.4 ‘Door State’ Enumerations
	36.7.5 ‘Command ID’ Enumerations

	36.8 Structures
	36.8.1 tsCLD_DoorLockCallBackMessage
	36.8.2 tsCLD_DoorLock_LockUnlockResponsePayload

	36.9 Compile-time options

	37 IAS Zone Cluster
	37.1 Overview
	37.2 IAS Zone Structure and Attributes
	37.3 Enrollment
	37.3.1 Trip-to-Pair
	37.3.2 Auto-Enroll-Response
	37.3.3 Auto-Enroll-Request

	37.4 IAS Zone Events
	37.5 Functions
	37.5.1 eCLD_IASZoneCreateIASZone
	37.5.2 eCLD_IASZoneUpdateZoneStatus
	37.5.3 eCLD_IASZoneUpdateZoneState
	37.5.4 eCLD_IASZoneUpdateZoneType
	37.5.5 eCLD_IASZoneUpdateZoneID
	37.5.6 eCLD_IASZoneUpdateCIEAddress
	37.5.7 eCLD_IASZoneEnrollReqSend
	37.5.8 eCLD_IASZoneEnrollRespSend
	37.5.9 eCLD_IASZoneStatusChangeNotificationSend
	37.5.10 eCLD_IASZoneNormalOperationModeReqSend
	37.5.11 eCLD_IASZoneTestModeReqSend

	37.6 Structures
	37.6.1 Custom Data Structure
	37.6.2 Custom Command Payloads

	37.7 Compile-time options

	38 IAS Ancillary Control Equipment Cluster
	38.1 Overview
	38.2 IAS ACE Structure and Attributes
	38.3 Table and Parameters
	38.4 Command Summary
	38.5 IAS ACE Events
	38.6 Functions
	38.6.1 eCLD_IASACECreateIASACE
	38.6.2 eCLD_IASACEAddZoneEntry
	38.6.3 eCLD_IASACERemoveZoneEntry
	38.6.4 eCLD_IASACEGetZoneTableEntry
	38.6.5 eCLD_IASACEGetEnrolledZones
	38.6.6 eCLD_IASACESetPanelParameter
	38.6.7 eCLD_IASACEGetPanelParameter
	38.6.8 eCLD_IASACESetZoneParameter
	38.6.9 eCLD_IASACESetZoneParameterValue
	38.6.10 eCLD_IASACEGetZoneParameter
	38.6.11 eCLD_IASACE_ArmSend
	38.6.12 eCLD_IASACE_BypassSend
	38.6.13 eCLD_IASACE_EmergencySend
	38.6.14 eCLD_IASACE_FireSend
	38.6.15 eCLD_IASACE_PanicSend
	38.6.16 eCLD_IASACE_GetZoneIDMapSend
	38.6.17 eCLD_IASACE_GetZoneInfoSend
	38.6.18 eCLD_IASACE_GetPanelStatusSend
	38.6.19 eCLD_IASACE_SetBypassedZoneListSend
	38.6.20 eCLD_IASACE_GetBypassedZoneListSend
	38.6.21 eCLD_IASACE_GetZoneStatusSend
	38.6.22 eCLD_IASACE_ZoneStatusChangedSend
	38.6.23 eCLD_IASACE_PanelStatusChanged

	38.7 Structures
	38.7.1 Custom Data Structure
	38.7.2 Zone Table Entry
	38.7.3 Zone Parameters
	38.7.4 Panel Parameters
	38.7.5 Custom Command Payloads
	38.7.6 Event Data Structures

	38.8 Enumerations
	38.8.1 teCLD_IASACE_ArmMode
	38.8.2 teCLD_IASACE_PanelStatus
	38.8.3 teCLD_IASACE_AlarmStatus
	38.8.4 teCLD_IASACE_AudibleNotification

	38.9 Compile-time options

	39 IAS Warning Device Cluster
	39.1 Overview
	39.2 IAS WD Structure and Attribute
	39.3 Issuing Warnings
	39.4 IAS WD Events
	39.5 Functions
	39.5.1 eCLD_IASWDCreateIASWD
	39.5.2 eCLD_IASWDUpdate
	39.5.3 eCLD_IASWDUpdateMaxDuration
	39.5.4 eCLD_IASWDStartWarningReqSend
	39.5.5 eCLD_IASWDSquawkReqSend

	39.6 Structures
	39.6.1 Custom Data Structure
	39.6.2 Custom Command Payloads
	39.6.3 Event Data Structures

	39.7 Compile-time Options

	40 Price Cluster
	40.1 Overview
	40.2 Price cluster structure and attributes
	40.2.1 ‘Tier Label’ Attribute Set
	40.2.2 ‘Block Threshold’ Attribute Set
	40.2.3 ‘Block Period’ Attribute Set
	40.2.4 ‘Commodity’ Attribute Set
	40.2.5 ‘Block Price Information’ Attribute Set
	40.2.6 ‘Billing Period Information’ Attribute Set
	40.2.7 Client Attribute Set

	40.3 Attribute settings
	40.4 Initializing and maintaining price lists
	40.5 Publishing price information
	40.5.1 Unsolicited Price Updates
	40.5.2 Get Current Price
	40.5.3 Get Scheduled Prices

	40.6 Time-synchronization via Publish Price commands
	40.7 Conversion factor and calorific value (gas only)
	40.8 Price events
	40.9 Functions
	40.9.1 eSE_PriceCreate
	40.9.2 eSE_PriceGetCurrentPriceSend
	40.9.3 eSE_PriceGetScheduledPricesSend
	40.9.4 eSE_PriceAddPriceEntry
	40.9.5 eSE_PriceAddPriceEntryToClient
	40.9.6 eSE_PriceGetPriceEntry
	40.9.7 eSE_PriceDoesPriceEntryExist
	40.9.8 eSE_PriceRemovePriceEntry
	40.9.9 eSE_PriceClearAllPriceEntries
	40.9.10 eSE_PriceAddConversionFactorEntry
	40.9.11 eSE_PriceGetConversionFactorSend
	40.9.12 eSE_PriceGetConversionFactorEntry
	40.9.13 eSE_PriceDoesConversionFactorEntryExist
	40.9.14 eSE_PriceRemoveConversionFactorEntry
	40.9.15 eSE_PriceClearAllConversionFactorEntries
	40.9.16 eSE_PriceAddCalorificValueEntry
	40.9.17 eSE_PriceGetCalorificValueSend
	40.9.18 eSE_PriceGetCalorificValueEntry
	40.9.19 eSE_PriceDoesCalorificValueEntryExist
	40.9.20 eSE_PriceRemoveCalorificValueEntry
	40.9.21 eSE_PriceClearAllCalorificValueEntries

	40.10 Return codes
	40.11 Structures
	40.11.1 tsSE_PricePublishPriceCmdPayload
	40.11.2 tsSE_PricePublishConversionCmdPayload
	40.11.3 tsSE_PricePublishCalorificValueCmdPayload

	40.12 Enumerations
	40.12.1 ‘Attribute ID’ Enumerations
	40.12.2 ‘Price Event’ Enumerations
	40.12.3 'Calorific Value Unit' Enumerations

	40.13 Compile-time options

	41 Demand-Response and Load Control Cluster
	41.1 Overview
	41.2 DRLC Cluster structure and attributes
	41.3 Initialization
	41.4 Load Control Events (LCEs)
	41.4.1 LCE Contents
	41.4.2 LCE Lists

	41.5 LCE Handling
	41.5.1 LCE Handling on Server
	41.5.2 LCE Handling on Clients
	41.5.2.1 LCE Activation and De-activation
	41.5.2.2 Getting Scheduled Events
	41.5.2.3 Reporting LCE Actions to Server
	41.5.2.4 Over-riding LCE Settings

	41.5.3 Canceling LCEs

	41.6 Message Signing (Security)
	41.7 DRLC Events
	41.7.1 Event and Command Types
	41.7.2 Other Elements of tsSE_DRLCCallBackMessage

	41.8 Functions
	41.8.1 eSE_DRLCCreate
	41.8.2 eSE_DRLCAddLoadControlEvent
	41.8.3 eSE_DRLCGetScheduledEventsSend
	41.8.4 eSE_DRLCCancelLoadControlEvent
	41.8.5 eSE_DRLCCancelAllLoadControlEvents
	41.8.6 eSE_DRLCSetEventUserOption
	41.8.7 eSE_DRLCSetEventUserData
	41.8.8 eSE_DRLCGetLoadControlEvent
	41.8.9 eSE_DRLCFindLoadControlEvent

	41.9 Return codes
	41.10 Enumerations
	41.10.1 ‘Device Class’ Enumerations
	41.10.2 ‘DRLC Event’ Enumerations
	41.10.3 ‘Criticality Level’ Enumerations
	41.10.4 ‘LCE Cancellation’ Enumerations
	41.10.5 ‘LCE Participation’ Enumerations
	41.10.6 ‘LCE Data Modification’ Enumerations
	41.10.7 ‘LCE List’ Enumerations
	41.10.8 ‘LCE Status’ Enumerations

	41.11 Structures
	41.11.1 tsSE_DRLCLoadControlEvent
	41.11.2 tsSE_DRLCGetScheduledEvents
	41.11.3 tsSE_DRLCCancelLoadControlEvent
	41.11.4 tsSE_DRLCReportEvent
	41.11.5 tsSE_DRLCCallBackMessage

	41.12 Compile-time options

	42 Simple Metering Cluster
	42.1 Overview
	42.2 Simple Metering Cluster structure and attributes
	42.2.1 ‘Reading Information’ Attribute Set
	42.2.2 ‘Time-Of-Use (TOU) Information’ Attribute Set
	42.2.3 ‘Meter Status’ Attribute Set
	42.2.4 ‘Formatting’ Attribute Set
	42.2.5 ‘Historical Consumption’ Attribute Set
	42.2.6 ‘Load Profile Configuration’ Attribute Set
	42.2.7 ‘Supply Limit’ Attribute Set
	42.2.8 ‘Block Information’ Attribute Set

	42.3 Attribute Settings
	42.4 Remotely Reading Simple Metering Attributes
	42.5 Mirroring Metering Data
	42.5.1 Configuring Mirroring on ESP
	42.5.2 Configuring Mirroring on Metering Devices
	42.5.3 Mirroring Data
	42.5.4 Reading Mirrored Data
	42.5.5 Removing a Mirror

	42.6 Consumption Data Archive (‘Get Profile’)
	42.6.1 Updating Consumption Data on Server
	42.6.2 Sending and Handling a ‘Get Profile’ Request

	42.7 Simple Metering Events
	42.7.1 Event Types
	42.7.2 Command Types

	42.8 Functions
	42.8.1 eSE_SMCreate
	42.8.2 eSE_ReadMeterAttributes
	42.8.3 eSE_HandleReadMeterAttributesResponse
	42.8.4 eSM_ServerRequestMirrorCommand
	42.8.5 eSM_ServerRemoveMirrorCommand
	42.8.6 eSM_CreateMirror
	42.8.7 eSM_RemoveMirror
	42.8.8 eSM_GetFreeMirrorEndPoint
	42.8.9 eSM_IsMirrorSourceAddressValid
	42.8.10 eSM_ServerUpdateConsumption
	42.8.11 eSM_ClientGetProfileCommand
	42.8.12 u32SM_GetReceivedProfileData

	42.9 Return codes
	42.10 Enumerations
	42.10.1 ‘Attribute ID’ Enumerations
	42.10.2 ‘Meter Status’ Enumerations
	42.10.3 ‘Unit of Measure’ Enumerations
	42.10.4 ‘Summation Formatting’ Enumerations
	42.10.5 ‘Supply Direction’ Enumerations
	42.10.6 ‘Metering Device Type’ Enumerations
	42.10.7 ‘Simple Metering Event’ Enumerations
	42.10.8 ‘Server Command’ Enumerations
	42.10.9 ‘Client Command’ Enumerations
	42.10.10 ‘Consumption Interval’ Enumerations
	42.10.11 ‘Simple Metering Status’ Enumerations

	42.11 Structures
	42.11.1 tsSM_CallBackMessage
	42.11.2 tsSE_Mirror
	42.11.3 tsSE_MirrorClusterInstances
	42.11.4 tsSM_CustomStruct
	42.11.5 tsSEGetProfile
	42.11.6 tsSM_RequestMirrorResponseCommand
	42.11.7 tsSM_MirrorRemovedResponseCommand
	42.11.8 tsSM_GetProfileRequestCommand
	42.11.9 tsSM_GetProfileResponseCommand
	42.11.10 tsSM_Error

	42.12 Compile-time options

	43 Commissioning Cluster
	43.1 Overview
	43.2 Commissioning Cluster structure and attributes
	43.2.1 Start-up Parameters (tsCLD_StartupParameters)
	43.2.2 Join Parameters (tsCLD_JoinParameters)
	43.2.3 End Device Parameters (tsCLD_EndDeviceParameters)
	43.2.4 Concentrator Parameters (tsCLD_ConcentratorParameters)

	43.3 Attribute Settings
	43.4 Initialisation
	43.5 Commissioning Commands
	43.5.1 Device Start-up
	43.5.2 Stored Start-up Parameters
	43.5.2.1 Saving Start-up Parameters
	43.5.2.2 Retrieving Stored Start-up Parameters

	43.5.3 Reset Start-up Parameters to Default Values

	43.6 Commissioning Events
	43.7 Functions
	43.7.1 eCLD_CommissioningClusterCreateCommissioning
	43.7.2 eCLD_CommissioningCommandRestartDeviceSend
	43.7.3 eCLD_CommissioningCommandSaveStartupParamsSend
	43.7.4 eCLD_CommissioningCommandRestoreStartupParamsSend
	43.7.5 eCLD_CommissioningCommandResetStartupParamsSend
	43.7.6 eCLD_CommissioningCommandModifyStartupParamsSend
	43.7.7 eCLD_CommissioningSetAttribute

	43.8 Enumerations
	43.8.1 teCLD_Commissioning_AttributeID
	43.8.2 teCLD_Commissioning_AttributeSet
	43.8.3 teCLD_Commissioning_Command

	43.9 Structures
	43.9.1 Attribute Set Structures
	43.9.2 tsCLD_Commissioning_RestartDevicePayload
	43.9.3 tsCLD_Commissioning_ModifyStartupParametersPayload
	43.9.4 tsCLD_Commissioning_ResponsePayload
	43.9.5 tsCLD_CommissioningCustomDataStructure
	43.9.6 tsCLD_CommissioningCallBackMessage

	43.10 Compile-time options

	44 Touchlink Commissioning Cluster
	44.1 Overview
	44.2 Cluster structure and attributes
	44.3 Commissioning operations
	44.4 Using Touchlink
	44.4.1 Creating a network
	44.4.2 Adding to an existing network
	44.4.3 Updating network settings
	44.4.4 Stealing a node

	44.5 Using the Commissioning Utility
	44.6 Touchlink Commissioning events
	44.6.1 Touchlink command events
	44.6.2 Commissioning Utility Command Events

	44.7 Functions
	44.7.1 Touchlink functions
	44.7.1.1 eZLL_RegisterCommissionEndPoint
	44.7.1.2 eCLD_ZllCommissionCreateCommission
	44.7.1.3 eCLD_ZllCommissionCommandScanReqCommandSend
	44.7.1.4 eCLD_ZllCommissionCommandScanRspCommandSend
	44.7.1.5 eCLD_ZllCommissionCommandDeviceInfoReqCommandSend
	44.7.1.6 eCLD_ZllCommissionCommandDeviceInfoRspCommandSend
	44.7.1.7 eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend
	44.7.1.8 eCLD_ZllCommissionCommandFactoryResetReqCommandSend
	44.7.1.9 eCLD_ZllCommissionCommandNetworkStartReqCommandSend
	44.7.1.10 eCLD_ZllCommissionCommandNetworkStartRspCommandSend
	44.7.1.11 eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend
	44.7.1.12 eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend
	44.7.1.13 eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend
	44.7.1.14 eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend
	44.7.1.15 eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend

	44.7.2 Commissioning Utility functions
	44.7.2.1 eCLD_ZllUtilityCreateUtility
	44.7.2.2 eCLD_ZllUtilityCommandEndpointInformationCommandSend
	44.7.2.3 eCLD_ZllUtilityCommandGetGroupIdReqCommandSend
	44.7.2.4 eCLD_ZllUtilityCommandGetGroupIdRspCommandSend
	44.7.2.5 eCLD_ZllUtilityCommandGetEndpointListReqCommandSend
	44.7.2.6 eCLD_ZllUtilityCommandGetEndpointListRspCommandSend
	44.7.2.7 eCLD_ZllUtilityCommandHandler

	44.8 Structures
	44.8.1 tsZLL_CommissionEndpoint
	44.8.2 tsZLL_CommissionEndpointClusterInstances
	44.8.3 tsCLD_ZllCommissionCustomDataStructure
	44.8.4 tsCLD_ZllCommissionCallBackMessage
	44.8.5 tsCLD_ZllCommission_ScanReqCommandPayload
	44.8.6 tsCLD_ZllCommission_ScanRspCommandPayload
	44.8.7 tsCLD_ZllCommission_DeviceInfoReqCommandPayload
	44.8.8 tsCLD_ZllCommission_DeviceInfoRspCommandPayload
	44.8.9 tsCLD_ZllCommission_IdentifyReqCommandPayload
	44.8.10 tsCLD_ZllCommission_FactoryResetReqCommandPayload
	44.8.11 tsCLD_ZllCommission_NetworkStartReqCommandPayload
	44.8.12 tsCLD_ZllCommission_NetworkStartRspCommandPayload
	44.8.13 tsCLD_ZllCommission_NetworkJoinRouterReqCommandPayload
	44.8.14 tsCLD_ZllCommission_NetworkJoinRouterRspCommandPayload
	44.8.15 tsCLD_ZllCommission_NetworkJoinEndDeviceReqCommandPayload
	44.8.16 tsCLD_ZllCommission_NetworkJoinEndDeviceRspCommandPayload
	44.8.17 tsCLD_ZllCommission_NetworkUpdateReqCommandPayload
	44.8.18 tsCLD_ZllUtilityCustomDataStructure
	44.8.19 tsCLD_ZllUtilityCallBackMessage
	44.8.20 tsCLD_ZllUtility_EndpointInformationCommandPayload

	44.9 Enumerations
	44.9.1 Touchlink event enumerations
	44.9.2 Commissioning utility event enumerations

	44.10 Compile-time options

	45 Appliance Control Cluster
	45.1 Overview
	45.2 Cluster structure and attributes
	45.3 Attributes for default reporting
	45.4 Sending commands
	45.4.1 Execution Commands from Client to Server
	45.4.2 Status Commands from Client to Server
	45.4.3 Status Notifications from Server to Client

	45.5 Appliance control events
	45.6 Functions
	45.6.1 eCLD_ApplianceControlCreateApplianceControl
	45.6.2 eCLD_ACExecutionOfCommandSend
	45.6.3 eCLD_ACSignalStateSend
	45.6.4 eCLD_ACSignalStateResponseORSignalStateNotificationSend
	45.6.5 eCLD_ACSignalStateNotificationSend
	45.6.6 eCLD_ACChangeAttributeTime

	45.7 Return codes
	45.8 Enumerations
	45.8.1 ‘Attribute ID’ Enumerations
	45.8.2 ‘Client Command ID’ Enumerations
	45.8.3 ‘Server command ID’ enumerations

	45.9 Structures
	45.9.1 tsCLD_ApplianceControlCallBackMessage
	45.9.2 tsCLD_AC_ExecutionOfCommandPayload
	45.9.3 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload
	45.9.4 tsCLD_ApplianceControlCustomDataStructure

	45.10 Compile-time options

	46 Appliance Identification Cluster
	46.1 Overview
	46.2 Cluster structure and attributes
	46.3 Functions
	46.3.1 eCLD_ApplianceIdentificationCreateApplianceIdentification

	46.4 Return codes
	46.5 Enumerations
	46.5.1 ‘Attribute ID’ enumerations
	46.5.2 ‘Product Type ID’ enumerations

	46.6 Compile-time options

	47 Appliance Events and Alerts Cluster
	47.1 Overview
	47.2 Cluster structure and attribute
	47.3 Sending Messages
	47.3.1 ‘Get Alerts’ Messages from Client to Server
	47.3.2 ‘Alerts Notification’ Messages from Server to Client
	47.3.3 ‘Event Notification’ Messages from Server to Client

	47.4 Appliance Events and Alerts Events
	47.5 Functions
	47.5.1 eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts
	47.5.2 eCLD_AEAAGetAlertsSend
	47.5.3 eCLD_AEAAGetAlertsResponseORAlertsNotificationSend
	47.5.4 eCLD_AEAAAlertsNotificationSend
	47.5.5 eCLD_AEAAEventNotificationSend

	47.6 Return codes
	47.7 Enumerations
	47.7.1 ‘Command ID’ Enumerations

	47.8 Structures
	47.8.1 tsCLD_ApplianceEventsAndAlertsCallBackMessage
	47.8.2 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload
	47.8.3 tsCLD_AEAA_EventNotificationPayload
	47.8.4 tsCLD_ApplianceEventsAndAlertsCustomDataStructure

	47.9 Compile-time options

	48 Appliance Statistics Cluster
	48.1 Overview
	48.2 Cluster structure and attributes
	48.3 Sending messages
	48.3.1 ‘Log Queue Request’ messages from client to server
	48.3.2 ‘Statistics Available’ messages from server to client
	48.3.3 ‘Log Request’ messages from client to server
	48.3.4 ‘Log Notification’ messages from server to client

	48.4 Log Operations on Server
	48.4.1 Adding and Removing Logs
	48.4.2 Obtaining Logs

	48.5 Appliance statistics events
	48.6 Functions
	48.6.1 eCLD_ApplianceStatisticsCreateApplianceStatistics
	48.6.2 eCLD_ASCAddLog
	48.6.3 eCLD_ASCRemoveLog
	48.6.4 eCLD_ASCGetLogsAvailable
	48.6.5 eCLD_ASCGetLogEntry
	48.6.6 eCLD_ASCLogQueueRequestSend
	48.6.7 eCLD_ASCLogRequestSend
	48.6.8 eCLD_ASCLogQueueResponseORStatisticsAvailableSend
	48.6.9 eCLD_ASCStatisticsAvailableSend
	48.6.10 eCLD_ASCLogNotificationORLogResponseSend
	48.6.11 eCLD_ASCLogNotificationSend

	48.7 Return codes
	48.8 Enumerations
	48.8.1 ‘Attribute ID’ enumerations
	48.8.2 ‘Client Command ID’ enumerations
	48.8.3 ‘Server Command ID’ enumerations

	48.9 Structures
	48.9.1 tsCLD_ApplianceStatisticsCallBackMessage
	48.9.2 tsCLD_ASC_LogRequestPayload
	48.9.3 tsCLD_ASC_LogNotificationORLogResponsePayload
	48.9.4 tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload
	48.9.5 tsCLD_LogTable
	48.9.6 tsCLD_ApplianceStatisticsCustomDataStructure

	48.10 Compile-time options

	49 OTA Upgrade cluster
	49.1 Overview
	49.2 OTA Upgrade Images in Internal Flash Memory
	49.3 OTA Upgrade Cluster structure and attributes
	49.4 Basic Principles
	49.4.1 OTA Upgrade Cluster Server
	49.4.2 OTA Upgrade Cluster Client

	49.5 Application Requirements
	49.6 Initialization
	49.7 Implementing OTA Upgrade Mechanism
	49.8 Ancillary Features and Resources for OTA Upgrade
	49.8.1 Rate Limiting
	49.8.2 Device-Specific File Downloads
	49.8.3 Image Block Size and Fragmentation
	49.8.4 Page Requests
	49.8.5 Persistent Data Management
	49.8.6 Flash Memory Organization
	49.8.7 Low-Voltage Flag

	49.9 OTA Upgrade events
	49.9.1 Server-side Events
	49.9.2 Client-side Events
	49.9.3 Server-side and Client-side Events

	49.10 Functions
	49.10.1 General Functions
	49.10.1.1 eOTA_Create
	49.10.1.2 vOTA_FlashInit
	49.10.1.3 eOTA_AllocateEndpointOTASpace
	49.10.1.4 vOTA_GenerateHash
	49.10.1.5 eOTA_GetCurrentOtaHeader

	49.10.2 Server Functions
	49.10.2.1 eOTA_SetServerAuthorisation
	49.10.2.2 eOTA_SetServerParams
	49.10.2.3 eOTA_GetServerData
	49.10.2.4 eOTA_EraseFlashSectorsForNewImage
	49.10.2.5 eOTA_FlashWriteNewImageBlock
	49.10.2.6 eOTA_NewImageLoaded
	49.10.2.7 eOTA_ServerImageNotify
	49.10.2.8 eOTA_ServerQueryNextImageResponse
	49.10.2.9 eOTA_ServerImageBlockResponse
	49.10.2.10 eOTA_SetWaitForDataParams
	49.10.2.11 eOTA_ServerUpgradeEndResponse
	49.10.2.12 eOTA_ServerSwitchToNewImage
	49.10.2.13 eOTA_InvalidateStoredImage
	49.10.2.14 eOTA_ServerQuerySpecificFileResponse

	49.10.3 Client Functions
	49.10.3.1 eOTA_SetServerAddress
	49.10.3.2 eOTA_ClientQueryNextImageRequest
	49.10.3.3 eOTA_ClientImageBlockRequest
	49.10.3.4 eOTA_ClientImagePageRequest
	49.10.3.5 eOTA_ClientUpgradeEndRequest
	49.10.3.6 eOTA_HandleImageVerification
	49.10.3.7 eOTA_UpdateClientAttributes
	49.10.3.8 eOTA_RestoreClientData
	49.10.3.9 vOTA_SetImageValidityFlag
	49.10.3.10 eOTA_ClientQuerySpecificFileRequest
	49.10.3.11 eOTA_SpecificFileUpgradeEndRequest
	49.10.3.12 vOTA_SetLowVoltageFlag

	49.11 Structures
	49.11.1 tsOTA_ImageHeader
	49.11.2 tsOTA_Common
	49.11.3 tsOTA_HwFncTable
	49.11.4 tsNvmDefs
	49.11.5 tsOTA_ImageNotifyCommand
	49.11.6 tsOTA_QueryImageRequest
	49.11.7 tsOTA_QueryImageResponse
	49.11.8 tsOTA_BlockRequest
	49.11.9 tsOTA_ImagePageRequest
	49.11.10 tsOTA_ImageBlockResponsePayload
	49.11.11 tsOTA_UpgradeEndRequestPayload
	49.11.12 tsOTA_UpgradeEndResponsePayload
	49.11.13 tsOTA_SuccessBlockResponsePayload
	49.11.14 tsOTA_BlockResponseEvent
	49.11.15 tsOTA_WaitForData
	49.11.16 tsOTA_WaitForDataParams
	49.11.17 tsOTA_PageReqServerParams
	49.11.18 tsOTA_PersistedData
	49.11.19 tsOTA_QuerySpecificFileRequestPayload
	49.11.20 tsOTA_QuerySpecificFileResponsePayload
	49.11.21 tsOTA_CallBackMessage
	49.11.22 tsCLD_PR_Ota
	49.11.23 tsCLD_AS_Ota
	49.11.24 tsOTA_ImageVersionVerify
	49.11.25 tsOTA_UpgradeDowngradeVerify

	49.12 Enumerations
	49.12.1 teOTA_Cluster
	49.12.2 teOTA_UpgradeClusterEvents
	49.12.3 eOTA_AuthorisationState
	49.12.4 teOTA_ImageNotifyPayloadType

	49.13 Compile-time options
	49.14 Build Process
	49.14.1 Modifying Makefiles
	49.14.2 Building Applications
	49.14.3 Preparing and Downloading Initial Client Image
	49.14.4 Preparing and Downloading Server Image

	49.15 OTA Configuration for Internal Flash
	49.15.1 Switching to a new image

	50 Appendix A: Mutex callbacks
	51 Appendix B: Attribute reporting
	51.1 Appendix B.1: Automatic attribute reporting
	51.2 Appendix B.2: Default reporting
	51.3 Appendix B.3: Configuring attribute reporting
	51.3.1 B.3.1: Compile-time Options
	51.3.2 B.3.2: Server Options
	51.3.3 B.3.3: Client Options
	51.3.4 B.3.4: General (Server and Client) Options
	51.3.5 B.3.5: Configuring Automatic Attribute Reports (from Client)
	51.3.6 B.3.6: Configuring Default Reporting (on Server)
	51.3.7 B.3.7: ZCL Configuration for Attribute Reporting
	51.3.8 B.3.8: Speeding Up Automatic Attribute Reports

	51.4 Appendix B.4: Sending attribute reports
	51.5 Appendix B.5: Receiving attribute reports
	51.6 Appendix B.6: Querying attribute reporting configuration
	51.7 Appendix B.7: Storing an attribute reporting configuration
	51.7.1 Persisting an attribute reporting configuration
	51.7.2 Formatting an attribute reporting configuration record

	52 Appendix C: Extended attribute discovery
	52.1 Appendix C.1: Compile-time options
	52.2 Appendix C.2: Application coding

	53 Appendix D: Custom endpoints
	53.1 Appendix D.1: Devices and Endpoints
	53.2 Appendix D.2: Cluster Creation Functions
	53.3 Appendix D.3: Custom Endpoint Set-up

	54 Appendix E: Manufacturer-specific attributes and commands
	54.1 Appendix E.1: Adding Manufacturer-specific Attributes
	54.2 Appendix E.2: Adding Manufacturer-specific Commands

	55 Appendix F: OTA extension for dual-processor nodes
	55.1 Appendix F.1: Application Upgrades for Different Target Processors
	55.2 Appendix F.2: Storing Upgrade Images in Co-processor Storage on Server
	55.3 Appendix F.3: Use of Image Indices

	56 Appendix G: Glossary
	57 Revision history
	Legal information
	Contents

