MIMX8ML8#
AIPSTZ: AHB to IP Bridge#
-
void AIPSTZ_SetMasterPriviledgeLevel(AIPSTZ_Type *base, aipstz_master_t master, uint32_t privilegeConfig)
Configure the privilege level for master.
- Parameters:
base – AIPSTZ peripheral base pointer
master – Masters for AIPSTZ.
privilegeConfig – Configuration is ORed from aipstz_master_privilege_level_t.
-
void AIPSTZ_SetPeripheralAccessControl(AIPSTZ_Type *base, aipstz_peripheral_t peripheral, uint32_t accessControl)
Configure the access for peripheral.
- Parameters:
base – AIPSTZ peripheral base pointer
peripheral – Peripheral for AIPSTZ.
accessControl – Configuration is ORed from aipstz_peripheral_access_control_t.
-
FSL_AIPSTZ_DRIVER_VERSION
Version 2.0.1
-
enum _aipstz_master_privilege_level
List of AIPSTZ privilege configuration.
Values:
-
enumerator kAIPSTZ_MasterBufferedWriteEnable
Write accesses from this master are allowed to be buffered.
-
enumerator kAIPSTZ_MasterTrustedForReadEnable
This master is trusted for read accesses.
-
enumerator kAIPSTZ_MasterTrustedForWriteEnable
This master is trusted for write accesses.
-
enumerator kAIPSTZ_MasterForceUserModeEnable
Accesses from this master are forced to user-mode.
-
enumerator kAIPSTZ_MasterBufferedWriteEnable
-
enum _aipstz_master
List of AIPSTZ masters. Organized by width for the 8-15 bits and shift for lower 8 bits.
Values:
-
enumerator kAIPSTZ_Master0
-
enumerator kAIPSTZ_Master1
-
enumerator kAIPSTZ_Master2
-
enumerator kAIPSTZ_Master3
-
enumerator kAIPSTZ_Master5
-
enumerator kAIPSTZ_Master0
-
enum _aipstz_peripheral_access_control
List of AIPSTZ peripheral access control configuration.
Values:
-
enumerator kAIPSTZ_PeripheralAllowUntrustedMaster
-
enumerator kAIPSTZ_PeripheralWriteProtected
-
enumerator kAIPSTZ_PeripheralRequireSupervisor
-
enumerator kAIPSTZ_PeripheralAllowBufferedWrite
-
enumerator kAIPSTZ_PeripheralAllowUntrustedMaster
-
enum _aipstz_peripheral
List of AIPSTZ peripherals. Organized by register offset for higher 32 bits, width for the 8-15 bits and shift for lower 8 bits.
Values:
-
enumerator kAIPSTZ_Peripheral0
-
enumerator kAIPSTZ_Peripheral1
-
enumerator kAIPSTZ_Peripheral2
-
enumerator kAIPSTZ_Peripheral3
-
enumerator kAIPSTZ_Peripheral4
-
enumerator kAIPSTZ_Peripheral5
-
enumerator kAIPSTZ_Peripheral6
-
enumerator kAIPSTZ_Peripheral7
-
enumerator kAIPSTZ_Peripheral8
-
enumerator kAIPSTZ_Peripheral9
-
enumerator kAIPSTZ_Peripheral10
-
enumerator kAIPSTZ_Peripheral11
-
enumerator kAIPSTZ_Peripheral12
-
enumerator kAIPSTZ_Peripheral13
-
enumerator kAIPSTZ_Peripheral14
-
enumerator kAIPSTZ_Peripheral15
-
enumerator kAIPSTZ_Peripheral16
-
enumerator kAIPSTZ_Peripheral17
-
enumerator kAIPSTZ_Peripheral18
-
enumerator kAIPSTZ_Peripheral19
-
enumerator kAIPSTZ_Peripheral20
-
enumerator kAIPSTZ_Peripheral21
-
enumerator kAIPSTZ_Peripheral22
-
enumerator kAIPSTZ_Peripheral23
-
enumerator kAIPSTZ_Peripheral24
-
enumerator kAIPSTZ_Peripheral25
-
enumerator kAIPSTZ_Peripheral26
-
enumerator kAIPSTZ_Peripheral27
-
enumerator kAIPSTZ_Peripheral28
-
enumerator kAIPSTZ_Peripheral29
-
enumerator kAIPSTZ_Peripheral30
-
enumerator kAIPSTZ_Peripheral31
-
enumerator kAIPSTZ_Peripheral32
-
enumerator kAIPSTZ_Peripheral33
-
enumerator kAIPSTZ_Peripheral0
-
typedef enum _aipstz_master_privilege_level aipstz_master_privilege_level_t
List of AIPSTZ privilege configuration.
-
typedef enum _aipstz_master aipstz_master_t
List of AIPSTZ masters. Organized by width for the 8-15 bits and shift for lower 8 bits.
-
typedef enum _aipstz_peripheral_access_control aipstz_peripheral_access_control_t
List of AIPSTZ peripheral access control configuration.
-
typedef enum _aipstz_peripheral aipstz_peripheral_t
List of AIPSTZ peripherals. Organized by register offset for higher 32 bits, width for the 8-15 bits and shift for lower 8 bits.
ASRC: Asynchronous sample rate converter#
ASRC Driver#
-
uint32_t ASRC_GetInstance(ASRC_Type *base)
Get instance number of the ASRC peripheral.
- Parameters:
base – ASRC base pointer.
-
void ASRC_Init(ASRC_Type *base)
brief Initializes the asrc peripheral.
This API gates the asrc clock. The asrc module can’t operate unless ASRC_Init is called to enable the clock.
param base asrc base pointer.
-
void ASRC_Deinit(ASRC_Type *base)
De-initializes the ASRC peripheral.
This API gates the ASRC clock and disable ASRC module. The ASRC module can’t operate unless ASRC_Init
- Parameters:
base – ASRC base pointer.
-
void ASRC_GetContextDefaultConfig(asrc_context_config_t *config, uint32_t channels, uint32_t inSampleRate, uint32_t outSampleRate)
ASRC get context default configuration.
- Parameters:
config – ASRC context configuration pointer.
channels – input audio data channel numbers.
inSampleRate – input sample rate.
outSampleRate – output sample rate.
-
status_t ASRC_SetContextConfig(ASRC_Type *base, asrc_context_t context, asrc_context_config_t *config)
ASRC configure context.
- Parameters:
base – ASRC base pointer.
context – index of asrc context, reference asrc_context_t.
config – ASRC context configuration pointer.
- Return values:
kStatus_InvalidArgument – invalid parameters. kStatus_ASRCConfigureFailed context configure failed. kStatus_Success context configure success.
-
status_t ASRC_SetContextOutputConfig(ASRC_Type *base, asrc_context_t context, asrc_context_output_config_t *config)
ASRC configure context output.
- Parameters:
base – ASRC base pointer.
context – index of asrc context, reference asrc_context_t.
config – ASRC context output configuration pointer.
-
status_t ASRC_SetContextInputConfig(ASRC_Type *base, asrc_context_t context, asrc_context_input_config_t *config)
ASRC configure context input.
- Parameters:
base – ASRC base pointer.
context – index of asrc context, reference asrc_context_t.
config – ASRC context input configuration pointer.
-
static inline void ASRC_EnableContextRun(ASRC_Type *base, asrc_context_t context, bool enable)
ASRC context enable run. All control fileds associated with a context must be stable prior to setting context run enable.
- Parameters:
base – ASRC base pointer.
context – ASRC context index.
enable – true is enable, inform the datapath begin processing sample data for the context. false is disable, data processing will halt immediately.
-
static inline void ASRC_EnableContextRunStop(ASRC_Type *base, asrc_context_t context, bool enable)
ASRC context enable run stop. This function used to flush the ASRC pipeline and completely end processing for a context.
- Parameters:
base – ASRC base pointer.
context – ASRC context index.
enable – true is enable, false is disable.
-
static inline void ASRC_EnableContextInDMA(ASRC_Type *base, asrc_context_t context, bool enable)
ASRC context input DMA request enable.
- Parameters:
base – ASRC base pointer.
context – ASRC context index.
enable – true is enable, false is disable.
-
static inline void ASRC_EnableContextOutDMA(ASRC_Type *base, asrc_context_t context, bool enable)
ASRC context output DMA request enable.
- Parameters:
base – ASRC base pointer.
context – ASRC context index.
enable – true is enable, false is disable.
-
static inline void ASRC_EnablePreFilterBypass(ASRC_Type *base, asrc_context_t context, bool bypass)
ASRC prefilter bypass mode This function enable or disable the ASRC prefilter bypass mode.
- Parameters:
base – ASRC peripheral base address.
context – context processor number.
bypass – true is bypass, false is normal mode.
-
static inline void ASRC_EnableResamplerBypass(ASRC_Type *base, asrc_context_t context, bool bypass)
ASRC resampler bypass mode This function enable or disable the ASRC resampler bypass mode.
- Parameters:
base – ASRC peripheral base address.
context – context processor number.
bypass – true is bypass, false is normal mode.
-
static inline void ASRC_SetContextChannelNumber(ASRC_Type *base, asrc_context_t context, uint32_t channels)
ASRC set context channel number. Note: The maximum channel number in one context can not exceed 32.
- Parameters:
base – ASRC peripheral base address.
context – context number.
channels – channel number, should <= 32.
-
uint32_t ASRC_GetContextOutSampleSize(uint32_t inSampleRate, uint32_t inSamplesSize, uint32_t inWidth, uint32_t outSampleRate, uint32_t outWidth)
ASRC get output sample count.
- Parameters:
inSampleRate – output sample rate.
inSamplesSize – input sample rate.
inWidth – input samples buffer size, the size of buffer should be converted to align with 4 byte .
outSampleRate – input sample width.
outWidth – Output width.
- Return values:
output – samples size.
-
static inline void ASRC_EnableInterrupt(ASRC_Type *base, uint32_t mask)
ASRC interrupt enable This function enable the ASRC interrupt with the provided mask.
- Parameters:
base – ASRC peripheral base address.
mask – The interrupts to enable. Logical OR of _asrc_interrupt_mask.
-
static inline void ASRC_DisableInterrupt(ASRC_Type *base, uint32_t mask)
ASRC interrupt disable This function disable the ASRC interrupt with the provided mask.
- Parameters:
base – ASRC peripheral base address.
mask – The interrupts to disable. Logical OR of _asrc_interrupt_mask.
-
static inline uint32_t ASRC_GetInterruptStatus(ASRC_Type *base)
Gets the ASRC interrupt status flag state.
- Parameters:
base – ASRC base pointer
- Returns:
ASRC Tx status flag value. Use the Status Mask to get the status value needed.
-
static inline void ASRC_ClearInterruptStatus(ASRC_Type *base, uint32_t status)
clear the ASRC interrupt status flag state.
- Parameters:
base – ASRC base pointer
status – status flag to be cleared.
-
static inline uint32_t ASRC_GetFifoStatus(ASRC_Type *base, asrc_context_t context)
Gets the ASRC fifo status flag.
- Parameters:
base – ASRC base pointer
context – context id
-
static inline void ASRC_WriteContextFifo(ASRC_Type *base, asrc_context_t context, uint32_t data)
write the ASRC context fifo.
- Parameters:
base – ASRC base pointer.
context – context id.
data – data to write.
-
static inline uint32_t ASRC_ReadContextFifo(ASRC_Type *base, asrc_context_t context)
read the ASRC context fifo.
- Parameters:
base – ASRC base pointer.
context – context id.
- Return values:
read – data.
-
static inline uint32_t ASRC_GetWriteContextFifoAddr(ASRC_Type *base, asrc_context_t context)
Get ASRC write fifo address.
- Parameters:
base – ASRC base pointer.
context – context id.
- Return values:
write – fifo address.
-
static inline uint32_t ASRC_GetReadContextFifoAddr(ASRC_Type *base, asrc_context_t context)
Get the ASRC read context fifo address.
- Parameters:
base – ASRC base pointer.
context – context id.
- Return values:
read – fifo address.
-
uint32_t ASRC_ReadFIFORemainedSample(ASRC_Type *base, asrc_context_t context, uint32_t *outAddr, uint32_t outWidth, uint32_t sampleCount)
Get the ASRC read fifo remained samples. Since the DMA request will be triggered only when the sample group in read fifo is bigger then the watermark, so when the data size cannot be divisible by the (watermark + 1), then part of sample will left in read fifo, application should call this api to get the left samples.
- Parameters:
base – ASRC base pointer.
context – context id.
outAddr – address to receive remained sample in read fifo.
outWidth – output data width.
sampleCount – specify the read sample count.
- Return values:
sample – counts actual read from output fifo.
-
status_t ASRC_TransferBlocking(ASRC_Type *base, asrc_context_t context, asrc_transfer_t *xfer)
ASRC blocking convert audio sample rate. This function depends on the configuration of input and output, so it should be called after the ASRC_SetContextConfig. The data format it supports: 1.16bit 16bit per sample in input buffer, input buffer size should be calculate as: samples 2U output buffer size can be calculated by call function ASRC_GetContextOutSampleSize, the parameter outWidth should be 2 2.20bit 24bit per sample in input buffer, input buffer size should be calculate as: samples 3U output buffer size can be calculated by call function ASRC_GetContextOutSampleSize, the outWidth should be 3. 3.24bit 24bit per sample in input buffer, input buffer size should be calculate as: samples * 3U output buffer size can be calculated by call function ASRC_GetContextOutSampleSize, the outWidth should be 3. 4.32bit 32bit per sample in input buffer, input buffer size should be calculate as: samples * 4U output buffer size can be calculated by call function ASRC_GetContextOutSampleSize, the outWidth should be 4.
- Parameters:
base – ASRC base pointer.
context – context id.
xfer – .xfer configuration.
- Return values:
kStatus_Success. –
-
FSL_ASRC_DRIVER_VERSION
Version 2.0.7
ASRC return status, _asrc_status.
Values:
-
enumerator kStatus_ASRCIdle
ASRC is idle.
-
enumerator kStatus_ASRCBusy
ASRC is busy.
-
enumerator kStatus_ASRCInvalidArgument
ASRC invalid argument.
-
enumerator kStatus_ASRCConfigureFailed
ASRC configure failed
-
enumerator kStatus_ASRCConvertError
ASRC convert error failed
-
enumerator kStatus_ASRCNotSupport
ASRC not support
-
enumerator kStatus_ASRCQueueFull
ASRC queue full
-
enumerator kStatus_ASRCQueueIdle
ASRC quue idle
-
enumerator kStatus_ASRCLoadFirmwareFailed
ASRC load firmware failed
-
enumerator kStatus_ASRCResamplerConfigureFailed
ASRC resampler configured failed
-
enumerator kStatus_ASRCPrefilterConfigureFailed
ASRC prefilter configured failed
-
enumerator kStatus_ASRCIdle
-
enum _asrc_context
asrc context id
Values:
-
enumerator kASRC_Context0
Context 0 value
-
enumerator kASRC_Context1
Context 1 value
-
enumerator kASRC_Context2
Context 2 value
-
enumerator kASRC_Context3
Context 3 value
-
enumerator kASRC_Context0
The ASRC interrupt enable flag, _asrc_interrupt_mask.
Values:
-
enumerator kASRC_Context0InputFifoOverflow
context 0 input fifo overflow
-
enumerator kASRC_Context1InputFifoOverflow
context 1 input fifo overflow
-
enumerator kASRC_Context2InputFifoOverflow
context 2 input fifo overflow
-
enumerator kASRC_Context3InputFifoOverflow
context 3 input fifo overflow
-
enumerator kASRC_Context0OutFifoReadEmpty
context 0 out fifo read empty
-
enumerator kASRC_Context1OutFifoReadEmpty
context 1 out fifo read empty
-
enumerator kASRC_Context2OutFifoReadEmpty
context 2 out fifo read empty
-
enumerator kASRC_Context3OutFifoReadEmpty
context 3 out fifo read empty
-
enumerator kASRC_Context0RunStopDone
context 0 run stop done interrupt
-
enumerator kASRC_Context1RunStopDone
context 1 run stop done interrupt
-
enumerator kASRC_Context2RunStopDone
context 2 run stop done interrupt
-
enumerator kASRC_Context3RunStopDone
context 3 run stop done interrupt
-
enumerator kASRC_ContextAllInterruptStatus
all the context interrupt status
-
enumerator kASRC_Context0InputFifoOverflow
ASRC fifo status, _asrc_fifo_status.
Values:
-
enumerator kASRC_FifoStatusInputFifoWatermarkFlag
input water mark flag raised
-
enumerator kASRC_FifoStatusOutputFifoWatermarkFlag
output water mark flag raised
-
enumerator kASRC_FifoStatusInputFifoWatermarkFlag
-
enum _asrc_data_endianness
arsc data endianness
Values:
-
enumerator kASRC_DataEndianLittle
context data little endian
-
enumerator kASRC_DataEndianBig
context data big endian
-
enumerator kASRC_DataEndianLittle
-
enum _asrc_data_width
data width
Values:
-
enumerator kASRC_DataWidth32Bit
data width 32bit
-
enumerator kASRC_DataWidth24Bit
data width 24bit
-
enumerator kASRC_DataWidth20Bit
data width 20bit
-
enumerator kASRC_DataWidth16Bit
data width 16bit
-
enumerator kASRC_DataWidth32Bit
-
enum _asrc_data_type
data type
Values:
-
enumerator kASRC_DataTypeInteger
data type int
-
enumerator kASRC_DataTypeFloat
data type float, single precision floating point format
-
enumerator kASRC_DataTypeInteger
-
enum _asrc_data_sign
sign extension
Values:
-
enumerator kASRC_DataSigned
input data is signed
-
enumerator kASRC_DataUnsigned
input data is unsinged
-
enumerator kASRC_DataSigned
-
enum _asrc_sampleBuffer_init_mode
asrc prefilter and resampler sample buffer init mode
Values:
-
enumerator kASRC_SampleBufferNoPreFillOnInit
do not pre-fill
-
enumerator kASRC_SampleBufferFillFirstSampleOnInit
replicate the first sample to fill the right half of the sample buffer
-
enumerator kASRC_SampleBufferFillZeroOnInit
zero fill the right half og the sample buffer
-
enumerator kASRC_SampleBufferNoPreFillOnInit
-
enum _asrc_sampleBuffer_stop_mode
asrc prefilter and resampler sample buffer stop mode
Values:
-
enumerator kASRC_SampleBufferFillLastSampleOnStop
replicate the last sample to fill the left half of the sample buffer
-
enumerator kASRC_SampleBufferFillZeroOnStop
zero fill the left half of the sample buffer
-
enumerator kASRC_SampleBufferFillLastSampleOnStop
-
enum _asrc_prefilter_stage1_result
ASRC prefilter stage1 result format.
Values:
-
enumerator kASRC_PrefilterStage1ResultInt
prefilter stage1 results are stored in 32 bit int format
-
enumerator kASRC_PrefilterStage1ResultFloat
prefilter stage1 results are stored in 32 bit float format
-
enumerator kASRC_PrefilterStage1ResultInt
-
enum _asrc_resampler_taps
ASRC resampler taps.
Values:
-
enumerator kASRC_ResamplerTaps_32
resampler taps 32
-
enumerator kASRC_ResamplerTaps_64
resampler taps 64
-
enumerator kASRC_ResamplerTaps_128
resampler taps 128
-
enumerator kASRC_ResamplerTaps_32
ASRC support sample rate, _asrc_sample_rate.
Values:
-
enumerator kASRC_SampleRate_8000
8K sample rate
-
enumerator kASRC_SampleRate_11025
11025 sample rate
-
enumerator kASRC_SampleRate_12000
12K sample rate
-
enumerator kASRC_SampleRate_16000
16K sample rate
-
enumerator kASRC_SampleRate_22050
22.05K sample rate
-
enumerator kASRC_SampleRate_24000
24K sample rate
-
enumerator kASRC_SampleRate_32000
32K sample rate
-
enumerator kASRC_SampleRate_44100
44.1K sample rate
-
enumerator kASRC_SampleRate_48000
48K sample rate
-
enumerator kASRC_SampleRate_64000
64K sample rate
-
enumerator kASRC_SampleRate_88200
88.2K sample rate
-
enumerator kASRC_SampleRate_96000
96K sample rate
-
enumerator kASRC_SampleRate_128000
128K sample rate
-
enumerator kASRC_SampleRate_176400
176K sample rate
-
enumerator kASRC_SampleRate_192000
256K sample rate
-
enumerator kASRC_SampleRate_256000
256K sample rate
-
enumerator kASRC_SampleRate_352800
352.8K sample rate
-
enumerator kASRC_SampleRate_384000
384K sample rate
-
enumerator kASRC_SampleRate_768000
768K sample rate
-
enumerator kASRC_SampleRate_8000
-
typedef enum _asrc_context asrc_context_t
asrc context id
-
typedef enum _asrc_data_endianness asrc_data_endianness_t
arsc data endianness
-
typedef enum _asrc_data_width asrc_data_width_t
data width
-
typedef enum _asrc_data_type asrc_data_type_t
data type
-
typedef enum _asrc_data_sign asrc_data_sign_t
sign extension
-
typedef enum _asrc_sampleBuffer_init_mode asrc_sampleBuffer_init_mode_t
asrc prefilter and resampler sample buffer init mode
-
typedef enum _asrc_sampleBuffer_stop_mode asrc_sampleBuffer_stop_mode_t
asrc prefilter and resampler sample buffer stop mode
-
typedef enum _asrc_prefilter_stage1_result asrc_prefilter_stage1_result_t
ASRC prefilter stage1 result format.
-
typedef enum _asrc_resampler_taps asrc_resampler_taps_t
ASRC resampler taps.
-
typedef struct _asrc_data_format asrc_data_format_t
asrc context data format
-
typedef struct _asrc_access_ctrl asrc_access_ctrl_t
asrc context access control The ASRC provides interleaving support in hardware to ensure that a variety of sample source can be internally combined tp confir with this format. The interleave patter is controlled using 3 register fields: GROUP_LENGTH, ACCESS_LENGTH, ITERATIONIS. This is intended to support hardware configurations which distribute a single context across samples from multiple audio sources. Take a example as below: accessGroupLen = 6, the sample group length is 6 samples accessIterations = 2, the 2 sequential ACCESS_LENGTH read from single source accessLen = 2, the 2 samples fetch from one source.
-
typedef struct _asrc_context_input_config asrc_context_input_config_t
asrc context input configuration
-
typedef struct _asrc_context_output_config asrc_context_output_config_t
asrc context output configuration
-
typedef struct _asrc_context_prefilter_config asrc_context_prefilter_config_t
asrc context prefilter configuration
-
typedef struct _asrc_context_resampler_config asrc_context_resampler_config_t
asrc context resampler configuration
-
typedef struct _asrc_context_config asrc_context_config_t
asrc context configuration
-
typedef struct _asrc_transfer asrc_transfer_t
ASRC transfer.
-
FSL_ASRC_INPUT_FIFO_DEPTH
ASRC fifo depth.
-
FSL_ASRC_OUTPUT_FIFO_DEPTH
-
ASRC_SUPPORT_MAXIMUM_CONTEXT_PROCESSOR_NUMBER
ASRC support maximum channel number of context.
-
struct _asrc_data_format
- #include <fsl_asrc.h>
asrc context data format
Public Members
-
uint8_t dataPosition
context input data sample position
-
asrc_data_endianness_t dataEndianness
context input data endianness
-
asrc_data_width_t dataWidth
context input data width
-
asrc_data_type_t dataType
context input data type
-
asrc_data_sign_t dataSign
context input data signed or unsigned
-
uint8_t dataPosition
-
struct _asrc_access_ctrl
- #include <fsl_asrc.h>
asrc context access control The ASRC provides interleaving support in hardware to ensure that a variety of sample source can be internally combined tp confir with this format. The interleave patter is controlled using 3 register fields: GROUP_LENGTH, ACCESS_LENGTH, ITERATIONIS. This is intended to support hardware configurations which distribute a single context across samples from multiple audio sources. Take a example as below: accessGroupLen = 6, the sample group length is 6 samples accessIterations = 2, the 2 sequential ACCESS_LENGTH read from single source accessLen = 2, the 2 samples fetch from one source.
Public Members
-
uint8_t accessIterations
number of sequential fetches per source
-
uint8_t accessGroupLen
number of channels in a context
-
uint8_t accessLen
number of channels per source1
-
uint8_t accessIterations
-
struct _asrc_context_input_config
- #include <fsl_asrc.h>
asrc context input configuration
Public Members
-
uint32_t sampleRate
input audio data sample rate
-
uint8_t watermark
input water mark per samples
-
asrc_access_ctrl_t accessCtrl
input access control
-
asrc_data_format_t dataFormat
input data format
-
uint32_t sampleRate
-
struct _asrc_context_output_config
- #include <fsl_asrc.h>
asrc context output configuration
Public Members
-
uint32_t sampleRate
output audio data sample rate
-
uint8_t watermark
output water mark per samples
-
asrc_access_ctrl_t accessCtrl
output access control
-
asrc_data_format_t dataFormat
output data format
-
bool enableDither
output path contains a TPDF dither function. The dither function support all fixed output modes(16, 20, 24, 32bits) dither is not supported in 32bit floating point output mode
-
bool enableIEC60958
output IEC60958 bit field insertion enable
-
uint32_t sampleRate
-
struct _asrc_context_prefilter_config
- #include <fsl_asrc.h>
asrc context prefilter configuration
Public Members
-
asrc_sampleBuffer_init_mode_t initMode
prefilter initial mode
-
asrc_sampleBuffer_stop_mode_t stopMode
prefilter stop mode
-
asrc_prefilter_stage1_result_t stage1Result
stage1 data store format
-
uint32_t filterSt1Taps
prefilter stage1 taps
-
uint32_t filterSt2Taps
prefilter stage2 taps
-
uint32_t filterSt1Exp
prefilter stage1 expansion factor
-
const uint32_t *filterCoeffAddress
prefilter coeff address
-
asrc_sampleBuffer_init_mode_t initMode
-
struct _asrc_context_resampler_config
- #include <fsl_asrc.h>
asrc context resampler configuration
Public Members
-
asrc_sampleBuffer_init_mode_t initMode
initial mode
-
asrc_sampleBuffer_stop_mode_t stopMode
resampler stop mode
-
asrc_resampler_taps_t tap
resampleer taps
-
uint32_t filterPhases
interpolation phases
-
uint64_t filterCenterTap
interpolation center tap
-
const uint32_t *filterCoeffAddress
interpolation coeff address
-
asrc_sampleBuffer_init_mode_t initMode
-
struct _asrc_context_config
- #include <fsl_asrc.h>
asrc context configuration
Public Members
-
uint8_t contextChannelNums
context channel numbers
-
asrc_context_input_config_t contextInput
context input configuration
-
asrc_context_output_config_t contextOutput
context output configuration
-
asrc_context_prefilter_config_t contextPrefilter
context pre filter configuration
-
asrc_context_resampler_config_t contextResampler
context resampler configuration
-
uint8_t contextChannelNums
-
struct _asrc_transfer
- #include <fsl_asrc.h>
ASRC transfer.
Public Members
-
uint32_t *inDataAddr
address of audio data to be converted
-
uint32_t inDataSize
size of the audio data
-
uint32_t *outDataAddr
address of audio data that is been converted
-
uint32_t outDataSize
size of the audio data
-
uint32_t *inDataAddr
ASRC SDMA Driver#
-
void ASRC_TransferInCreateHandleSDMA(ASRC_Type *base, asrc_sdma_handle_t *handle, asrc_sdma_callback_t callback, sdma_handle_t *dmaHandle, uint32_t eventSource, asrc_context_t context, const asrc_p2p_sdma_config_t *periphConfig, void *userData)
Initializes the ASRC input SDMA handle.
This function initializes the ASRC input DMA handle, which can be used for other ASRC transactional APIs. Usually, for a specified ASRC context, call this API once to get the initialized handle.
- Parameters:
base – ASRC base pointer.
handle – ASRC SDMA handle pointer.
base – ASRC peripheral base address.
callback – Pointer to user callback function.
dmaHandle – SDMA handle pointer, this handle shall be static allocated by users.
eventSource – ASRC input sdma event source.
context – ASRC context number.
periphConfig – peripheral configurations, used for case.
userData – User parameter passed to the callback function.
-
void ASRC_TransferOutCreateHandleSDMA(ASRC_Type *base, asrc_sdma_handle_t *handle, asrc_sdma_callback_t callback, sdma_handle_t *dmaHandle, uint32_t eventSource, asrc_context_t context, const asrc_p2p_sdma_config_t *periphConfig, void *userData)
Initializes the ASRC output SDMA handle.
This function initializes the ASRC out DMA handle, which can be used for other ASRC transactional APIs. Usually, for a specified ASRC context, call this API once to get the initialized handle.
- Parameters:
base – ASRC base pointer.
handle – ASRC SDMA handle pointer.
callback – ASRC outcallback.
dmaHandle – SDMA handle pointer, this handle shall be static allocated by users.
eventSource – ASRC output event source.
context – ASRC context number.
periphConfig – peripheral configurations, used for case.
userData – User parameter passed to the callback function.
-
status_t ASRC_TransferSetContextConfigSDMA(ASRC_Type *base, asrc_sdma_handle_t *handle, asrc_context_config_t *asrcConfig)
Configures the ASRC context.
- Parameters:
base – ASRC base pointer.
handle – ASRC SDMA handle pointer.
asrcConfig – asrc context configurations.
-
status_t ASRC_TransferSDMA(ASRC_Type *base, asrc_sdma_handle_t *handle, asrc_transfer_t *xfer)
Performs a non-blocking ASRC transfer using DMA.
- Parameters:
base – ASRC base pointer.
handle – ASRC SDMA handle pointer.
xfer – ASRC xfer configurations pointer.
- Return values:
kStatus_Success – Start a ASRC SDMA send successfully.
kStatus_InvalidArgument – The input argument is invalid.
kStatus_TxBusy – ASRC is busy sending data.
-
void ASRC_TransferAbortInSDMA(ASRC_Type *base, asrc_sdma_handle_t *handle)
Aborts a ASRC in transfer using SDMA.
- Parameters:
base – ASRC base pointer.
handle – ASRC SDMA handle pointer.
-
void ASRC_TransferAbortOutSDMA(ASRC_Type *base, asrc_sdma_handle_t *handle)
brief Aborts a ASRC out transfer using SDMA.
param base ASRC base pointer. param handle ASRC SDMA handle pointer.
-
FSL_ASRC_SDMA_DRIVER_VERSION
Version 2.0.4
-
typedef struct _asrc_sdma_handle asrc_sdma_handle_t
ASRC sdma handle prototype.
-
typedef void (*asrc_sdma_callback_t)(ASRC_Type *base, asrc_sdma_handle_t *handle, status_t status, void *userData)
ASRC SDMA transfer callback function for finish and error.
-
typedef void (*asrc_start_peripheral_t)(bool start)
ASRC trigger peripheral function pointer.
-
typedef struct _asrc_p2p_sdma_config asrc_p2p_sdma_config_t
destination peripheral configuration
-
typedef struct _asrc_sdma_in_handle asrc_sdma_in_handle_t
ASRC sdma in handle.
-
typedef struct _asrc_sdma_out_handle asrc_sdma_out_handle_t
ASRC sdma out handle.
-
ASRC_XFER_IN_QUEUE_SIZE
ASRC xfer queue size.
-
ASRC_XFER_OUT_QUEUE_SIZE
-
struct _asrc_p2p_sdma_config
- #include <fsl_asrc_sdma.h>
destination peripheral configuration
Public Members
-
uint32_t eventSource
peripheral event source
-
uint8_t watermark
peripheral watermark
-
uint8_t channel
peripheral channel number
-
uint8_t fifoWidth
peripheral fifo width
-
bool enableContinuous
true is the amount of samples to be transferred is unknown and script will keep on transferring as long as both events are detected and script must be stopped by application, false is The amount of samples to be transferred is equal to the count field of mode word
-
asrc_start_peripheral_t startPeripheral
trigger peripheral start
-
uint32_t eventSource
-
struct _asrc_sdma_in_handle
- #include <fsl_asrc_sdma.h>
ASRC sdma in handle.
Public Members
-
sdma_handle_t *sdmaHandle
DMA handler for ASRC
-
uint32_t eventSource
ASRC event source number
-
asrc_sdma_callback_t callback
Callback for users while transfer finish or error occurs
-
void *userData
User callback parameter
-
sdma_buffer_descriptor_t bdPool[4U]
BD pool for SDMA transfer.
-
uint8_t asrcInWatermark
The transfer data count in a DMA request
-
uint8_t bytesPerSample
Bytes in a sample
-
uint32_t *asrcQueue[4U]
Transfer queue storing queued transfer.
-
size_t sdmaTransferSize[4U]
Data bytes need to transfer
-
volatile uint8_t queueUser
Index for user to queue transfer.
-
volatile uint8_t queueDriver
Index for driver to get the transfer data and size
-
const asrc_p2p_sdma_config_t *peripheralConfig
peripheral configuration
-
uint32_t state
Internal state for ASRC SDMA transfer
-
sdma_handle_t *sdmaHandle
-
struct _asrc_sdma_out_handle
- #include <fsl_asrc_sdma.h>
ASRC sdma out handle.
Public Members
-
sdma_handle_t *sdmaHandle
DMA handler for ASRC
-
void *userData
User callback parameter
-
uint32_t state
Internal state for ASRC SDMA transfer
-
uint8_t bytesPerSample
Bytes in a sample
-
uint32_t eventSource
ASRC event source number
-
asrc_sdma_callback_t callback
Callback for users while transfer finish or error occurs
-
uint8_t asrcOutWatermark
The transfer data count in a DMA request
-
sdma_buffer_descriptor_t bdPool[(4U * 2U)]
BD pool for SDMA transfer.
-
uint32_t *asrcQueue[(4U * 2U)]
Transfer queue storing queued transfer.
-
size_t sdmaTransferSize[(4U * 2U)]
Data bytes need to transfer
-
volatile uint8_t queueUser
Index for user to queue transfer.
-
volatile uint8_t queueDriver
Index for driver to get the transfer data and size
-
const asrc_p2p_sdma_config_t *peripheralConfig
peripheral configuration
-
uint32_t nonAlignSize
non align size
-
void *nonAlignAddr
non align address
-
sdma_handle_t *sdmaHandle
-
struct _asrc_sdma_handle
- #include <fsl_asrc_sdma.h>
ASRC DMA transfer handle, users should not touch the content of the handle.
Public Members
-
asrc_sdma_in_handle_t inDMAHandle
input dma handle
-
asrc_sdma_out_handle_t outDMAHandle
output dma handle
-
asrc_context_t context
ASRC context number
-
uint8_t dataChannels
ASRC process data channel number
-
asrc_sdma_in_handle_t inDMAHandle
Audiomix#
-
enum _audiomix_attch_clk
audio mix attch clk id
Values:
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI1_ROOT
attach SAI1 MCLK2 to SAI1 root
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI2_ROOT
attach SAI1 MCLK2 to SAI2 root
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI3_ROOT
attach SAI1 MCLK2 to SAI3 root
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI5_ROOT
attach SAI1 MCLK2 to SAI5 root
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI6_ROOT
attach SAI1 MCLK2 to SAI6 root
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI7_ROOT
attach SAI1 MCLK2 to SAI7 root
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI1_MCLK
attach SAI1 MCLK2 to SAI1 MCLK
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI2_MCLK
attach SAI1 MCLK2 to SAI2 MCLK
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI3_MCLK
attach SAI1 MCLK2 to SAI3 MCLK
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI5_MCLK
attach SAI1 MCLK2 to SAI5 MCLK
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI6_MCLK
attach SAI1 MCLK2 to SAI6 MCLK
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI7_MCLK
attach SAI1 MCLK2 to SAI7 MCLK
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK1_To_SAI1_ROOT
attach SAI1 MCLK1 to SAI1 root
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK1_To_SAI1_MCLK
attach SAI1 MCLK1 to SAI1 MCLK
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI1_ROOT
attach SAI2 MCLK2 to SAI1 root
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI2_ROOT
attach SAI2 MCLK2 to SAI2 root
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI3_ROOT
attach SAI2 MCLK2 to SAI3 root
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI5_ROOT
attach SAI2 MCLK2 to SAI5 root
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI6_ROOT
attach SAI2 MCLK2 to SAI6 root
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI7_ROOT
attach SAI2 MCLK2 to SAI7 root
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI1_MCLK
attach SAI2 MCLK2 to SAI1 MCLK
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI2_MCLK
attach SAI2 MCLK2 to SAI2 MCLK
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI3_MCLK
attach SAI2 MCLK2 to SAI3 MCLK
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI5_MCLK
attach SAI2 MCLK2 to SAI5 MCLK
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI6_MCLK
attach SAI2 MCLK2 to SAI6 MCLK
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SAI7_MCLK
attach SAI2 MCLK2 to SAI7 MCLK
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK2_To_SPDIF_ExtCLK
attach SAI2 MCLK2 to SPDIF EXTCLK
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK1_To_SAI2_ROOT
attach SAI2 MCLK1 to SAI2 root
-
enumerator kAUDIOMIX_Attach_SAI2_MCLK1_To_SAI2_MCLK
attach SAI2 MCLK1 to SAI2 MCLK
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI1_ROOT
attach SAI3 MCLK2 to SAI1 root
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI2_ROOT
attach SAI3 MCLK2 to SAI2 root
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI3_ROOT
attach SAI3 MCLK2 to SAI3 root
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI5_ROOT
attach SAI3 MCLK2 to SAI5 root
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI6_ROOT
attach SAI3 MCLK2 to SAI6 root
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI7_ROOT
attach SAI3 MCLK2 to SAI7 root
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI1_MCLK
attach SAI3 MCLK2 to SAI1 MCLK
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI2_MCLK
attach SAI3 MCLK2 to SAI2 MCLK
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI3_MCLK
attach SAI3 MCLK2 to SAI3 MCLK
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI5_MCLK
attach SAI3 MCLK2 to SAI5 MCLK
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI6_MCLK
attach SAI3 MCLK2 to SAI6 MCLK
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SAI7_MCLK
attach SAI3 MCLK2 to SAI7 MCLK
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK2_To_SPDIF_ExtCLK
attach SAI3 MCLK2 to SPDIF EXTCLK
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK1_To_SAI3_ROOT
attach SAI3 MCLK1 to SAI3 root
-
enumerator kAUDIOMIX_Attach_SAI3_MCLK1_To_SAI3_MCLK
attach SAI3 MCLK1 to SAI3 MCLK
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI1_ROOT
attach SAI5 MCLK2 to SAI1 root
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI2_ROOT
attach SAI5 MCLK2 to SAI2 root
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI3_ROOT
attach SAI5 MCLK2 to SAI3 root
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI5_ROOT
attach SAI5 MCLK2 to SAI5 root
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI6_ROOT
attach SAI5 MCLK2 to SAI6 root
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI7_ROOT
attach SAI5 MCLK2 to SAI7 root
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI1_MCLK
attach SAI5 MCLK2 to SAI1 MCLK
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI2_MCLK
attach SAI5 MCLK2 to SAI2 MCLK
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI3_MCLK
attach SAI5 MCLK2 to SAI3 MCLK
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI5_MCLK
attach SAI5 MCLK2 to SAI5 MCLK
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI6_MCLK
attach SAI5 MCLK2 to SAI6 MCLK
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SAI7_MCLK
attach SAI5 MCLK2 to SAI7 MCLK
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK2_To_SPDIF_ExtCLK
attach SAI5 MCLK2 to SPDIF EXTCLK
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK1_To_SAI5_ROOT
attach SAI5 MCLK1 to SAI5 root
-
enumerator kAUDIOMIX_Attach_SAI5_MCLK1_To_SAI5_MCLK
attach SAI5 MCLK1 to SAI5 MCLK
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI1_ROOT
attach SAI6 MCLK2 to SAI1 root
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI2_ROOT
attach SAI6 MCLK2 to SAI2 root
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI3_ROOT
attach SAI6 MCLK2 to SAI3 root
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI5_ROOT
attach SAI6 MCLK2 to SAI5 root
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI6_ROOT
attach SAI6 MCLK2 to SAI6 root
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI7_ROOT
attach SAI6 MCLK2 to SAI7 root
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI1_MCLK
attach SAI6 MCLK2 to SAI1 MCLK
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI2_MCLK
attach SAI6 MCLK2 to SAI2 MCLK
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI3_MCLK
attach SAI6 MCLK2 to SAI3 MCLK
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI5_MCLK
attach SAI6 MCLK2 to SAI5 MCLK
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI6_MCLK
attach SAI6 MCLK2 to SAI6 MCLK
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SAI7_MCLK
attach SAI6 MCLK2 to SAI7 MCLK
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK2_To_SPDIF_ExtCLK
attach SAI6 MCLK2 to SPDIF EXTCLK
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK1_To_SAI6_ROOT
attach SAI6 MCLK2 to SAI6 root
-
enumerator kAUDIOMIX_Attach_SAI6_MCLK1_To_SAI6_MCLK
attach SAI6 MCLK2 to SAI6 MCLK
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI1_ROOT
attach SAI7 MCLK2 to SAI1 root
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI2_ROOT
attach SAI7 MCLK2 to SAI2 root
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI3_ROOT
attach SAI7 MCLK2 to SAI3 root
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI5_ROOT
attach SAI7 MCLK2 to SAI5 root
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI6_ROOT
attach SAI7 MCLK2 to SAI6 root
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI7_ROOT
attach SAI7 MCLK2 to SAI7 root
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI1_MCLK
attach SAI7 MCLK2 to SAI1 MCLK
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI2_MCLK
attach SAI7 MCLK2 to SAI2 MCLK
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI3_MCLK
attach SAI7 MCLK2 to SAI3 MCLK
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI5_MCLK
attach SAI7 MCLK2 to SAI5 MCLK
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI6_MCLK
attach SAI7 MCLK2 to SAI6 MCLK
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SAI7_MCLK
attach SAI7 MCLK2 to SAI7 MCLK
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK2_To_SPDIF_ExtCLK
attach SAI7 MCLK2 to SPDIF_ExtCLK
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK1_To_SAI7_ROOT
attach SAI7 MCLK1 to SAI7 root
-
enumerator kAUDIOMIX_Attach_SAI7_MCLK1_To_SAI7_MCLK
attach SAI7 MCLK1 to SAI7 MCLK
-
enumerator kAUDIOMIX_Attach_PDM_Root_to_CCM_PDM
attach PDM ROOT to CCM PDM clock
-
enumerator kAUDIOMIX_Attach_PDM_Root_to_SAI_PLL_DVI2
attach PDM ROOT to sai pll div2
-
enumerator kAUDIOMIX_Attach_PDM_Root_to_SAI1_MCLK
attach PDM ROOT to SAI1 mclk
-
enumerator kAUDIOMIX_Attach_SAI1_MCLK2_To_SAI1_ROOT
-
enum _audiomix_power_ctrl
audio mix power control
Values:
-
enumerator kAUDIOMIX_PowerCtrlEDMA
edma power control
-
enumerator kAUDIOMIX_PowerCtrlSDMA2
SDMA2 power control
-
enumerator kAUDIOMIX_PowerCtrlSDMA3
SDMA3 power control
-
enumerator kAUDIOMIX_PowerCtrlPDM
PDM power control
-
enumerator kAUDIOMIX_PowerCtrlSAI1
SAI1 power control
-
enumerator kAUDIOMIX_PowerCtrlSAI2
SAI2 power control
-
enumerator kAUDIOMIX_PowerCtrlSAI3
SAI3 power control
-
enumerator kAUDIOMIX_PowerCtrlSAI5
SAI5 power control
-
enumerator kAUDIOMIX_PowerCtrlSAI6
SAI6 power control
-
enumerator kAUDIOMIX_PowerCtrlSAI7
SAI7 power control
-
enumerator kAUDIOMIX_PowerCtrlEDMA
-
typedef enum _audiomix_attch_clk audiomix_attch_clk_t
audio mix attch clk id
-
FSL_AUDIOMIX_DRIVER_VERSION
AUDIOMIX driver version 2.0.1.
-
AUDIOMIX_ATTACH_ID(offset, mask, value)
AUDIOMIX attach id combination.
-
GET_AUDIOMIX_ATTACH_ID_OFFSET(id)
-
GET_AUDIOMIX_ATTACH_ID_MASK(id)
-
GET_AUDIOMIX_ATTACH_ID_value(id)
-
void AUDIOMIX_AttachClk(AUDIOMIX_Type *base, audiomix_attch_clk_t id)
audiomix attach clock.
- Parameters:
base – audiomix base address.
id – attach clock id.
-
static inline uint32_t AUDIOMIX_GetIPStopAck(AUDIOMIX_Type *base, uint32_t ip)
audiomix low power ack bit status.
- Parameters:
base – audiomix base address.
ip – reference _audiomix_power_ctrl, can be a value or combine value in _audiomix_power_ctrl
-
static inline void AUDIOMIX_SetIPStop(AUDIOMIX_Type *base, uint32_t ip)
audiomix low power stop mode
- Parameters:
base – audiomix base address.
ip – reference _audiomix_power_ctrl, can be a value or combine value in _audiomix_power_ctrl
-
static inline void AUDIOMIX_SetEARCReset(AUDIOMIX_Type *base, bool enable)
audiomix earc reset
- Parameters:
base – audiomix base address.
enable – true is reset, flase is release.
-
static inline void AUDIOMIX_SetEARCPhyReset(AUDIOMIX_Type *base, bool enable)
audiomix earc PHY reset
- Parameters:
base – audiomix base address.
enable – true is reset, flase is release.
-
void AUDIOMIX_InitAudioPll(AUDIOMIX_Type *base, const ccm_analog_frac_pll_config_t *config)
Initializes the SAI PLL. note This function can’t detect whether the AUDIO PLL has been enabled and used by some IPs.
- Parameters:
base – audiomix base address.
config – Pointer to the configuration structure(see ref ccm_analog_frac_pll_config_t enumeration).
-
void AUDIOMIX_DeinitAudioPll1(AUDIOMIX_Type *base)
brief De-initialize the SAI PLL.
-
uint32_t AUDIOMIX_GetAudioPllFreq(AUDIOMIX_Type *base)
Get the sai PLL output freq.
- Return values:
sai – pll output freq.
CACHE: ARMV7-M7 CACHE Memory Controller#
-
static inline void L1CACHE_EnableICache(void)
Enables cortex-m7 L1 instruction cache.
-
static inline void L1CACHE_DisableICache(void)
Disables cortex-m7 L1 instruction cache.
-
static inline void L1CACHE_InvalidateICache(void)
Invalidate cortex-m7 L1 instruction cache.
-
void L1CACHE_InvalidateICacheByRange(uint32_t address, uint32_t size_byte)
Invalidate cortex-m7 L1 instruction cache by range.
Note
The start address and size_byte should be 32-byte(FSL_FEATURE_L1ICACHE_LINESIZE_BYTE) aligned. The startAddr here will be forced to align to L1 I-cache line size if startAddr is not aligned. For the size_byte, application should make sure the alignment or make sure the right operation order if the size_byte is not aligned.
- Parameters:
address – The start address of the memory to be invalidated.
size_byte – The memory size.
-
static inline void L1CACHE_EnableDCache(void)
Enables cortex-m7 L1 data cache.
-
static inline void L1CACHE_DisableDCache(void)
Disables cortex-m7 L1 data cache.
-
static inline void L1CACHE_InvalidateDCache(void)
Invalidates cortex-m7 L1 data cache.
-
static inline void L1CACHE_CleanDCache(void)
Cleans cortex-m7 L1 data cache.
-
static inline void L1CACHE_CleanInvalidateDCache(void)
Cleans and Invalidates cortex-m7 L1 data cache.
-
static inline void L1CACHE_InvalidateDCacheByRange(uint32_t address, uint32_t size_byte)
Invalidates cortex-m7 L1 data cache by range.
Note
The start address and size_byte should be 32-byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned. The startAddr here will be forced to align to L1 D-cache line size if startAddr is not aligned. For the size_byte, application should make sure the alignment or make sure the right operation order if the size_byte is not aligned.
- Parameters:
address – The start address of the memory to be invalidated.
size_byte – The memory size.
-
static inline void L1CACHE_CleanDCacheByRange(uint32_t address, uint32_t size_byte)
Cleans cortex-m7 L1 data cache by range.
Note
The start address and size_byte should be 32-byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned. The startAddr here will be forced to align to L1 D-cache line size if startAddr is not aligned. For the size_byte, application should make sure the alignment or make sure the right operation order if the size_byte is not aligned.
- Parameters:
address – The start address of the memory to be cleaned.
size_byte – The memory size.
-
static inline void L1CACHE_CleanInvalidateDCacheByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates cortex-m7 L1 data cache by range.
Note
The start address and size_byte should be 32-byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned. The startAddr here will be forced to align to L1 D-cache line size if startAddr is not aligned. For the size_byte, application should make sure the alignment or make sure the right operation order if the size_byte is not aligned.
- Parameters:
address – The start address of the memory to be clean and invalidated.
size_byte – The memory size.
-
void ICACHE_InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates all instruction caches by range.
Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.
Note
address and size should be aligned to cache line size 32-Byte due to the cache operation unit is one cache line. The startAddr here will be forced to align to the cache line size if startAddr is not aligned. For the size_byte, application should make sure the alignment or make sure the right operation order if the size_byte is not aligned.
- Parameters:
address – The physical address.
size_byte – size of the memory to be invalidated.
-
void DCACHE_InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates all data caches by range.
Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.
Note
address and size should be aligned to cache line size 32-Byte due to the cache operation unit is one cache line. The startAddr here will be forced to align to the cache line size if startAddr is not aligned. For the size_byte, application should make sure the alignment or make sure the right operation order if the size_byte is not aligned.
- Parameters:
address – The physical address.
size_byte – size of the memory to be invalidated.
-
void DCACHE_CleanByRange(uint32_t address, uint32_t size_byte)
Cleans all data caches by range.
Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.
Note
address and size should be aligned to cache line size 32-Byte due to the cache operation unit is one cache line. The startAddr here will be forced to align to the cache line size if startAddr is not aligned. For the size_byte, application should make sure the alignment or make sure the right operation order if the size_byte is not aligned.
- Parameters:
address – The physical address.
size_byte – size of the memory to be cleaned.
-
void DCACHE_CleanInvalidateByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates all data caches by range.
Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.
Note
address and size should be aligned to cache line size 32-Byte due to the cache operation unit is one cache line. The startAddr here will be forced to align to the cache line size if startAddr is not aligned. For the size_byte, application should make sure the alignment or make sure the right operation order if the size_byte is not aligned.
- Parameters:
address – The physical address.
size_byte – size of the memory to be cleaned and invalidated.
-
FSL_CACHE_DRIVER_VERSION
cache driver version 2.0.4.
Clock#
-
enum _clock_name
Clock name used to get clock frequency.
Values:
-
enumerator kCLOCK_CoreM7Clk
ARM M7 Core clock
-
enumerator kCLOCK_AxiClk
Main AXI bus clock.
-
enumerator kCLOCK_AhbClk
AHB bus clock.
-
enumerator kCLOCK_IpgClk
IPG bus clock.
-
enumerator kCLOCK_PerClk
Peripheral Clock.
-
enumerator kCLOCK_EnetIpgClk
ENET IPG Clock.
-
enumerator kCLOCK_Osc24MClk
OSC 24M clock.
-
enumerator kCLOCK_ArmPllClk
Arm PLL clock.
-
enumerator kCLOCK_DramPllClk
Dram PLL clock.
-
enumerator kCLOCK_VpuPllClk
Vpu PLL clock.
-
enumerator kCLOCK_SysPll1Clk
Sys PLL1 clock.
-
enumerator kCLOCK_SysPll1Div2Clk
Sys PLL1 clock divided by 2.
-
enumerator kCLOCK_SysPll1Div3Clk
Sys PLL1 clock divided by 3.
-
enumerator kCLOCK_SysPll1Div4Clk
Sys PLL1 clock divided by 4.
-
enumerator kCLOCK_SysPll1Div5Clk
Sys PLL1 clock divided by 5.
-
enumerator kCLOCK_SysPll1Div6Clk
Sys PLL1 clock divided by 6.
-
enumerator kCLOCK_SysPll1Div8Clk
Sys PLL1 clock divided by 8.
-
enumerator kCLOCK_SysPll1Div10Clk
Sys PLL1 clock divided by 10.
-
enumerator kCLOCK_SysPll1Div20Clk
Sys PLL1 clock divided by 20.
-
enumerator kCLOCK_SysPll2Clk
Sys PLL2 clock.
-
enumerator kCLOCK_SysPll2Div2Clk
Sys PLL2 clock divided by 2.
-
enumerator kCLOCK_SysPll2Div3Clk
Sys PLL2 clock divided by 3.
-
enumerator kCLOCK_SysPll2Div4Clk
Sys PLL2 clock divided by 4.
-
enumerator kCLOCK_SysPll2Div5Clk
Sys PLL2 clock divided by 5.
-
enumerator kCLOCK_SysPll2Div6Clk
Sys PLL2 clock divided by 6.
-
enumerator kCLOCK_SysPll2Div8Clk
Sys PLL2 clock divided by 8.
-
enumerator kCLOCK_SysPll2Div10Clk
Sys PLL2 clock divided by 10.
-
enumerator kCLOCK_SysPll2Div20Clk
Sys PLL2 clock divided by 20.
-
enumerator kCLOCK_SysPll3Clk
Sys PLL3 clock.
-
enumerator kCLOCK_AudioPll1Clk
Audio PLL1 clock.
-
enumerator kCLOCK_AudioPll2Clk
Audio PLL2 clock.
-
enumerator kCLOCK_VideoPll1Clk
Video PLL1 clock.
-
enumerator kCLOCK_ExtClk1
External clock1.
-
enumerator kCLOCK_ExtClk2
External clock2.
-
enumerator kCLOCK_ExtClk3
External clock3.
-
enumerator kCLOCK_ExtClk4
External clock4.
-
enumerator kCLOCK_NoneName
None Clock Name.
-
enumerator kCLOCK_CoreM7Clk
-
enum _clock_ip_name
CCM CCGR gate control.
Values:
-
enumerator kCLOCK_IpInvalid
-
enumerator kCLOCK_Debug
DEBUG Clock Gate.
-
enumerator kCLOCK_Dram
DRAM Clock Gate.
-
enumerator kCLOCK_Ecspi1
ECSPI1 Clock Gate.
-
enumerator kCLOCK_Ecspi2
ECSPI2 Clock Gate.
-
enumerator kCLOCK_Ecspi3
ECSPI3 Clock Gate.
-
enumerator kCLOCK_Enet1
ENET1 Clock Gate.
-
enumerator kCLOCK_Gpio1
GPIO1 Clock Gate.
-
enumerator kCLOCK_Gpio2
GPIO2 Clock Gate.
-
enumerator kCLOCK_Gpio3
GPIO3 Clock Gate.
-
enumerator kCLOCK_Gpio4
GPIO4 Clock Gate.
-
enumerator kCLOCK_Gpio5
GPIO5 Clock Gate.
-
enumerator kCLOCK_Gpt1
GPT1 Clock Gate.
-
enumerator kCLOCK_Gpt2
GPT2 Clock Gate.
-
enumerator kCLOCK_Gpt3
GPT3 Clock Gate.
-
enumerator kCLOCK_Gpt4
GPT4 Clock Gate.
-
enumerator kCLOCK_Gpt5
GPT5 Clock Gate.
-
enumerator kCLOCK_Gpt6
GPT6 Clock Gate.
-
enumerator kCLOCK_I2c1
I2C1 Clock Gate.
-
enumerator kCLOCK_I2c2
I2C2 Clock Gate.
-
enumerator kCLOCK_I2c3
I2C3 Clock Gate.
-
enumerator kCLOCK_I2c4
I2C4 Clock Gate.
-
enumerator kCLOCK_I2c5
I2C5 Clock Gate.
-
enumerator kCLOCK_I2c6
I2C6 Clock Gate.
-
enumerator kCLOCK_Can1
FlexCAN1 Clock Gate.
-
enumerator kCLOCK_Can2
FlexCAN2 Clock Gate.
-
enumerator kCLOCK_Enet_Qos
ENET QOS Clock Gate.
-
enumerator kCLOCK_Iomux
IOMUX Clock Gate.
-
enumerator kCLOCK_Ipmux1
IPMUX1 Clock Gate.
-
enumerator kCLOCK_Ipmux2
IPMUX2 Clock Gate.
-
enumerator kCLOCK_Ipmux3
IPMUX3 Clock Gate.
-
enumerator kCLOCK_Mu
MU Clock Gate.
-
enumerator kCLOCK_Ocram
OCRAM Clock Gate.
-
enumerator kCLOCK_OcramS
OCRAM S Clock Gate.
-
enumerator kCLOCK_Pwm1
PWM1 Clock Gate.
-
enumerator kCLOCK_Pwm2
PWM2 Clock Gate.
-
enumerator kCLOCK_Pwm3
PWM3 Clock Gate.
-
enumerator kCLOCK_Pwm4
PWM4 Clock Gate.
-
enumerator kCLOCK_Qspi
QSPI Clock Gate.
-
enumerator kCLOCK_Nand
NAND Clock Gate.
-
enumerator kCLOCK_Rdc
RDC Clock Gate.
-
enumerator kCLOCK_Sdma1
SDMA1 Clock Gate.
-
enumerator kCLOCK_Sec_Debug
SEC_DEBUG Clock Gate.
-
enumerator kCLOCK_Sema42_1
RDC SEMA42 Clock Gate.
-
enumerator kCLOCK_Sema42_2
RDC SEMA42 Clock Gate.
-
enumerator kCLOCK_Sim_enet
SIM_ENET Clock Gate.
-
enumerator kCLOCK_Sim_m
SIM_M Clock Gate.
-
enumerator kCLOCK_Sim_main
SIM_MAIN Clock Gate.
-
enumerator kCLOCK_Sim_s
SIM_S Clock Gate.
-
enumerator kCLOCK_Sim_wakeup
SIM_WAKEUP Clock Gate.
-
enumerator kCLOCK_Gpu2D
GPU2D Clock Gate.
-
enumerator kCLOCK_Gpu3D
GPU3D Clock Gate.
-
enumerator kCLOCK_Uart1
UART1 Clock Gate.
-
enumerator kCLOCK_Uart2
UART2 Clock Gate.
-
enumerator kCLOCK_Uart3
UART3 Clock Gate.
-
enumerator kCLOCK_Uart4
UART4 Clock Gate.
-
enumerator kCLOCK_Usdhc1
USDHC1 Clock Gate.
-
enumerator kCLOCK_Usdhc2
USDHC2 Clock Gate.
-
enumerator kCLOCK_Wdog1
WDOG1 Clock Gate.
-
enumerator kCLOCK_Wdog2
WDOG2 Clock Gate.
-
enumerator kCLOCK_Wdog3
WDOG3 Clock Gate.
-
enumerator kCLOCK_Vpu_G1
VPU_G1 Clock Gate.
-
enumerator kCLOCK_Gpu
GPU Clock Gate.
-
enumerator kCLOCK_Vpu_Vc8ke
VPU_VC8KE Clock Gate.
-
enumerator kCLOCK_Vpu_G2
VPU_G2 Clock Gate.
-
enumerator kCLOCK_Npu
NPU Clock Gate.
-
enumerator kCLOCK_Hsio
HSIO Clock Gate.
-
enumerator kCLOCK_Media
MEDIA Clock Gate.
-
enumerator kCLOCK_Usdhc3
USDHC3 Clock Gate.
-
enumerator kCLOCK_Hdmi
HDMI Clock Gate.
-
enumerator kCLOCK_TempSensor
TempSensor Clock Gate.
-
enumerator kCLOCK_Audio
AUDIO Clock Gate.
-
enumerator kCLOCK_Earc
EARC clock gate
-
enumerator kCLOCK_AudioDspDebug
AUDIO DSP DEBUG clock gate
-
enumerator kCLOCK_AudioDsp
audio dsp clock gate
-
enumerator kCLOCK_Spba2
SPBA2 clock gate
-
enumerator kCLOCK_Sdma3
SDMA3 clock gate
-
enumerator kCLOCK_Sdma2
SDMA2 clock gate
-
enumerator kCLOCK_Pdm
PDM clock gate
-
enumerator kCLOCK_Asrc
ASRC clock gate
-
enumerator kCLOCK_Sai7_Mclk3
SAI7 MCLK3 clock gate
-
enumerator kCLOCK_Sai7_Mclk2
SAI7 MCLK2 clock gate
-
enumerator kCLOCK_Sai7_Mclk1
SAI7 MCLK1 clock gate
-
enumerator kCLOCK_Sai7
SAI7 clock gate
-
enumerator kCLOCK_Sai6_Mclk3
SAI6 MCLK3 clock gate
-
enumerator kCLOCK_Sai6_Mclk2
SAI6 MCLK2 clock gate
-
enumerator kCLOCK_Sai6_Mclk1
SAI6 MCLK1 clock gate
-
enumerator kCLOCK_Sai6
SAI6 clock gate
-
enumerator kCLOCK_Sai5_Mclk3
SAI5 MCLK3 clock gate
-
enumerator kCLOCK_Sai5_Mclk2
sai5 MCLK2 clock gate
-
enumerator kCLOCK_Sai5_Mclk1
SAI5 MCLK1 clock gate
-
enumerator kCLOCK_Sai5
SAI5 clock gate
-
enumerator kCLOCK_Sai3_Mclk3
SAI3 MCLK3 clock gate
-
enumerator kCLOCK_Sai3_Mclk2
SAI3 MCLK2 clock gate
-
enumerator kCLOCK_Sai3_Mclk1
SAI3 MCLK1 clock gate
-
enumerator kCLOCK_Sai3
SAI3 clock gate
-
enumerator kCLOCK_Sai2_Mclk3
SAI2 MCLK3 clock gate
-
enumerator kCLOCK_Sai2_Mclk2
SAI2 MCLK2 clock gate
-
enumerator kCLOCK_Sai2_Mclk1
SAI2 MCLK1 clock gate
-
enumerator kCLOCK_Sai2
SAI2 clock gate
-
enumerator kCLOCK_Sai1_Mclk3
SAI1 MCLK3 clock gate
-
enumerator kCLOCK_Sai1_Mclk2
SAI1 MCLK2 clock gate
-
enumerator kCLOCK_Sai1_Mclk1
SAI1 MCLK1 clock gate
-
enumerator kCLOCK_Sai1
SAI1 clock gate
-
enumerator kCLOCK_EarcPhy
EARC PHY clock gate
-
enumerator kCLOCK_Mu3
MU3 clock gate
-
enumerator kCLOCK_Mu2
MU2 clock gate
-
enumerator kCLOCK_Pll
PLL clock gate
-
enumerator kCLOCK_Edma
EDMA clock gate
-
enumerator kCLOCK_Aud2htx
AUD2HTX clock gate
-
enumerator kCLOCK_Ocram_A
OCRAM A clock gate
-
enumerator kCLOCK_IpInvalid
-
enum _clock_root_control
ccm root name used to get clock frequency.
Values:
-
enumerator kCLOCK_RootM7
ARM Cortex-M7 Clock control name.
-
enumerator kCLOCK_RootHsioAxi
HSIO AXI Clock control name.
-
enumerator kCLOCK_RootMainAxi
MAIN AXI Clock control name.
-
enumerator kCLOCK_RootEnetAxi
ENET AXI Clock control name.
-
enumerator kCLOCK_RootNandUsdhcBus
NAND USDHC BUS Clock control name.
-
enumerator kCLOCK_RootVpuBus
VPU BUS Clock control name.
-
enumerator kCLOCK_RootMediaAxi
MEDIA AXI Clock control name.
-
enumerator kCLOCK_RootMediaApb
MEDIA APB Clock control name.
-
enumerator kCLOCK_RootHdmiApb
HDMI APB Clock control name.
-
enumerator kCLOCK_RootNoc
NOC Clock control name.
-
enumerator kCLOCK_RootAhb
AHB Clock control name.
-
enumerator kCLOCK_RootIpg
IPG Clock control name.
-
enumerator kCLOCK_RootAudioAhb
Audio AHB Clock control name.
-
enumerator kCLOCK_RootAudioIpg
Audio IPG Clock control name.
-
enumerator kCLOCK_RootDramAlt
DRAM ALT Clock control name.
-
enumerator kCLOCK_RootFlexCan1
FLEXCAN1 Clock control name.
-
enumerator kCLOCK_RootFlexCan2
FLEXCAN2 Clock control name.
-
enumerator kCLOCK_RootSai1
SAI1 Clock control name.
-
enumerator kCLOCK_RootSai2
SAI2 Clock control name.
-
enumerator kCLOCK_RootSai3
SAI3 Clock control name.
-
enumerator kCLOCK_RootSai5
SAI5 Clock control name.
-
enumerator kCLOCK_RootSai6
SAI6 Clock control name.
-
enumerator kCLOCK_RootSai7
SAI7 Clock control name.
-
enumerator kCLOCK_RootEnetQos
ENET QOS Clock control name.
-
enumerator kCLOCK_RootEnetQosTimer
ENET QOS TIMER Clock control name.
-
enumerator kCLOCK_RootEnetRef
ENET Clock control name.
-
enumerator kCLOCK_RootEnetTimer
ENET TIMER Clock control name.
-
enumerator kCLOCK_RootEnetPhy
ENET PHY Clock control name.
-
enumerator kCLOCK_RootNand
NAND Clock control name.
-
enumerator kCLOCK_RootQspi
QSPI Clock control name.
-
enumerator kCLOCK_RootUsdhc1
USDHC1 Clock control name.
-
enumerator kCLOCK_RootUsdhc2
USDHC2 Clock control name.
-
enumerator kCLOCK_RootUsdhc3
USDHC3 Clock control name.
-
enumerator kCLOCK_RootI2c1
I2C1 Clock control name.
-
enumerator kCLOCK_RootI2c2
I2C2 Clock control name.
-
enumerator kCLOCK_RootI2c3
I2C3 Clock control name.
-
enumerator kCLOCK_RootI2c4
I2C4 Clock control name.
-
enumerator kCLOCK_RootI2c5
I2C5 Clock control name.
-
enumerator kCLOCK_RootI2c6
I2C6 Clock control name.
-
enumerator kCLOCK_RootUart1
UART1 Clock control name.
-
enumerator kCLOCK_RootUart2
UART2 Clock control name.
-
enumerator kCLOCK_RootUart3
UART3 Clock control name.
-
enumerator kCLOCK_RootUart4
UART4 Clock control name.
-
enumerator kCLOCK_RootGic
GIC Clock control name.
-
enumerator kCLOCK_RootEcspi1
ECSPI1 Clock control name.
-
enumerator kCLOCK_RootEcspi2
ECSPI2 Clock control name.
-
enumerator kCLOCK_RootEcspi3
ECSPI3 Clock control name.
-
enumerator kCLOCK_RootPwm1
PWM1 Clock control name.
-
enumerator kCLOCK_RootPwm2
PWM2 Clock control name.
-
enumerator kCLOCK_RootPwm3
PWM3 Clock control name.
-
enumerator kCLOCK_RootPwm4
PWM4 Clock control name.
-
enumerator kCLOCK_RootGpt1
GPT1 Clock control name.
-
enumerator kCLOCK_RootGpt2
GPT2 Clock control name.
-
enumerator kCLOCK_RootGpt3
GPT3 Clock control name.
-
enumerator kCLOCK_RootGpt4
GPT4 Clock control name.
-
enumerator kCLOCK_RootGpt5
GPT5 Clock control name.
-
enumerator kCLOCK_RootGpt6
GPT6 Clock control name.
-
enumerator kCLOCK_RootWdog
WDOG Clock control name.
-
enumerator kCLOCK_RootPdm
PDM Clock control name.
-
enumerator kCLOCK_RootM7
-
enum _clock_root
ccm clock root used to get clock frequency.
Values:
-
enumerator kCLOCK_M7ClkRoot
ARM Cortex-M7 Clock control name.
-
enumerator kCLOCK_HsioAxiClkRoot
HSIO AXI Clock control name.
-
enumerator kCLOCK_MainAxiClkRoot
MAIN AXI Clock control name.
-
enumerator kCLOCK_EnetAxiClkRoot
ENET AXI Clock control name.
-
enumerator kCLOCK_NandUsdhcBusClkRoot
NAND USDHC BUS Clock control name.
-
enumerator kCLOCK_VpuBusClkRoot
VPU BUS Clock control name.
-
enumerator kCLOCK_MediaAxiClkRoot
MEDIA AXI Clock control name.
-
enumerator kCLOCK_MediaApbClkRoot
MEDIA APB Clock control name.
-
enumerator kCLOCK_HdmiApbClkRoot
HDMI APB Clock control name.
-
enumerator kCLOCK_NocClkRoot
NOC Clock control name.
-
enumerator kCLOCK_AhbClkRoot
AHB Clock control name.
-
enumerator kCLOCK_IpgClkRoot
IPG Clock control name.
-
enumerator kCLOCK_AudioAhbClkRoot
Audio AHB Clock control name.
-
enumerator kCLOCK_AudioIpgClkRoot
Audio IPG Clock control name.
-
enumerator kCLOCK_DramAltClkRoot
DRAM ALT Clock control name.
-
enumerator kCLOCK_FlexCan1ClkRoot
FLEXCAN1 Clock control name.
-
enumerator kCLOCK_FlexCan2ClkRoot
FLEXCAN2 Clock control name.
-
enumerator kCLOCK_Sai1ClkRoot
SAI1 Clock control name.
-
enumerator kCLOCK_Sai2ClkRoot
SAI2 Clock control name.
-
enumerator kCLOCK_Sai3ClkRoot
SAI3 Clock control name.
-
enumerator kCLOCK_Sai5ClkRoot
SAI5 Clock control name.
-
enumerator kCLOCK_Sai6ClkRoot
SAI6 Clock control name.
-
enumerator kCLOCK_Sai7ClkRoot
SAI7 Clock control name.
-
enumerator kCLOCK_EnetQosClkRoot
ENET QOS Clock control name.
-
enumerator kCLOCK_EnetQosTimerClkRoot
ENET QOS TIMER Clock control name.
-
enumerator kCLOCK_EnetRefClkRoot
ENET Clock control name.
-
enumerator kCLOCK_EnetTimerClkRoot
ENET TIMER Clock control name.
-
enumerator kCLOCK_EnetPhyClkRoot
ENET PHY Clock control name.
-
enumerator kCLOCK_NandClkRoot
NAND Clock control name.
-
enumerator kCLOCK_QspiClkRoot
QSPI Clock control name.
-
enumerator kCLOCK_Usdhc1ClkRoot
USDHC1 Clock control name.
-
enumerator kCLOCK_Usdhc2ClkRoot
USDHC2 Clock control name.
-
enumerator kCLOCK_Usdhc3ClkRoot
USDHC3 Clock control name.
-
enumerator kCLOCK_I2c1ClkRoot
I2C1 Clock control name.
-
enumerator kCLOCK_I2c2ClkRoot
I2C2 Clock control name.
-
enumerator kCLOCK_I2c3ClkRoot
I2C3 Clock control name.
-
enumerator kCLOCK_I2c4ClkRoot
I2C4 Clock control name.
-
enumerator kCLOCK_I2c5ClkRoot
I2C5 Clock control name.
-
enumerator kCLOCK_I2c6ClkRoot
I2C6 Clock control name.
-
enumerator kCLOCK_Uart1ClkRoot
UART1 Clock control name.
-
enumerator kCLOCK_Uart2ClkRoot
UART2 Clock control name.
-
enumerator kCLOCK_Uart3ClkRoot
UART3 Clock control name.
-
enumerator kCLOCK_Uart4ClkRoot
UART4 Clock control name.
-
enumerator kCLOCK_GicClkRoot
GIC Clock control name.
-
enumerator kCLOCK_Ecspi1ClkRoot
ECSPI1 Clock control name.
-
enumerator kCLOCK_Ecspi2ClkRoot
ECSPI2 Clock control name.
-
enumerator kCLOCK_Ecspi3ClkRoot
ECSPI3 Clock control name.
-
enumerator kCLOCK_Pwm1ClkRoot
PWM1 Clock control name.
-
enumerator kCLOCK_Pwm2ClkRoot
PWM2 Clock control name.
-
enumerator kCLOCK_Pwm3ClkRoot
PWM3 Clock control name.
-
enumerator kCLOCK_Pwm4ClkRoot
PWM4 Clock control name.
-
enumerator kCLOCK_Gpt1ClkRoot
GPT1 Clock control name.
-
enumerator kCLOCK_Gpt2ClkRoot
GPT2 Clock control name.
-
enumerator kCLOCK_Gpt3ClkRoot
GPT3 Clock control name.
-
enumerator kCLOCK_Gpt4ClkRoot
GPT4 Clock control name.
-
enumerator kCLOCK_Gpt5ClkRoot
GPT5 Clock control name.
-
enumerator kCLOCK_Gpt6ClkRoot
GPT6 Clock control name.
-
enumerator kCLOCK_WdogClkRoot
WDOG Clock control name.
-
enumerator kCLOCK_PdmClkRoot
PDM Clock control name.
-
enumerator kCLOCK_M7ClkRoot
-
enum _clock_rootmux_m7_clk_sel
Root clock select enumeration for ARM Cortex-M7 core.
Values:
-
enumerator kCLOCK_M7RootmuxOsc24M
ARM Cortex-M7 Clock from OSC 24M.
-
enumerator kCLOCK_M7RootmuxSysPll2Div5
ARM Cortex-M7 Clock from SYSTEM PLL2 divided by 5.
-
enumerator kCLOCK_M7RootmuxSysPll2Div4
ARM Cortex-M7 Clock from SYSTEM PLL2 divided by 4.
-
enumerator kCLOCK_M7RootmuxSysVpuPll
ARM Cortex-M7 Clock from VPU PLL.
-
enumerator kCLOCK_M7RootmuxSysPll1
ARM Cortex-M7 Clock from SYSTEM PLL1.
-
enumerator kCLOCK_M7RootmuxAudioPll1
ARM Cortex-M7 Clock from AUDIO PLL1.
-
enumerator kCLOCK_M7RootmuxVideoPll1
ARM Cortex-M7 Clock from VIDEO PLL1.
-
enumerator kCLOCK_M7RootmuxSysPll3
ARM Cortex-M7 Clock from SYSTEM PLL3.
-
enumerator kCLOCK_M7RootmuxOsc24M
-
enum _clock_rootmux_axi_clk_sel
Root clock select enumeration for MAIN AXI bus.
Values:
-
enumerator kCLOCK_AxiRootmuxOsc24M
ARM MAIN AXI Clock from OSC 24M.
-
enumerator kCLOCK_AxiRootmuxSysPll2Div3
ARM MAIN AXI Clock from SYSTEM PLL2 divided by 3.
-
enumerator kCLOCK_AxiRootmuxSysPll1
ARM MAIN AXI Clock from SYSTEM PLL1.
-
enumerator kCLOCK_AxiRootmuxSysPll2Div4
ARM MAIN AXI Clock from SYSTEM PLL2 divided by 4.
-
enumerator kCLOCK_AxiRootmuxSysPll2
ARM MAIN AXI Clock from SYSTEM PLL2.
-
enumerator kCLOCK_AxiRootmuxAudioPll1
ARM MAIN AXI Clock from AUDIO PLL1.
-
enumerator kCLOCK_AxiRootmuxVideoPll1
ARM MAIN AXI Clock from VIDEO PLL1.
-
enumerator kCLOCK_AxiRootmuxSysPll1Div8
ARM MAIN AXI Clock from SYSTEM PLL1 divided by 8.
-
enumerator kCLOCK_AxiRootmuxOsc24M
-
enum _clock_rootmux_ahb_clk_sel
Root clock select enumeration for AHB bus.
Values:
-
enumerator kCLOCK_AhbRootmuxOsc24M
ARM AHB Clock from OSC 24M.
-
enumerator kCLOCK_AhbRootmuxSysPll1Div6
ARM AHB Clock from SYSTEM PLL1 divided by 6.
-
enumerator kCLOCK_AhbRootmuxSysPll1
ARM AHB Clock from SYSTEM PLL1.
-
enumerator kCLOCK_AhbRootmuxSysPll1Div2
ARM AHB Clock from SYSTEM PLL1 divided by 2.
-
enumerator kCLOCK_AhbRootmuxSysPll2Div8
ARM AHB Clock from SYSTEM PLL2 divided by 8.
-
enumerator kCLOCK_AhbRootmuxSysPll3
ARM AHB Clock from SYSTEM PLL3.
-
enumerator kCLOCK_AhbRootmuxAudioPll1
ARM AHB Clock from AUDIO PLL1.
-
enumerator kCLOCK_AhbRootmuxVideoPll1
ARM AHB Clock from VIDEO PLL1.
-
enumerator kCLOCK_AhbRootmuxOsc24M
-
enum _clock_rootmux_audio_ahb_clk_sel
Root clock select enumeration for Audio AHB bus.
Values:
-
enumerator kCLOCK_AudioAhbRootmuxOsc24M
ARM Audio AHB Clock from OSC 24M.
-
enumerator kCLOCK_AudioAhbRootmuxSysPll2Div2
ARM Audio AHB Clock from SYSTEM PLL2 divided by 2.
-
enumerator kCLOCK_AudioAhbRootmuxSysPll1
ARM Audio AHB Clock from SYSTEM PLL1.
-
enumerator kCLOCK_AudioAhbRootmuxSysPll2
ARM Audio AHB Clock from SYSTEM PLL2.
-
enumerator kCLOCK_AudioAhbRootmuxSysPll2Div6
ARM Audio AHB Clock from SYSTEM PLL2 divided by 6.
-
enumerator kCLOCK_AudioAhbRootmuxSysPll3
ARM Audio AHB Clock from SYSTEM PLL3.
-
enumerator kCLOCK_AudioAhbRootmuxAudioPll1
ARM Audio AHB Clock from AUDIO PLL1.
-
enumerator kCLOCK_AudioAhbRootmuxVideoPll1
ARM Audio AHB Clock from VIDEO PLL1.
-
enumerator kCLOCK_AudioAhbRootmuxOsc24M
-
enum _clock_rootmux_qspi_clk_sel
Root clock select enumeration for QSPI peripheral.
Values:
-
enumerator kCLOCK_QspiRootmuxOsc24M
ARM QSPI Clock from OSC 24M.
-
enumerator kCLOCK_QspiRootmuxSysPll1Div2
ARM QSPI Clock from SYSTEM PLL1 divided by 2.
-
enumerator kCLOCK_QspiRootmuxSysPll2Div3
ARM QSPI Clock from SYSTEM PLL2 divided by 3.
-
enumerator kCLOCK_QspiRootmuxSysPll2Div2
ARM QSPI Clock from SYSTEM PLL2 divided by 2.
-
enumerator kCLOCK_QspiRootmuxAudioPll2
ARM QSPI Clock from AUDIO PLL2.
-
enumerator kCLOCK_QspiRootmuxSysPll1Div3
ARM QSPI Clock from SYSTEM PLL1 divided by 3
-
enumerator kCLOCK_QspiRootmuxSysPll3
ARM QSPI Clock from SYSTEM PLL3.
-
enumerator kCLOCK_QspiRootmuxSysPll1Div8
ARM QSPI Clock from SYSTEM PLL1 divided by 8.
-
enumerator kCLOCK_QspiRootmuxOsc24M
-
enum _clock_rootmux_ecspi_clk_sel
Root clock select enumeration for ECSPI peripheral.
Values:
-
enumerator kCLOCK_EcspiRootmuxOsc24M
ECSPI Clock from OSC 24M.
-
enumerator kCLOCK_EcspiRootmuxSysPll2Div5
ECSPI Clock from SYSTEM PLL2 divided by 5.
-
enumerator kCLOCK_EcspiRootmuxSysPll1Div20
ECSPI Clock from SYSTEM PLL1 divided by 20.
-
enumerator kCLOCK_EcspiRootmuxSysPll1Div5
ECSPI Clock from SYSTEM PLL1 divided by 5.
-
enumerator kCLOCK_EcspiRootmuxSysPll1
ECSPI Clock from SYSTEM PLL1.
-
enumerator kCLOCK_EcspiRootmuxSysPll3
ECSPI Clock from SYSTEM PLL3.
-
enumerator kCLOCK_EcspiRootmuxSysPll2Div4
ECSPI Clock from SYSTEM PLL2 divided by 4.
-
enumerator kCLOCK_EcspiRootmuxAudioPll2
ECSPI Clock from AUDIO PLL2.
-
enumerator kCLOCK_EcspiRootmuxOsc24M
-
enum _clock_rootmux_enet_axi_clk_sel
Root clock select enumeration for ENET AXI bus.
Values:
-
enumerator kCLOCK_EnetAxiRootmuxOsc24M
ENET AXI Clock from OSC 24M.
-
enumerator kCLOCK_EnetAxiRootmuxSysPll1Div3
ENET AXI Clock from SYSTEM PLL1 divided by 3.
-
enumerator kCLOCK_EnetAxiRootmuxSysPll1
ENET AXI Clock from SYSTEM PLL1.
-
enumerator kCLOCK_EnetAxiRootmuxSysPll2Div4
ENET AXI Clock from SYSTEM PLL2 divided by 4.
-
enumerator kCLOCK_EnetAxiRootmuxSysPll2Div5
ENET AXI Clock from SYSTEM PLL2 divided by 5.
-
enumerator kCLOCK_EnetAxiRootmuxAudioPll1
ENET AXI Clock from AUDIO PLL1.
-
enumerator kCLOCK_EnetAxiRootmuxVideoPll1
ENET AXI Clock from VIDEO PLL1.
-
enumerator kCLOCK_EnetAxiRootmuxSysPll3
ENET AXI Clock from SYSTEM PLL3.
-
enumerator kCLOCK_EnetAxiRootmuxOsc24M
-
enum _clock_rootmux_enet_qos_clk_sel
Root clock select enumeration for ENET QOS Clcok.
Values:
-
enumerator kCLOCK_EnetQosRootmuxOsc24M
ENET QOS Clock from OSC 24M.
-
enumerator kCLOCK_EnetQosRootmuxSysPll2Div8
ENET QOS Clock from SYSTEM PLL2 divided by 8.
-
enumerator kCLOCK_EnetQosRootmuxSysPll2Div20
ENET QOS Clock from SYSTEM PLL2 divided by 20.
-
enumerator kCLOCK_EnetQosRootmuxSysPll2Div10
ENET QOS Clock from SYSTEM PLL2 divided by 10.
-
enumerator kCLOCK_EnetQosRootmuxSysPll1Div5
ENET QOS Clock from SYSTEM PLL1 divided by 5.
-
enumerator kCLOCK_EnetQosRootmuxAudioPll1
ENET QOS Clock from AUDIO PLL1.
-
enumerator kCLOCK_EnetQosRootmuxVideoPll1
ENET QOS Clock from VIDEO PLL1.
-
enumerator kCLOCK_EnetQosRootmuxExtClk4
ENET QOS Clock from External Clock 4.
-
enumerator kCLOCK_EnetQosRootmuxOsc24M
-
enum _clock_rootmux_enet_ref_clk_sel
Root clock select enumeration for ENET REF Clcok.
Values:
-
enumerator kCLOCK_EnetRefRootmuxOsc24M
ENET REF Clock from OSC 24M.
-
enumerator kCLOCK_EnetRefRootmuxSysPll2Div8
ENET REF Clock from SYSTEM PLL2 divided by 8.
-
enumerator kCLOCK_EnetRefRootmuxSysPll2Div20
ENET REF Clock from SYSTEM PLL2 divided by 20.
-
enumerator kCLOCK_EnetRefRootmuxSysPll2Div10
ENET REF Clock from SYSTEM PLL2 divided by 10.
-
enumerator kCLOCK_EnetRefRootmuxSysPll1Div5
ENET REF Clock from SYSTEM PLL1 divided by 5.
-
enumerator kCLOCK_EnetRefRootmuxAudioPll1
ENET REF Clock from AUDIO PLL1.
-
enumerator kCLOCK_EnetRefRootmuxVideoPll1
ENET REF Clock from VIDEO PLL1.
-
enumerator kCLOCK_EnetRefRootmuxExtClk4
ENET REF Clock from External Clock 4.
-
enumerator kCLOCK_EnetRefRootmuxOsc24M
-
enum _clock_rootmux_enet_qos_timer_clk_sel
Root clock select enumeration for ENET QOS TIMER Clcok.
Values:
-
enumerator kCLOCK_EnetQosTimerRootmuxOsc24M
ENET QOS TIMER Clock from OSC 24M.
-
enumerator kCLOCK_EnetQosTimerRootmuxSysPll2Div10
ENET QOS TIMER Clock from SYSTEM PLL2 divided by 10.
-
enumerator kCLOCK_EnetQosTimerRootmuxAudioPll1
ENET QOS TIMER Clock from AUDIO PLL1.
-
enumerator kCLOCK_EnetQosTimerRootmuxExtClk1
ENET QOS TIMER Clock from External Clock 1.
-
enumerator kCLOCK_EnetQosTimerRootmuxExtClk2
ENET QOS TIMER Clock External Clock 2.
-
enumerator kCLOCK_EnetQosTimerRootmuxExtClk3
ENET QOS TIMER Clock from External Clock 3.
-
enumerator kCLOCK_EnetQosTimerRootmuxExtClk4
ENET QOS TIMER Clock from External Clock 4.
-
enumerator kCLOCK_EnetQosTimerRootmuxVideoPll1
ENET QOS TIMER Clock from VIDEO PLL1.
-
enumerator kCLOCK_EnetQosTimerRootmuxOsc24M
-
enum _clock_rootmux_enet_timer_clk_sel
Root clock select enumeration for ENET TIMER Clcok.
Values:
-
enumerator kCLOCK_EnetTimerRootmuxOsc24M
ENET TIMER Clock from OSC 24M.
-
enumerator kCLOCK_EnetTimerRootmuxSysPll2Div10
ENET TIMER Clock from SYSTEM PLL2 divided by 10.
-
enumerator kCLOCK_EnetTimerRootmuxAudioPll1
ENET TIMER Clock from AUDIO PLL1.
-
enumerator kCLOCK_EnetTimerRootmuxExtClk1
ENET TIMER Clock from External Clock 1.
-
enumerator kCLOCK_EnetTimerRootmuxExtClk2
ENET TIMER Clock External Clock 2.
-
enumerator kCLOCK_EnetTimerRootmuxExtClk3
ENET TIMER Clock from External Clock 3.
-
enumerator kCLOCK_EnetTimerRootmuxExtClk4
ENET TIMER Clock from External Clock 4.
-
enumerator kCLOCK_EnetTimerRootmuxVideoPll1
ENET TIMER Clock from VIDEO PLL1.
-
enumerator kCLOCK_EnetTimerRootmuxOsc24M
-
enum _clock_rootmux_enet_phy_clk_sel
Root clock select enumeration for ENET PHY Clcok.
Values:
-
enumerator kCLOCK_EnetPhyRootmuxOsc24M
ENET PHY Clock from OSC 24M.
-
enumerator kCLOCK_EnetPhyRootmuxSysPll2Div20
ENET PHY Clock from SYSTEM PLL2 divided by 20.
-
enumerator kCLOCK_EnetPhyRootmuxSysPll2Div8
ENET PHY Clock from SYSTEM PLL2 divided by 8.
-
enumerator kCLOCK_EnetPhyRootmuxSysPll2Div5
ENET PHY Clock from SYSTEM PLL2 divided by 5.
-
enumerator kCLOCK_EnetPhyRootmuxSysPll2Div2
ENET PHY Clock from SYSTEM PLL2 divided by 2.
-
enumerator kCLOCK_EnetPhyRootmuxAudioPll1
ENET PHY Clock from AUDIO PLL1.
-
enumerator kCLOCK_EnetPhyRootmuxVideoPll1
ENET PHY Clock from VIDEO PLL1.
-
enumerator kCLOCK_EnetPhyRootmuxAudioPll2
ENET PHY Clock from AUDIO PLL2.
-
enumerator kCLOCK_EnetPhyRootmuxOsc24M
-
enum _clock_rootmux_flexcan_clk_sel
Root clock select enumeration for FLEXCAN peripheral.
Values:
-
enumerator kCLOCK_FlexCanRootmuxOsc24M
FLEXCAN Clock from OSC 24M.
-
enumerator kCLOCK_FlexCanRootmuxSysPll2Div5
FLEXCAN Clock from SYSTEM PLL2 divided by 5.
-
enumerator kCLOCK_FlexCanRootmuxSysPll1Div20
FLEXCAN Clock from SYSTEM PLL1 divided by 20.
-
enumerator kCLOCK_FlexCanRootmuxSysPll1Div5
FLEXCAN Clock from SYSTEM PLL1 divided by 5.
-
enumerator kCLOCK_FlexCanRootmuxSysPll1
FLEXCAN Clock from SYSTEM PLL1.
-
enumerator kCLOCK_FlexCanRootmuxSysPll3
FLEXCAN Clock from SYSTEM PLL3.
-
enumerator kCLOCK_FlexCanRootmuxSysPll2Div4
FLEXCAN Clock from SYSTEM PLL2 divided by 4.
-
enumerator kCLOCK_FlexCanRootmuxAudioPll2
FLEXCAN Clock from AUDIO PLL2.
-
enumerator kCLOCK_FlexCanRootmuxOsc24M
-
enum _clock_rootmux_i2c_clk_sel
Root clock select enumeration for I2C peripheral.
Values:
-
enumerator kCLOCK_I2cRootmuxOsc24M
I2C Clock from OSC 24M.
-
enumerator kCLOCK_I2cRootmuxSysPll1Div5
I2C Clock from SYSTEM PLL1 divided by 5.
-
enumerator kCLOCK_I2cRootmuxSysPll2Div20
I2C Clock from SYSTEM PLL2 divided by 20.
-
enumerator kCLOCK_I2cRootmuxSysPll3
I2C Clock from SYSTEM PLL3 .
-
enumerator kCLOCK_I2cRootmuxAudioPll1
I2C Clock from AUDIO PLL1.
-
enumerator kCLOCK_I2cRootmuxVideoPll1
I2C Clock from VIDEO PLL1.
-
enumerator kCLOCK_I2cRootmuxAudioPll2
I2C Clock from AUDIO PLL2.
-
enumerator kCLOCK_I2cRootmuxSysPll1Div6
I2C Clock from SYSTEM PLL1 divided by 6.
-
enumerator kCLOCK_I2cRootmuxOsc24M
-
enum _clock_rootmux_uart_clk_sel
Root clock select enumeration for UART peripheral.
Values:
-
enumerator kCLOCK_UartRootmuxOsc24M
UART Clock from OSC 24M.
-
enumerator kCLOCK_UartRootmuxSysPll1Div10
UART Clock from SYSTEM PLL1 divided by 10.
-
enumerator kCLOCK_UartRootmuxSysPll2Div5
UART Clock from SYSTEM PLL2 divided by 5.
-
enumerator kCLOCK_UartRootmuxSysPll2Div10
UART Clock from SYSTEM PLL2 divided by 10.
-
enumerator kCLOCK_UartRootmuxSysPll3
UART Clock from SYSTEM PLL3.
-
enumerator kCLOCK_UartRootmuxExtClk2
UART Clock from External Clock 2.
-
enumerator kCLOCK_UartRootmuxExtClk34
UART Clock from External Clock 3, External Clock 4.
-
enumerator kCLOCK_UartRootmuxAudioPll2
UART Clock from Audio PLL2.
-
enumerator kCLOCK_UartRootmuxOsc24M
-
enum _clock_rootmux_gpt
Root clock select enumeration for GPT peripheral.
Values:
-
enumerator kCLOCK_GptRootmuxOsc24M
GPT Clock from OSC 24M.
-
enumerator kCLOCK_GptRootmuxSystemPll2Div10
GPT Clock from SYSTEM PLL2 divided by 10.
-
enumerator kCLOCK_GptRootmuxSysPll1Div2
GPT Clock from SYSTEM PLL1 divided by 2.
-
enumerator kCLOCK_GptRootmuxSysPll1Div20
GPT Clock from SYSTEM PLL1 divided by 20.
-
enumerator kCLOCK_GptRootmuxVideoPll1
GPT Clock from VIDEO PLL1.
-
enumerator kCLOCK_GptRootmuxSystemPll1Div10
GPT Clock from SYSTEM PLL1 divided by 10.
-
enumerator kCLOCK_GptRootmuxAudioPll1
GPT Clock from AUDIO PLL1.
-
enumerator kCLOCK_GptRootmuxExtClk123
GPT Clock from External Clock1, External Clock2, External Clock3.
-
enumerator kCLOCK_GptRootmuxOsc24M
-
enum _clock_rootmux_wdog_clk_sel
Root clock select enumeration for WDOG peripheral.
Values:
-
enumerator kCLOCK_WdogRootmuxOsc24M
WDOG Clock from OSC 24M.
-
enumerator kCLOCK_WdogRootmuxSysPll1Div6
WDOG Clock from SYSTEM PLL1 divided by 6.
-
enumerator kCLOCK_WdogRootmuxSysPll1Div5
WDOG Clock from SYSTEM PLL1 divided by 5.
-
enumerator kCLOCK_WdogRootmuxVpuPll
WDOG Clock from VPU DLL.
-
enumerator kCLOCK_WdogRootmuxSystemPll2Div8
WDOG Clock from SYSTEM PLL2 divided by 8.
-
enumerator kCLOCK_WdogRootmuxSystemPll3
WDOG Clock from SYSTEM PLL3.
-
enumerator kCLOCK_WdogRootmuxSystemPll1Div10
WDOG Clock from SYSTEM PLL1 divided by 10.
-
enumerator kCLOCK_WdogRootmuxSystemPll2Div6
WDOG Clock from SYSTEM PLL2 divided by 6.
-
enumerator kCLOCK_WdogRootmuxOsc24M
-
enum _clock_rootmux_pwm_clk_sel
Root clock select enumeration for PWM peripheral.
Values:
-
enumerator kCLOCK_PwmRootmuxOsc24M
PWM Clock from OSC 24M.
-
enumerator kCLOCK_PwmRootmuxSysPll2Div10
PWM Clock from SYSTEM PLL2 divided by 10.
-
enumerator kCLOCK_PwmRootmuxSysPll1Div5
PWM Clock from SYSTEM PLL1 divided by 5.
-
enumerator kCLOCK_PwmRootmuxSysPll1Div20
PWM Clock from SYSTEM PLL1 divided by 20.
-
enumerator kCLOCK_PwmRootmuxSystemPll3
PWM Clock from SYSTEM PLL3.
-
enumerator kCLOCK_PwmRootmuxExtClk12
PWM Clock from External Clock1, External Clock2.
-
enumerator kCLOCK_PwmRootmuxSystemPll1Div10
PWM Clock from SYSTEM PLL1 divided by 10.
-
enumerator kCLOCK_PwmRootmuxVideoPll1
PWM Clock from VIDEO PLL1.
-
enumerator kCLOCK_PwmRootmuxOsc24M
-
enum _clock_rootmux_sai_clk_sel
Root clock select enumeration for SAI peripheral.
Values:
-
enumerator kCLOCK_SaiRootmuxOsc24M
SAI Clock from OSC 24M.
-
enumerator kCLOCK_SaiRootmuxAudioPll1
SAI Clock from AUDIO PLL1.
-
enumerator kCLOCK_SaiRootmuxAudioPll2
SAI Clock from AUDIO PLL2.
-
enumerator kCLOCK_SaiRootmuxVideoPll1
SAI Clock from VIDEO PLL1.
-
enumerator kCLOCK_SaiRootmuxSysPll1Div6
SAI Clock from SYSTEM PLL1 divided by 6.
-
enumerator kCLOCK_SaiRootmuxOsc26m
SAI Clock from OSC HDMI 26M.
-
enumerator kCLOCK_SaiRootmuxExtClk1
SAI Clock from External Clock1, External Clock2, External Clock3.
-
enumerator kCLOCK_SaiRootmuxExtClk2
SAI Clock from External Clock2, External Clock3, External Clock4.
-
enumerator kCLOCK_SaiRootmuxOsc24M
-
enum _clock_rootmux_pdm_clk_sel
Root clock select enumeration for PDM peripheral.
Values:
-
enumerator kCLOCK_PdmRootmuxOsc24M
PDM Clock from OSC 24M.
-
enumerator kCLOCK_PdmRootmuxSysPll2Div10
PDM Clock from SYSTEM PLL2 divided by 10.
-
enumerator kCLOCK_PdmRootmuxAudioPll1
PDM Clock from AUDIO PLL1.
-
enumerator kCLOCK_PdmRootmuxSysPll1
PDM Clock from SYSTEM PLL1.
-
enumerator kCLOCK_PdmRootmuxSysPll2
PDM Clock from SYSTEM PLL2.
-
enumerator kCLOCK_PdmRootmuxSysPll3
PDM Clock from SYSTEM PLL3.
-
enumerator kCLOCK_PdmRootmuxExtClk3
PDM Clock from External Clock3.
-
enumerator kCLOCK_PdmRootmuxAudioPll2
PDM Clock from AUDIO PLL2.
-
enumerator kCLOCK_PdmRootmuxOsc24M
-
enum _clock_rootmux_noc_clk_sel
Root clock select enumeration for NOC CLK.
Values:
-
enumerator kCLOCK_NocRootmuxOsc24M
NOC Clock from OSC 24M.
-
enumerator kCLOCK_NocRootmuxSysPll1
NOC Clock from SYSTEM PLL1.
-
enumerator kCLOCK_NocRootmuxSysPll3
NOC Clock from SYSTEM PLL3.
-
enumerator kCLOCK_NocRootmuxSysPll2
NOC Clock from SYSTEM PLL2.
-
enumerator kCLOCK_NocRootmuxSysPll2Div2
NOC Clock from SYSTEM PLL2 divided by 2.
-
enumerator kCLOCK_NocRootmuxAudioPll1
NOC Clock from AUDIO PLL1.
-
enumerator kCLOCK_NocRootmuxVideoPll1
NOC Clock from VIDEO PLL1.
-
enumerator kCLOCK_NocRootmuxAudioPll2
NOC Clock from AUDIO PLL2.
-
enumerator kCLOCK_NocRootmuxOsc24M
-
enum _clock_pll_gate
CCM PLL gate control.
Values:
-
enumerator kCLOCK_ArmPllGate
ARM PLL Gate.
-
enumerator kCLOCK_GpuPllGate
GPU PLL Gate.
-
enumerator kCLOCK_VpuPllGate
VPU PLL Gate.
-
enumerator kCLOCK_DramPllGate
DRAM PLL1 Gate.
-
enumerator kCLOCK_SysPll1Gate
SYSTEM PLL1 Gate.
-
enumerator kCLOCK_SysPll1Div2Gate
SYSTEM PLL1 Div2 Gate.
-
enumerator kCLOCK_SysPll1Div3Gate
SYSTEM PLL1 Div3 Gate.
-
enumerator kCLOCK_SysPll1Div4Gate
SYSTEM PLL1 Div4 Gate.
-
enumerator kCLOCK_SysPll1Div5Gate
SYSTEM PLL1 Div5 Gate.
-
enumerator kCLOCK_SysPll1Div6Gate
SYSTEM PLL1 Div6 Gate.
-
enumerator kCLOCK_SysPll1Div8Gate
SYSTEM PLL1 Div8 Gate.
-
enumerator kCLOCK_SysPll1Div10Gate
SYSTEM PLL1 Div10 Gate.
-
enumerator kCLOCK_SysPll1Div20Gate
SYSTEM PLL1 Div20 Gate.
-
enumerator kCLOCK_SysPll2Gate
SYSTEM PLL2 Gate.
-
enumerator kCLOCK_SysPll2Div2Gate
SYSTEM PLL2 Div2 Gate.
-
enumerator kCLOCK_SysPll2Div3Gate
SYSTEM PLL2 Div3 Gate.
-
enumerator kCLOCK_SysPll2Div4Gate
SYSTEM PLL2 Div4 Gate.
-
enumerator kCLOCK_SysPll2Div5Gate
SYSTEM PLL2 Div5 Gate.
-
enumerator kCLOCK_SysPll2Div6Gate
SYSTEM PLL2 Div6 Gate.
-
enumerator kCLOCK_SysPll2Div8Gate
SYSTEM PLL2 Div8 Gate.
-
enumerator kCLOCK_SysPll2Div10Gate
SYSTEM PLL2 Div10 Gate.
-
enumerator kCLOCK_SysPll2Div20Gate
SYSTEM PLL2 Div20 Gate.
-
enumerator kCLOCK_SysPll3Gate
SYSTEM PLL3 Gate.
-
enumerator kCLOCK_AudioPll1Gate
AUDIO PLL1 Gate.
-
enumerator kCLOCK_AudioPll2Gate
AUDIO PLL2 Gate.
-
enumerator kCLOCK_VideoPll1Gate
VIDEO PLL1 Gate.
-
enumerator kCLOCK_VideoPll2Gate
VIDEO PLL2 Gate.
-
enumerator kCLOCK_ArmPllGate
-
enum _clock_gate_value
CCM gate control value.
Values:
-
enumerator kCLOCK_ClockNotNeeded
Clock always disabled.
-
enumerator kCLOCK_ClockNeededRun
Clock enabled when CPU is running.
-
enumerator kCLOCK_ClockNeededRunWait
Clock enabled when CPU is running or in WAIT mode.
-
enumerator kCLOCK_ClockNeededAll
Clock always enabled.
-
enumerator kCLOCK_ClockNotNeeded
-
enum _clock_pll_bypass_ctrl
PLL control names for PLL bypass.
These constants define the PLL control names for PLL bypass.
0:15: REG offset to CCM_ANALOG_BASE in bytes.
16:20: bypass bit shift.
Values:
-
enumerator kCLOCK_AudioPll1BypassCtrl
CCM Audio PLL1 bypass Control.
-
enumerator kCLOCK_AudioPll2BypassCtrl
CCM Audio PLL2 bypass Control.
-
enumerator kCLOCK_VideoPll1BypassCtrl
CCM Video Pll1 bypass Control.
-
enumerator kCLOCK_DramPllInternalPll1BypassCtrl
CCM DRAM PLL bypass Control.
-
enumerator kCLOCK_ArmPllPwrBypassCtrl
CCM Arm PLL bypass Control.
-
enumerator kCLOCK_SysPll1InternalPll1BypassCtrl
CCM System PLL1 bypass Control.
-
enumerator kCLOCK_SysPll2InternalPll1BypassCtrl
CCM System PLL2 bypass Control.
-
enumerator kCLOCK_SysPll3InternalPll1BypassCtrl
CCM System PLL3 bypass Control.
-
enum _ccm_analog_pll_clke
PLL clock names for clock enable/disable settings.
These constants define the PLL clock names for PLL clock enable/disable operations.
0:15: REG offset to CCM_ANALOG_BASE in bytes.
16:20: Clock enable bit shift.
Values:
-
enumerator kCLOCK_AudioPll1Clke
Audio pll1 clke
-
enumerator kCLOCK_AudioPll2Clke
Audio pll2 clke
-
enumerator kCLOCK_VideoPll1Clke
Video pll1 clke
-
enumerator kCLOCK_DramPllClke
Dram pll clke
-
enumerator kCLOCK_ArmPllClke
Arm pll clke
-
enumerator kCLOCK_SystemPll1Clke
System pll1 clke
-
enumerator kCLOCK_SystemPll1Div2Clke
System pll1 Div2 clke
-
enumerator kCLOCK_SystemPll1Div3Clke
System pll1 Div3 clke
-
enumerator kCLOCK_SystemPll1Div4Clke
System pll1 Div4 clke
-
enumerator kCLOCK_SystemPll1Div5Clke
System pll1 Div5 clke
-
enumerator kCLOCK_SystemPll1Div6Clke
System pll1 Div6 clke
-
enumerator kCLOCK_SystemPll1Div8Clke
System pll1 Div8 clke
-
enumerator kCLOCK_SystemPll1Div10Clke
System pll1 Div10 clke
-
enumerator kCLOCK_SystemPll1Div20Clke
System pll1 Div20 clke
-
enumerator kCLOCK_SystemPll2Clke
System pll2 clke
-
enumerator kCLOCK_SystemPll2Div2Clke
System pll2 Div2 clke
-
enumerator kCLOCK_SystemPll2Div3Clke
System pll2 Div3 clke
-
enumerator kCLOCK_SystemPll2Div4Clke
System pll2 Div4 clke
-
enumerator kCLOCK_SystemPll2Div5Clke
System pll2 Div5 clke
-
enumerator kCLOCK_SystemPll2Div6Clke
System pll2 Div6 clke
-
enumerator kCLOCK_SystemPll2Div8Clke
System pll2 Div8 clke
-
enumerator kCLOCK_SystemPll2Div10Clke
System pll2 Div10 clke
-
enumerator kCLOCK_SystemPll2Div20Clke
System pll2 Div20 clke
-
enumerator kCLOCK_SystemPll3Clke
System pll3 clke
-
enum _clock_pll_ctrl
ANALOG Power down override control.
Values:
-
enumerator kCLOCK_AudioPll1Ctrl
-
enumerator kCLOCK_AudioPll2Ctrl
-
enumerator kCLOCK_VideoPll1Ctrl
-
enumerator kCLOCK_DramPllCtrl
-
enumerator kCLOCK_VpuPllCtrl
-
enumerator kCLOCK_ArmPllCtrl
-
enumerator kCLOCK_SystemPll1Ctrl
-
enumerator kCLOCK_SystemPll2Ctrl
-
enumerator kCLOCK_SystemPll3Ctrl
-
enumerator kCLOCK_AudioPll1Ctrl
PLL reference clock select.
Values:
-
enumerator kANALOG_PllRefOsc24M
reference OSC 24M
-
enumerator kANALOG_PllPadClk
reference PAD CLK
-
enumerator kANALOG_PllRefOsc24M
-
typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.
-
typedef enum _clock_ip_name clock_ip_name_t
CCM CCGR gate control.
-
typedef enum _clock_root_control clock_root_control_t
ccm root name used to get clock frequency.
-
typedef enum _clock_root clock_root_t
ccm clock root used to get clock frequency.
-
typedef enum _clock_rootmux_m7_clk_sel clock_rootmux_m7_clk_sel_t
Root clock select enumeration for ARM Cortex-M7 core.
-
typedef enum _clock_rootmux_axi_clk_sel clock_rootmux_axi_clk_sel_t
Root clock select enumeration for MAIN AXI bus.
-
typedef enum _clock_rootmux_ahb_clk_sel clock_rootmux_ahb_clk_sel_t
Root clock select enumeration for AHB bus.
-
typedef enum _clock_rootmux_audio_ahb_clk_sel clock_rootmux_audio_ahb_clk_sel_t
Root clock select enumeration for Audio AHB bus.
-
typedef enum _clock_rootmux_qspi_clk_sel clock_rootmux_qspi_clk_sel_t
Root clock select enumeration for QSPI peripheral.
-
typedef enum _clock_rootmux_ecspi_clk_sel clock_rootmux_ecspi_clk_sel_t
Root clock select enumeration for ECSPI peripheral.
-
typedef enum _clock_rootmux_enet_axi_clk_sel clock_rootmux_enet_axi_clk_sel_t
Root clock select enumeration for ENET AXI bus.
-
typedef enum _clock_rootmux_enet_qos_clk_sel clock_rootmux_enet_qos_clk_sel_t
Root clock select enumeration for ENET QOS Clcok.
-
typedef enum _clock_rootmux_enet_ref_clk_sel clock_rootmux_enet_ref_clk_sel_t
Root clock select enumeration for ENET REF Clcok.
-
typedef enum _clock_rootmux_enet_qos_timer_clk_sel clock_rootmux_enet_qos_timer_clk_sel_t
Root clock select enumeration for ENET QOS TIMER Clcok.
-
typedef enum _clock_rootmux_enet_timer_clk_sel clock_rootmux_enet_timer_clk_sel_t
Root clock select enumeration for ENET TIMER Clcok.
-
typedef enum _clock_rootmux_enet_phy_clk_sel clock_rootmux_enet_phy_clk_sel_t
Root clock select enumeration for ENET PHY Clcok.
-
typedef enum _clock_rootmux_flexcan_clk_sel clock_rootmux_flexcan_clk_sel_t
Root clock select enumeration for FLEXCAN peripheral.
-
typedef enum _clock_rootmux_i2c_clk_sel clock_rootmux_i2c_clk_sel_t
Root clock select enumeration for I2C peripheral.
-
typedef enum _clock_rootmux_uart_clk_sel clock_rootmux_uart_clk_sel_t
Root clock select enumeration for UART peripheral.
-
typedef enum _clock_rootmux_gpt clock_rootmux_gpt_t
Root clock select enumeration for GPT peripheral.
-
typedef enum _clock_rootmux_wdog_clk_sel clock_rootmux_wdog_clk_sel_t
Root clock select enumeration for WDOG peripheral.
-
typedef enum _clock_rootmux_pwm_clk_sel clock_rootmux_Pwm_clk_sel_t
Root clock select enumeration for PWM peripheral.
-
typedef enum _clock_rootmux_sai_clk_sel clock_rootmux_sai_clk_sel_t
Root clock select enumeration for SAI peripheral.
-
typedef enum _clock_rootmux_pdm_clk_sel clock_rootmux_pdm_clk_sel_t
Root clock select enumeration for PDM peripheral.
-
typedef enum _clock_rootmux_noc_clk_sel clock_rootmux_noc_clk_sel_t
Root clock select enumeration for NOC CLK.
-
typedef enum _clock_pll_gate clock_pll_gate_t
CCM PLL gate control.
-
typedef enum _clock_gate_value clock_gate_value_t
CCM gate control value.
-
typedef enum _clock_pll_bypass_ctrl clock_pll_bypass_ctrl_t
PLL control names for PLL bypass.
These constants define the PLL control names for PLL bypass.
0:15: REG offset to CCM_ANALOG_BASE in bytes.
16:20: bypass bit shift.
-
typedef enum _ccm_analog_pll_clke clock_pll_clke_t
PLL clock names for clock enable/disable settings.
These constants define the PLL clock names for PLL clock enable/disable operations.
0:15: REG offset to CCM_ANALOG_BASE in bytes.
16:20: Clock enable bit shift.
-
typedef enum _clock_pll_ctrl clock_pll_ctrl_t
ANALOG Power down override control.
-
typedef struct _ccm_analog_frac_pll_config ccm_analog_frac_pll_config_t
Fractional-N PLL configuration. Note: all the dividers in this configuration structure are the actually divider, software will map it to register value.
-
typedef struct _ccm_analog_integer_pll_config ccm_analog_integer_pll_config_t
Integer PLL configuration. Note: all the dividers in this configuration structure are the actually divider, software will map it to register value.
-
FSL_CLOCK_DRIVER_VERSION
CLOCK driver version 2.2.0.
-
SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
-
OSC24M_CLK_FREQ
XTAL 24M clock frequency.
-
CLKPAD_FREQ
pad clock frequency.
-
ECSPI_CLOCKS
Clock ip name array for ECSPI.
-
EDMA_CLOCKS
Clock ip name array for EDMA.
-
ENET_CLOCKS
Clock ip name array for ENET.
-
ENETQOS_CLOCKS
Clock ip name array for ENET_QOS.
-
FLEXCAN_CLOCKS
Clock ip name array for FLEXCAN.
-
GPIO_CLOCKS
Clock ip name array for GPIO.
-
GPT_CLOCKS
Clock ip name array for GPT.
-
I2C_CLOCKS
Clock ip name array for I2C.
-
IOMUX_CLOCKS
Clock ip name array for IOMUX.
-
IPMUX_CLOCKS
Clock ip name array for IPMUX.
-
PWM_CLOCKS
Clock ip name array for PWM.
-
RDC_CLOCKS
Clock ip name array for RDC.
-
SAI_CLOCKS
Clock ip name array for SAI.
-
RDC_SEMA42_CLOCKS
Clock ip name array for RDC SEMA42.
-
UART_CLOCKS
Clock ip name array for UART.
-
USDHC_CLOCKS
Clock ip name array for USDHC.
-
WDOG_CLOCKS
Clock ip name array for WDOG.
-
TMU_CLOCKS
Clock ip name array for TEMPSENSOR.
-
SDMA_CLOCKS
Clock ip name array for SDMA.
-
MU_CLOCKS
Clock ip name array for MU.
-
QSPI_CLOCKS
Clock ip name array for QSPI.
-
PDM_CLOCKS
Clock ip name array for PDM.
-
ASRC_CLOCKS
Clock ip name array for ASRC.
-
CCM_BIT_FIELD_EXTRACTION(val, mask, shift)
CCM reg macros to extract corresponding registers bit field.
-
CCM_REG_OFF(root, off)
CCM reg macros to map corresponding registers.
-
CCM_REG(root)
-
CCM_REG_SET(root)
-
CCM_REG_CLR(root)
-
AUDIO_PLL1_GEN_CTRL_OFFSET
CCM Analog registers offset.
-
AUDIO_PLL2_GEN_CTRL_OFFSET
-
VIDEO_PLL1_GEN_CTRL_OFFSET
-
GPU_PLL_GEN_CTRL_OFFSET
-
VPU_PLL_GEN_CTRL_OFFSET
-
ARM_PLL_GEN_CTRL_OFFSET
-
SYS_PLL1_GEN_CTRL_OFFSET
-
SYS_PLL2_GEN_CTRL_OFFSET
-
SYS_PLL3_GEN_CTRL_OFFSET
-
DRAM_PLL_GEN_CTRL_OFFSET
-
CCM_ANALOG_TUPLE(reg, shift)
CCM ANALOG tuple macros to map corresponding registers and bit fields.
-
CCM_ANALOG_TUPLE_SHIFT(tuple)
-
CCM_ANALOG_TUPLE_REG_OFF(base, tuple, off)
-
CCM_ANALOG_TUPLE_REG(base, tuple)
-
CLOCK_GATE_IN_AUDIOMIX
CCM CCGR and root tuple.
-
CLOCK_GATE_IN_CCM
-
CLOCK_GATE_TYPE(tuple)
-
CCM_TUPLE(ccgr, root)
-
CCM_TUPLE_CCGR(tuple)
-
CCM_TUPLE_ROOT(tuple)
-
AUDIOMIX_TUPLE(offset, gate, root)
audio mix CCGR
-
AUDIOMIX_TUPLE_OFFSET(tuple)
-
AUDIOMIX_TUPLE_GATE(tuple)
-
AUDIOMIX_TUPLE_ROOT(tuple)
-
CLOCK_ROOT_SOURCE
clock root source
-
CLOCK_ROOT_CONTROL_TUPLE
-
kCLOCK_CoreSysClk
For compatible with other platforms without CCM.
-
CLOCK_GetCoreSysClkFreq
For compatible with other platforms without CCM.
-
static inline void CLOCK_SetRootMux(clock_root_control_t rootClk, uint32_t mux)
Set clock root mux. User maybe need to set more than one mux ROOT according to the clock tree description in the reference manual.
- Parameters:
rootClk – Root clock control (see clock_root_control_t enumeration).
mux – Root mux value (see _ccm_rootmux_xxx enumeration).
-
static inline uint32_t CLOCK_GetRootMux(clock_root_control_t rootClk)
Get clock root mux. In order to get the clock source of root, user maybe need to get more than one ROOT’s mux value to obtain the final clock source of root.
- Parameters:
rootClk – Root clock control (see clock_root_control_t enumeration).
- Returns:
Root mux value (see _ccm_rootmux_xxx enumeration).
-
static inline void CLOCK_EnableRoot(clock_root_control_t rootClk)
Enable clock root.
- Parameters:
rootClk – Root clock control (see clock_root_control_t enumeration)
-
static inline void CLOCK_DisableRoot(clock_root_control_t rootClk)
Disable clock root.
- Parameters:
rootClk – Root control (see clock_root_control_t enumeration)
-
static inline bool CLOCK_IsRootEnabled(clock_root_control_t rootClk)
Check whether clock root is enabled.
- Parameters:
rootClk – Root control (see clock_root_control_t enumeration)
- Returns:
CCM root enabled or not.
true: Clock root is enabled.
false: Clock root is disabled.
-
void CLOCK_UpdateRoot(clock_root_control_t ccmRootClk, uint32_t mux, uint32_t pre, uint32_t post)
Update clock root in one step, for dynamical clock switching Note: The PRE and POST dividers in this function are the actually divider, software will map it to register value.
- Parameters:
ccmRootClk – Root control (see clock_root_control_t enumeration)
mux – mux value (see _ccm_rootmux_xxx enumeration)
pre – Pre divider value (0-7, divider=n+1)
post – Post divider value (0-63, divider=n+1)
-
void CLOCK_SetRootDivider(clock_root_control_t ccmRootClk, uint32_t pre, uint32_t post)
Set root clock divider Note: The PRE and POST dividers in this function are the actually divider, software will map it to register value.
- Parameters:
ccmRootClk – Root control (see clock_root_control_t enumeration)
pre – Pre divider value (1-8)
post – Post divider value (1-64)
-
static inline uint32_t CLOCK_GetRootPreDivider(clock_root_control_t rootClk)
Get clock root PRE_PODF. In order to get the clock source of root, user maybe need to get more than one ROOT’s mux value to obtain the final clock source of root.
- Parameters:
rootClk – Root clock name (see clock_root_control_t enumeration).
- Returns:
Root Pre divider value.
-
static inline uint32_t CLOCK_GetRootPostDivider(clock_root_control_t rootClk)
Get clock root POST_PODF. In order to get the clock source of root, user maybe need to get more than one ROOT’s mux value to obtain the final clock source of root.
- Parameters:
rootClk – Root clock name (see clock_root_control_t enumeration).
- Returns:
Root Post divider value.
-
static inline void CLOCK_ControlGate(uintptr_t ccmGate, clock_gate_value_t control)
Set PLL or CCGR gate control.
- Parameters:
ccmGate – Gate control (see clock_pll_gate_t and clock_ip_name_t enumeration)
control – Gate control value (see clock_gate_value_t)
-
void CLOCK_EnableClock(clock_ip_name_t ccmGate)
Enable CCGR clock gate and root clock gate for each module User should set specific gate for each module according to the description of the table of system clocks, gating and override in CCM chapter of reference manual. Take care of that one module may need to set more than one clock gate.
- Parameters:
ccmGate – Gate control for each module (see clock_ip_name_t enumeration).
-
void CLOCK_DisableClock(clock_ip_name_t ccmGate)
Disable CCGR clock gate for the each module User should set specific gate for each module according to the description of the table of system clocks, gating and override in CCM chapter of reference manual. Take care of that one module may need to set more than one clock gate.
- Parameters:
ccmGate – Gate control for each module (see clock_ip_name_t enumeration).
-
static inline void CLOCK_PowerUpPll(CCM_ANALOG_Type *base, clock_pll_ctrl_t pllControl)
Power up PLL.
- Parameters:
base – CCM_ANALOG base pointer.
pllControl – PLL control name (see clock_pll_ctrl_t enumeration)
-
static inline void CLOCK_PowerDownPll(CCM_ANALOG_Type *base, clock_pll_ctrl_t pllControl)
Power down PLL.
- Parameters:
base – CCM_ANALOG base pointer.
pllControl – PLL control name (see clock_pll_ctrl_t enumeration)
-
static inline void CLOCK_SetPllBypass(CCM_ANALOG_Type *base, clock_pll_bypass_ctrl_t pllControl, bool bypass)
PLL bypass setting.
- Parameters:
base – CCM_ANALOG base pointer.
pllControl – PLL control name (see clock_pll_bypass_ctrl_t enumeration)
bypass – Bypass the PLL.
true: Bypass the PLL.
false: Do not bypass the PLL.
-
static inline bool CLOCK_IsPllBypassed(CCM_ANALOG_Type *base, clock_pll_bypass_ctrl_t pllControl)
Check if PLL is bypassed.
- Parameters:
base – CCM_ANALOG base pointer.
pllControl – PLL control name (see clock_pll_bypass_ctrl_t enumeration)
- Returns:
PLL bypass status.
true: The PLL is bypassed.
false: The PLL is not bypassed.
-
static inline bool CLOCK_IsPllLocked(CCM_ANALOG_Type *base, clock_pll_ctrl_t pllControl)
Check if PLL clock is locked.
- Parameters:
base – CCM_ANALOG base pointer.
pllControl – PLL control name (see clock_pll_ctrl_t enumeration)
- Returns:
PLL lock status.
true: The PLL clock is locked.
false: The PLL clock is not locked.
-
static inline void CLOCK_EnableAnalogClock(CCM_ANALOG_Type *base, clock_pll_clke_t pllClock)
Enable PLL clock.
- Parameters:
base – CCM_ANALOG base pointer.
pllClock – PLL clock name (see clock_pll_clke_t enumeration)
-
static inline void CLOCK_DisableAnalogClock(CCM_ANALOG_Type *base, clock_pll_clke_t pllClock)
Disable PLL clock.
- Parameters:
base – CCM_ANALOG base pointer.
pllClock – PLL clock name (see clock_pll_clke_t enumeration)
-
static inline void CLOCK_OverridePllClke(CCM_ANALOG_Type *base, clock_pll_clke_t ovClock, bool override)
Override PLL clock output enable.
- Parameters:
base – CCM_ANALOG base pointer.
ovClock – PLL clock name (see clock_pll_clke_t enumeration)
override – Override the PLL.
true: Override the PLL clke, CCM will handle it.
false: Do not override the PLL clke.
-
static inline void CLOCK_OverridePllPd(CCM_ANALOG_Type *base, clock_pll_ctrl_t pdClock, bool override)
Override PLL power down.
- Parameters:
base – CCM_ANALOG base pointer.
pdClock – PLL clock name (see clock_pll_ctrl_t enumeration)
override – Override the PLL.
true: Override the PLL clke, CCM will handle it.
false: Do not override the PLL clke.
-
void CLOCK_InitArmPll(const ccm_analog_integer_pll_config_t *config)
Initializes the ANALOG ARM PLL.
Note
This function can’t detect whether the Arm PLL has been enabled and used by some IPs.
- Parameters:
config – Pointer to the configuration structure(see ccm_analog_integer_pll_config_t enumeration).
-
void CLOCK_DeinitArmPll(void)
De-initialize the ARM PLL.
-
void CLOCK_InitSysPll1(const ccm_analog_integer_pll_config_t *config)
Initializes the ANALOG SYS PLL1.
Note
This function can’t detect whether the SYS PLL has been enabled and used by some IPs.
- Parameters:
config – Pointer to the configuration structure(see ccm_analog_integer_pll_config_t enumeration).
-
void CLOCK_DeinitSysPll1(void)
De-initialize the System PLL1.
-
void CLOCK_InitSysPll2(const ccm_analog_integer_pll_config_t *config)
Initializes the ANALOG SYS PLL2.
Note
This function can’t detect whether the SYS PLL has been enabled and used by some IPs.
- Parameters:
config – Pointer to the configuration structure(see ccm_analog_integer_pll_config_t enumeration).
-
void CLOCK_DeinitSysPll2(void)
De-initialize the System PLL2.
-
void CLOCK_InitSysPll3(const ccm_analog_integer_pll_config_t *config)
Initializes the ANALOG SYS PLL3.
Note
This function can’t detect whether the SYS PLL has been enabled and used by some IPs.
- Parameters:
config – Pointer to the configuration structure(see ccm_analog_integer_pll_config_t enumeration).
-
void CLOCK_DeinitSysPll3(void)
De-initialize the System PLL3.
-
void CLOCK_InitAudioPll1(const ccm_analog_frac_pll_config_t *config)
Initializes the ANALOG AUDIO PLL1.
Note
This function can’t detect whether the AUDIO PLL has been enabled and used by some IPs.
- Parameters:
config – Pointer to the configuration structure(see ccm_analog_frac_pll_config_t enumeration).
-
void CLOCK_DeinitAudioPll1(void)
De-initialize the Audio PLL1.
-
void CLOCK_InitAudioPll2(const ccm_analog_frac_pll_config_t *config)
Initializes the ANALOG AUDIO PLL2.
Note
This function can’t detect whether the AUDIO PLL has been enabled and used by some IPs.
- Parameters:
config – Pointer to the configuration structure(see ccm_analog_frac_pll_config_t enumeration).
-
void CLOCK_DeinitAudioPll2(void)
De-initialize the Audio PLL2.
-
void CLOCK_InitVideoPll1(const ccm_analog_frac_pll_config_t *config)
Initializes the ANALOG VIDEO PLL1.
- Parameters:
config – Pointer to the configuration structure(see ccm_analog_frac_pll_config_t enumeration).
-
void CLOCK_DeinitVideoPll1(void)
De-initialize the Video PLL1.
-
void CLOCK_InitIntegerPll(CCM_ANALOG_Type *base, const ccm_analog_integer_pll_config_t *config, clock_pll_ctrl_t type)
Initializes the ANALOG Integer PLL.
- Parameters:
base – CCM ANALOG base address
config – Pointer to the configuration structure(see ccm_analog_integer_pll_config_t enumeration).
type – integer pll type
-
uint32_t CLOCK_GetIntegerPllFreq(CCM_ANALOG_Type *base, clock_pll_ctrl_t type, uint32_t refClkFreq, bool pll1Bypass)
Get the ANALOG Integer PLL clock frequency.
- Parameters:
base – CCM ANALOG base address.
type – integer pll type
refClkFreq – Reference clock frequency.
pll1Bypass – pll1 bypass flag
- Returns:
Clock frequency
-
void CLOCK_InitFracPll(CCM_ANALOG_Type *base, const ccm_analog_frac_pll_config_t *config, clock_pll_ctrl_t type)
Initializes the ANALOG Fractional PLL.
- Parameters:
base – CCM ANALOG base address.
config – Pointer to the configuration structure(see ccm_analog_frac_pll_config_t enumeration).
type – fractional pll type.
-
uint32_t CLOCK_GetFracPllFreq(CCM_ANALOG_Type *base, clock_pll_ctrl_t type, uint32_t refClkFreq)
Gets the ANALOG Fractional PLL clock frequency.
- Parameters:
base – CCM_ANALOG base pointer.
type – fractional pll type.
refClkFreq – Reference clock frequency.
- Returns:
Clock frequency
-
uint32_t CLOCK_GetPllFreq(clock_pll_ctrl_t pll)
Gets PLL clock frequency.
- Parameters:
pll – fractional pll type.
- Returns:
Clock frequency
-
uint32_t CLOCK_GetPllRefClkFreq(clock_pll_ctrl_t ctrl)
Gets PLL reference clock frequency.
- Parameters:
ctrl – fractional pll type.
- Returns:
Clock frequency
-
uint32_t CLOCK_GetFreq(clock_name_t clockName)
Gets the clock frequency for a specific clock name.
This function checks the current clock configurations and then calculates the clock frequency for a specific clock name defined in clock_name_t.
- Parameters:
clockName – Clock names defined in clock_name_t
- Returns:
Clock frequency value in hertz
-
uint32_t CLOCK_GetClockRootFreq(clock_root_t clockRoot)
Gets the frequency of selected clock root.
- Parameters:
clockRoot – The clock root used to get the frequency, please refer to clock_root_t.
- Returns:
The frequency of selected clock root.
-
uint32_t CLOCK_GetCoreM7Freq(void)
Get the CCM Cortex M7 core frequency.
- Returns:
Clock frequency; If the clock is invalid, returns 0.
-
uint32_t CLOCK_GetAxiFreq(void)
Get the CCM Axi bus frequency.
- Returns:
Clock frequency; If the clock is invalid, returns 0.
-
uint32_t CLOCK_GetAhbFreq(void)
Get the CCM Ahb bus frequency.
- Returns:
Clock frequency; If the clock is invalid, returns 0.
-
uint32_t CLOCK_GetEnetAxiFreq(void)
brief Get the CCM Enet AXI bus frequency.
return Clock frequency; If the clock is invalid, returns 0.
-
uint8_t refSel
pll reference clock sel
-
uint32_t mainDiv
Value of the 10-bit programmable main-divider, range must be 64~1023
-
uint32_t dsm
Value of 16-bit DSM
-
uint8_t preDiv
Value of the 6-bit programmable pre-divider, range must be 1~63
-
uint8_t postDiv
Value of the 3-bit programmable Scaler, range must be 0~6
-
uint8_t refSel
pll reference clock sel
-
uint32_t mainDiv
Value of the 10-bit programmable main-divider, range must be 64~1023
-
uint8_t preDiv
Value of the 6-bit programmable pre-divider, range must be 1~63
-
uint8_t postDiv
Value of the 3-bit programmable Scaler, range must be 0~6
-
struct _ccm_analog_frac_pll_config
- #include <fsl_clock.h>
Fractional-N PLL configuration. Note: all the dividers in this configuration structure are the actually divider, software will map it to register value.
-
struct _ccm_analog_integer_pll_config
- #include <fsl_clock.h>
Integer PLL configuration. Note: all the dividers in this configuration structure are the actually divider, software will map it to register value.
EDMA: Enhanced Direct Memory Access (eDMA) Controller Driver#
-
void EDMA_Init(DMA_Type *base, const edma_config_t *config)
Initializes the eDMA peripheral.
This function ungates the eDMA clock and configures the eDMA peripheral according to the configuration structure.
Note
This function enables the minor loop map feature.
- Parameters:
base – eDMA peripheral base address.
config – A pointer to the configuration structure, see “edma_config_t”.
-
void EDMA_Deinit(DMA_Type *base)
Deinitializes the eDMA peripheral.
This function gates the eDMA clock.
- Parameters:
base – eDMA peripheral base address.
-
void EDMA_InstallTCD(DMA_Type *base, uint32_t channel, edma_tcd_t *tcd)
Push content of TCD structure into hardware TCD register.
- Parameters:
base – EDMA peripheral base address.
channel – EDMA channel number.
tcd – Point to TCD structure.
-
void EDMA_GetDefaultConfig(edma_config_t *config)
Gets the eDMA default configuration structure.
This function sets the configuration structure to default values. The default configuration is set to the following values:
config.enableMasterIdReplication = true; config.enableHaltOnError = true; config.enableRoundRobinArbitration = false; config.enableDebugMode = false; config.enableBufferedWrites = false;
- Parameters:
config – A pointer to the eDMA configuration structure.
-
static inline void EDMA_EnableAllChannelLink(DMA_Type *base, bool enable)
Enables/disables all channel linking.
This function enables/disables all channel linking in the management page. For specific channel linking enablement & configuration, please refer to EDMA_SetChannelLink and EDMA_TcdSetChannelLink APIs.
For example, to disable all channel linking in the DMA0 management page:
EDMA_EnableAllChannelLink(DMA0, false);
- Parameters:
base – eDMA peripheral base address.
enable – Switcher of the channel linking feature for all channels. “true” means to enable. “false” means not.
-
void EDMA_ResetChannel(DMA_Type *base, uint32_t channel)
Sets all TCD registers to default values.
This function sets TCD registers for this channel to default values.
Note
This function must not be called while the channel transfer is ongoing or it causes unpredictable results.
Note
This function enables the auto stop request feature.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
-
void EDMA_SetTransferConfig(DMA_Type *base, uint32_t channel, const edma_transfer_config_t *config, edma_tcd_t *nextTcd)
Configures the eDMA transfer attribute.
This function configures the transfer attribute, including source address, destination address, transfer size, address offset, and so on. It also configures the scatter gather feature if the user supplies the TCD address. Example:
edma_transfer_config_t config; edma_tcd_t tcd; config.srcAddr = ..; config.destAddr = ..; ... EDMA_SetTransferConfig(DMA0, channel, &config, &stcd);
Note
If nextTcd is not NULL, it means scatter gather feature is enabled and DREQ bit is cleared in the previous transfer configuration, which is set in the eDMA_ResetChannel.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
config – Pointer to eDMA transfer configuration structure.
nextTcd – Point to TCD structure. It can be NULL if users do not want to enable scatter/gather feature.
-
void EDMA_SetMinorOffsetConfig(DMA_Type *base, uint32_t channel, const edma_minor_offset_config_t *config)
Configures the eDMA minor offset feature.
The minor offset means that the signed-extended value is added to the source address or destination address after each minor loop.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
config – A pointer to the minor offset configuration structure.
-
static inline void EDMA_SetChannelArbitrationGroup(DMA_Type *base, uint32_t channel, uint32_t group)
Configures the eDMA channel arbitration group.
This function configures the channel arbitration group. The arbitration group priorities are evaluated by numeric value from highest group number to lowest.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number
group – Fixed-priority arbitration group number for the channel.
-
static inline void EDMA_SetChannelPreemptionConfig(DMA_Type *base, uint32_t channel, const edma_channel_Preemption_config_t *config)
Configures the eDMA channel preemption feature.
This function configures the channel preemption attribute and the priority of the channel.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number
config – A pointer to the channel preemption configuration structure.
-
static inline uint32_t EDMA_GetChannelSystemBusInformation(DMA_Type *base, uint32_t channel)
Gets the eDMA channel identification and attribute information on the system bus interface.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
- Returns:
The mask of the channel system bus information. Users need to use the _edma_channel_sys_bus_info type to decode the return variables.
-
void EDMA_SetChannelLink(DMA_Type *base, uint32_t channel, edma_channel_link_type_t type, uint32_t linkedChannel)
Sets the channel link for the eDMA transfer.
This function configures either the minor link or the major link mode. The minor link means that the channel link is triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is exhausted.
Note
Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
type – A channel link type, which can be one of the following:
kEDMA_LinkNone
kEDMA_MinorLink
kEDMA_MajorLink
linkedChannel – The linked channel number.
-
void EDMA_SetBandWidth(DMA_Type *base, uint32_t channel, edma_bandwidth_t bandWidth)
Sets the bandwidth for the eDMA transfer.
Because the eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of each read/write access to control the bus request bandwidth seen by the crossbar switch.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
bandWidth – A bandwidth setting, which can be one of the following:
kEDMABandwidthStallNone
kEDMABandwidthStall4Cycle
kEDMABandwidthStall8Cycle
-
void EDMA_SetModulo(DMA_Type *base, uint32_t channel, edma_modulo_t srcModulo, edma_modulo_t destModulo)
Sets the source modulo and the destination modulo for the eDMA transfer.
This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides the ability to implement a circular data queue easily.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
srcModulo – A source modulo value.
destModulo – A destination modulo value.
-
static inline void EDMA_EnableAsyncRequest(DMA_Type *base, uint32_t channel, bool enable)
Enables an async request for the eDMA transfer.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
enable – The command to enable (true) or disable (false).
-
static inline void EDMA_EnableAutoStopRequest(DMA_Type *base, uint32_t channel, bool enable)
Enables an auto stop request for the eDMA transfer.
If enabling the auto stop request, the eDMA hardware automatically disables the hardware channel request.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
enable – The command to enable (true) or disable (false).
-
void EDMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask)
Enables the interrupt source for the eDMA transfer.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.
-
void EDMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask)
Disables the interrupt source for the eDMA transfer.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
mask – The mask of the interrupt source to be set. Use the defined edma_interrupt_enable_t type.
-
static inline void EDMA_SetChannelMux(DMA_Type *base, uint32_t channel, uint32_t mux)
Set channel mux source.
Note:When the peripheral is no longer needed, the mux configuration for that channel should be written to 0, thus releasing the resource.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
mux – the mux source value is SOC specific, please reference the SOC for detail.
-
void EDMA_TcdReset(edma_tcd_t *tcd)
Sets all fields to default values for the TCD structure.
This function sets all fields for this TCD structure to default value.
Note
This function enables the auto stop request feature.
- Parameters:
tcd – Pointer to the TCD structure.
-
void EDMA_TcdSetTransferConfig(edma_tcd_t *tcd, const edma_transfer_config_t *config, edma_tcd_t *nextTcd)
Configures the eDMA TCD transfer attribute.
The TCD is a transfer control descriptor. The content of the TCD is the same as the hardware TCD registers. The STCD is used in the scatter-gather mode. This function configures the TCD transfer attribute, including source address, destination address, transfer size, address offset, and so on. It also configures the scatter gather feature if the user supplies the next TCD address. Example:
edma_transfer_config_t config = { ... } edma_tcd_t tcd __aligned(32); edma_tcd_t nextTcd __aligned(32); EDMA_TcdSetTransferConfig(&tcd, &config, &nextTcd);
Note
TCD address should be 32 bytes aligned or it causes an eDMA error.
Note
If the nextTcd is not NULL, the scatter gather feature is enabled and DREQ bit is cleared in the previous transfer configuration, which is set in the EDMA_TcdReset.
- Parameters:
tcd – Pointer to the TCD structure.
config – Pointer to eDMA transfer configuration structure.
nextTcd – Pointer to the next TCD structure. It can be NULL if users do not want to enable scatter/gather feature.
-
void EDMA_TcdSetMinorOffsetConfig(edma_tcd_t *tcd, const edma_minor_offset_config_t *config)
Configures the eDMA TCD minor offset feature.
A minor offset is a signed-extended value added to the source address or a destination address after each minor loop.
- Parameters:
tcd – A point to the TCD structure.
config – A pointer to the minor offset configuration structure.
-
void EDMA_TcdSetChannelLink(edma_tcd_t *tcd, edma_channel_link_type_t type, uint32_t linkedChannel)
Sets the channel link for the eDMA TCD.
This function configures either a minor link or a major link. The minor link means the channel link is triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is exhausted.
Note
Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.
- Parameters:
tcd – Point to the TCD structure.
type – Channel link type, it can be one of:
kEDMA_LinkNone
kEDMA_MinorLink
kEDMA_MajorLink
linkedChannel – The linked channel number.
-
static inline void EDMA_TcdSetBandWidth(edma_tcd_t *tcd, edma_bandwidth_t bandWidth)
Sets the bandwidth for the eDMA TCD.
Because the eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of each read/write access to control the bus request bandwidth seen by the crossbar switch.
- Parameters:
tcd – A pointer to the TCD structure.
bandWidth – A bandwidth setting, which can be one of the following:
kEDMABandwidthStallNone
kEDMABandwidthStall4Cycle
kEDMABandwidthStall8Cycle
-
void EDMA_TcdSetModulo(edma_tcd_t *tcd, edma_modulo_t srcModulo, edma_modulo_t destModulo)
Sets the source modulo and the destination modulo for the eDMA TCD.
This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides the ability to implement a circular data queue easily.
- Parameters:
tcd – A pointer to the TCD structure.
srcModulo – A source modulo value.
destModulo – A destination modulo value.
-
static inline void EDMA_TcdEnableAutoStopRequest(edma_tcd_t *tcd, bool enable)
Sets the auto stop request for the eDMA TCD.
If enabling the auto stop request, the eDMA hardware automatically disables the hardware channel request.
- Parameters:
tcd – A pointer to the TCD structure.
enable – The command to enable (true) or disable (false).
-
void EDMA_TcdEnableInterrupts(edma_tcd_t *tcd, uint32_t mask)
Enables the interrupt source for the eDMA TCD.
- Parameters:
tcd – Point to the TCD structure.
mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.
-
void EDMA_TcdDisableInterrupts(edma_tcd_t *tcd, uint32_t mask)
Disables the interrupt source for the eDMA TCD.
- Parameters:
tcd – Point to the TCD structure.
mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.
-
static inline void EDMA_EnableChannelRequest(DMA_Type *base, uint32_t channel)
Enables the eDMA hardware channel request.
This function enables the hardware channel request.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
-
static inline void EDMA_DisableChannelRequest(DMA_Type *base, uint32_t channel)
Disables the eDMA hardware channel request.
This function disables the hardware channel request.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
-
static inline void EDMA_TriggerChannelStart(DMA_Type *base, uint32_t channel)
Starts the eDMA transfer by using the software trigger.
This function starts a minor loop transfer.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
-
uint32_t EDMA_GetRemainingMajorLoopCount(DMA_Type *base, uint32_t channel)
Gets the Remaining major loop count from the eDMA current channel TCD.
This function checks the TCD (Task Control Descriptor) status for a specified eDMA channel and returns the number of major loop count that has not finished.
Note
1. This function can only be used to get unfinished major loop count of transfer without the next TCD, or it might be inaccuracy.
The unfinished/remaining transfer bytes cannot be obtained directly from registers while the channel is running. Because to calculate the remaining bytes, the initial NBYTES configured in DMA_TCDn_NBYTES_MLNO register is needed while the eDMA IP does not support getting it while a channel is active. In another word, the NBYTES value reading is always the actual (decrementing) NBYTES value the dma_engine is working with while a channel is running. Consequently, to get the remaining transfer bytes, a software-saved initial value of NBYTES (for example copied before enabling the channel) is needed. The formula to calculate it is shown below: RemainingBytes = RemainingMajorLoopCount * NBYTES(initially configured)
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
- Returns:
Major loop count which has not been transferred yet for the current TCD.
-
static inline uint32_t EDMA_GetErrorStatusFlags(DMA_Type *base)
Gets the eDMA channel error status flags.
- Parameters:
base – eDMA peripheral base address.
- Returns:
The mask of error status flags. Users need to use the _edma_error_status_flags type to decode the return variables.
-
uint32_t EDMA_GetChannelStatusFlags(DMA_Type *base, uint32_t channel)
Gets the eDMA channel status flags.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
- Returns:
The mask of channel status flags. Users need to use the _edma_channel_status_flags type to decode the return variables.
-
void EDMA_ClearChannelStatusFlags(DMA_Type *base, uint32_t channel, uint32_t mask)
Clears the eDMA channel status flags.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
mask – The mask of channel status to be cleared. Users need to use the defined _edma_channel_status_flags type.
-
void EDMA_CreateHandle(edma_handle_t *handle, DMA_Type *base, uint32_t channel)
Creates the eDMA handle.
This function is called if using the transactional API for eDMA. This function initializes the internal state of the eDMA handle.
- Parameters:
handle – eDMA handle pointer. The eDMA handle stores callback function and parameters.
base – eDMA peripheral base address.
channel – eDMA channel number.
-
void EDMA_InstallTCDMemory(edma_handle_t *handle, edma_tcd_t *tcdPool, uint32_t tcdSize)
Installs the TCDs memory pool into the eDMA handle.
This function is called after the EDMA_CreateHandle to use scatter/gather feature.
- Parameters:
handle – eDMA handle pointer.
tcdPool – A memory pool to store TCDs. It must be 32 bytes aligned.
tcdSize – The number of TCD slots.
-
void EDMA_SetCallback(edma_handle_t *handle, edma_callback callback, void *userData)
Installs a callback function for the eDMA transfer.
This callback is called in the eDMA IRQ handler. Use the callback to do something after the current major loop transfer completes.
- Parameters:
handle – eDMA handle pointer.
callback – eDMA callback function pointer.
userData – A parameter for the callback function.
-
void EDMA_PrepareTransferConfig(edma_transfer_config_t *config, void *srcAddr, uint32_t srcWidth, int16_t srcOffset, void *destAddr, uint32_t destWidth, int16_t destOffset, uint32_t bytesEachRequest, uint32_t transferBytes)
Prepares the eDMA transfer structure configurations.
This function prepares the transfer configuration structure according to the user input.
Note
The data address and the data width must be consistent. For example, if the SRC is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error (SAE).
- Parameters:
config – The user configuration structure of type edma_transfer_config_t.
srcAddr – eDMA transfer source address.
srcWidth – eDMA transfer source address width(bytes).
srcOffset – eDMA transfer source address offset
destAddr – eDMA transfer destination address.
destWidth – eDMA transfer destination address width(bytes).
destOffset – eDMA transfer destination address offset
bytesEachRequest – eDMA transfer bytes per channel request.
transferBytes – eDMA transfer bytes to be transferred.
-
void EDMA_PrepareTransfer(edma_transfer_config_t *config, void *srcAddr, uint32_t srcWidth, void *destAddr, uint32_t destWidth, uint32_t bytesEachRequest, uint32_t transferBytes, edma_transfer_type_t transferType)
Prepares the eDMA transfer structure.
This function prepares the transfer configuration structure according to the user input.
Note
The data address and the data width must be consistent. For example, if the SRC is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error (SAE).
- Parameters:
config – The user configuration structure of type edma_transfer_config_t.
srcAddr – eDMA transfer source address.
srcWidth – eDMA transfer source address width(bytes).
destAddr – eDMA transfer destination address.
destWidth – eDMA transfer destination address width(bytes).
bytesEachRequest – eDMA transfer bytes per channel request.
transferBytes – eDMA transfer bytes to be transferred.
transferType – eDMA transfer type.
-
status_t EDMA_SubmitTransfer(edma_handle_t *handle, const edma_transfer_config_t *config)
Submits the eDMA transfer request.
This function submits the eDMA transfer request according to the transfer configuration structure. If submitting the transfer request repeatedly, this function packs an unprocessed request as a TCD and enables scatter/gather feature to process it in the next time.
- Parameters:
handle – eDMA handle pointer.
config – Pointer to eDMA transfer configuration structure.
- Return values:
kStatus_EDMA_Success – It means submit transfer request succeed.
kStatus_EDMA_QueueFull – It means TCD queue is full. Submit transfer request is not allowed.
kStatus_EDMA_Busy – It means the given channel is busy, need to submit request later.
-
void EDMA_StartTransfer(edma_handle_t *handle)
eDMA starts transfer.
This function enables the channel request. Users can call this function after submitting the transfer request or before submitting the transfer request.
- Parameters:
handle – eDMA handle pointer.
-
void EDMA_StopTransfer(edma_handle_t *handle)
eDMA stops transfer.
This function disables the channel request to pause the transfer. Users can call EDMA_StartTransfer() again to resume the transfer.
- Parameters:
handle – eDMA handle pointer.
-
void EDMA_AbortTransfer(edma_handle_t *handle)
eDMA aborts transfer.
This function disables the channel request and clear transfer status bits. Users can submit another transfer after calling this API.
- Parameters:
handle – DMA handle pointer.
-
static inline uint32_t EDMA_GetUnusedTCDNumber(edma_handle_t *handle)
Get unused TCD slot number.
This function gets current tcd index which is run. If the TCD pool pointer is NULL, it will return 0.
- Parameters:
handle – DMA handle pointer.
- Returns:
The unused tcd slot number.
-
static inline uint32_t EDMA_GetNextTCDAddress(edma_handle_t *handle)
Get the next tcd address.
This function gets the next tcd address. If this is last TCD, return 0.
- Parameters:
handle – DMA handle pointer.
- Returns:
The next TCD address.
-
static inline edma_transfer_size_t EDMA_GetTransferSize(uint32_t width)
Get the transfer size.
This function gets the transfer size.
- Parameters:
width – transfer width(bytes).
- Returns:
The transfer size.
-
void EDMA_HandleIRQ(edma_handle_t *handle)
eDMA IRQ handler for the current major loop transfer completion.
This function clears the channel major interrupt flag and calls the callback function if it is not NULL.
- Parameters:
handle – eDMA handle pointer.
-
FSL_EDMA_DRIVER_VERSION
eDMA driver version
Version 2.5.3.
-
enum _edma_transfer_size
eDMA transfer configuration
Values:
-
enumerator kEDMA_TransferSize1Bytes
Source/Destination data transfer size is 1 byte every time
-
enumerator kEDMA_TransferSize2Bytes
Source/Destination data transfer size is 2 bytes every time
-
enumerator kEDMA_TransferSize4Bytes
Source/Destination data transfer size is 4 bytes every time
-
enumerator kEDMA_TransferSize8Bytes
Source/Destination data transfer size is 8 bytes every time
-
enumerator kEDMA_TransferSize16Bytes
Source/Destination data transfer size is 16 bytes every time
-
enumerator kEDMA_TransferSize32Bytes
Source/Destination data transfer size is 32 bytes every time
-
enumerator kEDMA_TransferSize64Bytes
Source/Destination data transfer size is 64 bytes every time
-
enumerator kEDMA_TransferSize1Bytes
-
enum _edma_modulo
eDMA modulo configuration
Values:
-
enumerator kEDMA_ModuloDisable
Disable modulo
-
enumerator kEDMA_Modulo2bytes
Circular buffer size is 2 bytes.
-
enumerator kEDMA_Modulo4bytes
Circular buffer size is 4 bytes.
-
enumerator kEDMA_Modulo8bytes
Circular buffer size is 8 bytes.
-
enumerator kEDMA_Modulo16bytes
Circular buffer size is 16 bytes.
-
enumerator kEDMA_Modulo32bytes
Circular buffer size is 32 bytes.
-
enumerator kEDMA_Modulo64bytes
Circular buffer size is 64 bytes.
-
enumerator kEDMA_Modulo128bytes
Circular buffer size is 128 bytes.
-
enumerator kEDMA_Modulo256bytes
Circular buffer size is 256 bytes.
-
enumerator kEDMA_Modulo512bytes
Circular buffer size is 512 bytes.
-
enumerator kEDMA_Modulo1Kbytes
Circular buffer size is 1 K bytes.
-
enumerator kEDMA_Modulo2Kbytes
Circular buffer size is 2 K bytes.
-
enumerator kEDMA_Modulo4Kbytes
Circular buffer size is 4 K bytes.
-
enumerator kEDMA_Modulo8Kbytes
Circular buffer size is 8 K bytes.
-
enumerator kEDMA_Modulo16Kbytes
Circular buffer size is 16 K bytes.
-
enumerator kEDMA_Modulo32Kbytes
Circular buffer size is 32 K bytes.
-
enumerator kEDMA_Modulo64Kbytes
Circular buffer size is 64 K bytes.
-
enumerator kEDMA_Modulo128Kbytes
Circular buffer size is 128 K bytes.
-
enumerator kEDMA_Modulo256Kbytes
Circular buffer size is 256 K bytes.
-
enumerator kEDMA_Modulo512Kbytes
Circular buffer size is 512 K bytes.
-
enumerator kEDMA_Modulo1Mbytes
Circular buffer size is 1 M bytes.
-
enumerator kEDMA_Modulo2Mbytes
Circular buffer size is 2 M bytes.
-
enumerator kEDMA_Modulo4Mbytes
Circular buffer size is 4 M bytes.
-
enumerator kEDMA_Modulo8Mbytes
Circular buffer size is 8 M bytes.
-
enumerator kEDMA_Modulo16Mbytes
Circular buffer size is 16 M bytes.
-
enumerator kEDMA_Modulo32Mbytes
Circular buffer size is 32 M bytes.
-
enumerator kEDMA_Modulo64Mbytes
Circular buffer size is 64 M bytes.
-
enumerator kEDMA_Modulo128Mbytes
Circular buffer size is 128 M bytes.
-
enumerator kEDMA_Modulo256Mbytes
Circular buffer size is 256 M bytes.
-
enumerator kEDMA_Modulo512Mbytes
Circular buffer size is 512 M bytes.
-
enumerator kEDMA_Modulo1Gbytes
Circular buffer size is 1 G bytes.
-
enumerator kEDMA_Modulo2Gbytes
Circular buffer size is 2 G bytes.
-
enumerator kEDMA_ModuloDisable
-
enum _edma_bandwidth
Bandwidth control.
Values:
-
enumerator kEDMA_BandwidthStallNone
No eDMA engine stalls.
-
enumerator kEDMA_BandwidthStall4Cycle
eDMA engine stalls for 4 cycles after each read/write.
-
enumerator kEDMA_BandwidthStall8Cycle
eDMA engine stalls for 8 cycles after each read/write.
-
enumerator kEDMA_BandwidthStallNone
-
enum _edma_channel_link_type
Channel link type.
Values:
-
enumerator kEDMA_LinkNone
No channel link
-
enumerator kEDMA_MinorLink
Channel link after each minor loop
-
enumerator kEDMA_MajorLink
Channel link while major loop count exhausted
-
enumerator kEDMA_LinkNone
eDMA channel status flags, _edma_channel_status_flags
Values:
-
enumerator kEDMA_DoneFlag
DONE flag, set while transfer finished, CITER value exhausted
-
enumerator kEDMA_ErrorFlag
eDMA error flag, an error occurred in a transfer
-
enumerator kEDMA_InterruptFlag
eDMA interrupt flag, set while an interrupt occurred of this channel
-
enumerator kEDMA_DoneFlag
eDMA channel error status flags, _edma_error_status_flags
Values:
-
enumerator kEDMA_DestinationBusErrorFlag
Bus error on destination address
-
enumerator kEDMA_SourceBusErrorFlag
Bus error on the source address
-
enumerator kEDMA_ScatterGatherErrorFlag
Error on the Scatter/Gather address, not 32byte aligned.
-
enumerator kEDMA_NbytesErrorFlag
NBYTES/CITER configuration error
-
enumerator kEDMA_DestinationOffsetErrorFlag
Destination offset not aligned with destination size
-
enumerator kEDMA_DestinationAddressErrorFlag
Destination address not aligned with destination size
-
enumerator kEDMA_SourceOffsetErrorFlag
Source offset not aligned with source size
-
enumerator kEDMA_SourceAddressErrorFlag
Source address not aligned with source size
-
enumerator kEDMA_TransferCanceledFlag
Transfer cancelled
-
enumerator kEDMA_ErrorChannelFlag
Error channel number of the cancelled channel number
-
enumerator kEDMA_ValidFlag
No error occurred, this bit is 0. Otherwise, it is 1.
-
enumerator kEDMA_DestinationBusErrorFlag
eDMA channel system bus information, _edma_channel_sys_bus_info
Values:
-
enumerator kEDMA_PrivilegedAccessLevel
Privileged Access Level for DMA transfers. 0b - User protection level; 1b - Privileged protection level.
-
enumerator kEDMA_MasterId
DMA’s master ID when channel is active and master ID replication is enabled.
-
enumerator kEDMA_PrivilegedAccessLevel
-
enum _edma_interrupt_enable
eDMA interrupt source
Values:
-
enumerator kEDMA_ErrorInterruptEnable
Enable interrupt while channel error occurs.
-
enumerator kEDMA_MajorInterruptEnable
Enable interrupt while major count exhausted.
-
enumerator kEDMA_HalfInterruptEnable
Enable interrupt while major count to half value.
-
enumerator kEDMA_ErrorInterruptEnable
-
enum _edma_transfer_type
eDMA transfer type
Values:
-
enumerator kEDMA_MemoryToMemory
Transfer from memory to memory
-
enumerator kEDMA_PeripheralToMemory
Transfer from peripheral to memory
-
enumerator kEDMA_MemoryToPeripheral
Transfer from memory to peripheral
-
enumerator kEDMA_PeripheralToPeripheral
Transfer from Peripheral to peripheral
-
enumerator kEDMA_MemoryToMemory
eDMA transfer status, _edma_transfer_status
Values:
-
enumerator kStatus_EDMA_QueueFull
TCD queue is full.
-
enumerator kStatus_EDMA_Busy
Channel is busy and can’t handle the transfer request.
-
enumerator kStatus_EDMA_QueueFull
-
typedef enum _edma_transfer_size edma_transfer_size_t
eDMA transfer configuration
-
typedef enum _edma_modulo edma_modulo_t
eDMA modulo configuration
-
typedef enum _edma_bandwidth edma_bandwidth_t
Bandwidth control.
-
typedef enum _edma_channel_link_type edma_channel_link_type_t
Channel link type.
-
typedef enum _edma_interrupt_enable edma_interrupt_enable_t
eDMA interrupt source
-
typedef enum _edma_transfer_type edma_transfer_type_t
eDMA transfer type
-
typedef struct _edma_config edma_config_t
eDMA global configuration structure.
-
typedef struct _edma_transfer_config edma_transfer_config_t
eDMA transfer configuration
This structure configures the source/destination transfer attribute.
-
typedef struct _edma_channel_Preemption_config edma_channel_Preemption_config_t
eDMA channel priority configuration
-
typedef struct _edma_minor_offset_config edma_minor_offset_config_t
eDMA minor offset configuration
-
typedef struct _edma_tcd edma_tcd_t
eDMA TCD.
This structure is same as TCD register which is described in reference manual, and is used to configure the scatter/gather feature as a next hardware TCD.
-
typedef void (*edma_callback)(struct _edma_handle *handle, void *userData, bool transferDone, uint32_t tcds)
Define callback function for eDMA.
-
typedef uint32_t (*edma_memorymap_callback)(uint32_t addr)
Memroy map function callback for DMA.
-
typedef struct _edma_handle edma_handle_t
eDMA transfer handle structure
-
struct _edma_config
- #include <fsl_edma.h>
eDMA global configuration structure.
Public Members
-
bool enableMasterIdReplication
Enable (true) master ID replication. If Master ID replication is disabled, the privileged protection level (supervisor mode) for DMA transfers is used.
-
bool enableHaltOnError
Enable (true) transfer halt on error. Any error causes the HALT bit to set. Subsequently, all service requests are ignored until the HALT bit is cleared.
-
bool enableRoundRobinArbitration
Enable (true) round robin channel arbitration method or fixed priority arbitration is used for channel selection
-
bool enableDebugMode
Enable(true) eDMA debug mode. When in debug mode, the eDMA stalls the start of a new channel. Executing channels are allowed to complete.
-
bool enableMasterIdReplication
-
struct _edma_transfer_config
- #include <fsl_edma.h>
eDMA transfer configuration
This structure configures the source/destination transfer attribute.
Public Members
-
uint32_t srcAddr
Source data address.
-
uint32_t destAddr
Destination data address.
-
edma_transfer_size_t srcTransferSize
Source data transfer size.
-
edma_transfer_size_t destTransferSize
Destination data transfer size.
-
int16_t srcOffset
Sign-extended offset applied to the current source address to form the next-state value as each source read is completed.
-
int16_t destOffset
Sign-extended offset applied to the current destination address to form the next-state value as each destination write is completed.
-
uint32_t minorLoopBytes
Bytes to transfer in a minor loop
-
uint32_t majorLoopCounts
Major loop iteration count.
-
uint32_t srcAddr
-
struct _edma_channel_Preemption_config
- #include <fsl_edma.h>
eDMA channel priority configuration
Public Members
-
bool enableChannelPreemption
If true: a channel can be suspended by other channel with higher priority
-
bool enablePreemptAbility
If true: a channel can suspend other channel with low priority
-
uint8_t channelPriority
Channel priority
-
bool enableChannelPreemption
-
struct _edma_minor_offset_config
- #include <fsl_edma.h>
eDMA minor offset configuration
Public Members
-
bool enableSrcMinorOffset
Enable(true) or Disable(false) source minor loop offset.
-
bool enableDestMinorOffset
Enable(true) or Disable(false) destination minor loop offset.
-
uint32_t minorOffset
Offset for a minor loop mapping.
-
bool enableSrcMinorOffset
-
struct _edma_tcd
- #include <fsl_edma.h>
eDMA TCD.
This structure is same as TCD register which is described in reference manual, and is used to configure the scatter/gather feature as a next hardware TCD.
Public Members
- __IO uint32_t SADDR
SADDR register, used to save source address
- __IO uint16_t SOFF
SOFF register, save offset bytes every transfer
- __IO uint16_t ATTR
ATTR register, source/destination transfer size and modulo
- __IO uint32_t NBYTES
Nbytes register, minor loop length in bytes
- __IO uint32_t SLAST
SLAST register
- __IO uint32_t DADDR
DADDR register, used for destination address
- __IO uint16_t DOFF
DOFF register, used for destination offset
- __IO uint16_t CITER
CITER register, current minor loop numbers, for unfinished minor loop.
- __IO uint32_t DLAST_SGA
DLASTSGA register, next stcd address used in scatter-gather mode
- __IO uint16_t CSR
CSR register, for TCD control status
- __IO uint16_t BITER
BITER register, begin minor loop count.
-
struct _edma_handle
- #include <fsl_edma.h>
eDMA transfer handle structure
Public Members
-
edma_callback callback
Callback function for major count exhausted.
-
void *userData
Callback function parameter.
-
DMA_Type *base
eDMA peripheral base address.
-
edma_tcd_t *tcdPool
Pointer to memory stored TCDs.
-
uint8_t channel
eDMA channel number.
-
volatile int8_t header
The first TCD index.
-
volatile int8_t tail
The last TCD index.
-
volatile int8_t tcdUsed
The number of used TCD slots.
-
volatile int8_t tcdSize
The total number of TCD slots in the queue.
-
uint8_t flags
The status of the current channel.
-
edma_memorymap_callback memoryCallback
Callback function for memory map convert in complex system
-
edma_callback callback
ECSPI: Enhanced Configurable Serial Peripheral Interface Driver#
ECSPI Driver#
-
void ECSPI_MasterGetDefaultConfig(ecspi_master_config_t *config)
Sets the ECSPI configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in ECSPI_MasterInit(). User may use the initialized structure unchanged in ECSPI_MasterInit, or modify some fields of the structure before calling ECSPI_MasterInit. After calling this API, the master is ready to transfer. Example:
ecspi_master_config_t config; ECSPI_MasterGetDefaultConfig(&config);
- Parameters:
config – pointer to config structure
-
void ECSPI_MasterInit(ECSPI_Type *base, const ecspi_master_config_t *config, uint32_t srcClock_Hz)
Initializes the ECSPI with configuration.
The configuration structure can be filled by user from scratch, or be set with default values by ECSPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer. Example
ecspi_master_config_t config = { .baudRate_Bps = 400000, ... }; ECSPI_MasterInit(ECSPI0, &config);
- Parameters:
base – ECSPI base pointer
config – pointer to master configuration structure
srcClock_Hz – Source clock frequency.
-
void ECSPI_SlaveGetDefaultConfig(ecspi_slave_config_t *config)
Sets the ECSPI configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in ECSPI_SlaveInit(). User may use the initialized structure unchanged in ECSPI_SlaveInit(), or modify some fields of the structure before calling ECSPI_SlaveInit(). After calling this API, the master is ready to transfer. Example:
ecspi_Slaveconfig_t config; ECSPI_SlaveGetDefaultConfig(&config);
- Parameters:
config – pointer to config structure
-
void ECSPI_SlaveInit(ECSPI_Type *base, const ecspi_slave_config_t *config)
Initializes the ECSPI with configuration.
The configuration structure can be filled by user from scratch, or be set with default values by ECSPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer. Example
ecspi_Salveconfig_t config = { .baudRate_Bps = 400000, ... }; ECSPI_SlaveInit(ECSPI1, &config);
- Parameters:
base – ECSPI base pointer
config – pointer to master configuration structure
-
void ECSPI_Deinit(ECSPI_Type *base)
De-initializes the ECSPI.
Calling this API resets the ECSPI module, gates the ECSPI clock. The ECSPI module can’t work unless calling the ECSPI_MasterInit/ECSPI_SlaveInit to initialize module.
- Parameters:
base – ECSPI base pointer
-
static inline void ECSPI_Enable(ECSPI_Type *base, bool enable)
Enables or disables the ECSPI.
- Parameters:
base – ECSPI base pointer
enable – pass true to enable module, false to disable module
-
static inline uint32_t ECSPI_GetStatusFlags(ECSPI_Type *base)
Gets the status flag.
- Parameters:
base – ECSPI base pointer
- Returns:
ECSPI Status, use status flag to AND _ecspi_flags could get the related status.
-
static inline void ECSPI_ClearStatusFlags(ECSPI_Type *base, uint32_t mask)
Clear the status flag.
- Parameters:
base – ECSPI base pointer
mask – ECSPI Status, use status flag to AND _ecspi_flags could get the related status.
-
static inline void ECSPI_EnableInterrupts(ECSPI_Type *base, uint32_t mask)
Enables the interrupt for the ECSPI.
- Parameters:
base – ECSPI base pointer
mask – ECSPI interrupt source. The parameter can be any combination of the following values:
kECSPI_TxfifoEmptyInterruptEnable
kECSPI_TxFifoDataRequstInterruptEnable
kECSPI_TxFifoFullInterruptEnable
kECSPI_RxFifoReadyInterruptEnable
kECSPI_RxFifoDataRequstInterruptEnable
kECSPI_RxFifoFullInterruptEnable
kECSPI_RxFifoOverFlowInterruptEnable
kECSPI_TransferCompleteInterruptEnable
kECSPI_AllInterruptEnable
-
static inline void ECSPI_DisableInterrupts(ECSPI_Type *base, uint32_t mask)
Disables the interrupt for the ECSPI.
- Parameters:
base – ECSPI base pointer
mask – ECSPI interrupt source. The parameter can be any combination of the following values:
kECSPI_TxfifoEmptyInterruptEnable
kECSPI_TxFifoDataRequstInterruptEnable
kECSPI_TxFifoFullInterruptEnable
kECSPI_RxFifoReadyInterruptEnable
kECSPI_RxFifoDataRequstInterruptEnable
kECSPI_RxFifoFullInterruptEnable
kECSPI_RxFifoOverFlowInterruptEnable
kECSPI_TransferCompleteInterruptEnable
kECSPI_AllInterruptEnable
-
static inline void ECSPI_SoftwareReset(ECSPI_Type *base)
Software reset.
- Parameters:
base – ECSPI base pointer
-
static inline bool ECSPI_IsMaster(ECSPI_Type *base, ecspi_channel_source_t channel)
Mode check.
- Parameters:
base – ECSPI base pointer
channel – ECSPI channel source
- Returns:
mode of channel
-
static inline void ECSPI_EnableDMA(ECSPI_Type *base, uint32_t mask, bool enable)
Enables the DMA source for ECSPI.
- Parameters:
base – ECSPI base pointer
mask – ECSPI DMA source. The parameter can be any of the following values:
kECSPI_TxDmaEnable
kECSPI_RxDmaEnable
kECSPI_DmaAllEnable
enable – True means enable DMA, false means disable DMA
-
static inline uint8_t ECSPI_GetTxFifoCount(ECSPI_Type *base)
Get the Tx FIFO data count.
- Parameters:
base – ECSPI base pointer.
- Returns:
the number of words in Tx FIFO buffer.
-
static inline uint8_t ECSPI_GetRxFifoCount(ECSPI_Type *base)
Get the Rx FIFO data count.
- Parameters:
base – ECSPI base pointer.
- Returns:
the number of words in Rx FIFO buffer.
-
static inline void ECSPI_SetChannelSelect(ECSPI_Type *base, ecspi_channel_source_t channel)
Set channel select for transfer.
- Parameters:
base – ECSPI base pointer
channel – Channel source.
-
void ECSPI_SetChannelConfig(ECSPI_Type *base, ecspi_channel_source_t channel, const ecspi_channel_config_t *config)
Set channel select configuration for transfer.
The purpose of this API is to set the channel will be use to transfer. User may use this API after instance has been initialized or before transfer start. The configuration structure ecspi_channel_config can be filled by user from scratch. After calling this API, user can select this channel as transfer channel.
- Parameters:
base – ECSPI base pointer
channel – Channel source.
config – Configuration struct of channel
-
void ECSPI_SetBaudRate(ECSPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the baud rate for ECSPI transfer. This is only used in master.
- Parameters:
base – ECSPI base pointer
baudRate_Bps – baud rate needed in Hz.
srcClock_Hz – ECSPI source clock frequency in Hz.
-
status_t ECSPI_WriteBlocking(ECSPI_Type *base, const uint32_t *buffer, size_t size)
Sends a buffer of data bytes using a blocking method.
Note
This function blocks via polling until all bytes have been sent.
- Parameters:
base – ECSPI base pointer
buffer – The data bytes to send
size – The number of data bytes to send
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_ECSPI_Timeout – The transfer timed out and was aborted.
-
static inline void ECSPI_WriteData(ECSPI_Type *base, uint32_t data)
Writes a data into the ECSPI data register.
- Parameters:
base – ECSPI base pointer
data – Data needs to be write.
-
static inline uint32_t ECSPI_ReadData(ECSPI_Type *base)
Gets a data from the ECSPI data register.
- Parameters:
base – ECSPI base pointer
- Returns:
Data in the register.
-
void ECSPI_MasterTransferCreateHandle(ECSPI_Type *base, ecspi_master_handle_t *handle, ecspi_master_callback_t callback, void *userData)
Initializes the ECSPI master handle.
This function initializes the ECSPI master handle which can be used for other ECSPI master transactional APIs. Usually, for a specified ECSPI instance, call this API once to get the initialized handle.
- Parameters:
base – ECSPI peripheral base address.
handle – ECSPI handle pointer.
callback – Callback function.
userData – User data.
-
status_t ECSPI_MasterTransferBlocking(ECSPI_Type *base, ecspi_transfer_t *xfer)
Transfers a block of data using a polling method.
- Parameters:
base – SPI base pointer
xfer – pointer to spi_xfer_config_t structure
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_ECSPI_Timeout – The transfer timed out and was aborted.
-
status_t ECSPI_MasterTransferNonBlocking(ECSPI_Type *base, ecspi_master_handle_t *handle, ecspi_transfer_t *xfer)
Performs a non-blocking ECSPI interrupt transfer.
Note
The API immediately returns after transfer initialization is finished.
Note
If ECSPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
- Parameters:
base – ECSPI peripheral base address.
handle – pointer to ecspi_master_handle_t structure which stores the transfer state
xfer – pointer to ecspi_transfer_t structure
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_ECSPI_Busy – ECSPI is not idle, is running another transfer.
-
status_t ECSPI_MasterTransferGetCount(ECSPI_Type *base, ecspi_master_handle_t *handle, size_t *count)
Gets the bytes of the ECSPI interrupt transferred.
- Parameters:
base – ECSPI peripheral base address.
handle – Pointer to ECSPI transfer handle, this should be a static variable.
count – Transferred bytes of ECSPI master.
- Return values:
kStatus_ECSPI_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
void ECSPI_MasterTransferAbort(ECSPI_Type *base, ecspi_master_handle_t *handle)
Aborts an ECSPI transfer using interrupt.
- Parameters:
base – ECSPI peripheral base address.
handle – Pointer to ECSPI transfer handle, this should be a static variable.
-
void ECSPI_MasterTransferHandleIRQ(ECSPI_Type *base, ecspi_master_handle_t *handle)
Interrupts the handler for the ECSPI.
- Parameters:
base – ECSPI peripheral base address.
handle – pointer to ecspi_master_handle_t structure which stores the transfer state.
-
void ECSPI_SlaveTransferCreateHandle(ECSPI_Type *base, ecspi_slave_handle_t *handle, ecspi_slave_callback_t callback, void *userData)
Initializes the ECSPI slave handle.
This function initializes the ECSPI slave handle which can be used for other ECSPI slave transactional APIs. Usually, for a specified ECSPI instance, call this API once to get the initialized handle.
- Parameters:
base – ECSPI peripheral base address.
handle – ECSPI handle pointer.
callback – Callback function.
userData – User data.
-
static inline status_t ECSPI_SlaveTransferNonBlocking(ECSPI_Type *base, ecspi_slave_handle_t *handle, ecspi_transfer_t *xfer)
Performs a non-blocking ECSPI slave interrupt transfer.
Note
The API returns immediately after the transfer initialization is finished.
- Parameters:
base – ECSPI peripheral base address.
handle – pointer to ecspi_master_handle_t structure which stores the transfer state
xfer – pointer to ecspi_transfer_t structure
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_ECSPI_Busy – ECSPI is not idle, is running another transfer.
-
static inline status_t ECSPI_SlaveTransferGetCount(ECSPI_Type *base, ecspi_slave_handle_t *handle, size_t *count)
Gets the bytes of the ECSPI interrupt transferred.
- Parameters:
base – ECSPI peripheral base address.
handle – Pointer to ECSPI transfer handle, this should be a static variable.
count – Transferred bytes of ECSPI slave.
- Return values:
kStatus_ECSPI_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
static inline void ECSPI_SlaveTransferAbort(ECSPI_Type *base, ecspi_slave_handle_t *handle)
Aborts an ECSPI slave transfer using interrupt.
- Parameters:
base – ECSPI peripheral base address.
handle – Pointer to ECSPI transfer handle, this should be a static variable.
-
void ECSPI_SlaveTransferHandleIRQ(ECSPI_Type *base, ecspi_slave_handle_t *handle)
Interrupts a handler for the ECSPI slave.
- Parameters:
base – ECSPI peripheral base address.
handle – pointer to ecspi_slave_handle_t structure which stores the transfer state
-
FSL_ECSPI_DRIVER_VERSION
ECSPI driver version.
Return status for the ECSPI driver.
Values:
-
enumerator kStatus_ECSPI_Busy
ECSPI bus is busy
-
enumerator kStatus_ECSPI_Idle
ECSPI is idle
-
enumerator kStatus_ECSPI_Error
ECSPI error
-
enumerator kStatus_ECSPI_HardwareOverFlow
ECSPI hardware overflow
-
enumerator kStatus_ECSPI_Timeout
ECSPI timeout polling status flags.
-
enumerator kStatus_ECSPI_Busy
-
enum _ecspi_clock_polarity
ECSPI clock polarity configuration.
Values:
-
enumerator kECSPI_PolarityActiveHigh
Active-high ECSPI polarity high (idles low).
-
enumerator kECSPI_PolarityActiveLow
Active-low ECSPI polarity low (idles high).
-
enumerator kECSPI_PolarityActiveHigh
-
enum _ecspi_clock_phase
ECSPI clock phase configuration.
Values:
-
enumerator kECSPI_ClockPhaseFirstEdge
First edge on SPSCK occurs at the middle of the first cycle of a data transfer.
-
enumerator kECSPI_ClockPhaseSecondEdge
First edge on SPSCK occurs at the start of the first cycle of a data transfer.
-
enumerator kECSPI_ClockPhaseFirstEdge
ECSPI interrupt sources.
Values:
-
enumerator kECSPI_TxfifoEmptyInterruptEnable
Transmit FIFO buffer empty interrupt
-
enumerator kECSPI_TxFifoDataRequstInterruptEnable
Transmit FIFO data requst interrupt
-
enumerator kECSPI_TxFifoFullInterruptEnable
Transmit FIFO full interrupt
-
enumerator kECSPI_RxFifoReadyInterruptEnable
Receiver FIFO ready interrupt
-
enumerator kECSPI_RxFifoDataRequstInterruptEnable
Receiver FIFO data requst interrupt
-
enumerator kECSPI_RxFifoFullInterruptEnable
Receiver FIFO full interrupt
-
enumerator kECSPI_RxFifoOverFlowInterruptEnable
Receiver FIFO buffer overflow interrupt
-
enumerator kECSPI_TransferCompleteInterruptEnable
Transfer complete interrupt
-
enumerator kECSPI_AllInterruptEnable
All interrupt
-
enumerator kECSPI_TxfifoEmptyInterruptEnable
ECSPI status flags.
Values:
-
enumerator kECSPI_TxfifoEmptyFlag
Transmit FIFO buffer empty flag
-
enumerator kECSPI_TxFifoDataRequstFlag
Transmit FIFO data requst flag
-
enumerator kECSPI_TxFifoFullFlag
Transmit FIFO full flag
-
enumerator kECSPI_RxFifoReadyFlag
Receiver FIFO ready flag
-
enumerator kECSPI_RxFifoDataRequstFlag
Receiver FIFO data requst flag
-
enumerator kECSPI_RxFifoFullFlag
Receiver FIFO full flag
-
enumerator kECSPI_RxFifoOverFlowFlag
Receiver FIFO buffer overflow flag
-
enumerator kECSPI_TransferCompleteFlag
Transfer complete flag
-
enumerator kECSPI_TxfifoEmptyFlag
ECSPI DMA enable.
Values:
-
enumerator kECSPI_TxDmaEnable
Tx DMA request source
-
enumerator kECSPI_RxDmaEnable
Rx DMA request source
-
enumerator kECSPI_DmaAllEnable
All DMA request source
-
enumerator kECSPI_TxDmaEnable
-
enum _ecspi_data_ready
ECSPI SPI_RDY signal configuration.
Values:
-
enumerator kECSPI_DataReadyIgnore
SPI_RDY signal is ignored
-
enumerator kECSPI_DataReadyFallingEdge
SPI_RDY signal will be triggerd by the falling edge
-
enumerator kECSPI_DataReadyLowLevel
SPI_RDY signal will be triggerd by a low level
-
enumerator kECSPI_DataReadyIgnore
-
enum _ecspi_channel_source
ECSPI channel select source.
Values:
-
enumerator kECSPI_Channel0
Channel 0 is selectd
-
enumerator kECSPI_Channel1
Channel 1 is selectd
-
enumerator kECSPI_Channel2
Channel 2 is selectd
-
enumerator kECSPI_Channel3
Channel 3 is selectd
-
enumerator kECSPI_Channel0
-
enum _ecspi_master_slave_mode
ECSPI master or slave mode configuration.
Values:
-
enumerator kECSPI_Slave
ECSPI peripheral operates in slave mode.
-
enumerator kECSPI_Master
ECSPI peripheral operates in master mode.
-
enumerator kECSPI_Slave
-
enum _ecspi_data_line_inactive_state_t
ECSPI data line inactive state configuration.
Values:
-
enumerator kECSPI_DataLineInactiveStateHigh
The data line inactive state stays high.
-
enumerator kECSPI_DataLineInactiveStateLow
The data line inactive state stays low.
-
enumerator kECSPI_DataLineInactiveStateHigh
-
enum _ecspi_clock_inactive_state_t
ECSPI clock inactive state configuration.
Values:
-
enumerator kECSPI_ClockInactiveStateLow
The SCLK inactive state stays low.
-
enumerator kECSPI_ClockInactiveStateHigh
The SCLK inactive state stays high.
-
enumerator kECSPI_ClockInactiveStateLow
-
enum _ecspi_chip_select_active_state_t
ECSPI active state configuration.
Values:
-
enumerator kECSPI_ChipSelectActiveStateLow
The SS signal line active stays low.
-
enumerator kECSPI_ChipSelectActiveStateHigh
The SS signal line active stays high.
-
enumerator kECSPI_ChipSelectActiveStateLow
-
enum _ecspi_sample_period_clock_source
ECSPI sample period clock configuration.
Values:
-
enumerator kECSPI_spiClock
The sample period clock source is SCLK.
-
enumerator kECSPI_lowFreqClock
The sample seriod clock source is low_frequency reference clock(32.768 kHz).
-
enumerator kECSPI_spiClock
-
typedef enum _ecspi_clock_polarity ecspi_clock_polarity_t
ECSPI clock polarity configuration.
-
typedef enum _ecspi_clock_phase ecspi_clock_phase_t
ECSPI clock phase configuration.
-
typedef enum _ecspi_data_ready ecspi_Data_ready_t
ECSPI SPI_RDY signal configuration.
-
typedef enum _ecspi_channel_source ecspi_channel_source_t
ECSPI channel select source.
-
typedef enum _ecspi_master_slave_mode ecspi_master_slave_mode_t
ECSPI master or slave mode configuration.
-
typedef enum _ecspi_data_line_inactive_state_t ecspi_data_line_inactive_state_t
ECSPI data line inactive state configuration.
-
typedef enum _ecspi_clock_inactive_state_t ecspi_clock_inactive_state_t
ECSPI clock inactive state configuration.
-
typedef enum _ecspi_chip_select_active_state_t ecspi_chip_select_active_state_t
ECSPI active state configuration.
-
typedef enum _ecspi_sample_period_clock_source ecspi_sample_period_clock_source_t
ECSPI sample period clock configuration.
-
typedef struct _ecspi_channel_config ecspi_channel_config_t
ECSPI user channel configure structure.
-
typedef struct _ecspi_master_config ecspi_master_config_t
ECSPI master configure structure.
-
typedef struct _ecspi_slave_config ecspi_slave_config_t
ECSPI slave configure structure.
-
typedef struct _ecspi_transfer ecspi_transfer_t
ECSPI transfer structure.
-
typedef struct _ecspi_master_handle ecspi_master_handle_t
-
typedef ecspi_master_handle_t ecspi_slave_handle_t
Slave handle is the same with master handle
-
typedef void (*ecspi_master_callback_t)(ECSPI_Type *base, ecspi_master_handle_t *handle, status_t status, void *userData)
ECSPI master callback for finished transmit.
-
typedef void (*ecspi_slave_callback_t)(ECSPI_Type *base, ecspi_slave_handle_t *handle, status_t status, void *userData)
ECSPI slave callback for finished transmit.
-
uint32_t ECSPI_GetInstance(ECSPI_Type *base)
Get the instance for ECSPI module.
- Parameters:
base – ECSPI base address
-
ECSPI_DUMMYDATA
ECSPI dummy transfer data, the data is sent while txBuff is NULL.
-
SPI_RETRY_TIMES
Retry times for waiting flag.
-
struct _ecspi_channel_config
- #include <fsl_ecspi.h>
ECSPI user channel configure structure.
Public Members
-
ecspi_master_slave_mode_t channelMode
Channel mode
-
ecspi_clock_inactive_state_t clockInactiveState
Clock line (SCLK) inactive state
-
ecspi_data_line_inactive_state_t dataLineInactiveState
Data line (MOSI&MISO) inactive state
-
ecspi_chip_select_active_state_t chipSlectActiveState
Chip select(SS) line active state
-
ecspi_clock_polarity_t polarity
Clock polarity
-
ecspi_clock_phase_t phase
Clock phase
-
ecspi_master_slave_mode_t channelMode
-
struct _ecspi_master_config
- #include <fsl_ecspi.h>
ECSPI master configure structure.
Public Members
-
ecspi_channel_source_t channel
Channel number
-
ecspi_channel_config_t channelConfig
Channel configuration
-
ecspi_sample_period_clock_source_t samplePeriodClock
Sample period clock source
-
uint16_t burstLength
Burst length. The length shall be less than 4096 bits
-
uint8_t chipSelectDelay
SS delay time
-
uint16_t samplePeriod
Sample period
-
uint8_t txFifoThreshold
TX Threshold
-
uint8_t rxFifoThreshold
RX Threshold
-
uint32_t baudRate_Bps
ECSPI baud rate for master mode
-
bool enableLoopback
Enable the ECSPI loopback test.
-
ecspi_channel_source_t channel
-
struct _ecspi_slave_config
- #include <fsl_ecspi.h>
ECSPI slave configure structure.
Public Members
-
uint16_t burstLength
Burst length. The length shall be less than 4096 bits
-
uint8_t txFifoThreshold
TX Threshold
-
uint8_t rxFifoThreshold
RX Threshold
-
ecspi_channel_config_t channelConfig
Channel configuration
-
uint16_t burstLength
-
struct _ecspi_transfer
- #include <fsl_ecspi.h>
ECSPI transfer structure.
Public Members
-
const uint32_t *txData
Send buffer
-
uint32_t *rxData
Receive buffer
-
size_t dataSize
Transfer bytes
-
ecspi_channel_source_t channel
ECSPI channel select
-
const uint32_t *txData
-
struct _ecspi_master_handle
- #include <fsl_ecspi.h>
ECSPI master handle structure.
Public Members
-
ecspi_channel_source_t channel
Channel number
-
const uint32_t *volatile txData
Transfer buffer
-
uint32_t *volatile rxData
Receive buffer
-
volatile size_t txRemainingBytes
Send data remaining in bytes
-
volatile size_t rxRemainingBytes
Receive data remaining in bytes
-
volatile uint32_t state
ECSPI internal state
-
size_t transferSize
Bytes to be transferred
-
ecspi_master_callback_t callback
ECSPI callback
-
void *userData
Callback parameter
-
ecspi_channel_source_t channel
ECSPI SDMA Driver#
-
void ECSPI_MasterTransferCreateHandleSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle, ecspi_sdma_callback_t callback, void *userData, sdma_handle_t *txHandle, sdma_handle_t *rxHandle, uint32_t eventSourceTx, uint32_t eventSourceRx, uint32_t TxChannel, uint32_t RxChannel)
Initialize the ECSPI master SDMA handle.
This function initializes the ECSPI master SDMA handle which can be used for other SPI master transactional APIs. Usually, for a specified ECSPI instance, user need only call this API once to get the initialized handle.
- Parameters:
base – ECSPI peripheral base address.
handle – ECSPI handle pointer.
callback – User callback function called at the end of a transfer.
userData – User data for callback.
txHandle – SDMA handle pointer for ECSPI Tx, the handle shall be static allocated by users.
rxHandle – SDMA handle pointer for ECSPI Rx, the handle shall be static allocated by users.
eventSourceTx – event source for ECSPI send, which can be found in SDMA mapping.
eventSourceRx – event source for ECSPI receive, which can be found in SDMA mapping.
TxChannel – SDMA channel for ECSPI send.
RxChannel – SDMA channel for ECSPI receive.
-
void ECSPI_SlaveTransferCreateHandleSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle, ecspi_sdma_callback_t callback, void *userData, sdma_handle_t *txHandle, sdma_handle_t *rxHandle, uint32_t eventSourceTx, uint32_t eventSourceRx, uint32_t TxChannel, uint32_t RxChannel)
Initialize the ECSPI Slave SDMA handle.
This function initializes the ECSPI Slave SDMA handle which can be used for other SPI Slave transactional APIs. Usually, for a specified ECSPI instance, user need only call this API once to get the initialized handle.
- Parameters:
base – ECSPI peripheral base address.
handle – ECSPI handle pointer.
callback – User callback function called at the end of a transfer.
userData – User data for callback.
txHandle – SDMA handle pointer for ECSPI Tx, the handle shall be static allocated by users.
rxHandle – SDMA handle pointer for ECSPI Rx, the handle shall be static allocated by users.
eventSourceTx – event source for ECSPI send, which can be found in SDMA mapping.
eventSourceRx – event source for ECSPI receive, which can be found in SDMA mapping.
TxChannel – SDMA channel for ECSPI send.
RxChannel – SDMA channel for ECSPI receive.
-
status_t ECSPI_MasterTransferSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle, ecspi_transfer_t *xfer)
Perform a non-blocking ECSPI master transfer using SDMA.
Note
This interface returned immediately after transfer initiates.
- Parameters:
base – ECSPI peripheral base address.
handle – ECSPI SDMA handle pointer.
xfer – Pointer to sdma transfer structure.
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_ECSPI_Busy – EECSPI is not idle, is running another transfer.
-
status_t ECSPI_SlaveTransferSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle, ecspi_transfer_t *xfer)
Perform a non-blocking ECSPI slave transfer using SDMA.
Note
This interface returned immediately after transfer initiates.
- Parameters:
base – ECSPI peripheral base address.
handle – ECSPI SDMA handle pointer.
xfer – Pointer to sdma transfer structure.
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_ECSPI_Busy – EECSPI is not idle, is running another transfer.
-
void ECSPI_MasterTransferAbortSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle)
Abort a ECSPI master transfer using SDMA.
- Parameters:
base – ECSPI peripheral base address.
handle – ECSPI SDMA handle pointer.
-
void ECSPI_SlaveTransferAbortSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle)
Abort a ECSPI slave transfer using SDMA.
- Parameters:
base – ECSPI peripheral base address.
handle – ECSPI SDMA handle pointer.
-
FSL_ECSPI_FREERTOS_DRIVER_VERSION
ECSPI FreeRTOS driver version.
-
typedef struct _ecspi_sdma_handle ecspi_sdma_handle_t
-
typedef void (*ecspi_sdma_callback_t)(ECSPI_Type *base, ecspi_sdma_handle_t *handle, status_t status, void *userData)
ECSPI SDMA callback called at the end of transfer.
-
struct _ecspi_sdma_handle
- #include <fsl_ecspi_sdma.h>
ECSPI SDMA transfer handle, users should not touch the content of the handle.
Public Members
-
bool txInProgress
Send transfer finished
-
bool rxInProgress
Receive transfer finished
-
sdma_handle_t *txSdmaHandle
DMA handler for ECSPI send
-
sdma_handle_t *rxSdmaHandle
DMA handler for ECSPI receive
-
ecspi_sdma_callback_t callback
Callback for ECSPI SDMA transfer
-
void *userData
User Data for ECSPI SDMA callback
-
uint32_t state
Internal state of ECSPI SDMA transfer
-
uint32_t ChannelTx
Channel for send handle
-
uint32_t ChannelRx
Channel for receive handler
-
bool txInProgress
ENET: Ethernet MAC Driver#
-
void ENET_GetDefaultConfig(enet_config_t *config)
Gets the ENET default configuration structure.
The purpose of this API is to get the default ENET MAC controller configure structure for ENET_Init(). User may use the initialized structure unchanged in ENET_Init(), or modify some fields of the structure before calling ENET_Init(). Example:
enet_config_t config; ENET_GetDefaultConfig(&config);
- Parameters:
config – The ENET mac controller configuration structure pointer.
-
status_t ENET_Up(ENET_Type *base, enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz)
Initializes the ENET module.
This function initializes the module with the ENET configuration.
Note
ENET has two buffer descriptors legacy buffer descriptors and enhanced IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To use the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor by defining “ENET_ENHANCEDBUFFERDESCRIPTOR_MODE” and calling ENET_Ptp1588Configure() to configure the 1588 feature and related buffers after calling ENET_Up().
- Parameters:
base – ENET peripheral base address.
handle – ENET handler pointer.
config – ENET mac configuration structure pointer. The “enet_config_t” type mac configuration return from ENET_GetDefaultConfig can be used directly. It is also possible to verify the Mac configuration using other methods.
bufferConfig – ENET buffer configuration structure pointer. The buffer configuration should be prepared for ENET Initialization. It is the start address of “ringNum” enet_buffer_config structures. To support added multi-ring features in some soc and compatible with the previous enet driver version. For single ring supported, this bufferConfig is a buffer configure structure pointer, for multi-ring supported and used case, this bufferConfig pointer should be a buffer configure structure array pointer.
macAddr – ENET mac address of Ethernet device. This MAC address should be provided.
srcClock_Hz – The internal module clock source for MII clock.
- Return values:
kStatus_Success – Succeed to initialize the ethernet driver.
kStatus_ENET_InitMemoryFail – Init fails since buffer memory is not enough.
-
status_t ENET_Init(ENET_Type *base, enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz)
Initializes the ENET module.
This function ungates the module clock and initializes it with the ENET configuration.
Note
ENET has two buffer descriptors legacy buffer descriptors and enhanced IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To use the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor by defining “ENET_ENHANCEDBUFFERDESCRIPTOR_MODE” and calling ENET_Ptp1588Configure() to configure the 1588 feature and related buffers after calling ENET_Init().
- Parameters:
base – ENET peripheral base address.
handle – ENET handler pointer.
config – ENET mac configuration structure pointer. The “enet_config_t” type mac configuration return from ENET_GetDefaultConfig can be used directly. It is also possible to verify the Mac configuration using other methods.
bufferConfig – ENET buffer configuration structure pointer. The buffer configuration should be prepared for ENET Initialization. It is the start address of “ringNum” enet_buffer_config structures. To support added multi-ring features in some soc and compatible with the previous enet driver version. For single ring supported, this bufferConfig is a buffer configure structure pointer, for multi-ring supported and used case, this bufferConfig pointer should be a buffer configure structure array pointer.
macAddr – ENET mac address of Ethernet device. This MAC address should be provided.
srcClock_Hz – The internal module clock source for MII clock.
- Return values:
kStatus_Success – Succeed to initialize the ethernet driver.
kStatus_ENET_InitMemoryFail – Init fails since buffer memory is not enough.
-
void ENET_Down(ENET_Type *base)
Stops the ENET module.
This function disables the ENET module.
- Parameters:
base – ENET peripheral base address.
-
void ENET_Deinit(ENET_Type *base)
Deinitializes the ENET module.
This function gates the module clock, clears ENET interrupts, and disables the ENET module.
- Parameters:
base – ENET peripheral base address.
-
static inline void ENET_Reset(ENET_Type *base)
Resets the ENET module.
This function restores the ENET module to reset state. Note that this function sets all registers to reset state. As a result, the ENET module can’t work after calling this function.
- Parameters:
base – ENET peripheral base address.
-
void ENET_SetMII(ENET_Type *base, enet_mii_speed_t speed, enet_mii_duplex_t duplex)
Sets the ENET MII speed and duplex.
This API is provided to dynamically change the speed and dulpex for MAC.
- Parameters:
base – ENET peripheral base address.
speed – The speed of the RMII mode.
duplex – The duplex of the RMII mode.
-
void ENET_SetSMI(ENET_Type *base, uint32_t srcClock_Hz, bool isPreambleDisabled)
Sets the ENET SMI(serial management interface)- MII management interface.
- Parameters:
base – ENET peripheral base address.
srcClock_Hz – This is the ENET module clock frequency. See clock distribution.
isPreambleDisabled – The preamble disable flag.
true Enables the preamble.
false Disables the preamble.
-
static inline bool ENET_GetSMI(ENET_Type *base)
Gets the ENET SMI- MII management interface configuration.
This API is used to get the SMI configuration to check whether the MII management interface has been set.
- Parameters:
base – ENET peripheral base address.
- Returns:
The SMI setup status true or false.
-
static inline uint32_t ENET_ReadSMIData(ENET_Type *base)
Reads data from the PHY register through an SMI interface.
- Parameters:
base – ENET peripheral base address.
- Returns:
The data read from PHY
-
static inline void ENET_StartSMIWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, enet_mii_write_t operation, uint16_t data)
Sends the MDIO IEEE802.3 Clause 22 format write command.
After calling this function, need to check whether the transmission is over then do next MDIO operation. For ease of use, encapsulated ENET_MDIOWrite() can be called. For customized requirements, implement with combining separated APIs.
- Parameters:
base – ENET peripheral base address.
phyAddr – The PHY address. Range from 0 ~ 31.
regAddr – The PHY register address. Range from 0 ~ 31.
operation – The write operation.
data – The data written to PHY.
-
static inline void ENET_StartSMIRead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, enet_mii_read_t operation)
Sends the MDIO IEEE802.3 Clause 22 format read command.
After calling this function, need to check whether the transmission is over then do next MDIO operation. For ease of use, encapsulated ENET_MDIORead() can be called. For customized requirements, implement with combining separated APIs.
- Parameters:
base – ENET peripheral base address.
phyAddr – The PHY address. Range from 0 ~ 31.
regAddr – The PHY register address. Range from 0 ~ 31.
operation – The read operation.
-
status_t ENET_MDIOWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t data)
MDIO write with IEEE802.3 Clause 22 format.
- Parameters:
base – ENET peripheral base address.
phyAddr – The PHY address. Range from 0 ~ 31.
regAddr – The PHY register. Range from 0 ~ 31.
data – The data written to PHY.
- Returns:
kStatus_Success MDIO access succeeds.
- Returns:
kStatus_Timeout MDIO access timeout.
-
status_t ENET_MDIORead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t *pData)
MDIO read with IEEE802.3 Clause 22 format.
- Parameters:
base – ENET peripheral base address.
phyAddr – The PHY address. Range from 0 ~ 31.
regAddr – The PHY register. Range from 0 ~ 31.
pData – The data read from PHY.
- Returns:
kStatus_Success MDIO access succeeds.
- Returns:
kStatus_Timeout MDIO access timeout.
-
static inline void ENET_StartExtC45SMIWriteReg(ENET_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t regAddr)
Sends the MDIO IEEE802.3 Clause 45 format write register command.
After calling this function, need to check whether the transmission is over then do next MDIO operation. For ease of use, encapsulated ENET_MDIOC45Write()/ENET_MDIOC45Read() can be called. For customized requirements, implement with combining separated APIs.
- Parameters:
base – ENET peripheral base address.
portAddr – The MDIO port address(PHY address).
devAddr – The device address.
regAddr – The PHY register address.
-
static inline void ENET_StartExtC45SMIWriteData(ENET_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t data)
Sends the MDIO IEEE802.3 Clause 45 format write data command.
After calling this function, need to check whether the transmission is over then do next MDIO operation. For ease of use, encapsulated ENET_MDIOC45Write() can be called. For customized requirements, implement with combining separated APIs.
- Parameters:
base – ENET peripheral base address.
portAddr – The MDIO port address(PHY address).
devAddr – The device address.
data – The data written to PHY.
-
static inline void ENET_StartExtC45SMIReadData(ENET_Type *base, uint8_t portAddr, uint8_t devAddr)
Sends the MDIO IEEE802.3 Clause 45 format read data command.
After calling this function, need to check whether the transmission is over then do next MDIO operation. For ease of use, encapsulated ENET_MDIOC45Read() can be called. For customized requirements, implement with combining separated APIs.
- Parameters:
base – ENET peripheral base address.
portAddr – The MDIO port address(PHY address).
devAddr – The device address.
-
status_t ENET_MDIOC45Write(ENET_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t regAddr, uint16_t data)
MDIO write with IEEE802.3 Clause 45 format.
- Parameters:
base – ENET peripheral base address.
portAddr – The MDIO port address(PHY address).
devAddr – The device address.
regAddr – The PHY register address.
data – The data written to PHY.
- Returns:
kStatus_Success MDIO access succeeds.
- Returns:
kStatus_Timeout MDIO access timeout.
-
status_t ENET_MDIOC45Read(ENET_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t regAddr, uint16_t *pData)
MDIO read with IEEE802.3 Clause 45 format.
- Parameters:
base – ENET peripheral base address.
portAddr – The MDIO port address(PHY address).
devAddr – The device address.
regAddr – The PHY register address.
pData – The data read from PHY.
- Returns:
kStatus_Success MDIO access succeeds.
- Returns:
kStatus_Timeout MDIO access timeout.
-
static inline void ENET_SetRGMIIClockDelay(ENET_Type *base, bool txEnabled, bool rxEnabled)
Control the usage of the delayed tx/rx RGMII clock.
- Parameters:
base – ENET peripheral base address.
txEnabled – Enable or disable to generate the delayed version of RGMII_TXC.
rxEnabled – Enable or disable to use the delayed version of RGMII_RXC.
-
void ENET_SetMacAddr(ENET_Type *base, uint8_t *macAddr)
Sets the ENET module Mac address.
- Parameters:
base – ENET peripheral base address.
macAddr – The six-byte Mac address pointer. The pointer is allocated by application and input into the API.
-
void ENET_GetMacAddr(ENET_Type *base, uint8_t *macAddr)
Gets the ENET module Mac address.
- Parameters:
base – ENET peripheral base address.
macAddr – The six-byte Mac address pointer. The pointer is allocated by application and input into the API.
-
void ENET_AddMulticastGroup(ENET_Type *base, uint8_t *address)
Adds the ENET device to a multicast group.
- Parameters:
base – ENET peripheral base address.
address – The six-byte multicast group address which is provided by application.
-
void ENET_LeaveMulticastGroup(ENET_Type *base, uint8_t *address)
Moves the ENET device from a multicast group.
- Parameters:
base – ENET peripheral base address.
address – The six-byte multicast group address which is provided by application.
-
static inline void ENET_ActiveRead(ENET_Type *base)
Activates frame reception for multiple rings.
This function is to active the enet read process.
Note
This must be called after the MAC configuration and state are ready. It must be called after the ENET_Init(). This should be called when the frame reception is required.
- Parameters:
base – ENET peripheral base address.
-
static inline void ENET_EnableSleepMode(ENET_Type *base, bool enable)
Enables/disables the MAC to enter sleep mode. This function is used to set the MAC enter sleep mode. When entering sleep mode, the magic frame wakeup interrupt should be enabled to wake up MAC from the sleep mode and reset it to normal mode.
- Parameters:
base – ENET peripheral base address.
enable – True enable sleep mode, false disable sleep mode.
-
static inline void ENET_GetAccelFunction(ENET_Type *base, uint32_t *txAccelOption, uint32_t *rxAccelOption)
Gets ENET transmit and receive accelerator functions from MAC controller.
- Parameters:
base – ENET peripheral base address.
txAccelOption – The transmit accelerator option. The “enet_tx_accelerator_t” is recommended to be used to as the mask to get the exact the accelerator option.
rxAccelOption – The receive accelerator option. The “enet_rx_accelerator_t” is recommended to be used to as the mask to get the exact the accelerator option.
-
static inline void ENET_EnableInterrupts(ENET_Type *base, uint32_t mask)
Enables the ENET interrupt.
This function enables the ENET interrupt according to the provided mask. The mask is a logical OR of enumeration members. See enet_interrupt_enable_t. For example, to enable the TX frame interrupt and RX frame interrupt, do the following.
ENET_EnableInterrupts(ENET, kENET_TxFrameInterrupt | kENET_RxFrameInterrupt);
- Parameters:
base – ENET peripheral base address.
mask – ENET interrupts to enable. This is a logical OR of the enumeration enet_interrupt_enable_t.
-
static inline void ENET_DisableInterrupts(ENET_Type *base, uint32_t mask)
Disables the ENET interrupt.
This function disables the ENET interrupts according to the provided mask. The mask is a logical OR of enumeration members. See enet_interrupt_enable_t. For example, to disable the TX frame interrupt and RX frame interrupt, do the following.
ENET_DisableInterrupts(ENET, kENET_TxFrameInterrupt | kENET_RxFrameInterrupt);
- Parameters:
base – ENET peripheral base address.
mask – ENET interrupts to disable. This is a logical OR of the enumeration enet_interrupt_enable_t.
-
static inline uint32_t ENET_GetInterruptStatus(ENET_Type *base)
Gets the ENET interrupt status flag.
- Parameters:
base – ENET peripheral base address.
- Returns:
The event status of the interrupt source. This is the logical OR of members of the enumeration enet_interrupt_enable_t.
-
static inline void ENET_ClearInterruptStatus(ENET_Type *base, uint32_t mask)
Clears the ENET interrupt events status flag.
This function clears enabled ENET interrupts according to the provided mask. The mask is a logical OR of enumeration members. See the enet_interrupt_enable_t. For example, to clear the TX frame interrupt and RX frame interrupt, do the following.
ENET_ClearInterruptStatus(ENET, kENET_TxFrameInterrupt | kENET_RxFrameInterrupt);
- Parameters:
base – ENET peripheral base address.
mask – ENET interrupt source to be cleared. This is the logical OR of members of the enumeration enet_interrupt_enable_t.
-
void ENET_SetRxISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
Set the second level Rx IRQ handler.
- Parameters:
base – ENET peripheral base address.
ISRHandler – The handler to install.
-
void ENET_SetTxISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
Set the second level Tx IRQ handler.
- Parameters:
base – ENET peripheral base address.
ISRHandler – The handler to install.
-
void ENET_SetErrISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
Set the second level Err IRQ handler.
- Parameters:
base – ENET peripheral base address.
ISRHandler – The handler to install.
-
void ENET_GetRxErrBeforeReadFrame(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic, uint8_t ringId)
Gets the error statistics of a received frame for ENET specified ring.
This API must be called after the ENET_GetRxFrameSize and before the ENET_ReadFrame(). If the ENET_GetRxFrameSize returns kStatus_ENET_RxFrameError, the ENET_GetRxErrBeforeReadFrame can be used to get the exact error statistics. This is an example.
status = ENET_GetRxFrameSize(&g_handle, &length, 0); if (status == kStatus_ENET_RxFrameError) { Comments: Get the error information of the received frame. ENET_GetRxErrBeforeReadFrame(&g_handle, &eErrStatic, 0); Comments: update the receive buffer. ENET_ReadFrame(EXAMPLE_ENET, &g_handle, NULL, 0); }
- Parameters:
handle – The ENET handler structure pointer. This is the same handler pointer used in the ENET_Init.
eErrorStatic – The error statistics structure pointer.
ringId – The ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1).
-
void ENET_EnableStatistics(ENET_Type *base, bool enable)
Enables/disables collection of transfer statistics.
Note that this function does not reset any of the already collected data, use the function ENET_ResetStatistics to clear the transfer statistics if needed.
- Parameters:
base – ENET peripheral base address.
enable – True enable statistics collection, false disable statistics collection.
-
void ENET_GetStatistics(ENET_Type *base, enet_transfer_stats_t *statistics)
Gets transfer statistics.
Copies the actual value of hardware counters into the provided structure. Calling this function does not reset the counters in hardware.
- Parameters:
base – ENET peripheral base address.
statistics – The statistics structure pointer.
-
void ENET_ResetStatistics(ENET_Type *base)
Resets transfer statistics.
Sets the value of hardware transfer counters to zero.
- Parameters:
base – ENET peripheral base address.
-
status_t ENET_GetRxFrameSize(enet_handle_t *handle, uint32_t *length, uint8_t ringId)
Gets the size of the read frame for specified ring.
This function gets a received frame size from the ENET buffer descriptors.
Note
The FCS of the frame is automatically removed by MAC and the size is the length without the FCS. After calling ENET_GetRxFrameSize, ENET_ReadFrame() should be called to receive frame and update the BD if the result is not “kStatus_ENET_RxFrameEmpty”.
- Parameters:
handle – The ENET handler structure. This is the same handler pointer used in the ENET_Init.
length – The length of the valid frame received.
ringId – The ring index or ring number.
- Return values:
kStatus_ENET_RxFrameEmpty – No frame received. Should not call ENET_ReadFrame to read frame.
kStatus_ENET_RxFrameError – Data error happens. ENET_ReadFrame should be called with NULL data and NULL length to update the receive buffers.
kStatus_Success – Receive a frame Successfully then the ENET_ReadFrame should be called with the right data buffer and the captured data length input.
-
status_t ENET_ReadFrame(ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t length, uint8_t ringId, uint32_t *ts)
Reads a frame from the ENET device. This function reads a frame (both the data and the length) from the ENET buffer descriptors. User can get timestamp through ts pointer if the ts is not NULL.
Note
It doesn’t store the timestamp in the receive timestamp queue. The ENET_GetRxFrameSize should be used to get the size of the prepared data buffer. This API uses memcpy to copy data from DMA buffer to application buffer, 4 bytes aligned data buffer in 32 bits platforms provided by user may let compiler use optimization instruction to reduce time consumption. This is an example:
uint32_t length; enet_handle_t g_handle; Comments: Get the received frame size firstly. status = ENET_GetRxFrameSize(&g_handle, &length, 0); if (length != 0) { Comments: Allocate memory here with the size of "length" uint8_t *data = memory allocate interface; if (!data) { ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0, NULL); Comments: Add the console warning log. } else { status = ENET_ReadFrame(ENET, &g_handle, data, length, 0, NULL); Comments: Call stack input API to deliver the data to stack } } else if (status == kStatus_ENET_RxFrameError) { Comments: Update the received buffer when a error frame is received. ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0, NULL); }- Parameters:
base – ENET peripheral base address.
handle – The ENET handler structure. This is the same handler pointer used in the ENET_Init.
data – The data buffer provided by user to store the frame which memory size should be at least “length”.
length – The size of the data buffer which is still the length of the received frame.
ringId – The ring index or ring number.
ts – The timestamp address to store received timestamp.
- Returns:
The execute status, successful or failure.
-
status_t ENET_SendFrame(ENET_Type *base, enet_handle_t *handle, const uint8_t *data, uint32_t length, uint8_t ringId, bool tsFlag, void *context)
Transmits an ENET frame for specified ring.
Note
The CRC is automatically appended to the data. Input the data to send without the CRC. This API uses memcpy to copy data from DMA buffer to application buffer, 4 bytes aligned data buffer in 32 bits platforms provided by user may let compiler use optimization instruction to reduce time consumption.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
data – The data buffer provided by user to send.
length – The length of the data to send.
ringId – The ring index or ring number.
tsFlag – Timestamp enable flag.
context – Used by user to handle some events after transmit over.
- Return values:
kStatus_Success – Send frame succeed.
kStatus_ENET_TxFrameBusy – Transmit buffer descriptor is busy under transmission. The transmit busy happens when the data send rate is over the MAC capacity. The waiting mechanism is recommended to be added after each call return with kStatus_ENET_TxFrameBusy.
-
status_t ENET_SetTxReclaim(enet_handle_t *handle, bool isEnable, uint8_t ringId)
Enable or disable tx descriptors reclaim mechanism.
Note
This function must be called when no pending send frame action. Set enable if you want to reclaim context or timestamp in interrupt.
- Parameters:
handle – The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
isEnable – Enable or disable flag.
ringId – The ring index or ring number.
- Return values:
kStatus_Success – Succeed to enable/disable Tx reclaim.
kStatus_Fail – Fail to enable/disable Tx reclaim.
-
void ENET_ReclaimTxDescriptor(ENET_Type *base, enet_handle_t *handle, uint8_t ringId)
Reclaim tx descriptors. This function is used to update the tx descriptor status and store the tx timestamp when the 1588 feature is enabled. This is called by the transmit interupt IRQ handler after the complete of a frame transmission.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
ringId – The ring index or ring number.
-
status_t ENET_GetRxFrame(ENET_Type *base, enet_handle_t *handle, enet_rx_frame_struct_t *rxFrame, uint8_t ringId)
Receives one frame in specified BD ring with zero copy.
This function uses the user-defined allocation and free callbacks. Every time application gets one frame through this function, driver stores the buffer address(es) in enet_buffer_struct_t and allocate new buffer(s) for the BD(s). If there’s no memory buffer in the pool, this function drops current one frame to keep the Rx frame in BD ring is as fresh as possible.
Note
Application must provide a memory pool including at least BD number + n buffers in order for this function to work properly, because each BD must always take one buffer while driver is running, then other extra n buffer(s) can be taken by application. Here n is the ceil(max_frame_length(set by RCR) / bd_rx_size(set by MRBR)). Application must also provide an array structure in rxFrame->rxBuffArray with n index to receive one complete frame in any case.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
rxFrame – The received frame information structure provided by user.
ringId – The ring index or ring number.
- Return values:
kStatus_Success – Succeed to get one frame and allocate new memory for Rx buffer.
kStatus_ENET_RxFrameEmpty – There’s no Rx frame in the BD.
kStatus_ENET_RxFrameError – There’s issue in this receiving.
kStatus_ENET_RxFrameDrop – There’s no new buffer memory for BD, drop this frame.
-
status_t ENET_StartTxFrame(ENET_Type *base, enet_handle_t *handle, enet_tx_frame_struct_t *txFrame, uint8_t ringId)
Sends one frame in specified BD ring with zero copy.
This function supports scattered buffer transmit, user needs to provide the buffer array.
Note
Tx reclaim should be enabled to ensure the Tx buffer ownership can be given back to application after Tx is over.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
txFrame – The Tx frame structure.
ringId – The ring index or ring number.
- Return values:
kStatus_Success – Succeed to send one frame.
kStatus_ENET_TxFrameBusy – The BD is not ready for Tx or the reclaim operation still not finishs.
kStatus_ENET_TxFrameOverLen – The Tx frame length is over max ethernet frame length.
-
void ENET_TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle)
The transmit IRQ handler.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer.
-
void ENET_ReceiveIRQHandler(ENET_Type *base, enet_handle_t *handle)
The receive IRQ handler.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer.
-
void ENET_ErrorIRQHandler(ENET_Type *base, enet_handle_t *handle)
Some special IRQ handler including the error, mii, wakeup irq handler.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer.
-
void ENET_Ptp1588IRQHandler(ENET_Type *base)
the common IRQ handler for the 1588 irq handler.
This is used for the 1588 timer interrupt.
- Parameters:
base – ENET peripheral base address.
-
void ENET_CommonFrame0IRQHandler(ENET_Type *base)
the common IRQ handler for the tx/rx/error etc irq handler.
This is used for the combined tx/rx/error interrupt for single/mutli-ring (frame 0).
- Parameters:
base – ENET peripheral base address.
-
FSL_ENET_DRIVER_VERSION
Defines the driver version.
-
ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK
Empty bit mask.
-
ENET_BUFFDESCRIPTOR_RX_SOFTOWNER1_MASK
Software owner one mask.
-
ENET_BUFFDESCRIPTOR_RX_WRAP_MASK
Next buffer descriptor is the start address.
-
ENET_BUFFDESCRIPTOR_RX_SOFTOWNER2_Mask
Software owner two mask.
-
ENET_BUFFDESCRIPTOR_RX_LAST_MASK
Last BD of the frame mask.
-
ENET_BUFFDESCRIPTOR_RX_MISS_MASK
Received because of the promiscuous mode.
-
ENET_BUFFDESCRIPTOR_RX_BROADCAST_MASK
Broadcast packet mask.
-
ENET_BUFFDESCRIPTOR_RX_MULTICAST_MASK
Multicast packet mask.
-
ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK
Length violation mask.
-
ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK
Non-octet aligned frame mask.
-
ENET_BUFFDESCRIPTOR_RX_CRC_MASK
CRC error mask.
-
ENET_BUFFDESCRIPTOR_RX_OVERRUN_MASK
FIFO overrun mask.
-
ENET_BUFFDESCRIPTOR_RX_TRUNC_MASK
Frame is truncated mask.
-
ENET_BUFFDESCRIPTOR_TX_READY_MASK
Ready bit mask.
-
ENET_BUFFDESCRIPTOR_TX_SOFTOWENER1_MASK
Software owner one mask.
-
ENET_BUFFDESCRIPTOR_TX_WRAP_MASK
Wrap buffer descriptor mask.
-
ENET_BUFFDESCRIPTOR_TX_SOFTOWENER2_MASK
Software owner two mask.
-
ENET_BUFFDESCRIPTOR_TX_LAST_MASK
Last BD of the frame mask.
-
ENET_BUFFDESCRIPTOR_TX_TRANMITCRC_MASK
Transmit CRC mask.
-
ENET_FRAME_MAX_FRAMELEN
Default maximum Ethernet frame size without VLAN tag.
-
ENET_FRAME_VLAN_TAGLEN
Ethernet single VLAN tag size.
-
ENET_FRAME_CRC_LEN
CRC size in a frame.
-
ENET_FRAME_TX_LEN_LIMITATION(x)
-
ENET_FIFO_MIN_RX_FULL
ENET minimum receive FIFO full.
-
ENET_RX_MIN_BUFFERSIZE
ENET minimum buffer size.
-
ENET_PHY_MAXADDRESS
Maximum PHY address.
-
ENET_TX_INTERRUPT
Enet Tx interrupt flag.
-
ENET_RX_INTERRUPT
Enet Rx interrupt flag.
-
ENET_TS_INTERRUPT
Enet timestamp interrupt flag.
-
ENET_ERR_INTERRUPT
Enet error interrupt flag.
Defines the status return codes for transaction.
Values:
-
enumerator kStatus_ENET_InitMemoryFail
Init fails since buffer memory is not enough.
-
enumerator kStatus_ENET_RxFrameError
A frame received but data error happen.
-
enumerator kStatus_ENET_RxFrameFail
Failed to receive a frame.
-
enumerator kStatus_ENET_RxFrameEmpty
No frame arrive.
-
enumerator kStatus_ENET_RxFrameDrop
Rx frame is dropped since no buffer memory.
-
enumerator kStatus_ENET_TxFrameOverLen
Tx frame over length.
-
enumerator kStatus_ENET_TxFrameBusy
Tx buffer descriptors are under process.
-
enumerator kStatus_ENET_TxFrameFail
Transmit frame fail.
-
enumerator kStatus_ENET_InitMemoryFail
-
enum _enet_mii_mode
Defines the MII/RMII/RGMII mode for data interface between the MAC and the PHY.
Values:
-
enumerator kENET_MiiMode
MII mode for data interface.
-
enumerator kENET_RmiiMode
RMII mode for data interface.
-
enumerator kENET_RgmiiMode
RGMII mode for data interface.
-
enumerator kENET_MiiMode
-
enum _enet_mii_speed
Defines the 10/100/1000 Mbps speed for the MII data interface.
Notice: “kENET_MiiSpeed1000M” only supported when mii mode is “kENET_RgmiiMode”.
Values:
-
enumerator kENET_MiiSpeed10M
Speed 10 Mbps.
-
enumerator kENET_MiiSpeed100M
Speed 100 Mbps.
-
enumerator kENET_MiiSpeed1000M
Speed 1000M bps.
-
enumerator kENET_MiiSpeed10M
-
enum _enet_mii_duplex
Defines the half or full duplex for the MII data interface.
Values:
-
enumerator kENET_MiiHalfDuplex
Half duplex mode.
-
enumerator kENET_MiiFullDuplex
Full duplex mode.
-
enumerator kENET_MiiHalfDuplex
-
enum _enet_mii_write
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.
Values:
-
enumerator kENET_MiiWriteNoCompliant
Write frame operation, but not MII-compliant.
-
enumerator kENET_MiiWriteValidFrame
Write frame operation for a valid MII management frame.
-
enumerator kENET_MiiWriteNoCompliant
-
enum _enet_mii_read
Defines the read operation for the MII management frame.
Values:
-
enumerator kENET_MiiReadValidFrame
Read frame operation for a valid MII management frame.
-
enumerator kENET_MiiReadNoCompliant
Read frame operation, but not MII-compliant.
-
enumerator kENET_MiiReadValidFrame
-
enum _enet_mii_extend_opcode
Define the MII opcode for extended MDIO_CLAUSES_45 Frame.
Values:
-
enumerator kENET_MiiAddrWrite_C45
Address Write operation.
-
enumerator kENET_MiiWriteFrame_C45
Write frame operation for a valid MII management frame.
-
enumerator kENET_MiiReadFrame_C45
Read frame operation for a valid MII management frame.
-
enumerator kENET_MiiAddrWrite_C45
-
enum _enet_special_control_flag
Defines a special configuration for ENET MAC controller.
These control flags are provided for special user requirements. Normally, these control flags are unused for ENET initialization. For special requirements, set the flags to macSpecialConfig in the enet_config_t. The kENET_ControlStoreAndFwdDisable is used to disable the FIFO store and forward. FIFO store and forward means that the FIFO read/send is started when a complete frame is stored in TX/RX FIFO. If this flag is set, configure rxFifoFullThreshold and txFifoWatermark in the enet_config_t.
Values:
-
enumerator kENET_ControlFlowControlEnable
Enable ENET flow control: pause frame.
-
enumerator kENET_ControlRxPayloadCheckEnable
Enable ENET receive payload length check.
-
enumerator kENET_ControlRxPadRemoveEnable
Padding is removed from received frames.
-
enumerator kENET_ControlRxBroadCastRejectEnable
Enable broadcast frame reject.
-
enumerator kENET_ControlMacAddrInsert
Enable MAC address insert.
-
enumerator kENET_ControlStoreAndFwdDisable
Enable FIFO store and forward.
-
enumerator kENET_ControlSMIPreambleDisable
Enable SMI preamble.
-
enumerator kENET_ControlPromiscuousEnable
Enable promiscuous mode.
-
enumerator kENET_ControlMIILoopEnable
Enable ENET MII loop back.
-
enumerator kENET_ControlVLANTagEnable
Enable normal VLAN (single vlan tag).
-
enumerator kENET_ControlSVLANEnable
Enable S-VLAN.
-
enumerator kENET_ControlVLANUseSecondTag
Enable extracting the second vlan tag for further processing.
-
enumerator kENET_ControlFlowControlEnable
-
enum _enet_interrupt_enable
List of interrupts supported by the peripheral. This enumeration uses one-bit encoding to allow a logical OR of multiple members. Members usually map to interrupt enable bits in one or more peripheral registers.
Values:
-
enumerator kENET_BabrInterrupt
Babbling receive error interrupt source
-
enumerator kENET_BabtInterrupt
Babbling transmit error interrupt source
-
enumerator kENET_GraceStopInterrupt
Graceful stop complete interrupt source
-
enumerator kENET_TxFrameInterrupt
TX FRAME interrupt source
-
enumerator kENET_TxBufferInterrupt
TX BUFFER interrupt source
-
enumerator kENET_RxFrameInterrupt
RX FRAME interrupt source
-
enumerator kENET_RxBufferInterrupt
RX BUFFER interrupt source
-
enumerator kENET_MiiInterrupt
MII interrupt source
-
enumerator kENET_EBusERInterrupt
Ethernet bus error interrupt source
-
enumerator kENET_LateCollisionInterrupt
Late collision interrupt source
-
enumerator kENET_RetryLimitInterrupt
Collision Retry Limit interrupt source
-
enumerator kENET_UnderrunInterrupt
Transmit FIFO underrun interrupt source
-
enumerator kENET_PayloadRxInterrupt
Payload Receive error interrupt source
-
enumerator kENET_WakeupInterrupt
WAKEUP interrupt source
-
enumerator kENET_TsAvailInterrupt
TS AVAIL interrupt source for PTP
-
enumerator kENET_TsTimerInterrupt
TS WRAP interrupt source for PTP
-
enumerator kENET_BabrInterrupt
-
enum _enet_event
Defines the common interrupt event for callback use.
Values:
-
enumerator kENET_RxEvent
Receive event.
-
enumerator kENET_TxEvent
Transmit event.
-
enumerator kENET_ErrEvent
Error event: BABR/BABT/EBERR/LC/RL/UN/PLR .
-
enumerator kENET_WakeUpEvent
Wake up from sleep mode event.
-
enumerator kENET_TimeStampEvent
Time stamp event.
-
enumerator kENET_TimeStampAvailEvent
Time stamp available event.
-
enumerator kENET_RxEvent
-
enum _enet_idle_slope
Defines certain idle slope for bandwidth fraction.
Values:
-
enumerator kENET_IdleSlope1
The bandwidth fraction is about 0.002.
-
enumerator kENET_IdleSlope2
The bandwidth fraction is about 0.003.
-
enumerator kENET_IdleSlope4
The bandwidth fraction is about 0.008.
-
enumerator kENET_IdleSlope8
The bandwidth fraction is about 0.02.
-
enumerator kENET_IdleSlope16
The bandwidth fraction is about 0.03.
-
enumerator kENET_IdleSlope32
The bandwidth fraction is about 0.06.
-
enumerator kENET_IdleSlope64
The bandwidth fraction is about 0.11.
-
enumerator kENET_IdleSlope128
The bandwidth fraction is about 0.20.
-
enumerator kENET_IdleSlope256
The bandwidth fraction is about 0.33.
-
enumerator kENET_IdleSlope384
The bandwidth fraction is about 0.43.
-
enumerator kENET_IdleSlope512
The bandwidth fraction is about 0.50.
-
enumerator kENET_IdleSlope640
The bandwidth fraction is about 0.56.
-
enumerator kENET_IdleSlope768
The bandwidth fraction is about 0.60.
-
enumerator kENET_IdleSlope896
The bandwidth fraction is about 0.64.
-
enumerator kENET_IdleSlope1024
The bandwidth fraction is about 0.67.
-
enumerator kENET_IdleSlope1152
The bandwidth fraction is about 0.69.
-
enumerator kENET_IdleSlope1280
The bandwidth fraction is about 0.71.
-
enumerator kENET_IdleSlope1408
The bandwidth fraction is about 0.73.
-
enumerator kENET_IdleSlope1536
The bandwidth fraction is about 0.75.
-
enumerator kENET_IdleSlope1
-
enum _enet_tx_accelerator
Defines the transmit accelerator configuration.
Note that the hardware does not insert ICMPv6 protocol checksums as mentioned in errata ERR052152.
Values:
-
enumerator kENET_TxAccelIsShift16Enabled
Transmit FIFO shift-16.
-
enumerator kENET_TxAccelIpCheckEnabled
Insert IP header checksum.
-
enumerator kENET_TxAccelProtoCheckEnabled
Insert protocol checksum (TCP, UDP, ICMPv4).
-
enumerator kENET_TxAccelIsShift16Enabled
-
enum _enet_rx_accelerator
Defines the receive accelerator configuration.
Note that the hardware does not validate ICMPv6 protocol checksums as mentioned in errata ERR052152.
Values:
-
enumerator kENET_RxAccelPadRemoveEnabled
Padding removal for short IP frames.
-
enumerator kENET_RxAccelIpCheckEnabled
Discard with wrong IP header checksum.
-
enumerator kENET_RxAccelProtoCheckEnabled
Discard with wrong protocol checksum (TCP, UDP, ICMPv4).
-
enumerator kENET_RxAccelMacCheckEnabled
Discard with Mac layer errors.
-
enumerator kENET_RxAccelisShift16Enabled
Receive FIFO shift-16.
-
enumerator kENET_RxAccelPadRemoveEnabled
-
typedef enum _enet_mii_mode enet_mii_mode_t
Defines the MII/RMII/RGMII mode for data interface between the MAC and the PHY.
-
typedef enum _enet_mii_speed enet_mii_speed_t
Defines the 10/100/1000 Mbps speed for the MII data interface.
Notice: “kENET_MiiSpeed1000M” only supported when mii mode is “kENET_RgmiiMode”.
-
typedef enum _enet_mii_duplex enet_mii_duplex_t
Defines the half or full duplex for the MII data interface.
-
typedef enum _enet_mii_write enet_mii_write_t
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.
-
typedef enum _enet_mii_read enet_mii_read_t
Defines the read operation for the MII management frame.
-
typedef enum _enet_mii_extend_opcode enet_mii_extend_opcode
Define the MII opcode for extended MDIO_CLAUSES_45 Frame.
-
typedef enum _enet_special_control_flag enet_special_control_flag_t
Defines a special configuration for ENET MAC controller.
These control flags are provided for special user requirements. Normally, these control flags are unused for ENET initialization. For special requirements, set the flags to macSpecialConfig in the enet_config_t. The kENET_ControlStoreAndFwdDisable is used to disable the FIFO store and forward. FIFO store and forward means that the FIFO read/send is started when a complete frame is stored in TX/RX FIFO. If this flag is set, configure rxFifoFullThreshold and txFifoWatermark in the enet_config_t.
-
typedef enum _enet_interrupt_enable enet_interrupt_enable_t
List of interrupts supported by the peripheral. This enumeration uses one-bit encoding to allow a logical OR of multiple members. Members usually map to interrupt enable bits in one or more peripheral registers.
-
typedef enum _enet_event enet_event_t
Defines the common interrupt event for callback use.
-
typedef enum _enet_idle_slope enet_idle_slope_t
Defines certain idle slope for bandwidth fraction.
-
typedef enum _enet_tx_accelerator enet_tx_accelerator_t
Defines the transmit accelerator configuration.
Note that the hardware does not insert ICMPv6 protocol checksums as mentioned in errata ERR052152.
-
typedef enum _enet_rx_accelerator enet_rx_accelerator_t
Defines the receive accelerator configuration.
Note that the hardware does not validate ICMPv6 protocol checksums as mentioned in errata ERR052152.
-
typedef struct _enet_rx_bd_struct enet_rx_bd_struct_t
Defines the receive buffer descriptor structure for the little endian system.
-
typedef struct _enet_tx_bd_struct enet_tx_bd_struct_t
Defines the enhanced transmit buffer descriptor structure for the little endian system.
-
typedef struct _enet_data_error_stats enet_data_error_stats_t
Defines the ENET data error statistics structure.
-
typedef struct _enet_rx_frame_error enet_rx_frame_error_t
Defines the Rx frame error structure.
-
typedef struct _enet_transfer_stats enet_transfer_stats_t
Defines the ENET transfer statistics structure.
-
typedef struct enet_frame_info enet_frame_info_t
Defines the frame info structure.
-
typedef struct _enet_tx_dirty_ring enet_tx_dirty_ring_t
Defines the ENET transmit dirty addresses ring/queue structure.
-
typedef void *(*enet_rx_alloc_callback_t)(ENET_Type *base, void *userData, uint8_t ringId)
Defines the ENET Rx memory buffer alloc function pointer.
-
typedef void (*enet_rx_free_callback_t)(ENET_Type *base, void *buffer, void *userData, uint8_t ringId)
Defines the ENET Rx memory buffer free function pointer.
-
typedef struct _enet_buffer_config enet_buffer_config_t
Defines the receive buffer descriptor configuration structure.
Note that for the internal DMA requirements, the buffers have a corresponding alignment requirements.
The aligned receive and transmit buffer size must be evenly divisible by ENET_BUFF_ALIGNMENT. when the data buffers are in cacheable region when cache is enabled, all those size should be aligned to the maximum value of “ENET_BUFF_ALIGNMENT” and the cache line size.
The aligned transmit and receive buffer descriptor start address must be at least 64 bit aligned. However, it’s recommended to be evenly divisible by ENET_BUFF_ALIGNMENT. buffer descriptors should be put in non-cacheable region when cache is enabled.
The aligned transmit and receive data buffer start address must be evenly divisible by ENET_BUFF_ALIGNMENT. Receive buffers should be continuous with the total size equal to “rxBdNumber * rxBuffSizeAlign”. Transmit buffers should be continuous with the total size equal to “txBdNumber * txBuffSizeAlign”. when the data buffers are in cacheable region when cache is enabled, all those size should be aligned to the maximum value of “ENET_BUFF_ALIGNMENT” and the cache line size.
-
typedef struct _enet_intcoalesce_config enet_intcoalesce_config_t
Defines the interrupt coalescing configure structure.
-
typedef struct _enet_avb_config enet_avb_config_t
Defines the ENET AVB Configure structure.
This is used for to configure the extended ring 1 and ring 2.
The classification match format is (CMP3 << 12) | (CMP2 << 8) | (CMP1 << 4) | CMP0. composed of four 3-bit compared VLAN priority field cmp0~cmp3, cm0 ~ cmp3 are used in parallel.
If CMP1,2,3 are not unused, please set them to the same value as CMP0.
The idleSlope is used to calculate the Band Width fraction, BW fraction = 1 / (1 + 512/idleSlope). For avb configuration, the BW fraction of Class 1 and Class 2 combined must not exceed 0.75.
-
typedef struct _enet_handle enet_handle_t
-
typedef void (*enet_callback_t)(ENET_Type *base, enet_handle_t *handle, enet_event_t event, enet_frame_info_t *frameInfo, void *userData)
ENET callback function.
-
typedef struct _enet_config enet_config_t
Defines the basic configuration structure for the ENET device.
Note:
macSpecialConfig is used for a special control configuration, A logical OR of “enet_special_control_flag_t”. For a special configuration for MAC, set this parameter to 0.
txWatermark is used for a cut-through operation. It is in steps of 64 bytes: 0/1 - 64 bytes written to TX FIFO before transmission of a frame begins. 2 - 128 bytes written to TX FIFO …. 3 - 192 bytes written to TX FIFO …. The maximum of txWatermark is 0x2F - 4032 bytes written to TX FIFO …. txWatermark allows minimizing the transmit latency to set the txWatermark to 0 or 1 or for larger bus access latency 3 or larger due to contention for the system bus.
rxFifoFullThreshold is similar to the txWatermark for cut-through operation in RX. It is in 64-bit words. The minimum is ENET_FIFO_MIN_RX_FULL and the maximum is 0xFF. If the end of the frame is stored in FIFO and the frame size if smaller than the txWatermark, the frame is still transmitted. The rule is the same for rxFifoFullThreshold in the receive direction.
When “kENET_ControlFlowControlEnable” is set in the macSpecialConfig, ensure that the pauseDuration, rxFifoEmptyThreshold, and rxFifoStatEmptyThreshold are set for flow control enabled case.
When “kENET_ControlStoreAndFwdDisabled” is set in the macSpecialConfig, ensure that the rxFifoFullThreshold and txFifoWatermark are set for store and forward disable.
The rxAccelerConfig and txAccelerConfig default setting with 0 - accelerator are disabled. The “enet_tx_accelerator_t” and “enet_rx_accelerator_t” are recommended to be used to enable the transmit and receive accelerator. After the accelerators are enabled, the store and forward feature should be enabled. As a result, kENET_ControlStoreAndFwdDisabled should not be set.
The intCoalesceCfg can be used in the rx or tx enabled cases to decrese the CPU loading.
-
typedef struct _enet_tx_bd_ring enet_tx_bd_ring_t
Defines the ENET transmit buffer descriptor ring/queue structure.
-
typedef struct _enet_rx_bd_ring enet_rx_bd_ring_t
Defines the ENET receive buffer descriptor ring/queue structure.
-
typedef struct _enet_buffer_struct enet_buffer_struct_t
-
typedef struct _enet_rx_frame_attribute_struct enet_rx_frame_attribute_t
-
typedef struct _enet_rx_frame_struct enet_rx_frame_struct_t
-
typedef struct _enet_tx_frame_struct enet_tx_frame_struct_t
-
typedef void (*enet_isr_t)(ENET_Type *base, enet_handle_t *handle)
Define interrupt IRQ handler.
-
const clock_ip_name_t s_enetClock[]
Pointers to enet clocks for each instance.
-
const clock_ip_name_t s_enetExtraClock[]
-
uint32_t ENET_GetInstance(ENET_Type *base)
Get the ENET instance from peripheral base address.
- Parameters:
base – ENET peripheral base address.
- Returns:
ENET instance.
-
ENET_BUFFDESCRIPTOR_RX_ERR_MASK
Defines the receive error status flag mask.
-
struct _enet_rx_bd_struct
- #include <fsl_enet.h>
Defines the receive buffer descriptor structure for the little endian system.
Public Members
-
uint16_t length
Buffer descriptor data length.
-
uint16_t control
Buffer descriptor control and status.
-
uint32_t buffer
Data buffer pointer.
-
uint16_t length
-
struct _enet_tx_bd_struct
- #include <fsl_enet.h>
Defines the enhanced transmit buffer descriptor structure for the little endian system.
Public Members
-
uint16_t length
Buffer descriptor data length.
-
uint16_t control
Buffer descriptor control and status.
-
uint32_t buffer
Data buffer pointer.
-
uint16_t length
-
struct _enet_data_error_stats
- #include <fsl_enet.h>
Defines the ENET data error statistics structure.
Public Members
-
uint32_t statsRxLenGreaterErr
Receive length greater than RCR[MAX_FL].
-
uint32_t statsRxAlignErr
Receive non-octet alignment/
-
uint32_t statsRxFcsErr
Receive CRC error.
-
uint32_t statsRxOverRunErr
Receive over run.
-
uint32_t statsRxTruncateErr
Receive truncate.
-
uint32_t statsRxLenGreaterErr
-
struct _enet_rx_frame_error
- #include <fsl_enet.h>
Defines the Rx frame error structure.
Public Members
-
bool statsRxTruncateErr
Receive truncate.
-
bool statsRxOverRunErr
Receive over run.
-
bool statsRxFcsErr
Receive CRC error.
-
bool statsRxAlignErr
Receive non-octet alignment.
-
bool statsRxLenGreaterErr
Receive length greater than RCR[MAX_FL].
-
bool statsRxTruncateErr
-
struct _enet_transfer_stats
- #include <fsl_enet.h>
Defines the ENET transfer statistics structure.
Public Members
-
uint32_t statsRxFrameCount
Rx frame number.
-
uint32_t statsRxFrameOk
Good Rx frame number.
-
uint32_t statsRxCrcErr
Rx frame number with CRC error.
-
uint32_t statsRxAlignErr
Rx frame number with alignment error.
-
uint32_t statsRxDropInvalidSFD
Dropped frame number due to invalid SFD.
-
uint32_t statsRxFifoOverflowErr
Rx FIFO overflow count.
-
uint32_t statsTxFrameCount
Tx frame number.
-
uint32_t statsTxFrameOk
Good Tx frame number.
-
uint32_t statsTxCrcAlignErr
The transmit frame is error.
-
uint32_t statsTxFifoUnderRunErr
Tx FIFO underrun count.
-
uint32_t statsRxFrameCount
-
struct enet_frame_info
- #include <fsl_enet.h>
Defines the frame info structure.
Public Members
-
void *context
User specified data
-
void *context
-
struct _enet_tx_dirty_ring
- #include <fsl_enet.h>
Defines the ENET transmit dirty addresses ring/queue structure.
Public Members
-
enet_frame_info_t *txDirtyBase
Dirty buffer descriptor base address pointer.
-
uint16_t txGenIdx
tx generate index.
-
uint16_t txConsumIdx
tx consume index.
-
uint16_t txRingLen
tx ring length.
-
bool isFull
tx ring is full flag.
-
enet_frame_info_t *txDirtyBase
-
struct _enet_buffer_config
- #include <fsl_enet.h>
Defines the receive buffer descriptor configuration structure.
Note that for the internal DMA requirements, the buffers have a corresponding alignment requirements.
The aligned receive and transmit buffer size must be evenly divisible by ENET_BUFF_ALIGNMENT. when the data buffers are in cacheable region when cache is enabled, all those size should be aligned to the maximum value of “ENET_BUFF_ALIGNMENT” and the cache line size.
The aligned transmit and receive buffer descriptor start address must be at least 64 bit aligned. However, it’s recommended to be evenly divisible by ENET_BUFF_ALIGNMENT. buffer descriptors should be put in non-cacheable region when cache is enabled.
The aligned transmit and receive data buffer start address must be evenly divisible by ENET_BUFF_ALIGNMENT. Receive buffers should be continuous with the total size equal to “rxBdNumber * rxBuffSizeAlign”. Transmit buffers should be continuous with the total size equal to “txBdNumber * txBuffSizeAlign”. when the data buffers are in cacheable region when cache is enabled, all those size should be aligned to the maximum value of “ENET_BUFF_ALIGNMENT” and the cache line size.
Public Members
-
uint16_t rxBdNumber
Receive buffer descriptor number.
-
uint16_t txBdNumber
Transmit buffer descriptor number.
-
uint16_t rxBuffSizeAlign
Aligned receive data buffer size.
-
uint16_t txBuffSizeAlign
Aligned transmit data buffer size.
-
volatile enet_rx_bd_struct_t *rxBdStartAddrAlign
Aligned receive buffer descriptor start address: should be non-cacheable.
-
volatile enet_tx_bd_struct_t *txBdStartAddrAlign
Aligned transmit buffer descriptor start address: should be non-cacheable.
-
uint8_t *rxBufferAlign
Receive data buffer start address.
-
uint8_t *txBufferAlign
Transmit data buffer start address.
-
bool rxMaintainEnable
Receive buffer cache maintain.
-
bool txMaintainEnable
Transmit buffer cache maintain.
-
enet_frame_info_t *txFrameInfo
Transmit frame information start address.
-
struct _enet_intcoalesce_config
- #include <fsl_enet.h>
Defines the interrupt coalescing configure structure.
Public Members
-
uint8_t txCoalesceFrameCount[1]
Transmit interrupt coalescing frame count threshold.
-
uint16_t txCoalesceTimeCount[1]
Transmit interrupt coalescing timer count threshold.
-
uint8_t rxCoalesceFrameCount[1]
Receive interrupt coalescing frame count threshold.
-
uint16_t rxCoalesceTimeCount[1]
Receive interrupt coalescing timer count threshold.
-
uint8_t txCoalesceFrameCount[1]
-
struct _enet_avb_config
- #include <fsl_enet.h>
Defines the ENET AVB Configure structure.
This is used for to configure the extended ring 1 and ring 2.
The classification match format is (CMP3 << 12) | (CMP2 << 8) | (CMP1 << 4) | CMP0. composed of four 3-bit compared VLAN priority field cmp0~cmp3, cm0 ~ cmp3 are used in parallel.
If CMP1,2,3 are not unused, please set them to the same value as CMP0.
The idleSlope is used to calculate the Band Width fraction, BW fraction = 1 / (1 + 512/idleSlope). For avb configuration, the BW fraction of Class 1 and Class 2 combined must not exceed 0.75.
Public Members
-
uint16_t rxClassifyMatch[1 - 1]
The classification match value for the ring.
-
enet_idle_slope_t idleSlope[1 - 1]
The idle slope for certian bandwidth fraction.
-
struct _enet_config
- #include <fsl_enet.h>
Defines the basic configuration structure for the ENET device.
Note:
macSpecialConfig is used for a special control configuration, A logical OR of “enet_special_control_flag_t”. For a special configuration for MAC, set this parameter to 0.
txWatermark is used for a cut-through operation. It is in steps of 64 bytes: 0/1 - 64 bytes written to TX FIFO before transmission of a frame begins. 2 - 128 bytes written to TX FIFO …. 3 - 192 bytes written to TX FIFO …. The maximum of txWatermark is 0x2F - 4032 bytes written to TX FIFO …. txWatermark allows minimizing the transmit latency to set the txWatermark to 0 or 1 or for larger bus access latency 3 or larger due to contention for the system bus.
rxFifoFullThreshold is similar to the txWatermark for cut-through operation in RX. It is in 64-bit words. The minimum is ENET_FIFO_MIN_RX_FULL and the maximum is 0xFF. If the end of the frame is stored in FIFO and the frame size if smaller than the txWatermark, the frame is still transmitted. The rule is the same for rxFifoFullThreshold in the receive direction.
When “kENET_ControlFlowControlEnable” is set in the macSpecialConfig, ensure that the pauseDuration, rxFifoEmptyThreshold, and rxFifoStatEmptyThreshold are set for flow control enabled case.
When “kENET_ControlStoreAndFwdDisabled” is set in the macSpecialConfig, ensure that the rxFifoFullThreshold and txFifoWatermark are set for store and forward disable.
The rxAccelerConfig and txAccelerConfig default setting with 0 - accelerator are disabled. The “enet_tx_accelerator_t” and “enet_rx_accelerator_t” are recommended to be used to enable the transmit and receive accelerator. After the accelerators are enabled, the store and forward feature should be enabled. As a result, kENET_ControlStoreAndFwdDisabled should not be set.
The intCoalesceCfg can be used in the rx or tx enabled cases to decrese the CPU loading.
Public Members
-
uint32_t macSpecialConfig
Mac special configuration. A logical OR of “enet_special_control_flag_t”.
-
uint32_t interrupt
Mac interrupt source. A logical OR of “enet_interrupt_enable_t”.
-
uint16_t rxMaxFrameLen
Receive maximum frame length.
-
enet_mii_mode_t miiMode
MII mode.
-
enet_mii_speed_t miiSpeed
MII Speed.
-
enet_mii_duplex_t miiDuplex
MII duplex.
-
uint8_t rxAccelerConfig
Receive accelerator, A logical OR of “enet_rx_accelerator_t”.
-
uint8_t txAccelerConfig
Transmit accelerator, A logical OR of “enet_rx_accelerator_t”.
-
uint16_t pauseDuration
For flow control enabled case: Pause duration.
-
uint8_t rxFifoEmptyThreshold
For flow control enabled case: when RX FIFO level reaches this value, it makes MAC generate XOFF pause frame.
-
uint8_t rxFifoStatEmptyThreshold
For flow control enabled case: number of frames in the receive FIFO, independent of size, that can be accept. If the limit is reached, reception continues and a pause frame is triggered.
-
uint8_t rxFifoFullThreshold
For store and forward disable case, the data required in RX FIFO to notify the MAC receive ready status.
-
uint8_t txFifoWatermark
For store and forward disable case, the data required in TX FIFO before a frame transmit start.
-
enet_intcoalesce_config_t *intCoalesceCfg
If the interrupt coalsecence is not required in the ring n(0,1,2), please set to NULL.
-
uint8_t ringNum
Number of used rings. default with 1 — single ring.
-
enet_rx_alloc_callback_t rxBuffAlloc
Callback function to alloc memory, must be provided for zero-copy Rx.
-
enet_rx_free_callback_t rxBuffFree
Callback function to free memory, must be provided for zero-copy Rx.
-
enet_callback_t callback
General callback function.
-
void *userData
Callback function parameter.
-
struct _enet_tx_bd_ring
- #include <fsl_enet.h>
Defines the ENET transmit buffer descriptor ring/queue structure.
Public Members
-
volatile enet_tx_bd_struct_t *txBdBase
Buffer descriptor base address pointer.
-
uint16_t txGenIdx
The current available transmit buffer descriptor pointer.
-
uint16_t txConsumIdx
Transmit consume index.
-
volatile uint16_t txDescUsed
Transmit descriptor used number.
-
uint16_t txRingLen
Transmit ring length.
-
volatile enet_tx_bd_struct_t *txBdBase
-
struct _enet_rx_bd_ring
- #include <fsl_enet.h>
Defines the ENET receive buffer descriptor ring/queue structure.
Public Members
-
volatile enet_rx_bd_struct_t *rxBdBase
Buffer descriptor base address pointer.
-
uint16_t rxGenIdx
The current available receive buffer descriptor pointer.
-
uint16_t rxRingLen
Receive ring length.
-
volatile enet_rx_bd_struct_t *rxBdBase
-
struct _enet_handle
- #include <fsl_enet.h>
Defines the ENET handler structure.
Public Members
-
enet_rx_bd_ring_t rxBdRing[1]
Receive buffer descriptor.
-
enet_tx_bd_ring_t txBdRing[1]
Transmit buffer descriptor.
-
uint16_t rxBuffSizeAlign[1]
Receive buffer size alignment.
-
uint16_t txBuffSizeAlign[1]
Transmit buffer size alignment.
-
bool rxMaintainEnable[1]
Receive buffer cache maintain.
-
bool txMaintainEnable[1]
Transmit buffer cache maintain.
-
uint8_t ringNum
Number of used rings.
-
enet_callback_t callback
Callback function.
-
void *userData
Callback function parameter.
-
enet_tx_dirty_ring_t txDirtyRing[1]
Ring to store tx frame information.
-
bool txReclaimEnable[1]
Tx reclaim enable flag.
-
enet_rx_alloc_callback_t rxBuffAlloc
Callback function to alloc memory for zero copy Rx.
-
enet_rx_free_callback_t rxBuffFree
Callback function to free memory for zero copy Rx.
-
uint8_t multicastCount[64]
Multicast collisions counter
-
uint32_t enetClock
The clock of enet peripheral, to caculate core cycles for PTP timestamp.
-
uint32_t tsDelayCount
The count of core cycles for PTP timestamp capture delay.
-
enet_rx_bd_ring_t rxBdRing[1]
-
struct _enet_buffer_struct
Public Members
-
void *buffer
The buffer store the whole or partial frame.
-
uint16_t length
The byte length of this buffer.
-
void *buffer
-
struct _enet_rx_frame_attribute_struct
Public Members
-
bool promiscuous
This frame is received because of promiscuous mode.
-
bool promiscuous
-
struct _enet_rx_frame_struct
Public Members
-
enet_buffer_struct_t *rxBuffArray
Rx frame buffer structure.
-
uint16_t totLen
Rx frame total length.
-
enet_rx_frame_attribute_t rxAttribute
Rx frame attribute structure.
-
enet_rx_frame_error_t rxFrameError
Rx frame error.
-
enet_buffer_struct_t *rxBuffArray
-
struct _enet_tx_frame_struct
Public Members
-
enet_buffer_struct_t *txBuffArray
Tx frame buffer structure.
-
uint32_t txBuffNum
Buffer number of this Tx frame.
-
void *context
Driver reclaims and gives it in Tx over callback, usually store network packet header.
-
enet_buffer_struct_t *txBuffArray
EQOS-TSN: Ethernet QoS with TSN Driver#
Enet_qos_qos#
-
void ENET_QOS_GetDefaultConfig(enet_qos_config_t *config)
Gets the ENET default configuration structure.
The purpose of this API is to get the default ENET configure structure for ENET_QOS_Init(). User may use the initialized structure unchanged in ENET_QOS_Init(), or modify some fields of the structure before calling ENET_QOS_Init(). Example:
enet_qos_config_t config; ENET_QOS_GetDefaultConfig(&config);
- Parameters:
config – The ENET mac controller configuration structure pointer.
-
status_t ENET_QOS_Up(ENET_QOS_Type *base, const enet_qos_config_t *config, uint8_t *macAddr, uint8_t macCount, uint32_t refclkSrc_Hz)
Initializes the ENET module.
This function initializes it with the ENET basic configuration.
- Parameters:
base – ENET peripheral base address.
config – ENET mac configuration structure pointer. The “enet_qos_config_t” type mac configuration return from ENET_QOS_GetDefaultConfig can be used directly. It is also possible to verify the Mac configuration using other methods.
macAddr – Pointer to ENET mac address array of Ethernet device. This MAC address should be provided.
macCount – Count of macAddr in the ENET mac address array
refclkSrc_Hz – ENET input reference clock.
-
status_t ENET_QOS_Init(ENET_QOS_Type *base, const enet_qos_config_t *config, uint8_t *macAddr, uint8_t macCount, uint32_t refclkSrc_Hz)
Initializes the ENET module.
This function ungates the module clock and initializes it with the ENET basic configuration.
- Parameters:
base – ENET peripheral base address.
config – ENET mac configuration structure pointer. The “enet_qos_config_t” type mac configuration return from ENET_QOS_GetDefaultConfig can be used directly. It is also possible to verify the Mac configuration using other methods.
macAddr – Pointer to ENET mac address array of Ethernet device. This MAC address should be provided.
macCount – Count of macAddr in the ENET mac address array
refclkSrc_Hz – ENET input reference clock.
-
void ENET_QOS_Down(ENET_QOS_Type *base)
Stops the ENET module.
This function disables the ENET module.
- Parameters:
base – ENET peripheral base address.
-
void ENET_QOS_Deinit(ENET_QOS_Type *base)
Deinitializes the ENET module.
This function gates the module clock and disables the ENET module.
- Parameters:
base – ENET peripheral base address.
-
uint32_t ENET_QOS_GetInstance(ENET_QOS_Type *base)
Get the ENET instance from peripheral base address.
- Parameters:
base – ENET peripheral base address.
- Returns:
ENET instance.
-
status_t ENET_QOS_DescriptorInit(ENET_QOS_Type *base, enet_qos_config_t *config, enet_qos_buffer_config_t *bufferConfig)
Initialize for all ENET descriptors.
Note
This function is do all tx/rx descriptors initialization. Because this API read all interrupt registers first and then set the interrupt flag for all descriptors, if the interrupt register is set. so the descriptor initialization should be called after ENET_QOS_Init(), ENET_QOS_EnableInterrupts() and ENET_QOS_CreateHandle()(if transactional APIs are used).
- Parameters:
base – ENET peripheral base address.
config – The configuration for ENET.
bufferConfig – All buffers configuration.
-
status_t ENET_QOS_RxBufferAllocAll(ENET_QOS_Type *base, enet_qos_handle_t *handle)
Allocates Rx buffers for all BDs. It’s used for zero copy Rx. In zero copy Rx case, Rx buffers are dynamic. This function will populate initial buffers in all BDs for receiving. Then ENET_QOS_GetRxFrame() is used to get Rx frame with zero copy, it will allocate new buffer to replace the buffer in BD taken by application application should free those buffers after they’re used.
Note
This function should be called after ENET_QOS_CreateHandler() and buffer allocating callback function should be ready.
- Parameters:
base – ENET_QOS peripheral base address.
handle – The ENET_QOS handler structure. This is the same handler pointer used in the ENET_QOS_Init.
-
void ENET_QOS_RxBufferFreeAll(ENET_QOS_Type *base, enet_qos_handle_t *handle)
Frees Rx buffers in all BDs. It’s used for zero copy Rx. In zero copy Rx case, Rx buffers are dynamic. This function will free left buffers in all BDs.
- Parameters:
base – ENET_QOS peripheral base address.
handle – The ENET_QOS handler structure. This is the same handler pointer used in the ENET_QOS_Init.
-
void ENET_QOS_StartRxTx(ENET_QOS_Type *base, uint8_t txRingNum, uint8_t rxRingNum)
Starts the ENET rx/tx. This function enable the tx/rx and starts the rx/tx DMA. This shall be set after ENET initialization and before starting to receive the data.
Note
This must be called after all the ENET initialization. And should be called when the ENET receive/transmit is required.
- Parameters:
base – ENET peripheral base address.
rxRingNum – The number of the used rx rings. It shall not be larger than the ENET_QOS_RING_NUM_MAX(2). If the ringNum is set with 1, the ring 0 will be used.
txRingNum – The number of the used tx rings. It shall not be larger than the ENET_QOS_RING_NUM_MAX(2). If the ringNum is set with 1, the ring 0 will be used.
-
status_t ENET_QOS_SetMII(ENET_QOS_Type *base, enet_qos_mii_speed_t speed, enet_qos_mii_duplex_t duplex)
Sets the ENET MII speed and duplex.
This API is provided to dynamically change the speed and duplex for MAC.
- Parameters:
base – ENET peripheral base address.
speed – The speed of the RMII mode.
duplex – The duplex of the RMII mode.
- Returns:
kStatus_Success The ENET MII speed and duplex has been set successfully.
- Returns:
kStatus_InvalidArgument Could not set the desired ENET MII speed and duplex combination.
-
void ENET_QOS_SetSMI(ENET_QOS_Type *base, uint32_t csrClock_Hz)
Sets the ENET SMI(serial management interface)- MII management interface.
- Parameters:
base – ENET peripheral base address.
csrClock_Hz – CSR clock frequency in HZ
-
static inline bool ENET_QOS_IsSMIBusy(ENET_QOS_Type *base)
Checks if the SMI is busy.
- Parameters:
base – ENET peripheral base address.
- Returns:
The status of MII Busy status.
-
static inline uint16_t ENET_QOS_ReadSMIData(ENET_QOS_Type *base)
Reads data from the PHY register through SMI interface.
- Parameters:
base – ENET peripheral base address.
- Returns:
The data read from PHY
-
void ENET_QOS_StartSMIWrite(ENET_QOS_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t data)
Sends the MDIO IEEE802.3 Clause 22 format write command. After send command, user needs to check whether the transmission is over with ENET_QOS_IsSMIBusy().
- Parameters:
base – ENET peripheral base address.
phyAddr – The PHY address.
regAddr – The PHY register address.
data – The data written to PHY.
-
void ENET_QOS_StartSMIRead(ENET_QOS_Type *base, uint8_t phyAddr, uint8_t regAddr)
Sends the MDIO IEEE802.3 Clause 22 format read command. After send command, user needs to check whether the transmission is over with ENET_QOS_IsSMIBusy().
- Parameters:
base – ENET peripheral base address.
phyAddr – The PHY address.
regAddr – The PHY register address.
-
void ENET_QOS_StartExtC45SMIWrite(ENET_QOS_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t regAddr, uint16_t data)
Sends the MDIO IEEE802.3 Clause 45 format write command. After send command, user needs to check whether the transmission is over with ENET_QOS_IsSMIBusy().
- Parameters:
base – ENET peripheral base address.
portAddr – The MDIO port address(PHY address).
devAddr – The device address.
regAddr – The PHY register address.
data – The data written to PHY.
-
void ENET_QOS_StartExtC45SMIRead(ENET_QOS_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t regAddr)
Sends the MDIO IEEE802.3 Clause 45 format read command. After send command, user needs to check whether the transmission is over with ENET_QOS_IsSMIBusy().
- Parameters:
base – ENET peripheral base address.
portAddr – The MDIO port address(PHY address).
devAddr – The device address.
regAddr – The PHY register address.
-
status_t ENET_QOS_MDIOWrite(ENET_QOS_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t data)
MDIO write with IEEE802.3 MDIO Clause 22 format.
- Parameters:
base – ENET peripheral base address.
phyAddr – The PHY address.
regAddr – The PHY register.
data – The data written to PHY.
- Returns:
kStatus_Success MDIO access succeeds.
- Returns:
kStatus_Timeout MDIO access timeout.
-
status_t ENET_QOS_MDIORead(ENET_QOS_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t *pData)
MDIO read with IEEE802.3 MDIO Clause 22 format.
- Parameters:
base – ENET peripheral base address.
phyAddr – The PHY address.
regAddr – The PHY register.
pData – The data read from PHY.
- Returns:
kStatus_Success MDIO access succeeds.
- Returns:
kStatus_Timeout MDIO access timeout.
-
status_t ENET_QOS_MDIOC45Write(ENET_QOS_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t regAddr, uint16_t data)
MDIO write with IEEE802.3 Clause 45 format.
- Parameters:
base – ENET peripheral base address.
portAddr – The MDIO port address(PHY address).
devAddr – The device address.
regAddr – The PHY register address.
data – The data written to PHY.
- Returns:
kStatus_Success MDIO access succeeds.
- Returns:
kStatus_Timeout MDIO access timeout.
-
status_t ENET_QOS_MDIOC45Read(ENET_QOS_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t regAddr, uint16_t *pData)
MDIO read with IEEE802.3 Clause 45 format.
- Parameters:
base – ENET peripheral base address.
portAddr – The MDIO port address(PHY address).
devAddr – The device address.
regAddr – The PHY register address.
pData – The data read from PHY.
- Returns:
kStatus_Success MDIO access succeeds.
- Returns:
kStatus_Timeout MDIO access timeout.
-
static inline void ENET_QOS_SetMacAddr(ENET_QOS_Type *base, uint8_t *macAddr, uint8_t index)
Sets the ENET module Mac address.
- Parameters:
base – ENET peripheral base address.
macAddr – The six-byte Mac address pointer. The pointer is allocated by application and input into the API.
index – Configure macAddr to MAC_ADDRESS[index] register.
-
void ENET_QOS_GetMacAddr(ENET_QOS_Type *base, uint8_t *macAddr, uint8_t index)
Gets the ENET module Mac address.
- Parameters:
base – ENET peripheral base address.
macAddr – The six-byte Mac address pointer. The pointer is allocated by application and input into the API.
index – Get macAddr from MAC_ADDRESS[index] register.
-
void ENET_QOS_AddMulticastGroup(ENET_QOS_Type *base, uint8_t *address)
Adds the ENET_QOS device to a multicast group.
- Parameters:
base – ENET_QOS peripheral base address.
address – The six-byte multicast group address which is provided by application.
-
void ENET_QOS_LeaveMulticastGroup(ENET_QOS_Type *base, uint8_t *address)
Moves the ENET_QOS device from a multicast group.
- Parameters:
base – ENET_QOS peripheral base address.
address – The six-byte multicast group address which is provided by application.
-
static inline void ENET_QOS_AcceptAllMulticast(ENET_QOS_Type *base)
Enable ENET device to accept all multicast frames.
- Parameters:
base – ENET peripheral base address.
-
static inline void ENET_QOS_RejectAllMulticast(ENET_QOS_Type *base)
ENET device reject to accept all multicast frames.
- Parameters:
base – ENET peripheral base address.
-
void ENET_QOS_EnterPowerDown(ENET_QOS_Type *base, uint32_t *wakeFilter)
Set the MAC to enter into power down mode. the remote power wake up frame and magic frame can wake up the ENET from the power down mode.
- Parameters:
base – ENET peripheral base address.
wakeFilter – The wakeFilter provided to configure the wake up frame filter. Set the wakeFilter to NULL is not required. But if you have the filter requirement, please make sure the wakeFilter pointer shall be eight continuous 32-bits configuration.
-
static inline void ENET_QOS_ExitPowerDown(ENET_QOS_Type *base)
Set the MAC to exit power down mode. Exit from the power down mode and recover to normal work mode.
- Parameters:
base – ENET peripheral base address.
-
status_t ENET_QOS_EnableRxParser(ENET_QOS_Type *base, bool enable)
Enable/Disable Rx parser,please notice that for enable/disable Rx Parser, should better disable Receive first.
- Parameters:
base – ENET_QOS peripheral base address.
enable – Enable/Disable Rx parser function
- Return values:
kStatus_Success – Configure rx parser success.
kStatus_ENET_QOS_Timeout – Poll status flag timeout.
-
void ENET_QOS_EnableInterrupts(ENET_QOS_Type *base, uint32_t mask)
Enables the ENET DMA and MAC interrupts.
This function enables the ENET interrupt according to the provided mask. The mask is a logical OR of enet_qos_dma_interrupt_enable_t and enet_qos_mac_interrupt_enable_t. For example, to enable the dma and mac interrupt, do the following.
ENET_QOS_EnableInterrupts(ENET, kENET_QOS_DmaRx | kENET_QOS_DmaTx | kENET_QOS_MacPmt);
- Parameters:
base – ENET peripheral base address.
mask – ENET interrupts to enable. This is a logical OR of both enumeration :: enet_qos_dma_interrupt_enable_t and enet_qos_mac_interrupt_enable_t.
-
void ENET_QOS_DisableInterrupts(ENET_QOS_Type *base, uint32_t mask)
Disables the ENET DMA and MAC interrupts.
This function disables the ENET interrupt according to the provided mask. The mask is a logical OR of enet_qos_dma_interrupt_enable_t and enet_qos_mac_interrupt_enable_t. For example, to disable the dma and mac interrupt, do the following.
ENET_QOS_DisableInterrupts(ENET, kENET_QOS_DmaRx | kENET_QOS_DmaTx | kENET_QOS_MacPmt);
- Parameters:
base – ENET peripheral base address.
mask – ENET interrupts to disables. This is a logical OR of both enumeration :: enet_qos_dma_interrupt_enable_t and enet_qos_mac_interrupt_enable_t.
-
static inline uint32_t ENET_QOS_GetDmaInterruptStatus(ENET_QOS_Type *base, uint8_t channel)
Gets the ENET DMA interrupt status flag.
- Parameters:
base – ENET peripheral base address.
channel – The DMA Channel. Shall not be larger than ENET_QOS_RING_NUM_MAX.
- Returns:
The event status of the interrupt source. This is the logical OR of members of the enumeration :: enet_qos_dma_interrupt_enable_t.
-
static inline void ENET_QOS_ClearDmaInterruptStatus(ENET_QOS_Type *base, uint8_t channel, uint32_t mask)
Clear the ENET DMA interrupt status flag.
- Parameters:
base – ENET peripheral base address.
channel – The DMA Channel. Shall not be larger than ENET_QOS_RING_NUM_MAX.
mask – The interrupt status to be cleared. This is the logical OR of members of the enumeration :: enet_qos_dma_interrupt_enable_t.
-
static inline uint32_t ENET_QOS_GetMacInterruptStatus(ENET_QOS_Type *base)
Gets the ENET MAC interrupt status flag.
- Parameters:
base – ENET peripheral base address.
- Returns:
The event status of the interrupt source. Use the enum in enet_qos_mac_interrupt_enable_t and right shift ENET_QOS_MACINT_ENUM_OFFSET to mask the returned value to get the exact interrupt status.
-
void ENET_QOS_ClearMacInterruptStatus(ENET_QOS_Type *base, uint32_t mask)
Clears the ENET mac interrupt events status flag.
This function clears enabled ENET interrupts according to the provided mask. The mask is a logical OR of enumeration members. See the enet_qos_mac_interrupt_enable_t. For example, to clear the TX frame interrupt and RX frame interrupt, do the following.
ENET_QOS_ClearMacInterruptStatus(ENET, kENET_QOS_MacPmt);
- Parameters:
base – ENET peripheral base address.
mask – ENET interrupt source to be cleared. This is the logical OR of members of the enumeration :: enet_qos_mac_interrupt_enable_t.
-
static inline bool ENET_QOS_IsTxDescriptorDmaOwn(enet_qos_tx_bd_struct_t *txDesc)
Get the tx descriptor DMA Own flag.
- Parameters:
txDesc – The given tx descriptor.
- Return values:
True – the dma own tx descriptor, false application own tx descriptor.
-
void ENET_QOS_SetupTxDescriptor(enet_qos_tx_bd_struct_t *txDesc, void *buffer1, uint32_t bytes1, void *buffer2, uint32_t bytes2, uint32_t framelen, bool intEnable, bool tsEnable, enet_qos_desc_flag flag, uint8_t slotNum)
Setup a given tx descriptor. This function is a low level functional API to setup or prepare a given tx descriptor.
Note
This must be called after all the ENET initialization. And should be called when the ENET receive/transmit is required. Transmit buffers are ‘zero-copy’ buffers, so the buffer must remain in memory until the packet has been fully transmitted. The buffers should be free or requeued in the transmit interrupt irq handler.
- Parameters:
txDesc – The given tx descriptor.
buffer1 – The first buffer address in the descriptor.
bytes1 – The bytes in the fist buffer.
buffer2 – The second buffer address in the descriptor.
bytes2 – The bytes in the second buffer.
framelen – The length of the frame to be transmitted.
intEnable – Interrupt enable flag.
tsEnable – The timestamp enable.
flag – The flag of this tx descriptor, enet_qos_desc_flag .
slotNum – The slot num used for AV only.
-
static inline void ENET_QOS_UpdateTxDescriptorTail(ENET_QOS_Type *base, uint8_t channel, uint32_t txDescTailAddrAlign)
Update the tx descriptor tail pointer. This function is a low level functional API to update the the tx descriptor tail. This is called after you setup a new tx descriptor to update the tail pointer to make the new descriptor accessible by DMA.
- Parameters:
base – ENET peripheral base address.
channel – The tx DMA channel.
txDescTailAddrAlign – The new tx tail pointer address.
-
static inline void ENET_QOS_UpdateRxDescriptorTail(ENET_QOS_Type *base, uint8_t channel, uint32_t rxDescTailAddrAlign)
Update the rx descriptor tail pointer. This function is a low level functional API to update the the rx descriptor tail. This is called after you setup a new rx descriptor to update the tail pointer to make the new descriptor accessible by DMA and to anouse the rx poll command for DMA.
- Parameters:
base – ENET peripheral base address.
channel – The rx DMA channel.
rxDescTailAddrAlign – The new rx tail pointer address.
-
static inline uint32_t ENET_QOS_GetRxDescriptor(enet_qos_rx_bd_struct_t *rxDesc)
Gets the context in the ENET rx descriptor. This function is a low level functional API to get the the status flag from a given rx descriptor.
Note
This must be called after all the ENET initialization. And should be called when the ENET receive/transmit is required.
- Parameters:
rxDesc – The given rx descriptor.
- Return values:
The – RDES3 regions for write-back format rx buffer descriptor.
-
void ENET_QOS_UpdateRxDescriptor(enet_qos_rx_bd_struct_t *rxDesc, void *buffer1, void *buffer2, bool intEnable, bool doubleBuffEnable)
Updates the buffers and the own status for a given rx descriptor. This function is a low level functional API to Updates the buffers and the own status for a given rx descriptor.
Note
This must be called after all the ENET initialization. And should be called when the ENET receive/transmit is required.
- Parameters:
rxDesc – The given rx descriptor.
buffer1 – The first buffer address in the descriptor.
buffer2 – The second buffer address in the descriptor.
intEnable – Interrupt enable flag.
doubleBuffEnable – The double buffer enable flag.
-
status_t ENET_QOS_ConfigureRxParser(ENET_QOS_Type *base, enet_qos_rxp_config_t *rxpConfig, uint16_t entryCount)
Configure flexible rx parser.
This function is used to configure the flexible rx parser table.
- Parameters:
base – ENET peripheral base address..
rxpConfig – The rx parser configuration pointer.
entryCount – The rx parser entry count.
- Return values:
kStatus_Success – Configure rx parser success.
kStatus_ENET_QOS_Timeout – Poll status flag timeout.
-
status_t ENET_QOS_ReadRxParser(ENET_QOS_Type *base, enet_qos_rxp_config_t *rxpConfig, uint16_t entryIndex)
Read flexible rx parser configuration at specified index.
This function is used to read flexible rx parser configuration at specified index.
- Parameters:
base – ENET peripheral base address..
rxpConfig – The rx parser configuration pointer.
entryIndex – The rx parser entry index to read, start from 0.
- Return values:
kStatus_Success – Configure rx parser success.
kStatus_ENET_QOS_Timeout – Poll status flag timeout.
-
status_t ENET_QOS_EstProgramGcl(ENET_QOS_Type *base, enet_qos_est_gcl_t *gcl, uint32_t ptpClk_Hz)
Program Gate Control List.
This function is used to program the Enhanced Scheduled Transmisson. (IEEE802.1Qbv)
- Parameters:
base – ENET peripheral base address..
gcl – Pointer to the Gate Control List structure.
ptpClk_Hz – frequency of the PTP clock.
-
status_t ENET_QOS_EstReadGcl(ENET_QOS_Type *base, enet_qos_est_gcl_t *gcl, uint32_t listLen, bool hwList)
Read Gate Control List.
This function is used to read the Enhanced Scheduled Transmisson list. (IEEE802.1Qbv)
- Parameters:
base – ENET peripheral base address..
gcl – Pointer to the Gate Control List structure.
listLen – length of the provided opList array in gcl structure.
hwList – Boolean if True read HW list, false read SW list.
-
static inline void ENET_QOS_FpeEnable(ENET_QOS_Type *base)
Enable Frame Preemption.
This function is used to enable frame preemption. (IEEE802.1Qbu)
- Parameters:
base – ENET peripheral base address..
-
static inline void ENET_QOS_FpeDisable(ENET_QOS_Type *base)
Disable Frame Preemption.
This function is used to disable frame preemption. (IEEE802.1Qbu)
- Parameters:
base – ENET peripheral base address..
-
static inline void ENET_QOS_FpeConfigPreemptable(ENET_QOS_Type *base, uint8_t queueMask)
Configure preemptable transmit queues.
This function is used to configure the preemptable queues. (IEEE802.1Qbu)
- Parameters:
base – ENET peripheral base address..
queueMask – bitmask representing queues to set in preemptable mode. The N-th bit represents the queue N.
-
void ENET_QOS_AVBConfigure(ENET_QOS_Type *base, const enet_qos_cbs_config_t *config, uint8_t queueIndex)
Sets the ENET AVB feature.
ENET_QOS AVB feature configuration, set transmit bandwidth. This API is called when the AVB feature is required.
- Parameters:
base – ENET_QOS peripheral base address.
config – The ENET_QOS AVB feature configuration structure.
queueIndex – ENET_QOS queue index.
-
void ENET_QOS_GetStatistics(ENET_QOS_Type *base, enet_qos_transfer_stats_t *statistics)
Gets statistical data in transfer.
- Parameters:
base – ENET_QOS peripheral base address.
statistics – The statistics structure pointer.
-
void ENET_QOS_CreateHandler(ENET_QOS_Type *base, enet_qos_handle_t *handle, enet_qos_config_t *config, enet_qos_buffer_config_t *bufferConfig, enet_qos_callback_t callback, void *userData)
Create ENET Handler.
This is a transactional API and it’s provided to store all data which are needed during the whole transactional process. This API should not be used when you use functional APIs to do data tx/rx. This is function will store many data/flag for transactional use, so all configure API such as ENET_QOS_Init(), ENET_QOS_DescriptorInit(), ENET_QOS_EnableInterrupts() etc.
Note
as our transactional transmit API use the zero-copy transmit buffer. so there are two thing we emphasize here:
tx buffer free/requeue for application should be done in the tx interrupt handler. Please set callback: kENET_QOS_TxIntEvent with tx buffer free/requeue process APIs.
the tx interrupt is forced to open.
- Parameters:
base – ENET peripheral base address.
handle – ENET handler.
config – ENET configuration.
bufferConfig – ENET buffer configuration.
callback – The callback function.
userData – The application data.
-
status_t ENET_QOS_GetRxFrameSize(ENET_QOS_Type *base, enet_qos_handle_t *handle, uint32_t *length, uint8_t channel)
Gets the size of the read frame. This function gets a received frame size from the ENET buffer descriptors.
Note
The FCS of the frame is automatically removed by MAC and the size is the length without the FCS. After calling ENET_QOS_GetRxFrameSize, ENET_QOS_ReadFrame() should be called to update the receive buffers If the result is not “kStatus_ENET_QOS_RxFrameEmpty”.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler structure. This is the same handler pointer used in the ENET_QOS_Init.
length – The length of the valid frame received.
channel – The DMAC channel for the rx.
- Return values:
kStatus_ENET_QOS_RxFrameEmpty – No frame received. Should not call ENET_QOS_ReadFrame to read frame.
kStatus_ENET_QOS_RxFrameError – Data error happens. ENET_QOS_ReadFrame should be called with NULL data and NULL length to update the receive buffers.
kStatus_Success – Receive a frame Successfully then the ENET_QOS_ReadFrame should be called with the right data buffer and the captured data length input.
-
status_t ENET_QOS_ReadFrame(ENET_QOS_Type *base, enet_qos_handle_t *handle, uint8_t *data, uint32_t length, uint8_t channel, enet_qos_ptp_time_t *ts)
Reads a frame from the ENET device. This function reads a frame from the ENET DMA descriptors. The ENET_QOS_GetRxFrameSize should be used to get the size of the prepared data buffer. For example use rx dma channel 0:
uint32_t length; enet_qos_handle_t g_handle; status = ENET_QOS_GetRxFrameSize(&g_handle, &length, 0); if (length != 0) { uint8_t *data = memory allocate interface; if (!data) { ENET_QOS_ReadFrame(ENET, &g_handle, NULL, 0, 0); } else { status = ENET_QOS_ReadFrame(ENET, &g_handle, data, length, 0); } } else if (status == kStatus_ENET_QOS_RxFrameError) { ENET_QOS_ReadFrame(ENET, &g_handle, NULL, 0, 0); }- Parameters:
base – ENET peripheral base address.
handle – The ENET handler structure. This is the same handler pointer used in the ENET_QOS_Init.
data – The data buffer provided by user to store the frame which memory size should be at least “length”.
length – The size of the data buffer which is still the length of the received frame.
channel – The rx DMA channel. shall not be larger than 2.
ts – Pointer to the structure enet_qos_ptp_time_t to save frame timestamp.
- Returns:
The execute status, successful or failure.
-
status_t ENET_QOS_SendFrame(ENET_QOS_Type *base, enet_qos_handle_t *handle, uint8_t *data, uint32_t length, uint8_t channel, bool isNeedTs, void *context, enet_qos_tx_offload_t txOffloadOps)
Transmits an ENET frame.
Note
The CRC is automatically appended to the data. Input the data to send without the CRC.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer. This is the same handler pointer used in the ENET_QOS_Init.
data – The data buffer provided by user to be send.
length – The length of the data to be send.
channel – Channel to send the frame, same with queue index.
isNeedTs – True to enable timestamp save for the frame
context – pointer to user context to be kept in the tx dirty frame information.
txOffloadOps – The Tx frame checksum offload option.
- Return values:
kStatus_Success – Send frame succeed.
kStatus_ENET_QOS_TxFrameBusy – Transmit buffer descriptor is busy under transmission. The transmit busy happens when the data send rate is over the MAC capacity. The waiting mechanism is recommended to be added after each call return with kStatus_ENET_QOS_TxFrameBusy.
-
void ENET_QOS_ReclaimTxDescriptor(ENET_QOS_Type *base, enet_qos_handle_t *handle, uint8_t channel)
Reclaim tx descriptors. This function is used to update the tx descriptor status and store the tx timestamp when the 1588 feature is enabled. This is called by the transmit interrupt IRQ handler after the complete of a frame transmission.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer. This is the same handler pointer used in the ENET_QOS_Init.
channel – The tx DMA channel.
-
void ENET_QOS_CommonIRQHandler(ENET_QOS_Type *base, enet_qos_handle_t *handle)
The ENET IRQ handler.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer.
-
void ENET_QOS_SetISRHandler(ENET_QOS_Type *base, enet_qos_isr_t ISRHandler)
Set the second level IRQ handler, allow user to overwrite the default second level weak IRQ handler.
- Parameters:
base – ENET peripheral base address.
ISRHandler – The handler to install.
-
status_t ENET_QOS_Ptp1588CorrectTimerInCoarse(ENET_QOS_Type *base, enet_qos_systime_op operation, uint32_t second, uint32_t nanosecond)
Correct the ENET PTP 1588 timer in coarse method.
- Parameters:
base – ENET peripheral base address.
operation – The system time operation, refer to “enet_qos_systime_op”
second – The correction second.
nanosecond – The correction nanosecond.
-
status_t ENET_QOS_Ptp1588CorrectTimerInFine(ENET_QOS_Type *base, uint32_t addend)
Correct the ENET PTP 1588 timer in fine method.
Note
Should take refer to the chapter “System time correction” and see the description for the “fine correction method”.
- Parameters:
base – ENET peripheral base address.
addend – The addend value to be set in the fine method
-
static inline uint32_t ENET_QOS_Ptp1588GetAddend(ENET_QOS_Type *base)
Get the ENET Time stamp current addend value.
- Parameters:
base – ENET peripheral base address.
- Returns:
The addend value.
-
void ENET_QOS_Ptp1588GetTimerNoIRQDisable(ENET_QOS_Type *base, uint64_t *second, uint32_t *nanosecond)
Gets the current ENET time from the PTP 1588 timer without IRQ disable.
- Parameters:
base – ENET peripheral base address.
second – The PTP 1588 system timer second.
nanosecond – The PTP 1588 system timer nanosecond. For the unit of the nanosecond is 1ns. so the nanosecond is the real nanosecond.
-
static inline status_t ENET_Ptp1588PpsControl(ENET_QOS_Type *base, enet_qos_ptp_pps_instance_t instance, enet_qos_ptp_pps_trgt_mode_t trgtMode, enet_qos_ptp_pps_cmd_t cmd)
Sets the ENET PTP 1588 PPS control. All channels operate in flexible PPS output mode.
- Parameters:
base – ENET peripheral base address.
instance – The ENET QOS PTP PPS instance.
trgtMode – The target time register mode.
cmd – The target flexible PPS output control command.
-
status_t ENET_QOS_Ptp1588PpsSetTrgtTime(ENET_QOS_Type *base, enet_qos_ptp_pps_instance_t instance, uint32_t seconds, uint32_t nanoseconds)
Sets the ENET OQS PTP 1588 PPS target time registers.
- Parameters:
base – ENET QOS peripheral base address.
instance – The ENET QOS PTP PPS instance.
seconds – The target seconds.
nanoseconds – The target nanoseconds.
-
static inline void ENET_QOS_Ptp1588PpsSetWidth(ENET_QOS_Type *base, enet_qos_ptp_pps_instance_t instance, uint32_t width)
Sets the ENET OQS PTP 1588 PPS output signal interval.
- Parameters:
base – ENET QOS peripheral base address.
instance – The ENET QOS PTP PPS instance.
width – Signal Width. It is stored in terms of number of units of sub-second increment value. The width value must be lesser than interval value.
-
static inline void ENET_QOS_Ptp1588PpsSetInterval(ENET_QOS_Type *base, enet_qos_ptp_pps_instance_t instance, uint32_t interval)
Sets the ENET OQS PTP 1588 PPS output signal width.
- Parameters:
base – ENET QOS peripheral base address.
instance – The ENET QOS PTP PPS instance.
interval – Signal Interval. It is stored in terms of number of units of sub-second increment value.
-
void ENET_QOS_Ptp1588GetTimer(ENET_QOS_Type *base, uint64_t *second, uint32_t *nanosecond)
Gets the current ENET time from the PTP 1588 timer.
- Parameters:
base – ENET peripheral base address.
second – The PTP 1588 system timer second.
nanosecond – The PTP 1588 system timer nanosecond. For the unit of the nanosecond is 1ns.so the nanosecond is the real nanosecond.
-
void ENET_QOS_GetTxFrame(enet_qos_handle_t *handle, enet_qos_frame_info_t *txFrame, uint8_t channel)
Gets the time stamp of the transmit frame.
This function is used for PTP stack to get the timestamp captured by the ENET driver.
- Parameters:
handle – The ENET handler pointer.This is the same state pointer used in ENET_QOS_Init.
txFrame – Input parameter, pointer to enet_qos_frame_info_t for saving read out frame information.
channel – Channel for searching the tx frame.
-
status_t ENET_QOS_GetRxFrame(ENET_QOS_Type *base, enet_qos_handle_t *handle, enet_qos_rx_frame_struct_t *rxFrame, uint8_t channel)
Receives one frame in specified BD ring with zero copy.
This function will use the user-defined allocate and free callback. Every time application gets one frame through this function, driver will allocate new buffers for the BDs whose buffers have been taken by application.
Note
This function will drop current frame and update related BDs as available for DMA if new buffers allocating fails. Application must provide a memory pool including at least BD number + 1 buffers(+2 if enable double buffer) to make this function work normally. If user calls this function in Rx interrupt handler, be careful that this function makes Rx BD ready with allocating new buffer(normal) or updating current BD(out of memory). If there’s always new Rx frame input, Rx interrupt will be triggered forever. Application need to disable Rx interrupt according to specific design in this case.
- Parameters:
base – ENET peripheral base address.
handle – The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
rxFrame – The received frame information structure provided by user.
channel – Channel for searching the rx frame.
- Return values:
kStatus_Success – Succeed to get one frame and allocate new memory for Rx buffer.
kStatus_ENET_QOS_RxFrameEmpty – There’s no Rx frame in the BD.
kStatus_ENET_QOS_RxFrameError – There’s issue in this receiving.
kStatus_ENET_QOS_RxFrameDrop – There’s no new buffer memory for BD, drop this frame.
-
FSL_ENET_QOS_DRIVER_VERSION
Defines the driver version.
-
ENET_QOS_RXDESCRIP_RD_BUFF1VALID_MASK
Defines for read format.
Buffer1 address valid.
-
ENET_QOS_RXDESCRIP_RD_BUFF2VALID_MASK
Buffer2 address valid.
-
ENET_QOS_RXDESCRIP_RD_IOC_MASK
Interrupt enable on complete.
-
ENET_QOS_RXDESCRIP_RD_OWN_MASK
Own bit.
-
ENET_QOS_RXDESCRIP_WR_ERR_MASK
Defines for write back format.
-
ENET_QOS_RXDESCRIP_WR_PYLOAD_MASK
-
ENET_QOS_RXDESCRIP_WR_PTPMSGTYPE_MASK
-
ENET_QOS_RXDESCRIP_WR_PTPTYPE_MASK
-
ENET_QOS_RXDESCRIP_WR_PTPVERSION_MASK
-
ENET_QOS_RXDESCRIP_WR_PTPTSA_MASK
-
ENET_QOS_RXDESCRIP_WR_PACKETLEN_MASK
-
ENET_QOS_RXDESCRIP_WR_ERRSUM_MASK
-
ENET_QOS_RXDESCRIP_WR_TYPE_MASK
-
ENET_QOS_RXDESCRIP_WR_DE_MASK
-
ENET_QOS_RXDESCRIP_WR_RE_MASK
-
ENET_QOS_RXDESCRIP_WR_OE_MASK
-
ENET_QOS_RXDESCRIP_WR_RWT_MASK
-
ENET_QOS_RXDESCRIP_WR_GP_MASK
-
ENET_QOS_RXDESCRIP_WR_CRC_MASK
-
ENET_QOS_RXDESCRIP_WR_RS0V_MASK
-
ENET_QOS_RXDESCRIP_WR_RS1V_MASK
-
ENET_QOS_RXDESCRIP_WR_RS2V_MASK
-
ENET_QOS_RXDESCRIP_WR_LD_MASK
-
ENET_QOS_RXDESCRIP_WR_FD_MASK
-
ENET_QOS_RXDESCRIP_WR_CTXT_MASK
-
ENET_QOS_RXDESCRIP_WR_OWN_MASK
-
ENET_QOS_RXDESCRIP_WR_SA_FAILURE_MASK
-
ENET_QOS_RXDESCRIP_WR_DA_FAILURE_MASK
-
ENET_QOS_TXDESCRIP_RD_BL1_MASK
Defines for read format.
-
ENET_QOS_TXDESCRIP_RD_BL2_MASK
-
ENET_QOS_TXDESCRIP_RD_BL1(n)
-
ENET_QOS_TXDESCRIP_RD_BL2(n)
-
ENET_QOS_TXDESCRIP_RD_TTSE_MASK
-
ENET_QOS_TXDESCRIP_RD_IOC_MASK
-
ENET_QOS_TXDESCRIP_RD_FL_MASK
-
ENET_QOS_TXDESCRIP_RD_FL(n)
-
ENET_QOS_TXDESCRIP_RD_CIC(n)
-
ENET_QOS_TXDESCRIP_RD_TSE_MASK
-
ENET_QOS_TXDESCRIP_RD_SLOT(n)
-
ENET_QOS_TXDESCRIP_RD_SAIC(n)
-
ENET_QOS_TXDESCRIP_RD_CPC(n)
-
ENET_QOS_TXDESCRIP_RD_LDFD(n)
-
ENET_QOS_TXDESCRIP_RD_LD_MASK
-
ENET_QOS_TXDESCRIP_RD_FD_MASK
-
ENET_QOS_TXDESCRIP_RD_CTXT_MASK
-
ENET_QOS_TXDESCRIP_RD_OWN_MASK
-
ENET_QOS_TXDESCRIP_WB_TTSS_MASK
Defines for write back format.
-
ENET_QOS_ABNORM_INT_MASK
-
ENET_QOS_NORM_INT_MASK
-
ENET_QOS_RING_NUM_MAX
The Maximum number of tx/rx descriptor rings.
-
ENET_QOS_FRAME_MAX_FRAMELEN
Default maximum Ethernet frame size.
-
ENET_QOS_FCS_LEN
Ethernet FCS length.
-
ENET_QOS_ADDR_ALIGNMENT
Recommended Ethernet buffer alignment.
-
ENET_QOS_BUFF_ALIGNMENT
Receive buffer alignment shall be 4bytes-aligned.
-
ENET_QOS_MTL_RXFIFOSIZE
The rx fifo size.
-
ENET_QOS_MTL_TXFIFOSIZE
The tx fifo size.
-
ENET_QOS_MACINT_ENUM_OFFSET
The offest for mac interrupt in enum type.
-
ENET_QOS_RXP_ENTRY_COUNT
RXP table entry count, implied by FRPES in MAC_HW_FEATURE3
-
ENET_QOS_RXP_BUFFER_SIZE
RXP Buffer size, implied by FRPBS in MAC_HW_FEATURE3
-
ENET_QOS_EST_WID
Width of the time interval in Gate Control List
-
ENET_QOS_EST_DEP
Maxmimum depth of Gate Control List
Defines the status return codes for transaction.
Values:
-
enumerator kStatus_ENET_QOS_InitMemoryFail
Init fails since buffer memory is not enough.
-
enumerator kStatus_ENET_QOS_RxFrameError
A frame received but data error happen.
-
enumerator kStatus_ENET_QOS_RxFrameFail
Failed to receive a frame.
-
enumerator kStatus_ENET_QOS_RxFrameEmpty
No frame arrive.
-
enumerator kStatus_ENET_QOS_RxFrameDrop
Rx frame is dropped since no buffer memory.
-
enumerator kStatus_ENET_QOS_TxFrameBusy
Transmit descriptors are under process.
-
enumerator kStatus_ENET_QOS_TxFrameFail
Transmit frame fail.
-
enumerator kStatus_ENET_QOS_TxFrameOverLen
Transmit oversize.
-
enumerator kStatus_ENET_QOS_Est_SwListBusy
SW Gcl List not yet processed by HW.
-
enumerator kStatus_ENET_QOS_Est_SwListWriteAbort
SW Gcl List write aborted .
-
enumerator kStatus_ENET_QOS_Est_InvalidParameter
Invalid parameter in Gcl List .
-
enumerator kStatus_ENET_QOS_Est_BtrError
Base Time Error when loading list.
-
enumerator kStatus_ENET_QOS_TrgtBusy
Target time register busy.
-
enumerator kStatus_ENET_QOS_Timeout
Target time register busy.
-
enumerator kStatus_ENET_QOS_PpsBusy
Pps command busy.
-
enumerator kStatus_ENET_QOS_InitMemoryFail
-
enum _enet_qos_mii_mode
Defines the MII/RGMII mode for data interface between the MAC and the PHY.
Values:
-
enumerator kENET_QOS_MiiMode
MII mode for data interface.
-
enumerator kENET_QOS_RgmiiMode
RGMII mode for data interface.
-
enumerator kENET_QOS_RmiiMode
RMII mode for data interface.
-
enumerator kENET_QOS_MiiMode
-
enum _enet_qos_mii_speed
Defines the 10/100/1000 Mbps speed for the MII data interface.
Values:
-
enumerator kENET_QOS_MiiSpeed10M
Speed 10 Mbps.
-
enumerator kENET_QOS_MiiSpeed100M
Speed 100 Mbps.
-
enumerator kENET_QOS_MiiSpeed1000M
Speed 1000 Mbps.
-
enumerator kENET_QOS_MiiSpeed2500M
Speed 2500 Mbps.
-
enumerator kENET_QOS_MiiSpeed10M
-
enum _enet_qos_mii_duplex
Defines the half or full duplex for the MII data interface.
Values:
-
enumerator kENET_QOS_MiiHalfDuplex
Half duplex mode.
-
enumerator kENET_QOS_MiiFullDuplex
Full duplex mode.
-
enumerator kENET_QOS_MiiHalfDuplex
-
enum _enet_qos_mii_normal_opcode
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.
Values:
-
enumerator kENET_QOS_MiiWriteFrame
Write frame operation for a valid MII management frame.
-
enumerator kENET_QOS_MiiReadFrame
Read frame operation for a valid MII management frame.
-
enumerator kENET_QOS_MiiWriteFrame
-
enum _enet_qos_dma_burstlen
Define the DMA maximum transmit burst length.
Values:
-
enumerator kENET_QOS_BurstLen1
DMA burst length 1.
-
enumerator kENET_QOS_BurstLen2
DMA burst length 2.
-
enumerator kENET_QOS_BurstLen4
DMA burst length 4.
-
enumerator kENET_QOS_BurstLen8
DMA burst length 8.
-
enumerator kENET_QOS_BurstLen16
DMA burst length 16.
-
enumerator kENET_QOS_BurstLen32
DMA burst length 32.
-
enumerator kENET_QOS_BurstLen64
DMA burst length 64. eight times enabled.
-
enumerator kENET_QOS_BurstLen128
DMA burst length 128. eight times enabled.
-
enumerator kENET_QOS_BurstLen256
DMA burst length 256. eight times enabled.
-
enumerator kENET_QOS_BurstLen1
-
enum _enet_qos_desc_flag
Define the flag for the descriptor.
Values:
-
enumerator kENET_QOS_MiddleFlag
It’s a middle descriptor of the frame.
-
enumerator kENET_QOS_LastFlagOnly
It’s the last descriptor of the frame.
-
enumerator kENET_QOS_FirstFlagOnly
It’s the first descriptor of the frame.
-
enumerator kENET_QOS_FirstLastFlag
It’s the first and last descriptor of the frame.
-
enumerator kENET_QOS_MiddleFlag
-
enum _enet_qos_systime_op
Define the system time adjust operation control.
Values:
-
enumerator kENET_QOS_SystimeAdd
System time add to.
-
enumerator kENET_QOS_SystimeSubtract
System time subtract.
-
enumerator kENET_QOS_SystimeAdd
-
enum _enet_qos_ts_rollover_type
Define the system time rollover control.
Values:
-
enumerator kENET_QOS_BinaryRollover
System time binary rollover.
-
enumerator kENET_QOS_DigitalRollover
System time digital rollover.
-
enumerator kENET_QOS_BinaryRollover
-
enum _enet_qos_special_config
Defines some special configuration for ENET.
These control flags are provided for special user requirements. Normally, these is no need to set this control flags for ENET initialization. But if you have some special requirements, set the flags to specialControl in the enet_qos_config_t.
Note
“kENET_QOS_StoreAndForward” is recommended to be set.
Values:
-
enumerator kENET_QOS_DescDoubleBuffer
The double buffer is used in the tx/rx descriptor.
-
enumerator kENET_QOS_StoreAndForward
The rx/tx store and forward enable.
-
enumerator kENET_QOS_PromiscuousEnable
The promiscuous enabled.
-
enumerator kENET_QOS_FlowControlEnable
The flow control enabled.
-
enumerator kENET_QOS_BroadCastRxDisable
The broadcast disabled.
-
enumerator kENET_QOS_MulticastAllEnable
All multicast are passed.
-
enumerator kENET_QOS_8023AS2KPacket
8023as support for 2K packets.
-
enumerator kENET_QOS_HashMulticastEnable
The multicast packets are filtered through hash table.
-
enumerator kENET_QOS_RxChecksumOffloadEnable
The Rx checksum offload enabled.
-
enumerator kENET_QOS_DescDoubleBuffer
-
enum _enet_qos_dma_interrupt_enable
List of DMA interrupts supported by the ENET interrupt. This enumeration uses one-bot encoding to allow a logical OR of multiple members.
Values:
-
enumerator kENET_QOS_DmaTx
Tx interrupt.
-
enumerator kENET_QOS_DmaTxStop
Tx stop interrupt.
-
enumerator kENET_QOS_DmaTxBuffUnavail
Tx buffer unavailable.
-
enumerator kENET_QOS_DmaRx
Rx interrupt.
-
enumerator kENET_QOS_DmaRxBuffUnavail
Rx buffer unavailable.
-
enumerator kENET_QOS_DmaRxStop
Rx stop.
-
enumerator kENET_QOS_DmaRxWatchdogTimeout
Rx watchdog timeout.
-
enumerator kENET_QOS_DmaEarlyTx
Early transmit.
-
enumerator kENET_QOS_DmaEarlyRx
Early receive.
-
enumerator kENET_QOS_DmaBusErr
Fatal bus error.
-
enumerator kENET_QOS_DmaTx
-
enum _enet_qos_mac_interrupt_enable
List of mac interrupts supported by the ENET interrupt. This enumeration uses one-bot encoding to allow a logical OR of multiple members.
Values:
-
enumerator kENET_QOS_MacTimestamp
-
enumerator kENET_QOS_MacTimestamp
-
enum _enet_qos_event
Defines the common interrupt event for callback use.
Values:
-
enumerator kENET_QOS_RxIntEvent
Receive interrupt event.
-
enumerator kENET_QOS_TxIntEvent
Transmit interrupt event.
-
enumerator kENET_QOS_WakeUpIntEvent
Wake up interrupt event.
-
enumerator kENET_QOS_TimeStampIntEvent
Time stamp interrupt event.
-
enumerator kENET_QOS_RxIntEvent
-
enum _enet_qos_queue_mode
Define the MTL mode for multiple queues/rings.
Values:
-
enumerator kENET_QOS_AVB_Mode
Enable queue in AVB mode.
-
enumerator kENET_QOS_DCB_Mode
Enable queue in DCB mode.
-
enumerator kENET_QOS_AVB_Mode
-
enum _enet_qos_mtl_multiqueue_txsche
Define the MTL tx scheduling algorithm for multiple queues/rings.
Values:
-
enumerator kENET_QOS_txWeightRR
Tx weight round-robin.
-
enumerator kENET_QOS_txWeightFQ
Tx weight fair queuing.
-
enumerator kENET_QOS_txDefictWeightRR
Tx deficit weighted round-robin.
-
enumerator kENET_QOS_txStrPrio
Tx strict priority.
-
enumerator kENET_QOS_txWeightRR
-
enum _enet_qos_mtl_multiqueue_rxsche
Define the MTL rx scheduling algorithm for multiple queues/rings.
Values:
-
enumerator kENET_QOS_rxStrPrio
Rx strict priority, Queue 0 has the lowest priority.
-
enumerator kENET_QOS_rxWeightStrPrio
Weighted Strict Priority.
-
enumerator kENET_QOS_rxStrPrio
-
enum _enet_qos_mtl_rxqueuemap
Define the MTL rx queue and DMA channel mapping.
Values:
-
enumerator kENET_QOS_StaticDirctMap
The received fame in rx Qn(n = 0,1) directly map to dma channel n.
-
enumerator kENET_QOS_DynamicMap
The received frame in rx Qn(n = 0,1) map to the dma channel m(m = 0,1) related with the same Mac.
-
enumerator kENET_QOS_StaticDirctMap
-
enum _enet_qos_rx_queue_route
Defines the package type for receive queue routing.
Values:
-
enumerator kENET_QOS_PacketNoQ
-
enumerator kENET_QOS_PacketAVCPQ
-
enumerator kENET_QOS_PacketPTPQ
-
enumerator kENET_QOS_PacketUPQ
-
enumerator kENET_QOS_PacketMCBCQ
-
enumerator kENET_QOS_PacketNoQ
-
enum _enet_qos_ptp_event_type
Defines the ENET PTP message related constant.
Values:
-
enumerator kENET_QOS_PtpEventMsgType
PTP event message type.
-
enumerator kENET_QOS_PtpSrcPortIdLen
PTP message sequence id length.
-
enumerator kENET_QOS_PtpEventPort
PTP event port number.
-
enumerator kENET_QOS_PtpGnrlPort
PTP general port number.
-
enumerator kENET_QOS_PtpEventMsgType
-
enum _enet_qos_ptp_pps_instance
Defines the PPS instance numbers.
Values:
-
enumerator kENET_QOS_PtpPpsIstance0
PPS instance 0.
-
enumerator kENET_QOS_PtpPpsIstance1
PPS instance 1.
-
enumerator kENET_QOS_PtpPpsIstance2
PPS instance 2.
-
enumerator kENET_QOS_PtpPpsIstance3
PPS instance 3.
-
enumerator kENET_QOS_PtpPpsIstance0
-
enum _enet_qos_ptp_pps_trgt_mode
Defines the Target Time register mode.
Values:
-
enumerator kENET_QOS_PtpPpsTrgtModeOnlyInt
Only interrupts.
-
enumerator kENET_QOS_PtpPpsTrgtModeIntSt
Both interrupt and output signal.
-
enumerator kENET_QOS_PtpPpsTrgtModeOnlySt
Only output signal.
-
enumerator kENET_QOS_PtpPpsTrgtModeOnlyInt
-
enum _enet_qos_ptp_pps_cmd
Defines commands for ppscmd register.
Values:
-
enumerator kENET_QOS_PtpPpsCmdNC
No Command.
-
enumerator kENET_QOS_PtpPpsCmdSSP
Start Single Pulse.
-
enumerator kENET_QOS_PtpPpsCmdSPT
Start Pulse Train.
-
enumerator kENET_QOS_PtpPpsCmdCS
Cancel Start.
-
enumerator kENET_QOS_PtpPpsCmdSPTAT
Stop Pulse Train At Time.
-
enumerator kENET_QOS_PtpPpsCmdSPTI
Stop Pulse Train Immediately.
-
enumerator kENET_QOS_PtpPpsCmdCSPT
Cancel Stop Pulse Train.
-
enumerator kENET_QOS_PtpPpsCmdNC
-
enum _enet_qos_ets_list_length
Defines the enmueration of ETS list length.
Values:
-
enumerator kENET_QOS_Ets_List_64
List length of 64
-
enumerator kENET_QOS_Ets_List_128
List length of 128
-
enumerator kENET_QOS_Ets_List_256
List length of 256
-
enumerator kENET_QOS_Ets_List_512
List length of 512
-
enumerator kENET_QOS_Ets_List_1024
List length of 1024
-
enumerator kENET_QOS_Ets_List_64
-
enum _enet_qos_ets_gccr_addr
Defines the enmueration of ETS gate control address.
Values:
-
enumerator kENET_QOS_Ets_btr_low
BTR Low
-
enumerator kENET_QOS_Ets_btr_high
BTR High
-
enumerator kENET_QOS_Ets_ctr_low
CTR Low
-
enumerator kENET_QOS_Ets_ctr_high
CTR High
-
enumerator kENET_QOS_Ets_ter
TER
-
enumerator kENET_QOS_Ets_llr
LLR
-
enumerator kENET_QOS_Ets_btr_low
-
enum _enet_qos_rxp_dma_chn
Defines the enmueration of DMA channel used for rx parser entry.
Values:
-
enumerator kENET_QOS_Rxp_DMAChn0
DMA Channel 0 used for RXP entry match
-
enumerator kENET_QOS_Rxp_DMAChn1
DMA Channel 1 used for RXP entry match
-
enumerator kENET_QOS_Rxp_DMAChn2
DMA Channel 2 used for RXP entry match
-
enumerator kENET_QOS_Rxp_DMAChn3
DMA Channel 3 used for RXP entry match
-
enumerator kENET_QOS_Rxp_DMAChn4
DMA Channel 4 used for RXP entry match
-
enumerator kENET_QOS_Rxp_DMAChn0
-
enum _enet_qos_tx_offload
Define the Tx checksum offload options.
Values:
-
enumerator kENET_QOS_TxOffloadDisable
Disable Tx checksum offload.
-
enumerator kENET_QOS_TxOffloadIPHeader
Enable IP header checksum calculation and insertion.
-
enumerator kENET_QOS_TxOffloadIPHeaderPlusPayload
Enable IP header and payload checksum calculation and insertion.
-
enumerator kENET_QOS_TxOffloadAll
Enable IP header, payload and pseudo header checksum calculation and insertion.
-
enumerator kENET_QOS_TxOffloadDisable
-
typedef enum _enet_qos_mii_mode enet_qos_mii_mode_t
Defines the MII/RGMII mode for data interface between the MAC and the PHY.
-
typedef enum _enet_qos_mii_speed enet_qos_mii_speed_t
Defines the 10/100/1000 Mbps speed for the MII data interface.
-
typedef enum _enet_qos_mii_duplex enet_qos_mii_duplex_t
Defines the half or full duplex for the MII data interface.
-
typedef enum _enet_qos_mii_normal_opcode enet_qos_mii_normal_opcode
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.
-
typedef enum _enet_qos_dma_burstlen enet_qos_dma_burstlen
Define the DMA maximum transmit burst length.
-
typedef enum _enet_qos_desc_flag enet_qos_desc_flag
Define the flag for the descriptor.
-
typedef enum _enet_qos_systime_op enet_qos_systime_op
Define the system time adjust operation control.
-
typedef enum _enet_qos_ts_rollover_type enet_qos_ts_rollover_type
Define the system time rollover control.
-
typedef enum _enet_qos_special_config enet_qos_special_config_t
Defines some special configuration for ENET.
These control flags are provided for special user requirements. Normally, these is no need to set this control flags for ENET initialization. But if you have some special requirements, set the flags to specialControl in the enet_qos_config_t.
Note
“kENET_QOS_StoreAndForward” is recommended to be set.
-
typedef enum _enet_qos_dma_interrupt_enable enet_qos_dma_interrupt_enable_t
List of DMA interrupts supported by the ENET interrupt. This enumeration uses one-bot encoding to allow a logical OR of multiple members.
-
typedef enum _enet_qos_mac_interrupt_enable enet_qos_mac_interrupt_enable_t
List of mac interrupts supported by the ENET interrupt. This enumeration uses one-bot encoding to allow a logical OR of multiple members.
-
typedef enum _enet_qos_event enet_qos_event_t
Defines the common interrupt event for callback use.
-
typedef enum _enet_qos_queue_mode enet_qos_queue_mode_t
Define the MTL mode for multiple queues/rings.
-
typedef enum _enet_qos_mtl_multiqueue_txsche enet_qos_mtl_multiqueue_txsche
Define the MTL tx scheduling algorithm for multiple queues/rings.
-
typedef enum _enet_qos_mtl_multiqueue_rxsche enet_qos_mtl_multiqueue_rxsche
Define the MTL rx scheduling algorithm for multiple queues/rings.
-
typedef enum _enet_qos_mtl_rxqueuemap enet_qos_mtl_rxqueuemap_t
Define the MTL rx queue and DMA channel mapping.
-
typedef enum _enet_qos_rx_queue_route enet_qos_rx_queue_route_t
Defines the package type for receive queue routing.
-
typedef enum _enet_qos_ptp_event_type enet_qos_ptp_event_type_t
Defines the ENET PTP message related constant.
-
typedef enum _enet_qos_ptp_pps_instance enet_qos_ptp_pps_instance_t
Defines the PPS instance numbers.
-
typedef enum _enet_qos_ptp_pps_trgt_mode enet_qos_ptp_pps_trgt_mode_t
Defines the Target Time register mode.
-
typedef enum _enet_qos_ptp_pps_cmd enet_qos_ptp_pps_cmd_t
Defines commands for ppscmd register.
-
typedef enum _enet_qos_ets_list_length enet_qos_ets_list_length_t
Defines the enmueration of ETS list length.
-
typedef enum _enet_qos_ets_gccr_addr enet_qos_ets_gccr_addr_t
Defines the enmueration of ETS gate control address.
-
typedef enum _enet_qos_rxp_dma_chn enet_qos_rxp_dma_chn_t
Defines the enmueration of DMA channel used for rx parser entry.
-
typedef enum _enet_qos_tx_offload enet_qos_tx_offload_t
Define the Tx checksum offload options.
-
typedef struct _enet_qos_rx_bd_struct enet_qos_rx_bd_struct_t
Defines the receive descriptor structure has the read-format and write-back format structure. They both has the same size with different region definition. so we define the read-format region as the receive descriptor structure Use the read-format region mask bits in the descriptor initialization Use the write-back format region mask bits in the receive data process.
-
typedef struct _enet_qos_tx_bd_struct enet_qos_tx_bd_struct_t
Defines the transmit descriptor structure has the read-format and write-back format structure. They both has the same size with different region definition. so we define the read-format region as the transmit descriptor structure Use the read-format region mask bits in the descriptor initialization Use the write-back format region mask bits in the transmit data process.
-
typedef struct _enet_qos_tx_bd_config_struct enet_qos_tx_bd_config_struct_t
Defines the Tx BD configuration structure.
-
typedef struct _enet_qos_ptp_time enet_qos_ptp_time_t
Defines the ENET PTP time stamp structure.
-
typedef struct enet_qos_frame_info enet_qos_frame_info_t
Defines the frame info structure.
-
typedef struct _enet_qos_tx_dirty_ring enet_qos_tx_dirty_ring_t
Defines the ENET transmit dirty addresses ring/queue structure.
-
typedef struct _enet_qos_ptp_config enet_qos_ptp_config_t
Defines the ENET PTP configuration structure.
-
typedef struct _enet_qos_est_gate_op enet_qos_est_gate_op_t
Defines the EST gate operation structure.
-
typedef struct _enet_qos_est_gcl enet_qos_est_gcl_t
Defines the EST gate control list structure.
-
typedef struct _enet_qos_rxp_config enet_qos_rxp_config_t
Defines the ENET_QOS Rx parser configuration structure.
-
typedef struct _enet_qos_buffer_config enet_qos_buffer_config_t
Defines the buffer descriptor configure structure.
Note
The receive and transmit descriptor start address pointer and tail pointer must be word-aligned.
The recommended minimum tx/rx ring length is 4.
The tx/rx descriptor tail address shall be the address pointer to the address just after the end of the last last descriptor. because only the descriptors between the start address and the tail address will be used by DMA.
The descriptor address is the start address of all used contiguous memory. for example, the rxDescStartAddrAlign is the start address of rxRingLen contiguous descriptor memories for rx descriptor ring 0.
The “*rxBufferstartAddr” is the first element of rxRingLen (2*rxRingLen for double buffers) rx buffers. It means the *rxBufferStartAddr is the rx buffer for the first descriptor the *rxBufferStartAddr + 1 is the rx buffer for the second descriptor or the rx buffer for the second buffer in the first descriptor. so please make sure the rxBufferStartAddr is the address of a rxRingLen or 2*rxRingLen array.
-
typedef struct _enet_qos_cbs_config enet_qos_cbs_config_t
Defines the CBS configuration for queue.
-
typedef struct enet_qos_tx_queue_config enet_qos_queue_tx_config_t
Defines the queue configuration structure.
-
typedef struct enet_qos_rx_queue_config enet_qos_queue_rx_config_t
Defines the queue configuration structure.
-
typedef struct enet_qos_multiqueue_config enet_qos_multiqueue_config_t
Defines the configuration when multi-queue is used.
-
typedef void *(*enet_qos_rx_alloc_callback_t)(ENET_QOS_Type *base, void *userData, uint8_t channel)
Defines the Rx memory buffer alloc function pointer.
-
typedef void (*enet_qos_rx_free_callback_t)(ENET_QOS_Type *base, void *buffer, void *userData, uint8_t channel)
Defines the Rx memory buffer free function pointer.
-
typedef struct _enet_qos_config enet_qos_config_t
Defines the basic configuration structure for the ENET device.
Note
Default the signal queue is used so the “*multiqueueCfg” is set default with NULL. Set the pointer with a valid configuration pointer if the multiple queues are required. If multiple queue is enabled, please make sure the buffer configuration for all are prepared also.
-
typedef struct _enet_qos_handle enet_qos_handle_t
-
typedef void (*enet_qos_callback_t)(ENET_QOS_Type *base, enet_qos_handle_t *handle, enet_qos_event_t event, uint8_t channel, void *userData)
ENET callback function.
-
typedef struct _enet_qos_tx_bd_ring enet_qos_tx_bd_ring_t
Defines the ENET transmit buffer descriptor ring/queue structure.
-
typedef struct _enet_qos_rx_bd_ring enet_qos_rx_bd_ring_t
Defines the ENET receive buffer descriptor ring/queue structure.
-
typedef struct _enet_qos_state enet_qos_state_t
Defines the ENET state structure.
Note
The structure contains saved state for the instance. It could be stored in enet_qos_handle_t, but that’s used only with the transactional API.
-
typedef struct _enet_qos_buffer_struct enet_qos_buffer_struct_t
Defines the frame buffer structure.
-
typedef struct _enet_qos_rx_frame_error enet_qos_rx_frame_error_t
Defines the Rx frame error structure.
-
typedef struct _enet_qos_rx_frame_attribute_struct enet_qos_rx_frame_attribute_t
-
typedef struct _enet_qos_rx_frame_struct enet_qos_rx_frame_struct_t
Defines the Rx frame data structure.
-
typedef struct _enet_qos_transfer_stats enet_qos_transfer_stats_t
Defines the ENET QOS transfer statistics structure.
-
typedef void (*enet_qos_isr_t)(ENET_QOS_Type *base, enet_qos_handle_t *handle)
-
const clock_ip_name_t s_enetqosClock[]
Pointers to enet clocks for each instance.
-
void ENET_QOS_SetSYSControl(enet_qos_mii_mode_t miiMode)
Set ENET system configuration.
Note
User needs to provide the implementation because the implementation is SoC specific. This function set the phy selection and enable clock. It should be called before any other ethernet operation.
- Parameters:
miiMode – The MII/RGMII/RMII mode for interface between the phy and Ethernet.
-
void ENET_QOS_EnableClock(bool enable)
Enable/Disable ENET qos clock.
Note
User needs to provide the implementation because the implementation is SoC specific. This function should be called before config RMII mode.
-
struct _enet_qos_rx_bd_struct
- #include <fsl_enet_qos.h>
Defines the receive descriptor structure has the read-format and write-back format structure. They both has the same size with different region definition. so we define the read-format region as the receive descriptor structure Use the read-format region mask bits in the descriptor initialization Use the write-back format region mask bits in the receive data process.
Public Members
- __IO uint32_t buff1Addr
Buffer 1 address
- __IO uint32_t reserved
Reserved
- __IO uint32_t buff2Addr
Buffer 2 or next descriptor address
- __IO uint32_t control
Buffer 1/2 byte counts and control
-
struct _enet_qos_tx_bd_struct
- #include <fsl_enet_qos.h>
Defines the transmit descriptor structure has the read-format and write-back format structure. They both has the same size with different region definition. so we define the read-format region as the transmit descriptor structure Use the read-format region mask bits in the descriptor initialization Use the write-back format region mask bits in the transmit data process.
Public Members
- __IO uint32_t buff1Addr
Buffer 1 address
- __IO uint32_t buff2Addr
Buffer 2 address
- __IO uint32_t buffLen
Buffer 1/2 byte counts
- __IO uint32_t controlStat
TDES control and status word
-
struct _enet_qos_tx_bd_config_struct
- #include <fsl_enet_qos.h>
Defines the Tx BD configuration structure.
Public Members
-
void *buffer1
The first buffer address in the descriptor.
-
uint32_t bytes1
The bytes in the fist buffer.
-
void *buffer2
The second buffer address in the descriptor.
-
uint32_t bytes2
The bytes in the second buffer.
-
uint32_t framelen
The length of the frame to be transmitted.
-
bool intEnable
Interrupt enable flag.
-
bool tsEnable
The timestamp enable.
-
enet_qos_tx_offload_t txOffloadOps
The Tx checksum offload option.
-
enet_qos_desc_flag flag
The flag of this tx desciriptor, see “enet_qos_desc_flag”.
-
void *buffer1
-
struct _enet_qos_ptp_time
- #include <fsl_enet_qos.h>
Defines the ENET PTP time stamp structure.
Public Members
-
uint64_t second
Second.
-
uint32_t nanosecond
Nanosecond.
-
uint64_t second
-
struct enet_qos_frame_info
- #include <fsl_enet_qos.h>
Defines the frame info structure.
Public Members
-
void *context
User specified data, could be buffer address for free
-
bool isTsAvail
Flag indicates timestamp available status
-
enet_qos_ptp_time_t timeStamp
Timestamp of frame
-
void *context
-
struct _enet_qos_tx_dirty_ring
- #include <fsl_enet_qos.h>
Defines the ENET transmit dirty addresses ring/queue structure.
Public Members
-
enet_qos_frame_info_t *txDirtyBase
Dirty buffer descriptor base address pointer.
-
uint16_t txGenIdx
tx generate index.
-
uint16_t txConsumIdx
tx consume index.
-
uint16_t txRingLen
tx ring length.
-
bool isFull
tx ring is full flag, add this parameter to avoid waste one element.
-
enet_qos_frame_info_t *txDirtyBase
-
struct _enet_qos_ptp_config
- #include <fsl_enet_qos.h>
Defines the ENET PTP configuration structure.
Public Members
-
bool fineUpdateEnable
Use the fine update.
-
uint32_t defaultAddend
Default addend value when fine update is enable, could be 2^32 / (refClk_Hz / ENET_QOS_MICRSECS_ONESECOND / ENET_QOS_SYSTIME_REQUIRED_CLK_MHZ).
-
bool ptp1588V2Enable
The desired system time frequency. Must be lower than reference clock. (Only used with fine correction method). ptp 1588 version 2 is used.
-
enet_qos_ts_rollover_type tsRollover
1588 time nanosecond rollover.
-
bool fineUpdateEnable
-
struct _enet_qos_est_gate_op
- #include <fsl_enet_qos.h>
Defines the EST gate operation structure.
-
struct _enet_qos_est_gcl
- #include <fsl_enet_qos.h>
Defines the EST gate control list structure.
Public Members
-
bool enable
Enable or disable EST
-
uint64_t cycleTime
Base Time 32 bits seconds 32 bits nanoseconds
-
uint32_t extTime
Cycle Time 32 bits seconds 32 bits nanoseconds
-
uint32_t numEntries
Time Extension 32 bits seconds 32 bits nanoseconds
-
enet_qos_est_gate_op_t *opList
Number of entries
-
bool enable
-
struct _enet_qos_rxp_config
- #include <fsl_enet_qos.h>
Defines the ENET_QOS Rx parser configuration structure.
Public Members
-
uint32_t matchEnable
4-byte match data used for comparing with incoming packet
-
uint8_t acceptFrame
When matchEnable is set to 1, the matchData is used for comparing
-
uint8_t rejectFrame
When acceptFrame = 1 and data is matched, the frame will be sent to DMA channel
-
uint8_t inverseMatch
When rejectFrame = 1 and data is matched, the frame will be dropped
-
uint8_t nextControl
Inverse match
-
uint8_t reserved
Next instruction indexing control
-
uint8_t frameOffset
Reserved control fields
-
uint8_t okIndex
Frame offset in the packet data to be compared for match, in terms of 4 bytes.
-
uint8_t dmaChannel
Memory Index to be used next.
-
uint32_t reserved2
The DMA channel enet_qos_rxp_dma_chn_t used for receiving the frame when frame match and acceptFrame = 1
-
uint32_t matchEnable
-
struct _enet_qos_buffer_config
- #include <fsl_enet_qos.h>
Defines the buffer descriptor configure structure.
Note
The receive and transmit descriptor start address pointer and tail pointer must be word-aligned.
The recommended minimum tx/rx ring length is 4.
The tx/rx descriptor tail address shall be the address pointer to the address just after the end of the last last descriptor. because only the descriptors between the start address and the tail address will be used by DMA.
The descriptor address is the start address of all used contiguous memory. for example, the rxDescStartAddrAlign is the start address of rxRingLen contiguous descriptor memories for rx descriptor ring 0.
The “*rxBufferstartAddr” is the first element of rxRingLen (2*rxRingLen for double buffers) rx buffers. It means the *rxBufferStartAddr is the rx buffer for the first descriptor the *rxBufferStartAddr + 1 is the rx buffer for the second descriptor or the rx buffer for the second buffer in the first descriptor. so please make sure the rxBufferStartAddr is the address of a rxRingLen or 2*rxRingLen array.
Public Members
-
uint8_t rxRingLen
The length of receive buffer descriptor ring.
-
uint8_t txRingLen
The length of transmit buffer descriptor ring.
-
enet_qos_tx_bd_struct_t *txDescStartAddrAlign
Aligned transmit descriptor start address.
-
enet_qos_tx_bd_struct_t *txDescTailAddrAlign
Aligned transmit descriptor tail address.
-
enet_qos_frame_info_t *txDirtyStartAddr
Start address of the dirty tx frame information.
-
enet_qos_rx_bd_struct_t *rxDescStartAddrAlign
Aligned receive descriptor start address.
-
enet_qos_rx_bd_struct_t *rxDescTailAddrAlign
Aligned receive descriptor tail address.
-
uint32_t *rxBufferStartAddr
Start address of the rx buffers.
-
uint32_t rxBuffSizeAlign
Aligned receive data buffer size.
-
bool rxBuffNeedMaintain
Whether receive data buffer need cache maintain.
-
struct _enet_qos_cbs_config
- #include <fsl_enet_qos.h>
Defines the CBS configuration for queue.
Public Members
-
uint16_t sendSlope
Send slope configuration.
-
uint16_t idleSlope
Idle slope configuration.
-
uint32_t highCredit
High credit.
-
uint32_t lowCredit
Low credit.
-
uint16_t sendSlope
-
struct enet_qos_tx_queue_config
- #include <fsl_enet_qos.h>
Defines the queue configuration structure.
Public Members
-
enet_qos_queue_mode_t mode
tx queue mode configuration.
-
uint32_t weight
Refer to the MTL TxQ Quantum Weight register.
-
uint32_t priority
Refer to Transmit Queue Priority Mapping register.
-
enet_qos_cbs_config_t *cbsConfig
CBS configuration if queue use AVB mode.
-
enet_qos_queue_mode_t mode
-
struct enet_qos_rx_queue_config
- #include <fsl_enet_qos.h>
Defines the queue configuration structure.
Public Members
-
enet_qos_queue_mode_t mode
rx queue mode configuration.
-
uint8_t mapChannel
tx queue map dma channel.
-
uint32_t priority
Rx queue priority.
-
enet_qos_rx_queue_route_t packetRoute
Receive packet routing.
-
enet_qos_queue_mode_t mode
-
struct enet_qos_multiqueue_config
- #include <fsl_enet_qos.h>
Defines the configuration when multi-queue is used.
Public Members
-
enet_qos_dma_burstlen burstLen
Burst len for the multi-queue.
-
uint8_t txQueueUse
Used Tx queue count.
-
enet_qos_mtl_multiqueue_txsche mtltxSche
Transmit schedule for multi-queue.
-
enet_qos_queue_tx_config_t txQueueConfig[ENET_QOS_DMA_CH_COUNT]
Tx Queue configuration.
-
uint8_t rxQueueUse
Used Rx queue count.
-
enet_qos_mtl_multiqueue_rxsche mtlrxSche
Receive schedule for multi-queue.
-
enet_qos_queue_rx_config_t rxQueueConfig[ENET_QOS_DMA_CH_COUNT]
Rx Queue configuration.
-
enet_qos_dma_burstlen burstLen
-
struct _enet_qos_config
- #include <fsl_enet_qos.h>
Defines the basic configuration structure for the ENET device.
Note
Default the signal queue is used so the “*multiqueueCfg” is set default with NULL. Set the pointer with a valid configuration pointer if the multiple queues are required. If multiple queue is enabled, please make sure the buffer configuration for all are prepared also.
Public Members
-
uint16_t specialControl
The logic or of enet_qos_special_config_t
-
enet_qos_multiqueue_config_t *multiqueueCfg
Use multi-queue.
-
enet_qos_mii_mode_t miiMode
MII mode.
-
enet_qos_mii_speed_t miiSpeed
MII Speed.
-
enet_qos_mii_duplex_t miiDuplex
MII duplex.
-
uint16_t pauseDuration
Used in the tx flow control frame, only valid when kENET_QOS_FlowControlEnable is set.
-
enet_qos_ptp_config_t *ptpConfig
PTP 1588 feature configuration
-
uint32_t csrClock_Hz
CSR clock frequency in HZ.
-
enet_qos_rx_alloc_callback_t rxBuffAlloc
Callback to alloc memory, must be provided for zero-copy Rx.
-
enet_qos_rx_free_callback_t rxBuffFree
Callback to free memory, must be provided for zero-copy Rx.
-
uint16_t specialControl
-
struct _enet_qos_tx_bd_ring
- #include <fsl_enet_qos.h>
Defines the ENET transmit buffer descriptor ring/queue structure.
Public Members
-
enet_qos_tx_bd_struct_t *txBdBase
Buffer descriptor base address pointer.
-
uint16_t txGenIdx
tx generate index.
-
uint16_t txConsumIdx
tx consume index.
-
volatile uint16_t txDescUsed
tx descriptor used number.
-
uint16_t txRingLen
tx ring length.
-
enet_qos_tx_bd_struct_t *txBdBase
-
struct _enet_qos_rx_bd_ring
- #include <fsl_enet_qos.h>
Defines the ENET receive buffer descriptor ring/queue structure.
Public Members
-
enet_qos_rx_bd_struct_t *rxBdBase
Buffer descriptor base address pointer.
-
uint16_t rxGenIdx
The current available receive buffer descriptor pointer.
-
uint16_t rxRingLen
Receive ring length.
-
uint32_t rxBuffSizeAlign
Receive buffer size.
-
enet_qos_rx_bd_struct_t *rxBdBase
-
struct _enet_qos_handle
- #include <fsl_enet_qos.h>
Defines the ENET handler structure.
Public Members
-
uint8_t txQueueUse
Used tx queue count.
-
uint8_t rxQueueUse
Used rx queue count.
-
bool doubleBuffEnable
The double buffer is used in the descriptor.
-
bool rxintEnable
Rx interrupt enabled.
-
bool rxMaintainEnable[ENET_QOS_DMA_CH_COUNT]
Rx buffer cache maintain enabled.
-
enet_qos_rx_bd_ring_t rxBdRing[ENET_QOS_DMA_CH_COUNT]
Receive buffer descriptor.
-
enet_qos_tx_bd_ring_t txBdRing[ENET_QOS_DMA_CH_COUNT]
Transmit buffer descriptor.
-
enet_qos_tx_dirty_ring_t txDirtyRing[ENET_QOS_DMA_CH_COUNT]
Transmit dirty buffers addresses.
-
uint32_t *rxBufferStartAddr[ENET_QOS_DMA_CH_COUNT]
Rx buffer start address for reInitialize.
-
enet_qos_callback_t callback
Callback function.
-
void *userData
Callback function parameter.
-
uint8_t multicastCount[64]
Multicast collisions counter
-
enet_qos_rx_alloc_callback_t rxBuffAlloc
Callback to alloc memory, must be provided for zero-copy Rx.
-
enet_qos_rx_free_callback_t rxBuffFree
Callback to free memory, must be provided for zero-copy Rx.
-
uint8_t txQueueUse
-
struct _enet_qos_state
- #include <fsl_enet_qos.h>
Defines the ENET state structure.
Note
The structure contains saved state for the instance. It could be stored in enet_qos_handle_t, but that’s used only with the transactional API.
Public Members
-
enet_qos_mii_mode_t miiMode
MII mode.
-
enet_qos_mii_mode_t miiMode
-
struct _enet_qos_buffer_struct
- #include <fsl_enet_qos.h>
Defines the frame buffer structure.
Public Members
-
void *buffer
The buffer store the whole or partial frame.
-
uint16_t length
The byte length of this buffer.
-
void *buffer
-
struct _enet_qos_rx_frame_error
- #include <fsl_enet_qos.h>
Defines the Rx frame error structure.
Public Members
-
bool rxDstAddrFilterErr
Destination Address Filter Fail.
-
bool rxSrcAddrFilterErr
SA Address Filter Fail.
-
bool rxDribbleErr
Dribble error.
-
bool rxReceiveErr
Receive error.
-
bool rxOverFlowErr
Receive over flow.
-
bool rxWatchDogErr
Watch dog timeout.
-
bool rxGaintPacketErr
Receive gaint packet.
-
bool rxCrcErr
Receive CRC error.
-
bool rxDstAddrFilterErr
-
struct _enet_qos_rx_frame_attribute_struct
Public Members
-
bool isTsAvail
Rx frame timestamp is available or not.
-
enet_qos_ptp_time_t timestamp
The nanosecond part timestamp of this Rx frame.
-
bool isTsAvail
-
struct _enet_qos_rx_frame_struct
- #include <fsl_enet_qos.h>
Defines the Rx frame data structure.
Public Members
-
enet_qos_buffer_struct_t *rxBuffArray
Rx frame buffer structure.
-
uint16_t totLen
Rx frame total length.
-
enet_qos_rx_frame_attribute_t rxAttribute
Rx frame attribute structure.
-
enet_qos_rx_frame_error_t rxFrameError
Rx frame error.
-
enet_qos_buffer_struct_t *rxBuffArray
-
struct _enet_qos_transfer_stats
- #include <fsl_enet_qos.h>
Defines the ENET QOS transfer statistics structure.
Public Members
-
uint32_t statsRxFrameCount
Rx frame number.
-
uint32_t statsRxCrcErr
Rx frame number with CRC error.
-
uint32_t statsRxAlignErr
Rx frame number with alignment error.
-
uint32_t statsRxLengthErr
Rx frame length field doesn’t equal to packet size.
-
uint32_t statsRxFifoOverflowErr
Rx FIFO overflow count.
-
uint32_t statsTxFrameCount
Tx frame number.
-
uint32_t statsTxFifoUnderRunErr
Tx FIFO underrun count.
-
uint32_t statsRxFrameCount
FlexCAN: Flex Controller Area Network Driver#
FlexCAN Driver#
-
bool FLEXCAN_IsInstanceHasFDMode(CAN_Type *base)
Determine whether the FlexCAN instance support CAN FD mode at run time.
Note
Use this API only if different soc parts share the SOC part name macro define. Otherwise, a different SOC part name can be used to determine at compile time whether the FlexCAN instance supports CAN FD mode or not. If need use this API to determine if CAN FD mode is supported, the FLEXCAN_Init function needs to be executed first, and then call this API and use the return to value determines whether to supports CAN FD mode, if return true, continue calling FLEXCAN_FDInit to enable CAN FD mode.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
return TRUE if instance support CAN FD mode, FALSE if instance only support classic CAN (2.0) mode.
-
uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx)
Get Mailbox offset number by dword.
This function gets the offset number of the specified mailbox. Mailbox is not consecutive between memory regions when payload is not 8 bytes so need to calculate the specified mailbox address. For example, in the first memory region, MB[0].CS address is 0x4002_4080. For 32 bytes payload frame, the second mailbox is ((1/12)*512 + 1%12*40)/4 = 10, meaning 10 dword after the 0x4002_4080, which is actually the address of mailbox MB[1].CS.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – Mailbox index.
- Returns:
Mailbox address offset in word.
-
status_t FLEXCAN_EnterFreezeMode(CAN_Type *base)
Enter FlexCAN Freeze Mode.
This function makes the FlexCAN work under Freeze Mode.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
kStatus_Success Enter Freeze Mode successful kStatus_Timeout Timeout when wait for Freeze Mode Acknowledge
-
status_t FLEXCAN_ExitFreezeMode(CAN_Type *base)
Exit FlexCAN Freeze Mode.
This function makes the FlexCAN leave Freeze Mode.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
kStatus_Success Enter Freeze Mode successful kStatus_Timeout Timeout when wait for Freeze Mode Acknowledge
-
uint32_t FLEXCAN_GetInstance(CAN_Type *base)
Get the FlexCAN instance from peripheral base address.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
FlexCAN instance.
-
bool FLEXCAN_CalculateImprovedTimingValues(CAN_Type *base, uint32_t bitRate, uint32_t sourceClock_Hz, flexcan_timing_config_t *pTimingConfig)
Calculates the improved timing values by specific bit Rates for classical CAN.
This function use to calculates the Classical CAN timing values according to the given bit rate. The Calculated timing values will be set in CTRL1/CBT/ENCBT register. The calculation is based on the recommendation of the CiA 301 v4.2.0 and previous version document.
- Parameters:
base – FlexCAN peripheral base address.
bitRate – The classical CAN speed in bps defined by user, should be less than or equal to 1Mbps.
sourceClock_Hz – The Source clock frequency in Hz.
pTimingConfig – Pointer to the FlexCAN timing configuration structure.
- Returns:
TRUE if timing configuration found, FALSE if failed to find configuration.
-
void FLEXCAN_Init(CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz)
Initializes a FlexCAN instance.
This function initializes the FlexCAN module with user-defined settings. This example shows how to set up the flexcan_config_t parameters and how to call the FLEXCAN_Init function by passing in these parameters.
flexcan_config_t flexcanConfig; flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0; flexcanConfig.bitRate = 1000000U; flexcanConfig.maxMbNum = 16; flexcanConfig.enableLoopBack = false; flexcanConfig.enableSelfWakeup = false; flexcanConfig.enableIndividMask = false; flexcanConfig.enableDoze = false; flexcanConfig.disableSelfReception = false; flexcanConfig.enableListenOnlyMode = false; flexcanConfig.timingConfig = timingConfig; FLEXCAN_Init(CAN0, &flexcanConfig, 40000000UL);
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the user-defined configuration structure.
sourceClock_Hz – FlexCAN Protocol Engine clock source frequency in Hz.
-
bool FLEXCAN_FDCalculateImprovedTimingValues(CAN_Type *base, uint32_t bitRate, uint32_t bitRateFD, uint32_t sourceClock_Hz, flexcan_timing_config_t *pTimingConfig)
Calculates the improved timing values by specific bit rates for CANFD.
This function use to calculates the CANFD timing values according to the given nominal phase bit rate and data phase bit rate. The Calculated timing values will be set in CBT/ENCBT and FDCBT/EDCBT registers. The calculation is based on the recommendation of the CiA 1301 v1.0.0 document.
- Parameters:
base – FlexCAN peripheral base address.
bitRate – The CANFD bus control speed in bps defined by user.
bitRateFD – The CAN FD data phase speed in bps defined by user. Equal to bitRate means disable bit rate switching.
sourceClock_Hz – The Source clock frequency in Hz.
pTimingConfig – Pointer to the FlexCAN timing configuration structure.
- Returns:
TRUE if timing configuration found, FALSE if failed to find configuration
-
void FLEXCAN_FDInit(CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz, flexcan_mb_size_t dataSize, bool brs)
Initializes a FlexCAN instance.
This function initializes the FlexCAN module with user-defined settings. This example shows how to set up the flexcan_config_t parameters and how to call the FLEXCAN_FDInit function by passing in these parameters.
flexcan_config_t flexcanConfig; flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0; flexcanConfig.bitRate = 1000000U; flexcanConfig.bitRateFD = 2000000U; flexcanConfig.maxMbNum = 16; flexcanConfig.enableLoopBack = false; flexcanConfig.enableSelfWakeup = false; flexcanConfig.enableIndividMask = false; flexcanConfig.disableSelfReception = false; flexcanConfig.enableListenOnlyMode = false; flexcanConfig.enableDoze = false; flexcanConfig.timingConfig = timingConfig; FLEXCAN_FDInit(CAN0, &flexcanConfig, 80000000UL, kFLEXCAN_16BperMB, true);
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the user-defined configuration structure.
sourceClock_Hz – FlexCAN Protocol Engine clock source frequency in Hz.
dataSize – FlexCAN Message Buffer payload size. The actual transmitted or received CAN FD frame data size needs to be less than or equal to this value.
brs – True if bit rate switch is enabled in FD mode.
-
void FLEXCAN_Deinit(CAN_Type *base)
De-initializes a FlexCAN instance.
This function disables the FlexCAN module clock and sets all register values to the reset value.
- Parameters:
base – FlexCAN peripheral base address.
-
void FLEXCAN_GetDefaultConfig(flexcan_config_t *pConfig)
Gets the default configuration structure.
This function initializes the FlexCAN configuration structure to default values. The default values are as follows. flexcanConfig->clkSrc = kFLEXCAN_ClkSrc0; flexcanConfig->bitRate = 1000000U; flexcanConfig->bitRateFD = 2000000U; flexcanConfig->maxMbNum = 16; flexcanConfig->enableLoopBack = false; flexcanConfig->enableSelfWakeup = false; flexcanConfig->enableIndividMask = false; flexcanConfig->disableSelfReception = false; flexcanConfig->enableListenOnlyMode = false; flexcanConfig->enableDoze = false; flexcanConfig->enablePretendedeNetworking = false; flexcanConfig->enableMemoryErrorControl = true; flexcanConfig->enableNonCorrectableErrorEnterFreeze = true; flexcanConfig->enableTransceiverDelayMeasure = true; flexcanConfig->enableRemoteRequestFrameStored = true; flexcanConfig->payloadEndianness = kFLEXCAN_bigEndian; flexcanConfig.timingConfig = timingConfig;
- Parameters:
pConfig – Pointer to the FlexCAN configuration structure.
-
void FLEXCAN_SetTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
Sets the FlexCAN classical CAN protocol timing characteristic.
This function gives user settings to classical CAN or CAN FD nominal phase timing characteristic. The function is for an experienced user. For less experienced users, call the FLEXCAN_SetBitRate() instead.
Note
Calling FLEXCAN_SetTimingConfig() overrides the bit rate set in FLEXCAN_Init() or FLEXCAN_SetBitRate().
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the timing configuration structure.
-
status_t FLEXCAN_SetBitRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t bitRate_Bps)
Set bit rate of FlexCAN classical CAN frame or CAN FD frame nominal phase.
This function set the bit rate of classical CAN frame or CAN FD frame nominal phase base on FLEXCAN_CalculateImprovedTimingValues() API calculated timing values.
Note
Calling FLEXCAN_SetBitRate() overrides the bit rate set in FLEXCAN_Init().
- Parameters:
base – FlexCAN peripheral base address.
sourceClock_Hz – Source Clock in Hz.
bitRate_Bps – Bit rate in Bps.
- Returns:
kStatus_Success - Set CAN baud rate (only Nominal phase) successfully.
-
void FLEXCAN_SetFDTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
Sets the FlexCAN CANFD data phase timing characteristic.
This function gives user settings to CANFD data phase timing characteristic. The function is for an experienced user. For less experienced users, call the FLEXCAN_SetFDBitRate() to set both Nominal/Data bit Rate instead.
Note
Calling FLEXCAN_SetFDTimingConfig() overrides the data phase bit rate set in FLEXCAN_FDInit()/FLEXCAN_SetFDBitRate().
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the timing configuration structure.
-
status_t FLEXCAN_SetFDBitRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t bitRateN_Bps, uint32_t bitRateD_Bps)
Set bit rate of FlexCAN FD frame.
This function set the baud rate of FLEXCAN FD base on FLEXCAN_FDCalculateImprovedTimingValues() API calculated timing values.
- Parameters:
base – FlexCAN peripheral base address.
sourceClock_Hz – Source Clock in Hz.
bitRateN_Bps – Nominal bit Rate in Bps.
bitRateD_Bps – Data bit Rate in Bps.
- Returns:
kStatus_Success - Set CAN FD bit rate (include Nominal and Data phase) successfully.
-
void FLEXCAN_SetRxMbGlobalMask(CAN_Type *base, uint32_t mask)
Sets the FlexCAN receive message buffer global mask.
This function sets the global mask for the FlexCAN message buffer in a matching process. The configuration is only effective when the Rx individual mask is disabled in the FLEXCAN_Init().
- Parameters:
base – FlexCAN peripheral base address.
mask – Rx Message Buffer Global Mask value.
-
void FLEXCAN_SetRxFifoGlobalMask(CAN_Type *base, uint32_t mask)
Sets the FlexCAN receive FIFO global mask.
This function sets the global mask for FlexCAN FIFO in a matching process.
- Parameters:
base – FlexCAN peripheral base address.
mask – Rx Fifo Global Mask value.
-
void FLEXCAN_SetRxIndividualMask(CAN_Type *base, uint8_t maskIdx, uint32_t mask)
Sets the FlexCAN receive individual mask.
This function sets the individual mask for the FlexCAN matching process. The configuration is only effective when the Rx individual mask is enabled in the FLEXCAN_Init(). If the Rx FIFO is disabled, the individual mask is applied to the corresponding Message Buffer. If the Rx FIFO is enabled, the individual mask for Rx FIFO occupied Message Buffer is applied to the Rx Filter with the same index. Note that only the first 32 individual masks can be used as the Rx FIFO filter mask.
- Parameters:
base – FlexCAN peripheral base address.
maskIdx – The Index of individual Mask.
mask – Rx Individual Mask value.
-
void FLEXCAN_SetTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
Configures a FlexCAN transmit message buffer.
This function aborts the previous transmission, cleans the Message Buffer, and configures it as a Transmit Message Buffer.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
enable – Enable/disable Tx Message Buffer.
true: Enable Tx Message Buffer.
false: Disable Tx Message Buffer.
-
void FLEXCAN_SetRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable)
Configures a FlexCAN Receive Message Buffer.
This function cleans a FlexCAN build-in Message Buffer and configures it as a Receive Message Buffer. User should invoke this API when CTRL2[RRS]=1. When CTRL2[RRS]=1, frame’s ID is compared to the IDs of the receive mailboxes with the CODE field configured as kFLEXCAN_RxMbEmpty, kFLEXCAN_RxMbFull or kFLEXCAN_RxMbOverrun. Message buffer will store the remote frame in the same fashion of a data frame. No automatic remote response frame will be generated. User need to setup another message buffer to respond remote request.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
pRxMbConfig – Pointer to the FlexCAN Message Buffer configuration structure.
enable – Enable/disable Rx Message Buffer.
true: Enable Rx Message Buffer.
false: Disable Rx Message Buffer.
-
static inline void FLEXCAN_SetMbID(CAN_Type *base, uint8_t mbIdx, uint32_t id)
Configures a FlexCAN Message Buffer identifier.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
id – CAN Message Buffer Identifier, should use FLEXCAN_ID_EXT() or FLEXCAN_ID_STD() macro.
-
void FLEXCAN_SetFDTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
Configures a FlexCAN transmit message buffer.
This function aborts the previous transmission, cleans the Message Buffer, and configures it as a Transmit Message Buffer.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
enable – Enable/disable Tx Message Buffer.
true: Enable Tx Message Buffer.
false: Disable Tx Message Buffer.
-
void FLEXCAN_SetFDRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable)
Configures a FlexCAN Receive Message Buffer.
This function cleans a FlexCAN build-in Message Buffer and configures it as a Receive Message Buffer.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
pRxMbConfig – Pointer to the FlexCAN Message Buffer configuration structure.
enable – Enable/disable Rx Message Buffer.
true: Enable Rx Message Buffer.
false: Disable Rx Message Buffer.
-
static inline void FLEXCAN_SetFDMbID(CAN_Type *base, uint8_t mbIdx, uint32_t id)
Configures a FlexCAN Message Buffer identifier.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
id – CAN Message Buffer Identifier, should use FLEXCAN_ID_EXT() or FLEXCAN_ID_STD() macro.
-
void FLEXCAN_SetRemoteResponseMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t *pFrame)
Configures a FlexCAN Remote Response Message Buffer.
User should invoke this API when CTRL2[RRS]=0. When CTRL2[RRS]=0, frame’s ID is compared to the IDs of the receive mailboxes with the CODE field configured as kFLEXCAN_RxMbRanswer. If there is a matching ID, then this mailbox content will be transmitted as response. The received remote request frame is not stored in receive buffer. It is only used to trigger a transmission of a frame in response.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
pFrame – Pointer to CAN message frame structure for response.
-
void FLEXCAN_SetRxFifoConfig(CAN_Type *base, const flexcan_rx_fifo_config_t *pRxFifoConfig, bool enable)
Configures the FlexCAN Legacy Rx FIFO.
This function configures the FlexCAN Rx FIFO with given configuration.
Note
Legacy Rx FIFO only can receive classic CAN message.
- Parameters:
base – FlexCAN peripheral base address.
pRxFifoConfig – Pointer to the FlexCAN Legacy Rx FIFO configuration structure. Can be NULL when enable parameter is false.
enable – Enable/disable Legacy Rx FIFO.
true: Enable Legacy Rx FIFO.
false: Disable Legacy Rx FIFO.
-
void FLEXCAN_SetPNConfig(CAN_Type *base, const flexcan_pn_config_t *pConfig)
Configures the FlexCAN Pretended Networking mode.
This function configures the FlexCAN Pretended Networking mode with given configuration.
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the FlexCAN Rx FIFO configuration structure.
-
static inline uint64_t FLEXCAN_GetStatusFlags(CAN_Type *base)
Gets the FlexCAN module interrupt flags.
This function gets all FlexCAN status flags. The flags are returned as the logical OR value of the enumerators _flexcan_flags. To check the specific status, compare the return value with enumerators in _flexcan_flags.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
FlexCAN status flags which are ORed by the enumerators in the _flexcan_flags.
-
static inline void FLEXCAN_ClearStatusFlags(CAN_Type *base, uint64_t mask)
Clears status flags with the provided mask.
This function clears the FlexCAN status flags with a provided mask. An automatically cleared flag can’t be cleared by this function.
- Parameters:
base – FlexCAN peripheral base address.
mask – The status flags to be cleared, it is logical OR value of _flexcan_flags.
-
static inline void FLEXCAN_GetBusErrCount(CAN_Type *base, uint8_t *txErrBuf, uint8_t *rxErrBuf)
Gets the FlexCAN Bus Error Counter value.
This function gets the FlexCAN Bus Error Counter value for both Tx and Rx direction. These values may be needed in the upper layer error handling.
- Parameters:
base – FlexCAN peripheral base address.
txErrBuf – Buffer to store Tx Error Counter value.
rxErrBuf – Buffer to store Rx Error Counter value.
-
static inline uint64_t FLEXCAN_GetMbStatusFlags(CAN_Type *base, uint64_t mask)
Gets the FlexCAN low 64 Message Buffer interrupt flags.
This function gets the interrupt flags of a given Message Buffers.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
- Returns:
The status of given Message Buffers.
-
static inline uint64_t FLEXCAN_GetHigh64MbStatusFlags(CAN_Type *base, uint64_t mask)
Gets the FlexCAN High 64 Message Buffer interrupt flags.
Valid only if the number of available MBs exceeds 64.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
- Returns:
The status of given Message Buffers.
-
static inline void FLEXCAN_ClearMbStatusFlags(CAN_Type *base, uint64_t mask)
Clears the FlexCAN low 64 Message Buffer interrupt flags.
This function clears the interrupt flags of a given Message Buffers.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
static inline void FLEXCAN_ClearHigh64MbStatusFlags(CAN_Type *base, uint64_t mask)
Clears the FlexCAN High 64 Message Buffer interrupt flags.
Valid only if the number of available MBs exceeds 64.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
void FLEXCAN_GetMemoryErrorReportStatus(CAN_Type *base, flexcan_memory_error_report_status_t *errorStatus)
Gets the FlexCAN Memory Error Report registers status.
This function gets the FlexCAN Memory Error Report registers status.
- Parameters:
base – FlexCAN peripheral base address.
errorStatus – Pointer to FlexCAN Memory Error Report registers status structure.
-
static inline uint8_t FLEXCAN_GetPNMatchCount(CAN_Type *base)
Gets the FlexCAN Number of Matches when in Pretended Networking.
This function gets the number of times a given message has matched the predefined filtering criteria for ID and/or PL before a wakeup event.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
The number of received wake up msessages.
-
static inline void FLEXCAN_EnableInterrupts(CAN_Type *base, uint64_t mask)
Enables FlexCAN interrupts according to the provided mask.
This function enables the FlexCAN interrupts according to the provided mask. The mask is a logical OR of enumeration members, see _flexcan_interrupt_enable.
- Parameters:
base – FlexCAN peripheral base address.
mask – The interrupts to enable. Logical OR of _flexcan_interrupt_enable.
-
static inline void FLEXCAN_DisableInterrupts(CAN_Type *base, uint64_t mask)
Disables FlexCAN interrupts according to the provided mask.
This function disables the FlexCAN interrupts according to the provided mask. The mask is a logical OR of enumeration members, see _flexcan_interrupt_enable.
- Parameters:
base – FlexCAN peripheral base address.
mask – The interrupts to disable. Logical OR of _flexcan_interrupt_enable.
-
static inline void FLEXCAN_EnableMbInterrupts(CAN_Type *base, uint64_t mask)
Enables FlexCAN low 64 Message Buffer interrupts.
This function enables the interrupts of given Message Buffers.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
static inline void FLEXCAN_EnableHigh64MbInterrupts(CAN_Type *base, uint64_t mask)
Enables FlexCAN high 64 Message Buffer interrupts.
Valid only if the number of available MBs exceeds 64.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
static inline void FLEXCAN_DisableMbInterrupts(CAN_Type *base, uint64_t mask)
Disables FlexCAN low 64 Message Buffer interrupts.
This function disables the interrupts of given Message Buffers.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
static inline void FLEXCAN_DisableHigh64MbInterrupts(CAN_Type *base, uint64_t mask)
Disables FlexCAN high 64 Message Buffer interrupts.
Valid only if the number of available MBs exceeds 64.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
void FLEXCAN_EnableRxFifoDMA(CAN_Type *base, bool enable)
Enables or disables the FlexCAN Rx FIFO DMA request.
This function enables or disables the DMA feature of FlexCAN build-in Rx FIFO.
- Parameters:
base – FlexCAN peripheral base address.
enable – true to enable, false to disable.
-
static inline uintptr_t FLEXCAN_GetRxFifoHeadAddr(CAN_Type *base)
Gets the Rx FIFO Head address.
This function returns the FlexCAN Rx FIFO Head address, which is mainly used for the DMA/eDMA use case.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
FlexCAN Rx FIFO Head address.
-
static inline status_t FLEXCAN_Enable(CAN_Type *base, bool enable)
Enables or disables the FlexCAN module operation.
This function enables or disables the FlexCAN module.
- Parameters:
base – FlexCAN base pointer.
enable – true to enable, false to disable.
- Returns:
kStatus_Success Enable FlexCAN module successful kStatus_Timeout Timeout when wait for Low-Power Mode Acknowledge
-
status_t FLEXCAN_WriteTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t *pTxFrame)
Writes a FlexCAN Message to the Transmit Message Buffer.
This function writes a CAN Message to the specified Transmit Message Buffer and changes the Message Buffer state to start CAN Message transmit. After that the function returns immediately.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The FlexCAN Message Buffer index.
pTxFrame – Pointer to CAN message frame to be sent.
- Return values:
kStatus_Success – - Write Tx Message Buffer Successfully.
kStatus_Fail – - Tx Message Buffer is currently in use.
-
status_t FLEXCAN_ReadRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
Reads a FlexCAN Message from Receive Message Buffer.
This function reads a CAN message from a specified Receive Message Buffer. The function fills a receive CAN message frame structure with just received data and activates the Message Buffer again. The function returns immediately.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The FlexCAN Message Buffer index.
pRxFrame – Pointer to CAN message frame structure for reception.
- Return values:
kStatus_Success – - Rx Message Buffer is full and has been read successfully.
kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already overflowed and has been read successfully.
kStatus_Fail – - Rx Message Buffer is empty.
-
status_t FLEXCAN_WriteFDTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_fd_frame_t *pTxFrame)
Writes a FlexCAN FD Message to the Transmit Message Buffer.
This function writes a CAN FD Message to the specified Transmit Message Buffer and changes the Message Buffer state to start CAN FD Message transmit. After that the function returns immediately.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The FlexCAN FD Message Buffer index.
pTxFrame – Pointer to CAN FD message frame to be sent.
- Return values:
kStatus_Success – - Write Tx Message Buffer Successfully.
kStatus_Fail – - Tx Message Buffer is currently in use.
-
status_t FLEXCAN_ReadFDRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame)
Reads a FlexCAN FD Message from Receive Message Buffer.
This function reads a CAN FD message from a specified Receive Message Buffer. The function fills a receive CAN FD message frame structure with just received data and activates the Message Buffer again. The function returns immediately.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The FlexCAN FD Message Buffer index.
pRxFrame – Pointer to CAN FD message frame structure for reception.
- Return values:
kStatus_Success – - Rx Message Buffer is full and has been read successfully.
kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already overflowed and has been read successfully.
kStatus_Fail – - Rx Message Buffer is empty.
-
status_t FLEXCAN_ReadRxFifo(CAN_Type *base, flexcan_frame_t *pRxFrame)
Reads a FlexCAN Message from Legacy Rx FIFO.
This function reads a CAN message from the FlexCAN Legacy Rx FIFO.
- Parameters:
base – FlexCAN peripheral base address.
pRxFrame – Pointer to CAN message frame structure for reception.
- Return values:
kStatus_Success – - Read Message from Rx FIFO successfully.
kStatus_Fail – - Rx FIFO is not enabled.
-
status_t FLEXCAN_ReadPNWakeUpMB(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
Reads a FlexCAN Message from Wake Up MB.
This function reads a CAN message from the FlexCAN Wake up Message Buffers. There are four Wake up Message Buffers (WMBs) used to store incoming messages in Pretended Networking mode. The WMB index indicates the arrival order. The last message is stored in WMB3.
- Parameters:
base – FlexCAN peripheral base address.
pRxFrame – Pointer to CAN message frame structure for reception.
mbIdx – The FlexCAN Wake up Message Buffer index. Range in 0x0 ~ 0x3.
- Return values:
kStatus_Success – - Read Message from Wake up Message Buffer successfully.
kStatus_Fail – - Wake up Message Buffer has no valid content.
-
status_t FLEXCAN_TransferFDSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pTxFrame)
Performs a polling send transaction on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
mbIdx – The FlexCAN FD Message Buffer index.
pTxFrame – Pointer to CAN FD message frame to be sent.
- Return values:
kStatus_Success – - Write Tx Message Buffer Successfully.
kStatus_Fail – - Tx Message Buffer is currently in use.
kStatus_Timeout – - Failed to send frames within specific time.
-
status_t FLEXCAN_TransferFDReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame)
Performs a polling receive transaction on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
mbIdx – The FlexCAN FD Message Buffer index.
pRxFrame – Pointer to CAN FD message frame structure for reception.
- Return values:
kStatus_Success – - Rx Message Buffer is full and has been read successfully.
kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already overflowed and has been read successfully.
kStatus_Fail – - Rx Message Buffer is empty.
kStatus_Timeout – - Failed to receive frames within specific time.
-
status_t FLEXCAN_TransferFDSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
Sends a message using IRQ.
This function sends a message using IRQ. This is a non-blocking function, which returns right away. When messages have been sent out, the send callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pMbXfer – FlexCAN FD Message Buffer transfer structure. See the flexcan_mb_transfer_t.
- Return values:
kStatus_Success – Start Tx Message Buffer sending process successfully.
kStatus_Fail – Write Tx Message Buffer failed.
kStatus_FLEXCAN_TxBusy – Tx Message Buffer is in use.
-
status_t FLEXCAN_TransferFDReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
Receives a message using IRQ.
This function receives a message using IRQ. This is non-blocking function, which returns right away. When the message has been received, the receive callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pMbXfer – FlexCAN FD Message Buffer transfer structure. See the flexcan_mb_transfer_t.
- Return values:
kStatus_Success – - Start Rx Message Buffer receiving process successfully.
kStatus_FLEXCAN_RxBusy – - Rx Message Buffer is in use.
-
void FLEXCAN_TransferFDAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
Aborts the interrupt driven message send process.
This function aborts the interrupt driven message send process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
mbIdx – The FlexCAN FD Message Buffer index.
-
void FLEXCAN_TransferFDAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
Aborts the interrupt driven message receive process.
This function aborts the interrupt driven message receive process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
mbIdx – The FlexCAN FD Message Buffer index.
-
status_t FLEXCAN_TransferSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pTxFrame)
Performs a polling send transaction on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
mbIdx – The FlexCAN Message Buffer index.
pTxFrame – Pointer to CAN message frame to be sent.
- Return values:
kStatus_Success – - Write Tx Message Buffer Successfully.
kStatus_Fail – - Tx Message Buffer is currently in use.
kStatus_Timeout – - Failed to send frames within specific time.
-
status_t FLEXCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
Performs a polling receive transaction on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
mbIdx – The FlexCAN Message Buffer index.
pRxFrame – Pointer to CAN message frame structure for reception.
- Return values:
kStatus_Success – - Rx Message Buffer is full and has been read successfully.
kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already overflowed and has been read successfully.
kStatus_Fail – - Rx Message Buffer is empty.
kStatus_Timeout – - Failed to receive frames within specific time.
-
status_t FLEXCAN_TransferReceiveFifoBlocking(CAN_Type *base, flexcan_frame_t *pRxFrame)
Performs a polling receive transaction from Legacy Rx FIFO on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
pRxFrame – Pointer to CAN message frame structure for reception.
- Return values:
kStatus_Success – - Read Message from Rx FIFO successfully.
kStatus_Fail – - Rx FIFO is not enabled.
kStatus_Timeout – - Failed to receive frames within specific time.
-
void FLEXCAN_TransferCreateHandle(CAN_Type *base, flexcan_handle_t *handle, flexcan_transfer_callback_t callback, void *userData)
Initializes the FlexCAN handle.
This function initializes the FlexCAN handle, which can be used for other FlexCAN transactional APIs. Usually, for a specified FlexCAN instance, call this API once to get the initialized handle.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
callback – The callback function.
userData – The parameter of the callback function.
-
status_t FLEXCAN_TransferSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
Sends a message using IRQ.
This function sends a message using IRQ. This is a non-blocking function, which returns right away. When messages have been sent out, the send callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pMbXfer – FlexCAN Message Buffer transfer structure. See the flexcan_mb_transfer_t.
- Return values:
kStatus_Success – Start Tx Message Buffer sending process successfully.
kStatus_Fail – Write Tx Message Buffer failed.
kStatus_FLEXCAN_TxBusy – Tx Message Buffer is in use.
-
status_t FLEXCAN_TransferReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
Receives a message using IRQ.
This function receives a message using IRQ. This is non-blocking function, which returns right away. When the message has been received, the receive callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pMbXfer – FlexCAN Message Buffer transfer structure. See the flexcan_mb_transfer_t.
- Return values:
kStatus_Success – - Start Rx Message Buffer receiving process successfully.
kStatus_FLEXCAN_RxBusy – - Rx Message Buffer is in use.
-
status_t FLEXCAN_TransferReceiveFifoNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_fifo_transfer_t *pFifoXfer)
Receives a message from Rx FIFO using IRQ.
This function receives a message using IRQ. This is a non-blocking function, which returns right away. When all messages have been received, the receive callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pFifoXfer – FlexCAN Rx FIFO transfer structure. See the flexcan_fifo_transfer_t.
- Return values:
kStatus_Success – - Start Rx FIFO receiving process successfully.
kStatus_FLEXCAN_RxFifoBusy – - Rx FIFO is currently in use.
-
status_t FLEXCAN_TransferGetReceiveFifoCount(CAN_Type *base, flexcan_handle_t *handle, size_t *count)
Gets the Legacy Rx Fifo transfer status during a interrupt non-blocking receive.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
count – Number of CAN messages receive so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
uint32_t FLEXCAN_GetTimeStamp(flexcan_handle_t *handle, uint8_t mbIdx)
Gets the detail index of Mailbox’s Timestamp by handle.
Then function can only be used when calling non-blocking Data transfer (TX/RX) API, After TX/RX data transfer done (User can get the status by handler’s callback function), we can get the detail index of Mailbox’s timestamp by handle, Detail non-blocking data transfer API (TX/RX) contain. -FLEXCAN_TransferSendNonBlocking -FLEXCAN_TransferFDSendNonBlocking -FLEXCAN_TransferReceiveNonBlocking -FLEXCAN_TransferFDReceiveNonBlocking -FLEXCAN_TransferReceiveFifoNonBlocking
- Parameters:
handle – FlexCAN handle pointer.
mbIdx – The FlexCAN Message Buffer index.
- Return values:
the – index of mailbox ‘s timestamp stored in the handle.
-
static inline uint32_t FLEXCAN_GetHighResolutionTimeStamp(CAN_Type *base, uint8_t mbIdx)
-
void FLEXCAN_TransferAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
Aborts the interrupt driven message send process.
This function aborts the interrupt driven message send process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
mbIdx – The FlexCAN Message Buffer index.
-
void FLEXCAN_TransferAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
Aborts the interrupt driven message receive process.
This function aborts the interrupt driven message receive process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
mbIdx – The FlexCAN Message Buffer index.
-
void FLEXCAN_TransferAbortReceiveFifo(CAN_Type *base, flexcan_handle_t *handle)
Aborts the interrupt driven message receive from Rx FIFO process.
This function aborts the interrupt driven message receive from Rx FIFO process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
-
void FLEXCAN_TransferHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
FlexCAN IRQ handle function.
This function handles the FlexCAN Error, the Message Buffer, and the Rx FIFO IRQ request.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
-
void FLEXCAN_MbHandleIRQ(CAN_Type *base, flexcan_handle_t *handle, uint32_t startMbIdx, uint32_t endMbIdx)
FlexCAN Message Buffer IRQ handle function.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
startMbIdx – First Message Buffer to handle.
endMbIdx – Last Message Buffer to handle.
-
void FLEXCAN_BusoffErrorHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
FlexCAN Bus Off, Error and Warning IRQ handle function.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
-
void FLEXCAN_PNWakeUpHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
FlexCAN Pretended Networking Wake-up IRQ handle function.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
-
void FLEXCAN_MemoryErrorHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
FlexCAN Memory Error IRQ handle function.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
-
FSL_FLEXCAN_DRIVER_VERSION
FlexCAN driver version.
FlexCAN transfer status.
Values:
-
enumerator kStatus_FLEXCAN_TxBusy
Tx Message Buffer is Busy.
-
enumerator kStatus_FLEXCAN_TxIdle
Tx Message Buffer is Idle.
-
enumerator kStatus_FLEXCAN_TxSwitchToRx
Remote Message is send out and Message buffer changed to Receive one.
-
enumerator kStatus_FLEXCAN_RxBusy
Rx Message Buffer is Busy.
-
enumerator kStatus_FLEXCAN_RxIdle
Rx Message Buffer is Idle.
-
enumerator kStatus_FLEXCAN_RxOverflow
Rx Message Buffer is Overflowed.
-
enumerator kStatus_FLEXCAN_RxFifoBusy
Rx Message FIFO is Busy.
-
enumerator kStatus_FLEXCAN_RxFifoIdle
Rx Message FIFO is Idle.
-
enumerator kStatus_FLEXCAN_RxFifoOverflow
Rx Message FIFO is overflowed.
-
enumerator kStatus_FLEXCAN_RxFifoWarning
Rx Message FIFO is almost overflowed.
-
enumerator kStatus_FLEXCAN_RxFifoDisabled
Rx Message FIFO is disabled during reading.
-
enumerator kStatus_FLEXCAN_ErrorStatus
FlexCAN Module Error and Status.
-
enumerator kStatus_FLEXCAN_WakeUp
FlexCAN is waken up from STOP mode.
-
enumerator kStatus_FLEXCAN_UnHandled
UnHadled Interrupt asserted.
-
enumerator kStatus_FLEXCAN_RxRemote
Rx Remote Message Received in Mail box.
-
enumerator kStatus_FLEXCAN_MemoryError
FlexCAN Memory Error.
-
enumerator kStatus_FLEXCAN_TxBusy
-
enum _flexcan_frame_format
FlexCAN frame format.
Values:
-
enumerator kFLEXCAN_FrameFormatStandard
Standard frame format attribute.
-
enumerator kFLEXCAN_FrameFormatExtend
Extend frame format attribute.
-
enumerator kFLEXCAN_FrameFormatStandard
-
enum _flexcan_frame_type
FlexCAN frame type.
Values:
-
enumerator kFLEXCAN_FrameTypeData
Data frame type attribute.
-
enumerator kFLEXCAN_FrameTypeRemote
Remote frame type attribute.
-
enumerator kFLEXCAN_FrameTypeData
-
enum _flexcan_clock_source
FlexCAN clock source.
- Deprecated:
Do not use the kFLEXCAN_ClkSrcOs. It has been superceded kFLEXCAN_ClkSrc0
Do not use the kFLEXCAN_ClkSrcPeri. It has been superceded kFLEXCAN_ClkSrc1
Values:
-
enumerator kFLEXCAN_ClkSrcOsc
FlexCAN Protocol Engine clock from Oscillator.
-
enumerator kFLEXCAN_ClkSrcPeri
FlexCAN Protocol Engine clock from Peripheral Clock.
-
enumerator kFLEXCAN_ClkSrc0
FlexCAN Protocol Engine clock selected by user as SRC == 0.
-
enumerator kFLEXCAN_ClkSrc1
FlexCAN Protocol Engine clock selected by user as SRC == 1.
-
enum _flexcan_wake_up_source
FlexCAN wake up source.
Values:
-
enumerator kFLEXCAN_WakeupSrcUnfiltered
FlexCAN uses unfiltered Rx input to detect edge.
-
enumerator kFLEXCAN_WakeupSrcFiltered
FlexCAN uses filtered Rx input to detect edge.
-
enumerator kFLEXCAN_WakeupSrcUnfiltered
-
enum _flexcan_endianness
FlexCAN payload endianness.
Values:
-
enumerator kFLEXCAN_bigEndian
Transmit frame with MSB first, receive frame with big-endian format.
-
enumerator kFLEXCAN_littleEndian
Transmit frame with LSB first, receive frame with little-endian format.
-
enumerator kFLEXCAN_bigEndian
-
enum _flexcan_MB_timestamp_base
FlexCAN timebase used for capturing 16-bit TIME_STAMP field of message buffer.
Values:
-
enumerator kFLEXCAN_CANTimer
FlexCAN free-running timer.
-
enumerator kFLEXCAN_Lower16bitsHRTimer
Lower 16 bits of high-resolution on-chip timer.
-
enumerator kFLEXCAN_Upper16bitsHRTimer
Upper 16 bits of high-resolution on-chip timer.
-
enumerator kFLEXCAN_CANTimer
-
enum _flexcan_capture_point
FlexCAN capture point of 32-bit high resolution timebase during a CAN frame.
Values:
-
enumerator kFLEXCAN_CANFrameID2ndBit
Second bit of identifier field of any frame is on the CAN bus. HR_TIME_STAMPn register will not capture 32-bit counter value.
-
enumerator kFLEXCAN_CANFrameEnd
End of the CAN frame.
-
enumerator kFLEXCAN_CANFrameStart
Start of the CAN frame.
-
enumerator kFLEXCAN_CANFDFrameRes
Start of frame for classical CAN frames; res bit for CAN FD frames.
-
enumerator kFLEXCAN_CANFrameID2ndBit
-
enum _flexcan_rx_fifo_filter_type
FlexCAN Rx Fifo Filter type.
Values:
-
enumerator kFLEXCAN_RxFifoFilterTypeA
One full ID (standard and extended) per ID Filter element.
-
enumerator kFLEXCAN_RxFifoFilterTypeB
Two full standard IDs or two partial 14-bit ID slices per ID Filter Table element.
-
enumerator kFLEXCAN_RxFifoFilterTypeC
Four partial 8-bit Standard or extended ID slices per ID Filter Table element.
-
enumerator kFLEXCAN_RxFifoFilterTypeD
All frames rejected.
-
enumerator kFLEXCAN_RxFifoFilterTypeA
-
enum _flexcan_mb_size
FlexCAN Message Buffer Payload size.
Values:
-
enumerator kFLEXCAN_8BperMB
Selects 8 bytes per Message Buffer.
-
enumerator kFLEXCAN_16BperMB
Selects 16 bytes per Message Buffer.
-
enumerator kFLEXCAN_32BperMB
Selects 32 bytes per Message Buffer.
-
enumerator kFLEXCAN_64BperMB
Selects 64 bytes per Message Buffer.
-
enumerator kFLEXCAN_8BperMB
-
enum _flexcan_fd_frame_length
FlexCAN CAN FD frame supporting data length (available DLC values).
For Tx, when the Data size corresponding to DLC value stored in the MB selected for transmission is larger than the MB Payload size, FlexCAN adds the necessary number of bytes with constant 0xCC pattern to complete the expected DLC. For Rx, when the Data size corresponding to DLC value received from the CAN bus is larger than the MB Payload size, the high order bytes that do not fit the Payload size will lose.
Values:
-
enumerator kFLEXCAN_0BperFrame
Frame contains 0 valid data bytes.
-
enumerator kFLEXCAN_1BperFrame
Frame contains 1 valid data bytes.
-
enumerator kFLEXCAN_2BperFrame
Frame contains 2 valid data bytes.
-
enumerator kFLEXCAN_3BperFrame
Frame contains 3 valid data bytes.
-
enumerator kFLEXCAN_4BperFrame
Frame contains 4 valid data bytes.
-
enumerator kFLEXCAN_5BperFrame
Frame contains 5 valid data bytes.
-
enumerator kFLEXCAN_6BperFrame
Frame contains 6 valid data bytes.
-
enumerator kFLEXCAN_7BperFrame
Frame contains 7 valid data bytes.
-
enumerator kFLEXCAN_8BperFrame
Frame contains 8 valid data bytes.
-
enumerator kFLEXCAN_12BperFrame
Frame contains 12 valid data bytes.
-
enumerator kFLEXCAN_16BperFrame
Frame contains 16 valid data bytes.
-
enumerator kFLEXCAN_20BperFrame
Frame contains 20 valid data bytes.
-
enumerator kFLEXCAN_24BperFrame
Frame contains 24 valid data bytes.
-
enumerator kFLEXCAN_32BperFrame
Frame contains 32 valid data bytes.
-
enumerator kFLEXCAN_48BperFrame
Frame contains 48 valid data bytes.
-
enumerator kFLEXCAN_64BperFrame
Frame contains 64 valid data bytes.
-
enumerator kFLEXCAN_0BperFrame
-
enum _flexcan_rx_fifo_priority
FlexCAN Enhanced/Legacy Rx FIFO priority.
The matching process starts from the Rx MB(or Enhanced/Legacy Rx FIFO) with higher priority. If no MB(or Enhanced/Legacy Rx FIFO filter) is satisfied, the matching process goes on with the Enhanced/Legacy Rx FIFO(or Rx MB) with lower priority.
Values:
-
enumerator kFLEXCAN_RxFifoPrioLow
Matching process start from Rx Message Buffer first.
-
enumerator kFLEXCAN_RxFifoPrioHigh
Matching process start from Enhanced/Legacy Rx FIFO first.
-
enumerator kFLEXCAN_RxFifoPrioLow
-
enum _flexcan_interrupt_enable
FlexCAN interrupt enable enumerations.
This provides constants for the FlexCAN interrupt enable enumerations for use in the FlexCAN functions.
Note
FlexCAN Message Buffers and Legacy Rx FIFO interrupts not included in.
Values:
-
enumerator kFLEXCAN_BusOffInterruptEnable
Bus Off interrupt, use bit 15.
-
enumerator kFLEXCAN_ErrorInterruptEnable
CAN Error interrupt, use bit 14.
-
enumerator kFLEXCAN_TxWarningInterruptEnable
Tx Warning interrupt, use bit 11.
-
enumerator kFLEXCAN_RxWarningInterruptEnable
Rx Warning interrupt, use bit 10.
-
enumerator kFLEXCAN_FDErrorInterruptEnable
CAN FD Error interrupt, use bit 31.
-
enumerator kFLEXCAN_PNMatchWakeUpInterruptEnable
PN Match Wake Up interrupt, use high word bit 17.
-
enumerator kFLEXCAN_PNTimeoutWakeUpInterruptEnable
PN Timeout Wake Up interrupt, use high word bit 16.
-
enumerator kFLEXCAN_HostAccessNCErrorInterruptEnable
Host Access With Non-Correctable Errors interrupt, use high word bit 0.
-
enumerator kFLEXCAN_FlexCanAccessNCErrorInterruptEnable
FlexCAN Access With Non-Correctable Errors interrupt, use high word bit 2.
-
enumerator kFLEXCAN_HostOrFlexCanCErrorInterruptEnable
Host or FlexCAN Access With Correctable Errors interrupt, use high word bit 3.
-
enumerator kFLEXCAN_BusOffInterruptEnable
-
enum _flexcan_flags
FlexCAN status flags.
This provides constants for the FlexCAN status flags for use in the FlexCAN functions.
Note
The CPU read action clears the bits corresponding to the FlEXCAN_ErrorFlag macro, therefore user need to read status flags and distinguish which error is occur using _flexcan_error_flags enumerations.
Values:
-
enumerator kFLEXCAN_ErrorOverrunFlag
Error Overrun Status.
-
enumerator kFLEXCAN_FDErrorIntFlag
CAN FD Error Interrupt Flag.
-
enumerator kFLEXCAN_BusoffDoneIntFlag
Bus Off process completed Interrupt Flag.
-
enumerator kFLEXCAN_SynchFlag
CAN Synchronization Status.
-
enumerator kFLEXCAN_TxWarningIntFlag
Tx Warning Interrupt Flag.
-
enumerator kFLEXCAN_RxWarningIntFlag
Rx Warning Interrupt Flag.
-
enumerator kFLEXCAN_IdleFlag
FlexCAN In IDLE Status.
-
enumerator kFLEXCAN_FaultConfinementFlag
FlexCAN Fault Confinement State.
-
enumerator kFLEXCAN_TransmittingFlag
FlexCAN In Transmission Status.
-
enumerator kFLEXCAN_ReceivingFlag
FlexCAN In Reception Status.
-
enumerator kFLEXCAN_BusOffIntFlag
Bus Off Interrupt Flag.
-
enumerator kFLEXCAN_ErrorIntFlag
CAN Error Interrupt Flag.
-
enumerator kFLEXCAN_ErrorFlag
-
enumerator kFLEXCAN_PNMatchIntFlag
PN Matching Event Interrupt Flag.
-
enumerator kFLEXCAN_PNTimeoutIntFlag
PN Timeout Event Interrupt Flag.
-
enumerator kFLEXCAN_HostAccessNonCorrectableErrorIntFlag
Host Access With Non-Correctable Error Interrupt Flag.
-
enumerator kFLEXCAN_FlexCanAccessNonCorrectableErrorIntFlag
FlexCAN Access With Non-Correctable Error Interrupt Flag.
-
enumerator kFLEXCAN_CorrectableErrorIntFlag
Correctable Error Interrupt Flag.
-
enumerator kFLEXCAN_HostAccessNonCorrectableErrorOverrunFlag
Host Access With Non-Correctable Error Interrupt Overrun Flag.
-
enumerator kFLEXCAN_FlexCanAccessNonCorrectableErrorOverrunFlag
FlexCAN Access With Non-Correctable Error Interrupt Overrun Flag.
-
enumerator kFLEXCAN_CorrectableErrorOverrunFlag
Correctable Error Interrupt Overrun Flag.
-
enumerator kFLEXCAN_AllMemoryErrorIntFlag
All Memory Error Interrupt Flags.
-
enumerator kFLEXCAN_AllMemoryErrorFlag
All Memory Error Flags.
-
enumerator kFLEXCAN_ErrorOverrunFlag
-
enum _flexcan_error_flags
FlexCAN error status flags.
The FlexCAN Error Status enumerations is used to report current error of the FlexCAN bus. This enumerations should be used with KFLEXCAN_ErrorFlag in _flexcan_flags enumerations to ditermine which error is generated.
Values:
-
enumerator kFLEXCAN_FDStuffingError
Stuffing Error.
-
enumerator kFLEXCAN_FDFormError
Form Error.
-
enumerator kFLEXCAN_FDCrcError
Cyclic Redundancy Check Error.
-
enumerator kFLEXCAN_FDBit0Error
Unable to send dominant bit.
-
enumerator kFLEXCAN_FDBit1Error
Unable to send recessive bit.
-
enumerator kFLEXCAN_TxErrorWarningFlag
Tx Error Warning Status.
-
enumerator kFLEXCAN_RxErrorWarningFlag
Rx Error Warning Status.
-
enumerator kFLEXCAN_StuffingError
Stuffing Error.
-
enumerator kFLEXCAN_FormError
Form Error.
-
enumerator kFLEXCAN_CrcError
Cyclic Redundancy Check Error.
-
enumerator kFLEXCAN_AckError
Received no ACK on transmission.
-
enumerator kFLEXCAN_Bit0Error
Unable to send dominant bit.
-
enumerator kFLEXCAN_Bit1Error
Unable to send recessive bit.
-
enumerator kFLEXCAN_FDStuffingError
FlexCAN Legacy Rx FIFO status flags.
The FlexCAN Legacy Rx FIFO Status enumerations are used to determine the status of the Rx FIFO. Because Rx FIFO occupy the MB0 ~ MB7 (Rx Fifo filter also occupies more Message Buffer space), Rx FIFO status flags are mapped to the corresponding Message Buffer status flags.
Values:
-
enumerator kFLEXCAN_RxFifoOverflowFlag
Rx FIFO overflow flag.
-
enumerator kFLEXCAN_RxFifoWarningFlag
Rx FIFO almost full flag.
-
enumerator kFLEXCAN_RxFifoFrameAvlFlag
Frames available in Rx FIFO flag.
-
enumerator kFLEXCAN_RxFifoOverflowFlag
-
enum _flexcan_memory_error_type
FlexCAN Memory Error Type.
Values:
-
enumerator kFLEXCAN_CorrectableError
The memory error is correctable which means on bit error.
-
enumerator kFLEXCAN_NonCorrectableError
The memory error is non-correctable which means two bit errors.
-
enumerator kFLEXCAN_CorrectableError
-
enum _flexcan_memory_access_type
FlexCAN Memory Access Type.
Values:
-
enumerator kFLEXCAN_MoveOutFlexCanAccess
The memory error was detected during move-out FlexCAN access.
-
enumerator kFLEXCAN_MoveInAccess
The memory error was detected during move-in FlexCAN access.
-
enumerator kFLEXCAN_TxArbitrationAccess
The memory error was detected during Tx Arbitration FlexCAN access.
-
enumerator kFLEXCAN_RxMatchingAccess
The memory error was detected during Rx Matching FlexCAN access.
-
enumerator kFLEXCAN_MoveOutHostAccess
The memory error was detected during Rx Matching Host (CPU) access.
-
enumerator kFLEXCAN_MoveOutFlexCanAccess
-
enum _flexcan_byte_error_syndrome
FlexCAN Memory Error Byte Syndrome.
Values:
-
enumerator kFLEXCAN_NoError
No bit error in this byte.
-
enumerator kFLEXCAN_ParityBits0Error
Parity bit 0 error in this byte.
-
enumerator kFLEXCAN_ParityBits1Error
Parity bit 1 error in this byte.
-
enumerator kFLEXCAN_ParityBits2Error
Parity bit 2 error in this byte.
-
enumerator kFLEXCAN_ParityBits3Error
Parity bit 3 error in this byte.
-
enumerator kFLEXCAN_ParityBits4Error
Parity bit 4 error in this byte.
-
enumerator kFLEXCAN_DataBits0Error
Data bit 0 error in this byte.
-
enumerator kFLEXCAN_DataBits1Error
Data bit 1 error in this byte.
-
enumerator kFLEXCAN_DataBits2Error
Data bit 2 error in this byte.
-
enumerator kFLEXCAN_DataBits3Error
Data bit 3 error in this byte.
-
enumerator kFLEXCAN_DataBits4Error
Data bit 4 error in this byte.
-
enumerator kFLEXCAN_DataBits5Error
Data bit 5 error in this byte.
-
enumerator kFLEXCAN_DataBits6Error
Data bit 6 error in this byte.
-
enumerator kFLEXCAN_DataBits7Error
Data bit 7 error in this byte.
-
enumerator kFLEXCAN_AllZeroError
All-zeros non-correctable error in this byte.
-
enumerator kFLEXCAN_AllOneError
All-ones non-correctable error in this byte.
-
enumerator kFLEXCAN_NonCorrectableErrors
Non-correctable error in this byte.
-
enumerator kFLEXCAN_NoError
-
enum _flexcan_pn_match_source
FlexCAN Pretended Networking match source selection.
Values:
-
enumerator kFLEXCAN_PNMatSrcID
Message match with ID filtering.
-
enumerator kFLEXCAN_PNMatSrcIDAndData
Message match with ID filtering and payload filtering.
-
enumerator kFLEXCAN_PNMatSrcID
-
enum _flexcan_pn_match_mode
FlexCAN Pretended Networking mode match type.
Values:
-
enumerator kFLEXCAN_PNMatModeEqual
Match upon ID/Payload contents against an exact target value.
-
enumerator kFLEXCAN_PNMatModeGreater
Match upon an ID/Payload value greater than or equal to a specified target value.
-
enumerator kFLEXCAN_PNMatModeSmaller
Match upon an ID/Payload value smaller than or equal to a specified target value.
-
enumerator kFLEXCAN_PNMatModeRange
Match upon an ID/Payload value inside a range, greater than or equal to a specified lower limit, and smaller than or equal to a specified upper limit
-
enumerator kFLEXCAN_PNMatModeEqual
-
typedef enum _flexcan_frame_format flexcan_frame_format_t
FlexCAN frame format.
-
typedef enum _flexcan_frame_type flexcan_frame_type_t
FlexCAN frame type.
-
typedef enum _flexcan_clock_source flexcan_clock_source_t
FlexCAN clock source.
- Deprecated:
Do not use the kFLEXCAN_ClkSrcOs. It has been superceded kFLEXCAN_ClkSrc0
Do not use the kFLEXCAN_ClkSrcPeri. It has been superceded kFLEXCAN_ClkSrc1
-
typedef enum _flexcan_wake_up_source flexcan_wake_up_source_t
FlexCAN wake up source.
-
typedef enum _flexcan_endianness flexcan_endianness_t
FlexCAN payload endianness.
-
typedef enum _flexcan_MB_timestamp_base flexcan_MB_timestamp_base_t
FlexCAN timebase used for capturing 16-bit TIME_STAMP field of message buffer.
-
typedef enum _flexcan_capture_point flexcan_capture_point_t
FlexCAN capture point of 32-bit high resolution timebase during a CAN frame.
-
typedef enum _flexcan_rx_fifo_filter_type flexcan_rx_fifo_filter_type_t
FlexCAN Rx Fifo Filter type.
-
typedef enum _flexcan_mb_size flexcan_mb_size_t
FlexCAN Message Buffer Payload size.
-
typedef enum _flexcan_rx_fifo_priority flexcan_rx_fifo_priority_t
FlexCAN Enhanced/Legacy Rx FIFO priority.
The matching process starts from the Rx MB(or Enhanced/Legacy Rx FIFO) with higher priority. If no MB(or Enhanced/Legacy Rx FIFO filter) is satisfied, the matching process goes on with the Enhanced/Legacy Rx FIFO(or Rx MB) with lower priority.
-
typedef enum _flexcan_memory_error_type flexcan_memory_error_type_t
FlexCAN Memory Error Type.
-
typedef enum _flexcan_memory_access_type flexcan_memory_access_type_t
FlexCAN Memory Access Type.
-
typedef enum _flexcan_byte_error_syndrome flexcan_byte_error_syndrome_t
FlexCAN Memory Error Byte Syndrome.
-
typedef struct _flexcan_memory_error_report_status flexcan_memory_error_report_status_t
FlexCAN memory error register status structure.
This structure contains the memory access properties that caused a memory error access. It is used as the parameter of FLEXCAN_GetMemoryErrorReportStatus() function. And user can use FLEXCAN_GetMemoryErrorReportStatus to get the status of the last memory error access.
-
typedef struct _flexcan_frame flexcan_frame_t
FlexCAN message frame structure.
-
typedef struct _flexcan_fd_frame flexcan_fd_frame_t
CAN FD message frame structure.
The CAN FD message supporting up to sixty four bytes can be used for a data frame, depending on the length selected for the message buffers. The length should be a enumeration member, see _flexcan_fd_frame_length.
-
typedef struct _flexcan_timing_config flexcan_timing_config_t
FlexCAN protocol timing characteristic configuration structure.
-
typedef struct _flexcan_config flexcan_config_t
FlexCAN module configuration structure.
- Deprecated:
Do not use the baudRate. It has been superceded bitRate
Do not use the baudRateFD. It has been superceded bitRateFD
-
typedef struct _flexcan_rx_mb_config flexcan_rx_mb_config_t
FlexCAN Receive Message Buffer configuration structure.
This structure is used as the parameter of FLEXCAN_SetRxMbConfig() function. The FLEXCAN_SetRxMbConfig() function is used to configure FlexCAN Receive Message Buffer. The function abort previous receiving process, clean the Message Buffer and activate the Rx Message Buffer using given Message Buffer setting.
-
typedef enum _flexcan_pn_match_source flexcan_pn_match_source_t
FlexCAN Pretended Networking match source selection.
-
typedef enum _flexcan_pn_match_mode flexcan_pn_match_mode_t
FlexCAN Pretended Networking mode match type.
-
typedef struct _flexcan_pn_config flexcan_pn_config_t
FlexCAN Pretended Networking configuration structure.
This structure is used as the parameter of FLEXCAN_SetPNConfig() function. The FLEXCAN_SetPNConfig() function is used to configure FlexCAN Networking work mode.
-
typedef struct _flexcan_rx_fifo_config flexcan_rx_fifo_config_t
FlexCAN Legacy Rx FIFO configuration structure.
-
typedef struct _flexcan_mb_transfer flexcan_mb_transfer_t
FlexCAN Message Buffer transfer.
-
typedef struct _flexcan_fifo_transfer flexcan_fifo_transfer_t
FlexCAN Rx FIFO transfer.
-
typedef struct _flexcan_handle flexcan_handle_t
FlexCAN handle structure definition.
-
typedef void (*flexcan_transfer_callback_t)(CAN_Type *base, flexcan_handle_t *handle, status_t status, uint64_t result, void *userData)
-
FLEXCAN_WAIT_TIMEOUT
-
FLEXCAN_POLLING_TIMEOUT
Max loops to wait for polling transfer.
-
FLEXCAN_MODULE_TIMEOUT
Max loops to wait for FlexCAN register access complete.
-
DLC_LENGTH_DECODE(dlc)
FlexCAN frame length helper macro.
-
FLEXCAN_ID_STD(id)
FlexCAN Frame ID helper macro.
Standard Frame ID helper macro.
-
FLEXCAN_ID_EXT(id)
Extend Frame ID helper macro.
-
FLEXCAN_RX_MB_STD_MASK(id, rtr, ide)
FlexCAN Rx Message Buffer Mask helper macro.
Standard Rx Message Buffer Mask helper macro.
-
FLEXCAN_RX_MB_EXT_MASK(id, rtr, ide)
Extend Rx Message Buffer Mask helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_A(id, rtr, ide)
FlexCAN Legacy Rx FIFO Mask helper macro.
Standard Rx FIFO Mask helper macro Type A helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_B_HIGH(id, rtr, ide)
Standard Rx FIFO Mask helper macro Type B upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_B_LOW(id, rtr, ide)
Standard Rx FIFO Mask helper macro Type B lower part helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_HIGH(id)
Standard Rx FIFO Mask helper macro Type C upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_MID_HIGH(id)
Standard Rx FIFO Mask helper macro Type C mid-upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_MID_LOW(id)
Standard Rx FIFO Mask helper macro Type C mid-lower part helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_LOW(id)
Standard Rx FIFO Mask helper macro Type C lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_A(id, rtr, ide)
Extend Rx FIFO Mask helper macro Type A helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_B_HIGH(id, rtr, ide)
Extend Rx FIFO Mask helper macro Type B upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_B_LOW(id, rtr, ide)
Extend Rx FIFO Mask helper macro Type B lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_HIGH(id)
Extend Rx FIFO Mask helper macro Type C upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_MID_HIGH(id)
Extend Rx FIFO Mask helper macro Type C mid-upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_MID_LOW(id)
Extend Rx FIFO Mask helper macro Type C mid-lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_LOW(id)
Extend Rx FIFO Mask helper macro Type C lower part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_A(id, rtr, ide)
FlexCAN Rx FIFO Filter helper macro.
Standard Rx FIFO Filter helper macro Type A helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_B_HIGH(id, rtr, ide)
Standard Rx FIFO Filter helper macro Type B upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_B_LOW(id, rtr, ide)
Standard Rx FIFO Filter helper macro Type B lower part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_HIGH(id)
Standard Rx FIFO Filter helper macro Type C upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_MID_HIGH(id)
Standard Rx FIFO Filter helper macro Type C mid-upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_MID_LOW(id)
Standard Rx FIFO Filter helper macro Type C mid-lower part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_LOW(id)
Standard Rx FIFO Filter helper macro Type C lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_A(id, rtr, ide)
Extend Rx FIFO Filter helper macro Type A helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_B_HIGH(id, rtr, ide)
Extend Rx FIFO Filter helper macro Type B upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_B_LOW(id, rtr, ide)
Extend Rx FIFO Filter helper macro Type B lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_HIGH(id)
Extend Rx FIFO Filter helper macro Type C upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_MID_HIGH(id)
Extend Rx FIFO Filter helper macro Type C mid-upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_MID_LOW(id)
Extend Rx FIFO Filter helper macro Type C mid-lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_LOW(id)
Extend Rx FIFO Filter helper macro Type C lower part helper macro.
-
FLEXCAN_PN_STD_MASK(id, rtr)
FlexCAN Pretended Networking ID Mask helper macro.
Standard Rx Message Buffer Mask helper macro.
-
FLEXCAN_PN_EXT_MASK(id, rtr)
Extend Rx Message Buffer Mask helper macro.
-
FLEXCAN_PN_INT_MASK(x)
FlexCAN interrupt/status flag helper macro.
-
FLEXCAN_PN_INT_UNMASK(x)
-
FLEXCAN_PN_STATUS_MASK(x)
-
FLEXCAN_PN_STATUS_UNMASK(x)
-
FLEXCAN_MECR_INT_MASK(x)
-
FLEXCAN_MECR_INT_UNMASK(x)
-
FLEXCAN_MECR_STATUS_MASK(x)
-
FLEXCAN_MECR_STATUS_UNMASK(x)
-
FLEXCAN_ERROR_AND_STATUS_INT_FLAG
-
FLEXCAN_PNWAKE_UP_FLAG
-
FLEXCAN_WAKE_UP_FLAG
-
FLEXCAN_MEMORY_ERROR_INT_FLAG
-
FLEXCAN_ENHANCED_RX_FIFO_INT_FLAG
FlexCAN Enhanced Rx FIFO base address helper macro.
-
FLEXCAN_CALLBACK(x)
FlexCAN transfer callback function.
The FlexCAN transfer callback returns a value from the underlying layer. If the status equals to kStatus_FLEXCAN_ErrorStatus, the result parameter is the Content of FlexCAN status register which can be used to get the working status(or error status) of FlexCAN module. If the status equals to other FlexCAN Message Buffer transfer status, the result is the index of Message Buffer that generate transfer event. If the status equals to other FlexCAN Message Buffer transfer status, the result is meaningless and should be Ignored.
-
struct _flexcan_memory_error_report_status
- #include <fsl_flexcan.h>
FlexCAN memory error register status structure.
This structure contains the memory access properties that caused a memory error access. It is used as the parameter of FLEXCAN_GetMemoryErrorReportStatus() function. And user can use FLEXCAN_GetMemoryErrorReportStatus to get the status of the last memory error access.
Public Members
-
flexcan_memory_error_type_t errorType
The type of memory error that giving rise to the report.
-
flexcan_memory_access_type_t accessType
The type of memory access that giving rise to the memory error.
-
uint16_t accessAddress
The address where memory error detected.
-
uint32_t errorData
The raw data word read from memory with error.
-
flexcan_memory_error_type_t errorType
-
struct _flexcan_frame
- #include <fsl_flexcan.h>
FlexCAN message frame structure.
-
struct _flexcan_fd_frame
- #include <fsl_flexcan.h>
CAN FD message frame structure.
The CAN FD message supporting up to sixty four bytes can be used for a data frame, depending on the length selected for the message buffers. The length should be a enumeration member, see _flexcan_fd_frame_length.
Public Members
-
uint32_t hrtimestamp
Note
HR timestamp offset is changed dynamically according to data length code (DLC). External 32-bit on-chip timer high-resolution timestamp.
-
uint32_t hrtimestamp
-
struct _flexcan_timing_config
- #include <fsl_flexcan.h>
FlexCAN protocol timing characteristic configuration structure.
Public Members
-
uint32_t preDivider
Classic CAN or CAN FD nominal phase bit rate prescaler.
-
uint32_t rJumpwidth
Classic CAN or CAN FD nominal phase Re-sync Jump Width.
-
uint32_t phaseSeg1
Classic CAN or CAN FD nominal phase Segment 1.
-
uint32_t phaseSeg2
Classic CAN or CAN FD nominal phase Segment 2.
-
uint32_t propSeg
Classic CAN or CAN FD nominal phase Propagation Segment.
-
uint32_t fpreDivider
CAN FD data phase bit rate prescaler.
-
uint32_t frJumpwidth
CAN FD data phase Re-sync Jump Width.
-
uint32_t fphaseSeg1
CAN FD data phase Phase Segment 1.
-
uint32_t fphaseSeg2
CAN FD data phase Phase Segment 2.
-
uint32_t fpropSeg
CAN FD data phase Propagation Segment.
-
uint32_t preDivider
-
struct _flexcan_config
- #include <fsl_flexcan.h>
FlexCAN module configuration structure.
- Deprecated:
Do not use the baudRate. It has been superceded bitRate
Do not use the baudRateFD. It has been superceded bitRateFD
Public Members
-
flexcan_clock_source_t clkSrc
Clock source for FlexCAN Protocol Engine.
-
flexcan_wake_up_source_t wakeupSrc
Wake up source selection.
-
uint8_t maxMbNum
The maximum number of Message Buffers used by user.
-
bool enableLoopBack
Enable or Disable Loop Back Self Test Mode.
-
bool enableTimerSync
Enable or Disable Timer Synchronization.
-
bool enableIndividMask
Enable or Disable Rx Individual Mask and Queue feature.
-
bool disableSelfReception
Enable or Disable Self Reflection.
-
bool enableListenOnlyMode
Enable or Disable Listen Only Mode.
-
bool enableDoze
Enable or Disable Doze Mode.
-
bool enablePretendedeNetworking
Enable or Disable the Pretended Networking mode.
-
bool enableMemoryErrorControl
Enable or Disable the memory errors detection and correction mechanism.
-
bool enableNonCorrectableErrorEnterFreeze
Enable or Disable Non-Correctable Errors In FlexCAN Access Put Device In Freeze Mode.
-
bool enableTransceiverDelayMeasure
Enable or Disable the transceiver delay measurement, when it is enabled, then the secondary sample point position is determined by the sum of the transceiver delay measurement plus the enhanced TDC offset.
-
bool enableRemoteRequestFrameStored
true: Store Remote Request Frame in the same fashion of data frame. false: Generate an automatic Remote Response Frame.
-
flexcan_endianness_t payloadEndianness
Selects the byte order for the payload of transmit and receive frames, see flexcan_endianness_t.
-
bool enableExternalTimeTick
true: External time tick clocks the free-running timer. false: FlexCAN bit clock clocks the free-running timer.
-
flexcan_MB_timestamp_base_t captureTimeBase
Timebase of message buffer 16-bit TIME_STAMP field.
-
flexcan_capture_point_t capturePoint
Point in time when 32-bit timebase is captured during CAN frame.
-
struct _flexcan_rx_mb_config
- #include <fsl_flexcan.h>
FlexCAN Receive Message Buffer configuration structure.
This structure is used as the parameter of FLEXCAN_SetRxMbConfig() function. The FLEXCAN_SetRxMbConfig() function is used to configure FlexCAN Receive Message Buffer. The function abort previous receiving process, clean the Message Buffer and activate the Rx Message Buffer using given Message Buffer setting.
Public Members
-
uint32_t id
CAN Message Buffer Frame Identifier, should be set using FLEXCAN_ID_EXT() or FLEXCAN_ID_STD() macro.
-
flexcan_frame_format_t format
CAN Frame Identifier format(Standard of Extend).
-
flexcan_frame_type_t type
CAN Frame Type(Data or Remote for classical CAN only).
-
uint32_t id
-
struct _flexcan_pn_config
- #include <fsl_flexcan.h>
FlexCAN Pretended Networking configuration structure.
This structure is used as the parameter of FLEXCAN_SetPNConfig() function. The FLEXCAN_SetPNConfig() function is used to configure FlexCAN Networking work mode.
Public Members
-
bool enableTimeout
Enable or Disable timeout event trigger wakeup.
-
uint16_t timeoutValue
The timeout value that generates a wakeup event, the counter timer is incremented based on 64 times the CAN Bit Time unit.
-
bool enableMatch
Enable or Disable match event trigger wakeup.
-
flexcan_pn_match_source_t matchSrc
Selects the match source (ID and/or data match) to trigger wakeup.
-
uint8_t matchNum
The number of times a given message must match the predefined ID and/or data before generating a wakeup event, range in 0x1 ~ 0xFF.
-
flexcan_pn_match_mode_t idMatchMode
The ID match type.
-
flexcan_pn_match_mode_t dataMatchMode
The data match type.
-
uint32_t idLower
The ID target values 1 which used either for ID match “equal to”, “smaller than”, “greater than” comparisons, or as the lower limit value in ID match “range detection”.
-
uint32_t idUpper
The ID target values 2 which used only as the upper limit value in ID match “range
detection” or used to store the ID mask in “equal to”.
-
uint8_t lengthLower
The lower limit for length of data bytes which used only in data match “range
detection”. Range in 0x0 ~ 0x8.
-
uint8_t lengthUpper
The upper limit for length of data bytes which used only in data match “range
detection”. Range in 0x0 ~ 0x8.
-
bool enableTimeout
-
struct _flexcan_rx_fifo_config
- #include <fsl_flexcan.h>
FlexCAN Legacy Rx FIFO configuration structure.
Public Members
-
uint32_t *idFilterTable
Pointer to the FlexCAN Legacy Rx FIFO identifier filter table.
-
uint8_t idFilterNum
The FlexCAN Legacy Rx FIFO Filter elements quantity.
-
flexcan_rx_fifo_filter_type_t idFilterType
The FlexCAN Legacy Rx FIFO Filter type.
-
flexcan_rx_fifo_priority_t priority
The FlexCAN Legacy Rx FIFO receive priority.
-
uint32_t *idFilterTable
-
struct _flexcan_mb_transfer
- #include <fsl_flexcan.h>
FlexCAN Message Buffer transfer.
Public Members
-
flexcan_frame_t *frame
The buffer of CAN Message to be transfer.
-
uint8_t mbIdx
The index of Message buffer used to transfer Message.
-
flexcan_frame_t *frame
-
struct _flexcan_fifo_transfer
- #include <fsl_flexcan.h>
FlexCAN Rx FIFO transfer.
Public Members
-
flexcan_frame_t *frame
The buffer of CAN Message to be received from Legacy Rx FIFO.
-
size_t frameNum
Number of CAN Message need to be received from Legacy or Ehanced Rx FIFO.
-
flexcan_frame_t *frame
-
struct _flexcan_handle
- #include <fsl_flexcan.h>
FlexCAN handle structure.
Public Members
-
flexcan_transfer_callback_t callback
Callback function.
-
void *userData
FlexCAN callback function parameter.
-
flexcan_frame_t *volatile mbFrameBuf[CAN_WORD1_COUNT]
The buffer for received CAN data from Message Buffers.
-
flexcan_fd_frame_t *volatile mbFDFrameBuf[CAN_WORD1_COUNT]
The buffer for received CAN FD data from Message Buffers.
-
flexcan_frame_t *volatile rxFifoFrameBuf
The buffer for received CAN data from Legacy Rx FIFO.
-
size_t rxFifoFrameNum
The number of CAN messages remaining to be received from Legacy or Ehanced Rx FIFO.
-
size_t rxFifoTransferTotalNum
Total CAN Message number need to be received from Legacy or Ehanced Rx FIFO.
-
volatile uint8_t mbState[CAN_WORD1_COUNT]
Message Buffer transfer state.
-
volatile uint8_t rxFifoState
Rx FIFO transfer state.
-
volatile uint32_t timestamp[CAN_WORD1_COUNT]
Mailbox transfer timestamp.
-
flexcan_transfer_callback_t callback
-
struct byteStatus
Public Members
-
bool byteIsRead
The byte n (0~3) was read or not. The type of error and which bit in byte (n) is affected by the error.
-
bool byteIsRead
-
struct __unnamed20__
Public Members
-
uint32_t timestamp
FlexCAN internal Free-Running Counter Time Stamp.
-
uint32_t length
CAN frame data length in bytes (Range: 0~8).
-
uint32_t type
CAN Frame Type(DATA or REMOTE).
-
uint32_t format
CAN Frame Identifier(STD or EXT format).
-
uint32_t __pad0__
Reserved.
-
uint32_t idhit
CAN Rx FIFO filter hit id(This value is only used in Rx FIFO receive mode).
-
uint32_t timestamp
-
struct __unnamed22__
Public Members
-
uint32_t id
CAN Frame Identifier, should be set using FLEXCAN_ID_EXT() or FLEXCAN_ID_STD() macro.
-
uint32_t __pad0__
Reserved.
-
uint32_t id
-
union __unnamed24__
Public Members
- struct _flexcan_frame
- struct _flexcan_frame
-
struct __unnamed26__
Public Members
-
uint32_t dataWord0
CAN Frame payload word0.
-
uint32_t dataWord1
CAN Frame payload word1.
-
uint32_t dataWord0
-
struct __unnamed28__
Public Members
-
uint8_t dataByte3
CAN Frame payload byte3.
-
uint8_t dataByte2
CAN Frame payload byte2.
-
uint8_t dataByte1
CAN Frame payload byte1.
-
uint8_t dataByte0
CAN Frame payload byte0.
-
uint8_t dataByte7
CAN Frame payload byte7.
-
uint8_t dataByte6
CAN Frame payload byte6.
-
uint8_t dataByte5
CAN Frame payload byte5.
-
uint8_t dataByte4
CAN Frame payload byte4.
-
uint8_t dataByte3
-
struct __unnamed30__
Public Members
-
uint32_t timestamp
FlexCAN internal Free-Running Counter Time Stamp.
-
uint32_t length
CAN FD frame data length code (DLC), range see _flexcan_fd_frame_length, When the length <= 8, it equal to the data length, otherwise the number of valid frame data is not equal to the length value. user can use DLC_LENGTH_DECODE(length) macro to get the number of valid data bytes.
-
uint32_t type
CAN Frame Type(DATA only).
-
uint32_t format
CAN Frame Identifier(STD or EXT format).
-
uint32_t srr
Substitute Remote request.
-
uint32_t esi
Error State Indicator.
-
uint32_t brs
Bit Rate Switch.
-
uint32_t edl
Extended Data Length.
-
uint32_t timestamp
-
struct __unnamed32__
Public Members
-
uint32_t id
CAN Frame Identifier, should be set using FLEXCAN_ID_EXT() or FLEXCAN_ID_STD() macro.
-
uint32_t __pad0__
Reserved.
-
uint32_t id
-
union __unnamed34__
Public Members
- struct _flexcan_fd_frame
- struct _flexcan_fd_frame
-
struct __unnamed36__
Public Members
-
uint32_t dataWord[16]
CAN FD Frame payload, 16 double word maximum.
-
uint32_t dataWord[16]
-
struct __unnamed38__
Public Members
-
uint8_t dataByte3
CAN Frame payload byte3.
-
uint8_t dataByte2
CAN Frame payload byte2.
-
uint8_t dataByte1
CAN Frame payload byte1.
-
uint8_t dataByte0
CAN Frame payload byte0.
-
uint8_t dataByte7
CAN Frame payload byte7.
-
uint8_t dataByte6
CAN Frame payload byte6.
-
uint8_t dataByte5
CAN Frame payload byte5.
-
uint8_t dataByte4
CAN Frame payload byte4.
-
uint8_t dataByte3
-
union __unnamed40__
Public Members
- struct _flexcan_config
- struct _flexcan_config
-
struct __unnamed42__
Public Members
-
uint32_t baudRate
FlexCAN bit rate in bps, for classical CAN or CANFD nominal phase.
-
uint32_t baudRateFD
FlexCAN FD bit rate in bps, for CANFD data phase.
-
uint32_t baudRate
-
struct __unnamed44__
Public Members
-
uint32_t bitRate
FlexCAN bit rate in bps, for classical CAN or CANFD nominal phase.
-
uint32_t bitRateFD
FlexCAN FD bit rate in bps, for CANFD data phase.
-
uint32_t bitRate
-
union __unnamed46__
Public Members
- struct _flexcan_pn_config
< The data target values 1 which used either for data match “equal to”, “smaller than”, “greater than” comparisons, or as the lower limit value in data match “range
detection”.
- struct _flexcan_pn_config
-
struct __unnamed50__
< The data target values 1 which used either for data match “equal to”, “smaller than”, “greater than” comparisons, or as the lower limit value in data match “range
detection”.
Public Members
-
uint32_t lowerWord0
CAN Frame payload word0.
-
uint32_t lowerWord1
CAN Frame payload word1.
-
uint32_t lowerWord0
-
struct __unnamed52__
Public Members
-
uint8_t lowerByte3
CAN Frame payload byte3.
-
uint8_t lowerByte2
CAN Frame payload byte2.
-
uint8_t lowerByte1
CAN Frame payload byte1.
-
uint8_t lowerByte0
CAN Frame payload byte0.
-
uint8_t lowerByte7
CAN Frame payload byte7.
-
uint8_t lowerByte6
CAN Frame payload byte6.
-
uint8_t lowerByte5
CAN Frame payload byte5.
-
uint8_t lowerByte4
CAN Frame payload byte4.
-
uint8_t lowerByte3
-
union __unnamed48__
Public Members
- struct _flexcan_pn_config
< The data target values 2 which used only as the upper limit value in data match “range
detection” or used to store the data mask in “equal to”.
- struct _flexcan_pn_config
-
struct __unnamed54__
< The data target values 2 which used only as the upper limit value in data match “range
detection” or used to store the data mask in “equal to”.
Public Members
-
uint32_t upperWord0
CAN Frame payload word0.
-
uint32_t upperWord1
CAN Frame payload word1.
-
uint32_t upperWord0
-
struct __unnamed56__
Public Members
-
uint8_t upperByte3
CAN Frame payload byte3.
-
uint8_t upperByte2
CAN Frame payload byte2.
-
uint8_t upperByte1
CAN Frame payload byte1.
-
uint8_t upperByte0
CAN Frame payload byte0.
-
uint8_t upperByte7
CAN Frame payload byte7.
-
uint8_t upperByte6
CAN Frame payload byte6.
-
uint8_t upperByte5
CAN Frame payload byte5.
-
uint8_t upperByte4
CAN Frame payload byte4.
-
uint8_t upperByte3
GPC: General Power Controller Driver#
-
FSL_GPC_DRIVER_VERSION
GPC driver version 2.2.0.
-
enum _gpc_lpm_mode
GPC LPM mode definition.
Values:
-
enumerator kGPC_RunMode
run mode
-
enumerator kGPC_WaitMode
wait mode
-
enumerator kGPC_StopMode
stop mode
-
enumerator kGPC_RunMode
-
enum _gpc_pgc_ack_sel
PGC ack signal selection
Values:
-
enumerator kGPC_DummyPGCPowerUpAck
dummy power up ack signal
-
enumerator kGPC_VirtualPGCPowerUpAck
virtual pgc power up ack signal
-
enumerator kGPC_DummyPGCPowerDownAck
dummy power down ack signal
-
enumerator kGPC_VirtualPGCPowerDownAck
virtual pgc power down ack signal
-
enumerator kGPC_NocPGCPowerUpAck
NOC power up ack signal
-
enumerator kGPC_NocPGCPowerDownAck
NOC power
-
enumerator kGPC_DummyPGCPowerUpAck
-
enum _gpc_standby_count
Standby counter which GPC will wait between PMIC_STBY_REQ negation and assertion of PMIC_READY
Values:
-
enumerator kGPC_StandbyCounter4CkilClk
4 ckil clocks
-
enumerator kGPC_StandbyCounter8CkilClk
8 ckil clocks
-
enumerator kGPC_StandbyCounter16CkilClk
16 ckil clocks
-
enumerator kGPC_StandbyCounter32CkilClk
32 ckil clocks
-
enumerator kGPC_StandbyCounter64CkilClk
64 ckil clocks
-
enumerator kGPC_StandbyCounter128CkilClk
128 ckil clocks
-
enumerator kGPC_StandbyCounter256CkilClk
256 ckil clocks
-
enumerator kGPC_StandbyCounter512CkilClk
512 ckil clocks
-
enumerator kGPC_StandbyCounter4CkilClk
-
typedef struct _gpc_lpm_config gpc_lpm_config_t
configuration for enter DSM mode
-
typedef struct _gpc_dsm_config gpc_dsm_config_t
-
static inline void GPC_AllowIRQs(GPC_Type *base)
Allow all the IRQ/Events within the charge of GPC.
- Parameters:
base – GPC peripheral base address.
-
static inline void GPC_DisallowIRQs(GPC_Type *base)
Disallow all the IRQ/Events within the charge of GPC.
- Parameters:
base – GPC peripheral base address.
-
static inline uint32_t GPC_GetLpmMode(GPC_Type *base)
Get current LPM mode.
- Parameters:
base – GPC peripheral base address.
- Return values:
lpm – mode, reference _gpc_lpm_mode
-
void GPC_EnableIRQ(GPC_Type *base, uint32_t irqId)
Enable the IRQ.
- Parameters:
base – GPC peripheral base address.
irqId – ID number of IRQ to be enabled, available range is 0-127,reference SOC headerfile IRQn_Type.
-
void GPC_DisableIRQ(GPC_Type *base, uint32_t irqId)
Disable the IRQ.
- Parameters:
base – GPC peripheral base address.
irqId – ID number of IRQ to be disabled, available range is 0-127,reference SOC headerfile IRQn_Type.
-
bool GPC_GetIRQStatusFlag(GPC_Type *base, uint32_t irqId)
Get the IRQ/Event flag.
- Parameters:
base – GPC peripheral base address.
irqId – ID number of IRQ to be enabled, available range is 0-127,reference SOC headerfile IRQn_Type.
- Returns:
Indicated IRQ/Event is asserted or not.
-
static inline void GPC_DsmTriggerMask(GPC_Type *base, bool enable)
Mask the DSM trigger.
- Parameters:
base – GPC peripheral base address.
enable – true to enable mask, false to disable mask.
-
static inline void GPC_WFIMask(GPC_Type *base, bool enable)
Mask the WFI.
- Parameters:
base – GPC peripheral base address.
enable – true to enable mask, false to disable mask.
-
static inline void GPC_SelectPGCAckSignal(GPC_Type *base, uint32_t mask)
Select the PGC ACK signal.
- Parameters:
base – GPC peripheral base address.
mask – reference _gpc_pgc_ack_sel.
-
static inline void GPC_PowerDownRequestMask(GPC_Type *base, bool enable)
Power down request to virtual PGC mask or not.
- Parameters:
base – GPC peripheral base address.
enable – true to mask, false to not mask.
-
static inline void GPC_PGCMapping(GPC_Type *base, uint32_t mask)
PGC CPU Mapping.
- Parameters:
base – GPC peripheral base address.
mask – mask value reference PGC CPU mapping definition.
-
static inline void GPC_TimeSlotConfigureForPUS(GPC_Type *base, uint8_t slotIndex, uint32_t value)
Time slot configure.
- Parameters:
base – GPC peripheral base address.
slotIndex – time slot index.
value – value to be configured
-
void GPC_EnterWaitMode(GPC_Type *base, gpc_lpm_config_t *config)
Enter WAIT mode.
- Parameters:
base – GPC peripheral base address.
config – lpm mode configurations.
-
void GPC_EnterStopMode(GPC_Type *base, gpc_lpm_config_t *config)
Enter STOP mode.
- Parameters:
base – GPC peripheral base address.
config – lpm mode configurations.
-
void GPC_Init(GPC_Type *base, uint32_t powerUpSlot, uint32_t powerDownSlot)
GPC init function.
- Parameters:
base – GPC peripheral base address.
powerUpSlot – power up slot number.
powerDownSlot – power down slot number.
-
GPC_PCG_TIME_SLOT_TOTAL_NUMBER
Total number of the timeslot.
-
struct _gpc_lpm_config
Public Members
-
bool enFastWakeUp
enable fast wake up from lpm mode
-
bool enCpuClk
enable CPU clock when LPM enter
-
bool enVirtualPGCPowerup
enable virtual PGC power up with LPM enter
-
bool enVirtualPGCPowerdown
enable virtual PGC power down with LPM enter
-
bool enWfiMask
enable WFI Mask
-
bool enDsmMask
enable DSM Mask
-
bool enFastWakeUp
-
struct _gpc_dsm_config
Public Members
-
bool disableRamLpctl
Memory can be defined to go to retention mode or not
-
bool enPMICStandBy
PMIC can be defined to be stand-by mode or not
-
uint8_t pmicStandByCounter
PMIC standby counter, reference _gpc_standby_count
-
uint8_t regBypassCounter
if PMIC standby is request, regulator bypass should be enable, and the counter can be defined
-
bool disableRamLpctl
GPIO: General-Purpose Input/Output Driver#
-
void GPIO_PinInit(GPIO_Type *base, uint32_t pin, const gpio_pin_config_t *Config)
Initializes the GPIO peripheral according to the specified parameters in the initConfig.
- Parameters:
base – GPIO base pointer.
pin – Specifies the pin number
Config – pointer to a gpio_pin_config_t structure that contains the configuration information.
-
void GPIO_PinWrite(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the individual GPIO pin to logic 1 or 0.
- Parameters:
base – GPIO base pointer.
pin – GPIO port pin number.
output – GPIOpin output logic level.
0: corresponding pin output low-logic level.
1: corresponding pin output high-logic level.
-
static inline void GPIO_WritePinOutput(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the individual GPIO pin to logic 1 or 0.
- Deprecated:
Do not use this function. It has been superceded by GPIO_PinWrite.
-
static inline void GPIO_PortSet(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.
- Parameters:
base – GPIO peripheral base pointer (GPIO1, GPIO2, GPIO3, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_SetPinsOutput(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.
- Deprecated:
Do not use this function. It has been superceded by GPIO_PortSet.
-
static inline void GPIO_PortClear(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.
- Parameters:
base – GPIO peripheral base pointer (GPIO1, GPIO2, GPIO3, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_ClearPinsOutput(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.
- Deprecated:
Do not use this function. It has been superceded by GPIO_PortClear.
-
static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple GPIO pins.
- Parameters:
base – GPIO peripheral base pointer (GPIO1, GPIO2, GPIO3, and so on.)
mask – GPIO pin number macro
-
static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.
- Parameters:
base – GPIO base pointer.
pin – GPIO port pin number.
- Return values:
GPIO – port input value.
-
static inline uint32_t GPIO_ReadPinInput(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.
- Deprecated:
Do not use this function. It has been superceded by GPIO_PinRead.
-
static inline uint8_t GPIO_PinReadPadStatus(GPIO_Type *base, uint32_t pin)
Reads the current GPIO pin pad status.
- Parameters:
base – GPIO base pointer.
pin – GPIO port pin number.
- Return values:
GPIO – pin pad status value.
-
static inline uint8_t GPIO_ReadPadStatus(GPIO_Type *base, uint32_t pin)
Reads the current GPIO pin pad status.
- Deprecated:
Do not use this function. It has been superceded by GPIO_PinReadPadStatus.
-
void GPIO_PinSetInterruptConfig(GPIO_Type *base, uint32_t pin, gpio_interrupt_mode_t pinInterruptMode)
Sets the current pin interrupt mode.
- Parameters:
base – GPIO base pointer.
pin – GPIO port pin number.
pinInterruptMode – pointer to a gpio_interrupt_mode_t structure that contains the interrupt mode information.
-
static inline void GPIO_SetPinInterruptConfig(GPIO_Type *base, uint32_t pin, gpio_interrupt_mode_t pinInterruptMode)
Sets the current pin interrupt mode.
- Deprecated:
Do not use this function. It has been superceded by GPIO_PinSetInterruptConfig.
-
static inline void GPIO_PortEnableInterrupts(GPIO_Type *base, uint32_t mask)
Enables the specific pin interrupt.
- Parameters:
base – GPIO base pointer.
mask – GPIO pin number macro.
-
static inline void GPIO_EnableInterrupts(GPIO_Type *base, uint32_t mask)
Enables the specific pin interrupt.
- Parameters:
base – GPIO base pointer.
mask – GPIO pin number macro.
-
static inline void GPIO_PortDisableInterrupts(GPIO_Type *base, uint32_t mask)
Disables the specific pin interrupt.
- Parameters:
base – GPIO base pointer.
mask – GPIO pin number macro.
-
static inline void GPIO_DisableInterrupts(GPIO_Type *base, uint32_t mask)
Disables the specific pin interrupt.
- Deprecated:
Do not use this function. It has been superceded by GPIO_PortDisableInterrupts.
-
static inline uint32_t GPIO_PortGetInterruptFlags(GPIO_Type *base)
Reads individual pin interrupt status.
- Parameters:
base – GPIO base pointer.
- Return values:
current – pin interrupt status flag.
-
static inline uint32_t GPIO_GetPinsInterruptFlags(GPIO_Type *base)
Reads individual pin interrupt status.
- Parameters:
base – GPIO base pointer.
- Return values:
current – pin interrupt status flag.
-
static inline void GPIO_PortClearInterruptFlags(GPIO_Type *base, uint32_t mask)
Clears pin interrupt flag. Status flags are cleared by writing a 1 to the corresponding bit position.
- Parameters:
base – GPIO base pointer.
mask – GPIO pin number macro.
-
static inline void GPIO_ClearPinsInterruptFlags(GPIO_Type *base, uint32_t mask)
Clears pin interrupt flag. Status flags are cleared by writing a 1 to the corresponding bit position.
- Parameters:
base – GPIO base pointer.
mask – GPIO pin number macro.
-
FSL_GPIO_DRIVER_VERSION
GPIO driver version.
-
enum _gpio_pin_direction
GPIO direction definition.
Values:
-
enumerator kGPIO_DigitalInput
Set current pin as digital input.
-
enumerator kGPIO_DigitalOutput
Set current pin as digital output.
-
enumerator kGPIO_DigitalInput
-
enum _gpio_interrupt_mode
GPIO interrupt mode definition.
Values:
-
enumerator kGPIO_NoIntmode
Set current pin general IO functionality.
-
enumerator kGPIO_IntLowLevel
Set current pin interrupt is low-level sensitive.
-
enumerator kGPIO_IntHighLevel
Set current pin interrupt is high-level sensitive.
-
enumerator kGPIO_IntRisingEdge
Set current pin interrupt is rising-edge sensitive.
-
enumerator kGPIO_IntFallingEdge
Set current pin interrupt is falling-edge sensitive.
-
enumerator kGPIO_IntRisingOrFallingEdge
Enable the edge select bit to override the ICR register’s configuration.
-
enumerator kGPIO_NoIntmode
-
typedef enum _gpio_pin_direction gpio_pin_direction_t
GPIO direction definition.
-
typedef enum _gpio_interrupt_mode gpio_interrupt_mode_t
GPIO interrupt mode definition.
-
typedef struct _gpio_pin_config gpio_pin_config_t
GPIO Init structure definition.
-
struct _gpio_pin_config
- #include <fsl_gpio.h>
GPIO Init structure definition.
Public Members
-
gpio_pin_direction_t direction
Specifies the pin direction.
-
uint8_t outputLogic
Set a default output logic, which has no use in input
-
gpio_interrupt_mode_t interruptMode
Specifies the pin interrupt mode, a value of gpio_interrupt_mode_t.
-
gpio_pin_direction_t direction
GPT: General Purpose Timer#
-
void GPT_Init(GPT_Type *base, const gpt_config_t *initConfig)
Initialize GPT to reset state and initialize running mode.
- Parameters:
base – GPT peripheral base address.
initConfig – GPT mode setting configuration.
-
void GPT_Deinit(GPT_Type *base)
Disables the module and gates the GPT clock.
- Parameters:
base – GPT peripheral base address.
-
void GPT_GetDefaultConfig(gpt_config_t *config)
Fills in the GPT configuration structure with default settings.
The default values are:
config->clockSource = kGPT_ClockSource_Periph; config->divider = 1U; config->enableRunInStop = true; config->enableRunInWait = true; config->enableRunInDoze = false; config->enableRunInDbg = false; config->enableFreeRun = false; config->enableMode = true;
- Parameters:
config – Pointer to the user configuration structure.
-
static inline void GPT_SoftwareReset(GPT_Type *base)
Software reset of GPT module.
- Parameters:
base – GPT peripheral base address.
-
static inline void GPT_SetClockSource(GPT_Type *base, gpt_clock_source_t gptClkSource)
Set clock source of GPT.
- Parameters:
base – GPT peripheral base address.
gptClkSource – Clock source (see gpt_clock_source_t typedef enumeration).
-
static inline gpt_clock_source_t GPT_GetClockSource(GPT_Type *base)
Get clock source of GPT.
- Parameters:
base – GPT peripheral base address.
- Returns:
clock source (see gpt_clock_source_t typedef enumeration).
-
static inline void GPT_SetClockDivider(GPT_Type *base, uint32_t divider)
Set pre scaler of GPT.
- Parameters:
base – GPT peripheral base address.
divider – Divider of GPT (1-4096).
-
static inline uint32_t GPT_GetClockDivider(GPT_Type *base)
Get clock divider in GPT module.
- Parameters:
base – GPT peripheral base address.
- Returns:
clock divider in GPT module (1-4096).
-
static inline void GPT_SetOscClockDivider(GPT_Type *base, uint32_t divider)
OSC 24M pre-scaler before selected by clock source.
- Parameters:
base – GPT peripheral base address.
divider – OSC Divider(1-16).
-
static inline uint32_t GPT_GetOscClockDivider(GPT_Type *base)
Get OSC 24M clock divider in GPT module.
- Parameters:
base – GPT peripheral base address.
- Returns:
OSC clock divider in GPT module (1-16).
-
static inline void GPT_StartTimer(GPT_Type *base)
Start GPT timer.
- Parameters:
base – GPT peripheral base address.
-
static inline void GPT_StopTimer(GPT_Type *base)
Stop GPT timer.
- Parameters:
base – GPT peripheral base address.
-
static inline uint32_t GPT_GetCurrentTimerCount(GPT_Type *base)
Reads the current GPT counting value.
- Parameters:
base – GPT peripheral base address.
- Returns:
Current GPT counter value.
-
static inline void GPT_SetInputOperationMode(GPT_Type *base, gpt_input_capture_channel_t channel, gpt_input_operation_mode_t mode)
Set GPT operation mode of input capture channel.
- Parameters:
base – GPT peripheral base address.
channel – GPT capture channel (see gpt_input_capture_channel_t typedef enumeration).
mode – GPT input capture operation mode (see gpt_input_operation_mode_t typedef enumeration).
-
static inline gpt_input_operation_mode_t GPT_GetInputOperationMode(GPT_Type *base, gpt_input_capture_channel_t channel)
Get GPT operation mode of input capture channel.
- Parameters:
base – GPT peripheral base address.
channel – GPT capture channel (see gpt_input_capture_channel_t typedef enumeration).
- Returns:
GPT input capture operation mode (see gpt_input_operation_mode_t typedef enumeration).
-
static inline uint32_t GPT_GetInputCaptureValue(GPT_Type *base, gpt_input_capture_channel_t channel)
Get GPT input capture value of certain channel.
- Parameters:
base – GPT peripheral base address.
channel – GPT capture channel (see gpt_input_capture_channel_t typedef enumeration).
- Returns:
GPT input capture value.
-
static inline void GPT_SetOutputOperationMode(GPT_Type *base, gpt_output_compare_channel_t channel, gpt_output_operation_mode_t mode)
Set GPT operation mode of output compare channel.
- Parameters:
base – GPT peripheral base address.
channel – GPT output compare channel (see gpt_output_compare_channel_t typedef enumeration).
mode – GPT output operation mode (see gpt_output_operation_mode_t typedef enumeration).
-
static inline gpt_output_operation_mode_t GPT_GetOutputOperationMode(GPT_Type *base, gpt_output_compare_channel_t channel)
Get GPT operation mode of output compare channel.
- Parameters:
base – GPT peripheral base address.
channel – GPT output compare channel (see gpt_output_compare_channel_t typedef enumeration).
- Returns:
GPT output operation mode (see gpt_output_operation_mode_t typedef enumeration).
-
static inline void GPT_SetOutputCompareValue(GPT_Type *base, gpt_output_compare_channel_t channel, uint32_t value)
Set GPT output compare value of output compare channel.
- Parameters:
base – GPT peripheral base address.
channel – GPT output compare channel (see gpt_output_compare_channel_t typedef enumeration).
value – GPT output compare value.
-
static inline uint32_t GPT_GetOutputCompareValue(GPT_Type *base, gpt_output_compare_channel_t channel)
Get GPT output compare value of output compare channel.
- Parameters:
base – GPT peripheral base address.
channel – GPT output compare channel (see gpt_output_compare_channel_t typedef enumeration).
- Returns:
GPT output compare value.
-
static inline void GPT_ForceOutput(GPT_Type *base, gpt_output_compare_channel_t channel)
Force GPT output action on output compare channel, ignoring comparator.
- Parameters:
base – GPT peripheral base address.
channel – GPT output compare channel (see gpt_output_compare_channel_t typedef enumeration).
-
static inline void GPT_EnableInterrupts(GPT_Type *base, uint32_t mask)
Enables the selected GPT interrupts.
- Parameters:
base – GPT peripheral base address.
mask – The interrupts to enable. This is a logical OR of members of the enumeration gpt_interrupt_enable_t
-
static inline void GPT_DisableInterrupts(GPT_Type *base, uint32_t mask)
Disables the selected GPT interrupts.
- Parameters:
base – GPT peripheral base address
mask – The interrupts to disable. This is a logical OR of members of the enumeration gpt_interrupt_enable_t
-
static inline uint32_t GPT_GetEnabledInterrupts(GPT_Type *base)
Gets the enabled GPT interrupts.
- Parameters:
base – GPT peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration gpt_interrupt_enable_t
-
static inline uint32_t GPT_GetStatusFlags(GPT_Type *base, gpt_status_flag_t flags)
Get GPT status flags.
- Parameters:
base – GPT peripheral base address.
flags – GPT status flag mask (see gpt_status_flag_t for bit definition).
- Returns:
GPT status, each bit represents one status flag.
-
static inline void GPT_ClearStatusFlags(GPT_Type *base, gpt_status_flag_t flags)
Clears the GPT status flags.
- Parameters:
base – GPT peripheral base address.
flags – GPT status flag mask (see gpt_status_flag_t for bit definition).
-
FSL_GPT_DRIVER_VERSION
-
enum _gpt_clock_source
List of clock sources.
Note
Actual number of clock sources is SoC dependent
Values:
-
enumerator kGPT_ClockSource_Off
GPT Clock Source Off.
-
enumerator kGPT_ClockSource_Periph
GPT Clock Source from Peripheral Clock.
-
enumerator kGPT_ClockSource_HighFreq
GPT Clock Source from High Frequency Reference Clock.
-
enumerator kGPT_ClockSource_Ext
GPT Clock Source from external pin.
-
enumerator kGPT_ClockSource_LowFreq
GPT Clock Source from Low Frequency Reference Clock.
-
enumerator kGPT_ClockSource_Osc
GPT Clock Source from Crystal oscillator.
-
enumerator kGPT_ClockSource_Off
-
enum _gpt_input_capture_channel
List of input capture channel number.
Values:
-
enumerator kGPT_InputCapture_Channel1
GPT Input Capture Channel1.
-
enumerator kGPT_InputCapture_Channel2
GPT Input Capture Channel2.
-
enumerator kGPT_InputCapture_Channel1
-
enum _gpt_input_operation_mode
List of input capture operation mode.
Values:
-
enumerator kGPT_InputOperation_Disabled
Don’t capture.
-
enumerator kGPT_InputOperation_RiseEdge
Capture on rising edge of input pin.
-
enumerator kGPT_InputOperation_FallEdge
Capture on falling edge of input pin.
-
enumerator kGPT_InputOperation_BothEdge
Capture on both edges of input pin.
-
enumerator kGPT_InputOperation_Disabled
-
enum _gpt_output_compare_channel
List of output compare channel number.
Values:
-
enumerator kGPT_OutputCompare_Channel1
Output Compare Channel1.
-
enumerator kGPT_OutputCompare_Channel2
Output Compare Channel2.
-
enumerator kGPT_OutputCompare_Channel3
Output Compare Channel3.
-
enumerator kGPT_OutputCompare_Channel1
-
enum _gpt_output_operation_mode
List of output compare operation mode.
Values:
-
enumerator kGPT_OutputOperation_Disconnected
Don’t change output pin.
-
enumerator kGPT_OutputOperation_Toggle
Toggle output pin.
-
enumerator kGPT_OutputOperation_Clear
Set output pin low.
-
enumerator kGPT_OutputOperation_Set
Set output pin high.
-
enumerator kGPT_OutputOperation_Activelow
Generate a active low pulse on output pin.
-
enumerator kGPT_OutputOperation_Disconnected
-
enum _gpt_interrupt_enable
List of GPT interrupts.
Values:
-
enumerator kGPT_OutputCompare1InterruptEnable
Output Compare Channel1 interrupt enable
-
enumerator kGPT_OutputCompare2InterruptEnable
Output Compare Channel2 interrupt enable
-
enumerator kGPT_OutputCompare3InterruptEnable
Output Compare Channel3 interrupt enable
-
enumerator kGPT_InputCapture1InterruptEnable
Input Capture Channel1 interrupt enable
-
enumerator kGPT_InputCapture2InterruptEnable
Input Capture Channel1 interrupt enable
-
enumerator kGPT_RollOverFlagInterruptEnable
Counter rolled over interrupt enable
-
enumerator kGPT_OutputCompare1InterruptEnable
-
enum _gpt_status_flag
Status flag.
Values:
-
enumerator kGPT_OutputCompare1Flag
Output compare channel 1 event.
-
enumerator kGPT_OutputCompare2Flag
Output compare channel 2 event.
-
enumerator kGPT_OutputCompare3Flag
Output compare channel 3 event.
-
enumerator kGPT_InputCapture1Flag
Input Capture channel 1 event.
-
enumerator kGPT_InputCapture2Flag
Input Capture channel 2 event.
-
enumerator kGPT_RollOverFlag
Counter reaches maximum value and rolled over to 0 event.
-
enumerator kGPT_OutputCompare1Flag
-
typedef enum _gpt_clock_source gpt_clock_source_t
List of clock sources.
Note
Actual number of clock sources is SoC dependent
-
typedef enum _gpt_input_capture_channel gpt_input_capture_channel_t
List of input capture channel number.
-
typedef enum _gpt_input_operation_mode gpt_input_operation_mode_t
List of input capture operation mode.
-
typedef enum _gpt_output_compare_channel gpt_output_compare_channel_t
List of output compare channel number.
-
typedef enum _gpt_output_operation_mode gpt_output_operation_mode_t
List of output compare operation mode.
-
typedef enum _gpt_interrupt_enable gpt_interrupt_enable_t
List of GPT interrupts.
-
typedef enum _gpt_status_flag gpt_status_flag_t
Status flag.
-
typedef struct _gpt_init_config gpt_config_t
Structure to configure the running mode.
-
struct _gpt_init_config
- #include <fsl_gpt.h>
Structure to configure the running mode.
Public Members
-
gpt_clock_source_t clockSource
clock source for GPT module.
-
uint32_t divider
clock divider (prescaler+1) from clock source to counter.
-
bool enableFreeRun
true: FreeRun mode, false: Restart mode.
-
bool enableRunInWait
GPT enabled in wait mode.
-
bool enableRunInStop
GPT enabled in stop mode.
-
bool enableRunInDoze
GPT enabled in doze mode.
-
bool enableRunInDbg
GPT enabled in debug mode.
-
bool enableMode
true: counter reset to 0 when enabled; false: counter retain its value when enabled.
-
gpt_clock_source_t clockSource
I2C: Inter-Integrated Circuit Driver#
I2C Driver#
-
void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)
Initializes the I2C peripheral. Call this API to ungate the I2C clock and configure the I2C with master configuration.
Note
This API should be called at the beginning of the application. Otherwise, any operation to the I2C module can cause a hard fault because the clock is not enabled. The configuration structure can be custom filled or it can be set with default values by using the I2C_MasterGetDefaultConfig(). After calling this API, the master is ready to transfer. This is an example.
i2c_master_config_t config = { .enableMaster = true, .baudRate_Bps = 100000 }; I2C_MasterInit(I2C0, &config, 12000000U);
- Parameters:
base – I2C base pointer
masterConfig – A pointer to the master configuration structure
srcClock_Hz – I2C peripheral clock frequency in Hz
-
void I2C_MasterDeinit(I2C_Type *base)
De-initializes the I2C master peripheral. Call this API to gate the I2C clock. The I2C master module can’t work unless the I2C_MasterInit is called.
- Parameters:
base – I2C base pointer
-
void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Sets the I2C master configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in the I2C_MasterInit(). Use the initialized structure unchanged in the I2C_MasterInit() or modify the structure before calling the I2C_MasterInit(). This is an example.
i2c_master_config_t config; I2C_MasterGetDefaultConfig(&config);
- Parameters:
masterConfig – A pointer to the master configuration structure.
-
void I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig)
Initializes the I2C peripheral. Call this API to ungate the I2C clock and initialize the I2C with the slave configuration.
Note
This API should be called at the beginning of the application. Otherwise, any operation to the I2C module can cause a hard fault because the clock is not enabled. The configuration structure can partly be set with default values by I2C_SlaveGetDefaultConfig() or it can be custom filled by the user. This is an example.
i2c_slave_config_t config = { .enableSlave = true, .slaveAddress = 0x1DU, }; I2C_SlaveInit(I2C0, &config);
- Parameters:
base – I2C base pointer
slaveConfig – A pointer to the slave configuration structure
-
void I2C_SlaveDeinit(I2C_Type *base)
De-initializes the I2C slave peripheral. Calling this API gates the I2C clock. The I2C slave module can’t work unless the I2C_SlaveInit is called to enable the clock.
- Parameters:
base – I2C base pointer
-
void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Sets the I2C slave configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in the I2C_SlaveInit(). Modify fields of the structure before calling the I2C_SlaveInit(). This is an example.
i2c_slave_config_t config; I2C_SlaveGetDefaultConfig(&config);
- Parameters:
slaveConfig – A pointer to the slave configuration structure.
-
static inline void I2C_Enable(I2C_Type *base, bool enable)
Enables or disables the I2C peripheral operation.
- Parameters:
base – I2C base pointer
enable – Pass true to enable and false to disable the module.
-
static inline uint32_t I2C_MasterGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.
- Parameters:
base – I2C base pointer
- Returns:
status flag, use status flag to AND _i2c_flags to get the related status.
-
static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.
The following status register flags can be cleared kI2C_ArbitrationLostFlag and kI2C_IntPendingFlag.
- Parameters:
base – I2C base pointer
statusMask – The status flag mask, defined in type i2c_status_flag_t. The parameter can be any combination of the following values:
kI2C_ArbitrationLostFlag
kI2C_IntPendingFlag
-
static inline uint32_t I2C_SlaveGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.
- Parameters:
base – I2C base pointer
- Returns:
status flag, use status flag to AND _i2c_flags to get the related status.
-
static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.
The following status register flags can be cleared kI2C_ArbitrationLostFlag and kI2C_IntPendingFlag
- Parameters:
base – I2C base pointer
statusMask – The status flag mask, defined in type i2c_status_flag_t. The parameter can be any combination of the following values:
kI2C_IntPendingFlagFlag
-
void I2C_EnableInterrupts(I2C_Type *base, uint32_t mask)
Enables I2C interrupt requests.
- Parameters:
base – I2C base pointer
mask – interrupt source The parameter can be combination of the following source if defined:
kI2C_GlobalInterruptEnable
kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable
kI2C_SdaTimeoutInterruptEnable
-
void I2C_DisableInterrupts(I2C_Type *base, uint32_t mask)
Disables I2C interrupt requests.
- Parameters:
base – I2C base pointer
mask – interrupt source The parameter can be combination of the following source if defined:
kI2C_GlobalInterruptEnable
kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable
kI2C_SdaTimeoutInterruptEnable
-
void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C master transfer baud rate.
- Parameters:
base – I2C base pointer
baudRate_Bps – the baud rate value in bps
srcClock_Hz – Source clock
-
status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.
This function is used to initiate a new master mode transfer by sending the START signal. The slave address is sent following the I2C START signal.
- Parameters:
base – I2C peripheral base pointer
address – 7-bit slave device address.
direction – Master transfer directions(transmit/receive).
- Return values:
kStatus_Success – Successfully send the start signal.
kStatus_I2C_Busy – Current bus is busy.
-
status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.
- Return values:
kStatus_Success – Successfully send the stop signal.
kStatus_I2C_Timeout – Send stop signal failed, timeout.
-
status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a REPEATED START on the I2C bus.
- Parameters:
base – I2C peripheral base pointer
address – 7-bit slave device address.
direction – Master transfer directions(transmit/receive).
- Return values:
kStatus_Success – Successfully send the start signal.
kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C master.
-
status_t I2C_MasterWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize, uint32_t flags)
Performs a polling send transaction on the I2C bus.
- Parameters:
base – The I2C peripheral base pointer.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
flags – Transfer control flag to decide whether need to send a stop, use kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not send a stop.
- Return values:
kStatus_Success – Successfully complete the data transmission.
kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.
kStataus_I2C_Nak – Transfer error, receive NAK during transfer.
-
status_t I2C_MasterReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transaction on the I2C bus.
Note
The I2C_MasterReadBlocking function stops the bus before reading the final byte. Without stopping the bus prior for the final read, the bus issues another read, resulting in garbage data being read into the data register.
- Parameters:
base – I2C peripheral base pointer.
rxBuff – The pointer to the data to store the received data.
rxSize – The length in bytes of the data to be received.
flags – Transfer control flag to decide whether need to send a stop, use kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not send a stop.
- Return values:
kStatus_Success – Successfully complete the data transmission.
kStatus_I2C_Timeout – Send stop signal failed, timeout.
-
status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transaction on the I2C bus.
- Parameters:
base – The I2C peripheral base pointer.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
- Return values:
kStatus_Success – Successfully complete the data transmission.
kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.
kStataus_I2C_Nak – Transfer error, receive NAK during transfer.
-
status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transaction on the I2C bus.
- Parameters:
base – I2C peripheral base pointer.
rxBuff – The pointer to the data to store the received data.
rxSize – The length in bytes of the data to be received.
-
status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.
Note
The API does not return until the transfer succeeds or fails due to arbitration lost or receiving a NAK.
- Parameters:
base – I2C peripheral base address.
xfer – Pointer to the transfer structure.
- Return values:
kStatus_Success – Successfully complete the data transmission.
kStatus_I2C_Busy – Previous transmission still not finished.
kStatus_I2C_Timeout – Transfer error, wait signal timeout.
kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.
kStataus_I2C_Nak – Transfer error, receive NAK during transfer.
-
void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_callback_t callback, void *userData)
Initializes the I2C handle which is used in transactional functions.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_master_handle_t structure to store the transfer state.
callback – pointer to user callback function.
userData – user parameter passed to the callback function.
-
status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)
Performs a master interrupt non-blocking transfer on the I2C bus.
Note
Calling the API returns immediately after transfer initiates. The user needs to call I2C_MasterGetTransferCount to poll the transfer status to check whether the transfer is finished. If the return status is not kStatus_I2C_Busy, the transfer is finished.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_master_handle_t structure which stores the transfer state.
xfer – pointer to i2c_master_transfer_t structure.
- Return values:
kStatus_Success – Successfully start the data transmission.
kStatus_I2C_Busy – Previous transmission still not finished.
kStatus_I2C_Timeout – Transfer error, wait signal timeout.
-
status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count)
Gets the master transfer status during a interrupt non-blocking transfer.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_master_handle_t structure which stores the transfer state.
count – Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Aborts an interrupt non-blocking transfer early.
Note
This API can be called at any time when an interrupt non-blocking transfer initiates to abort the transfer early.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_master_handle_t structure which stores the transfer state
- Return values:
kStatus_I2C_Timeout – Timeout during polling flag.
kStatus_Success – Successfully abort the transfer.
-
void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Master interrupt handler.
- Parameters:
base – I2C base pointer.
i2cHandle – pointer to i2c_master_handle_t structure.
-
void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_callback_t callback, void *userData)
Initializes the I2C handle which is used in transactional functions.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_slave_handle_t structure to store the transfer state.
callback – pointer to user callback function.
userData – user parameter passed to the callback function.
-
status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask)
Starts accepting slave transfers.
Call this API after calling the I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start processing transactions driven by an I2C master. The slave monitors the I2C bus and passes events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The callback is always invoked from the interrupt context.
The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kLPI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.
eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.
- Return values:
kStatus_Success – Slave transfers were successfully started.
kStatus_I2C_Busy – Slave transfers have already been started on this handle.
-
void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave transfer.
Note
This API can be called at any time to stop slave for handling the bus events.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_slave_handle_t structure which stores the transfer state.
-
status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_slave_handle_t structure.
count – Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Slave interrupt handler.
- Parameters:
base – I2C base pointer.
i2cHandle – pointer to i2c_slave_handle_t structure which stores the transfer state
-
FSL_I2C_DRIVER_VERSION
I2C driver version.
I2C status return codes.
Values:
-
enumerator kStatus_I2C_Busy
I2C is busy with current transfer.
-
enumerator kStatus_I2C_Idle
Bus is Idle.
-
enumerator kStatus_I2C_Nak
NAK received during transfer.
-
enumerator kStatus_I2C_ArbitrationLost
Arbitration lost during transfer.
-
enumerator kStatus_I2C_Timeout
Timeout polling status flags.
-
enumerator kStatus_I2C_Addr_Nak
NAK received during the address probe.
-
enumerator kStatus_I2C_Busy
-
enum _i2c_flags
I2C peripheral flags.
The following status register flags can be cleared:
kI2C_ArbitrationLostFlag
kI2C_IntPendingFlag
Note
These enumerations are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI2C_ReceiveNakFlag
I2C receive NAK flag.
-
enumerator kI2C_IntPendingFlag
I2C interrupt pending flag.
-
enumerator kI2C_TransferDirectionFlag
I2C transfer direction flag.
-
enumerator kI2C_ArbitrationLostFlag
I2C arbitration lost flag.
-
enumerator kI2C_BusBusyFlag
I2C bus busy flag.
-
enumerator kI2C_AddressMatchFlag
I2C address match flag.
-
enumerator kI2C_TransferCompleteFlag
I2C transfer complete flag.
-
enum _i2c_interrupt_enable
I2C feature interrupt source.
Values:
-
enumerator kI2C_GlobalInterruptEnable
I2C global interrupt.
-
enumerator kI2C_GlobalInterruptEnable
-
enum _i2c_direction
The direction of master and slave transfers.
Values:
-
enumerator kI2C_Write
Master transmits to the slave.
-
enumerator kI2C_Read
Master receives from the slave.
-
enumerator kI2C_Write
-
enum _i2c_master_transfer_flags
I2C transfer control flag.
Values:
-
enumerator kI2C_TransferDefaultFlag
A transfer starts with a start signal, stops with a stop signal.
-
enumerator kI2C_TransferNoStartFlag
A transfer starts without a start signal, only support write only or write+read with no start flag, do not support read only with no start flag.
-
enumerator kI2C_TransferRepeatedStartFlag
A transfer starts with a repeated start signal.
-
enumerator kI2C_TransferNoStopFlag
A transfer ends without a stop signal.
-
enumerator kI2C_TransferDefaultFlag
-
enum _i2c_slave_transfer_event
Set of events sent to the callback for nonblocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
Values:
-
enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.
-
enumerator kI2C_SlaveTransmitEvent
A callback is requested to provide data to transmit (slave-transmitter role).
-
enumerator kI2C_SlaveReceiveEvent
A callback is requested to provide a buffer in which to place received data (slave-receiver role).
-
enumerator kI2C_SlaveTransmitAckEvent
A callback needs to either transmit an ACK or NACK.
-
enumerator kI2C_SlaveCompletionEvent
A stop was detected or finished transfer, completing the transfer.
-
enumerator kI2C_SlaveAllEvents
A bit mask of all available events.
-
enumerator kI2C_SlaveAddressMatchEvent
-
typedef enum _i2c_direction i2c_direction_t
The direction of master and slave transfers.
-
typedef struct _i2c_master_config i2c_master_config_t
I2C master user configuration.
-
typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.
-
typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle, status_t status, void *userData)
I2C master transfer callback typedef.
-
typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer structure.
-
typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for nonblocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
-
typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.
-
typedef struct _i2c_slave_config i2c_slave_config_t
I2C slave user configuration.
-
typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.
-
typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, i2c_slave_transfer_t *xfer, void *userData)
I2C slave transfer callback typedef.
-
I2C_RETRY_TIMES
Retry times for waiting flag.
-
struct _i2c_master_config
- #include <fsl_i2c.h>
I2C master user configuration.
Public Members
-
bool enableMaster
Enables the I2C peripheral at initialization time.
-
uint32_t baudRate_Bps
Baud rate configuration of I2C peripheral.
-
bool enableMaster
-
struct _i2c_master_transfer
- #include <fsl_i2c.h>
I2C master transfer structure.
Public Members
-
uint32_t flags
A transfer flag which controls the transfer.
-
uint8_t slaveAddress
7-bit slave address.
-
i2c_direction_t direction
A transfer direction, read or write.
-
uint32_t subaddress
A sub address. Transferred MSB first.
-
uint8_t subaddressSize
A size of the command buffer.
-
uint8_t *volatile data
A transfer buffer.
-
volatile size_t dataSize
A transfer size.
-
uint32_t flags
-
struct _i2c_master_handle
- #include <fsl_i2c.h>
I2C master handle structure.
Public Members
-
i2c_master_transfer_t transfer
I2C master transfer copy.
-
size_t transferSize
Total bytes to be transferred.
-
uint8_t state
A transfer state maintained during transfer.
-
i2c_master_transfer_callback_t completionCallback
A callback function called when the transfer is finished.
-
void *userData
A callback parameter passed to the callback function.
-
i2c_master_transfer_t transfer
-
struct _i2c_slave_config
- #include <fsl_i2c.h>
I2C slave user configuration.
Public Members
-
bool enableSlave
Enables the I2C peripheral at initialization time.
-
uint16_t slaveAddress
A slave address configuration.
-
bool enableSlave
-
struct _i2c_slave_transfer
- #include <fsl_i2c.h>
I2C slave transfer structure.
Public Members
-
i2c_slave_transfer_event_t event
A reason that the callback is invoked.
-
uint8_t *volatile data
A transfer buffer.
-
volatile size_t dataSize
A transfer size.
-
status_t completionStatus
Success or error code describing how the transfer completed. Only applies for kI2C_SlaveCompletionEvent.
-
size_t transferredCount
A number of bytes actually transferred since the start or since the last repeated start.
-
i2c_slave_transfer_event_t event
-
struct _i2c_slave_handle
- #include <fsl_i2c.h>
I2C slave handle structure.
Public Members
-
volatile uint8_t state
A transfer state maintained during transfer.
-
i2c_slave_transfer_t transfer
I2C slave transfer copy.
-
uint32_t eventMask
A mask of enabled events.
-
i2c_slave_transfer_callback_t callback
A callback function called at the transfer event.
-
void *userData
A callback parameter passed to the callback.
-
volatile uint8_t state
Iomuxc_driver#
-
static inline void IOMUXC_SetPinMux(uintptr_t muxRegister, uint32_t muxMode, uintptr_t inputRegister, uint32_t inputDaisy, uintptr_t configRegister, uint32_t inputOnfield)
Sets the IOMUXC pin mux mode.
This is an example to set the I2C4_SDA as the pwm1_OUT:
IOMUXC_SetPinMux(IOMUXC_I2C4_SDA_PWM1_OUT, 0);
Note
The first five parameters can be filled with the pin function ID macros.
- Parameters:
muxRegister – The pin mux register_
muxMode – The pin mux mode_
inputRegister – The select input register_
inputDaisy – The input daisy_
configRegister – The config register_
inputOnfield – The pad->module input inversion_
-
static inline void IOMUXC_SetPinConfig(uintptr_t muxRegister, uint32_t muxMode, uintptr_t inputRegister, uint32_t inputDaisy, uintptr_t configRegister, uint32_t configValue)
Sets the IOMUXC pin configuration.
This is an example to set pin configuration for IOMUXC_I2C4_SDA_PWM1_OUT:
IOMUXC_SetPinConfig(IOMUXC_I2C4_SDA_PWM1_OUT, IOMUXC_SW_PAD_CTL_PAD_ODE_MASK | IOMUXC0_SW_PAD_CTL_PAD_DSE(2U))
Note
The previous five parameters can be filled with the pin function ID macros.
- Parameters:
muxRegister – The pin mux register_
muxMode – The pin mux mode_
inputRegister – The select input register_
inputDaisy – The input daisy_
configRegister – The config register_
configValue – The pin config value_
-
FSL_IOMUXC_DRIVER_VERSION
IOMUXC driver version 2.0.4.
-
IOMUXC_BOOT_MODE0_SRC_BOOT_MODE0
-
IOMUXC_BOOT_MODE1_SRC_BOOT_MODE1
-
IOMUXC_BOOT_MODE2_SRC_BOOT_MODE2
-
IOMUXC_BOOT_MODE3_SRC_BOOT_MODE3
-
IOMUXC_JTAG_MOD_JTAG_MODE
-
IOMUXC_JTAG_TDI_JTAG_TDI
-
IOMUXC_JTAG_TMS_JTAG_TMS
-
IOMUXC_JTAG_TCK_JTAG_TCK
-
IOMUXC_JTAG_TDO_JTAG_TDO
-
IOMUXC_RTC_XTALI_SNVS_RTC
-
IOMUXC_PMIC_STBY_REQ_CCM_PMIC_STBY_REQ
-
IOMUXC_PMIC_ON_REQ_SNVS_PMIC_ON_REQ
-
IOMUXC_ONOFF_SNVS_ONOFF
-
IOMUXC_POR_B_SNVS_POR_B
-
IOMUXC_GPIO1_IO00_GPIO1_IO00
-
IOMUXC_GPIO1_IO00_CCM_ENET_PHY_REF_CLK_ROOT
-
IOMUXC_GPIO1_IO00_ISP_FL_TRIG_0
-
IOMUXC_GPIO1_IO00_ANAMIX_REF_CLK_32K
-
IOMUXC_GPIO1_IO00_CCM_EXT_CLK1
-
IOMUXC_GPIO1_IO01_GPIO1_IO01
-
IOMUXC_GPIO1_IO01_PWM1_OUT
-
IOMUXC_GPIO1_IO01_ISP_SHUTTER_TRIG_0
-
IOMUXC_GPIO1_IO01_ANAMIX_REF_CLK_24M
-
IOMUXC_GPIO1_IO01_CCM_EXT_CLK2
-
IOMUXC_GPIO1_IO02_GPIO1_IO02
-
IOMUXC_GPIO1_IO02_WDOG1_WDOG_B
-
IOMUXC_GPIO1_IO02_ISP_FLASH_TRIG_0
-
IOMUXC_GPIO1_IO02_WDOG1_WDOG_ANY
-
IOMUXC_GPIO1_IO02_SJC_DE_B
-
IOMUXC_GPIO1_IO03_GPIO1_IO03
-
IOMUXC_GPIO1_IO03_USDHC1_VSELECT
-
IOMUXC_GPIO1_IO03_ISP_PRELIGHT_TRIG_0
-
IOMUXC_GPIO1_IO03_SDMA1_EXT_EVENT0
-
IOMUXC_GPIO1_IO04_GPIO1_IO04
-
IOMUXC_GPIO1_IO04_USDHC2_VSELECT
-
IOMUXC_GPIO1_IO04_ISP_SHUTTER_OPEN_0
-
IOMUXC_GPIO1_IO04_SDMA1_EXT_EVENT1
-
IOMUXC_GPIO1_IO05_GPIO1_IO05
-
IOMUXC_GPIO1_IO05_M7_NMI
-
IOMUXC_GPIO1_IO05_ISP_FL_TRIG_1
-
IOMUXC_GPIO1_IO05_CCM_PMIC_READY
-
IOMUXC_GPIO1_IO06_GPIO1_IO06
-
IOMUXC_GPIO1_IO06_ENET_QOS_MDC
-
IOMUXC_GPIO1_IO06_ISP_SHUTTER_TRIG_1
-
IOMUXC_GPIO1_IO06_USDHC1_CD_B
-
IOMUXC_GPIO1_IO06_CCM_EXT_CLK3
-
IOMUXC_GPIO1_IO07_GPIO1_IO07
-
IOMUXC_GPIO1_IO07_ENET_QOS_MDIO
-
IOMUXC_GPIO1_IO07_ISP_FLASH_TRIG_1
-
IOMUXC_GPIO1_IO07_USDHC1_WP
-
IOMUXC_GPIO1_IO07_CCM_EXT_CLK4
-
IOMUXC_GPIO1_IO08_GPIO1_IO08
-
IOMUXC_GPIO1_IO08_ENET_QOS_1588_EVENT0_IN
-
IOMUXC_GPIO1_IO08_PWM1_OUT
-
IOMUXC_GPIO1_IO08_ISP_PRELIGHT_TRIG_1
-
IOMUXC_GPIO1_IO08_ENET_QOS_1588_EVENT0_AUX_IN
-
IOMUXC_GPIO1_IO08_USDHC2_RESET_B
-
IOMUXC_GPIO1_IO09_GPIO1_IO09
-
IOMUXC_GPIO1_IO09_ENET_QOS_1588_EVENT0_OUT
-
IOMUXC_GPIO1_IO09_PWM2_OUT
-
IOMUXC_GPIO1_IO09_ISP_SHUTTER_OPEN_1
-
IOMUXC_GPIO1_IO09_USDHC3_RESET_B
-
IOMUXC_GPIO1_IO09_SDMA2_EXT_EVENT0
-
IOMUXC_GPIO1_IO10_GPIO1_IO10
-
IOMUXC_GPIO1_IO10_USB1_ID
-
IOMUXC_GPIO1_IO10_PWM3_OUT
-
IOMUXC_GPIO1_IO11_GPIO1_IO11
-
IOMUXC_GPIO1_IO11_USB2_ID
-
IOMUXC_GPIO1_IO11_PWM2_OUT
-
IOMUXC_GPIO1_IO11_USDHC3_VSELECT
-
IOMUXC_GPIO1_IO11_CCM_PMIC_READY
-
IOMUXC_GPIO1_IO12_GPIO1_IO12
-
IOMUXC_GPIO1_IO12_USB1_PWR
-
IOMUXC_GPIO1_IO12_SDMA2_EXT_EVENT1
-
IOMUXC_GPIO1_IO13_GPIO1_IO13
-
IOMUXC_GPIO1_IO13_USB1_OC
-
IOMUXC_GPIO1_IO13_PWM2_OUT
-
IOMUXC_GPIO1_IO14_GPIO1_IO14
-
IOMUXC_GPIO1_IO14_USB2_PWR
-
IOMUXC_GPIO1_IO14_USDHC3_CD_B
-
IOMUXC_GPIO1_IO14_PWM3_OUT
-
IOMUXC_GPIO1_IO14_CCM_CLKO1
-
IOMUXC_GPIO1_IO15_GPIO1_IO15
-
IOMUXC_GPIO1_IO15_USB2_OC
-
IOMUXC_GPIO1_IO15_USDHC3_WP
-
IOMUXC_GPIO1_IO15_PWM4_OUT
-
IOMUXC_GPIO1_IO15_CCM_CLKO2
-
IOMUXC_ENET_MDC_ENET_QOS_MDC
-
IOMUXC_ENET_MDC_AUDIOMIX_SAI6_TX_DATA0
-
IOMUXC_ENET_MDC_GPIO1_IO16
-
IOMUXC_ENET_MDC_USDHC3_STROBE
-
IOMUXC_ENET_MDIO_ENET_QOS_MDIO
-
IOMUXC_ENET_MDIO_AUDIOMIX_SAI6_TX_SYNC
-
IOMUXC_ENET_MDIO_AUDIOMIX_PDM_BIT_STREAM3
-
IOMUXC_ENET_MDIO_GPIO1_IO17
-
IOMUXC_ENET_MDIO_USDHC3_DATA5
-
IOMUXC_ENET_TD3_ENET_QOS_RGMII_TD3
-
IOMUXC_ENET_TD3_AUDIOMIX_SAI6_TX_BCLK
-
IOMUXC_ENET_TD3_AUDIOMIX_PDM_BIT_STREAM2
-
IOMUXC_ENET_TD3_GPIO1_IO18
-
IOMUXC_ENET_TD3_USDHC3_DATA6
-
IOMUXC_ENET_TD2_ENET_QOS_RGMII_TD2
-
IOMUXC_ENET_TD2_CCM_ENET_QOS_CLOCK_GENERATE_REF_CLK
-
IOMUXC_ENET_TD2_AUDIOMIX_SAI6_RX_DATA0
-
IOMUXC_ENET_TD2_AUDIOMIX_PDM_BIT_STREAM1
-
IOMUXC_ENET_TD2_GPIO1_IO19
-
IOMUXC_ENET_TD2_USDHC3_DATA7
-
IOMUXC_ENET_TD1_ENET_QOS_RGMII_TD1
-
IOMUXC_ENET_TD1_AUDIOMIX_SAI6_RX_SYNC
-
IOMUXC_ENET_TD1_AUDIOMIX_PDM_BIT_STREAM0
-
IOMUXC_ENET_TD1_GPIO1_IO20
-
IOMUXC_ENET_TD1_USDHC3_CD_B
-
IOMUXC_ENET_TD0_ENET_QOS_RGMII_TD0
-
IOMUXC_ENET_TD0_AUDIOMIX_SAI6_RX_BCLK
-
IOMUXC_ENET_TD0_AUDIOMIX_PDM_CLK
-
IOMUXC_ENET_TD0_GPIO1_IO21
-
IOMUXC_ENET_TD0_USDHC3_WP
-
IOMUXC_ENET_TX_CTL_ENET_QOS_RGMII_TX_CTL
-
IOMUXC_ENET_TX_CTL_AUDIOMIX_SAI6_MCLK
-
IOMUXC_ENET_TX_CTL_AUDIOMIX_SPDIF1_OUT
-
IOMUXC_ENET_TX_CTL_GPIO1_IO22
-
IOMUXC_ENET_TX_CTL_USDHC3_DATA0
-
IOMUXC_ENET_TXC_CCM_ENET_QOS_CLOCK_GENERATE_TX_CLK
-
IOMUXC_ENET_TXC_ENET_QOS_TX_ER
-
IOMUXC_ENET_TXC_AUDIOMIX_SAI7_TX_DATA0
-
IOMUXC_ENET_TXC_GPIO1_IO23
-
IOMUXC_ENET_TXC_USDHC3_DATA1
-
IOMUXC_ENET_RX_CTL_ENET_QOS_RGMII_RX_CTL
-
IOMUXC_ENET_RX_CTL_AUDIOMIX_SAI7_TX_SYNC
-
IOMUXC_ENET_RX_CTL_AUDIOMIX_PDM_BIT_STREAM3
-
IOMUXC_ENET_RX_CTL_GPIO1_IO24
-
IOMUXC_ENET_RX_CTL_USDHC3_DATA2
-
IOMUXC_ENET_RXC_CCM_ENET_QOS_CLOCK_GENERATE_RX_CLK
-
IOMUXC_ENET_RXC_ENET_QOS_RX_ER
-
IOMUXC_ENET_RXC_AUDIOMIX_SAI7_TX_BCLK
-
IOMUXC_ENET_RXC_AUDIOMIX_PDM_BIT_STREAM2
-
IOMUXC_ENET_RXC_GPIO1_IO25
-
IOMUXC_ENET_RXC_USDHC3_DATA3
-
IOMUXC_ENET_RD0_ENET_QOS_RGMII_RD0
-
IOMUXC_ENET_RD0_AUDIOMIX_SAI7_RX_DATA0
-
IOMUXC_ENET_RD0_AUDIOMIX_PDM_BIT_STREAM1
-
IOMUXC_ENET_RD0_GPIO1_IO26
-
IOMUXC_ENET_RD0_USDHC3_DATA4
-
IOMUXC_ENET_RD1_ENET_QOS_RGMII_RD1
-
IOMUXC_ENET_RD1_AUDIOMIX_SAI7_RX_SYNC
-
IOMUXC_ENET_RD1_AUDIOMIX_PDM_BIT_STREAM0
-
IOMUXC_ENET_RD1_GPIO1_IO27
-
IOMUXC_ENET_RD1_USDHC3_RESET_B
-
IOMUXC_ENET_RD2_ENET_QOS_RGMII_RD2
-
IOMUXC_ENET_RD2_AUDIOMIX_SAI7_RX_BCLK
-
IOMUXC_ENET_RD2_AUDIOMIX_PDM_CLK
-
IOMUXC_ENET_RD2_GPIO1_IO28
-
IOMUXC_ENET_RD2_USDHC3_CLK
-
IOMUXC_ENET_RD3_ENET_QOS_RGMII_RD3
-
IOMUXC_ENET_RD3_AUDIOMIX_SAI7_MCLK
-
IOMUXC_ENET_RD3_AUDIOMIX_SPDIF1_IN
-
IOMUXC_ENET_RD3_GPIO1_IO29
-
IOMUXC_ENET_RD3_USDHC3_CMD
-
IOMUXC_SD1_CLK_USDHC1_CLK
-
IOMUXC_SD1_CLK_ENET1_MDC
-
IOMUXC_SD1_CLK_I2C5_SCL
-
IOMUXC_SD1_CLK_UART1_TX
-
IOMUXC_SD1_CLK_UART1_RX
-
IOMUXC_SD1_CLK_GPIO2_IO00
-
IOMUXC_SD1_CMD_USDHC1_CMD
-
IOMUXC_SD1_CMD_ENET1_MDIO
-
IOMUXC_SD1_CMD_I2C5_SDA
-
IOMUXC_SD1_CMD_UART1_RX
-
IOMUXC_SD1_CMD_UART1_TX
-
IOMUXC_SD1_CMD_GPIO2_IO01
-
IOMUXC_SD1_DATA0_USDHC1_DATA0
-
IOMUXC_SD1_DATA0_ENET1_RGMII_TD1
-
IOMUXC_SD1_DATA0_I2C6_SCL
-
IOMUXC_SD1_DATA0_UART1_RTS_B
-
IOMUXC_SD1_DATA0_UART1_CTS_B
-
IOMUXC_SD1_DATA0_GPIO2_IO02
-
IOMUXC_SD1_DATA1_USDHC1_DATA1
-
IOMUXC_SD1_DATA1_ENET1_RGMII_TD0
-
IOMUXC_SD1_DATA1_I2C6_SDA
-
IOMUXC_SD1_DATA1_UART1_CTS_B
-
IOMUXC_SD1_DATA1_UART1_RTS_B
-
IOMUXC_SD1_DATA1_GPIO2_IO03
-
IOMUXC_SD1_DATA2_USDHC1_DATA2
-
IOMUXC_SD1_DATA2_ENET1_RGMII_RD0
-
IOMUXC_SD1_DATA2_I2C4_SCL
-
IOMUXC_SD1_DATA2_UART2_TX
-
IOMUXC_SD1_DATA2_UART2_RX
-
IOMUXC_SD1_DATA2_GPIO2_IO04
-
IOMUXC_SD1_DATA3_USDHC1_DATA3
-
IOMUXC_SD1_DATA3_ENET1_RGMII_RD1
-
IOMUXC_SD1_DATA3_I2C4_SDA
-
IOMUXC_SD1_DATA3_UART2_RX
-
IOMUXC_SD1_DATA3_UART2_TX
-
IOMUXC_SD1_DATA3_GPIO2_IO05
-
IOMUXC_SD1_DATA4_USDHC1_DATA4
-
IOMUXC_SD1_DATA4_ENET1_RGMII_TX_CTL
-
IOMUXC_SD1_DATA4_I2C1_SCL
-
IOMUXC_SD1_DATA4_UART2_RTS_B
-
IOMUXC_SD1_DATA4_UART2_CTS_B
-
IOMUXC_SD1_DATA4_GPIO2_IO06
-
IOMUXC_SD1_DATA5_USDHC1_DATA5
-
IOMUXC_SD1_DATA5_ENET1_TX_ER
-
IOMUXC_SD1_DATA5_I2C1_SDA
-
IOMUXC_SD1_DATA5_UART2_CTS_B
-
IOMUXC_SD1_DATA5_UART2_RTS_B
-
IOMUXC_SD1_DATA5_GPIO2_IO07
-
IOMUXC_SD1_DATA6_USDHC1_DATA6
-
IOMUXC_SD1_DATA6_ENET1_RGMII_RX_CTL
-
IOMUXC_SD1_DATA6_I2C2_SCL
-
IOMUXC_SD1_DATA6_UART3_TX
-
IOMUXC_SD1_DATA6_UART3_RX
-
IOMUXC_SD1_DATA6_GPIO2_IO08
-
IOMUXC_SD1_DATA7_USDHC1_DATA7
-
IOMUXC_SD1_DATA7_ENET1_RX_ER
-
IOMUXC_SD1_DATA7_I2C2_SDA
-
IOMUXC_SD1_DATA7_UART3_RX
-
IOMUXC_SD1_DATA7_UART3_TX
-
IOMUXC_SD1_DATA7_GPIO2_IO09
-
IOMUXC_SD1_RESET_B_USDHC1_RESET_B
-
IOMUXC_SD1_RESET_B_ENET1_TX_CLK
-
IOMUXC_SD1_RESET_B_I2C3_SCL
-
IOMUXC_SD1_RESET_B_UART3_RTS_B
-
IOMUXC_SD1_RESET_B_UART3_CTS_B
-
IOMUXC_SD1_RESET_B_GPIO2_IO10
-
IOMUXC_SD1_STROBE_USDHC1_STROBE
-
IOMUXC_SD1_STROBE_I2C3_SDA
-
IOMUXC_SD1_STROBE_UART3_CTS_B
-
IOMUXC_SD1_STROBE_UART3_RTS_B
-
IOMUXC_SD1_STROBE_GPIO2_IO11
-
IOMUXC_SD2_CD_B_USDHC2_CD_B
-
IOMUXC_SD2_CD_B_GPIO2_IO12
-
IOMUXC_SD2_CLK_USDHC2_CLK
-
IOMUXC_SD2_CLK_ECSPI2_SCLK
-
IOMUXC_SD2_CLK_UART4_RX
-
IOMUXC_SD2_CLK_UART4_TX
-
IOMUXC_SD2_CLK_GPIO2_IO13
-
IOMUXC_SD2_CMD_USDHC2_CMD
-
IOMUXC_SD2_CMD_ECSPI2_MOSI
-
IOMUXC_SD2_CMD_UART4_TX
-
IOMUXC_SD2_CMD_UART4_RX
-
IOMUXC_SD2_CMD_AUDIOMIX_PDM_CLK
-
IOMUXC_SD2_CMD_GPIO2_IO14
-
IOMUXC_SD2_DATA0_USDHC2_DATA0
-
IOMUXC_SD2_DATA0_I2C4_SDA
-
IOMUXC_SD2_DATA0_UART2_RX
-
IOMUXC_SD2_DATA0_UART2_TX
-
IOMUXC_SD2_DATA0_AUDIOMIX_PDM_BIT_STREAM0
-
IOMUXC_SD2_DATA0_GPIO2_IO15
-
IOMUXC_SD2_DATA1_USDHC2_DATA1
-
IOMUXC_SD2_DATA1_I2C4_SCL
-
IOMUXC_SD2_DATA1_UART2_TX
-
IOMUXC_SD2_DATA1_UART2_RX
-
IOMUXC_SD2_DATA1_AUDIOMIX_PDM_BIT_STREAM1
-
IOMUXC_SD2_DATA1_GPIO2_IO16
-
IOMUXC_SD2_DATA2_USDHC2_DATA2
-
IOMUXC_SD2_DATA2_ECSPI2_SS0
-
IOMUXC_SD2_DATA2_AUDIOMIX_SPDIF1_OUT
-
IOMUXC_SD2_DATA2_AUDIOMIX_PDM_BIT_STREAM2
-
IOMUXC_SD2_DATA2_GPIO2_IO17
-
IOMUXC_SD2_DATA3_USDHC2_DATA3
-
IOMUXC_SD2_DATA3_ECSPI2_MISO
-
IOMUXC_SD2_DATA3_AUDIOMIX_SPDIF1_IN
-
IOMUXC_SD2_DATA3_AUDIOMIX_PDM_BIT_STREAM3
-
IOMUXC_SD2_DATA3_GPIO2_IO18
-
IOMUXC_SD2_RESET_B_USDHC2_RESET_B
-
IOMUXC_SD2_RESET_B_GPIO2_IO19
-
IOMUXC_SD2_WP_USDHC2_WP
-
IOMUXC_SD2_WP_GPIO2_IO20
-
IOMUXC_SD2_WP_CORESIGHT_EVENTI
-
IOMUXC_NAND_ALE_NAND_ALE
-
IOMUXC_NAND_ALE_FLEXSPI_A_SCLK
-
IOMUXC_NAND_ALE_AUDIOMIX_SAI3_TX_BCLK
-
IOMUXC_NAND_ALE_ISP_FL_TRIG_0
-
IOMUXC_NAND_ALE_UART3_RX
-
IOMUXC_NAND_ALE_UART3_TX
-
IOMUXC_NAND_ALE_GPIO3_IO00
-
IOMUXC_NAND_ALE_CORESIGHT_TRACE_CLK
-
IOMUXC_NAND_CE0_B_NAND_CE0_B
-
IOMUXC_NAND_CE0_B_FLEXSPI_A_SS0_B
-
IOMUXC_NAND_CE0_B_AUDIOMIX_SAI3_TX_DATA0
-
IOMUXC_NAND_CE0_B_ISP_SHUTTER_TRIG_0
-
IOMUXC_NAND_CE0_B_UART3_TX
-
IOMUXC_NAND_CE0_B_UART3_RX
-
IOMUXC_NAND_CE0_B_GPIO3_IO01
-
IOMUXC_NAND_CE0_B_CORESIGHT_TRACE_CTL
-
IOMUXC_NAND_CE1_B_NAND_CE1_B
-
IOMUXC_NAND_CE1_B_FLEXSPI_A_SS1_B
-
IOMUXC_NAND_CE1_B_USDHC3_STROBE
-
IOMUXC_NAND_CE1_B_I2C4_SCL
-
IOMUXC_NAND_CE1_B_GPIO3_IO02
-
IOMUXC_NAND_CE1_B_CORESIGHT_TRACE00
-
IOMUXC_NAND_CE2_B_NAND_CE2_B
-
IOMUXC_NAND_CE2_B_FLEXSPI_B_SS0_B
-
IOMUXC_NAND_CE2_B_USDHC3_DATA5
-
IOMUXC_NAND_CE2_B_I2C4_SDA
-
IOMUXC_NAND_CE2_B_GPIO3_IO03
-
IOMUXC_NAND_CE2_B_CORESIGHT_TRACE01
-
IOMUXC_NAND_CE3_B_NAND_CE3_B
-
IOMUXC_NAND_CE3_B_FLEXSPI_B_SS1_B
-
IOMUXC_NAND_CE3_B_USDHC3_DATA6
-
IOMUXC_NAND_CE3_B_I2C3_SDA
-
IOMUXC_NAND_CE3_B_GPIO3_IO04
-
IOMUXC_NAND_CE3_B_CORESIGHT_TRACE02
-
IOMUXC_NAND_CLE_NAND_CLE
-
IOMUXC_NAND_CLE_FLEXSPI_B_SCLK
-
IOMUXC_NAND_CLE_USDHC3_DATA7
-
IOMUXC_NAND_CLE_UART4_RX
-
IOMUXC_NAND_CLE_UART4_TX
-
IOMUXC_NAND_CLE_GPIO3_IO05
-
IOMUXC_NAND_CLE_CORESIGHT_TRACE03
-
IOMUXC_NAND_DATA00_NAND_DATA00
-
IOMUXC_NAND_DATA00_FLEXSPI_A_DATA0
-
IOMUXC_NAND_DATA00_AUDIOMIX_SAI3_RX_DATA0
-
IOMUXC_NAND_DATA00_ISP_FLASH_TRIG_0
-
IOMUXC_NAND_DATA00_UART4_RX
-
IOMUXC_NAND_DATA00_UART4_TX
-
IOMUXC_NAND_DATA00_GPIO3_IO06
-
IOMUXC_NAND_DATA00_CORESIGHT_TRACE04
-
IOMUXC_NAND_DATA01_NAND_DATA01
-
IOMUXC_NAND_DATA01_FLEXSPI_A_DATA1
-
IOMUXC_NAND_DATA01_AUDIOMIX_SAI3_TX_SYNC
-
IOMUXC_NAND_DATA01_ISP_PRELIGHT_TRIG_0
-
IOMUXC_NAND_DATA01_UART4_TX
-
IOMUXC_NAND_DATA01_UART4_RX
-
IOMUXC_NAND_DATA01_GPIO3_IO07
-
IOMUXC_NAND_DATA01_CORESIGHT_TRACE05
-
IOMUXC_NAND_DATA02_NAND_DATA02
-
IOMUXC_NAND_DATA02_FLEXSPI_A_DATA2
-
IOMUXC_NAND_DATA02_USDHC3_CD_B
-
IOMUXC_NAND_DATA02_UART4_CTS_B
-
IOMUXC_NAND_DATA02_UART4_RTS_B
-
IOMUXC_NAND_DATA02_I2C4_SDA
-
IOMUXC_NAND_DATA02_GPIO3_IO08
-
IOMUXC_NAND_DATA02_CORESIGHT_TRACE06
-
IOMUXC_NAND_DATA03_NAND_DATA03
-
IOMUXC_NAND_DATA03_FLEXSPI_A_DATA3
-
IOMUXC_NAND_DATA03_USDHC3_WP
-
IOMUXC_NAND_DATA03_UART4_RTS_B
-
IOMUXC_NAND_DATA03_UART4_CTS_B
-
IOMUXC_NAND_DATA03_ISP_FL_TRIG_1
-
IOMUXC_NAND_DATA03_GPIO3_IO09
-
IOMUXC_NAND_DATA03_CORESIGHT_TRACE07
-
IOMUXC_NAND_DATA04_NAND_DATA04
-
IOMUXC_NAND_DATA04_FLEXSPI_B_DATA0
-
IOMUXC_NAND_DATA04_USDHC3_DATA0
-
IOMUXC_NAND_DATA04_FLEXSPI_A_DATA4
-
IOMUXC_NAND_DATA04_ISP_SHUTTER_TRIG_1
-
IOMUXC_NAND_DATA04_GPIO3_IO10
-
IOMUXC_NAND_DATA04_CORESIGHT_TRACE08
-
IOMUXC_NAND_DATA05_NAND_DATA05
-
IOMUXC_NAND_DATA05_FLEXSPI_B_DATA1
-
IOMUXC_NAND_DATA05_USDHC3_DATA1
-
IOMUXC_NAND_DATA05_FLEXSPI_A_DATA5
-
IOMUXC_NAND_DATA05_ISP_FLASH_TRIG_1
-
IOMUXC_NAND_DATA05_GPIO3_IO11
-
IOMUXC_NAND_DATA05_CORESIGHT_TRACE09
-
IOMUXC_NAND_DATA06_NAND_DATA06
-
IOMUXC_NAND_DATA06_FLEXSPI_B_DATA2
-
IOMUXC_NAND_DATA06_USDHC3_DATA2
-
IOMUXC_NAND_DATA06_FLEXSPI_A_DATA6
-
IOMUXC_NAND_DATA06_ISP_PRELIGHT_TRIG_1
-
IOMUXC_NAND_DATA06_GPIO3_IO12
-
IOMUXC_NAND_DATA06_CORESIGHT_TRACE10
-
IOMUXC_NAND_DATA07_NAND_DATA07
-
IOMUXC_NAND_DATA07_FLEXSPI_B_DATA3
-
IOMUXC_NAND_DATA07_USDHC3_DATA3
-
IOMUXC_NAND_DATA07_FLEXSPI_A_DATA7
-
IOMUXC_NAND_DATA07_ISP_SHUTTER_OPEN_1
-
IOMUXC_NAND_DATA07_GPIO3_IO13
-
IOMUXC_NAND_DATA07_CORESIGHT_TRACE11
-
IOMUXC_NAND_DQS_NAND_DQS
-
IOMUXC_NAND_DQS_FLEXSPI_A_DQS
-
IOMUXC_NAND_DQS_AUDIOMIX_SAI3_MCLK
-
IOMUXC_NAND_DQS_ISP_SHUTTER_OPEN_0
-
IOMUXC_NAND_DQS_I2C3_SCL
-
IOMUXC_NAND_DQS_GPIO3_IO14
-
IOMUXC_NAND_DQS_CORESIGHT_TRACE12
-
IOMUXC_NAND_RE_B_NAND_RE_B
-
IOMUXC_NAND_RE_B_FLEXSPI_B_DQS
-
IOMUXC_NAND_RE_B_USDHC3_DATA4
-
IOMUXC_NAND_RE_B_UART4_TX
-
IOMUXC_NAND_RE_B_UART4_RX
-
IOMUXC_NAND_RE_B_GPIO3_IO15
-
IOMUXC_NAND_RE_B_CORESIGHT_TRACE13
-
IOMUXC_NAND_READY_B_NAND_READY_B
-
IOMUXC_NAND_READY_B_USDHC3_RESET_B
-
IOMUXC_NAND_READY_B_I2C3_SCL
-
IOMUXC_NAND_READY_B_GPIO3_IO16
-
IOMUXC_NAND_READY_B_CORESIGHT_TRACE14
-
IOMUXC_NAND_WE_B_NAND_WE_B
-
IOMUXC_NAND_WE_B_USDHC3_CLK
-
IOMUXC_NAND_WE_B_I2C3_SDA
-
IOMUXC_NAND_WE_B_GPIO3_IO17
-
IOMUXC_NAND_WE_B_CORESIGHT_TRACE15
-
IOMUXC_NAND_WP_B_NAND_WP_B
-
IOMUXC_NAND_WP_B_USDHC3_CMD
-
IOMUXC_NAND_WP_B_I2C4_SCL
-
IOMUXC_NAND_WP_B_GPIO3_IO18
-
IOMUXC_NAND_WP_B_CORESIGHT_EVENTO
-
IOMUXC_SAI5_RXFS_AUDIOMIX_SAI5_RX_SYNC
-
IOMUXC_SAI5_RXFS_AUDIOMIX_SAI1_TX_DATA0
-
IOMUXC_SAI5_RXFS_PWM4_OUT
-
IOMUXC_SAI5_RXFS_I2C6_SCL
-
IOMUXC_SAI5_RXFS_GPIO3_IO19
-
IOMUXC_SAI5_RXC_AUDIOMIX_SAI5_RX_BCLK
-
IOMUXC_SAI5_RXC_AUDIOMIX_SAI1_TX_DATA1
-
IOMUXC_SAI5_RXC_PWM3_OUT
-
IOMUXC_SAI5_RXC_I2C6_SDA
-
IOMUXC_SAI5_RXC_AUDIOMIX_PDM_CLK
-
IOMUXC_SAI5_RXC_GPIO3_IO20
-
IOMUXC_SAI5_RXD0_AUDIOMIX_SAI5_RX_DATA0
-
IOMUXC_SAI5_RXD0_AUDIOMIX_SAI1_TX_DATA2
-
IOMUXC_SAI5_RXD0_PWM2_OUT
-
IOMUXC_SAI5_RXD0_I2C5_SCL
-
IOMUXC_SAI5_RXD0_AUDIOMIX_PDM_BIT_STREAM0
-
IOMUXC_SAI5_RXD0_GPIO3_IO21
-
IOMUXC_SAI5_RXD1_AUDIOMIX_SAI5_RX_DATA1
-
IOMUXC_SAI5_RXD1_AUDIOMIX_SAI1_TX_DATA3
-
IOMUXC_SAI5_RXD1_AUDIOMIX_SAI1_TX_SYNC
-
IOMUXC_SAI5_RXD1_AUDIOMIX_SAI5_TX_SYNC
-
IOMUXC_SAI5_RXD1_AUDIOMIX_PDM_BIT_STREAM1
-
IOMUXC_SAI5_RXD1_GPIO3_IO22
-
IOMUXC_SAI5_RXD1_CAN1_TX
-
IOMUXC_SAI5_RXD2_AUDIOMIX_SAI5_RX_DATA2
-
IOMUXC_SAI5_RXD2_AUDIOMIX_SAI1_TX_DATA4
-
IOMUXC_SAI5_RXD2_AUDIOMIX_SAI1_TX_SYNC
-
IOMUXC_SAI5_RXD2_AUDIOMIX_SAI5_TX_BCLK
-
IOMUXC_SAI5_RXD2_AUDIOMIX_PDM_BIT_STREAM2
-
IOMUXC_SAI5_RXD2_GPIO3_IO23
-
IOMUXC_SAI5_RXD2_CAN1_RX
-
IOMUXC_SAI5_RXD3_AUDIOMIX_SAI5_RX_DATA3
-
IOMUXC_SAI5_RXD3_AUDIOMIX_SAI1_TX_DATA5
-
IOMUXC_SAI5_RXD3_AUDIOMIX_SAI1_TX_SYNC
-
IOMUXC_SAI5_RXD3_AUDIOMIX_SAI5_TX_DATA0
-
IOMUXC_SAI5_RXD3_AUDIOMIX_PDM_BIT_STREAM3
-
IOMUXC_SAI5_RXD3_GPIO3_IO24
-
IOMUXC_SAI5_RXD3_CAN2_TX
-
IOMUXC_SAI5_MCLK_AUDIOMIX_SAI5_MCLK
-
IOMUXC_SAI5_MCLK_AUDIOMIX_SAI1_TX_BCLK
-
IOMUXC_SAI5_MCLK_PWM1_OUT
-
IOMUXC_SAI5_MCLK_I2C5_SDA
-
IOMUXC_SAI5_MCLK_GPIO3_IO25
-
IOMUXC_SAI5_MCLK_CAN2_RX
-
IOMUXC_SAI1_RXFS_AUDIOMIX_SAI1_RX_SYNC
-
IOMUXC_SAI1_RXFS_ENET1_1588_EVENT0_IN
-
IOMUXC_SAI1_RXFS_GPIO4_IO00
-
IOMUXC_SAI1_RXC_AUDIOMIX_SAI1_RX_BCLK
-
IOMUXC_SAI1_RXC_AUDIOMIX_PDM_CLK
-
IOMUXC_SAI1_RXC_ENET1_1588_EVENT0_OUT
-
IOMUXC_SAI1_RXC_GPIO4_IO01
-
IOMUXC_SAI1_RXD0_AUDIOMIX_SAI1_RX_DATA0
-
IOMUXC_SAI1_RXD0_AUDIOMIX_SAI1_TX_DATA1
-
IOMUXC_SAI1_RXD0_AUDIOMIX_PDM_BIT_STREAM0
-
IOMUXC_SAI1_RXD0_ENET1_1588_EVENT1_IN
-
IOMUXC_SAI1_RXD0_GPIO4_IO02
-
IOMUXC_SAI1_RXD1_AUDIOMIX_SAI1_RX_DATA1
-
IOMUXC_SAI1_RXD1_AUDIOMIX_PDM_BIT_STREAM1
-
IOMUXC_SAI1_RXD1_ENET1_1588_EVENT1_OUT
-
IOMUXC_SAI1_RXD1_GPIO4_IO03
-
IOMUXC_SAI1_RXD2_AUDIOMIX_SAI1_RX_DATA2
-
IOMUXC_SAI1_RXD2_AUDIOMIX_PDM_BIT_STREAM2
-
IOMUXC_SAI1_RXD2_ENET1_MDC
-
IOMUXC_SAI1_RXD2_GPIO4_IO04
-
IOMUXC_SAI1_RXD3_AUDIOMIX_SAI1_RX_DATA3
-
IOMUXC_SAI1_RXD3_AUDIOMIX_PDM_BIT_STREAM3
-
IOMUXC_SAI1_RXD3_ENET1_MDIO
-
IOMUXC_SAI1_RXD3_GPIO4_IO05
-
IOMUXC_SAI1_RXD4_AUDIOMIX_SAI1_RX_DATA4
-
IOMUXC_SAI1_RXD4_AUDIOMIX_SAI6_TX_BCLK
-
IOMUXC_SAI1_RXD4_AUDIOMIX_SAI6_RX_BCLK
-
IOMUXC_SAI1_RXD4_ENET1_RGMII_RD0
-
IOMUXC_SAI1_RXD4_GPIO4_IO06
-
IOMUXC_SAI1_RXD5_AUDIOMIX_SAI1_RX_DATA5
-
IOMUXC_SAI1_RXD5_AUDIOMIX_SAI6_TX_DATA0
-
IOMUXC_SAI1_RXD5_AUDIOMIX_SAI6_RX_DATA0
-
IOMUXC_SAI1_RXD5_AUDIOMIX_SAI1_RX_SYNC
-
IOMUXC_SAI1_RXD5_ENET1_RGMII_RD1
-
IOMUXC_SAI1_RXD5_GPIO4_IO07
-
IOMUXC_SAI1_RXD6_AUDIOMIX_SAI1_RX_DATA6
-
IOMUXC_SAI1_RXD6_AUDIOMIX_SAI6_TX_SYNC
-
IOMUXC_SAI1_RXD6_AUDIOMIX_SAI6_RX_SYNC
-
IOMUXC_SAI1_RXD6_ENET1_RGMII_RD2
-
IOMUXC_SAI1_RXD6_GPIO4_IO08
-
IOMUXC_SAI1_RXD7_AUDIOMIX_SAI1_RX_DATA7
-
IOMUXC_SAI1_RXD7_AUDIOMIX_SAI6_MCLK
-
IOMUXC_SAI1_RXD7_AUDIOMIX_SAI1_TX_SYNC
-
IOMUXC_SAI1_RXD7_AUDIOMIX_SAI1_TX_DATA4
-
IOMUXC_SAI1_RXD7_ENET1_RGMII_RD3
-
IOMUXC_SAI1_RXD7_GPIO4_IO09
-
IOMUXC_SAI1_TXFS_AUDIOMIX_SAI1_TX_SYNC
-
IOMUXC_SAI1_TXFS_ENET1_RGMII_RX_CTL
-
IOMUXC_SAI1_TXFS_GPIO4_IO10
-
IOMUXC_SAI1_TXC_AUDIOMIX_SAI1_TX_BCLK
-
IOMUXC_SAI1_TXC_ENET1_RGMII_RXC
-
IOMUXC_SAI1_TXC_GPIO4_IO11
-
IOMUXC_SAI1_TXD0_AUDIOMIX_SAI1_TX_DATA0
-
IOMUXC_SAI1_TXD0_ENET1_RGMII_TD0
-
IOMUXC_SAI1_TXD0_GPIO4_IO12
-
IOMUXC_SAI1_TXD1_AUDIOMIX_SAI1_TX_DATA1
-
IOMUXC_SAI1_TXD1_ENET1_RGMII_TD1
-
IOMUXC_SAI1_TXD1_GPIO4_IO13
-
IOMUXC_SAI1_TXD2_AUDIOMIX_SAI1_TX_DATA2
-
IOMUXC_SAI1_TXD2_ENET1_RGMII_TD2
-
IOMUXC_SAI1_TXD2_GPIO4_IO14
-
IOMUXC_SAI1_TXD3_AUDIOMIX_SAI1_TX_DATA3
-
IOMUXC_SAI1_TXD3_ENET1_RGMII_TD3
-
IOMUXC_SAI1_TXD3_GPIO4_IO15
-
IOMUXC_SAI1_TXD4_AUDIOMIX_SAI1_TX_DATA4
-
IOMUXC_SAI1_TXD4_AUDIOMIX_SAI6_RX_BCLK
-
IOMUXC_SAI1_TXD4_AUDIOMIX_SAI6_TX_BCLK
-
IOMUXC_SAI1_TXD4_ENET1_RGMII_TX_CTL
-
IOMUXC_SAI1_TXD4_GPIO4_IO16
-
IOMUXC_SAI1_TXD5_AUDIOMIX_SAI1_TX_DATA5
-
IOMUXC_SAI1_TXD5_AUDIOMIX_SAI6_RX_DATA0
-
IOMUXC_SAI1_TXD5_AUDIOMIX_SAI6_TX_DATA0
-
IOMUXC_SAI1_TXD5_ENET1_RGMII_TXC
-
IOMUXC_SAI1_TXD5_GPIO4_IO17
-
IOMUXC_SAI1_TXD6_AUDIOMIX_SAI1_TX_DATA6
-
IOMUXC_SAI1_TXD6_AUDIOMIX_SAI6_RX_SYNC
-
IOMUXC_SAI1_TXD6_AUDIOMIX_SAI6_TX_SYNC
-
IOMUXC_SAI1_TXD6_ENET1_RX_ER
-
IOMUXC_SAI1_TXD6_GPIO4_IO18
-
IOMUXC_SAI1_TXD7_AUDIOMIX_SAI1_TX_DATA7
-
IOMUXC_SAI1_TXD7_AUDIOMIX_SAI6_MCLK
-
IOMUXC_SAI1_TXD7_AUDIOMIX_PDM_CLK
-
IOMUXC_SAI1_TXD7_ENET1_TX_ER
-
IOMUXC_SAI1_TXD7_GPIO4_IO19
-
IOMUXC_SAI1_MCLK_AUDIOMIX_SAI1_MCLK
-
IOMUXC_SAI1_MCLK_AUDIOMIX_SAI1_TX_BCLK
-
IOMUXC_SAI1_MCLK_ENET1_TX_CLK
-
IOMUXC_SAI1_MCLK_GPIO4_IO20
-
IOMUXC_SAI2_RXFS_AUDIOMIX_SAI2_RX_SYNC
-
IOMUXC_SAI2_RXFS_AUDIOMIX_SAI5_TX_SYNC
-
IOMUXC_SAI2_RXFS_AUDIOMIX_SAI5_TX_DATA1
-
IOMUXC_SAI2_RXFS_AUDIOMIX_SAI2_RX_DATA1
-
IOMUXC_SAI2_RXFS_UART1_TX
-
IOMUXC_SAI2_RXFS_UART1_RX
-
IOMUXC_SAI2_RXFS_GPIO4_IO21
-
IOMUXC_SAI2_RXFS_AUDIOMIX_PDM_BIT_STREAM2
-
IOMUXC_SAI2_RXC_AUDIOMIX_SAI2_RX_BCLK
-
IOMUXC_SAI2_RXC_AUDIOMIX_SAI5_TX_BCLK
-
IOMUXC_SAI2_RXC_CAN1_TX
-
IOMUXC_SAI2_RXC_UART1_RX
-
IOMUXC_SAI2_RXC_UART1_TX
-
IOMUXC_SAI2_RXC_GPIO4_IO22
-
IOMUXC_SAI2_RXC_AUDIOMIX_PDM_BIT_STREAM1
-
IOMUXC_SAI2_RXD0_AUDIOMIX_SAI2_RX_DATA0
-
IOMUXC_SAI2_RXD0_AUDIOMIX_SAI5_TX_DATA0
-
IOMUXC_SAI2_RXD0_ENET_QOS_1588_EVENT2_OUT
-
IOMUXC_SAI2_RXD0_AUDIOMIX_SAI2_TX_DATA1
-
IOMUXC_SAI2_RXD0_UART1_RTS_B
-
IOMUXC_SAI2_RXD0_UART1_CTS_B
-
IOMUXC_SAI2_RXD0_GPIO4_IO23
-
IOMUXC_SAI2_RXD0_AUDIOMIX_PDM_BIT_STREAM3
-
IOMUXC_SAI2_TXFS_AUDIOMIX_SAI2_TX_SYNC
-
IOMUXC_SAI2_TXFS_AUDIOMIX_SAI5_TX_DATA1
-
IOMUXC_SAI2_TXFS_ENET_QOS_1588_EVENT3_OUT
-
IOMUXC_SAI2_TXFS_AUDIOMIX_SAI2_TX_DATA1
-
IOMUXC_SAI2_TXFS_UART1_CTS_B
-
IOMUXC_SAI2_TXFS_UART1_RTS_B
-
IOMUXC_SAI2_TXFS_GPIO4_IO24
-
IOMUXC_SAI2_TXFS_AUDIOMIX_PDM_BIT_STREAM2
-
IOMUXC_SAI2_TXC_AUDIOMIX_SAI2_TX_BCLK
-
IOMUXC_SAI2_TXC_AUDIOMIX_SAI5_TX_DATA2
-
IOMUXC_SAI2_TXC_CAN1_RX
-
IOMUXC_SAI2_TXC_GPIO4_IO25
-
IOMUXC_SAI2_TXC_AUDIOMIX_PDM_BIT_STREAM1
-
IOMUXC_SAI2_TXD0_AUDIOMIX_SAI2_TX_DATA0
-
IOMUXC_SAI2_TXD0_AUDIOMIX_SAI5_TX_DATA3
-
IOMUXC_SAI2_TXD0_ENET_QOS_1588_EVENT2_IN
-
IOMUXC_SAI2_TXD0_CAN2_TX
-
IOMUXC_SAI2_TXD0_ENET_QOS_1588_EVENT2_AUX_IN
-
IOMUXC_SAI2_TXD0_GPIO4_IO26
-
IOMUXC_SAI2_MCLK_AUDIOMIX_SAI2_MCLK
-
IOMUXC_SAI2_MCLK_AUDIOMIX_SAI5_MCLK
-
IOMUXC_SAI2_MCLK_ENET_QOS_1588_EVENT3_IN
-
IOMUXC_SAI2_MCLK_CAN2_RX
-
IOMUXC_SAI2_MCLK_ENET_QOS_1588_EVENT3_AUX_IN
-
IOMUXC_SAI2_MCLK_GPIO4_IO27
-
IOMUXC_SAI2_MCLK_AUDIOMIX_SAI3_MCLK
-
IOMUXC_SAI3_RXFS_AUDIOMIX_SAI3_RX_SYNC
-
IOMUXC_SAI3_RXFS_AUDIOMIX_SAI2_RX_DATA1
-
IOMUXC_SAI3_RXFS_AUDIOMIX_SAI5_RX_SYNC
-
IOMUXC_SAI3_RXFS_AUDIOMIX_SAI3_RX_DATA1
-
IOMUXC_SAI3_RXFS_AUDIOMIX_SPDIF1_IN
-
IOMUXC_SAI3_RXFS_GPIO4_IO28
-
IOMUXC_SAI3_RXFS_AUDIOMIX_PDM_BIT_STREAM0
-
IOMUXC_SAI3_RXC_AUDIOMIX_SAI3_RX_BCLK
-
IOMUXC_SAI3_RXC_AUDIOMIX_SAI2_RX_DATA2
-
IOMUXC_SAI3_RXC_AUDIOMIX_SAI5_RX_BCLK
-
IOMUXC_SAI3_RXC_GPT1_CLK
-
IOMUXC_SAI3_RXC_UART2_CTS_B
-
IOMUXC_SAI3_RXC_UART2_RTS_B
-
IOMUXC_SAI3_RXC_GPIO4_IO29
-
IOMUXC_SAI3_RXC_AUDIOMIX_PDM_CLK
-
IOMUXC_SAI3_RXD_AUDIOMIX_SAI3_RX_DATA0
-
IOMUXC_SAI3_RXD_AUDIOMIX_SAI2_RX_DATA3
-
IOMUXC_SAI3_RXD_AUDIOMIX_SAI5_RX_DATA0
-
IOMUXC_SAI3_RXD_UART2_RTS_B
-
IOMUXC_SAI3_RXD_UART2_CTS_B
-
IOMUXC_SAI3_RXD_GPIO4_IO30
-
IOMUXC_SAI3_RXD_AUDIOMIX_PDM_BIT_STREAM1
-
IOMUXC_SAI3_TXFS_AUDIOMIX_SAI3_TX_SYNC
-
IOMUXC_SAI3_TXFS_AUDIOMIX_SAI2_TX_DATA1
-
IOMUXC_SAI3_TXFS_AUDIOMIX_SAI5_RX_DATA1
-
IOMUXC_SAI3_TXFS_AUDIOMIX_SAI3_TX_DATA1
-
IOMUXC_SAI3_TXFS_UART2_RX
-
IOMUXC_SAI3_TXFS_UART2_TX
-
IOMUXC_SAI3_TXFS_GPIO4_IO31
-
IOMUXC_SAI3_TXFS_AUDIOMIX_PDM_BIT_STREAM3
-
IOMUXC_SAI3_TXC_AUDIOMIX_SAI3_TX_BCLK
-
IOMUXC_SAI3_TXC_AUDIOMIX_SAI2_TX_DATA2
-
IOMUXC_SAI3_TXC_AUDIOMIX_SAI5_RX_DATA2
-
IOMUXC_SAI3_TXC_GPT1_CAPTURE1
-
IOMUXC_SAI3_TXC_UART2_TX
-
IOMUXC_SAI3_TXC_UART2_RX
-
IOMUXC_SAI3_TXC_GPIO5_IO00
-
IOMUXC_SAI3_TXC_AUDIOMIX_PDM_BIT_STREAM2
-
IOMUXC_SAI3_TXD_AUDIOMIX_SAI3_TX_DATA0
-
IOMUXC_SAI3_TXD_AUDIOMIX_SAI2_TX_DATA3
-
IOMUXC_SAI3_TXD_AUDIOMIX_SAI5_RX_DATA3
-
IOMUXC_SAI3_TXD_GPT1_CAPTURE2
-
IOMUXC_SAI3_TXD_AUDIOMIX_SPDIF1_EXT_CLK
-
IOMUXC_SAI3_TXD_GPIO5_IO01
-
IOMUXC_SAI3_MCLK_AUDIOMIX_SAI3_MCLK
-
IOMUXC_SAI3_MCLK_PWM4_OUT
-
IOMUXC_SAI3_MCLK_AUDIOMIX_SAI5_MCLK
-
IOMUXC_SAI3_MCLK_AUDIOMIX_SPDIF1_OUT
-
IOMUXC_SAI3_MCLK_GPIO5_IO02
-
IOMUXC_SAI3_MCLK_AUDIOMIX_SPDIF1_IN
-
IOMUXC_SPDIF_TX_AUDIOMIX_SPDIF1_OUT
-
IOMUXC_SPDIF_TX_PWM3_OUT
-
IOMUXC_SPDIF_TX_I2C5_SCL
-
IOMUXC_SPDIF_TX_GPT1_COMPARE1
-
IOMUXC_SPDIF_TX_CAN1_TX
-
IOMUXC_SPDIF_TX_GPIO5_IO03
-
IOMUXC_SPDIF_RX_AUDIOMIX_SPDIF1_IN
-
IOMUXC_SPDIF_RX_PWM2_OUT
-
IOMUXC_SPDIF_RX_I2C5_SDA
-
IOMUXC_SPDIF_RX_GPT1_COMPARE2
-
IOMUXC_SPDIF_RX_CAN1_RX
-
IOMUXC_SPDIF_RX_GPIO5_IO04
-
IOMUXC_SPDIF_EXT_CLK_AUDIOMIX_SPDIF1_EXT_CLK
-
IOMUXC_SPDIF_EXT_CLK_PWM1_OUT
-
IOMUXC_SPDIF_EXT_CLK_GPT1_COMPARE3
-
IOMUXC_SPDIF_EXT_CLK_GPIO5_IO05
-
IOMUXC_ECSPI1_SCLK_ECSPI1_SCLK
-
IOMUXC_ECSPI1_SCLK_UART3_RX
-
IOMUXC_ECSPI1_SCLK_UART3_TX
-
IOMUXC_ECSPI1_SCLK_I2C1_SCL
-
IOMUXC_ECSPI1_SCLK_AUDIOMIX_SAI7_RX_SYNC
-
IOMUXC_ECSPI1_SCLK_GPIO5_IO06
-
IOMUXC_ECSPI1_MOSI_ECSPI1_MOSI
-
IOMUXC_ECSPI1_MOSI_UART3_TX
-
IOMUXC_ECSPI1_MOSI_UART3_RX
-
IOMUXC_ECSPI1_MOSI_I2C1_SDA
-
IOMUXC_ECSPI1_MOSI_AUDIOMIX_SAI7_RX_BCLK
-
IOMUXC_ECSPI1_MOSI_GPIO5_IO07
-
IOMUXC_ECSPI1_MISO_ECSPI1_MISO
-
IOMUXC_ECSPI1_MISO_UART3_CTS_B
-
IOMUXC_ECSPI1_MISO_UART3_RTS_B
-
IOMUXC_ECSPI1_MISO_I2C2_SCL
-
IOMUXC_ECSPI1_MISO_AUDIOMIX_SAI7_RX_DATA0
-
IOMUXC_ECSPI1_MISO_GPIO5_IO08
-
IOMUXC_ECSPI1_SS0_ECSPI1_SS0
-
IOMUXC_ECSPI1_SS0_UART3_RTS_B
-
IOMUXC_ECSPI1_SS0_UART3_CTS_B
-
IOMUXC_ECSPI1_SS0_I2C2_SDA
-
IOMUXC_ECSPI1_SS0_AUDIOMIX_SAI7_TX_SYNC
-
IOMUXC_ECSPI1_SS0_GPIO5_IO09
-
IOMUXC_ECSPI2_SCLK_ECSPI2_SCLK
-
IOMUXC_ECSPI2_SCLK_UART4_RX
-
IOMUXC_ECSPI2_SCLK_UART4_TX
-
IOMUXC_ECSPI2_SCLK_I2C3_SCL
-
IOMUXC_ECSPI2_SCLK_AUDIOMIX_SAI7_TX_BCLK
-
IOMUXC_ECSPI2_SCLK_GPIO5_IO10
-
IOMUXC_ECSPI2_MOSI_ECSPI2_MOSI
-
IOMUXC_ECSPI2_MOSI_UART4_TX
-
IOMUXC_ECSPI2_MOSI_UART4_RX
-
IOMUXC_ECSPI2_MOSI_I2C3_SDA
-
IOMUXC_ECSPI2_MOSI_AUDIOMIX_SAI7_TX_DATA0
-
IOMUXC_ECSPI2_MOSI_GPIO5_IO11
-
IOMUXC_ECSPI2_MISO_ECSPI2_MISO
-
IOMUXC_ECSPI2_MISO_UART4_CTS_B
-
IOMUXC_ECSPI2_MISO_UART4_RTS_B
-
IOMUXC_ECSPI2_MISO_I2C4_SCL
-
IOMUXC_ECSPI2_MISO_AUDIOMIX_SAI7_MCLK
-
IOMUXC_ECSPI2_MISO_CCM_CLKO1
-
IOMUXC_ECSPI2_MISO_GPIO5_IO12
-
IOMUXC_ECSPI2_SS0_ECSPI2_SS0
-
IOMUXC_ECSPI2_SS0_UART4_RTS_B
-
IOMUXC_ECSPI2_SS0_UART4_CTS_B
-
IOMUXC_ECSPI2_SS0_I2C4_SDA
-
IOMUXC_ECSPI2_SS0_CCM_CLKO2
-
IOMUXC_ECSPI2_SS0_GPIO5_IO13
-
IOMUXC_I2C1_SCL_I2C1_SCL
-
IOMUXC_I2C1_SCL_ENET_QOS_MDC
-
IOMUXC_I2C1_SCL_ECSPI1_SCLK
-
IOMUXC_I2C1_SCL_GPIO5_IO14
-
IOMUXC_I2C1_SDA_I2C1_SDA
-
IOMUXC_I2C1_SDA_ENET_QOS_MDIO
-
IOMUXC_I2C1_SDA_ECSPI1_MOSI
-
IOMUXC_I2C1_SDA_GPIO5_IO15
-
IOMUXC_I2C2_SCL_I2C2_SCL
-
IOMUXC_I2C2_SCL_ENET_QOS_1588_EVENT1_IN
-
IOMUXC_I2C2_SCL_USDHC3_CD_B
-
IOMUXC_I2C2_SCL_ECSPI1_MISO
-
IOMUXC_I2C2_SCL_ENET_QOS_1588_EVENT1_AUX_IN
-
IOMUXC_I2C2_SCL_GPIO5_IO16
-
IOMUXC_I2C2_SDA_I2C2_SDA
-
IOMUXC_I2C2_SDA_ENET_QOS_1588_EVENT1_OUT
-
IOMUXC_I2C2_SDA_USDHC3_WP
-
IOMUXC_I2C2_SDA_ECSPI1_SS0
-
IOMUXC_I2C2_SDA_GPIO5_IO17
-
IOMUXC_I2C3_SCL_I2C3_SCL
-
IOMUXC_I2C3_SCL_PWM4_OUT
-
IOMUXC_I2C3_SCL_GPT2_CLK
-
IOMUXC_I2C3_SCL_ECSPI2_SCLK
-
IOMUXC_I2C3_SCL_GPIO5_IO18
-
IOMUXC_I2C3_SDA_I2C3_SDA
-
IOMUXC_I2C3_SDA_PWM3_OUT
-
IOMUXC_I2C3_SDA_GPT3_CLK
-
IOMUXC_I2C3_SDA_ECSPI2_MOSI
-
IOMUXC_I2C3_SDA_GPIO5_IO19
-
IOMUXC_I2C4_SCL_I2C4_SCL
-
IOMUXC_I2C4_SCL_PWM2_OUT
-
IOMUXC_I2C4_SCL_PCIE_CLKREQ_B
-
IOMUXC_I2C4_SCL_ECSPI2_MISO
-
IOMUXC_I2C4_SCL_GPIO5_IO20
-
IOMUXC_I2C4_SDA_I2C4_SDA
-
IOMUXC_I2C4_SDA_PWM1_OUT
-
IOMUXC_I2C4_SDA_ECSPI2_SS0
-
IOMUXC_I2C4_SDA_GPIO5_IO21
-
IOMUXC_UART1_RXD_UART1_RX
-
IOMUXC_UART1_RXD_UART1_TX
-
IOMUXC_UART1_RXD_ECSPI3_SCLK
-
IOMUXC_UART1_RXD_GPIO5_IO22
-
IOMUXC_UART1_TXD_UART1_TX
-
IOMUXC_UART1_TXD_UART1_RX
-
IOMUXC_UART1_TXD_ECSPI3_MOSI
-
IOMUXC_UART1_TXD_GPIO5_IO23
-
IOMUXC_UART2_RXD_UART2_RX
-
IOMUXC_UART2_RXD_UART2_TX
-
IOMUXC_UART2_RXD_ECSPI3_MISO
-
IOMUXC_UART2_RXD_GPT1_COMPARE3
-
IOMUXC_UART2_RXD_GPIO5_IO24
-
IOMUXC_UART2_TXD_UART2_TX
-
IOMUXC_UART2_TXD_UART2_RX
-
IOMUXC_UART2_TXD_ECSPI3_SS0
-
IOMUXC_UART2_TXD_GPT1_COMPARE2
-
IOMUXC_UART2_TXD_GPIO5_IO25
-
IOMUXC_UART3_RXD_UART3_RX
-
IOMUXC_UART3_RXD_UART3_TX
-
IOMUXC_UART3_RXD_UART1_CTS_B
-
IOMUXC_UART3_RXD_UART1_RTS_B
-
IOMUXC_UART3_RXD_USDHC3_RESET_B
-
IOMUXC_UART3_RXD_GPT1_CAPTURE2
-
IOMUXC_UART3_RXD_CAN2_TX
-
IOMUXC_UART3_RXD_GPIO5_IO26
-
IOMUXC_UART3_TXD_UART3_TX
-
IOMUXC_UART3_TXD_UART3_RX
-
IOMUXC_UART3_TXD_UART1_RTS_B
-
IOMUXC_UART3_TXD_UART1_CTS_B
-
IOMUXC_UART3_TXD_USDHC3_VSELECT
-
IOMUXC_UART3_TXD_GPT1_CLK
-
IOMUXC_UART3_TXD_CAN2_RX
-
IOMUXC_UART3_TXD_GPIO5_IO27
-
IOMUXC_UART4_RXD_UART4_RX
-
IOMUXC_UART4_RXD_UART4_TX
-
IOMUXC_UART4_RXD_UART2_CTS_B
-
IOMUXC_UART4_RXD_UART2_RTS_B
-
IOMUXC_UART4_RXD_PCIE_CLKREQ_B
-
IOMUXC_UART4_RXD_GPT1_COMPARE1
-
IOMUXC_UART4_RXD_I2C6_SCL
-
IOMUXC_UART4_RXD_GPIO5_IO28
-
IOMUXC_UART4_TXD_UART4_TX
-
IOMUXC_UART4_TXD_UART4_RX
-
IOMUXC_UART4_TXD_UART2_RTS_B
-
IOMUXC_UART4_TXD_UART2_CTS_B
-
IOMUXC_UART4_TXD_GPT1_CAPTURE1
-
IOMUXC_UART4_TXD_I2C6_SDA
-
IOMUXC_UART4_TXD_GPIO5_IO29
-
IOMUXC_HDMI_DDC_SCL_HDMIMIX_HDMI_SCL
-
IOMUXC_HDMI_DDC_SCL_I2C5_SCL
-
IOMUXC_HDMI_DDC_SCL_CAN1_TX
-
IOMUXC_HDMI_DDC_SCL_GPIO3_IO26
-
IOMUXC_HDMI_DDC_SCL_EARC_TEST_OUT0
-
IOMUXC_HDMI_DDC_SDA_HDMIMIX_HDMI_SDA
-
IOMUXC_HDMI_DDC_SDA_I2C5_SDA
-
IOMUXC_HDMI_DDC_SDA_CAN1_RX
-
IOMUXC_HDMI_DDC_SDA_GPIO3_IO27
-
IOMUXC_HDMI_DDC_SDA_EARC_TEST_OUT1
-
IOMUXC_HDMI_CEC_HDMIMIX_HDMI_CEC
-
IOMUXC_HDMI_CEC_I2C6_SCL
-
IOMUXC_HDMI_CEC_CAN2_TX
-
IOMUXC_HDMI_CEC_GPIO3_IO28
-
IOMUXC_HDMI_HPD_HDMIMIX_HDMI_HPD
-
IOMUXC_HDMI_HPD_AUDIOMIX_HDMI_HPD_O
-
IOMUXC_HDMI_HPD_I2C6_SDA
-
IOMUXC_HDMI_HPD_CAN2_RX
-
IOMUXC_HDMI_HPD_GPIO3_IO29
-
FSL_COMPONENT_ID
Common Driver#
-
FSL_COMMON_DRIVER_VERSION
common driver version.
-
DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.
-
DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.
-
DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.
-
DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.
-
DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.
-
DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.
-
DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.
-
DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.
-
DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.
-
DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.
-
DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.
-
MIN(a, b)
Computes the minimum of a and b.
-
MAX(a, b)
Computes the maximum of a and b.
-
UINT16_MAX
Max value of uint16_t type.
-
UINT32_MAX
Max value of uint32_t type.
-
SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.
-
SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.
-
SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits specifiled by setBits.
-
SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value same as expected then update newValue to address and return true , else return false .
-
SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.
-
USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value
-
COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond
-
MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value
-
COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond
-
SDK_ISR_EXIT_BARRIER
-
SDK_ALIGN(var, alignbytes)
Macro to define a variable with alignbytes alignment
-
SDK_L1DCACHE_ALIGN(var)
Macro to define a variable with L1 d-cache line size alignment
-
SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L2 cache line size alignment
Macro to change a value to a given size aligned value (rounded up)
-
SDK_SIZEALIGN_UP(var, alignbytes)
Macro to change a value to a given size aligned value (rounded up), the wrapper of SDK_SIZEALIGN
-
SDK_SIZEALIGN_DOWN(var, alignbytes)
Macro to change a value to a given size aligned value (rounded down)
-
SDK_IS_ALIGNED(var, alignbytes)
Macro to check if a value is aligned to a given size
-
AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.
-
AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.
-
AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.
-
AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.
-
MCUX_CS
-
AT_CACHE_LINE_SECTION(var)
Define a variable var, which is cache line size aligned and be placed in CacheLineData section.
-
AT_CACHE_LINE_SECTION_INIT(var)
Define a variable var with initial value, which is cache line size aligned and be placed in CacheLineData.init section.
-
CACHE_LINE_DATA
-
AT_QUICKACCESS_SECTION_CODE(func)
Place function in a section which can be accessed quickly by core.
-
AT_QUICKACCESS_SECTION_DATA(var)
Place data in a section which can be accessed quickly by core.
-
AT_QUICKACCESS_SECTION_DATA_ALIGN(var, alignbytes)
Place data in a section which can be accessed quickly by core, and the variable address is set to align with alignbytes.
-
MCUX_RAMFUNC
Function attribute to place function in RAM. For example, to place function my_func in ram, use like:
MCUX_RAMFUNC my_func
-
RAMFUNCTION_SECTION_CODE(func)
Place function in ram.
-
enum _status_groups
Status group numbers.
Values:
-
enumerator kStatusGroup_Generic
Group number for generic status codes.
-
enumerator kStatusGroup_FLASH
Group number for FLASH status codes.
-
enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.
-
enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.
-
enumerator kStatusGroup_DSPI
Group number for DSPI status codes.
-
enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.
-
enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.
-
enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.
-
enumerator kStatusGroup_UART
Group number for UART status codes.
-
enumerator kStatusGroup_I2C
Group number for UART status codes.
-
enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.
-
enumerator kStatusGroup_LPUART
Group number for LPUART status codes.
-
enumerator kStatusGroup_SPI
Group number for SPI status code.
-
enumerator kStatusGroup_XRDC
Group number for XRDC status code.
-
enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.
-
enumerator kStatusGroup_SDHC
Group number for SDHC status code
-
enumerator kStatusGroup_SDMMC
Group number for SDMMC status code
-
enumerator kStatusGroup_SAI
Group number for SAI status code
-
enumerator kStatusGroup_MCG
Group number for MCG status codes.
-
enumerator kStatusGroup_SCG
Group number for SCG status codes.
-
enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.
-
enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes
-
enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes
-
enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes
-
enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes
-
enumerator kStatusGroup_I2S
Group number for I2S status codes
-
enumerator kStatusGroup_IUART
Group number for IUART status codes
-
enumerator kStatusGroup_CSI
Group number for CSI status codes
-
enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes
-
enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.
-
enumerator kStatusGroup_POWER
Group number for POWER status codes.
-
enumerator kStatusGroup_ENET
Group number for ENET status codes.
-
enumerator kStatusGroup_PHY
Group number for PHY status codes.
-
enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.
-
enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.
-
enumerator kStatusGroup_LMEM
Group number for LMEM status codes.
-
enumerator kStatusGroup_QSPI
Group number for QSPI status codes.
-
enumerator kStatusGroup_DMA
Group number for DMA status codes.
-
enumerator kStatusGroup_EDMA
Group number for EDMA status codes.
-
enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.
-
enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.
-
enumerator kStatusGroup_LTC
Group number for LTC status codes.
-
enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.
-
enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.
-
enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.
-
enumerator kStatusGroup_DMIC
Group number for DMIC status codes.
-
enumerator kStatusGroup_SDIF
Group number for SDIF status codes.
-
enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.
-
enumerator kStatusGroup_OTP
Group number for OTP status codes.
-
enumerator kStatusGroup_MCAN
Group number for MCAN status codes.
-
enumerator kStatusGroup_CAAM
Group number for CAAM status codes.
-
enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.
-
enumerator kStatusGroup_USDHC
Group number for USDHC status codes.
-
enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.
-
enumerator kStatusGroup_DCP
Group number for DCP status codes.
-
enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.
-
enumerator kStatusGroup_ESAI
Group number for ESAI status codes.
-
enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.
-
enumerator kStatusGroup_MMDC
Group number for MMDC status codes.
-
enumerator kStatusGroup_PDM
Group number for MIC status codes.
-
enumerator kStatusGroup_SDMA
Group number for SDMA status codes.
-
enumerator kStatusGroup_ICS
Group number for ICS status codes.
-
enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.
-
enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.
-
enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes
-
enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.
-
enumerator kStatusGroup_I3C
Group number for I3C status codes
-
enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.
-
enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.
-
enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.
-
enumerator kStatusGroup_SEMC
Group number for SEMC status codes.
-
enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.
-
enumerator kStatusGroup_IAP
Group number for IAP status codes
-
enumerator kStatusGroup_SFA
Group number for SFA status codes
-
enumerator kStatusGroup_SPC
Group number for SPC status codes.
-
enumerator kStatusGroup_PUF
Group number for PUF status codes.
-
enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes
-
enumerator kStatusGroup_VBAT
Group number for VBAT status codes
-
enumerator kStatusGroup_XSPI
Group number for XSPI status codes
-
enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes
-
enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes
-
enumerator kStatusGroup_AUDMIX
Group number for AUDMIX status codes
-
enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.
-
enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.
-
enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.
-
enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.
-
enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.
-
enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.
-
enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.
-
enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.
-
enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.
-
enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.
-
enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.
-
enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.
-
enumerator kStatusGroup_LED
Group number for LED status codes.
-
enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.
-
enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.
-
enumerator kStatusGroup_SHELL
Group number for SHELL status codes.
-
enumerator kStatusGroup_MEM_MANAGER
Group number for MEM MANAGER status codes.
-
enumerator kStatusGroup_LIST
Group number for List status codes.
-
enumerator kStatusGroup_OSA
Group number for OSA status codes.
-
enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.
-
enumerator kStatusGroup_MSG
Group number for messaging status codes.
-
enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.
-
enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.
-
enumerator kStatusGroup_CODEC
Group number for codec status codes.
-
enumerator kStatusGroup_ASRC
Group number for codec status ASRC.
-
enumerator kStatusGroup_OTFAD
Group number for codec status codes.
-
enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.
-
enumerator kStatusGroup_MECC
Group number for MECC status codes.
-
enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.
-
enumerator kStatusGroup_LOG
Group number for LOG status codes.
-
enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.
-
enumerator kStatusGroup_QSCI
Group number for QSCI status codes.
-
enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.
-
enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.
-
enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.
-
enumerator kStatusGroup_IPED
Group number for IPED status codes.
-
enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.
-
enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.
-
enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.
-
enumerator kStatusGroup_CLIF
Group number for CLIF status codes.
-
enumerator kStatusGroup_BMA
Group number for BMA status codes.
-
enumerator kStatusGroup_NETC
Group number for NETC status codes.
-
enumerator kStatusGroup_ELE
Group number for ELE status codes.
-
enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.
-
enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.
-
enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.
-
enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.
-
enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.
-
enumerator kStatusGroup_NPX
Group number for NPX status codes.
-
enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.
-
enumerator kStatusGroup_FLEXIO_T_FORMAT
Group number for T-format status codes.
-
enumerator kStatusGroup_FLEXIO_A_FORMAT
Group number for A-format status codes.
-
enumerator kStatusGroup_LPC_QSPI
Group number for LPC QSPI status codes.
-
enumerator kStatusGroup_Generic
Generic status return codes.
Values:
-
enumerator kStatus_Success
Generic status for Success.
-
enumerator kStatus_Fail
Generic status for Fail.
-
enumerator kStatus_ReadOnly
Generic status for read only failure.
-
enumerator kStatus_OutOfRange
Generic status for out of range access.
-
enumerator kStatus_InvalidArgument
Generic status for invalid argument check.
-
enumerator kStatus_Timeout
Generic status for timeout.
-
enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.
-
enumerator kStatus_Busy
Generic status for module is busy.
-
enumerator kStatus_NoData
Generic status for no data is found for the operation.
-
enumerator kStatus_Success
-
typedef int32_t status_t
Type used for all status and error return values.
-
void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.
This is provided to support the dynamically allocated memory used in cache-able region.
- Parameters:
size – The length required to malloc.
alignbytes – The alignment size.
- Return values:
The – allocated memory.
-
void SDK_Free(void *ptr)
Free memory.
- Parameters:
ptr – The memory to be release.
-
void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different run-time environments make the time not precise, if precise delay count was needed, please implement a new delay function with hardware timer.
- Parameters:
delayTime_us – Delay time in unit of microsecond.
coreClock_Hz – Core clock frequency with Hz.
-
static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.
Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ number.
- Return values:
kStatus_Success – Interrupt enabled successfully
kStatus_Fail – Failed to enable the interrupt
-
static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.
Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ number.
- Return values:
kStatus_Success – Interrupt disabled successfully
kStatus_Fail – Failed to disable the interrupt
-
static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ to Enable.
priNum – Priority number set to interrupt controller register.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ to set.
priNum – Priority number set to interrupt controller register.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The flag which IRQ to clear.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.
Disable the global interrupt and return the current primask register. User is required to provided the primask register for the EnableGlobalIRQ().
- Returns:
Current primask value.
-
static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.
Set the primask register with the provided primask value but not just enable the primask. The idea is for the convenience of integration of RTOS. some RTOS get its own management mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlobalIRQ() in pair.
- Parameters:
primask – value of primask register to be restored. The primask value is supposed to be provided by the DisableGlobalIRQ().
-
static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t newValue)
-
static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
-
FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.
-
MAKE_STATUS(group, code)
Construct a status code value from a group and code number.
-
MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.
The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit platforms(such as DSC).
| Unused || Major Version || Minor Version || Bug Fix | 31 25 24 17 16 9 8 0
-
ARRAY_SIZE(x)
Computes the number of elements in an array.
-
UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value
-
UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value
-
SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be added at the end of each case section which misses “break;”statement.
-
MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.
-
MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.
-
MSDK_HAS_DWT_CYCCNT
The chip supports DWT CYCCNT or not.
-
MSDK_INVALID_IRQ_HANDLER
Invalid IRQ handler address.
MU: Messaging Unit#
-
void MU_Init(MU_Type *base)
Initializes the MU module.
This function enables the MU clock only.
- Parameters:
base – MU peripheral base address.
-
void MU_Deinit(MU_Type *base)
De-initializes the MU module.
This function disables the MU clock only.
- Parameters:
base – MU peripheral base address.
-
static inline void MU_SendMsgNonBlocking(MU_Type *base, uint32_t regIndex, uint32_t msg)
Writes a message to the TX register.
This function writes a message to the specific TX register. It does not check whether the TX register is empty or not. The upper layer should make sure the TX register is empty before calling this function. This function can be used in ISR for better performance.
while (!(kMU_Tx0EmptyFlag & MU_GetStatusFlags(base))) { } Wait for TX0 register empty. MU_SendMsgNonBlocking(base, kMU_MsgReg0, MSG_VAL); Write message to the TX0 register.- Parameters:
base – MU peripheral base address.
regIndex – TX register index, see mu_msg_reg_index_t.
msg – Message to send.
-
status_t MU_SendMsg(MU_Type *base, uint32_t regIndex, uint32_t msg)
Blocks to send a message.
This function waits until the TX register is empty and sends the message. If MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the specified number of polling iterations and returns kStatus_Timeout.
- Parameters:
base – MU peripheral base address.
regIndex – MU message register, see mu_msg_reg_index_t.
msg – Message to send.
- Return values:
kStatus_Success – Message sent successfully.
kStatus_Timeout – Timeout occurred while waiting for TX register to be empty.
- Returns:
status_t
-
static inline uint32_t MU_ReceiveMsgNonBlocking(MU_Type *base, uint32_t regIndex)
Reads a message from the RX register.
This function reads a message from the specific RX register. It does not check whether the RX register is full or not. The upper layer should make sure the RX register is full before calling this function. This function can be used in ISR for better performance.
uint32_t msg; while (!(kMU_Rx0FullFlag & MU_GetStatusFlags(base))) { } Wait for the RX0 register full. msg = MU_ReceiveMsgNonBlocking(base, kMU_MsgReg0); Read message from RX0 register.- Parameters:
base – MU peripheral base address.
regIndex – RX register index, see mu_msg_reg_index_t.
- Returns:
The received message.
-
status_t MU_ReceiveMsgTimeout(MU_Type *base, uint32_t regIndex, uint32_t *readValue)
Blocks to receive a message with timeout protection.
This function waits until the RX register is full and receives the message. If MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the specified number of polling iterations and return kStatus_Timeout.
This function provides the same blocking behavior as MU_ReceiveMsg() but with additional timeout protection to prevent system hangs if the other core becomes unresponsive or if hardware issues occur.
Note
Both MU_ReceiveMsg() and MU_ReceiveMsgTimeout() are blocking functions. The difference is that this function includes timeout protection while MU_ReceiveMsg() waits indefinitely.
- Parameters:
base – MU peripheral base address.
regIndex – RX register index, see mu_msg_reg_index_t.
readValue – Pointer to store the received message.
- Return values:
kStatus_Success – Message received successfully.
kStatus_InvalidArgument – Invalid readValue pointer.
kStatus_Timeout – Timeout occurred while waiting for RX register to be full.
- Returns:
status_t
-
uint32_t MU_ReceiveMsg(MU_Type *base, uint32_t regIndex)
Blocks to receive a message (infinite wait, no timeout protection).
This function waits until the RX register is full and receives the message. This function will wait indefinitely until a message is received.
Note
Both MU_ReceiveMsg() and MU_ReceiveMsgTimeout() are blocking functions. The difference is that MU_ReceiveMsgTimeout() includes timeout protection while this function waits indefinitely.
Warning
This function does not include timeout protection and may cause system hangs if the other core becomes unresponsive. For applications requiring timeout protection, use MU_ReceiveMsgTimeout() instead.
- Parameters:
base – MU peripheral base address.
regIndex – RX register index, see mu_msg_reg_index_t.
- Returns:
The received message.
-
static inline void MU_SetFlagsNonBlocking(MU_Type *base, uint32_t flags)
Sets the 3-bit MU flags reflect on the other MU side.
This function sets the 3-bit MU flags directly. Every time the 3-bit MU flags are changed, the status flag
kMU_FlagsUpdatingFlagasserts indicating the 3-bit MU flags are updating to the other side. After the 3-bit MU flags are updated, the status flagkMU_FlagsUpdatingFlagis cleared by hardware. During the flags updating period, the flags cannot be changed. The upper layer should make sure the status flagkMU_FlagsUpdatingFlagis cleared before calling this function.while (kMU_FlagsUpdatingFlag & MU_GetStatusFlags(base)) { } Wait for previous MU flags updating. MU_SetFlagsNonBlocking(base, 0U); Set the mU flags.
- Parameters:
base – MU peripheral base address.
flags – The 3-bit MU flags to set.
-
status_t MU_SetFlags(MU_Type *base, uint32_t flags)
Blocks setting the 3-bit MU flags reflect on the other MU side.
This function blocks setting the 3-bit MU flags. Every time the 3-bit MU flags are changed, the status flag
kMU_FlagsUpdatingFlagasserts indicating the 3-bit MU flags are updating to the other side. After the 3-bit MU flags are updated, the status flagkMU_FlagsUpdatingFlagis cleared by hardware. During the flags updating period, the flags cannot be changed. This function waits for the MU status flagkMU_FlagsUpdatingFlagcleared and sets the 3-bit MU flags.If MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the specified number of polling iterations and return kStatus_Timeout.
- Parameters:
base – MU peripheral base address.
flags – The 3-bit MU flags to set.
- Return values:
kStatus_Success – Flags were set successfully.
kStatus_Timeout – Timeout occurred while waiting for flags to update.
- Returns:
status_t
-
static inline uint32_t MU_GetFlags(MU_Type *base)
Gets the current value of the 3-bit MU flags set by the other side.
This function gets the current 3-bit MU flags on the current side.
- Parameters:
base – MU peripheral base address.
- Returns:
flags Current value of the 3-bit flags.
-
static inline uint32_t MU_GetStatusFlags(MU_Type *base)
Gets the MU status flags.
This function returns the bit mask of the MU status flags. See _mu_status_flags.
uint32_t flags; flags = MU_GetStatusFlags(base); Get all status flags. if (kMU_Tx0EmptyFlag & flags) { The TX0 register is empty. Message can be sent. MU_SendMsgNonBlocking(base, kMU_MsgReg0, MSG0_VAL); } if (kMU_Tx1EmptyFlag & flags) { The TX1 register is empty. Message can be sent. MU_SendMsgNonBlocking(base, kMU_MsgReg1, MSG1_VAL); }
- Parameters:
base – MU peripheral base address.
- Returns:
Bit mask of the MU status flags, see _mu_status_flags.
-
static inline uint32_t MU_GetRxStatusFlags(MU_Type *base)
Return the RX status flags.
This function return the RX status flags. Note: RFn bits of SR[27-24](mu status register) are mapped in reverse numerical order: RF0 -> SR[27] RF1 -> SR[26] RF2 -> SR[25] RF3 -> SR[24]
status_reg = MU_GetRxStatusFlags(base);
- Parameters:
base – MU peripheral base address.
- Returns:
MU RX status
-
static inline uint32_t MU_GetInterruptsPending(MU_Type *base)
Gets the MU IRQ pending status of enabled interrupts.
This function returns the bit mask of the pending MU IRQs of enabled interrupts. Only these flags are checked. kMU_Tx0EmptyFlag kMU_Tx1EmptyFlag kMU_Tx2EmptyFlag kMU_Tx3EmptyFlag kMU_Rx0FullFlag kMU_Rx1FullFlag kMU_Rx2FullFlag kMU_Rx3FullFlag kMU_GenInt0Flag kMU_GenInt1Flag kMU_GenInt2Flag kMU_GenInt3Flag
- Parameters:
base – MU peripheral base address.
- Returns:
Bit mask of the MU IRQs pending.
-
static inline void MU_ClearStatusFlags(MU_Type *base, uint32_t mask)
Clears the specific MU status flags.
This function clears the specific MU status flags. The flags to clear should be passed in as bit mask. See _mu_status_flags.
Clear general interrupt 0 and general interrupt 1 pending flags. MU_ClearStatusFlags(base, kMU_GenInt0Flag | kMU_GenInt1Flag);
- Parameters:
base – MU peripheral base address.
mask – Bit mask of the MU status flags. See _mu_status_flags. The following flags are cleared by hardware, this function could not clear them.
kMU_Tx0EmptyFlag
kMU_Tx1EmptyFlag
kMU_Tx2EmptyFlag
kMU_Tx3EmptyFlag
kMU_Rx0FullFlag
kMU_Rx1FullFlag
kMU_Rx2FullFlag
kMU_Rx3FullFlag
kMU_EventPendingFlag
kMU_FlagsUpdatingFlag
kMU_OtherSideInResetFlag
-
static inline void MU_EnableInterrupts(MU_Type *base, uint32_t mask)
Enables the specific MU interrupts.
This function enables the specific MU interrupts. The interrupts to enable should be passed in as bit mask. See _mu_interrupt_enable.
Enable general interrupt 0 and TX0 empty interrupt. MU_EnableInterrupts(base, kMU_GenInt0InterruptEnable | kMU_Tx0EmptyInterruptEnable);
- Parameters:
base – MU peripheral base address.
mask – Bit mask of the MU interrupts. See _mu_interrupt_enable.
-
static inline void MU_DisableInterrupts(MU_Type *base, uint32_t mask)
Disables the specific MU interrupts.
This function disables the specific MU interrupts. The interrupts to disable should be passed in as bit mask. See _mu_interrupt_enable.
Disable general interrupt 0 and TX0 empty interrupt. MU_DisableInterrupts(base, kMU_GenInt0InterruptEnable | kMU_Tx0EmptyInterruptEnable);
- Parameters:
base – MU peripheral base address.
mask – Bit mask of the MU interrupts. See _mu_interrupt_enable.
-
status_t MU_TriggerInterrupts(MU_Type *base, uint32_t mask)
Triggers interrupts to the other core.
This function triggers the specific interrupts to the other core. The interrupts to trigger are passed in as bit mask. See _mu_interrupt_trigger. The MU should not trigger an interrupt to the other core when the previous interrupt has not been processed by the other core. This function checks whether the previous interrupts have been processed. If not, it returns an error.
if (kStatus_Success != MU_TriggerInterrupts(base, kMU_GenInt0InterruptTrigger | kMU_GenInt2InterruptTrigger)) { Previous general purpose interrupt 0 or general purpose interrupt 2 has not been processed by the other core. }
- Parameters:
base – MU peripheral base address.
mask – Bit mask of the interrupts to trigger. See _mu_interrupt_trigger.
- Return values:
kStatus_Success – Interrupts have been triggered successfully.
kStatus_Fail – Previous interrupts have not been accepted.
-
static inline void MU_MaskHardwareReset(MU_Type *base, bool mask)
Mask hardware reset by the other core.
The other core could call MU_HardwareResetOtherCore() to reset current core. To mask the reset, call this function and pass in true.
- Parameters:
base – MU peripheral base address.
mask – Pass true to mask the hardware reset, pass false to unmask it.
-
FSL_MU_DRIVER_VERSION
MU driver version.
-
enum _mu_status_flags
MU status flags.
Values:
-
enumerator kMU_Tx0EmptyFlag
TX0 empty.
-
enumerator kMU_Tx1EmptyFlag
TX1 empty.
-
enumerator kMU_Tx2EmptyFlag
TX2 empty.
-
enumerator kMU_Tx3EmptyFlag
TX3 empty.
-
enumerator kMU_Rx0FullFlag
RX0 full.
-
enumerator kMU_Rx1FullFlag
RX1 full.
-
enumerator kMU_Rx2FullFlag
RX2 full.
-
enumerator kMU_Rx3FullFlag
RX3 full.
-
enumerator kMU_GenInt0Flag
General purpose interrupt 0 pending.
-
enumerator kMU_GenInt1Flag
General purpose interrupt 1 pending.
-
enumerator kMU_GenInt2Flag
General purpose interrupt 2 pending.
-
enumerator kMU_GenInt3Flag
General purpose interrupt 3 pending.
-
enumerator kMU_EventPendingFlag
MU event pending.
-
enumerator kMU_FlagsUpdatingFlag
MU flags update is on-going.
-
enumerator kMU_ResetAssertInterruptFlag
The other core reset assert interrupt pending.
-
enumerator kMU_ResetDeassertInterruptFlag
The other core reset de-assert interrupt pending.
-
enumerator kMU_OtherSideInResetFlag
The other side is in reset.
-
enumerator kMU_MuResetInterruptFlag
The other side initializes MU reset.
-
enumerator kMU_HardwareResetInterruptFlag
Current side has been hardware reset by the other side.
-
enumerator kMU_Tx0EmptyFlag
-
enum _mu_interrupt_enable
MU interrupt source to enable.
Values:
-
enumerator kMU_Tx0EmptyInterruptEnable
TX0 empty.
-
enumerator kMU_Tx1EmptyInterruptEnable
TX1 empty.
-
enumerator kMU_Tx2EmptyInterruptEnable
TX2 empty.
-
enumerator kMU_Tx3EmptyInterruptEnable
TX3 empty.
-
enumerator kMU_Rx0FullInterruptEnable
RX0 full.
-
enumerator kMU_Rx1FullInterruptEnable
RX1 full.
-
enumerator kMU_Rx2FullInterruptEnable
RX2 full.
-
enumerator kMU_Rx3FullInterruptEnable
RX3 full.
-
enumerator kMU_GenInt0InterruptEnable
General purpose interrupt 0.
-
enumerator kMU_GenInt1InterruptEnable
General purpose interrupt 1.
-
enumerator kMU_GenInt2InterruptEnable
General purpose interrupt 2.
-
enumerator kMU_GenInt3InterruptEnable
General purpose interrupt 3.
-
enumerator kMU_ResetAssertInterruptEnable
The other core reset assert interrupt.
-
enumerator kMU_ResetDeassertInterruptEnable
The other core reset de-assert interrupt.
-
enumerator kMU_MuResetInterruptEnable
The other side initializes MU reset. The interrupt is ORed with the general purpose interrupt 3. The general purpose interrupt 3 is issued when the other side set the MU reset and this interrupt is enabled.
-
enumerator kMU_HardwareResetInterruptEnable
Current side has been hardware reset by the other side.
-
enumerator kMU_Tx0EmptyInterruptEnable
-
enum _mu_interrupt_trigger
MU interrupt that could be triggered to the other core.
Values:
-
enumerator kMU_GenInt0InterruptTrigger
General purpose interrupt 0.
-
enumerator kMU_GenInt1InterruptTrigger
General purpose interrupt 1.
-
enumerator kMU_GenInt2InterruptTrigger
General purpose interrupt 2.
-
enumerator kMU_GenInt3InterruptTrigger
General purpose interrupt 3.
-
enumerator kMU_GenInt0InterruptTrigger
-
enum _mu_msg_reg_index
MU message register.
Values:
-
enumerator kMU_MsgReg0
-
enumerator kMU_MsgReg1
-
enumerator kMU_MsgReg2
-
enumerator kMU_MsgReg3
-
enumerator kMU_MsgReg0
-
typedef enum _mu_msg_reg_index mu_msg_reg_index_t
MU message register.
-
MU_CR_NMI_MASK
-
MU_BUSY_POLL_COUNT
Maximum polling iterations for MU waiting loops.
This parameter defines the maximum number of iterations for any polling loop in the MU code before timing out and returning an error.
It applies to all waiting loops in MU driver, such as waiting for TX register to be empty or waiting for RX register to be full.
This is a count of loop iterations, not a time-based value.
If defined as 0, polling loops will continue indefinitely until their exit condition is met, which could potentially cause the system to hang if a core becomes unresponsive.
-
MU_GET_CORE_FLAG(flags)
-
MU_GET_STAT_FLAG(flags)
-
MU_GET_TX_FLAG(flags)
-
MU_GET_RX_FLAG(flags)
-
MU_GET_GI_FLAG(flags)
PDM: Microphone Interface#
PDM Driver#
-
void PDM_Init(PDM_Type *base, const pdm_config_t *config)
Initializes the PDM peripheral.
Ungates the PDM clock, resets the module, and configures PDM with a configuration structure. The configuration structure can be custom filled or set with default values by PDM_GetDefaultConfig().
Note
This API should be called at the beginning of the application to use the PDM driver. Otherwise, accessing the PDM module can cause a hard fault because the clock is not enabled.
- Parameters:
base – PDM base pointer
config – PDM configuration structure.
-
void PDM_Deinit(PDM_Type *base)
De-initializes the PDM peripheral.
This API gates the PDM clock. The PDM module can’t operate unless PDM_Init is called to enable the clock.
- Parameters:
base – PDM base pointer
-
static inline void PDM_Reset(PDM_Type *base)
Resets the PDM module.
- Parameters:
base – PDM base pointer
-
static inline void PDM_Enable(PDM_Type *base, bool enable)
Enables/disables PDM interface.
- Parameters:
base – PDM base pointer
enable – True means PDM interface is enabled, false means PDM interface is disabled.
-
static inline void PDM_EnableDebugMode(PDM_Type *base, bool enable)
Enables/disables debug mode for PDM. The PDM interface cannot enter debug mode once in Disable/Low Leakage or Low Power mode.
- Parameters:
base – PDM base pointer
enable – True means PDM interface enter debug mode, false means PDM interface in normal mode.
-
static inline void PDM_EnableInDebugMode(PDM_Type *base, bool enable)
Enables/disables PDM interface in debug mode.
- Parameters:
base – PDM base pointer
enable – True means PDM interface is enabled debug mode, false means PDM interface is disabled after after completing the current frame in debug mode.
-
static inline void PDM_EnterLowLeakageMode(PDM_Type *base, bool enable)
Enables/disables PDM interface disable/Low Leakage mode.
- Parameters:
base – PDM base pointer
enable – True means PDM interface is in disable/low leakage mode, False means PDM interface is in normal mode.
-
static inline void PDM_EnableChannel(PDM_Type *base, uint8_t channel, bool enable)
Enables/disables the PDM channel.
- Parameters:
base – PDM base pointer
channel – PDM channel number need to enable or disable.
enable – True means enable PDM channel, false means disable.
-
void PDM_SetChannelConfig(PDM_Type *base, uint32_t channel, const pdm_channel_config_t *config)
PDM one channel configurations.
- Parameters:
base – PDM base pointer
config – PDM channel configurations.
channel – channel number. after completing the current frame in debug mode.
-
status_t PDM_SetSampleRateConfig(PDM_Type *base, uint32_t sourceClock_HZ, uint32_t sampleRate_HZ)
PDM set sample rate.
Note
This function is depend on the configuration of the PDM and PDM channel, so the correct call sequence is
PDM_Init(base, pdmConfig) PDM_SetChannelConfig(base, channel, &channelConfig) PDM_SetSampleRateConfig(base, source, sampleRate)
- Parameters:
base – PDM base pointer
sourceClock_HZ – PDM source clock frequency.
sampleRate_HZ – PDM sample rate.
-
status_t PDM_SetSampleRate(PDM_Type *base, uint32_t enableChannelMask, pdm_df_quality_mode_t qualityMode, uint8_t osr, uint32_t clkDiv)
PDM set sample rate.
- Deprecated:
Do not use this function. It has been superceded by PDM_SetSampleRateConfig
- Parameters:
base – PDM base pointer
enableChannelMask – PDM channel enable mask.
qualityMode – quality mode.
osr – cic oversample rate
clkDiv – clock divider
-
uint32_t PDM_GetInstance(PDM_Type *base)
Get the instance number for PDM.
- Parameters:
base – PDM base pointer.
-
static inline uint32_t PDM_GetStatus(PDM_Type *base)
Gets the PDM internal status flag. Use the Status Mask in _pdm_internal_status to get the status value needed.
- Parameters:
base – PDM base pointer
- Returns:
PDM status flag value.
-
static inline uint32_t PDM_GetFifoStatus(PDM_Type *base)
Gets the PDM FIFO status flag. Use the Status Mask in _pdm_fifo_status to get the status value needed.
- Parameters:
base – PDM base pointer
- Returns:
FIFO status.
-
static inline uint32_t PDM_GetRangeStatus(PDM_Type *base)
Gets the PDM Range status flag. Use the Status Mask in _pdm_range_status to get the status value needed.
- Parameters:
base – PDM base pointer
- Returns:
output status.
-
static inline void PDM_ClearStatus(PDM_Type *base, uint32_t mask)
Clears the PDM Tx status.
- Parameters:
base – PDM base pointer
mask – State mask. It can be a combination of the status between kPDM_StatusFrequencyLow and kPDM_StatusCh7FifoDataAvaliable.
-
static inline void PDM_ClearFIFOStatus(PDM_Type *base, uint32_t mask)
Clears the PDM Tx status.
- Parameters:
base – PDM base pointer
mask – State mask.It can be a combination of the status in _pdm_fifo_status.
-
static inline void PDM_ClearRangeStatus(PDM_Type *base, uint32_t mask)
Clears the PDM range status.
- Parameters:
base – PDM base pointer
mask – State mask. It can be a combination of the status in _pdm_range_status.
-
void PDM_EnableInterrupts(PDM_Type *base, uint32_t mask)
Enables the PDM interrupt requests.
- Parameters:
base – PDM base pointer
mask – interrupt source The parameter can be a combination of the following sources if defined.
kPDM_ErrorInterruptEnable
kPDM_FIFOInterruptEnable
-
static inline void PDM_DisableInterrupts(PDM_Type *base, uint32_t mask)
Disables the PDM interrupt requests.
- Parameters:
base – PDM base pointer
mask – interrupt source The parameter can be a combination of the following sources if defined.
kPDM_ErrorInterruptEnable
kPDM_FIFOInterruptEnable
-
static inline void PDM_EnableDMA(PDM_Type *base, bool enable)
Enables/disables the PDM DMA requests.
- Parameters:
base – PDM base pointer
enable – True means enable DMA, false means disable DMA.
-
static inline uint32_t PDM_GetDataRegisterAddress(PDM_Type *base, uint32_t channel)
Gets the PDM data register address.
This API is used to provide a transfer address for the PDM DMA transfer configuration.
- Parameters:
base – PDM base pointer.
channel – Which data channel used.
- Returns:
data register address.
-
void PDM_ReadFifo(PDM_Type *base, uint32_t startChannel, uint32_t channelNums, void *buffer, size_t size, uint32_t dataWidth)
PDM read fifo.
Note
: This function support 16 bit only for IP version that only supports 16bit.
- Parameters:
base – PDM base pointer.
startChannel – start channel number.
channelNums – total enabled channelnums.
buffer – received buffer address.
size – number of samples to read.
dataWidth – sample width.
-
void PDM_SetChannelGain(PDM_Type *base, uint32_t channel, pdm_df_output_gain_t gain)
Set the PDM channel gain.
Please note for different quality mode, the valid gain value is different, reference RM for detail.
- Parameters:
base – PDM base pointer.
channel – PDM channel index.
gain – channel gain, the register gain value range is 0 - 15.
-
void PDM_TransferCreateHandle(PDM_Type *base, pdm_handle_t *handle, pdm_transfer_callback_t callback, void *userData)
Initializes the PDM handle.
This function initializes the handle for the PDM transactional APIs. Call this function once to get the handle initialized.
- Parameters:
base – PDM base pointer.
handle – PDM handle pointer.
callback – Pointer to the user callback function.
userData – User parameter passed to the callback function.
-
status_t PDM_TransferSetChannelConfig(PDM_Type *base, pdm_handle_t *handle, uint32_t channel, const pdm_channel_config_t *config, uint32_t format)
PDM set channel transfer config.
- Parameters:
base – PDM base pointer.
handle – PDM handle pointer.
channel – PDM channel.
config – channel config.
format – data format, support data width configurations,_pdm_data_width.
- Return values:
kStatus_PDM_ChannelConfig_Failed – or kStatus_Success.
-
status_t PDM_TransferReceiveNonBlocking(PDM_Type *base, pdm_handle_t *handle, pdm_transfer_t *xfer)
Performs an interrupt non-blocking receive transfer on PDM.
Note
This API returns immediately after the transfer initiates. Call the PDM_RxGetTransferStatusIRQ to poll the transfer status and check whether the transfer is finished. If the return status is not kStatus_PDM_Busy, the transfer is finished.
- Parameters:
base – PDM base pointer
handle – Pointer to the pdm_handle_t structure which stores the transfer state.
xfer – Pointer to the pdm_transfer_t structure.
- Return values:
kStatus_Success – Successfully started the data receive.
kStatus_PDM_Busy – Previous receive still not finished.
-
void PDM_TransferAbortReceive(PDM_Type *base, pdm_handle_t *handle)
Aborts the current IRQ receive.
Note
This API can be called when an interrupt non-blocking transfer initiates to abort the transfer early.
- Parameters:
base – PDM base pointer
handle – Pointer to the pdm_handle_t structure which stores the transfer state.
-
void PDM_TransferHandleIRQ(PDM_Type *base, pdm_handle_t *handle)
Tx interrupt handler.
- Parameters:
base – PDM base pointer.
handle – Pointer to the pdm_handle_t structure.
-
FSL_PDM_DRIVER_VERSION
Version 2.9.3
PDM return status.
Values:
-
enumerator kStatus_PDM_Busy
PDM is busy.
-
enumerator kStatus_PDM_CLK_LOW
PDM clock frequency low
-
enumerator kStatus_PDM_FIFO_ERROR
PDM FIFO underrun or overflow
-
enumerator kStatus_PDM_QueueFull
PDM FIFO underrun or overflow
-
enumerator kStatus_PDM_Idle
PDM is idle
-
enumerator kStatus_PDM_Output_ERROR
PDM is output error
-
enumerator kStatus_PDM_ChannelConfig_Failed
PDM channel config failed
-
enumerator kStatus_PDM_Busy
-
enum _pdm_interrupt_enable
The PDM interrupt enable flag.
Values:
-
enumerator kPDM_ErrorInterruptEnable
PDM channel error interrupt enable.
-
enumerator kPDM_FIFOInterruptEnable
PDM channel FIFO interrupt
-
enumerator kPDM_ErrorInterruptEnable
-
enum _pdm_internal_status
The PDM status.
Values:
-
enumerator kPDM_StatusDfBusyFlag
Decimation filter is busy processing data
-
enumerator kPDM_StatusFrequencyLow
Mic app clock frequency not high enough
-
enumerator kPDM_StatusCh0FifoDataAvaliable
channel 0 fifo data reached watermark level
-
enumerator kPDM_StatusCh1FifoDataAvaliable
channel 1 fifo data reached watermark level
-
enumerator kPDM_StatusCh2FifoDataAvaliable
channel 2 fifo data reached watermark level
-
enumerator kPDM_StatusCh3FifoDataAvaliable
channel 3 fifo data reached watermark level
-
enumerator kPDM_StatusDfBusyFlag
-
enum _pdm_channel_enable_mask
PDM channel enable mask.
Values:
-
enumerator kPDM_EnableChannel0
channgel 0 enable mask
-
enumerator kPDM_EnableChannel1
channgel 1 enable mask
-
enumerator kPDM_EnableChannel2
channgel 2 enable mask
-
enumerator kPDM_EnableChannel3
channgel 3 enable mask
-
enumerator kPDM_EnableChannelAll
-
enumerator kPDM_EnableChannel0
-
enum _pdm_fifo_status
The PDM fifo status.
Values:
-
enumerator kPDM_FifoStatusUnderflowCh0
channel0 fifo status underflow
-
enumerator kPDM_FifoStatusUnderflowCh1
channel1 fifo status underflow
-
enumerator kPDM_FifoStatusUnderflowCh2
channel2 fifo status underflow
-
enumerator kPDM_FifoStatusUnderflowCh3
channel3 fifo status underflow
-
enumerator kPDM_FifoStatusOverflowCh0
channel0 fifo status overflow
-
enumerator kPDM_FifoStatusOverflowCh1
channel1 fifo status overflow
-
enumerator kPDM_FifoStatusOverflowCh2
channel2 fifo status overflow
-
enumerator kPDM_FifoStatusOverflowCh3
channel3 fifo status overflow
-
enumerator kPDM_FifoStatusUnderflowCh0
-
enum _pdm_range_status
The PDM output status.
Values:
-
enumerator kPDM_RangeStatusUnderFlowCh0
channel0 range status underflow
-
enumerator kPDM_RangeStatusUnderFlowCh1
channel1 range status underflow
-
enumerator kPDM_RangeStatusUnderFlowCh2
channel2 range status underflow
-
enumerator kPDM_RangeStatusUnderFlowCh3
channel3 range status underflow
-
enumerator kPDM_RangeStatusOverFlowCh0
channel0 range status overflow
-
enumerator kPDM_RangeStatusOverFlowCh1
channel1 range status overflow
-
enumerator kPDM_RangeStatusOverFlowCh2
channel2 range status overflow
-
enumerator kPDM_RangeStatusOverFlowCh3
channel3 range status overflow
-
enumerator kPDM_RangeStatusUnderFlowCh0
-
enum _pdm_dc_remover
PDM DC remover configurations.
Values:
-
enumerator kPDM_DcRemoverCutOff20Hz
DC remover cut off 20HZ
-
enumerator kPDM_DcRemoverCutOff13Hz
DC remover cut off 13.3HZ
-
enumerator kPDM_DcRemoverCutOff40Hz
DC remover cut off 40HZ
-
enumerator kPDM_DcRemoverBypass
DC remover bypass
-
enumerator kPDM_DcRemoverCutOff20Hz
-
enum _pdm_df_quality_mode
PDM decimation filter quality mode.
Values:
-
enumerator kPDM_QualityModeMedium
quality mode memdium
-
enumerator kPDM_QualityModeHigh
quality mode high
-
enumerator kPDM_QualityModeLow
quality mode low
-
enumerator kPDM_QualityModeVeryLow0
quality mode very low0
-
enumerator kPDM_QualityModeVeryLow1
quality mode very low1
-
enumerator kPDM_QualityModeVeryLow2
quality mode very low2
-
enumerator kPDM_QualityModeMedium
-
enum _pdm_qulaity_mode_k_factor
PDM quality mode K factor.
Values:
-
enumerator kPDM_QualityModeHighKFactor
high quality mode K factor = 1 / 2
-
enumerator kPDM_QualityModeMediumKFactor
medium/very low0 quality mode K factor = 2 / 2
-
enumerator kPDM_QualityModeLowKFactor
low/very low1 quality mode K factor = 4 / 2
-
enumerator kPDM_QualityModeVeryLow2KFactor
very low2 quality mode K factor = 8 / 2
-
enumerator kPDM_QualityModeHighKFactor
-
enum _pdm_df_output_gain
PDM decimation filter output gain.
Values:
-
enumerator kPDM_DfOutputGain0
Decimation filter output gain 0
-
enumerator kPDM_DfOutputGain1
Decimation filter output gain 1
-
enumerator kPDM_DfOutputGain2
Decimation filter output gain 2
-
enumerator kPDM_DfOutputGain3
Decimation filter output gain 3
-
enumerator kPDM_DfOutputGain4
Decimation filter output gain 4
-
enumerator kPDM_DfOutputGain5
Decimation filter output gain 5
-
enumerator kPDM_DfOutputGain6
Decimation filter output gain 6
-
enumerator kPDM_DfOutputGain7
Decimation filter output gain 7
-
enumerator kPDM_DfOutputGain8
Decimation filter output gain 8
-
enumerator kPDM_DfOutputGain9
Decimation filter output gain 9
-
enumerator kPDM_DfOutputGain10
Decimation filter output gain 10
-
enumerator kPDM_DfOutputGain11
Decimation filter output gain 11
-
enumerator kPDM_DfOutputGain12
Decimation filter output gain 12
-
enumerator kPDM_DfOutputGain13
Decimation filter output gain 13
-
enumerator kPDM_DfOutputGain14
Decimation filter output gain 14
-
enumerator kPDM_DfOutputGain15
Decimation filter output gain 15
-
enumerator kPDM_DfOutputGain0
-
enum _pdm_data_width
PDM data width.
Values:
-
enumerator kPDM_DataWwidth24
PDM data width 24bit
-
enumerator kPDM_DataWwidth32
PDM data width 32bit
-
enumerator kPDM_DataWwidth24
-
typedef enum _pdm_dc_remover pdm_dc_remover_t
PDM DC remover configurations.
-
typedef enum _pdm_df_quality_mode pdm_df_quality_mode_t
PDM decimation filter quality mode.
-
typedef enum _pdm_df_output_gain pdm_df_output_gain_t
PDM decimation filter output gain.
-
typedef struct _pdm_channel_config pdm_channel_config_t
PDM channel configurations.
-
typedef struct _pdm_config pdm_config_t
PDM user configuration structure.
-
typedef struct _pdm_transfer pdm_transfer_t
PDM SDMA transfer structure.
-
typedef struct _pdm_handle pdm_handle_t
PDM handle.
-
typedef void (*pdm_transfer_callback_t)(PDM_Type *base, pdm_handle_t *handle, status_t status, void *userData)
PDM transfer callback prototype.
-
PDM_XFER_QUEUE_SIZE
PDM XFER QUEUE SIZE.
-
struct _pdm_channel_config
- #include <fsl_pdm.h>
PDM channel configurations.
Public Members
-
pdm_dc_remover_t outputCutOffFreq
PDM output DC remover cut off frequency
-
pdm_df_output_gain_t gain
Decimation Filter Output Gain
-
pdm_dc_remover_t outputCutOffFreq
-
struct _pdm_config
- #include <fsl_pdm.h>
PDM user configuration structure.
Public Members
-
bool enableDoze
This module will enter disable/low leakage mode if DOZEN is active with ipg_doze is asserted
-
bool enableFilterBypass
Switchable bypass path for the decimation filter
-
uint8_t fifoWatermark
Watermark value for FIFO
-
pdm_df_quality_mode_t qualityMode
Quality mode
-
uint8_t cicOverSampleRate
CIC filter over sampling rate
-
bool enableDoze
-
struct _pdm_transfer
- #include <fsl_pdm.h>
PDM SDMA transfer structure.
Public Members
-
volatile uint8_t *data
Data start address to transfer.
-
volatile size_t dataSize
Total Transfer bytes size.
-
volatile uint8_t *data
-
struct _pdm_handle
- #include <fsl_pdm.h>
PDM handle structure.
Public Members
-
uint32_t state
Transfer status
-
pdm_transfer_callback_t callback
Callback function called at transfer event
-
void *userData
Callback parameter passed to callback function
-
pdm_transfer_t pdmQueue[(4U)]
Transfer queue storing queued transfer
-
size_t transferSize[(4U)]
Data bytes need to transfer
-
volatile uint8_t queueUser
Index for user to queue transfer
-
volatile uint8_t queueDriver
Index for driver to get the transfer data and size
-
uint32_t format
data format
-
uint8_t watermark
Watermark value
-
uint8_t startChannel
end channel
-
uint8_t channelNums
Enabled channel number
-
uint32_t state
PDM EDMA Driver#
-
void PDM_TransferInstallEDMATCDMemory(pdm_edma_handle_t *handle, void *tcdAddr, size_t tcdNum)
Install EDMA descriptor memory.
- Parameters:
handle – Pointer to EDMA channel transfer handle.
tcdAddr – EDMA head descriptor address.
tcdNum – EDMA link descriptor address.
-
void PDM_TransferCreateHandleEDMA(PDM_Type *base, pdm_edma_handle_t *handle, pdm_edma_callback_t callback, void *userData, edma_handle_t *dmaHandle)
Initializes the PDM Rx eDMA handle.
This function initializes the PDM slave DMA handle, which can be used for other PDM master transactional APIs. Usually, for a specified PDM instance, call this API once to get the initialized handle.
- Parameters:
base – PDM base pointer.
handle – PDM eDMA handle pointer.
callback – Pointer to user callback function.
userData – User parameter passed to the callback function.
dmaHandle – eDMA handle pointer, this handle shall be static allocated by users.
-
void PDM_TransferSetMultiChannelInterleaveType(pdm_edma_handle_t *handle, pdm_edma_multi_channel_interleave_t multiChannelInterleaveType)
Initializes the multi PDM channel interleave type.
This function initializes the PDM DMA handle member interleaveType, it shall be called only when application would like to use type kPDM_EDMAMultiChannelInterleavePerChannelBlock, since the default interleaveType is kPDM_EDMAMultiChannelInterleavePerChannelSample always
- Parameters:
handle – PDM eDMA handle pointer.
multiChannelInterleaveType – Multi channel interleave type.
-
void PDM_TransferSetChannelConfigEDMA(PDM_Type *base, pdm_edma_handle_t *handle, uint32_t channel, const pdm_channel_config_t *config)
Configures the PDM channel.
- Parameters:
base – PDM base pointer.
handle – PDM eDMA handle pointer.
channel – channel index.
config – pdm channel configurations.
-
status_t PDM_TransferReceiveEDMA(PDM_Type *base, pdm_edma_handle_t *handle, pdm_edma_transfer_t *xfer)
Performs a non-blocking PDM receive using eDMA.
Mcaro MCUX_SDK_PDM_EDMA_PDM_ENABLE_INTERNAL can control whether PDM is enabled internally or externally.
Scatter gather case: This functio support dynamic scatter gather and staic scatter gather, a. for the dynamic scatter gather case: Application should call PDM_TransferReceiveEDMA function continuously to make sure new receive request is submit before the previous one finish. b. for the static scatter gather case: Application should use the link transfer feature and make sure a loop link transfer is provided, such as:
pdm_edma_transfer_t pdmXfer[2] = { { .data = s_buffer, .dataSize = BUFFER_SIZE, .linkTransfer = &pdmXfer[1], }, { .data = &s_buffer[BUFFER_SIZE], .dataSize = BUFFER_SIZE, .linkTransfer = &pdmXfer[0] }, };
Multi channel case: This function support receive multi pdm channel data, for example, if two channel is requested,
The output data will be formatted as below if handle->interleaveType =PDM_TransferSetChannelConfigEDMA(DEMO_PDM, &s_pdmRxHandle_0, DEMO_PDM_ENABLE_CHANNEL_0, &channelConfig); PDM_TransferSetChannelConfigEDMA(DEMO_PDM, &s_pdmRxHandle_0, DEMO_PDM_ENABLE_CHANNEL_1, &channelConfig); PDM_TransferReceiveEDMA(DEMO_PDM, &s_pdmRxHandle_0, pdmXfer);
Note
This interface returns immediately after the transfer initiates. Call the PDM_GetReceiveRemainingBytes to poll the transfer status and check whether the PDM transfer is finished.
-
void PDM_TransferTerminateReceiveEDMA(PDM_Type *base, pdm_edma_handle_t *handle)
Terminate all PDM receive.
This function will clear all transfer slots buffered in the pdm queue. If users only want to abort the current transfer slot, please call PDM_TransferAbortReceiveEDMA.
- Parameters:
base – PDM base pointer.
handle – PDM eDMA handle pointer.
-
void PDM_TransferAbortReceiveEDMA(PDM_Type *base, pdm_edma_handle_t *handle)
Aborts a PDM receive using eDMA.
This function only aborts the current transfer slots, the other transfer slots’ information still kept in the handler. If users want to terminate all transfer slots, just call PDM_TransferTerminateReceiveEDMA.
- Parameters:
base – PDM base pointer
handle – PDM eDMA handle pointer.
-
status_t PDM_TransferGetReceiveCountEDMA(PDM_Type *base, pdm_edma_handle_t *handle, size_t *count)
Gets byte count received by PDM.
- Parameters:
base – PDM base pointer
handle – PDM eDMA handle pointer.
count – Bytes count received by PDM.
- Return values:
kStatus_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is no non-blocking transaction in progress.
-
FSL_PDM_EDMA_DRIVER_VERSION
Version 2.6.5
-
enum _pdm_edma_multi_channel_interleave
pdm multi channel interleave type
Values:
-
enumerator kPDM_EDMAMultiChannelInterleavePerChannelSample
-
enumerator kPDM_EDMAMultiChannelInterleavePerChannelBlock
-
enumerator kPDM_EDMAMultiChannelInterleavePerChannelSample
-
typedef struct _pdm_edma_handle pdm_edma_handle_t
PDM edma handler.
-
typedef enum _pdm_edma_multi_channel_interleave pdm_edma_multi_channel_interleave_t
pdm multi channel interleave type
-
typedef struct _pdm_edma_transfer pdm_edma_transfer_t
PDM edma transfer.
-
typedef void (*pdm_edma_callback_t)(PDM_Type *base, pdm_edma_handle_t *handle, status_t status, void *userData)
PDM eDMA transfer callback function for finish and error.
-
MCUX_SDK_PDM_EDMA_PDM_ENABLE_INTERNAL
the PDM enable position When calling PDM_TransferReceiveEDMA
-
struct _pdm_edma_transfer
- #include <fsl_pdm_edma.h>
PDM edma transfer.
Public Members
-
volatile uint8_t *data
Data start address to transfer.
-
volatile size_t dataSize
Total Transfer bytes size.
-
struct _pdm_edma_transfer *linkTransfer
linked transfer configurations
-
volatile uint8_t *data
-
struct _pdm_edma_handle
- #include <fsl_pdm_edma.h>
PDM DMA transfer handle, users should not touch the content of the handle.
Public Members
-
edma_handle_t *dmaHandle
DMA handler for PDM send
-
uint8_t count
The transfer data count in a DMA request
-
uint32_t receivedBytes
total transfer count
-
uint32_t state
Internal state for PDM eDMA transfer
-
pdm_edma_callback_t callback
Callback for users while transfer finish or error occurs
-
bool isLoopTransfer
loop transfer
-
void *userData
User callback parameter
-
edma_tcd_t *tcd
TCD pool for eDMA transfer.
-
uint32_t tcdNum
TCD number
-
uint32_t tcdUser
Index for user to queue transfer.
-
uint32_t tcdDriver
Index for driver to get the transfer data and size
-
volatile uint32_t tcdUsedNum
Index for user to queue transfer.
-
pdm_edma_multi_channel_interleave_t interleaveType
multi channel transfer interleave type
-
uint8_t endChannel
The last enabled channel
-
uint8_t channelNums
total channel numbers
-
edma_handle_t *dmaHandle
PDM SDMA Driver#
-
void PDM_TransferCreateHandleSDMA(PDM_Type *base, pdm_sdma_handle_t *handle, pdm_sdma_callback_t callback, void *userData, sdma_handle_t *dmaHandle, uint32_t eventSource)
Initializes the PDM eDMA handle.
This function initializes the PDM DMA handle, which can be used for other PDM master transactional APIs. Usually, for a specified PDM instance, call this API once to get the initialized handle.
- Parameters:
base – PDM base pointer.
handle – PDM eDMA handle pointer.
callback – Pointer to user callback function.
userData – User parameter passed to the callback function.
dmaHandle – eDMA handle pointer, this handle shall be static allocated by users.
eventSource – PDM event source number.
-
status_t PDM_TransferReceiveSDMA(PDM_Type *base, pdm_sdma_handle_t *handle, pdm_transfer_t *xfer)
Performs a non-blocking PDM receive using eDMA.
Note
This interface returns immediately after the transfer initiates. Call the PDM_GetReceiveRemainingBytes to poll the transfer status and check whether the PDM transfer is finished.
- Parameters:
base – PDM base pointer
handle – PDM eDMA handle pointer.
xfer – Pointer to DMA transfer structure.
- Return values:
kStatus_Success – Start a PDM eDMA receive successfully.
kStatus_InvalidArgument – The input argument is invalid.
kStatus_RxBusy – PDM is busy receiving data.
-
void PDM_TransferAbortReceiveSDMA(PDM_Type *base, pdm_sdma_handle_t *handle)
Aborts a PDM receive using eDMA.
- Parameters:
base – PDM base pointer
handle – PDM eDMA handle pointer.
-
void PDM_SetChannelConfigSDMA(PDM_Type *base, pdm_sdma_handle_t *handle, uint32_t channel, const pdm_channel_config_t *config)
PDM channel configurations.
- Parameters:
base – PDM base pointer.
handle – PDM eDMA handle pointer.
channel – channel number.
config – channel configurations.
-
void PDM_TransferTerminateReceiveSDMA(PDM_Type *base, pdm_sdma_handle_t *handle)
Terminate all the PDM sdma receive transfer.
- Parameters:
base – PDM base pointer.
handle – PDM SDMA handle pointer.
-
FSL_PDM_SDMA_DRIVER_VERSION
Version 2.7.1
-
typedef struct _pdm_sdma_handle pdm_sdma_handle_t
-
typedef void (*pdm_sdma_callback_t)(PDM_Type *base, pdm_sdma_handle_t *handle, status_t status, void *userData)
PDM eDMA transfer callback function for finish and error.
-
struct _pdm_sdma_handle
- #include <fsl_pdm_sdma.h>
PDM DMA transfer handle, users should not touch the content of the handle.
Public Members
-
sdma_handle_t *dmaHandle
DMA handler for PDM send
-
uint8_t nbytes
eDMA minor byte transfer count initially configured.
-
uint8_t fifoWidth
fifo width
-
uint8_t endChannel
The last enabled channel
-
uint8_t channelNums
total channel numbers
-
uint32_t count
The transfer data count in a DMA request
-
uint32_t state
Internal state for PDM eDMA transfer
-
uint32_t eventSource
PDM event source number
-
pdm_sdma_callback_t callback
Callback for users while transfer finish or error occurs
-
void *userData
User callback parameter
-
sdma_buffer_descriptor_t bdPool[(4U)]
BD pool for SDMA transfer.
-
pdm_transfer_t pdmQueue[(4U)]
Transfer queue storing queued transfer.
-
size_t transferSize[(4U)]
Data bytes need to transfer
-
volatile uint8_t queueUser
Index for user to queue transfer.
-
volatile uint8_t queueDriver
Index for driver to get the transfer data and size
-
sdma_handle_t *dmaHandle
PWM: Pulse Width Modulation Driver#
-
status_t PWM_Init(PWM_Type *base, const pwm_config_t *config)
Ungates the PWM clock and configures the peripheral for basic operation.
Note
This API should be called at the beginning of the application using the PWM driver.
- Parameters:
base – PWM peripheral base address
config – Pointer to user’s PWM config structure.
- Returns:
kStatus_Success means success; else failed.
-
void PWM_Deinit(PWM_Type *base)
Gate the PWM submodule clock.
- Parameters:
base – PWM peripheral base address
-
void PWM_GetDefaultConfig(pwm_config_t *config)
Fill in the PWM config struct with the default settings.
The default values are:
config->enableStopMode = false; config->enableDozeMode = false; config->enableWaitMode = false; config->enableDozeMode = false; config->clockSource = kPWM_LowFrequencyClock; config->prescale = 0U; config->outputConfig = kPWM_SetAtRolloverAndClearAtcomparison; config->fifoWater = kPWM_FIFOWaterMark_2; config->sampleRepeat = kPWM_EachSampleOnce; config->byteSwap = kPWM_ByteNoSwap; config->halfWordSwap = kPWM_HalfWordNoSwap;
- Parameters:
config – Pointer to user’s PWM config structure.
-
static inline void PWM_StartTimer(PWM_Type *base)
Starts the PWM counter when the PWM is enabled.
When the PWM is enabled, it begins a new period, the output pin is set to start a new period while the prescaler and counter are released and counting begins.
- Parameters:
base – PWM peripheral base address
-
static inline void PWM_StopTimer(PWM_Type *base)
Stops the PWM counter when the pwm is disabled.
- Parameters:
base – PWM peripheral base address
-
static inline void PWM_EnableInterrupts(PWM_Type *base, uint32_t mask)
Enables the selected PWM interrupts.
- Parameters:
base – PWM peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration pwm_interrupt_enable_t
-
static inline void PWM_DisableInterrupts(PWM_Type *base, uint32_t mask)
Disables the selected PWM interrupts.
- Parameters:
base – PWM peripheral base address
mask – The interrupts to disable. This is a logical OR of members of the enumeration pwm_interrupt_enable_t
-
static inline uint32_t PWM_GetEnabledInterrupts(PWM_Type *base)
Gets the enabled PWM interrupts.
- Parameters:
base – PWM peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration pwm_interrupt_enable_t
-
static inline uint32_t PWM_GetStatusFlags(PWM_Type *base)
Gets the PWM status flags.
- Parameters:
base – PWM peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration pwm_status_flags_t
-
static inline void PWM_clearStatusFlags(PWM_Type *base, uint32_t mask)
Clears the PWM status flags.
- Parameters:
base – PWM peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration pwm_status_flags_t
-
static inline uint32_t PWM_GetFIFOAvailable(PWM_Type *base)
Gets the PWM FIFO available.
- Parameters:
base – PWM peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration pwm_fifo_available_t
-
static inline void PWM_SetSampleValue(PWM_Type *base, uint32_t value)
Sets the PWM sample value.
- Parameters:
base – PWM peripheral base address
value – The sample value. This is the input to the 4x16 FIFO. The value in this register denotes the value of the sample being currently used.
-
static inline uint32_t PWM_GetSampleValue(PWM_Type *base)
Gets the PWM sample value.
- Parameters:
base – PWM peripheral base address
- Returns:
The sample value. It can be read only when the PWM is enable.
-
FSL_PWM_DRIVER_VERSION
-
enum _pwm_clock_source
PWM clock source select.
Values:
-
enumerator kPWM_PeripheralClock
The Peripheral clock is used as the clock
-
enumerator kPWM_HighFrequencyClock
High-frequency reference clock is used as the clock
-
enumerator kPWM_LowFrequencyClock
Low-frequency reference clock(32KHz) is used as the clock
-
enumerator kPWM_PeripheralClock
-
enum _pwm_fifo_water_mark
PWM FIFO water mark select. Sets the data level at which the FIFO empty flag will be set.
Values:
-
enumerator kPWM_FIFOWaterMark_1
FIFO empty flag is set when there are more than or equal to 1 empty slots
-
enumerator kPWM_FIFOWaterMark_2
FIFO empty flag is set when there are more than or equal to 2 empty slots
-
enumerator kPWM_FIFOWaterMark_3
FIFO empty flag is set when there are more than or equal to 3 empty slots
-
enumerator kPWM_FIFOWaterMark_4
FIFO empty flag is set when there are more than or equal to 4 empty slots
-
enumerator kPWM_FIFOWaterMark_1
-
enum _pwm_byte_data_swap
PWM byte data swap select. It determines the byte ordering of the 16-bit data when it goes into the FIFO from the sample register.
Values:
-
enumerator kPWM_ByteNoSwap
byte ordering remains the same
-
enumerator kPWM_ByteSwap
byte ordering is reversed
-
enumerator kPWM_ByteNoSwap
-
enum _pwm_half_word_data_swap
PWM half-word data swap select.
Values:
-
enumerator kPWM_HalfWordNoSwap
Half word swapping does not take place
-
enumerator kPWM_HalfWordSwap
Half word from write data bus are swapped
-
enumerator kPWM_HalfWordNoSwap
-
enum _pwm_output_configuration
PWM Output Configuration.
Values:
-
enumerator kPWM_SetAtRolloverAndClearAtcomparison
Output pin is set at rollover and cleared at comparison
-
enumerator kPWM_ClearAtRolloverAndSetAtcomparison
Output pin is cleared at rollover and set at comparison
-
enumerator kPWM_NoConfigure
PWM output is disconnected
-
enumerator kPWM_SetAtRolloverAndClearAtcomparison
-
enum _pwm_sample_repeat
PWM FIFO sample repeat It determines the number of times each sample from the FIFO is to be used.
Values:
-
enumerator kPWM_EachSampleOnce
Use each sample once
-
enumerator kPWM_EachSampletwice
Use each sample twice
-
enumerator kPWM_EachSampleFourTimes
Use each sample four times
-
enumerator kPWM_EachSampleEightTimes
Use each sample eight times
-
enumerator kPWM_EachSampleOnce
-
enum _pwm_interrupt_enable
List of PWM interrupt options.
Values:
-
enumerator kPWM_FIFOEmptyInterruptEnable
This bit controls the generation of the FIFO Empty interrupt.
-
enumerator kPWM_RolloverInterruptEnable
This bit controls the generation of the Rollover interrupt.
-
enumerator kPWM_CompareInterruptEnable
This bit controls the generation of the Compare interrupt
-
enumerator kPWM_FIFOEmptyInterruptEnable
-
enum _pwm_status_flags
List of PWM status flags.
Values:
-
enumerator kPWM_FIFOEmptyFlag
This bit indicates the FIFO data level in comparison to the water level set by FWM field in the control register.
-
enumerator kPWM_RolloverFlag
This bit shows that a roll-over event has occurred.
-
enumerator kPWM_CompareFlag
This bit shows that a compare event has occurred.
-
enumerator kPWM_FIFOWriteErrorFlag
This bit shows that an attempt has been made to write FIFO when it is full.
-
enumerator kPWM_FIFOEmptyFlag
-
enum _pwm_fifo_available
List of PWM FIFO available.
Values:
-
enumerator kPWM_NoDataInFIFOFlag
No data available
-
enumerator kPWM_OneWordInFIFOFlag
1 word of data in FIFO
-
enumerator kPWM_TwoWordsInFIFOFlag
2 word of data in FIFO
-
enumerator kPWM_ThreeWordsInFIFOFlag
3 word of data in FIFO
-
enumerator kPWM_FourWordsInFIFOFlag
4 word of data in FIFO
-
enumerator kPWM_NoDataInFIFOFlag
-
typedef enum _pwm_clock_source pwm_clock_source_t
PWM clock source select.
-
typedef enum _pwm_fifo_water_mark pwm_fifo_water_mark_t
PWM FIFO water mark select. Sets the data level at which the FIFO empty flag will be set.
-
typedef enum _pwm_byte_data_swap pwm_byte_data_swap_t
PWM byte data swap select. It determines the byte ordering of the 16-bit data when it goes into the FIFO from the sample register.
-
typedef enum _pwm_half_word_data_swap pwm_half_word_data_swap_t
PWM half-word data swap select.
-
typedef enum _pwm_output_configuration pwm_output_configuration_t
PWM Output Configuration.
-
typedef enum _pwm_sample_repeat pwm_sample_repeat_t
PWM FIFO sample repeat It determines the number of times each sample from the FIFO is to be used.
-
typedef enum _pwm_interrupt_enable pwm_interrupt_enable_t
List of PWM interrupt options.
-
typedef enum _pwm_status_flags pwm_status_flags_t
List of PWM status flags.
-
typedef enum _pwm_fifo_available pwm_fifo_available_t
List of PWM FIFO available.
-
typedef struct _pwm_config pwm_config_t
-
static inline void PWM_SoftwareReset(PWM_Type *base)
Sofrware reset.
PWM is reset when this bit is set to 1. It is a self clearing bit. Setting this bit resets all the registers to their reset values except for the STOPEN, DOZEN, WAITEN, and DBGEN bits in this control register.
- Parameters:
base – PWM peripheral base address
-
static inline void PWM_SetPeriodValue(PWM_Type *base, uint32_t value)
Sets the PWM period value.
- Parameters:
base – PWM peripheral base address
value – The period value. The PWM period register (PWM_PWMPR) determines the period of the PWM output signal. Writing 0xFFFF to this register will achieve the same result as writing 0xFFFE. PWMO (Hz) = PCLK(Hz) / (period +2)
-
static inline uint32_t PWM_GetPeriodValue(PWM_Type *base)
Gets the PWM period value.
- Parameters:
base – PWM peripheral base address
- Returns:
The period value. The PWM period register (PWM_PWMPR) determines the period of the PWM output signal.
-
static inline uint32_t PWM_GetCounterValue(PWM_Type *base)
Gets the PWM counter value.
- Parameters:
base – PWM peripheral base address
- Returns:
The counter value. The current count value.
-
struct _pwm_config
Public Members
-
bool enableStopMode
True: PWM continues to run in stop mode; False: PWM is paused in stop mode.
-
bool enableDozeMode
True: PWM continues to run in doze mode; False: PWM is paused in doze mode.
-
bool enableWaitMode
True: PWM continues to run in wait mode; False: PWM is paused in wait mode.
-
bool enableDebugMode
True: PWM continues to run in debug mode; False: PWM is paused in debug mode.
-
uint16_t prescale
Pre-scaler to divide down the clock The prescaler value is not more than 0xFFF. Divide by (value + 1)
-
pwm_clock_source_t clockSource
Clock source for the counter
-
pwm_output_configuration_t outputConfig
Set the mode of the PWM output on the output pin.
-
pwm_fifo_water_mark_t fifoWater
Set the data level for FIFO.
-
pwm_sample_repeat_t sampleRepeat
The number of times each sample from the FIFO is to be used.
-
pwm_byte_data_swap_t byteSwap
It determines the byte ordering of the 16-bit data when it goes into the FIFO from the sample register.
-
pwm_half_word_data_swap_t halfWordSwap
It determines which half word data from the 32-bit IP Bus interface is written into the lower 16 bits of the sample register.
-
bool enableStopMode
RDC: Resource Domain Controller#
-
enum _rdc_interrupts
RDC interrupts.
Values:
-
enumerator kRDC_RestoreCompleteInterrupt
Interrupt generated when the RDC has completed restoring state to a recently re-powered memory regions.
-
enumerator kRDC_RestoreCompleteInterrupt
-
enum _rdc_flags
RDC status.
Values:
-
enumerator kRDC_PowerDownDomainOn
Power down domain is ON.
-
enumerator kRDC_PowerDownDomainOn
-
enum _rdc_access_policy
Access permission policy.
Values:
-
enumerator kRDC_NoAccess
Could not read or write.
-
enumerator kRDC_WriteOnly
Write only.
-
enumerator kRDC_ReadOnly
Read only.
-
enumerator kRDC_ReadWrite
Read and write.
-
enumerator kRDC_NoAccess
-
typedef struct _rdc_hardware_config rdc_hardware_config_t
RDC hardware configuration.
-
typedef struct _rdc_domain_assignment rdc_domain_assignment_t
Master domain assignment.
-
typedef struct _rdc_periph_access_config rdc_periph_access_config_t
Peripheral domain access permission configuration.
-
typedef struct _rdc_mem_access_config rdc_mem_access_config_t
Memory region domain access control configuration.
Note that when setting the rdc_mem_access_config_t::baseAddress and rdc_mem_access_config_t::endAddress, should be aligned to the region resolution, see rdc_mem_t definitions.
-
typedef struct _rdc_mem_status rdc_mem_status_t
Memory region access violation status.
-
void RDC_Init(RDC_Type *base)
Initializes the RDC module.
This function enables the RDC clock.
- Parameters:
base – RDC peripheral base address.
-
void RDC_Deinit(RDC_Type *base)
De-initializes the RDC module.
This function disables the RDC clock.
- Parameters:
base – RDC peripheral base address.
-
void RDC_GetHardwareConfig(RDC_Type *base, rdc_hardware_config_t *config)
Gets the RDC hardware configuration.
This function gets the RDC hardware configurations, including number of bus masters, number of domains, number of memory regions and number of peripherals.
- Parameters:
base – RDC peripheral base address.
config – Pointer to the structure to get the configuration.
-
static inline void RDC_EnableInterrupts(RDC_Type *base, uint32_t mask)
Enable interrupts.
- Parameters:
base – RDC peripheral base address.
mask – Interrupts to enable, it is OR’ed value of enum _rdc_interrupts.
-
static inline void RDC_DisableInterrupts(RDC_Type *base, uint32_t mask)
Disable interrupts.
- Parameters:
base – RDC peripheral base address.
mask – Interrupts to disable, it is OR’ed value of enum _rdc_interrupts.
-
static inline uint32_t RDC_GetInterruptStatus(RDC_Type *base)
Get the interrupt pending status.
- Parameters:
base – RDC peripheral base address.
- Returns:
Interrupts pending status, it is OR’ed value of enum _rdc_interrupts.
-
static inline void RDC_ClearInterruptStatus(RDC_Type *base, uint32_t mask)
Clear interrupt pending status.
- Parameters:
base – RDC peripheral base address.
mask – Status to clear, it is OR’ed value of enum _rdc_interrupts.
-
static inline uint32_t RDC_GetStatus(RDC_Type *base)
Get RDC status.
- Parameters:
base – RDC peripheral base address.
- Returns:
mask RDC status, it is OR’ed value of enum _rdc_flags.
-
static inline void RDC_ClearStatus(RDC_Type *base, uint32_t mask)
Clear RDC status.
- Parameters:
base – RDC peripheral base address.
mask – RDC status to clear, it is OR’ed value of enum _rdc_flags.
-
void RDC_SetMasterDomainAssignment(RDC_Type *base, rdc_master_t master, const rdc_domain_assignment_t *domainAssignment)
Set master domain assignment.
- Parameters:
base – RDC peripheral base address.
master – Which master to set.
domainAssignment – Pointer to the assignment.
-
void RDC_GetDefaultMasterDomainAssignment(rdc_domain_assignment_t *domainAssignment)
Get default master domain assignment.
The default configuration is:
assignment->domainId = 0U; assignment->lock = 0U;
- Parameters:
domainAssignment – Pointer to the assignment.
-
static inline void RDC_LockMasterDomainAssignment(RDC_Type *base, rdc_master_t master)
Lock master domain assignment.
Once locked, it could not be unlocked until next reset.
- Parameters:
base – RDC peripheral base address.
master – Which master to lock.
-
void RDC_SetPeriphAccessConfig(RDC_Type *base, const rdc_periph_access_config_t *config)
Set peripheral access policy.
- Parameters:
base – RDC peripheral base address.
config – Pointer to the policy configuration.
-
void RDC_GetDefaultPeriphAccessConfig(rdc_periph_access_config_t *config)
Get default peripheral access policy.
The default configuration is:
config->lock = false; config->enableSema = false; config->policy = RDC_ACCESS_POLICY(0, kRDC_ReadWrite) | RDC_ACCESS_POLICY(1, kRDC_ReadWrite) | RDC_ACCESS_POLICY(2, kRDC_ReadWrite) | RDC_ACCESS_POLICY(3, kRDC_ReadWrite);
- Parameters:
config – Pointer to the policy configuration.
-
static inline void RDC_LockPeriphAccessConfig(RDC_Type *base, rdc_periph_t periph)
Lock peripheral access policy configuration.
Once locked, it could not be unlocked until reset.
- Parameters:
base – RDC peripheral base address.
periph – Which peripheral to lock.
-
static inline uint8_t RDC_GetPeriphAccessPolicy(RDC_Type *base, rdc_periph_t periph, uint8_t domainId)
Get the peripheral access policy for specific domain.
- Parameters:
base – RDC peripheral base address.
periph – Which peripheral to get.
domainId – Get policy for which domain.
- Returns:
Access policy, see _rdc_access_policy.
-
void RDC_SetMemAccessConfig(RDC_Type *base, const rdc_mem_access_config_t *config)
Set memory region access policy.
Note that when setting the baseAddress and endAddress in
config, should be aligned to the region resolution, see rdc_mem_t definitions.- Parameters:
base – RDC peripheral base address.
config – Pointer to the policy configuration.
-
void RDC_GetDefaultMemAccessConfig(rdc_mem_access_config_t *config)
Get default memory region access policy.
The default configuration is:
config->lock = false; config->baseAddress = 0; config->endAddress = 0; config->policy = RDC_ACCESS_POLICY(0, kRDC_ReadWrite) | RDC_ACCESS_POLICY(1, kRDC_ReadWrite) | RDC_ACCESS_POLICY(2, kRDC_ReadWrite) | RDC_ACCESS_POLICY(3, kRDC_ReadWrite);
- Parameters:
config – Pointer to the policy configuration.
-
static inline void RDC_LockMemAccessConfig(RDC_Type *base, rdc_mem_t mem)
Lock memory access policy configuration.
Once locked, it could not be unlocked until reset. After locked, you can only call RDC_SetMemAccessValid to enable the configuration, but can not disable it or change other settings.
- Parameters:
base – RDC peripheral base address.
mem – Which memory region to lock.
-
static inline void RDC_SetMemAccessValid(RDC_Type *base, rdc_mem_t mem, bool valid)
Enable or disable memory access policy configuration.
- Parameters:
base – RDC peripheral base address.
mem – Which memory region to operate.
valid – Pass in true to valid, false to invalid.
-
void RDC_GetMemViolationStatus(RDC_Type *base, rdc_mem_t mem, rdc_mem_status_t *status)
Get the memory region violation status.
The first access violation is captured. Subsequent violations are ignored until the status register is cleared. Contents are cleared upon reading the register. Clearing of contents occurs only when the status is read by the memory region’s associated domain ID(s).
- Parameters:
base – RDC peripheral base address.
mem – Which memory region to get.
status – The returned status.
-
static inline void RDC_ClearMemViolationFlag(RDC_Type *base, rdc_mem_t mem)
Clear the memory region violation flag.
- Parameters:
base – RDC peripheral base address.
mem – Which memory region to clear.
-
static inline uint8_t RDC_GetMemAccessPolicy(RDC_Type *base, rdc_mem_t mem, uint8_t domainId)
Get the memory region access policy for specific domain.
- Parameters:
base – RDC peripheral base address.
mem – Which memory region to get.
domainId – Get policy for which domain.
- Returns:
Access policy, see _rdc_access_policy.
-
static inline uint8_t RDC_GetCurrentMasterDomainId(RDC_Type *base)
Gets the domain ID of the current bus master.
This function returns the domain ID of the current bus master.
- Parameters:
base – RDC peripheral base address.
- Returns:
Domain ID of current bus master.
-
FSL_RDC_DRIVER_VERSION
-
RDC_ACCESS_POLICY(domainID, policy)
-
struct _rdc_hardware_config
- #include <fsl_rdc.h>
RDC hardware configuration.
Public Members
-
uint32_t domainNumber
Number of domains.
-
uint32_t masterNumber
Number of bus masters.
-
uint32_t periphNumber
Number of peripherals.
-
uint32_t memNumber
Number of memory regions.
-
uint32_t domainNumber
-
struct _rdc_domain_assignment
- #include <fsl_rdc.h>
Master domain assignment.
Public Members
-
uint32_t domainId
Domain ID.
-
uint32_t __pad0__
Reserved.
-
uint32_t lock
Lock the domain assignment.
-
uint32_t domainId
-
struct _rdc_periph_access_config
- #include <fsl_rdc.h>
Peripheral domain access permission configuration.
Public Members
-
rdc_periph_t periph
Peripheral name.
-
bool lock
Lock the permission until reset.
-
bool enableSema
Enable semaphore or not, when enabled, master should call RDC_SEMA42_Lock to lock the semaphore gate accordingly before access the peripheral.
-
uint16_t policy
Access policy.
-
rdc_periph_t periph
-
struct _rdc_mem_access_config
- #include <fsl_rdc.h>
Memory region domain access control configuration.
Note that when setting the rdc_mem_access_config_t::baseAddress and rdc_mem_access_config_t::endAddress, should be aligned to the region resolution, see rdc_mem_t definitions.
Public Members
-
rdc_mem_t mem
Memory region descriptor name.
-
bool lock
Lock the configuration.
-
uint64_t baseAddress
Start address of the memory region.
-
uint64_t endAddress
End address of the memory region.
-
uint16_t policy
Access policy.
-
rdc_mem_t mem
-
struct _rdc_mem_status
- #include <fsl_rdc.h>
Memory region access violation status.
Public Members
-
bool hasViolation
Violating happens or not.
-
uint8_t domainID
Violating Domain ID.
-
uint64_t address
Violating Address.
-
bool hasViolation
RDC_SEMA42: Hardware Semaphores Driver#
-
FSL_RDC_SEMA42_DRIVER_VERSION
RDC_SEMA42 driver version.
-
void RDC_SEMA42_Init(RDC_SEMAPHORE_Type *base)
Initializes the RDC_SEMA42 module.
This function initializes the RDC_SEMA42 module. It only enables the clock but does not reset the gates because the module might be used by other processors at the same time. To reset the gates, call either RDC_SEMA42_ResetGate or RDC_SEMA42_ResetAllGates function.
- Parameters:
base – RDC_SEMA42 peripheral base address.
-
void RDC_SEMA42_Deinit(RDC_SEMAPHORE_Type *base)
De-initializes the RDC_SEMA42 module.
This function de-initializes the RDC_SEMA42 module. It only disables the clock.
- Parameters:
base – RDC_SEMA42 peripheral base address.
-
status_t RDC_SEMA42_TryLock(RDC_SEMAPHORE_Type *base, uint8_t gateNum, uint8_t masterIndex, uint8_t domainId)
Tries to lock the RDC_SEMA42 gate.
This function tries to lock the specific RDC_SEMA42 gate. If the gate has been locked by another processor, this function returns an error code.
- Parameters:
base – RDC_SEMA42 peripheral base address.
gateNum – Gate number to lock.
masterIndex – Current processor master index.
domainId – Current processor domain ID.
- Return values:
kStatus_Success – Lock the sema42 gate successfully.
kStatus_Failed – Sema42 gate has been locked by another processor.
-
void RDC_SEMA42_Lock(RDC_SEMAPHORE_Type *base, uint8_t gateNum, uint8_t masterIndex, uint8_t domainId)
Locks the RDC_SEMA42 gate.
This function locks the specific RDC_SEMA42 gate. If the gate has been locked by other processors, this function waits until it is unlocked and then lock it.
- Parameters:
base – RDC_SEMA42 peripheral base address.
gateNum – Gate number to lock.
masterIndex – Current processor master index.
domainId – Current processor domain ID.
-
static inline void RDC_SEMA42_Unlock(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Unlocks the RDC_SEMA42 gate.
This function unlocks the specific RDC_SEMA42 gate. It only writes unlock value to the RDC_SEMA42 gate register. However, it does not check whether the RDC_SEMA42 gate is locked by the current processor or not. As a result, if the RDC_SEMA42 gate is not locked by the current processor, this function has no effect.
- Parameters:
base – RDC_SEMA42 peripheral base address.
gateNum – Gate number to unlock.
-
static inline int32_t RDC_SEMA42_GetLockMasterIndex(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Gets which master has currently locked the gate.
- Parameters:
base – RDC_SEMA42 peripheral base address.
gateNum – Gate number.
- Returns:
Return -1 if the gate is not locked by any master, otherwise return the master index.
-
int32_t RDC_SEMA42_GetLockDomainID(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Gets which domain has currently locked the gate.
- Parameters:
base – RDC_SEMA42 peripheral base address.
gateNum – Gate number.
- Returns:
Return -1 if the gate is not locked by any domain, otherwise return the domain ID.
-
status_t RDC_SEMA42_ResetGate(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Resets the RDC_SEMA42 gate to an unlocked status.
This function resets a RDC_SEMA42 gate to an unlocked status.
- Parameters:
base – RDC_SEMA42 peripheral base address.
gateNum – Gate number.
- Return values:
kStatus_Success – RDC_SEMA42 gate is reset successfully.
kStatus_Failed – Some other reset process is ongoing.
-
static inline status_t RDC_SEMA42_ResetAllGates(RDC_SEMAPHORE_Type *base)
Resets all RDC_SEMA42 gates to an unlocked status.
This function resets all RDC_SEMA42 gate to an unlocked status.
- Parameters:
base – RDC_SEMA42 peripheral base address.
- Return values:
kStatus_Success – RDC_SEMA42 is reset successfully.
kStatus_RDC_SEMA42_Reseting – Some other reset process is ongoing.
-
RDC_SEMA42_GATE_NUM_RESET_ALL
The number to reset all RDC_SEMA42 gates.
-
RDC_SEMA42_GATEn(base, n)
RDC_SEMA42 gate n register address.
-
RDC_SEMA42_GATE_COUNT
RDC_SEMA42 gate count.
-
RDC_SEMAPHORE_GATE_GTFSM_MASK
SAI: Serial Audio Interface#
SAI Driver#
-
void SAI_Init(I2S_Type *base)
Initializes the SAI peripheral.
This API gates the SAI clock. The SAI module can’t operate unless SAI_Init is called to enable the clock.
- Parameters:
base – SAI base pointer.
-
void SAI_Deinit(I2S_Type *base)
De-initializes the SAI peripheral.
This API gates the SAI clock. The SAI module can’t operate unless SAI_TxInit or SAI_RxInit is called to enable the clock.
- Parameters:
base – SAI base pointer.
-
void SAI_TxReset(I2S_Type *base)
Resets the SAI Tx.
This function enables the software reset and FIFO reset of SAI Tx. After reset, clear the reset bit.
- Parameters:
base – SAI base pointer
-
void SAI_RxReset(I2S_Type *base)
Resets the SAI Rx.
This function enables the software reset and FIFO reset of SAI Rx. After reset, clear the reset bit.
- Parameters:
base – SAI base pointer
-
void SAI_TxEnable(I2S_Type *base, bool enable)
Enables/disables the SAI Tx.
- Parameters:
base – SAI base pointer.
enable – True means enable SAI Tx, false means disable.
-
void SAI_RxEnable(I2S_Type *base, bool enable)
Enables/disables the SAI Rx.
- Parameters:
base – SAI base pointer.
enable – True means enable SAI Rx, false means disable.
-
static inline void SAI_TxSetBitClockDirection(I2S_Type *base, sai_master_slave_t masterSlave)
Set Rx bit clock direction.
Select bit clock direction, master or slave.
- Parameters:
base – SAI base pointer.
masterSlave – reference sai_master_slave_t.
-
static inline void SAI_RxSetBitClockDirection(I2S_Type *base, sai_master_slave_t masterSlave)
Set Rx bit clock direction.
Select bit clock direction, master or slave.
- Parameters:
base – SAI base pointer.
masterSlave – reference sai_master_slave_t.
-
static inline void SAI_RxSetFrameSyncDirection(I2S_Type *base, sai_master_slave_t masterSlave)
Set Rx frame sync direction.
Select frame sync direction, master or slave.
- Parameters:
base – SAI base pointer.
masterSlave – reference sai_master_slave_t.
-
static inline void SAI_TxSetFrameSyncDirection(I2S_Type *base, sai_master_slave_t masterSlave)
Set Tx frame sync direction.
Select frame sync direction, master or slave.
- Parameters:
base – SAI base pointer.
masterSlave – reference sai_master_slave_t.
-
void SAI_TxSetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate, uint32_t bitWidth, uint32_t channelNumbers)
Transmitter bit clock rate configurations.
- Parameters:
base – SAI base pointer.
sourceClockHz – Bit clock source frequency.
sampleRate – Audio data sample rate.
bitWidth – Audio data bitWidth.
channelNumbers – Audio channel numbers.
-
void SAI_RxSetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate, uint32_t bitWidth, uint32_t channelNumbers)
Receiver bit clock rate configurations.
- Parameters:
base – SAI base pointer.
sourceClockHz – Bit clock source frequency.
sampleRate – Audio data sample rate.
bitWidth – Audio data bitWidth.
channelNumbers – Audio channel numbers.
-
void SAI_TxSetBitclockConfig(I2S_Type *base, sai_master_slave_t masterSlave, sai_bit_clock_t *config)
Transmitter Bit clock configurations.
- Parameters:
base – SAI base pointer.
masterSlave – master or slave.
config – bit clock other configurations, can be NULL in slave mode.
-
void SAI_RxSetBitclockConfig(I2S_Type *base, sai_master_slave_t masterSlave, sai_bit_clock_t *config)
Receiver Bit clock configurations.
- Parameters:
base – SAI base pointer.
masterSlave – master or slave.
config – bit clock other configurations, can be NULL in slave mode.
-
void SAI_SetMasterClockConfig(I2S_Type *base, sai_master_clock_t *config)
Master clock configurations.
- Parameters:
base – SAI base pointer.
config – master clock configurations.
-
void SAI_TxSetFifoConfig(I2S_Type *base, sai_fifo_t *config)
SAI transmitter fifo configurations.
- Parameters:
base – SAI base pointer.
config – fifo configurations.
-
void SAI_RxSetFifoConfig(I2S_Type *base, sai_fifo_t *config)
SAI receiver fifo configurations.
- Parameters:
base – SAI base pointer.
config – fifo configurations.
-
void SAI_TxSetFrameSyncConfig(I2S_Type *base, sai_master_slave_t masterSlave, sai_frame_sync_t *config)
SAI transmitter Frame sync configurations.
- Parameters:
base – SAI base pointer.
masterSlave – master or slave.
config – frame sync configurations, can be NULL in slave mode.
-
void SAI_RxSetFrameSyncConfig(I2S_Type *base, sai_master_slave_t masterSlave, sai_frame_sync_t *config)
SAI receiver Frame sync configurations.
- Parameters:
base – SAI base pointer.
masterSlave – master or slave.
config – frame sync configurations, can be NULL in slave mode.
-
void SAI_TxSetSerialDataConfig(I2S_Type *base, sai_serial_data_t *config)
SAI transmitter Serial data configurations.
- Parameters:
base – SAI base pointer.
config – serial data configurations.
-
void SAI_RxSetSerialDataConfig(I2S_Type *base, sai_serial_data_t *config)
SAI receiver Serial data configurations.
- Parameters:
base – SAI base pointer.
config – serial data configurations.
-
void SAI_TxSetConfig(I2S_Type *base, sai_transceiver_t *config)
SAI transmitter configurations.
- Parameters:
base – SAI base pointer.
config – transmitter configurations.
-
void SAI_RxSetConfig(I2S_Type *base, sai_transceiver_t *config)
SAI receiver configurations.
- Parameters:
base – SAI base pointer.
config – receiver configurations.
-
void SAI_GetClassicI2SConfig(sai_transceiver_t *config, sai_word_width_t bitWidth, sai_mono_stereo_t mode, uint32_t saiChannelMask)
Get classic I2S mode configurations.
- Parameters:
config – transceiver configurations.
bitWidth – audio data bitWidth.
mode – audio data channel.
saiChannelMask – mask value of the channel to be enable.
-
void SAI_GetLeftJustifiedConfig(sai_transceiver_t *config, sai_word_width_t bitWidth, sai_mono_stereo_t mode, uint32_t saiChannelMask)
Get left justified mode configurations.
- Parameters:
config – transceiver configurations.
bitWidth – audio data bitWidth.
mode – audio data channel.
saiChannelMask – mask value of the channel to be enable.
-
void SAI_GetRightJustifiedConfig(sai_transceiver_t *config, sai_word_width_t bitWidth, sai_mono_stereo_t mode, uint32_t saiChannelMask)
Get right justified mode configurations.
- Parameters:
config – transceiver configurations.
bitWidth – audio data bitWidth.
mode – audio data channel.
saiChannelMask – mask value of the channel to be enable.
-
void SAI_GetTDMConfig(sai_transceiver_t *config, sai_frame_sync_len_t frameSyncWidth, sai_word_width_t bitWidth, uint32_t dataWordNum, uint32_t saiChannelMask)
Get TDM mode configurations.
- Parameters:
config – transceiver configurations.
frameSyncWidth – length of frame sync.
bitWidth – audio data word width.
dataWordNum – word number in one frame.
saiChannelMask – mask value of the channel to be enable.
-
void SAI_GetDSPConfig(sai_transceiver_t *config, sai_frame_sync_len_t frameSyncWidth, sai_word_width_t bitWidth, sai_mono_stereo_t mode, uint32_t saiChannelMask)
Get DSP mode configurations.
DSP/PCM MODE B configuration flow for TX. RX is similiar but uses SAI_RxSetConfig instead of SAI_TxSetConfig:
SAI_GetDSPConfig(config, kSAI_FrameSyncLenOneBitClk, bitWidth, kSAI_Stereo, channelMask) SAI_TxSetConfig(base, config)
Note
DSP mode is also called PCM mode which support MODE A and MODE B, DSP/PCM MODE A configuration flow. RX is similiar but uses SAI_RxSetConfig instead of SAI_TxSetConfig:
SAI_GetDSPConfig(config, kSAI_FrameSyncLenOneBitClk, bitWidth, kSAI_Stereo, channelMask) config->frameSync.frameSyncEarly = true; SAI_TxSetConfig(base, config)
- Parameters:
config – transceiver configurations.
frameSyncWidth – length of frame sync.
bitWidth – audio data bitWidth.
mode – audio data channel.
saiChannelMask – mask value of the channel to enable.
-
static inline uint32_t SAI_TxGetStatusFlag(I2S_Type *base)
Gets the SAI Tx status flag state.
- Parameters:
base – SAI base pointer
- Returns:
SAI Tx status flag value. Use the Status Mask to get the status value needed.
-
static inline void SAI_TxClearStatusFlags(I2S_Type *base, uint32_t mask)
Clears the SAI Tx status flag state.
- Parameters:
base – SAI base pointer
mask – State mask. It can be a combination of the following source if defined:
kSAI_WordStartFlag
kSAI_SyncErrorFlag
kSAI_FIFOErrorFlag
-
static inline uint32_t SAI_RxGetStatusFlag(I2S_Type *base)
Gets the SAI Tx status flag state.
- Parameters:
base – SAI base pointer
- Returns:
SAI Rx status flag value. Use the Status Mask to get the status value needed.
-
static inline void SAI_RxClearStatusFlags(I2S_Type *base, uint32_t mask)
Clears the SAI Rx status flag state.
- Parameters:
base – SAI base pointer
mask – State mask. It can be a combination of the following sources if defined.
kSAI_WordStartFlag
kSAI_SyncErrorFlag
kSAI_FIFOErrorFlag
-
void SAI_TxSoftwareReset(I2S_Type *base, sai_reset_type_t resetType)
Do software reset or FIFO reset .
FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. Software reset means clear the Tx internal logic, including the bit clock, frame count etc. But software reset will not clear any configuration registers like TCR1~TCR5. This function will also clear all the error flags such as FIFO error, sync error etc.
- Parameters:
base – SAI base pointer
resetType – Reset type, FIFO reset or software reset
-
void SAI_RxSoftwareReset(I2S_Type *base, sai_reset_type_t resetType)
Do software reset or FIFO reset .
FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. Software reset means clear the Rx internal logic, including the bit clock, frame count etc. But software reset will not clear any configuration registers like RCR1~RCR5. This function will also clear all the error flags such as FIFO error, sync error etc.
- Parameters:
base – SAI base pointer
resetType – Reset type, FIFO reset or software reset
-
void SAI_TxSetChannelFIFOMask(I2S_Type *base, uint8_t mask)
Set the Tx channel FIFO enable mask.
- Parameters:
base – SAI base pointer
mask – Channel enable mask, 0 means all channel FIFO disabled, 1 means channel 0 enabled, 3 means both channel 0 and channel 1 enabled.
-
void SAI_RxSetChannelFIFOMask(I2S_Type *base, uint8_t mask)
Set the Rx channel FIFO enable mask.
- Parameters:
base – SAI base pointer
mask – Channel enable mask, 0 means all channel FIFO disabled, 1 means channel 0 enabled, 3 means both channel 0 and channel 1 enabled.
-
void SAI_TxSetDataOrder(I2S_Type *base, sai_data_order_t order)
Set the Tx data order.
- Parameters:
base – SAI base pointer
order – Data order MSB or LSB
-
void SAI_RxSetDataOrder(I2S_Type *base, sai_data_order_t order)
Set the Rx data order.
- Parameters:
base – SAI base pointer
order – Data order MSB or LSB
-
void SAI_TxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Tx data order.
- Parameters:
base – SAI base pointer
polarity –
-
void SAI_RxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Rx data order.
- Parameters:
base – SAI base pointer
polarity –
-
void SAI_TxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Tx data order.
- Parameters:
base – SAI base pointer
polarity –
-
void SAI_RxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Rx data order.
- Parameters:
base – SAI base pointer
polarity –
-
void SAI_TxSetFIFOPacking(I2S_Type *base, sai_fifo_packing_t pack)
Set Tx FIFO packing feature.
- Parameters:
base – SAI base pointer.
pack – FIFO pack type. It is element of sai_fifo_packing_t.
-
void SAI_RxSetFIFOPacking(I2S_Type *base, sai_fifo_packing_t pack)
Set Rx FIFO packing feature.
- Parameters:
base – SAI base pointer.
pack – FIFO pack type. It is element of sai_fifo_packing_t.
-
static inline void SAI_TxSetFIFOErrorContinue(I2S_Type *base, bool isEnabled)
Set Tx FIFO error continue.
FIFO error continue mode means SAI will keep running while FIFO error occurred. If this feature not enabled, SAI will hang and users need to clear FEF flag in TCSR register.
- Parameters:
base – SAI base pointer.
isEnabled – Is FIFO error continue enabled, true means enable, false means disable.
-
static inline void SAI_RxSetFIFOErrorContinue(I2S_Type *base, bool isEnabled)
Set Rx FIFO error continue.
FIFO error continue mode means SAI will keep running while FIFO error occurred. If this feature not enabled, SAI will hang and users need to clear FEF flag in RCSR register.
- Parameters:
base – SAI base pointer.
isEnabled – Is FIFO error continue enabled, true means enable, false means disable.
-
static inline void SAI_TxEnableInterrupts(I2S_Type *base, uint32_t mask)
Enables the SAI Tx interrupt requests.
- Parameters:
base – SAI base pointer
mask – interrupt source The parameter can be a combination of the following sources if defined.
kSAI_WordStartInterruptEnable
kSAI_SyncErrorInterruptEnable
kSAI_FIFOWarningInterruptEnable
kSAI_FIFORequestInterruptEnable
kSAI_FIFOErrorInterruptEnable
-
static inline void SAI_RxEnableInterrupts(I2S_Type *base, uint32_t mask)
Enables the SAI Rx interrupt requests.
- Parameters:
base – SAI base pointer
mask – interrupt source The parameter can be a combination of the following sources if defined.
kSAI_WordStartInterruptEnable
kSAI_SyncErrorInterruptEnable
kSAI_FIFOWarningInterruptEnable
kSAI_FIFORequestInterruptEnable
kSAI_FIFOErrorInterruptEnable
-
static inline void SAI_TxDisableInterrupts(I2S_Type *base, uint32_t mask)
Disables the SAI Tx interrupt requests.
- Parameters:
base – SAI base pointer
mask – interrupt source The parameter can be a combination of the following sources if defined.
kSAI_WordStartInterruptEnable
kSAI_SyncErrorInterruptEnable
kSAI_FIFOWarningInterruptEnable
kSAI_FIFORequestInterruptEnable
kSAI_FIFOErrorInterruptEnable
-
static inline void SAI_RxDisableInterrupts(I2S_Type *base, uint32_t mask)
Disables the SAI Rx interrupt requests.
- Parameters:
base – SAI base pointer
mask – interrupt source The parameter can be a combination of the following sources if defined.
kSAI_WordStartInterruptEnable
kSAI_SyncErrorInterruptEnable
kSAI_FIFOWarningInterruptEnable
kSAI_FIFORequestInterruptEnable
kSAI_FIFOErrorInterruptEnable
-
static inline void SAI_TxEnableDMA(I2S_Type *base, uint32_t mask, bool enable)
Enables/disables the SAI Tx DMA requests.
- Parameters:
base – SAI base pointer
mask – DMA source The parameter can be combination of the following sources if defined.
kSAI_FIFOWarningDMAEnable
kSAI_FIFORequestDMAEnable
enable – True means enable DMA, false means disable DMA.
-
static inline void SAI_RxEnableDMA(I2S_Type *base, uint32_t mask, bool enable)
Enables/disables the SAI Rx DMA requests.
- Parameters:
base – SAI base pointer
mask – DMA source The parameter can be a combination of the following sources if defined.
kSAI_FIFOWarningDMAEnable
kSAI_FIFORequestDMAEnable
enable – True means enable DMA, false means disable DMA.
-
static inline uintptr_t SAI_TxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)
Gets the SAI Tx data register address.
This API is used to provide a transfer address for the SAI DMA transfer configuration.
- Parameters:
base – SAI base pointer.
channel – Which data channel used.
- Returns:
data register address.
-
static inline uintptr_t SAI_RxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)
Gets the SAI Rx data register address.
This API is used to provide a transfer address for the SAI DMA transfer configuration.
- Parameters:
base – SAI base pointer.
channel – Which data channel used.
- Returns:
data register address.
-
void SAI_WriteBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size)
Sends data using a blocking method.
Note
This function blocks by polling until data is ready to be sent.
- Parameters:
base – SAI base pointer.
channel – Data channel used.
bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.
buffer – Pointer to the data to be written.
size – Bytes to be written.
-
void SAI_WriteMultiChannelBlocking(I2S_Type *base, uint32_t channel, uint32_t channelMask, uint32_t bitWidth, uint8_t *buffer, uint32_t size)
Sends data to multi channel using a blocking method.
Note
This function blocks by polling until data is ready to be sent.
- Parameters:
base – SAI base pointer.
channel – Data channel used.
channelMask – channel mask.
bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.
buffer – Pointer to the data to be written.
size – Bytes to be written.
-
static inline void SAI_WriteData(I2S_Type *base, uint32_t channel, uint32_t data)
Writes data into SAI FIFO.
- Parameters:
base – SAI base pointer.
channel – Data channel used.
data – Data needs to be written.
-
void SAI_ReadBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size)
Receives data using a blocking method.
Note
This function blocks by polling until data is ready to be sent.
- Parameters:
base – SAI base pointer.
channel – Data channel used.
bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.
buffer – Pointer to the data to be read.
size – Bytes to be read.
-
void SAI_ReadMultiChannelBlocking(I2S_Type *base, uint32_t channel, uint32_t channelMask, uint32_t bitWidth, uint8_t *buffer, uint32_t size)
Receives multi channel data using a blocking method.
Note
This function blocks by polling until data is ready to be sent.
- Parameters:
base – SAI base pointer.
channel – Data channel used.
channelMask – channel mask.
bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.
buffer – Pointer to the data to be read.
size – Bytes to be read.
-
static inline uint32_t SAI_ReadData(I2S_Type *base, uint32_t channel)
Reads data from the SAI FIFO.
- Parameters:
base – SAI base pointer.
channel – Data channel used.
- Returns:
Data in SAI FIFO.
-
void SAI_TransferTxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t callback, void *userData)
Initializes the SAI Tx handle.
This function initializes the Tx handle for the SAI Tx transactional APIs. Call this function once to get the handle initialized.
- Parameters:
base – SAI base pointer
handle – SAI handle pointer.
callback – Pointer to the user callback function.
userData – User parameter passed to the callback function
-
void SAI_TransferRxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t callback, void *userData)
Initializes the SAI Rx handle.
This function initializes the Rx handle for the SAI Rx transactional APIs. Call this function once to get the handle initialized.
- Parameters:
base – SAI base pointer.
handle – SAI handle pointer.
callback – Pointer to the user callback function.
userData – User parameter passed to the callback function.
-
void SAI_TransferTxSetConfig(I2S_Type *base, sai_handle_t *handle, sai_transceiver_t *config)
SAI transmitter transfer configurations.
This function initializes the Tx, include bit clock, frame sync, master clock, serial data and fifo configurations.
- Parameters:
base – SAI base pointer.
handle – SAI handle pointer.
config – tranmitter configurations.
-
void SAI_TransferRxSetConfig(I2S_Type *base, sai_handle_t *handle, sai_transceiver_t *config)
SAI receiver transfer configurations.
This function initializes the Rx, include bit clock, frame sync, master clock, serial data and fifo configurations.
- Parameters:
base – SAI base pointer.
handle – SAI handle pointer.
config – receiver configurations.
-
status_t SAI_TransferSendNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t *xfer)
Performs an interrupt non-blocking send transfer on SAI.
Note
This API returns immediately after the transfer initiates. Call the SAI_TxGetTransferStatusIRQ to poll the transfer status and check whether the transfer is finished. If the return status is not kStatus_SAI_Busy, the transfer is finished.
- Parameters:
base – SAI base pointer.
handle – Pointer to the sai_handle_t structure which stores the transfer state.
xfer – Pointer to the sai_transfer_t structure.
- Return values:
kStatus_Success – Successfully started the data receive.
kStatus_SAI_TxBusy – Previous receive still not finished.
kStatus_InvalidArgument – The input parameter is invalid.
-
status_t SAI_TransferReceiveNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t *xfer)
Performs an interrupt non-blocking receive transfer on SAI.
Note
This API returns immediately after the transfer initiates. Call the SAI_RxGetTransferStatusIRQ to poll the transfer status and check whether the transfer is finished. If the return status is not kStatus_SAI_Busy, the transfer is finished.
- Parameters:
base – SAI base pointer
handle – Pointer to the sai_handle_t structure which stores the transfer state.
xfer – Pointer to the sai_transfer_t structure.
- Return values:
kStatus_Success – Successfully started the data receive.
kStatus_SAI_RxBusy – Previous receive still not finished.
kStatus_InvalidArgument – The input parameter is invalid.
-
status_t SAI_TransferGetSendCount(I2S_Type *base, sai_handle_t *handle, size_t *count)
Gets a set byte count.
- Parameters:
base – SAI base pointer.
handle – Pointer to the sai_handle_t structure which stores the transfer state.
count – Bytes count sent.
- Return values:
kStatus_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
status_t SAI_TransferGetReceiveCount(I2S_Type *base, sai_handle_t *handle, size_t *count)
Gets a received byte count.
- Parameters:
base – SAI base pointer.
handle – Pointer to the sai_handle_t structure which stores the transfer state.
count – Bytes count received.
- Return values:
kStatus_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
void SAI_TransferAbortSend(I2S_Type *base, sai_handle_t *handle)
Aborts the current send.
Note
This API can be called any time when an interrupt non-blocking transfer initiates to abort the transfer early.
- Parameters:
base – SAI base pointer.
handle – Pointer to the sai_handle_t structure which stores the transfer state.
-
void SAI_TransferAbortReceive(I2S_Type *base, sai_handle_t *handle)
Aborts the current IRQ receive.
Note
This API can be called when an interrupt non-blocking transfer initiates to abort the transfer early.
- Parameters:
base – SAI base pointer
handle – Pointer to the sai_handle_t structure which stores the transfer state.
-
void SAI_TransferTerminateSend(I2S_Type *base, sai_handle_t *handle)
Terminate all SAI send.
This function will clear all transfer slots buffered in the sai queue. If users only want to abort the current transfer slot, please call SAI_TransferAbortSend.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
-
void SAI_TransferTerminateReceive(I2S_Type *base, sai_handle_t *handle)
Terminate all SAI receive.
This function will clear all transfer slots buffered in the sai queue. If users only want to abort the current transfer slot, please call SAI_TransferAbortReceive.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
-
void SAI_TransferTxHandleIRQ(I2S_Type *base, sai_handle_t *handle)
Tx interrupt handler.
- Parameters:
base – SAI base pointer.
handle – Pointer to the sai_handle_t structure.
-
void SAI_TransferRxHandleIRQ(I2S_Type *base, sai_handle_t *handle)
Tx interrupt handler.
- Parameters:
base – SAI base pointer.
handle – Pointer to the sai_handle_t structure.
-
void SAI_DriverIRQHandler(uint32_t instance)
SAI driver IRQ handler common entry.
This function provides the common IRQ request entry for SAI.
- Parameters:
instance – SAI instance.
-
FSL_SAI_DRIVER_VERSION
Version 2.4.10
_sai_status_t, SAI return status.
Values:
-
enumerator kStatus_SAI_TxBusy
SAI Tx is busy.
-
enumerator kStatus_SAI_RxBusy
SAI Rx is busy.
-
enumerator kStatus_SAI_TxError
SAI Tx FIFO error.
-
enumerator kStatus_SAI_RxError
SAI Rx FIFO error.
-
enumerator kStatus_SAI_QueueFull
SAI transfer queue is full.
-
enumerator kStatus_SAI_TxIdle
SAI Tx is idle
-
enumerator kStatus_SAI_RxIdle
SAI Rx is idle
-
enumerator kStatus_SAI_TxBusy
_sai_channel_mask,.sai channel mask value, actual channel numbers is depend soc specific
Values:
-
enumerator kSAI_Channel0Mask
channel 0 mask value
-
enumerator kSAI_Channel1Mask
channel 1 mask value
-
enumerator kSAI_Channel2Mask
channel 2 mask value
-
enumerator kSAI_Channel3Mask
channel 3 mask value
-
enumerator kSAI_Channel4Mask
channel 4 mask value
-
enumerator kSAI_Channel5Mask
channel 5 mask value
-
enumerator kSAI_Channel6Mask
channel 6 mask value
-
enumerator kSAI_Channel7Mask
channel 7 mask value
-
enumerator kSAI_Channel0Mask
-
enum _sai_protocol
Define the SAI bus type.
Values:
-
enumerator kSAI_BusLeftJustified
Uses left justified format.
-
enumerator kSAI_BusRightJustified
Uses right justified format.
-
enumerator kSAI_BusI2S
Uses I2S format.
-
enumerator kSAI_BusPCMA
Uses I2S PCM A format.
-
enumerator kSAI_BusPCMB
Uses I2S PCM B format.
-
enumerator kSAI_BusLeftJustified
-
enum _sai_master_slave
Master or slave mode.
Values:
-
enumerator kSAI_Master
Master mode include bclk and frame sync
-
enumerator kSAI_Slave
Slave mode include bclk and frame sync
-
enumerator kSAI_Bclk_Master_FrameSync_Slave
bclk in master mode, frame sync in slave mode
-
enumerator kSAI_Bclk_Slave_FrameSync_Master
bclk in slave mode, frame sync in master mode
-
enumerator kSAI_Master
-
enum _sai_mono_stereo
Mono or stereo audio format.
Values:
-
enumerator kSAI_Stereo
Stereo sound.
-
enumerator kSAI_MonoRight
Only Right channel have sound.
-
enumerator kSAI_MonoLeft
Only left channel have sound.
-
enumerator kSAI_Stereo
-
enum _sai_data_order
SAI data order, MSB or LSB.
Values:
-
enumerator kSAI_DataLSB
LSB bit transferred first
-
enumerator kSAI_DataMSB
MSB bit transferred first
-
enumerator kSAI_DataLSB
-
enum _sai_clock_polarity
SAI clock polarity, active high or low.
Values:
-
enumerator kSAI_PolarityActiveHigh
Drive outputs on rising edge
-
enumerator kSAI_PolarityActiveLow
Drive outputs on falling edge
-
enumerator kSAI_SampleOnFallingEdge
Sample inputs on falling edge
-
enumerator kSAI_SampleOnRisingEdge
Sample inputs on rising edge
-
enumerator kSAI_PolarityActiveHigh
-
enum _sai_sync_mode
Synchronous or asynchronous mode.
Values:
-
enumerator kSAI_ModeAsync
Asynchronous mode
-
enumerator kSAI_ModeSync
Synchronous mode (with receiver or transmit)
-
enumerator kSAI_ModeSyncWithOtherTx
Synchronous with another SAI transmit
-
enumerator kSAI_ModeSyncWithOtherRx
Synchronous with another SAI receiver
-
enumerator kSAI_ModeAsync
-
enum _sai_bclk_source
Bit clock source.
Values:
-
enumerator kSAI_BclkSourceBusclk
Bit clock using bus clock
-
enumerator kSAI_BclkSourceMclkOption1
Bit clock MCLK option 1
-
enumerator kSAI_BclkSourceMclkOption2
Bit clock MCLK option2
-
enumerator kSAI_BclkSourceMclkOption3
Bit clock MCLK option3
-
enumerator kSAI_BclkSourceMclkDiv
Bit clock using master clock divider
-
enumerator kSAI_BclkSourceOtherSai0
Bit clock from other SAI device
-
enumerator kSAI_BclkSourceOtherSai1
Bit clock from other SAI device
-
enumerator kSAI_BclkSourceBusclk
_sai_interrupt_enable_t, The SAI interrupt enable flag
Values:
-
enumerator kSAI_WordStartInterruptEnable
Word start flag, means the first word in a frame detected
-
enumerator kSAI_SyncErrorInterruptEnable
Sync error flag, means the sync error is detected
-
enumerator kSAI_FIFOWarningInterruptEnable
FIFO warning flag, means the FIFO is empty
-
enumerator kSAI_FIFOErrorInterruptEnable
FIFO error flag
-
enumerator kSAI_FIFORequestInterruptEnable
FIFO request, means reached watermark
-
enumerator kSAI_WordStartInterruptEnable
_sai_dma_enable_t, The DMA request sources
Values:
-
enumerator kSAI_FIFOWarningDMAEnable
FIFO warning caused by the DMA request
-
enumerator kSAI_FIFORequestDMAEnable
FIFO request caused by the DMA request
-
enumerator kSAI_FIFOWarningDMAEnable
_sai_flags, The SAI status flag
Values:
-
enumerator kSAI_WordStartFlag
Word start flag, means the first word in a frame detected
-
enumerator kSAI_SyncErrorFlag
Sync error flag, means the sync error is detected
-
enumerator kSAI_FIFOErrorFlag
FIFO error flag
-
enumerator kSAI_FIFORequestFlag
FIFO request flag.
-
enumerator kSAI_FIFOWarningFlag
FIFO warning flag
-
enumerator kSAI_WordStartFlag
-
enum _sai_reset_type
The reset type.
Values:
-
enumerator kSAI_ResetTypeSoftware
Software reset, reset the logic state
-
enumerator kSAI_ResetTypeFIFO
FIFO reset, reset the FIFO read and write pointer
-
enumerator kSAI_ResetAll
All reset.
-
enumerator kSAI_ResetTypeSoftware
-
enum _sai_fifo_packing
The SAI packing mode The mode includes 8 bit and 16 bit packing.
Values:
-
enumerator kSAI_FifoPackingDisabled
Packing disabled
-
enumerator kSAI_FifoPacking8bit
8 bit packing enabled
-
enumerator kSAI_FifoPacking16bit
16bit packing enabled
-
enumerator kSAI_FifoPackingDisabled
-
enum _sai_sample_rate
Audio sample rate.
Values:
-
enumerator kSAI_SampleRate8KHz
Sample rate 8000 Hz
-
enumerator kSAI_SampleRate11025Hz
Sample rate 11025 Hz
-
enumerator kSAI_SampleRate12KHz
Sample rate 12000 Hz
-
enumerator kSAI_SampleRate16KHz
Sample rate 16000 Hz
-
enumerator kSAI_SampleRate22050Hz
Sample rate 22050 Hz
-
enumerator kSAI_SampleRate24KHz
Sample rate 24000 Hz
-
enumerator kSAI_SampleRate32KHz
Sample rate 32000 Hz
-
enumerator kSAI_SampleRate44100Hz
Sample rate 44100 Hz
-
enumerator kSAI_SampleRate48KHz
Sample rate 48000 Hz
-
enumerator kSAI_SampleRate96KHz
Sample rate 96000 Hz
-
enumerator kSAI_SampleRate192KHz
Sample rate 192000 Hz
-
enumerator kSAI_SampleRate384KHz
Sample rate 384000 Hz
-
enumerator kSAI_SampleRate8KHz
-
enum _sai_word_width
Audio word width.
Values:
-
enumerator kSAI_WordWidth8bits
Audio data width 8 bits
-
enumerator kSAI_WordWidth16bits
Audio data width 16 bits
-
enumerator kSAI_WordWidth24bits
Audio data width 24 bits
-
enumerator kSAI_WordWidth32bits
Audio data width 32 bits
-
enumerator kSAI_WordWidth8bits
-
enum _sai_data_pin_state
sai data pin state definition
Values:
-
enumerator kSAI_DataPinStateTriState
transmit data pins are tri-stated when slots are masked or channels are disabled
-
enumerator kSAI_DataPinStateOutputZero
transmit data pins are never tri-stated and will output zero when slots are masked or channel disabled
-
enumerator kSAI_DataPinStateTriState
-
enum _sai_fifo_combine
sai fifo combine mode definition
Values:
-
enumerator kSAI_FifoCombineDisabled
sai TX/RX fifo combine mode disabled
-
enumerator kSAI_FifoCombineModeEnabledOnRead
sai TX fifo combine mode enabled on FIFO reads
-
enumerator kSAI_FifoCombineModeEnabledOnWrite
sai TX fifo combine mode enabled on FIFO write
-
enumerator kSAI_RxFifoCombineModeEnabledOnWrite
sai RX fifo combine mode enabled on FIFO write
-
enumerator kSAI_RXFifoCombineModeEnabledOnRead
sai RX fifo combine mode enabled on FIFO reads
-
enumerator kSAI_FifoCombineModeEnabledOnReadWrite
sai TX/RX fifo combined mode enabled on FIFO read/writes
-
enumerator kSAI_FifoCombineDisabled
-
enum _sai_transceiver_type
sai transceiver type
Values:
-
enumerator kSAI_Transmitter
sai transmitter
-
enumerator kSAI_Receiver
sai receiver
-
enumerator kSAI_Transmitter
-
enum _sai_frame_sync_len
sai frame sync len
Values:
-
enumerator kSAI_FrameSyncLenOneBitClk
1 bit clock frame sync len for DSP mode
-
enumerator kSAI_FrameSyncLenPerWordWidth
Frame sync length decided by word width
-
enumerator kSAI_FrameSyncLenOneBitClk
-
typedef enum _sai_protocol sai_protocol_t
Define the SAI bus type.
-
typedef enum _sai_master_slave sai_master_slave_t
Master or slave mode.
-
typedef enum _sai_mono_stereo sai_mono_stereo_t
Mono or stereo audio format.
-
typedef enum _sai_data_order sai_data_order_t
SAI data order, MSB or LSB.
-
typedef enum _sai_clock_polarity sai_clock_polarity_t
SAI clock polarity, active high or low.
-
typedef enum _sai_sync_mode sai_sync_mode_t
Synchronous or asynchronous mode.
-
typedef enum _sai_bclk_source sai_bclk_source_t
Bit clock source.
-
typedef enum _sai_reset_type sai_reset_type_t
The reset type.
-
typedef enum _sai_fifo_packing sai_fifo_packing_t
The SAI packing mode The mode includes 8 bit and 16 bit packing.
-
typedef struct _sai_config sai_config_t
SAI user configuration structure.
-
typedef enum _sai_sample_rate sai_sample_rate_t
Audio sample rate.
-
typedef enum _sai_word_width sai_word_width_t
Audio word width.
-
typedef enum _sai_data_pin_state sai_data_pin_state_t
sai data pin state definition
-
typedef enum _sai_fifo_combine sai_fifo_combine_t
sai fifo combine mode definition
-
typedef enum _sai_transceiver_type sai_transceiver_type_t
sai transceiver type
-
typedef enum _sai_frame_sync_len sai_frame_sync_len_t
sai frame sync len
-
typedef struct _sai_transfer_format sai_transfer_format_t
sai transfer format
-
typedef struct _sai_master_clock sai_master_clock_t
master clock configurations
-
typedef struct _sai_fifo sai_fifo_t
sai fifo configurations
-
typedef struct _sai_bit_clock sai_bit_clock_t
sai bit clock configurations
-
typedef struct _sai_frame_sync sai_frame_sync_t
sai frame sync configurations
-
typedef struct _sai_serial_data sai_serial_data_t
sai serial data configurations
-
typedef struct _sai_transceiver sai_transceiver_t
sai transceiver configurations
-
typedef struct _sai_transfer sai_transfer_t
SAI transfer structure.
-
typedef struct _sai_handle sai_handle_t
-
typedef void (*sai_transfer_callback_t)(I2S_Type *base, sai_handle_t *handle, status_t status, void *userData)
SAI transfer callback prototype.
-
MCUX_SDK_SAI_ALLOW_NULL_FIFO_WATERMARK
Used to control whether SAI_RxSetFifoConfig()/SAI_TxSetFifoConfig() allows a NULL FIFO watermark.
If this macro is set to 0 then SAI_RxSetFifoConfig()/SAI_TxSetFifoConfig() will set the watermark to half of the FIFO’s depth if passed a NULL watermark.
-
MCUX_SDK_SAI_DISABLE_IMPLICIT_CHAN_CONFIG
Disable implicit channel data configuration within SAI_TxSetConfig()/SAI_RxSetConfig().
Use this macro to control whether SAI_RxSetConfig()/SAI_TxSetConfig() will attempt to implicitly configure the channel data. By channel data we mean the startChannel, channelMask, endChannel, and channelNums fields from the sai_transciever_t structure. By default, SAI_TxSetConfig()/SAI_RxSetConfig() will attempt to compute these fields, which may not be desired in cases where the user wants to set them before the call to said functions.
-
SAI_XFER_QUEUE_SIZE
SAI transfer queue size, user can refine it according to use case.
-
FSL_SAI_HAS_FIFO_EXTEND_FEATURE
sai fifo feature
-
struct _sai_config
- #include <fsl_sai.h>
SAI user configuration structure.
Public Members
-
sai_protocol_t protocol
Audio bus protocol in SAI
-
sai_sync_mode_t syncMode
SAI sync mode, control Tx/Rx clock sync
-
bool mclkOutputEnable
Master clock output enable, true means master clock divider enabled
-
sai_bclk_source_t bclkSource
Bit Clock source
-
sai_master_slave_t masterSlave
Master or slave
-
sai_protocol_t protocol
-
struct _sai_transfer_format
- #include <fsl_sai.h>
sai transfer format
Public Members
-
uint32_t sampleRate_Hz
Sample rate of audio data
-
uint32_t bitWidth
Data length of audio data, usually 8/16/24/32 bits
-
sai_mono_stereo_t stereo
Mono or stereo
-
uint32_t masterClockHz
Master clock frequency in Hz
-
uint8_t watermark
Watermark value
-
uint8_t channel
Transfer start channel
-
uint8_t channelMask
enabled channel mask value, reference _sai_channel_mask
-
uint8_t endChannel
end channel number
-
uint8_t channelNums
Total enabled channel numbers
-
sai_protocol_t protocol
Which audio protocol used
-
bool isFrameSyncCompact
True means Frame sync length is configurable according to bitWidth, false means frame sync length is 64 times of bit clock.
-
uint32_t sampleRate_Hz
-
struct _sai_master_clock
- #include <fsl_sai.h>
master clock configurations
Public Members
-
bool mclkOutputEnable
master clock output enable
-
uint32_t mclkHz
target mclk frequency
-
uint32_t mclkSourceClkHz
mclk source frequency
-
bool mclkOutputEnable
-
struct _sai_fifo
- #include <fsl_sai.h>
sai fifo configurations
Public Members
-
bool fifoContinueOneError
fifo continues when error occur
-
sai_fifo_combine_t fifoCombine
fifo combine mode
-
sai_fifo_packing_t fifoPacking
fifo packing mode
-
uint8_t fifoWatermark
fifo watermark
-
bool fifoContinueOneError
-
struct _sai_bit_clock
- #include <fsl_sai.h>
sai bit clock configurations
Public Members
-
bool bclkSrcSwap
bit clock source swap
-
bool bclkInputDelay
bit clock actually used by the transmitter is delayed by the pad output delay, this has effect of decreasing the data input setup time, but increasing the data output valid time .
-
sai_clock_polarity_t bclkPolarity
bit clock polarity
-
sai_bclk_source_t bclkSource
bit Clock source
-
bool bclkSrcSwap
-
struct _sai_frame_sync
- #include <fsl_sai.h>
sai frame sync configurations
Public Members
-
uint8_t frameSyncWidth
frame sync width in number of bit clocks
-
bool frameSyncEarly
TRUE is frame sync assert one bit before the first bit of frame FALSE is frame sync assert with the first bit of the frame
-
bool frameSyncGenerateOnDemand
internal frame sync is generated when FIFO waring flag is clear
-
sai_clock_polarity_t frameSyncPolarity
frame sync polarity
-
uint8_t frameSyncWidth
-
struct _sai_serial_data
- #include <fsl_sai.h>
sai serial data configurations
Public Members
-
sai_data_pin_state_t dataMode
sai data pin state when slots masked or channel disabled
-
sai_data_order_t dataOrder
configure whether the LSB or MSB is transmitted first
-
uint8_t dataWord0Length
configure the number of bits in the first word in each frame
-
uint8_t dataWordNLength
configure the number of bits in the each word in each frame, except the first word
-
uint8_t dataWordLength
used to record the data length for dma transfer
-
uint8_t dataFirstBitShifted
Configure the bit index for the first bit transmitted for each word in the frame
-
uint8_t dataWordNum
configure the number of words in each frame
-
uint32_t dataMaskedWord
configure whether the transmit word is masked
-
sai_data_pin_state_t dataMode
-
struct _sai_transceiver
- #include <fsl_sai.h>
sai transceiver configurations
Public Members
-
sai_serial_data_t serialData
serial data configurations
-
sai_frame_sync_t frameSync
ws configurations
-
sai_bit_clock_t bitClock
bit clock configurations
-
sai_fifo_t fifo
fifo configurations
-
sai_master_slave_t masterSlave
transceiver is master or slave
-
sai_sync_mode_t syncMode
transceiver sync mode
-
uint8_t startChannel
Transfer start channel
-
uint8_t channelMask
enabled channel mask value, reference _sai_channel_mask
-
uint8_t endChannel
end channel number
-
uint8_t channelNums
Total enabled channel numbers
-
sai_serial_data_t serialData
-
struct _sai_transfer
- #include <fsl_sai.h>
SAI transfer structure.
Public Members
-
uint8_t *data
Data start address to transfer.
-
size_t dataSize
Transfer size.
-
uint8_t *data
-
struct _sai_handle
- #include <fsl_sai.h>
SAI handle structure.
Public Members
-
I2S_Type *base
base address
-
uint32_t state
Transfer status
-
sai_transfer_callback_t callback
Callback function called at transfer event
-
void *userData
Callback parameter passed to callback function
-
uint8_t bitWidth
Bit width for transfer, 8/16/24/32 bits
-
uint8_t channel
Transfer start channel
-
uint8_t channelMask
enabled channel mask value, refernece _sai_channel_mask
-
uint8_t endChannel
end channel number
-
uint8_t channelNums
Total enabled channel numbers
-
sai_transfer_t saiQueue[(4U)]
Transfer queue storing queued transfer
-
size_t transferSize[(4U)]
Data bytes need to transfer
-
volatile uint8_t queueUser
Index for user to queue transfer
-
volatile uint8_t queueDriver
Index for driver to get the transfer data and size
-
uint8_t watermark
Watermark value
-
I2S_Type *base
SAI EDMA Driver#
-
void SAI_TransferTxCreateHandleEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_edma_callback_t callback, void *userData, edma_handle_t *txDmaHandle)
Initializes the SAI eDMA handle.
This function initializes the SAI master DMA handle, which can be used for other SAI master transactional APIs. Usually, for a specified SAI instance, call this API once to get the initialized handle.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
callback – Pointer to user callback function.
userData – User parameter passed to the callback function.
txDmaHandle – eDMA handle pointer, this handle shall be static allocated by users.
-
void SAI_TransferRxCreateHandleEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_edma_callback_t callback, void *userData, edma_handle_t *rxDmaHandle)
Initializes the SAI Rx eDMA handle.
This function initializes the SAI slave DMA handle, which can be used for other SAI master transactional APIs. Usually, for a specified SAI instance, call this API once to get the initialized handle.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
callback – Pointer to user callback function.
userData – User parameter passed to the callback function.
rxDmaHandle – eDMA handle pointer, this handle shall be static allocated by users.
-
void SAI_TransferSetInterleaveType(sai_edma_handle_t *handle, sai_edma_interleave_t interleaveType)
Initializes the SAI interleave type.
This function initializes the SAI DMA handle member interleaveType, it shall be called only when application would like to use type kSAI_EDMAInterleavePerChannelBlock, since the default interleaveType is kSAI_EDMAInterleavePerChannelSample always
- Parameters:
handle – SAI eDMA handle pointer.
interleaveType – Multi channel interleave type.
-
void SAI_TransferTxSetConfigEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transceiver_t *saiConfig)
Configures the SAI Tx.
Note
SAI eDMA supports data transfer in a multiple SAI channels if the FIFO Combine feature is supported. To activate the multi-channel transfer enable SAI channels by filling the channelMask of sai_transceiver_t with the corresponding values of _sai_channel_mask enum, enable the FIFO Combine mode by assigning kSAI_FifoCombineModeEnabledOnWrite to the fifoCombine member of sai_fifo_combine_t which is a member of sai_transceiver_t. This is an example of multi-channel data transfer configuration step.
sai_transceiver_t config; SAI_GetClassicI2SConfig(&config, kSAI_WordWidth16bits, kSAI_Stereo, kSAI_Channel0Mask|kSAI_Channel1Mask); config.fifo.fifoCombine = kSAI_FifoCombineModeEnabledOnWrite; SAI_TransferTxSetConfigEDMA(I2S0, &edmaHandle, &config);
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
saiConfig – sai configurations.
-
void SAI_TransferRxSetConfigEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transceiver_t *saiConfig)
Configures the SAI Rx.
Note
SAI eDMA supports data transfer in a multiple SAI channels if the FIFO Combine feature is supported. To activate the multi-channel transfer enable SAI channels by filling the channelMask of sai_transceiver_t with the corresponding values of _sai_channel_mask enum, enable the FIFO Combine mode by assigning kSAI_FifoCombineModeEnabledOnRead to the fifoCombine member of sai_fifo_combine_t which is a member of sai_transceiver_t. This is an example of multi-channel data transfer configuration step.
sai_transceiver_t config; SAI_GetClassicI2SConfig(&config, kSAI_WordWidth16bits, kSAI_Stereo, kSAI_Channel0Mask|kSAI_Channel1Mask); config.fifo.fifoCombine = kSAI_FifoCombineModeEnabledOnRead; SAI_TransferRxSetConfigEDMA(I2S0, &edmaHandle, &config);
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
saiConfig – sai configurations.
-
status_t SAI_TransferSendEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t *xfer)
Performs a non-blocking SAI transfer using DMA.
This function support multi channel transfer,
for the sai IP support fifo combine mode, application should enable the fifo combine mode, no limitation on channel numbers
for the sai IP not support fifo combine mode, sai edma provide another solution which using EDMA modulo feature, but support 2 or 4 channels only.
Note
This interface returns immediately after the transfer initiates. Call SAI_GetTransferStatus to poll the transfer status and check whether the SAI transfer is finished.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
xfer – Pointer to the DMA transfer structure.
- Return values:
kStatus_Success – Start a SAI eDMA send successfully.
kStatus_InvalidArgument – The input argument is invalid.
kStatus_TxBusy – SAI is busy sending data.
-
status_t SAI_TransferReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t *xfer)
Performs a non-blocking SAI receive using eDMA.
This function support multi channel transfer,
for the sai IP support fifo combine mode, application should enable the fifo combine mode, no limitation on channel numbers
for the sai IP not support fifo combine mode, sai edma provide another solution which using EDMA modulo feature, but support 2 or 4 channels only.
Note
This interface returns immediately after the transfer initiates. Call the SAI_GetReceiveRemainingBytes to poll the transfer status and check whether the SAI transfer is finished.
- Parameters:
base – SAI base pointer
handle – SAI eDMA handle pointer.
xfer – Pointer to DMA transfer structure.
- Return values:
kStatus_Success – Start a SAI eDMA receive successfully.
kStatus_InvalidArgument – The input argument is invalid.
kStatus_RxBusy – SAI is busy receiving data.
-
status_t SAI_TransferSendLoopEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t *xfer, uint32_t loopTransferCount)
Performs a non-blocking SAI loop transfer using eDMA.
Once the loop transfer start, application can use function SAI_TransferAbortSendEDMA to stop the loop transfer.
Note
This function support loop transfer only,such as A->B->…->A, application must be aware of that the more counts of the loop transfer, then more tcd memory required, as the function use the tcd pool in sai_edma_handle_t, so application could redefine the SAI_XFER_QUEUE_SIZE to determine the proper TCD pool size. This function support one sai channel only.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
xfer – Pointer to the DMA transfer structure, should be a array with elements counts >=1(loopTransferCount).
loopTransferCount – the counts of xfer array.
- Return values:
kStatus_Success – Start a SAI eDMA send successfully.
kStatus_InvalidArgument – The input argument is invalid.
-
status_t SAI_TransferReceiveLoopEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t *xfer, uint32_t loopTransferCount)
Performs a non-blocking SAI loop transfer using eDMA.
Once the loop transfer start, application can use function SAI_TransferAbortReceiveEDMA to stop the loop transfer.
Note
This function support loop transfer only,such as A->B->…->A, application must be aware of that the more counts of the loop transfer, then more tcd memory required, as the function use the tcd pool in sai_edma_handle_t, so application could redefine the SAI_XFER_QUEUE_SIZE to determine the proper TCD pool size. This function support one sai channel only.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
xfer – Pointer to the DMA transfer structure, should be a array with elements counts >=1(loopTransferCount).
loopTransferCount – the counts of xfer array.
- Return values:
kStatus_Success – Start a SAI eDMA receive successfully.
kStatus_InvalidArgument – The input argument is invalid.
-
void SAI_TransferTerminateSendEDMA(I2S_Type *base, sai_edma_handle_t *handle)
Terminate all SAI send.
This function will clear all transfer slots buffered in the sai queue. If users only want to abort the current transfer slot, please call SAI_TransferAbortSendEDMA.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
-
void SAI_TransferTerminateReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle)
Terminate all SAI receive.
This function will clear all transfer slots buffered in the sai queue. If users only want to abort the current transfer slot, please call SAI_TransferAbortReceiveEDMA.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
-
void SAI_TransferAbortSendEDMA(I2S_Type *base, sai_edma_handle_t *handle)
Aborts a SAI transfer using eDMA.
This function only aborts the current transfer slots, the other transfer slots’ information still kept in the handler. If users want to terminate all transfer slots, just call SAI_TransferTerminateSendEDMA.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
-
void SAI_TransferAbortReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle)
Aborts a SAI receive using eDMA.
This function only aborts the current transfer slots, the other transfer slots’ information still kept in the handler. If users want to terminate all transfer slots, just call SAI_TransferTerminateReceiveEDMA.
- Parameters:
base – SAI base pointer
handle – SAI eDMA handle pointer.
-
status_t SAI_TransferGetSendCountEDMA(I2S_Type *base, sai_edma_handle_t *handle, size_t *count)
Gets byte count sent by SAI.
- Parameters:
base – SAI base pointer.
handle – SAI eDMA handle pointer.
count – Bytes count sent by SAI.
- Return values:
kStatus_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is no non-blocking transaction in progress.
-
status_t SAI_TransferGetReceiveCountEDMA(I2S_Type *base, sai_edma_handle_t *handle, size_t *count)
Gets byte count received by SAI.
- Parameters:
base – SAI base pointer
handle – SAI eDMA handle pointer.
count – Bytes count received by SAI.
- Return values:
kStatus_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is no non-blocking transaction in progress.
-
uint32_t SAI_TransferGetValidTransferSlotsEDMA(I2S_Type *base, sai_edma_handle_t *handle)
Gets valid transfer slot.
This function can be used to query the valid transfer request slot that the application can submit. It should be called in the critical section, that means the application could call it in the corresponding callback function or disable IRQ before calling it in the application, otherwise, the returned value may not correct.
- Parameters:
base – SAI base pointer
handle – SAI eDMA handle pointer.
- Return values:
valid – slot count that application submit.
-
FSL_SAI_EDMA_DRIVER_VERSION
Version 2.7.3
-
enum _sai_edma_interleave
sai interleave type
Values:
-
enumerator kSAI_EDMAInterleavePerChannelSample
-
enumerator kSAI_EDMAInterleavePerChannelBlock
-
enumerator kSAI_EDMAInterleavePerChannelSample
-
typedef struct sai_edma_handle sai_edma_handle_t
-
typedef void (*sai_edma_callback_t)(I2S_Type *base, sai_edma_handle_t *handle, status_t status, void *userData)
SAI eDMA transfer callback function for finish and error.
-
typedef enum _sai_edma_interleave sai_edma_interleave_t
sai interleave type
-
MCUX_SDK_SAI_EDMA_RX_ENABLE_INTERNAL
the SAI enable position When calling SAI_TransferReceiveEDMA
-
MCUX_SDK_SAI_EDMA_TX_ENABLE_INTERNAL
the SAI enable position When calling SAI_TransferSendEDMA
-
struct sai_edma_handle
- #include <fsl_sai_edma.h>
SAI DMA transfer handle, users should not touch the content of the handle.
Public Members
-
edma_handle_t *dmaHandle
DMA handler for SAI send
-
uint8_t nbytes
eDMA minor byte transfer count initially configured.
-
uint8_t bytesPerFrame
Bytes in a frame
-
uint8_t channelMask
Enabled channel mask value, reference _sai_channel_mask
-
uint8_t channelNums
total enabled channel nums
-
uint8_t channel
Which data channel
-
uint8_t count
The transfer data count in a DMA request
-
uint32_t state
Internal state for SAI eDMA transfer
-
sai_edma_callback_t callback
Callback for users while transfer finish or error occurs
-
void *userData
User callback parameter
-
uint8_t tcd[((4U) + 1U) * sizeof(edma_tcd_t)]
TCD pool for eDMA transfer.
-
sai_transfer_t saiQueue[(4U)]
Transfer queue storing queued transfer.
-
size_t transferSize[(4U)]
Data bytes need to transfer
-
sai_edma_interleave_t interleaveType
Transfer interleave type
-
volatile uint8_t queueUser
Index for user to queue transfer.
-
volatile uint8_t queueDriver
Index for driver to get the transfer data and size
-
edma_handle_t *dmaHandle
SAI SDMA Driver#
-
void SAI_TransferTxCreateHandleSDMA(I2S_Type *base, sai_sdma_handle_t *handle, sai_sdma_callback_t callback, void *userData, sdma_handle_t *dmaHandle, uint32_t eventSource)
Initializes the SAI SDMA handle.
This function initializes the SAI master DMA handle, which can be used for other SAI master transactional APIs. Usually, for a specified SAI instance, call this API once to get the initialized handle.
- Parameters:
base – SAI base pointer.
handle – SAI SDMA handle pointer.
base – SAI peripheral base address.
callback – Pointer to user callback function.
userData – User parameter passed to the callback function.
dmaHandle – SDMA handle pointer, this handle shall be static allocated by users.
eventSource – SAI event source number.
-
void SAI_TransferRxCreateHandleSDMA(I2S_Type *base, sai_sdma_handle_t *handle, sai_sdma_callback_t callback, void *userData, sdma_handle_t *dmaHandle, uint32_t eventSource)
Initializes the SAI Rx SDMA handle.
This function initializes the SAI slave DMA handle, which can be used for other SAI master transactional APIs. Usually, for a specified SAI instance, call this API once to get the initialized handle.
- Parameters:
base – SAI base pointer.
handle – SAI SDMA handle pointer.
base – SAI peripheral base address.
callback – Pointer to user callback function.
userData – User parameter passed to the callback function.
dmaHandle – SDMA handle pointer, this handle shall be static allocated by users.
eventSource – SAI event source number.
-
status_t SAI_TransferSendSDMA(I2S_Type *base, sai_sdma_handle_t *handle, sai_transfer_t *xfer)
Performs a non-blocking SAI transfer using DMA.
Note
This interface returns immediately after the transfer initiates. Call SAI_GetTransferStatus to poll the transfer status and check whether the SAI transfer is finished.
- Parameters:
base – SAI base pointer.
handle – SAI SDMA handle pointer.
xfer – Pointer to the DMA transfer structure.
- Return values:
kStatus_Success – Start a SAI SDMA send successfully.
kStatus_InvalidArgument – The input argument is invalid.
kStatus_TxBusy – SAI is busy sending data.
-
status_t SAI_TransferReceiveSDMA(I2S_Type *base, sai_sdma_handle_t *handle, sai_transfer_t *xfer)
Performs a non-blocking SAI receive using SDMA.
Note
This interface returns immediately after the transfer initiates. Call the SAI_GetReceiveRemainingBytes to poll the transfer status and check whether the SAI transfer is finished.
- Parameters:
base – SAI base pointer
handle – SAI SDMA handle pointer.
xfer – Pointer to DMA transfer structure.
- Return values:
kStatus_Success – Start a SAI SDMA receive successfully.
kStatus_InvalidArgument – The input argument is invalid.
kStatus_RxBusy – SAI is busy receiving data.
-
void SAI_TransferAbortSendSDMA(I2S_Type *base, sai_sdma_handle_t *handle)
Aborts a SAI transfer using SDMA.
- Parameters:
base – SAI base pointer.
handle – SAI SDMA handle pointer.
-
void SAI_TransferAbortReceiveSDMA(I2S_Type *base, sai_sdma_handle_t *handle)
Aborts a SAI receive using SDMA.
- Parameters:
base – SAI base pointer
handle – SAI SDMA handle pointer.
-
void SAI_TransferTerminateReceiveSDMA(I2S_Type *base, sai_sdma_handle_t *handle)
Terminate all the SAI sdma receive transfer.
- Parameters:
base – SAI base pointer.
handle – SAI SDMA handle pointer.
-
void SAI_TransferTerminateSendSDMA(I2S_Type *base, sai_sdma_handle_t *handle)
Terminate all the SAI sdma send transfer.
- Parameters:
base – SAI base pointer.
handle – SAI SDMA handle pointer.
-
void SAI_TransferRxSetConfigSDMA(I2S_Type *base, sai_sdma_handle_t *handle, sai_transceiver_t *saiConfig)
brief Configures the SAI RX.
param base SAI base pointer. param handle SAI SDMA handle pointer. param saiConig sai configurations.
-
void SAI_TransferTxSetConfigSDMA(I2S_Type *base, sai_sdma_handle_t *handle, sai_transceiver_t *saiConfig)
brief Configures the SAI Tx.
param base SAI base pointer. param handle SAI SDMA handle pointer. param saiConig sai configurations.
-
FSL_SAI_SDMA_DRIVER_VERSION
Version 2.6.0
-
typedef struct _sai_sdma_handle sai_sdma_handle_t
-
typedef void (*sai_sdma_callback_t)(I2S_Type *base, sai_sdma_handle_t *handle, status_t status, void *userData)
SAI SDMA transfer callback function for finish and error.
-
struct _sai_sdma_handle
- #include <fsl_sai_sdma.h>
SAI DMA transfer handle, users should not touch the content of the handle.
Public Members
-
sdma_handle_t *dmaHandle
DMA handler for SAI send
-
uint8_t bytesPerFrame
Bytes in a frame
-
uint8_t channel
start data channel
-
uint8_t channelNums
total transfer channel numbers, used for multififo
-
uint8_t channelMask
enabled channel mask value, refernece _sai_channel_mask
-
uint8_t fifoOffset
fifo address offset between multifo
-
uint32_t count
The transfer data count in a DMA request
-
uint32_t state
Internal state for SAI SDMA transfer
-
uint32_t eventSource
SAI event source number
-
sai_sdma_callback_t callback
Callback for users while transfer finish or error occurs
-
void *userData
User callback parameter
-
sdma_buffer_descriptor_t bdPool[(4U)]
BD pool for SDMA transfer.
-
sai_transfer_t saiQueue[(4U)]
Transfer queue storing queued transfer.
-
size_t transferSize[(4U)]
Data bytes need to transfer
-
volatile uint8_t queueUser
Index for user to queue transfer.
-
volatile uint8_t queueDriver
Index for driver to get the transfer data and size
-
sdma_handle_t *dmaHandle
SDMA: Smart Direct Memory Access (SDMA) Controller Driver#
-
void SDMA_Init(SDMAARM_Type *base, const sdma_config_t *config)
Initializes the SDMA peripheral.
This function ungates the SDMA clock and configures the SDMA peripheral according to the configuration structure.
Note
This function enables the minor loop map feature.
- Parameters:
base – SDMA peripheral base address.
config – A pointer to the configuration structure, see “sdma_config_t”.
-
void SDMA_Deinit(SDMAARM_Type *base)
Deinitializes the SDMA peripheral.
This function gates the SDMA clock.
- Parameters:
base – SDMA peripheral base address.
-
void SDMA_GetDefaultConfig(sdma_config_t *config)
Gets the SDMA default configuration structure.
This function sets the configuration structure to default values. The default configuration is set to the following values.
config.enableRealTimeDebugPin = false; config.isSoftwareResetClearLock = true; config.ratio = kSDMA_HalfARMClockFreq;
- Parameters:
config – A pointer to the SDMA configuration structure.
-
void SDMA_ResetModule(SDMAARM_Type *base)
Sets all SDMA core register to reset status.
If only reset ARM core, SDMA register cannot return to reset value, shall call this function to reset all SDMA register to reset value. But the internal status cannot be reset.
- Parameters:
base – SDMA peripheral base address.
-
static inline void SDMA_EnableChannelErrorInterrupts(SDMAARM_Type *base, uint32_t channel)
Enables the interrupt source for the SDMA error.
Enable this will trigger an interrupt while SDMA occurs error while executing scripts.
- Parameters:
base – SDMA peripheral base address.
channel – SDMA channel number.
-
static inline void SDMA_DisableChannelErrorInterrupts(SDMAARM_Type *base, uint32_t channel)
Disables the interrupt source for the SDMA error.
- Parameters:
base – SDMA peripheral base address.
channel – SDMA channel number.
-
void SDMA_ConfigBufferDescriptor(sdma_buffer_descriptor_t *bd, uint32_t srcAddr, uint32_t destAddr, sdma_transfer_size_t busWidth, size_t bufferSize, bool isLast, bool enableInterrupt, bool isWrap, sdma_transfer_type_t type)
Sets buffer descriptor contents.
This function sets the descriptor contents such as source, dest address and status bits.
- Parameters:
bd – Pointer to the buffer descriptor structure.
srcAddr – Source address for the buffer descriptor.
destAddr – Destination address for the buffer descriptor.
busWidth – The transfer width, it only can be a member of sdma_transfer_size_t.
bufferSize – Buffer size for this descriptor, this number shall less than 0xFFFF. If need to transfer a big size, shall divide into several buffer descriptors.
isLast – Is the buffer descriptor the last one for the channel to transfer. If only one descriptor used for the channel, this bit shall set to TRUE.
enableInterrupt – If trigger an interrupt while this buffer descriptor transfer finished.
isWrap – Is the buffer descriptor need to be wrapped. While this bit set to true, it will automatically wrap to the first buffer descrtiptor to do transfer.
type – Transfer type, memory to memory, peripheral to memory or memory to peripheral.
-
static inline void SDMA_SetChannelPriority(SDMAARM_Type *base, uint32_t channel, uint8_t priority)
Set SDMA channel priority.
This function sets the channel priority. The default value is 0 for all channels, priority 0 will prevents channel from starting, so the priority must be set before start a channel.
- Parameters:
base – SDMA peripheral base address.
channel – SDMA channel number.
priority – SDMA channel priority.
-
static inline void SDMA_SetSourceChannel(SDMAARM_Type *base, uint32_t source, uint32_t channelMask)
Set SDMA request source mapping channel.
This function sets which channel will be triggered by the dma request source.
- Parameters:
base – SDMA peripheral base address.
source – SDMA dma request source number.
channelMask – SDMA channel mask. 1 means channel 0, 2 means channel 1, 4 means channel 3. SDMA supports an event trigger multi-channel. A channel can also be triggered by several source events.
-
static inline void SDMA_StartChannelSoftware(SDMAARM_Type *base, uint32_t channel)
Start a SDMA channel by software trigger.
This function start a channel.
- Parameters:
base – SDMA peripheral base address.
channel – SDMA channel number.
-
static inline void SDMA_StartChannelEvents(SDMAARM_Type *base, uint32_t channel)
Start a SDMA channel by hardware events.
This function start a channel.
- Parameters:
base – SDMA peripheral base address.
channel – SDMA channel number.
-
static inline void SDMA_StopChannel(SDMAARM_Type *base, uint32_t channel)
Stop a SDMA channel.
This function stops a channel.
- Parameters:
base – SDMA peripheral base address.
channel – SDMA channel number.
-
void SDMA_SetContextSwitchMode(SDMAARM_Type *base, sdma_context_switch_mode_t mode)
Set the SDMA context switch mode.
- Parameters:
base – SDMA peripheral base address.
mode – SDMA context switch mode.
-
static inline uint32_t SDMA_GetChannelInterruptStatus(SDMAARM_Type *base)
Gets the SDMA interrupt status of all channels.
- Parameters:
base – SDMA peripheral base address.
- Returns:
The interrupt status for all channels. Check the relevant bits for specific channel.
-
static inline void SDMA_ClearChannelInterruptStatus(SDMAARM_Type *base, uint32_t mask)
Clear the SDMA channel interrupt status of specific channels.
- Parameters:
base – SDMA peripheral base address.
mask – The interrupt status need to be cleared.
-
static inline uint32_t SDMA_GetChannelStopStatus(SDMAARM_Type *base)
Gets the SDMA stop status of all channels.
- Parameters:
base – SDMA peripheral base address.
- Returns:
The stop status for all channels. Check the relevant bits for specific channel.
-
static inline void SDMA_ClearChannelStopStatus(SDMAARM_Type *base, uint32_t mask)
Clear the SDMA channel stop status of specific channels.
- Parameters:
base – SDMA peripheral base address.
mask – The stop status need to be cleared.
-
static inline uint32_t SDMA_GetChannelPendStatus(SDMAARM_Type *base)
Gets the SDMA channel pending status of all channels.
- Parameters:
base – SDMA peripheral base address.
- Returns:
The pending status for all channels. Check the relevant bits for specific channel.
-
static inline void SDMA_ClearChannelPendStatus(SDMAARM_Type *base, uint32_t mask)
Clear the SDMA channel pending status of specific channels.
- Parameters:
base – SDMA peripheral base address.
mask – The pending status need to be cleared.
-
static inline uint32_t SDMA_GetErrorStatus(SDMAARM_Type *base)
Gets the SDMA channel error status.
SDMA channel error flag is asserted while an incoming DMA request was detected and it triggers a channel that is already pending or being serviced. This probably means there is an overflow of data for that channel.
- Parameters:
base – SDMA peripheral base address.
- Returns:
The error status for all channels. Check the relevant bits for specific channel.
-
bool SDMA_GetRequestSourceStatus(SDMAARM_Type *base, uint32_t source)
Gets the SDMA request source pending status.
- Parameters:
base – SDMA peripheral base address.
source – DMA request source number.
- Returns:
True means the request source is pending, otherwise not pending.
-
void SDMA_CreateHandle(sdma_handle_t *handle, SDMAARM_Type *base, uint32_t channel, sdma_context_data_t *context)
Creates the SDMA handle.
This function is called if using the transactional API for SDMA. This function initializes the internal state of the SDMA handle.
- Parameters:
handle – SDMA handle pointer. The SDMA handle stores callback function and parameters.
base – SDMA peripheral base address.
channel – SDMA channel number.
context – Context structure for the channel to download into SDMA. Users shall make sure the context located in a non-cacheable memory, or it will cause SDMA run fail. Users shall not touch the context contents, it only be filled by SDMA driver in SDMA_SubmitTransfer function.
-
void SDMA_InstallBDMemory(sdma_handle_t *handle, sdma_buffer_descriptor_t *BDPool, uint32_t BDCount)
Installs the BDs memory pool into the SDMA handle.
This function is called after the SDMA_CreateHandle to use multi-buffer feature.
- Parameters:
handle – SDMA handle pointer.
BDPool – A memory pool to store BDs. It must be located in non-cacheable address.
BDCount – The number of BD slots.
-
void SDMA_SetCallback(sdma_handle_t *handle, sdma_callback callback, void *userData)
Installs a callback function for the SDMA transfer.
This callback is called in the SDMA IRQ handler. Use the callback to do something after the current major loop transfer completes.
- Parameters:
handle – SDMA handle pointer.
callback – SDMA callback function pointer.
userData – A parameter for the callback function.
-
void SDMA_SetMultiFifoConfig(sdma_transfer_config_t *config, uint32_t fifoNums, uint32_t fifoOffset)
multi fifo configurations.
This api is used to support multi fifo for SDMA, if user want to get multi fifo data, then this api shoule be called before submit transfer.
- Parameters:
config – transfer configurations.
fifoNums – fifo numbers that multi fifo operation perform, support up to 15 fifo numbers.
fifoOffset – fifoOffset = fifo address offset / sizeof(uint32_t) - 1.
-
void SDMA_EnableSwDone(SDMAARM_Type *base, sdma_transfer_config_t *config, uint8_t sel, sdma_peripheral_t type)
enable sdma sw done feature.
- Deprecated:
Do not use this function. It has been superceded by SDMA_SetDoneConfig.
- Parameters:
base – SDMA base.
config – transfer configurations.
sel – sw done selector.
type – peripheral type is used to determine the corresponding peripheral sw done selector bit.
-
void SDMA_SetDoneConfig(SDMAARM_Type *base, sdma_transfer_config_t *config, sdma_peripheral_t type, sdma_done_src_t doneSrc)
sdma channel done configurations.
- Parameters:
base – SDMA base.
config – transfer configurations.
type – peripheral type.
doneSrc – reference sdma_done_src_t.
-
void SDMA_LoadScript(SDMAARM_Type *base, uint32_t destAddr, void *srcAddr, size_t bufferSizeBytes)
load script to sdma program memory.
- Parameters:
base – SDMA base.
destAddr – dest script address, should be SDMA program memory address.
srcAddr – source address of target script.
bufferSizeBytes – bytes size of script.
-
void SDMA_DumpScript(SDMAARM_Type *base, uint32_t srcAddr, void *destAddr, size_t bufferSizeBytes)
dump script from sdma program memory.
- Parameters:
base – SDMA base.
srcAddr – should be SDMA program memory address.
destAddr – address to store scripts.
bufferSizeBytes – bytes size of script.
-
static inline const char *SDMA_GetRamScriptVersion(SDMAARM_Type *base)
Get RAM script version.
- Parameters:
base – SDMA base.
- Returns:
The script version of RAM.
-
void SDMA_PrepareTransfer(sdma_transfer_config_t *config, uint32_t srcAddr, uint32_t destAddr, uint32_t srcWidth, uint32_t destWidth, uint32_t bytesEachRequest, uint32_t transferSize, uint32_t eventSource, sdma_peripheral_t peripheral, sdma_transfer_type_t type)
Prepares the SDMA transfer structure.
This function prepares the transfer configuration structure according to the user input.
Note
The data address and the data width must be consistent. For example, if the SRC is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error.
- Parameters:
config – The user configuration structure of type sdma_transfer_t.
srcAddr – SDMA transfer source address.
destAddr – SDMA transfer destination address.
srcWidth – SDMA transfer source address width(bytes).
destWidth – SDMA transfer destination address width(bytes).
bytesEachRequest – SDMA transfer bytes per channel request.
transferSize – SDMA transfer bytes to be transferred.
eventSource – Event source number for the transfer, if use software trigger, just write 0.
peripheral – Peripheral type, used to decide if need to use some special scripts.
type – SDMA transfer type. Used to decide the correct SDMA script address in SDMA ROM.
-
void SDMA_PrepareP2PTransfer(sdma_transfer_config_t *config, uint32_t srcAddr, uint32_t destAddr, uint32_t srcWidth, uint32_t destWidth, uint32_t bytesEachRequest, uint32_t transferSize, uint32_t eventSource, uint32_t eventSource1, sdma_peripheral_t peripheral, sdma_p2p_config_t *p2p)
Prepares the SDMA P2P transfer structure.
This function prepares the transfer configuration structure according to the user input.
Note
The data address and the data width must be consistent. For example, if the SRC is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error.
- Parameters:
config – The user configuration structure of type sdma_transfer_t.
srcAddr – SDMA transfer source address.
destAddr – SDMA transfer destination address.
srcWidth – SDMA transfer source address width(bytes).
destWidth – SDMA transfer destination address width(bytes).
bytesEachRequest – SDMA transfer bytes per channel request.
transferSize – SDMA transfer bytes to be transferred.
eventSource – Event source number for the transfer.
eventSource1 – Event source1 number for the transfer.
peripheral – Peripheral type, used to decide if need to use some special scripts.
p2p – sdma p2p configuration pointer.
-
void SDMA_SubmitTransfer(sdma_handle_t *handle, const sdma_transfer_config_t *config)
Submits the SDMA transfer request.
This function submits the SDMA transfer request according to the transfer configuration structure.
- Parameters:
handle – SDMA handle pointer.
config – Pointer to SDMA transfer configuration structure.
-
void SDMA_StartTransfer(sdma_handle_t *handle)
SDMA starts transfer.
This function enables the channel request. Users can call this function after submitting the transfer request or before submitting the transfer request.
- Parameters:
handle – SDMA handle pointer.
-
void SDMA_StopTransfer(sdma_handle_t *handle)
SDMA stops transfer.
This function disables the channel request to pause the transfer. Users can call SDMA_StartTransfer() again to resume the transfer.
- Parameters:
handle – SDMA handle pointer.
-
void SDMA_AbortTransfer(sdma_handle_t *handle)
SDMA aborts transfer.
This function disables the channel request and clear transfer status bits. Users can submit another transfer after calling this API.
- Parameters:
handle – DMA handle pointer.
-
uint32_t SDMA_GetTransferredBytes(sdma_handle_t *handle)
Get transferred bytes while not using BD pools.
This function returns the buffer descriptor count value if not using buffer descriptor. While do a simple transfer, which only uses one descriptor, the SDMA driver inside handle the buffer descriptor. In uart receive case, it can tell users how many data already received, also it can tells users how many data transfferd while error occurred. Notice, the count would not change while transfer is on-going using default SDMA script.
- Parameters:
handle – DMA handle pointer.
- Returns:
Transferred bytes.
-
bool SDMA_IsPeripheralInSPBA(uint32_t addr)
Judge if address located in SPBA.
- Parameters:
addr – Address which need to judge.
- Return values:
True – means located in SPBA, false means not.
-
void SDMA_HandleIRQ(sdma_handle_t *handle)
SDMA IRQ handler for complete a buffer descriptor transfer.
This function clears the interrupt flags and also handle the CCB for the channel.
- Parameters:
handle – SDMA handle pointer.
-
FSL_SDMA_DRIVER_VERSION
SDMA driver version.
Version 2.4.3.
-
enum _sdma_transfer_size
SDMA transfer configuration.
Values:
-
enumerator kSDMA_TransferSize1Bytes
Source/Destination data transfer size is 1 byte every time
-
enumerator kSDMA_TransferSize2Bytes
Source/Destination data transfer size is 2 bytes every time
-
enumerator kSDMA_TransferSize3Bytes
Source/Destination data transfer size is 3 bytes every time
-
enumerator kSDMA_TransferSize4Bytes
Source/Destination data transfer size is 4 bytes every time
-
enumerator kSDMA_TransferSize1Bytes
-
enum _sdma_bd_status
SDMA buffer descriptor status.
Values:
-
enumerator kSDMA_BDStatusDone
BD ownership, 0 means ARM core owns the BD, while 1 means SDMA owns BD.
-
enumerator kSDMA_BDStatusWrap
While this BD is last one, the next BD will be the first one
-
enumerator kSDMA_BDStatusContinuous
Buffer is allowed to transfer/receive to/from multiple buffers
-
enumerator kSDMA_BDStatusInterrupt
While this BD finished, send an interrupt.
-
enumerator kSDMA_BDStatusError
Error occurred on buffer descriptor command.
-
enumerator kSDMA_BDStatusLast
This BD is the last BD in this array. It means the transfer ended after this buffer
-
enumerator kSDMA_BDStatusExtend
Buffer descriptor extend status for SDMA scripts
-
enumerator kSDMA_BDStatusDone
-
enum _sdma_bd_command
SDMA buffer descriptor command.
Values:
-
enumerator kSDMA_BDCommandSETDM
Load SDMA data memory from ARM core memory buffer.
-
enumerator kSDMA_BDCommandGETDM
Copy SDMA data memory to ARM core memory buffer.
-
enumerator kSDMA_BDCommandSETPM
Load SDMA program memory from ARM core memory buffer.
-
enumerator kSDMA_BDCommandGETPM
Copy SDMA program memory to ARM core memory buffer.
-
enumerator kSDMA_BDCommandSETCTX
Load context for one channel into SDMA RAM from ARM platform memory buffer.
-
enumerator kSDMA_BDCommandGETCTX
Copy context for one channel from SDMA RAM to ARM platform memory buffer.
-
enumerator kSDMA_BDCommandSETDM
-
enum _sdma_context_switch_mode
SDMA context switch mode.
Values:
-
enumerator kSDMA_ContextSwitchModeStatic
SDMA context switch mode static
-
enumerator kSDMA_ContextSwitchModeDynamicLowPower
SDMA context switch mode dynamic with low power
-
enumerator kSDMA_ContextSwitchModeDynamicWithNoLoop
SDMA context switch mode dynamic with no loop
-
enumerator kSDMA_ContextSwitchModeDynamic
SDMA context switch mode dynamic
-
enumerator kSDMA_ContextSwitchModeStatic
-
enum _sdma_clock_ratio
SDMA core clock frequency ratio to the ARM DMA interface.
Values:
-
enumerator kSDMA_HalfARMClockFreq
SDMA core clock frequency half of ARM platform
-
enumerator kSDMA_ARMClockFreq
SDMA core clock frequency equals to ARM platform
-
enumerator kSDMA_HalfARMClockFreq
-
enum _sdma_transfer_type
SDMA transfer type.
Values:
-
enumerator kSDMA_MemoryToMemory
Transfer from memory to memory
-
enumerator kSDMA_PeripheralToMemory
Transfer from peripheral to memory
-
enumerator kSDMA_MemoryToPeripheral
Transfer from memory to peripheral
-
enumerator kSDMA_PeripheralToPeripheral
Transfer from peripheral to peripheral
-
enumerator kSDMA_MemoryToMemory
-
enum sdma_peripheral
Peripheral type use SDMA.
Values:
-
enumerator kSDMA_PeripheralTypeMemory
Peripheral DDR memory
-
enumerator kSDMA_PeripheralTypeUART
UART use SDMA
-
enumerator kSDMA_PeripheralTypeUART_SP
UART instance in SPBA use SDMA
-
enumerator kSDMA_PeripheralTypeSPDIF
SPDIF use SDMA
-
enumerator kSDMA_PeripheralNormal
Normal peripheral use SDMA
-
enumerator kSDMA_PeripheralNormal_SP
Normal peripheral in SPBA use SDMA
-
enumerator kSDMA_PeripheralMultiFifoPDM
multi fifo PDM
-
enumerator kSDMA_PeripheralMultiFifoSaiRX
multi fifo sai rx use SDMA
-
enumerator kSDMA_PeripheralMultiFifoSaiTX
multi fifo sai tx use SDMA
-
enumerator kSDMA_PeripheralASRCM2P
asrc m2p
-
enumerator kSDMA_PeripheralASRCP2M
asrc p2m
-
enumerator kSDMA_PeripheralASRCP2P
asrc p2p
-
enumerator kSDMA_PeripheralTypeMemory
_sdma_transfer_status SDMA transfer status
Values:
-
enumerator kStatus_SDMA_ERROR
SDMA context error.
-
enumerator kStatus_SDMA_Busy
Channel is busy and can’t handle the transfer request.
-
enumerator kStatus_SDMA_ERROR
_sdma_multi_fifo_mask SDMA multi fifo mask
Values:
-
enumerator kSDMA_MultiFifoWatermarkLevelMask
multi fifo watermark level mask
-
enumerator kSDMA_MultiFifoNumsMask
multi fifo nums mask
-
enumerator kSDMA_MultiFifoOffsetMask
multi fifo offset mask
-
enumerator kSDMA_MultiFifoSwDoneMask
multi fifo sw done mask
-
enumerator kSDMA_MultiFifoSwDoneSelectorMask
multi fifo sw done selector mask
-
enumerator kSDMA_MultiFifoWatermarkLevelMask
_sdma_multi_fifo_shift SDMA multi fifo shift
Values:
-
enumerator kSDMA_MultiFifoWatermarkLevelShift
multi fifo watermark level shift
-
enumerator kSDMA_MultiFifoNumsShift
multi fifo nums shift
-
enumerator kSDMA_MultiFifoOffsetShift
multi fifo offset shift
-
enumerator kSDMA_MultiFifoSwDoneShift
multi fifo sw done shift
-
enumerator kSDMA_MultiFifoSwDoneSelectorShift
multi fifo sw done selector shift
-
enumerator kSDMA_MultiFifoWatermarkLevelShift
_sdma_done_channel SDMA done channel
Values:
-
enumerator kSDMA_DoneChannel0
SDMA done channel 0
-
enumerator kSDMA_DoneChannel1
SDMA done channel 1
-
enumerator kSDMA_DoneChannel2
SDMA done channel 2
-
enumerator kSDMA_DoneChannel3
SDMA done channel 3
-
enumerator kSDMA_DoneChannel4
SDMA done channel 4
-
enumerator kSDMA_DoneChannel5
SDMA done channel 5
-
enumerator kSDMA_DoneChannel6
SDMA done channel 6
-
enumerator kSDMA_DoneChannel7
SDMA done channel 7
-
enumerator kSDMA_DoneChannel0
-
enum _sdma_done_src
SDMA done source.
Values:
-
enumerator kSDMA_DoneSrcSW
software done
-
enumerator kSDMA_DoneSrcHwEvent0U
HW event 0 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent1U
HW event 1 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent2U
HW event 2 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent3U
HW event 3 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent4U
HW event 4 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent5U
HW event 5 is used for DONE event
-
enumerator kSDMA_DoneSrCHwEvent6U
HW event 6 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent7U
HW event 7 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent8U
HW event 8 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent9U
HW event 9 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent10U
HW event 10 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent11U
HW event 11 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent12U
HW event 12 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent13U
HW event 13 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent14U
HW event 14 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent15U
HW event 15 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent16U
HW event 16 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent17U
HW event 17 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent18U
HW event 18 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent19U
HW event 19 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent20U
HW event 20 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent21U
HW event 21 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent22U
HW event 22 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent23U
HW event 23 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent24U
HW event 24 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent25U
HW event 25 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent26U
HW event 26 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent27U
HW event 27 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent28U
HW event 28 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent29U
HW event 29 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent30U
HW event 30 is used for DONE event
-
enumerator kSDMA_DoneSrcHwEvent31U
HW event 31 is used for DONE event
-
enumerator kSDMA_DoneSrcSW
-
typedef enum _sdma_transfer_size sdma_transfer_size_t
SDMA transfer configuration.
-
typedef enum _sdma_bd_status sdma_bd_status_t
SDMA buffer descriptor status.
-
typedef enum _sdma_bd_command sdma_bd_command_t
SDMA buffer descriptor command.
-
typedef enum _sdma_context_switch_mode sdma_context_switch_mode_t
SDMA context switch mode.
-
typedef enum _sdma_clock_ratio sdma_clock_ratio_t
SDMA core clock frequency ratio to the ARM DMA interface.
-
typedef enum _sdma_transfer_type sdma_transfer_type_t
SDMA transfer type.
-
typedef enum sdma_peripheral sdma_peripheral_t
Peripheral type use SDMA.
-
typedef enum _sdma_done_src sdma_done_src_t
SDMA done source.
-
typedef struct _sdma_config sdma_config_t
SDMA global configuration structure.
-
typedef struct _sdma_multi_fifo_config sdma_multi_fifo_config_t
SDMA multi fifo configurations.
-
typedef struct _sdma_sw_done_config sdma_sw_done_config_t
SDMA sw done configurations.
-
typedef struct _sdma_p2p_config sdma_p2p_config_t
SDMA peripheral to peripheral R7 config.
-
typedef struct _sdma_transfer_config sdma_transfer_config_t
SDMA transfer configuration.
This structure configures the source/destination transfer attribute.
-
typedef struct _sdma_buffer_descriptor sdma_buffer_descriptor_t
SDMA buffer descriptor structure.
This structure is a buffer descriptor, this structure describes the buffer start address and other options
-
typedef struct _sdma_channel_control sdma_channel_control_t
SDMA channel control descriptor structure.
-
typedef struct _sdma_context_data sdma_context_data_t
SDMA context structure for each channel. This structure can be load into SDMA core, with this structure, SDMA scripts can start work.
-
typedef void (*sdma_callback)(struct _sdma_handle *handle, void *userData, bool transferDone, uint32_t bdIndex)
Define callback function for SDMA.
-
typedef struct _sdma_handle sdma_handle_t
SDMA transfer handle structure.
-
SDMA_DRIVER_LOAD_RAM_SCRIPT
-
struct _sdma_config
- #include <fsl_sdma.h>
SDMA global configuration structure.
Public Members
-
bool enableRealTimeDebugPin
If enable real-time debug pin, default is closed to reduce power consumption.
-
bool isSoftwareResetClearLock
If software reset clears the LOCK bit which prevent writing SDMA scripts into SDMA.
-
sdma_clock_ratio_t ratio
SDMA core clock ratio to ARM platform DMA interface
-
bool enableRealTimeDebugPin
-
struct _sdma_multi_fifo_config
- #include <fsl_sdma.h>
SDMA multi fifo configurations.
Public Members
-
uint8_t fifoNums
fifo numbers
-
uint8_t fifoOffset
offset between multi fifo data register address
-
uint8_t fifoNums
-
struct _sdma_sw_done_config
- #include <fsl_sdma.h>
SDMA sw done configurations.
Public Members
-
bool enableSwDone
true is enable sw done, false is disable
-
uint8_t swDoneSel
sw done channel number per peripheral type
-
bool enableSwDone
-
struct _sdma_p2p_config
- #include <fsl_sdma.h>
SDMA peripheral to peripheral R7 config.
Public Members
-
uint8_t sourceWatermark
lower watermark value
-
uint8_t destWatermark
higher water makr value
-
bool continuousTransfer
0: the amount of samples to be transferred is equal to the cont field of mode word 1: the amount of samples to be transferred is unknown and script will keep on transferring as long as both events are detected and script must be stopped by application.
-
uint8_t sourceWatermark
-
struct _sdma_transfer_config
- #include <fsl_sdma.h>
SDMA transfer configuration.
This structure configures the source/destination transfer attribute.
Public Members
-
uint32_t srcAddr
Source address of the transfer
-
uint32_t destAddr
Destination address of the transfer
-
sdma_transfer_size_t srcTransferSize
Source data transfer size.
-
sdma_transfer_size_t destTransferSize
Destination data transfer size.
-
uint32_t bytesPerRequest
Bytes to transfer in a minor loop
-
uint32_t transferSzie
Bytes to transfer for this descriptor
-
uint32_t scriptAddr
SDMA script address located in SDMA ROM.
-
uint32_t eventSource
Event source number for the channel. 0 means no event, use software trigger
-
uint32_t eventSource1
event source 1
-
bool isEventIgnore
True means software trigger, false means hardware trigger
-
bool isSoftTriggerIgnore
If ignore the HE bit, 1 means use hardware events trigger, 0 means software trigger
-
sdma_transfer_type_t type
Transfer type, transfer type used to decide the SDMA script.
-
sdma_multi_fifo_config_t multiFifo
multi fifo configurations
-
sdma_sw_done_config_t swDone
sw done selector
-
uint32_t watermarkLevel
watermark level
-
uint32_t eventMask0
event mask 0
-
uint32_t eventMask1
event mask 1
-
uint32_t srcAddr
-
struct _sdma_buffer_descriptor
- #include <fsl_sdma.h>
SDMA buffer descriptor structure.
This structure is a buffer descriptor, this structure describes the buffer start address and other options
Public Members
-
uint32_t count
Bytes of the buffer length for this buffer descriptor.
-
uint32_t status
E,R,I,C,W,D status bits stored here
-
uint32_t command
command mostlky used for channel 0
-
uint32_t bufferAddr
Buffer start address for this descriptor.
-
uint32_t extendBufferAddr
External buffer start address, this is an optional for a transfer.
-
uint32_t count
-
struct _sdma_channel_control
- #include <fsl_sdma.h>
SDMA channel control descriptor structure.
Public Members
-
uint32_t currentBDAddr
Address of current buffer descriptor processed
-
uint32_t baseBDAddr
The start address of the buffer descriptor array
-
uint32_t channelDesc
Optional for transfer
-
uint32_t status
Channel status
-
uint32_t currentBDAddr
-
struct _sdma_context_data
- #include <fsl_sdma.h>
SDMA context structure for each channel. This structure can be load into SDMA core, with this structure, SDMA scripts can start work.
Public Members
-
uint32_t GeneralReg[8]
8 general regsiters used for SDMA RISC core
-
uint32_t GeneralReg[8]
-
struct _sdma_handle
- #include <fsl_sdma.h>
SDMA transfer handle structure.
Public Members
-
sdma_callback callback
Callback function for major count exhausted.
-
void *userData
Callback function parameter.
-
SDMAARM_Type *base
SDMA peripheral base address.
-
sdma_buffer_descriptor_t *BDPool
Pointer to memory stored BD arrays.
-
uint32_t bdCount
How many buffer descriptor
-
uint32_t bdIndex
How many buffer descriptor
-
uint32_t eventSource
Event source count for the channel
-
uint32_t eventSource1
Event source 1 count for the channel
-
sdma_context_data_t *context
Channel context to exectute in SDMA
-
uint8_t channel
SDMA channel number.
-
uint8_t priority
SDMA channel priority
-
uint8_t flags
The status of the current channel.
-
sdma_callback callback
SEMA4: Hardware Semaphores Driver#
-
FSL_SEMA4_DRIVER_VERSION
SEMA4 driver version.
-
void SEMA4_Init(SEMA4_Type *base)
Initializes the SEMA4 module.
This function initializes the SEMA4 module. It only enables the clock but does not reset the gates because the module might be used by other processors at the same time. To reset the gates, call either SEMA4_ResetGate or SEMA4_ResetAllGates function.
- Parameters:
base – SEMA4 peripheral base address.
-
void SEMA4_Deinit(SEMA4_Type *base)
De-initializes the SEMA4 module.
This function de-initializes the SEMA4 module. It only disables the clock.
- Parameters:
base – SEMA4 peripheral base address.
-
status_t SEMA4_TryLock(SEMA4_Type *base, uint8_t gateNum, uint8_t procNum)
Tries to lock the SEMA4 gate.
This function tries to lock the specific SEMA4 gate. If the gate has been locked by another processor, this function returns an error code.
- Parameters:
base – SEMA4 peripheral base address.
gateNum – Gate number to lock.
procNum – Current processor number.
- Return values:
kStatus_Success – Lock the sema4 gate successfully.
kStatus_Fail – Sema4 gate has been locked by another processor.
-
status_t SEMA4_Lock(SEMA4_Type *base, uint8_t gateNum, uint8_t procNum)
Locks the SEMA4 gate.
This function locks the specific SEMA4 gate. If the gate has been locked by other processors, this function waits until it is unlocked and then lock it.
If SEMA4_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the specified number of polling iterations and return kStatus_Timeout.
- Parameters:
base – SEMA4 peripheral base address.
gateNum – Gate number to lock.
procNum – Current processor number.
- Return values:
kStatus_Success – The gate was successfully locked.
kStatus_Timeout – Timeout occurred while waiting for the gate to be unlocked.
- Returns:
status_t
-
static inline void SEMA4_Unlock(SEMA4_Type *base, uint8_t gateNum)
Unlocks the SEMA4 gate.
This function unlocks the specific SEMA4 gate. It only writes unlock value to the SEMA4 gate register. However, it does not check whether the SEMA4 gate is locked by the current processor or not. As a result, if the SEMA4 gate is not locked by the current processor, this function has no effect.
- Parameters:
base – SEMA4 peripheral base address.
gateNum – Gate number to unlock.
-
static inline int32_t SEMA4_GetLockProc(SEMA4_Type *base, uint8_t gateNum)
Gets the status of the SEMA4 gate.
This function checks the lock status of a specific SEMA4 gate.
- Parameters:
base – SEMA4 peripheral base address.
gateNum – Gate number.
- Returns:
Return -1 if the gate is unlocked, otherwise return the processor number which has locked the gate.
-
status_t SEMA4_ResetGate(SEMA4_Type *base, uint8_t gateNum)
Resets the SEMA4 gate to an unlocked status.
This function resets a SEMA4 gate to an unlocked status.
- Parameters:
base – SEMA4 peripheral base address.
gateNum – Gate number.
- Return values:
kStatus_Success – SEMA4 gate is reset successfully.
kStatus_Fail – Some other reset process is ongoing.
-
static inline status_t SEMA4_ResetAllGates(SEMA4_Type *base)
Resets all SEMA4 gates to an unlocked status.
This function resets all SEMA4 gate to an unlocked status.
- Parameters:
base – SEMA4 peripheral base address.
- Return values:
kStatus_Success – SEMA4 is reset successfully.
kStatus_Fail – Some other reset process is ongoing.
-
static inline void SEMA4_EnableGateNotifyInterrupt(SEMA4_Type *base, uint8_t procNum, uint16_t mask)
Enable the gate notification interrupt.
Gate notification provides such feature, when core tried to lock the gate and failed, it could get notification when the gate is idle.
- Parameters:
base – SEMA4 peripheral base address.
procNum – Current processor number.
mask – OR’ed value of the gate index, for example: (1<<0) | (1<<1) means gate 0 and gate 1.
-
static inline void SEMA4_DisableGateNotifyInterrupt(SEMA4_Type *base, uint8_t procNum, uint16_t mask)
Disable the gate notification interrupt.
Gate notification provides such feature, when core tried to lock the gate and failed, it could get notification when the gate is idle.
- Parameters:
base – SEMA4 peripheral base address.
procNum – Current processor number.
mask – OR’ed value of the gate index, for example: (1<<0) | (1<<1) means gate 0 and gate 1.
-
static inline uint32_t SEMA4_GetGateNotifyStatus(SEMA4_Type *base, uint8_t procNum)
Get the gate notification flags.
Gate notification provides such feature, when core tried to lock the gate and failed, it could get notification when the gate is idle. The status flags are cleared automatically when the gate is locked by current core or locked again before the other core.
- Parameters:
base – SEMA4 peripheral base address.
procNum – Current processor number.
- Returns:
OR’ed value of the gate index, for example: (1<<0) | (1<<1) means gate 0 and gate 1 flags are pending.
-
status_t SEMA4_ResetGateNotify(SEMA4_Type *base, uint8_t gateNum)
Resets the SEMA4 gate IRQ notification.
This function resets a SEMA4 gate IRQ notification.
- Parameters:
base – SEMA4 peripheral base address.
gateNum – Gate number.
- Return values:
kStatus_Success – Reset successfully.
kStatus_Fail – Some other reset process is ongoing.
-
static inline status_t SEMA4_ResetAllGateNotify(SEMA4_Type *base)
Resets all SEMA4 gates IRQ notification.
This function resets all SEMA4 gate IRQ notifications.
- Parameters:
base – SEMA4 peripheral base address.
- Return values:
kStatus_Success – Reset successfully.
kStatus_Fail – Some other reset process is ongoing.
-
SEMA4_GATE_NUM_RESET_ALL
The number to reset all SEMA4 gates.
-
SEMA4_GATEn(base, n)
SEMA4 gate n register address.
-
SEMA4_BUSY_POLL_COUNT
Maximum polling iterations for SEMA4 waiting loops.
This parameter defines the maximum number of iterations for any polling loop in the SEMA4 driver code before timing out and returning an error.
It applies to all waiting loops in SEMA4 driver, such as waiting for a gate to be unlocked, waiting for a reset to complete, or waiting for a resource to become available.
This is a count of loop iterations, not a time-based value.
If defined as 0, polling loops will continue indefinitely until their exit condition is met, which could potentially cause the system to hang if hardware doesn’t respond or if a resource is never released.
TMU: Thermal Management Unit Driver#
TMU interrupt enable, _tmu_interrupt_enable.
Values:
-
enumerator kTMU_ImmediateTemperature0InterruptEnable
Immediate temperature threshold exceeded interrupt enable of probe0.
-
enumerator kTMU_AverageTemperature0InterruptEnable
Average temperature threshold exceeded interrupt enable of probe0.
-
enumerator kTMU_AverageTemperature0CriticalInterruptEnable
Average temperature critical threshold exceeded interrupt enable of probe0.
-
enumerator kTMU_ImmediateTemperature1Interrupt1Enable
Immediate temperature threshold exceeded interrupt enable of probe1.
-
enumerator kTMU_AverageTemperature1Interrupt1Enable
Average temperature threshold exceeded interrupt enable of probe1.
-
enumerator kTMU_AverageTemperature1CriticalInterrupt1Enable
Average temperature critical threshold exceeded interrupt enable of probe1.
-
enumerator kTMU_ImmediateTemperature0InterruptEnable
TMU interrupt enable, _tmu_interrupt_status_flags.
Values:
-
enumerator kTMU_ImmediateTemperature0InterruptStausFlags
Immediate temperature threshold exceeded interrupt status of probe0.
-
enumerator kTMU_AverageTemperature0InterruptStausFlags
Average temperature threshold exceeded interrupt status of probe0.
-
enumerator kTMU_AverageTemperature0CriticalInterruptStausFlags
Average temperature critical threshold exceeded interrupt status of probe0.
-
enumerator kTMU_ImmediateTemperature1Interrupt1StausFlags
Immediate temperature threshold exceeded interrupt status of probe1.
-
enumerator kTMU_AverageTemperature1Interrupt1StausFlags
Average temperature threshold exceeded interrupt status of probe1.
-
enumerator kTMU_AverageTemperature1CriticalInterrupt1StausFlags
Average temperature critical threshold exceeded interrupt status of probe1.
-
enumerator kTMU_ImmediateTemperature0InterruptStausFlags
-
enum _tmu_probe_select
Probe selection.
Values:
-
enumerator kTMU_ProbeSelectMainProbe
Select the main probe only.
-
enumerator kTMU_ProbeSelectRemoteProbe
Select the remote probe(near A53) only.
-
enumerator kTMU_ProbeSelectBothProbes
Select both 2 probes.
-
enumerator kTMU_ProbeSelectMainProbe
-
enum _tmu_average_low_pass_filter
Average low pass filter setting.
Values:
-
enumerator kTMU_AverageLowPassFilter1_0
Average low pass filter = 1.
-
enumerator kTMU_AverageLowPassFilter0_5
Average low pass filter = 0.5.
-
enumerator kTMU_AverageLowPassFilter0_25
Average low pass filter = 0.25.
-
enumerator kTMU_AverageLowPassFilter0_125
Average low pass filter = 0.125.
-
enumerator kTMU_AverageLowPassFilter1_0
-
typedef struct _tmu_threshold_config tmu_threshold_config_t
configuration for TMU threshold.
-
typedef enum _tmu_probe_select tmu_probe_select_t
Probe selection.
-
typedef enum _tmu_average_low_pass_filter tmu_average_low_pass_filter_t
Average low pass filter setting.
-
typedef struct _tmu_config tmu_config_t
Configuration for TMU module.
-
void TMU_Init(TMU_Type *base, const tmu_config_t *config)
Enable the access to TMU registers and Initialize TMU module.
- Parameters:
base – TMU peripheral base address.
config – Pointer to configuration structure. Refer to “tmu_config_t” structure.
-
void TMU_Deinit(TMU_Type *base)
De-initialize TMU module and Disable the access to DCDC registers.
- Parameters:
base – TMU peripheral base address.
-
void TMU_Enable(TMU_Type *base, bool enable)
Enable/disable TMU module.
- Parameters:
base – TMU peripheral base address.
enable – enable or disable TMU.
-
void TMU_GetDefaultConfig(tmu_config_t *config)
Gets the default configuration for TMU.
This function initializes the user configuration structure to default value. The default value are:
Example:
config.averageLPF = kTMU_AverageLowPassFilter0_5; config.probeSelect = kTMU_ProbeSelectMainProbe; config.thresholdConfig.immediateThresholdEnable = false; config.thresholdConfig.immediateThresholdValue = DEMO_TMU_IMMEDIATE_THRESOLD; config.thresholdConfig.AverageThresholdEnable = true; config.thresholdConfig.averageThresholdValue = DEMO_TMU_AVERAGE_THRESOLD; config.thresholdConfig.AverageCriticalThresholdEnable = false; config.thresholdConfig.averageCriticalThresholdValue = DEMO_TMU_AVERAGE_CRITICAL_THRESOLD;
- Parameters:
config – Pointer to TMU configuration structure.
-
static inline void TMU_EnableInterrupts(TMU_Type *base, uint32_t mask)
Enable the TMU interrupts.
- Parameters:
base – TMU peripheral base address.
mask – The interrupt mask. Refer to “_tmu_interrupt_enable” enumeration.
-
static inline void TMU_DisableInterrupts(TMU_Type *base, uint32_t mask)
Disable the TMU interrupts.
- Parameters:
base – TMU peripheral base address.
mask – The interrupt mask. Refer to “_tmu_interrupt_enable” enumeration.
-
static inline uint32_t TMU_GetInterruptStatusFlags(TMU_Type *base)
Get interrupt status flags.
- Parameters:
base – TMU peripheral base address.
- Return values:
The – current interrupt status.
-
static inline void TMU_ClearInterruptStatusFlags(TMU_Type *base, uint32_t mask)
Clear interrupt status flags.
- Parameters:
base – TMU peripheral base address.
mask – The mask of interrupt status flags. Refer to “_tmu_interrupt_status_flags” enumeration.
-
status_t TMU_GetImmediateTemperature(TMU_Type *base, tmu_probe_select_t probe, int8_t *temperature)
Get the last immediate temperature at site.
- Parameters:
base – TMU peripheral base address.
probe – probe selection, if select both 2 probes, return main probe temeperature by default. Refer to “tmu_probe_select_t” structure.
temperature – Last immediate temperature reading at site when V=1. besides, Bit-8 is sign bit: 1 means nagetive and 0 means positive.
- Return values:
get – immediate temperature status.
-
status_t TMU_GetAverageTemperature(TMU_Type *base, tmu_probe_select_t probe, int8_t *temperature)
Get the last average temperature at site.
- Parameters:
base – TMU peripheral base address.
probe – probe selection, if select both 2 probes, return main probe temeperature by default. Refer to “tmu_probe_select_t” structure.
temperature – Last average temperature reading at site; besides, Bit-8 is sign bit: 1 means nagetive and 0 means positive.
- Return values:
get – average temperature status.
-
void TMU_UpdateHighTemperatureThreshold(TMU_Type *base, tmu_probe_select_t probe, const tmu_threshold_config_t *thresholdConfig)
Update the high temperature threshold value.
- Parameters:
base – TMU peripheral base address.
probe – probe selection, if select both 2 probes, set main probe path by default. Refer to “tmu_probe_select_t” structure.
thresholdConfig – threshold configuration. Refer to “tmu_threshold_config_t” structure.
-
FSL_TMU_DRIVER_VERSION
TMU driver version.
Version 2.0.0.
-
struct _tmu_threshold_config
- #include <fsl_tmu.h>
configuration for TMU threshold.
Public Members
-
bool immediateThresholdEnable
Enable high temperature immediate threshold.
-
bool AverageThresholdEnable
Enable high temperature average threshold.
-
bool AverageCriticalThresholdEnable
Enable high temperature average critical threshold.
-
uint8_t immediateThresholdValueOfMainProbe
Range:-40~125. Valid when corresponding threshold is enabled. High temperature immediate threshold value of main probe. Besides, bit-8 is sign bit: 1 means nagetive and 0 means positive.
-
uint8_t averageThresholdValueOfMainProbe
Range:-40~125. Valid when corresponding threshold is enabled. High temperature average threshold value of main probe. Besides, bit-8 is sign bit: 1 means nagetive and 0 means positive.
-
uint8_t averageCriticalThresholdValueOfMainProbe
Range:-40~125. Valid when corresponding threshold is enabled. High temperature average critical threshold value of main probe. Besides, bit-8 is sign bit: 1 means nagetive and 0 means positive.
-
uint8_t immediateThresholdValueOfRemoteProbe
Range:-40~125. Valid when corresponding threshold is enabled. High temperature immediate threshold value of remote probe. Besides, bit-8 is sign bit: 1 means nagetive and 0 means positive.
-
uint8_t averageThresholdValueOfRemoteProbe
Range:-40~125. Valid when corresponding threshold is enabled. High temperature average threshold value of remote probe. Besides, bit-8 is sign bit: 1 means nagetive and 0 means positive.
-
uint8_t averageCriticalThresholdValueOfRemoteProbe
Range:-40~125. Valid when corresponding threshold is enabled. High temperature average critical threshold value of remote probe. Besides, bit-8 is sign bit: 1 means nagetive and 0 means positive.
-
bool immediateThresholdEnable
-
struct _tmu_config
- #include <fsl_tmu.h>
Configuration for TMU module.
Public Members
-
tmu_probe_select_t probeSelect
The temperature monitor probe select.
-
tmu_average_low_pass_filter_t averageLPF
The average temperature is calculated as: ALPF x Current_Temp + (1 - ALPF) x Average_Temp. For proper operation, this field should only change when monitoring is disabled.
-
tmu_threshold_config_t thresholdConfig
The high temperature threshold configuration.
-
tmu_probe_select_t probeSelect
UART: Universal Asynchronous Receiver/Transmitter Driver#
UART Driver#
-
static inline void UART_SoftwareReset(UART_Type *base)
Resets the UART using software.
This function resets the transmit and receive state machines, all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC , URXD, UTXD and UTS[6-3]
- Parameters:
base – UART peripheral base address.
-
status_t UART_Init(UART_Type *base, const uart_config_t *config, uint32_t srcClock_Hz)
Initializes an UART instance with the user configuration structure and the peripheral clock.
This function configures the UART module with user-defined settings. Call the UART_GetDefaultConfig() function to configure the configuration structure and get the default configuration. The example below shows how to use this API to configure the UART.
uart_config_t uartConfig; uartConfig.baudRate_Bps = 115200U; uartConfig.parityMode = kUART_ParityDisabled; uartConfig.dataBitsCount = kUART_EightDataBits; uartConfig.stopBitCount = kUART_OneStopBit; uartConfig.txFifoWatermark = 2; uartConfig.rxFifoWatermark = 1; uartConfig.enableAutoBaudrate = false; uartConfig.enableTx = true; uartConfig.enableRx = true; UART_Init(UART1, &uartConfig, 24000000U);
- Parameters:
base – UART peripheral base address.
config – Pointer to a user-defined configuration structure.
srcClock_Hz – UART clock source frequency in HZ.
- Return values:
kStatus_Success – UART initialize succeed
-
void UART_Deinit(UART_Type *base)
Deinitializes a UART instance.
This function waits for transmit to complete, disables TX and RX, and disables the UART clock.
- Parameters:
base – UART peripheral base address.
-
void UART_GetDefaultConfig(uart_config_t *config)
Gets the default configuration structure.
l
This function initializes the UART configuration structure to a default value. The default values are: uartConfig->baudRate_Bps = 115200U; uartConfig->parityMode = kUART_ParityDisabled; uartConfig->dataBitsCount = kUART_EightDataBits; uartConfig->stopBitCount = kUART_OneStopBit; uartConfig->txFifoWatermark = 2; uartConfig->rxFifoWatermark = 1; uartConfig->enableAutoBaudrate = flase; uartConfig->enableTx = false; uartConfig->enableRx = false;
- Parameters:
config – Pointer to a configuration structure.
-
status_t UART_SetBaudRate(UART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the UART instance baud rate.
This function configures the UART module baud rate. This function is used to update the UART module baud rate after the UART module is initialized by the UART_Init.
UART_SetBaudRate(UART1, 115200U, 20000000U);
- Parameters:
base – UART peripheral base address.
baudRate_Bps – UART baudrate to be set.
srcClock_Hz – UART clock source frequency in Hz.
- Return values:
kStatus_UART_BaudrateNotSupport – Baudrate is not support in the current clock source.
kStatus_Success – Set baudrate succeeded.
-
static inline void UART_Enable(UART_Type *base)
This function is used to Enable the UART Module.
- Parameters:
base – UART base pointer.
-
static inline void UART_SetIdleCondition(UART_Type *base, uart_idle_condition_t condition)
This function is used to configure the IDLE line condition.
- Parameters:
base – UART base pointer.
condition – IDLE line detect condition of the enumerators in uart_idle_condition_t.
-
static inline void UART_Disable(UART_Type *base)
This function is used to Disable the UART Module.
- Parameters:
base – UART base pointer.
-
bool UART_GetStatusFlag(UART_Type *base, uint32_t flag)
This function is used to get the current status of specific UART status flag(including interrupt flag). The available status flag can be select from uart_status_flag_t enumeration.
- Parameters:
base – UART base pointer.
flag – Status flag to check.
- Return values:
current – state of corresponding status flag.
-
void UART_ClearStatusFlag(UART_Type *base, uint32_t flag)
This function is used to clear the current status of specific UART status flag. The available status flag can be select from uart_status_flag_t enumeration.
- Parameters:
base – UART base pointer.
flag – Status flag to clear.
-
void UART_EnableInterrupts(UART_Type *base, uint32_t mask)
Enables UART interrupts according to the provided mask.
This function enables the UART interrupts according to the provided mask. The mask is a logical OR of enumeration members. See _uart_interrupt_enable. For example, to enable TX empty interrupt and RX data ready interrupt, do the following.
UART_EnableInterrupts(UART1,kUART_TxEmptyEnable | kUART_RxDataReadyEnable);
- Parameters:
base – UART peripheral base address.
mask – The interrupts to enable. Logical OR of _uart_interrupt_enable.
-
void UART_DisableInterrupts(UART_Type *base, uint32_t mask)
Disables the UART interrupts according to the provided mask.
This function disables the UART interrupts according to the provided mask. The mask is a logical OR of enumeration members. See _uart_interrupt_enable. For example, to disable TX empty interrupt and RX data ready interrupt do the following.
UART_EnableInterrupts(UART1,kUART_TxEmptyEnable | kUART_RxDataReadyEnable);
- Parameters:
base – UART peripheral base address.
mask – The interrupts to disable. Logical OR of _uart_interrupt_enable.
-
uint32_t UART_GetEnabledInterrupts(UART_Type *base)
Gets enabled UART interrupts.
This function gets the enabled UART interrupts. The enabled interrupts are returned as the logical OR value of the enumerators _uart_interrupt_enable. To check a specific interrupt enable status, compare the return value with enumerators in _uart_interrupt_enable. For example, to check whether the TX empty interrupt is enabled:
uint32_t enabledInterrupts = UART_GetEnabledInterrupts(UART1); if (kUART_TxEmptyEnable & enabledInterrupts) { ... }
- Parameters:
base – UART peripheral base address.
- Returns:
UART interrupt flags which are logical OR of the enumerators in _uart_interrupt_enable.
-
static inline void UART_EnableTx(UART_Type *base, bool enable)
Enables or disables the UART transmitter.
This function enables or disables the UART transmitter.
- Parameters:
base – UART peripheral base address.
enable – True to enable, false to disable.
-
static inline void UART_EnableRx(UART_Type *base, bool enable)
Enables or disables the UART receiver.
This function enables or disables the UART receiver.
- Parameters:
base – UART peripheral base address.
enable – True to enable, false to disable.
-
static inline void UART_WriteByte(UART_Type *base, uint8_t data)
Writes to the transmitter register.
This function is used to write data to transmitter register. The upper layer must ensure that the TX register is empty or that the TX FIFO has room before calling this function.
- Parameters:
base – UART peripheral base address.
data – Data write to the TX register.
-
static inline uint8_t UART_ReadByte(UART_Type *base)
Reads the receiver register.
This function is used to read data from receiver register. The upper layer must ensure that the receiver register is full or that the RX FIFO has data before calling this function.
- Parameters:
base – UART peripheral base address.
- Returns:
Data read from data register.
-
status_t UART_WriteBlocking(UART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.
This function polls the TX register, waits for the TX register to be empty or for the TX FIFO to have room and writes data to the TX buffer.
- Parameters:
base – UART peripheral base address.
data – Start address of the data to write.
length – Size of the data to write.
- Return values:
kStatus_UART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully wrote all data.
-
status_t UART_ReadBlocking(UART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.
This function polls the RX register, waits for the RX register to be full or for RX FIFO to have data, and reads data from the TX register.
- Parameters:
base – UART peripheral base address.
data – Start address of the buffer to store the received data.
length – Size of the buffer.
- Return values:
kStatus_UART_RxHardwareOverrun – Receiver overrun occurred while receiving data.
kStatus_UART_NoiseError – A noise error occurred while receiving data.
kStatus_UART_FramingError – A framing error occurred while receiving data.
kStatus_UART_ParityError – A parity error occurred while receiving data.
kStatus_UART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully received all data.
-
void UART_TransferCreateHandle(UART_Type *base, uart_handle_t *handle, uart_transfer_callback_t callback, void *userData)
Initializes the UART handle.
This function initializes the UART handle which can be used for other UART transactional APIs. Usually, for a specified UART instance, call this API once to get the initialized handle.
- Parameters:
base – UART peripheral base address.
handle – UART handle pointer.
callback – The callback function.
userData – The parameter of the callback function.
-
void UART_TransferStartRingBuffer(UART_Type *base, uart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)
Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific UART handle.
When the RX ring buffer is used, data received are stored into the ring buffer even when the user doesn’t call the UART_TransferReceiveNonBlocking() API. If data is already received in the ring buffer, the user can get the received data from the ring buffer directly.
Note
When using the RX ring buffer, one byte is reserved for internal use. In other words, if
ringBufferSizeis 32, only 31 bytes are used for saving data.- Parameters:
base – UART peripheral base address.
handle – UART handle pointer.
ringBuffer – Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer.
ringBufferSize – Size of the ring buffer.
-
void UART_TransferStopRingBuffer(UART_Type *base, uart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.
This function aborts the background transfer and uninstalls the ring buffer.
- Parameters:
base – UART peripheral base address.
handle – UART handle pointer.
-
size_t UART_TransferGetRxRingBufferLength(uart_handle_t *handle)
Get the length of received data in RX ring buffer.
- Parameters:
handle – UART handle pointer.
- Returns:
Length of received data in RX ring buffer.
-
status_t UART_TransferSendNonBlocking(UART_Type *base, uart_handle_t *handle, uart_transfer_t *xfer)
Transmits a buffer of data using the interrupt method.
This function sends data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data to be written to the TX register. When all data is written to the TX register in the ISR, the UART driver calls the callback function and passes the kStatus_UART_TxIdle as status parameter.
Note
The kStatus_UART_TxIdle is passed to the upper layer when all data is written to the TX register. However, it does not ensure that all data is sent out. Before disabling the TX, check the kUART_TransmissionCompleteFlag to ensure that the TX is finished.
- Parameters:
base – UART peripheral base address.
handle – UART handle pointer.
xfer – UART transfer structure. See uart_transfer_t.
- Return values:
kStatus_Success – Successfully start the data transmission.
kStatus_UART_TxBusy – Previous transmission still not finished; data not all written to TX register yet.
kStatus_InvalidArgument – Invalid argument.
-
void UART_TransferAbortSend(UART_Type *base, uart_handle_t *handle)
Aborts the interrupt-driven data transmit.
This function aborts the interrupt-driven data sending. The user can get the remainBytes to find out how many bytes are not sent out.
- Parameters:
base – UART peripheral base address.
handle – UART handle pointer.
-
status_t UART_TransferGetSendCount(UART_Type *base, uart_handle_t *handle, uint32_t *count)
Gets the number of bytes written to the UART TX register.
This function gets the number of bytes written to the UART TX register by using the interrupt method.
- Parameters:
base – UART peripheral base address.
handle – UART handle pointer.
count – Send bytes count.
- Return values:
kStatus_NoTransferInProgress – No send in progress.
kStatus_InvalidArgument – The parameter is invalid.
kStatus_Success – Get successfully through the parameter
count;
-
status_t UART_TransferReceiveNonBlocking(UART_Type *base, uart_handle_t *handle, uart_transfer_t *xfer, size_t *receivedBytes)
Receives a buffer of data using an interrupt method.
This function receives data using an interrupt method. This is a non-blocking function, which returns without waiting for all data to be received. If the RX ring buffer is used and not empty, the data in the ring buffer is copied and the parameter
receivedBytesshows how many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is not enough to read, the receive request is saved by the UART driver. When the new data arrives, the receive request is serviced first. When all data is received, the UART driver notifies the upper layer through a callback function and passes the status parameter kStatus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns with the parameterreceivedBytesset to 5. For the left 5 bytes, newly arrived data is saved from the xfer->data[5]. When 5 bytes are received, the UART driver notifies the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to the xfer->data. When all data is received, the upper layer is notified.- Parameters:
base – UART peripheral base address.
handle – UART handle pointer.
xfer – UART transfer structure, see uart_transfer_t.
receivedBytes – Bytes received from the ring buffer directly.
- Return values:
kStatus_Success – Successfully queue the transfer into transmit queue.
kStatus_UART_RxBusy – Previous receive request is not finished.
kStatus_InvalidArgument – Invalid argument.
-
void UART_TransferAbortReceive(UART_Type *base, uart_handle_t *handle)
Aborts the interrupt-driven data receiving.
This function aborts the interrupt-driven data receiving. The user can get the remainBytes to know how many bytes are not received yet.
- Parameters:
base – UART peripheral base address.
handle – UART handle pointer.
-
status_t UART_TransferGetReceiveCount(UART_Type *base, uart_handle_t *handle, uint32_t *count)
Gets the number of bytes that have been received.
This function gets the number of bytes that have been received.
- Parameters:
base – UART peripheral base address.
handle – UART handle pointer.
count – Receive bytes count.
- Return values:
kStatus_NoTransferInProgress – No receive in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count;
-
void UART_TransferHandleIRQ(UART_Type *base, void *irqHandle)
UART IRQ handle function.
This function handles the UART transmit and receive IRQ request.
- Parameters:
base – UART peripheral base address.
irqHandle – UART handle pointer.
-
static inline void UART_EnableTxDMA(UART_Type *base, bool enable)
Enables or disables the UART transmitter DMA request.
This function enables or disables the transmit request when the transmitter has one or more slots available in the TxFIFO. The fill level in the TxFIFO that generates the DMA request is controlled by the TXTL bits.
- Parameters:
base – UART peripheral base address.
enable – True to enable, false to disable.
-
static inline void UART_EnableRxDMA(UART_Type *base, bool enable)
Enables or disables the UART receiver DMA request.
This function enables or disables the receive request when the receiver has data in the RxFIFO. The fill level in the RxFIFO at which a DMA request is generated is controlled by the RXTL bits .
- Parameters:
base – UART peripheral base address.
enable – True to enable, false to disable.
-
static inline void UART_SetTxFifoWatermark(UART_Type *base, uint8_t watermark)
This function is used to set the watermark of UART Tx FIFO. A maskable interrupt is generated whenever the data level in the TxFIFO falls below the Tx FIFO watermark.
- Parameters:
base – UART base pointer.
watermark – The Tx FIFO watermark.
-
static inline void UART_SetRxRTSWatermark(UART_Type *base, uint8_t watermark)
This function is used to set the watermark of UART RTS deassertion.
The RTS signal deasserts whenever the data count in RxFIFO reaches the Rx RTS watermark.
- Parameters:
base – UART base pointer.
watermark – The Rx RTS watermark.
-
static inline void UART_SetRxFifoWatermark(UART_Type *base, uint8_t watermark)
This function is used to set the watermark of UART Rx FIFO. A maskable interrupt is generated whenever the data level in the RxFIFO reaches the Rx FIFO watermark.
- Parameters:
base – UART base pointer.
watermark – The Rx FIFO watermark.
-
static inline void UART_EnableAutoBaudRate(UART_Type *base, bool enable)
This function is used to set the enable condition of Automatic Baud Rate Detection feature.
- Parameters:
base – UART base pointer.
enable – Enable/Disable Automatic Baud Rate Detection feature.
true: Enable Automatic Baud Rate Detection feature.
false: Disable Automatic Baud Rate Detection feature.
-
static inline bool UART_IsAutoBaudRateComplete(UART_Type *base)
This function is used to read if the automatic baud rate detection has finished.
- Parameters:
base – UART base pointer.
- Returns:
- true: Automatic baud rate detection has finished.
false: Automatic baud rate detection has not finished.
-
FSL_UART_DRIVER_VERSION
UART driver version.
Error codes for the UART driver.
Values:
-
enumerator kStatus_UART_TxBusy
Transmitter is busy.
-
enumerator kStatus_UART_RxBusy
Receiver is busy.
-
enumerator kStatus_UART_TxIdle
UART transmitter is idle.
-
enumerator kStatus_UART_RxIdle
UART receiver is idle.
-
enumerator kStatus_UART_TxWatermarkTooLarge
TX FIFO watermark too large
-
enumerator kStatus_UART_RxWatermarkTooLarge
RX FIFO watermark too large
-
enumerator kStatus_UART_FlagCannotClearManually
UART flag can’t be manually cleared.
-
enumerator kStatus_UART_Error
Error happens on UART.
-
enumerator kStatus_UART_RxRingBufferOverrun
UART RX software ring buffer overrun.
-
enumerator kStatus_UART_RxHardwareOverrun
UART RX receiver overrun.
-
enumerator kStatus_UART_NoiseError
UART noise error.
-
enumerator kStatus_UART_FramingError
UART framing error.
-
enumerator kStatus_UART_ParityError
UART parity error.
-
enumerator kStatus_UART_BaudrateNotSupport
Baudrate is not support in current clock source
-
enumerator kStatus_UART_BreakDetect
Receiver detect BREAK signal
-
enumerator kStatus_UART_Timeout
UART times out.
-
enumerator kStatus_UART_TxBusy
-
enum _uart_data_bits
UART data bits count.
Values:
-
enumerator kUART_SevenDataBits
Seven data bit
-
enumerator kUART_EightDataBits
Eight data bit
-
enumerator kUART_SevenDataBits
-
enum _uart_parity_mode
UART parity mode.
Values:
-
enumerator kUART_ParityDisabled
Parity disabled
-
enumerator kUART_ParityEven
Even error check is selected
-
enumerator kUART_ParityOdd
Odd error check is selected
-
enumerator kUART_ParityDisabled
-
enum _uart_stop_bit_count
UART stop bit count.
Values:
-
enumerator kUART_OneStopBit
One stop bit
-
enumerator kUART_TwoStopBit
Two stop bits
-
enumerator kUART_OneStopBit
-
enum _uart_idle_condition
UART idle condition detect.
Values:
-
enumerator kUART_IdleFor4Frames
Idle for more than 4 frames
-
enumerator kUART_IdleFor8Frames
Idle for more than 8 frames
-
enumerator kUART_IdleFor16Frames
Idle for more than 16 frames
-
enumerator kUART_IdleFor32Frames
Idle for more than 32 frames
-
enumerator kUART_IdleFor4Frames
-
enum _uart_interrupt_enable
This structure contains the settings for all of the UART interrupt configurations.
Values:
-
enumerator kUART_AutoBaudEnable
-
enumerator kUART_TxReadyEnable
-
enumerator kUART_IdleEnable
-
enumerator kUART_RxReadyEnable
-
enumerator kUART_TxEmptyEnable
-
enumerator kUART_RtsDeltaEnable
-
enumerator kUART_EscapeEnable
-
enumerator kUART_RtsEnable
-
enumerator kUART_AgingTimerEnable
-
enumerator kUART_DtrEnable
-
enumerator kUART_ParityErrorEnable
-
enumerator kUART_FrameErrorEnable
-
enumerator kUART_DcdEnable
-
enumerator kUART_RiEnable
-
enumerator kUART_RxDsEnable
-
enumerator kUART_tAirWakeEnable
-
enumerator kUART_AwakeEnable
-
enumerator kUART_DtrDeltaEnable
-
enumerator kUART_AutoBaudCntEnable
-
enumerator kUART_IrEnable
-
enumerator kUART_WakeEnable
-
enumerator kUART_TxCompleteEnable
-
enumerator kUART_BreakDetectEnable
-
enumerator kUART_RxOverrunEnable
-
enumerator kUART_RxDataReadyEnable
-
enumerator kUART_RxDmaIdleEnable
-
enumerator kUART_AllInterruptsEnable
-
enumerator kUART_AutoBaudEnable
UART status flags.
This provides constants for the UART status flags for use in the UART functions.
Values:
-
enumerator kUART_RxCharReadyFlag
Rx Character Ready Flag.
-
enumerator kUART_RxErrorFlag
Rx Error Detect Flag.
-
enumerator kUART_RxOverrunErrorFlag
Rx Overrun Flag.
-
enumerator kUART_RxFrameErrorFlag
Rx Frame Error Flag.
-
enumerator kUART_RxBreakDetectFlag
Rx Break Detect Flag.
-
enumerator kUART_RxParityErrorFlag
Rx Parity Error Flag.
-
enumerator kUART_ParityErrorFlag
Parity Error Interrupt Flag.
-
enumerator kUART_RtsStatusFlag
RTS_B Pin Status Flag.
-
enumerator kUART_TxReadyFlag
Transmitter Ready Interrupt/DMA Flag.
-
enumerator kUART_RtsDeltaFlag
RTS Delta Flag.
-
enumerator kUART_EscapeFlag
Escape Sequence Interrupt Flag.
-
enumerator kUART_FrameErrorFlag
Frame Error Interrupt Flag.
-
enumerator kUART_RxReadyFlag
Receiver Ready Interrupt/DMA Flag.
-
enumerator kUART_AgingTimerFlag
Aging Timer Interrupt Flag.
-
enumerator kUART_DtrDeltaFlag
DTR Delta Flag.
-
enumerator kUART_RxDsFlag
Receiver IDLE Interrupt Flag.
-
enumerator kUART_tAirWakeFlag
Asynchronous IR WAKE Interrupt Flag.
-
enumerator kUART_AwakeFlag
Asynchronous WAKE Interrupt Flag.
-
enumerator kUART_Rs485SlaveAddrMatchFlag
RS-485 Slave Address Detected Interrupt Flag.
-
enumerator kUART_AutoBaudFlag
Automatic Baud Rate Detect Complete Flag.
-
enumerator kUART_TxEmptyFlag
Transmit Buffer FIFO Empty.
-
enumerator kUART_DtrFlag
DTR edge triggered interrupt flag.
-
enumerator kUART_IdleFlag
Idle Condition Flag.
-
enumerator kUART_AutoBaudCntStopFlag
Auto-baud Counter Stopped Flag.
-
enumerator kUART_RiDeltaFlag
Ring Indicator Delta Flag.
-
enumerator kUART_RiFlag
Ring Indicator Input Flag.
-
enumerator kUART_IrFlag
Serial Infrared Interrupt Flag.
-
enumerator kUART_WakeFlag
Wake Flag.
-
enumerator kUART_DcdDeltaFlag
Data Carrier Detect Delta Flag.
-
enumerator kUART_DcdFlag
Data Carrier Detect Input Flag.
-
enumerator kUART_RtsFlag
RTS Edge Triggered Interrupt Flag.
-
enumerator kUART_TxCompleteFlag
Transmitter Complete Flag.
-
enumerator kUART_BreakDetectFlag
BREAK Condition Detected Flag.
-
enumerator kUART_RxOverrunFlag
Overrun Error Flag.
-
enumerator kUART_RxDataReadyFlag
Receive Data Ready Flag.
-
enumerator kUART_RxCharReadyFlag
-
typedef enum _uart_data_bits uart_data_bits_t
UART data bits count.
-
typedef enum _uart_parity_mode uart_parity_mode_t
UART parity mode.
-
typedef enum _uart_stop_bit_count uart_stop_bit_count_t
UART stop bit count.
-
typedef enum _uart_idle_condition uart_idle_condition_t
UART idle condition detect.
-
typedef struct _uart_config uart_config_t
UART configuration structure.
-
typedef struct _uart_transfer uart_transfer_t
UART transfer structure.
-
typedef struct _uart_handle uart_handle_t
Forward declaration of the handle typedef.
-
typedef void (*uart_transfer_callback_t)(UART_Type *base, uart_handle_t *handle, status_t status, void *userData)
UART transfer callback function.
-
typedef void (*uart_isr_t)(UART_Type *base, void *handle)
-
const IRQn_Type s_uartIRQ[]
-
uart_isr_t s_uartIsr
-
void *s_uartHandle[]
Pointers to uart handles for each instance.
-
uint32_t UART_GetInstance(UART_Type *base)
Get the UART instance from peripheral base address.
- Parameters:
base – UART peripheral base address.
- Returns:
UART instance.
-
UART_RETRY_TIMES
Retry times for waiting flag.
-
struct _uart_config
- #include <fsl_uart.h>
UART configuration structure.
Public Members
-
uint32_t baudRate_Bps
UART baud rate.
-
uart_parity_mode_t parityMode
Parity error check mode of this module.
-
uart_data_bits_t dataBitsCount
Data bits count, eight (default), seven
-
uart_stop_bit_count_t stopBitCount
Number of stop bits in one frame.
-
uint8_t txFifoWatermark
TX FIFO watermark
-
uint8_t rxFifoWatermark
RX FIFO watermark
-
uint8_t rxRTSWatermark
RX RTS watermark, RX FIFO data count being larger than this triggers RTS deassertion
-
bool enableAutoBaudRate
Enable automatic baud rate detection
-
bool enableTx
Enable TX
-
bool enableRx
Enable RX
-
bool enableRxRTS
RX RTS enable
-
bool enableTxCTS
TX CTS enable
-
uint32_t baudRate_Bps
-
struct _uart_transfer
- #include <fsl_uart.h>
UART transfer structure.
Public Members
-
size_t dataSize
The byte count to be transfer.
-
size_t dataSize
-
struct _uart_handle
- #include <fsl_uart.h>
UART handle structure.
Public Members
-
const uint8_t *volatile txData
Address of remaining data to send.
-
volatile size_t txDataSize
Size of the remaining data to send.
-
size_t txDataSizeAll
Size of the data to send out.
-
uint8_t *volatile rxData
Address of remaining data to receive.
-
volatile size_t rxDataSize
Size of the remaining data to receive.
-
size_t rxDataSizeAll
Size of the data to receive.
-
uint8_t *rxRingBuffer
Start address of the receiver ring buffer.
-
size_t rxRingBufferSize
Size of the ring buffer.
-
volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.
-
volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.
-
uart_transfer_callback_t callback
Callback function.
-
void *userData
UART callback function parameter.
-
volatile uint8_t txState
TX transfer state.
-
volatile uint8_t rxState
RX transfer state
-
const uint8_t *volatile txData
-
union __unnamed61__
Public Members
-
uint8_t *data
The buffer of data to be transfer.
-
uint8_t *rxData
The buffer to receive data.
-
const uint8_t *txData
The buffer of data to be sent.
-
uint8_t *data
UART FreeRTOS Driver#
UART SDMA Driver#
-
void UART_TransferCreateHandleSDMA(UART_Type *base, uart_sdma_handle_t *handle, uart_sdma_transfer_callback_t callback, void *userData, sdma_handle_t *txSdmaHandle, sdma_handle_t *rxSdmaHandle, uint32_t eventSourceTx, uint32_t eventSourceRx)
Initializes the UART handle which is used in transactional functions.
- Parameters:
base – UART peripheral base address.
handle – Pointer to the uart_sdma_handle_t structure.
callback – UART callback, NULL means no callback.
userData – User callback function data.
rxSdmaHandle – User-requested DMA handle for RX DMA transfer.
txSdmaHandle – User-requested DMA handle for TX DMA transfer.
eventSourceTx – Eventsource for TX DMA transfer.
eventSourceRx – Eventsource for RX DMA transfer.
-
status_t UART_SendSDMA(UART_Type *base, uart_sdma_handle_t *handle, uart_transfer_t *xfer)
Sends data using sDMA.
This function sends data using sDMA. This is a non-blocking function, which returns right away. When all data is sent, the send callback function is called.
- Parameters:
base – UART peripheral base address.
handle – UART handle pointer.
xfer – UART sDMA transfer structure. See uart_transfer_t.
- Return values:
kStatus_Success – if succeeded; otherwise failed.
kStatus_UART_TxBusy – Previous transfer ongoing.
kStatus_InvalidArgument – Invalid argument.
-
status_t UART_ReceiveSDMA(UART_Type *base, uart_sdma_handle_t *handle, uart_transfer_t *xfer)
Receives data using sDMA.
This function receives data using sDMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.
- Parameters:
base – UART peripheral base address.
handle – Pointer to the uart_sdma_handle_t structure.
xfer – UART sDMA transfer structure. See uart_transfer_t.
- Return values:
kStatus_Success – if succeeded; otherwise failed.
kStatus_UART_RxBusy – Previous transfer ongoing.
kStatus_InvalidArgument – Invalid argument.
-
void UART_TransferAbortSendSDMA(UART_Type *base, uart_sdma_handle_t *handle)
Aborts the sent data using sDMA.
This function aborts sent data using sDMA.
- Parameters:
base – UART peripheral base address.
handle – Pointer to the uart_sdma_handle_t structure.
-
void UART_TransferAbortReceiveSDMA(UART_Type *base, uart_sdma_handle_t *handle)
Aborts the receive data using sDMA.
This function aborts receive data using sDMA.
- Parameters:
base – UART peripheral base address.
handle – Pointer to the uart_sdma_handle_t structure.
-
void UART_TransferSdmaHandleIRQ(UART_Type *base, void *uartSdmaHandle)
UART IRQ handle function.
This function handles the UART transmit complete IRQ request and invoke user callback.
- Parameters:
base – UART peripheral base address.
uartSdmaHandle – UART handle pointer.
-
FSL_UART_SDMA_DRIVER_VERSION
UART SDMA driver version.
-
typedef struct _uart_sdma_handle uart_sdma_handle_t
-
typedef void (*uart_sdma_transfer_callback_t)(UART_Type *base, uart_sdma_handle_t *handle, status_t status, void *userData)
UART transfer callback function.
-
struct _uart_sdma_handle
- #include <fsl_uart_sdma.h>
UART sDMA handle.
Public Members
-
uart_sdma_transfer_callback_t callback
Callback function.
-
void *userData
UART callback function parameter.
-
size_t rxDataSizeAll
Size of the data to receive.
-
size_t txDataSizeAll
Size of the data to send out.
-
sdma_handle_t *txSdmaHandle
The sDMA TX channel used.
-
sdma_handle_t *rxSdmaHandle
The sDMA RX channel used.
-
volatile uint8_t txState
TX transfer state.
-
volatile uint8_t rxState
RX transfer state
-
uart_sdma_transfer_callback_t callback
USDHC: Ultra Secured Digital Host Controller Driver#
-
void USDHC_Init(USDHC_Type *base, const usdhc_config_t *config)
USDHC module initialization function.
Configures the USDHC according to the user configuration.
Example:
usdhc_config_t config; config.cardDetectDat3 = false; config.endianMode = kUSDHC_EndianModeLittle; config.dmaMode = kUSDHC_DmaModeAdma2; config.readWatermarkLevel = 128U; config.writeWatermarkLevel = 128U; USDHC_Init(USDHC, &config);
- Parameters:
base – USDHC peripheral base address.
config – USDHC configuration information.
- Return values:
kStatus_Success – Operate successfully.
-
void USDHC_Deinit(USDHC_Type *base)
Deinitializes the USDHC.
- Parameters:
base – USDHC peripheral base address.
-
bool USDHC_Reset(USDHC_Type *base, uint32_t mask, uint32_t timeout)
Resets the USDHC.
- Parameters:
base – USDHC peripheral base address.
mask – The reset type mask(_usdhc_reset).
timeout – Timeout for reset.
- Return values:
true – Reset successfully.
false – Reset failed.
-
status_t USDHC_SetAdmaTableConfig(USDHC_Type *base, usdhc_adma_config_t *dmaConfig, usdhc_data_t *dataConfig, uint32_t flags)
Sets the DMA descriptor table configuration. A high level DMA descriptor configuration function.
- Parameters:
base – USDHC peripheral base address.
dmaConfig – ADMA configuration
dataConfig – Data descriptor
flags – ADAM descriptor flag, used to indicate to create multiple or single descriptor, please refer to enum _usdhc_adma_flag.
- Return values:
kStatus_OutOfRange – ADMA descriptor table length isn’t enough to describe data.
kStatus_Success – Operate successfully.
-
status_t USDHC_SetInternalDmaConfig(USDHC_Type *base, usdhc_adma_config_t *dmaConfig, const uint32_t *dataAddr, bool enAutoCmd23)
Internal DMA configuration. This function is used to config the USDHC DMA related registers.
- Parameters:
base – USDHC peripheral base address.
dmaConfig – ADMA configuration.
dataAddr – Transfer data address, a simple DMA parameter, if ADMA is used, leave it to NULL.
enAutoCmd23 – Flag to indicate Auto CMD23 is enable or not, a simple DMA parameter, if ADMA is used, leave it to false.
- Return values:
kStatus_OutOfRange – ADMA descriptor table length isn’t enough to describe data.
kStatus_Success – Operate successfully.
-
status_t USDHC_SetADMA2Descriptor(uint32_t *admaTable, uint32_t admaTableWords, const uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t flags)
Sets the ADMA2 descriptor table configuration.
- Parameters:
admaTable – ADMA table address.
admaTableWords – ADMA table length.
dataBufferAddr – Data buffer address.
dataBytes – Data Data length.
flags – ADAM descriptor flag, used to indicate to create multiple or single descriptor, please refer to enum _usdhc_adma_flag.
- Return values:
kStatus_OutOfRange – ADMA descriptor table length isn’t enough to describe data.
kStatus_Success – Operate successfully.
-
status_t USDHC_SetADMA1Descriptor(uint32_t *admaTable, uint32_t admaTableWords, const uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t flags)
Sets the ADMA1 descriptor table configuration.
- Parameters:
admaTable – ADMA table address.
admaTableWords – ADMA table length.
dataBufferAddr – Data buffer address.
dataBytes – Data length.
flags – ADAM descriptor flag, used to indicate to create multiple or single descriptor, please refer to enum _usdhc_adma_flag.
- Return values:
kStatus_OutOfRange – ADMA descriptor table length isn’t enough to describe data.
kStatus_Success – Operate successfully.
-
static inline void USDHC_EnableInternalDMA(USDHC_Type *base, bool enable)
Enables internal DMA.
- Parameters:
base – USDHC peripheral base address.
enable – enable or disable flag
-
static inline void USDHC_EnableInterruptStatus(USDHC_Type *base, uint32_t mask)
Enables the interrupt status.
- Parameters:
base – USDHC peripheral base address.
mask – Interrupt status flags mask(_usdhc_interrupt_status_flag).
-
static inline void USDHC_DisableInterruptStatus(USDHC_Type *base, uint32_t mask)
Disables the interrupt status.
- Parameters:
base – USDHC peripheral base address.
mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).
-
static inline void USDHC_EnableInterruptSignal(USDHC_Type *base, uint32_t mask)
Enables the interrupt signal corresponding to the interrupt status flag.
- Parameters:
base – USDHC peripheral base address.
mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).
-
static inline void USDHC_DisableInterruptSignal(USDHC_Type *base, uint32_t mask)
Disables the interrupt signal corresponding to the interrupt status flag.
- Parameters:
base – USDHC peripheral base address.
mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).
-
static inline uint32_t USDHC_GetEnabledInterruptStatusFlags(USDHC_Type *base)
Gets the enabled interrupt status.
- Parameters:
base – USDHC peripheral base address.
- Returns:
Current interrupt status flags mask(_usdhc_interrupt_status_flag).
-
static inline uint32_t USDHC_GetInterruptStatusFlags(USDHC_Type *base)
Gets the current interrupt status.
- Parameters:
base – USDHC peripheral base address.
- Returns:
Current interrupt status flags mask(_usdhc_interrupt_status_flag).
-
static inline void USDHC_ClearInterruptStatusFlags(USDHC_Type *base, uint32_t mask)
Clears a specified interrupt status. write 1 clears.
- Parameters:
base – USDHC peripheral base address.
mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).
-
static inline uint32_t USDHC_GetAutoCommand12ErrorStatusFlags(USDHC_Type *base)
Gets the status of auto command 12 error.
- Parameters:
base – USDHC peripheral base address.
- Returns:
Auto command 12 error status flags mask(_usdhc_auto_command12_error_status_flag).
-
static inline uint32_t USDHC_GetAdmaErrorStatusFlags(USDHC_Type *base)
Gets the status of the ADMA error.
- Parameters:
base – USDHC peripheral base address.
- Returns:
ADMA error status flags mask(_usdhc_adma_error_status_flag).
-
static inline uint32_t USDHC_GetPresentStatusFlags(USDHC_Type *base)
Gets a present status.
This function gets the present USDHC’s status except for an interrupt status and an error status.
- Parameters:
base – USDHC peripheral base address.
- Returns:
Present USDHC’s status flags mask(_usdhc_present_status_flag).
-
void USDHC_GetCapability(USDHC_Type *base, usdhc_capability_t *capability)
Gets the capability information.
- Parameters:
base – USDHC peripheral base address.
capability – Structure to save capability information.
-
static inline void USDHC_ForceClockOn(USDHC_Type *base, bool enable)
Forces the card clock on.
- Parameters:
base – USDHC peripheral base address.
enable – enable/disable flag
-
uint32_t USDHC_SetSdClock(USDHC_Type *base, uint32_t srcClock_Hz, uint32_t busClock_Hz)
Sets the SD bus clock frequency.
- Parameters:
base – USDHC peripheral base address.
srcClock_Hz – USDHC source clock frequency united in Hz.
busClock_Hz – SD bus clock frequency united in Hz.
- Returns:
The nearest frequency of busClock_Hz configured for SD bus.
-
bool USDHC_SetCardActive(USDHC_Type *base, uint32_t timeout)
Sends 80 clocks to the card to set it to the active state.
This function must be called each time the card is inserted to ensure that the card can receive the command correctly.
- Parameters:
base – USDHC peripheral base address.
timeout – Timeout to initialize card.
- Return values:
true – Set card active successfully.
false – Set card active failed.
-
static inline void USDHC_AssertHardwareReset(USDHC_Type *base, bool high)
Triggers a hardware reset.
- Parameters:
base – USDHC peripheral base address.
high – 1 or 0 level
-
static inline void USDHC_SetDataBusWidth(USDHC_Type *base, usdhc_data_bus_width_t width)
Sets the data transfer width.
- Parameters:
base – USDHC peripheral base address.
width – Data transfer width.
-
static inline void USDHC_WriteData(USDHC_Type *base, uint32_t data)
Fills the data port.
This function is used to implement the data transfer by Data Port instead of DMA.
- Parameters:
base – USDHC peripheral base address.
data – The data about to be sent.
-
static inline uint32_t USDHC_ReadData(USDHC_Type *base)
Retrieves the data from the data port.
This function is used to implement the data transfer by Data Port instead of DMA.
- Parameters:
base – USDHC peripheral base address.
- Returns:
The data has been read.
-
void USDHC_SendCommand(USDHC_Type *base, usdhc_command_t *command)
Sends command function.
- Parameters:
base – USDHC peripheral base address.
command – configuration
-
static inline void USDHC_EnableWakeupEvent(USDHC_Type *base, uint32_t mask, bool enable)
Enables or disables a wakeup event in low-power mode.
- Parameters:
base – USDHC peripheral base address.
mask – Wakeup events mask(_usdhc_wakeup_event).
enable – True to enable, false to disable.
-
static inline void USDHC_CardDetectByData3(USDHC_Type *base, bool enable)
Detects card insert status.
- Parameters:
base – USDHC peripheral base address.
enable – enable/disable flag
-
static inline bool USDHC_DetectCardInsert(USDHC_Type *base)
Detects card insert status.
- Parameters:
base – USDHC peripheral base address.
-
static inline void USDHC_EnableSdioControl(USDHC_Type *base, uint32_t mask, bool enable)
Enables or disables the SDIO card control.
- Parameters:
base – USDHC peripheral base address.
mask – SDIO card control flags mask(_usdhc_sdio_control_flag).
enable – True to enable, false to disable.
-
static inline void USDHC_SetContinueRequest(USDHC_Type *base)
Restarts a transaction which has stopped at the block GAP for the SDIO card.
- Parameters:
base – USDHC peripheral base address.
-
static inline void USDHC_RequestStopAtBlockGap(USDHC_Type *base, bool enable)
Request stop at block gap function.
- Parameters:
base – USDHC peripheral base address.
enable – True to stop at block gap, false to normal transfer.
-
void USDHC_SetMmcBootConfig(USDHC_Type *base, const usdhc_boot_config_t *config)
Configures the MMC boot feature.
Example:
usdhc_boot_config_t config; config.ackTimeoutCount = 4; config.bootMode = kUSDHC_BootModeNormal; config.blockCount = 5; config.enableBootAck = true; config.enableBoot = true; config.enableAutoStopAtBlockGap = true; USDHC_SetMmcBootConfig(USDHC, &config);
- Parameters:
base – USDHC peripheral base address.
config – The MMC boot configuration information.
-
static inline void USDHC_EnableMmcBoot(USDHC_Type *base, bool enable)
Enables or disables the mmc boot mode.
- Parameters:
base – USDHC peripheral base address.
enable – True to enable, false to disable.
-
static inline void USDHC_SetForceEvent(USDHC_Type *base, uint32_t mask)
Forces generating events according to the given mask.
- Parameters:
base – USDHC peripheral base address.
mask – The force events bit posistion (_usdhc_force_event).
-
static inline bool USDHC_RequestTuningForSDR50(USDHC_Type *base)
Checks the SDR50 mode request tuning bit. When this bit set, application shall perform tuning for SDR50 mode.
- Parameters:
base – USDHC peripheral base address.
-
static inline bool USDHC_RequestReTuning(USDHC_Type *base)
Checks the request re-tuning bit. When this bit is set, user should do manual tuning or standard tuning function.
- Parameters:
base – USDHC peripheral base address.
-
static inline void USDHC_EnableAutoTuning(USDHC_Type *base, bool enable)
The SDR104 mode auto tuning enable and disable. This function should be called after tuning function execute pass, auto tuning will handle by hardware.
- Parameters:
base – USDHC peripheral base address.
enable – enable/disable flag
-
void USDHC_EnableAutoTuningForCmdAndData(USDHC_Type *base)
The auto tuning enbale for CMD/DATA line.
- Parameters:
base – USDHC peripheral base address.
-
void USDHC_EnableManualTuning(USDHC_Type *base, bool enable)
Manual tuning trigger or abort. User should handle the tuning cmd and find the boundary of the delay then calucate a average value which will be configured to the CLK_TUNE_CTRL_STATUS This function should be called before function USDHC_AdjustDelayForManualTuning.
- Parameters:
base – USDHC peripheral base address.
enable – tuning enable flag
-
static inline uint32_t USDHC_GetTuningDelayStatus(USDHC_Type *base)
Get the tuning delay cell setting.
- Parameters:
base – USDHC peripheral base address.
- Return values:
CLK – Tuning Control and Status register value.
-
status_t USDHC_SetTuningDelay(USDHC_Type *base, uint32_t preDelay, uint32_t outDelay, uint32_t postDelay)
The tuning delay cell setting.
- Parameters:
base – USDHC peripheral base address.
preDelay – Set the number of delay cells on the feedback clock between the feedback clock and CLK_PRE.
outDelay – Set the number of delay cells on the feedback clock between CLK_PRE and CLK_OUT.
postDelay – Set the number of delay cells on the feedback clock between CLK_OUT and CLK_POST.
- Return values:
kStatus_Fail – config the delay setting fail
kStatus_Success – config the delay setting success
-
status_t USDHC_AdjustDelayForManualTuning(USDHC_Type *base, uint32_t delay)
Adjusts delay for mannual tuning.
- Deprecated:
Do not use this function. It has been superceded by USDHC_SetTuingDelay
- Parameters:
base – USDHC peripheral base address.
delay – setting configuration
- Return values:
kStatus_Fail – config the delay setting fail
kStatus_Success – config the delay setting success
-
static inline void USDHC_SetStandardTuningCounter(USDHC_Type *base, uint8_t counter)
set tuning counter tuning.
- Parameters:
base – USDHC peripheral base address.
counter – tuning counter
- Return values:
kStatus_Fail – config the delay setting fail
kStatus_Success – config the delay setting success
-
void USDHC_EnableStandardTuning(USDHC_Type *base, uint32_t tuningStartTap, uint32_t step, bool enable)
The enable standard tuning function. The standard tuning window and tuning counter using the default config tuning cmd is sent by the software, user need to check whether the tuning result can be used for SDR50, SDR104, and HS200 mode tuning.
- Parameters:
base – USDHC peripheral base address.
tuningStartTap – start tap
step – tuning step
enable – enable/disable flag
-
static inline uint32_t USDHC_GetExecuteStdTuningStatus(USDHC_Type *base)
Gets execute STD tuning status.
- Parameters:
base – USDHC peripheral base address.
-
static inline uint32_t USDHC_CheckStdTuningResult(USDHC_Type *base)
Checks STD tuning result.
- Parameters:
base – USDHC peripheral base address.
-
static inline uint32_t USDHC_CheckTuningError(USDHC_Type *base)
Checks tuning error.
- Parameters:
base – USDHC peripheral base address.
-
void USDHC_EnableDDRMode(USDHC_Type *base, bool enable, uint32_t nibblePos)
The enable/disable DDR mode.
- Parameters:
base – USDHC peripheral base address.
enable – enable/disable flag
nibblePos – nibble position
-
static inline void USDHC_EnableHS400Mode(USDHC_Type *base, bool enable)
The enable/disable HS400 mode.
- Parameters:
base – USDHC peripheral base address.
enable – enable/disable flag
-
static inline void USDHC_ResetStrobeDLL(USDHC_Type *base)
Resets the strobe DLL.
- Parameters:
base – USDHC peripheral base address.
-
static inline void USDHC_EnableStrobeDLL(USDHC_Type *base, bool enable)
Enables/disables the strobe DLL.
- Parameters:
base – USDHC peripheral base address.
enable – enable/disable flag
-
void USDHC_ConfigStrobeDLL(USDHC_Type *base, uint32_t delayTarget, uint32_t updateInterval)
Configs the strobe DLL delay target and update interval.
- Parameters:
base – USDHC peripheral base address.
delayTarget – delay target
updateInterval – update interval
-
static inline void USDHC_SetStrobeDllOverride(USDHC_Type *base, uint32_t delayTaps)
Enables manual override for slave delay chain using STROBE_SLV_OVERRIDE_VAL.
- Parameters:
base – USDHC peripheral base address.
delayTaps – Valid delay taps range from 1 - 128 taps. A value of 0 selects tap 1, and a value of 0x7F selects tap 128.
-
static inline uint32_t USDHC_GetStrobeDLLStatus(USDHC_Type *base)
Gets the strobe DLL status.
- Parameters:
base – USDHC peripheral base address.
-
void USDHC_SetDataConfig(USDHC_Type *base, usdhc_transfer_direction_t dataDirection, uint32_t blockCount, uint32_t blockSize)
USDHC data configuration.
- Parameters:
base – USDHC peripheral base address.
dataDirection – Data direction, tx or rx.
blockCount – Data block count.
blockSize – Data block size.
-
void USDHC_TransferCreateHandle(USDHC_Type *base, usdhc_handle_t *handle, const usdhc_transfer_callback_t *callback, void *userData)
Creates the USDHC handle.
- Parameters:
base – USDHC peripheral base address.
handle – USDHC handle pointer.
callback – Structure pointer to contain all callback functions.
userData – Callback function parameter.
-
status_t USDHC_TransferNonBlocking(USDHC_Type *base, usdhc_handle_t *handle, usdhc_adma_config_t *dmaConfig, usdhc_transfer_t *transfer)
Transfers the command/data using an interrupt and an asynchronous method.
This function sends a command and data and returns immediately. It doesn’t wait for the transfer to complete or to encounter an error. The application must not call this API in multiple threads at the same time. Because of that this API doesn’t support the re-entry mechanism.
Note
Call API USDHC_TransferCreateHandle when calling this API.
- Parameters:
base – USDHC peripheral base address.
handle – USDHC handle.
dmaConfig – ADMA configuration.
transfer – Transfer content.
- Return values:
kStatus_InvalidArgument – Argument is invalid.
kStatus_USDHC_BusyTransferring – Busy transferring.
kStatus_USDHC_PrepareAdmaDescriptorFailed – Prepare ADMA descriptor failed.
kStatus_Success – Operate successfully.
-
status_t USDHC_TransferBlocking(USDHC_Type *base, usdhc_adma_config_t *dmaConfig, usdhc_transfer_t *transfer)
Transfers the command/data using a blocking method.
This function waits until the command response/data is received or the USDHC encounters an error by polling the status flag.
The application must not call this API in multiple threads at the same time. Because this API doesn’t support the re-entry mechanism.
Note
There is no need to call API USDHC_TransferCreateHandle when calling this API.
- Parameters:
base – USDHC peripheral base address.
dmaConfig – adma configuration
transfer – Transfer content.
- Return values:
kStatus_InvalidArgument – Argument is invalid.
kStatus_USDHC_PrepareAdmaDescriptorFailed – Prepare ADMA descriptor failed.
kStatus_USDHC_SendCommandFailed – Send command failed.
kStatus_USDHC_TransferDataFailed – Transfer data failed.
kStatus_Success – Operate successfully.
-
void USDHC_TransferHandleIRQ(USDHC_Type *base, usdhc_handle_t *handle)
IRQ handler for the USDHC.
This function deals with the IRQs on the given host controller.
- Parameters:
base – USDHC peripheral base address.
handle – USDHC handle.
-
FSL_USDHC_DRIVER_VERSION
Driver version 2.8.8.
Enum _usdhc_status. USDHC status.
Values:
-
enumerator kStatus_USDHC_BusyTransferring
Transfer is on-going.
-
enumerator kStatus_USDHC_PrepareAdmaDescriptorFailed
Set DMA descriptor failed.
-
enumerator kStatus_USDHC_SendCommandFailed
Send command failed.
-
enumerator kStatus_USDHC_TransferDataFailed
Transfer data failed.
-
enumerator kStatus_USDHC_DMADataAddrNotAlign
Data address not aligned.
-
enumerator kStatus_USDHC_ReTuningRequest
Re-tuning request.
-
enumerator kStatus_USDHC_TuningError
Tuning error.
-
enumerator kStatus_USDHC_NotSupport
Not support.
-
enumerator kStatus_USDHC_TransferDataComplete
Transfer data complete.
-
enumerator kStatus_USDHC_SendCommandSuccess
Transfer command complete.
-
enumerator kStatus_USDHC_TransferDMAComplete
Transfer DMA complete.
-
enumerator kStatus_USDHC_BusyTransferring
Enum _usdhc_capability_flag. Host controller capabilities flag mask. .
Values:
-
enumerator kUSDHC_SupportAdmaFlag
Support ADMA.
-
enumerator kUSDHC_SupportHighSpeedFlag
Support high-speed.
-
enumerator kUSDHC_SupportDmaFlag
Support DMA.
-
enumerator kUSDHC_SupportSuspendResumeFlag
Support suspend/resume.
-
enumerator kUSDHC_SupportV330Flag
Support voltage 3.3V.
-
enumerator kUSDHC_SupportV300Flag
Support voltage 3.0V.
-
enumerator kUSDHC_Support4BitFlag
Flag in HTCAPBLT_MBL’s position, supporting 4-bit mode.
-
enumerator kUSDHC_Support8BitFlag
Flag in HTCAPBLT_MBL’s position, supporting 8-bit mode.
-
enumerator kUSDHC_SupportDDR50Flag
SD version 3.0 new feature, supporting DDR50 mode.
-
enumerator kUSDHC_SupportSDR104Flag
Support SDR104 mode.
-
enumerator kUSDHC_SupportSDR50Flag
Support SDR50 mode.
-
enumerator kUSDHC_SupportAdmaFlag
Enum _usdhc_wakeup_event. Wakeup event mask. .
Values:
-
enumerator kUSDHC_WakeupEventOnCardInt
Wakeup on card interrupt.
-
enumerator kUSDHC_WakeupEventOnCardInsert
Wakeup on card insertion.
-
enumerator kUSDHC_WakeupEventOnCardRemove
Wakeup on card removal.
-
enumerator kUSDHC_WakeupEventsAll
All wakeup events
-
enumerator kUSDHC_WakeupEventOnCardInt
Enum _usdhc_reset. Reset type mask. .
Values:
-
enumerator kUSDHC_ResetAll
Reset all except card detection.
-
enumerator kUSDHC_ResetCommand
Reset command line.
-
enumerator kUSDHC_ResetData
Reset data line.
-
enumerator kUSDHC_ResetTuning
Reset tuning circuit.
-
enumerator kUSDHC_ResetsAll
All reset types
-
enumerator kUSDHC_ResetAll
Enum _usdhc_transfer_flag. Transfer flag mask.
Values:
-
enumerator kUSDHC_EnableDmaFlag
Enable DMA.
-
enumerator kUSDHC_CommandTypeSuspendFlag
Suspend command.
-
enumerator kUSDHC_CommandTypeResumeFlag
Resume command.
-
enumerator kUSDHC_CommandTypeAbortFlag
Abort command.
-
enumerator kUSDHC_EnableBlockCountFlag
Enable block count.
-
enumerator kUSDHC_EnableAutoCommand12Flag
Enable auto CMD12.
-
enumerator kUSDHC_DataReadFlag
Enable data read.
-
enumerator kUSDHC_MultipleBlockFlag
Multiple block data read/write.
-
enumerator kUSDHC_EnableAutoCommand23Flag
Enable auto CMD23.
-
enumerator kUSDHC_ResponseLength136Flag
136-bit response length.
-
enumerator kUSDHC_ResponseLength48Flag
48-bit response length.
-
enumerator kUSDHC_ResponseLength48BusyFlag
48-bit response length with busy status.
-
enumerator kUSDHC_EnableCrcCheckFlag
Enable CRC check.
-
enumerator kUSDHC_EnableIndexCheckFlag
Enable index check.
-
enumerator kUSDHC_DataPresentFlag
Data present flag.
-
enumerator kUSDHC_EnableDmaFlag
Enum _usdhc_present_status_flag. Present status flag mask. .
Values:
-
enumerator kUSDHC_CommandInhibitFlag
Command inhibit.
-
enumerator kUSDHC_DataInhibitFlag
Data inhibit.
-
enumerator kUSDHC_DataLineActiveFlag
Data line active.
-
enumerator kUSDHC_SdClockStableFlag
SD bus clock stable.
-
enumerator kUSDHC_WriteTransferActiveFlag
Write transfer active.
-
enumerator kUSDHC_ReadTransferActiveFlag
Read transfer active.
-
enumerator kUSDHC_BufferWriteEnableFlag
Buffer write enable.
-
enumerator kUSDHC_BufferReadEnableFlag
Buffer read enable.
-
enumerator kUSDHC_ReTuningRequestFlag
Re-tuning request flag, only used for SDR104 mode.
-
enumerator kUSDHC_DelaySettingFinishedFlag
Delay setting finished flag.
-
enumerator kUSDHC_CardInsertedFlag
Card inserted.
-
enumerator kUSDHC_CommandLineLevelFlag
Command line signal level.
-
enumerator kUSDHC_Data0LineLevelFlag
Data0 line signal level.
-
enumerator kUSDHC_Data1LineLevelFlag
Data1 line signal level.
-
enumerator kUSDHC_Data2LineLevelFlag
Data2 line signal level.
-
enumerator kUSDHC_Data3LineLevelFlag
Data3 line signal level.
-
enumerator kUSDHC_Data4LineLevelFlag
Data4 line signal level.
-
enumerator kUSDHC_Data5LineLevelFlag
Data5 line signal level.
-
enumerator kUSDHC_Data6LineLevelFlag
Data6 line signal level.
-
enumerator kUSDHC_Data7LineLevelFlag
Data7 line signal level.
-
enumerator kUSDHC_CommandInhibitFlag
Enum _usdhc_interrupt_status_flag. Interrupt status flag mask. .
Values:
-
enumerator kUSDHC_CommandCompleteFlag
Command complete.
-
enumerator kUSDHC_DataCompleteFlag
Data complete.
-
enumerator kUSDHC_BlockGapEventFlag
Block gap event.
-
enumerator kUSDHC_DmaCompleteFlag
DMA interrupt.
-
enumerator kUSDHC_BufferWriteReadyFlag
Buffer write ready.
-
enumerator kUSDHC_BufferReadReadyFlag
Buffer read ready.
-
enumerator kUSDHC_CardInsertionFlag
Card inserted.
-
enumerator kUSDHC_CardRemovalFlag
Card removed.
-
enumerator kUSDHC_CardInterruptFlag
Card interrupt.
-
enumerator kUSDHC_ReTuningEventFlag
Re-Tuning event, only for SD3.0 SDR104 mode.
-
enumerator kUSDHC_TuningPassFlag
SDR104 mode tuning pass flag.
-
enumerator kUSDHC_TuningErrorFlag
SDR104 tuning error flag.
-
enumerator kUSDHC_CommandTimeoutFlag
Command timeout error.
-
enumerator kUSDHC_CommandCrcErrorFlag
Command CRC error.
-
enumerator kUSDHC_CommandEndBitErrorFlag
Command end bit error.
-
enumerator kUSDHC_CommandIndexErrorFlag
Command index error.
-
enumerator kUSDHC_DataTimeoutFlag
Data timeout error.
-
enumerator kUSDHC_DataCrcErrorFlag
Data CRC error.
-
enumerator kUSDHC_DataEndBitErrorFlag
Data end bit error.
-
enumerator kUSDHC_AutoCommand12ErrorFlag
Auto CMD12 error.
-
enumerator kUSDHC_DmaErrorFlag
DMA error.
-
enumerator kUSDHC_CommandErrorFlag
Command error
-
enumerator kUSDHC_DataErrorFlag
Data error
-
enumerator kUSDHC_ErrorFlag
All error
-
enumerator kUSDHC_DataFlag
Data interrupts
-
enumerator kUSDHC_DataDMAFlag
Data interrupts
-
enumerator kUSDHC_CommandFlag
Command interrupts
-
enumerator kUSDHC_CardDetectFlag
Card detection interrupts
-
enumerator kUSDHC_SDR104TuningFlag
SDR104 tuning flag.
-
enumerator kUSDHC_AllInterruptFlags
All flags mask
-
enumerator kUSDHC_CommandCompleteFlag
Enum _usdhc_auto_command12_error_status_flag. Auto CMD12 error status flag mask. .
Values:
-
enumerator kUSDHC_AutoCommand12NotExecutedFlag
Not executed error.
-
enumerator kUSDHC_AutoCommand12TimeoutFlag
Timeout error.
-
enumerator kUSDHC_AutoCommand12EndBitErrorFlag
End bit error.
-
enumerator kUSDHC_AutoCommand12CrcErrorFlag
CRC error.
-
enumerator kUSDHC_AutoCommand12IndexErrorFlag
Index error.
-
enumerator kUSDHC_AutoCommand12NotIssuedFlag
Not issued error.
-
enumerator kUSDHC_AutoCommand12NotExecutedFlag
Enum _usdhc_standard_tuning. Standard tuning flag.
Values:
-
enumerator kUSDHC_ExecuteTuning
Used to start tuning procedure.
-
enumerator kUSDHC_TuningSampleClockSel
When std_tuning_en bit is set, this bit is used to select sampleing clock.
-
enumerator kUSDHC_ExecuteTuning
Enum _usdhc_adma_error_status_flag. ADMA error status flag mask. .
Values:
-
enumerator kUSDHC_AdmaLenghMismatchFlag
Length mismatch error.
-
enumerator kUSDHC_AdmaDescriptorErrorFlag
Descriptor error.
-
enumerator kUSDHC_AdmaLenghMismatchFlag
Enum _usdhc_adma_error_state. ADMA error state.
This state is the detail state when ADMA error has occurred.
Values:
-
enumerator kUSDHC_AdmaErrorStateStopDma
Stop DMA, previous location set in the ADMA system address is errored address.
-
enumerator kUSDHC_AdmaErrorStateFetchDescriptor
Fetch descriptor, current location set in the ADMA system address is errored address.
-
enumerator kUSDHC_AdmaErrorStateChangeAddress
Change address, no DMA error has occurred.
-
enumerator kUSDHC_AdmaErrorStateTransferData
Transfer data, previous location set in the ADMA system address is errored address.
-
enumerator kUSDHC_AdmaErrorStateInvalidLength
Invalid length in ADMA descriptor.
-
enumerator kUSDHC_AdmaErrorStateInvalidDescriptor
Invalid descriptor fetched by ADMA.
-
enumerator kUSDHC_AdmaErrorState
ADMA error state
-
enumerator kUSDHC_AdmaErrorStateStopDma
Enum _usdhc_force_event. Force event bit position. .
Values:
-
enumerator kUSDHC_ForceEventAutoCommand12NotExecuted
Auto CMD12 not executed error.
-
enumerator kUSDHC_ForceEventAutoCommand12Timeout
Auto CMD12 timeout error.
-
enumerator kUSDHC_ForceEventAutoCommand12CrcError
Auto CMD12 CRC error.
-
enumerator kUSDHC_ForceEventEndBitError
Auto CMD12 end bit error.
-
enumerator kUSDHC_ForceEventAutoCommand12IndexError
Auto CMD12 index error.
-
enumerator kUSDHC_ForceEventAutoCommand12NotIssued
Auto CMD12 not issued error.
-
enumerator kUSDHC_ForceEventCommandTimeout
Command timeout error.
-
enumerator kUSDHC_ForceEventCommandCrcError
Command CRC error.
-
enumerator kUSDHC_ForceEventCommandEndBitError
Command end bit error.
-
enumerator kUSDHC_ForceEventCommandIndexError
Command index error.
-
enumerator kUSDHC_ForceEventDataTimeout
Data timeout error.
-
enumerator kUSDHC_ForceEventDataCrcError
Data CRC error.
-
enumerator kUSDHC_ForceEventDataEndBitError
Data end bit error.
-
enumerator kUSDHC_ForceEventAutoCommand12Error
Auto CMD12 error.
-
enumerator kUSDHC_ForceEventCardInt
Card interrupt.
-
enumerator kUSDHC_ForceEventDmaError
Dma error.
-
enumerator kUSDHC_ForceEventTuningError
Tuning error.
-
enumerator kUSDHC_ForceEventsAll
All force event flags mask.
-
enumerator kUSDHC_ForceEventAutoCommand12NotExecuted
-
enum _usdhc_transfer_direction
Data transfer direction.
Values:
-
enumerator kUSDHC_TransferDirectionReceive
USDHC transfer direction receive.
-
enumerator kUSDHC_TransferDirectionSend
USDHC transfer direction send.
-
enumerator kUSDHC_TransferDirectionReceive
-
enum _usdhc_data_bus_width
Data transfer width.
Values:
-
enumerator kUSDHC_DataBusWidth1Bit
1-bit mode
-
enumerator kUSDHC_DataBusWidth4Bit
4-bit mode
-
enumerator kUSDHC_DataBusWidth8Bit
8-bit mode
-
enumerator kUSDHC_DataBusWidth1Bit
-
enum _usdhc_endian_mode
Endian mode.
Values:
-
enumerator kUSDHC_EndianModeBig
Big endian mode.
-
enumerator kUSDHC_EndianModeHalfWordBig
Half word big endian mode.
-
enumerator kUSDHC_EndianModeLittle
Little endian mode.
-
enumerator kUSDHC_EndianModeBig
-
enum _usdhc_dma_mode
DMA mode.
Values:
-
enumerator kUSDHC_DmaModeSimple
External DMA.
-
enumerator kUSDHC_DmaModeAdma1
ADMA1 is selected.
-
enumerator kUSDHC_DmaModeAdma2
ADMA2 is selected.
-
enumerator kUSDHC_ExternalDMA
External DMA mode selected.
-
enumerator kUSDHC_DmaModeSimple
Enum _usdhc_sdio_control_flag. SDIO control flag mask. .
Values:
-
enumerator kUSDHC_StopAtBlockGapFlag
Stop at block gap.
-
enumerator kUSDHC_ReadWaitControlFlag
Read wait control.
-
enumerator kUSDHC_InterruptAtBlockGapFlag
Interrupt at block gap.
-
enumerator kUSDHC_ReadDoneNo8CLK
Read done without 8 clk for block gap.
-
enumerator kUSDHC_ExactBlockNumberReadFlag
Exact block number read.
-
enumerator kUSDHC_StopAtBlockGapFlag
-
enum _usdhc_boot_mode
MMC card boot mode.
Values:
-
enumerator kUSDHC_BootModeNormal
Normal boot
-
enumerator kUSDHC_BootModeAlternative
Alternative boot
-
enumerator kUSDHC_BootModeNormal
-
enum _usdhc_card_command_type
The command type.
Values:
-
enumerator kCARD_CommandTypeNormal
Normal command
-
enumerator kCARD_CommandTypeSuspend
Suspend command
-
enumerator kCARD_CommandTypeResume
Resume command
-
enumerator kCARD_CommandTypeAbort
Abort command
-
enumerator kCARD_CommandTypeEmpty
Empty command
-
enumerator kCARD_CommandTypeNormal
-
enum _usdhc_card_response_type
The command response type.
Defines the command response type from card to host controller.
Values:
-
enumerator kCARD_ResponseTypeNone
Response type: none
-
enumerator kCARD_ResponseTypeR1
Response type: R1
-
enumerator kCARD_ResponseTypeR1b
Response type: R1b
-
enumerator kCARD_ResponseTypeR2
Response type: R2
-
enumerator kCARD_ResponseTypeR3
Response type: R3
-
enumerator kCARD_ResponseTypeR4
Response type: R4
-
enumerator kCARD_ResponseTypeR5
Response type: R5
-
enumerator kCARD_ResponseTypeR5b
Response type: R5b
-
enumerator kCARD_ResponseTypeR6
Response type: R6
-
enumerator kCARD_ResponseTypeR7
Response type: R7
-
enumerator kCARD_ResponseTypeNone
Enum _usdhc_adma1_descriptor_flag. The mask for the control/status field in ADMA1 descriptor.
Values:
-
enumerator kUSDHC_Adma1DescriptorValidFlag
Valid flag.
-
enumerator kUSDHC_Adma1DescriptorEndFlag
End flag.
-
enumerator kUSDHC_Adma1DescriptorInterrupFlag
Interrupt flag.
-
enumerator kUSDHC_Adma1DescriptorActivity1Flag
Activity 1 flag.
-
enumerator kUSDHC_Adma1DescriptorActivity2Flag
Activity 2 flag.
-
enumerator kUSDHC_Adma1DescriptorTypeNop
No operation.
-
enumerator kUSDHC_Adma1DescriptorTypeTransfer
Transfer data.
-
enumerator kUSDHC_Adma1DescriptorTypeLink
Link descriptor.
-
enumerator kUSDHC_Adma1DescriptorTypeSetLength
Set data length.
-
enumerator kUSDHC_Adma1DescriptorValidFlag
Enum _usdhc_adma2_descriptor_flag. ADMA1 descriptor control and status mask.
Values:
-
enumerator kUSDHC_Adma2DescriptorValidFlag
Valid flag.
-
enumerator kUSDHC_Adma2DescriptorEndFlag
End flag.
-
enumerator kUSDHC_Adma2DescriptorInterruptFlag
Interrupt flag.
-
enumerator kUSDHC_Adma2DescriptorActivity1Flag
Activity 1 mask.
-
enumerator kUSDHC_Adma2DescriptorActivity2Flag
Activity 2 mask.
-
enumerator kUSDHC_Adma2DescriptorTypeNop
No operation.
-
enumerator kUSDHC_Adma2DescriptorTypeReserved
Reserved.
-
enumerator kUSDHC_Adma2DescriptorTypeTransfer
Transfer type.
-
enumerator kUSDHC_Adma2DescriptorTypeLink
Link type.
-
enumerator kUSDHC_Adma2DescriptorValidFlag
Enum _usdhc_adma_flag. ADMA descriptor configuration flag. .
Values:
-
enumerator kUSDHC_AdmaDescriptorSingleFlag
Try to finish the transfer in a single ADMA descriptor. If transfer size is bigger than one ADMA descriptor’s ability, new another descriptor for data transfer.
-
enumerator kUSDHC_AdmaDescriptorMultipleFlag
Create multiple ADMA descriptors within the ADMA table, this is used for mmc boot mode specifically, which need to modify the ADMA descriptor on the fly, so the flag should be used combining with stop at block gap feature.
-
enumerator kUSDHC_AdmaDescriptorSingleFlag
-
enum _usdhc_burst_len
DMA transfer burst len config.
Values:
-
enumerator kUSDHC_EnBurstLenForINCR
Enable burst len for INCR.
-
enumerator kUSDHC_EnBurstLenForINCR4816
Enable burst len for INCR4/INCR8/INCR16.
-
enumerator kUSDHC_EnBurstLenForINCR4816WRAP
Enable burst len for INCR4/8/16 WRAP.
-
enumerator kUSDHC_EnBurstLenForINCR
Enum _usdhc_transfer_data_type. Tansfer data type definition.
Values:
-
enumerator kUSDHC_TransferDataNormal
Transfer normal read/write data.
-
enumerator kUSDHC_TransferDataTuning
Transfer tuning data.
-
enumerator kUSDHC_TransferDataBoot
Transfer boot data.
-
enumerator kUSDHC_TransferDataBootcontinous
Transfer boot data continuously.
-
enumerator kUSDHC_TransferDataNormal
-
typedef enum _usdhc_transfer_direction usdhc_transfer_direction_t
Data transfer direction.
-
typedef enum _usdhc_data_bus_width usdhc_data_bus_width_t
Data transfer width.
-
typedef enum _usdhc_endian_mode usdhc_endian_mode_t
Endian mode.
-
typedef enum _usdhc_dma_mode usdhc_dma_mode_t
DMA mode.
-
typedef enum _usdhc_boot_mode usdhc_boot_mode_t
MMC card boot mode.
-
typedef enum _usdhc_card_command_type usdhc_card_command_type_t
The command type.
-
typedef enum _usdhc_card_response_type usdhc_card_response_type_t
The command response type.
Defines the command response type from card to host controller.
-
typedef enum _usdhc_burst_len usdhc_burst_len_t
DMA transfer burst len config.
-
typedef uint32_t usdhc_adma1_descriptor_t
Defines the ADMA1 descriptor structure.
-
typedef struct _usdhc_adma2_descriptor usdhc_adma2_descriptor_t
Defines the ADMA2 descriptor structure.
-
typedef struct _usdhc_capability usdhc_capability_t
USDHC capability information.
Defines a structure to save the capability information of USDHC.
-
typedef struct _usdhc_boot_config usdhc_boot_config_t
Data structure to configure the MMC boot feature.
-
typedef struct _usdhc_config usdhc_config_t
Data structure to initialize the USDHC.
-
typedef struct _usdhc_command usdhc_command_t
Card command descriptor.
Defines card command-related attribute.
-
typedef struct _usdhc_adma_config usdhc_adma_config_t
ADMA configuration.
-
typedef struct _usdhc_scatter_gather_data_list usdhc_scatter_gather_data_list_t
Card scatter gather data list.
Allow application register uncontinuous data buffer for data transfer.
-
typedef struct _usdhc_scatter_gather_data usdhc_scatter_gather_data_t
Card scatter gather data descriptor.
Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when upper card driver wants to ignore the error event to read/write all the data and not to stop read/write immediately when an error event happens. For example, bus testing procedure for MMC card.
-
typedef struct _usdhc_scatter_gather_transfer usdhc_scatter_gather_transfer_t
usdhc scatter gather transfer.
-
typedef struct _usdhc_data usdhc_data_t
Card data descriptor.
Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when upper card driver wants to ignore the error event to read/write all the data and not to stop read/write immediately when an error event happens. For example, bus testing procedure for MMC card.
-
typedef struct _usdhc_transfer usdhc_transfer_t
Transfer state.
-
typedef struct _usdhc_handle usdhc_handle_t
USDHC handle typedef.
-
typedef struct _usdhc_transfer_callback usdhc_transfer_callback_t
USDHC callback functions.
-
typedef status_t (*usdhc_transfer_function_t)(USDHC_Type *base, usdhc_transfer_t *content)
USDHC transfer function.
-
typedef struct _usdhc_host usdhc_host_t
USDHC host descriptor.
-
USDHC_MAX_BLOCK_COUNT
Maximum block count can be set one time.
-
FSL_USDHC_ENABLE_SCATTER_GATHER_TRANSFER
USDHC scatter gather feature control macro.
-
USDHC_ADMA1_ADDRESS_ALIGN
The alignment size for ADDRESS filed in ADMA1’s descriptor.
-
USDHC_ADMA1_LENGTH_ALIGN
The alignment size for LENGTH field in ADMA1’s descriptor.
-
USDHC_ADMA2_ADDRESS_ALIGN
The alignment size for ADDRESS field in ADMA2’s descriptor.
-
USDHC_ADMA2_LENGTH_ALIGN
The alignment size for LENGTH filed in ADMA2’s descriptor.
-
USDHC_ADMA1_DESCRIPTOR_ADDRESS_SHIFT
The bit shift for ADDRESS filed in ADMA1’s descriptor.
Address/page field
Reserved
Attribute
31 12
11 6
05
04
03
02
01
00
address or data length
000000
Act2
Act1
0
Int
End
Valid
Act2
Act1
Comment
31-28
27-12
0
0
No op
Don’t care
0
1
Set data length
0000
Data Length
1
0
Transfer data
Data address
1
1
Link descriptor
Descriptor address
-
USDHC_ADMA1_DESCRIPTOR_ADDRESS_MASK
The bit mask for ADDRESS field in ADMA1’s descriptor.
-
USDHC_ADMA1_DESCRIPTOR_LENGTH_SHIFT
The bit shift for LENGTH filed in ADMA1’s descriptor.
-
USDHC_ADMA1_DESCRIPTOR_LENGTH_MASK
The mask for LENGTH field in ADMA1’s descriptor.
-
USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY
The maximum value of LENGTH filed in ADMA1’s descriptor. Since the max transfer size ADMA1 support is 65535 which is indivisible by 4096, so to make sure a large data load transfer (>64KB) continuously (require the data address be always align with 4096), software will set the maximum data length for ADMA1 to (64 - 4)KB.
-
USDHC_ADMA2_DESCRIPTOR_LENGTH_SHIFT
The bit shift for LENGTH field in ADMA2’s descriptor.
Address field
Length
Reserved
Attribute
63 32
31 16
15 06
05
04
03
02
01
00
32-bit address
16-bit length
0000000000
Act2
Act1
0
Int
End
Valid
Act2
Act1
Comment
Operation
0
0
No op
Don’t care
0
1
Reserved
Read this line and go to next one
1
0
Transfer data
Transfer data with address and length set in this descriptor line
1
1
Link descriptor
Link to another descriptor
-
USDHC_ADMA2_DESCRIPTOR_LENGTH_MASK
The bit mask for LENGTH field in ADMA2’s descriptor.
-
USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY
The maximum value of LENGTH field in ADMA2’s descriptor.
-
struct _usdhc_adma2_descriptor
- #include <fsl_usdhc.h>
Defines the ADMA2 descriptor structure.
Public Members
-
uint32_t attribute
The control and status field.
-
uint32_t address
The address field.
-
uint32_t attribute
-
struct _usdhc_capability
- #include <fsl_usdhc.h>
USDHC capability information.
Defines a structure to save the capability information of USDHC.
Public Members
-
uint32_t sdVersion
Support SD card/sdio version.
-
uint32_t mmcVersion
Support EMMC card version.
-
uint32_t maxBlockLength
Maximum block length united as byte.
-
uint32_t maxBlockCount
Maximum block count can be set one time.
-
uint32_t flags
Capability flags to indicate the support information(_usdhc_capability_flag).
-
uint32_t sdVersion
-
struct _usdhc_boot_config
- #include <fsl_usdhc.h>
Data structure to configure the MMC boot feature.
Public Members
-
uint32_t ackTimeoutCount
Timeout value for the boot ACK. The available range is 0 ~ 15.
-
usdhc_boot_mode_t bootMode
Boot mode selection.
-
uint32_t blockCount
Stop at block gap value of automatic mode. Available range is 0 ~ 65535.
-
size_t blockSize
Block size.
-
bool enableBootAck
Enable or disable boot ACK.
-
bool enableAutoStopAtBlockGap
Enable or disable auto stop at block gap function in boot period.
-
uint32_t ackTimeoutCount
-
struct _usdhc_config
- #include <fsl_usdhc.h>
Data structure to initialize the USDHC.
Public Members
-
uint32_t dataTimeout
Data timeout value.
-
usdhc_endian_mode_t endianMode
Endian mode.
-
uint8_t readWatermarkLevel
Watermark level for DMA read operation. Available range is 1 ~ 128.
-
uint8_t writeWatermarkLevel
Watermark level for DMA write operation. Available range is 1 ~ 128.
-
uint32_t dataTimeout
-
struct _usdhc_command
- #include <fsl_usdhc.h>
Card command descriptor.
Defines card command-related attribute.
Public Members
-
uint32_t index
Command index.
-
uint32_t argument
Command argument.
-
usdhc_card_command_type_t type
Command type.
-
usdhc_card_response_type_t responseType
Command response type.
-
uint32_t response[4U]
Response for this command.
-
uint32_t responseErrorFlags
Response error flag, which need to check the command reponse.
-
uint32_t flags
Cmd flags.
-
uint32_t index
-
struct _usdhc_adma_config
- #include <fsl_usdhc.h>
ADMA configuration.
Public Members
-
usdhc_dma_mode_t dmaMode
DMA mode.
-
uint32_t *admaTable
ADMA table address, can’t be null if transfer way is ADMA1/ADMA2.
-
uint32_t admaTableWords
ADMA table length united as words, can’t be 0 if transfer way is ADMA1/ADMA2.
-
usdhc_dma_mode_t dmaMode
-
struct _usdhc_scatter_gather_data_list
- #include <fsl_usdhc.h>
Card scatter gather data list.
Allow application register uncontinuous data buffer for data transfer.
-
struct _usdhc_scatter_gather_data
- #include <fsl_usdhc.h>
Card scatter gather data descriptor.
Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when upper card driver wants to ignore the error event to read/write all the data and not to stop read/write immediately when an error event happens. For example, bus testing procedure for MMC card.
Public Members
-
bool enableAutoCommand12
Enable auto CMD12.
-
bool enableAutoCommand23
Enable auto CMD23.
-
bool enableIgnoreError
Enable to ignore error event to read/write all the data.
-
usdhc_transfer_direction_t dataDirection
data direction
-
uint8_t dataType
this is used to distinguish the normal/tuning/boot data.
-
size_t blockSize
Block size.
-
usdhc_scatter_gather_data_list_t sgData
scatter gather data
-
bool enableAutoCommand12
-
struct _usdhc_scatter_gather_transfer
- #include <fsl_usdhc.h>
usdhc scatter gather transfer.
Public Members
-
usdhc_scatter_gather_data_t *data
Data to transfer.
-
usdhc_command_t *command
Command to send.
-
usdhc_scatter_gather_data_t *data
-
struct _usdhc_data
- #include <fsl_usdhc.h>
Card data descriptor.
Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when upper card driver wants to ignore the error event to read/write all the data and not to stop read/write immediately when an error event happens. For example, bus testing procedure for MMC card.
Public Members
-
bool enableAutoCommand12
Enable auto CMD12.
-
bool enableAutoCommand23
Enable auto CMD23.
-
bool enableIgnoreError
Enable to ignore error event to read/write all the data.
-
uint8_t dataType
this is used to distinguish the normal/tuning/boot data.
-
size_t blockSize
Block size.
-
uint32_t blockCount
Block count.
-
uint32_t *rxData
Buffer to save data read.
-
const uint32_t *txData
Data buffer to write.
-
bool enableAutoCommand12
-
struct _usdhc_transfer
- #include <fsl_usdhc.h>
Transfer state.
-
struct _usdhc_transfer_callback
- #include <fsl_usdhc.h>
USDHC callback functions.
Public Members
-
void (*CardInserted)(USDHC_Type *base, void *userData)
Card inserted occurs when DAT3/CD pin is for card detect
-
void (*CardRemoved)(USDHC_Type *base, void *userData)
Card removed occurs
-
void (*SdioInterrupt)(USDHC_Type *base, void *userData)
SDIO card interrupt occurs
-
void (*BlockGap)(USDHC_Type *base, void *userData)
stopped at block gap event
-
void (*TransferComplete)(USDHC_Type *base, usdhc_handle_t *handle, status_t status, void *userData)
Transfer complete callback.
-
void (*ReTuning)(USDHC_Type *base, void *userData)
Handle the re-tuning.
-
void (*CardInserted)(USDHC_Type *base, void *userData)
-
struct _usdhc_handle
- #include <fsl_usdhc.h>
USDHC handle.
Defines the structure to save the USDHC state information and callback function.
Note
All the fields except interruptFlags and transferredWords must be allocated by the user.
Public Members
-
usdhc_data_t *volatile data
Transfer parameter. Data to transfer.
-
usdhc_command_t *volatile command
Transfer parameter. Command to send.
-
volatile uint32_t transferredWords
Transfer status. Words transferred by DATAPORT way.
-
usdhc_transfer_callback_t callback
Callback function.
-
void *userData
Parameter for transfer complete callback.
-
usdhc_data_t *volatile data
-
struct _usdhc_host
- #include <fsl_usdhc.h>
USDHC host descriptor.
Public Members
-
USDHC_Type *base
USDHC peripheral base address.
-
uint32_t sourceClock_Hz
USDHC source clock frequency united in Hz.
-
usdhc_config_t config
USDHC configuration.
-
usdhc_capability_t capability
USDHC capability information.
-
usdhc_transfer_function_t transfer
USDHC transfer function.
-
USDHC_Type *base
WDOG: Watchdog Timer Driver#
-
void WDOG_GetDefaultConfig(wdog_config_t *config)
Initializes the WDOG configuration structure.
This function initializes the WDOG configuration structure to default values. The default values are as follows.
wdogConfig->enableWdog = true; wdogConfig->workMode.enableWait = true; wdogConfig->workMode.enableStop = true; wdogConfig->workMode.enableDebug = true; wdogConfig->enableInterrupt = false; wdogConfig->enablePowerdown = false; wdogConfig->resetExtension = flase; wdogConfig->timeoutValue = 0xFFU; wdogConfig->interruptTimeValue = 0x04u;
See also
wdog_config_t
- Parameters:
config – Pointer to the WDOG configuration structure.
-
void WDOG_Init(WDOG_Type *base, const wdog_config_t *config)
Initializes the WDOG.
This function initializes the WDOG. When called, the WDOG runs according to the configuration.
This is an example.
wdog_config_t config; WDOG_GetDefaultConfig(&config); config.timeoutValue = 0xffU; config->interruptTimeValue = 0x04u; WDOG_Init(wdog_base,&config);
- Parameters:
base – WDOG peripheral base address
config – The configuration of WDOG
-
void WDOG_Deinit(WDOG_Type *base)
Shuts down the WDOG.
This function shuts down the WDOG. Watchdog Enable bit is a write one once only bit. It is not possible to clear this bit by a software write, once the bit is set. This bit(WDE) can be set/reset only in debug mode(exception).
-
static inline void WDOG_Enable(WDOG_Type *base)
Enables the WDOG module.
This function writes a value into the WDOG_WCR register to enable the WDOG. This is a write one once only bit. It is not possible to clear this bit by a software write, once the bit is set. only debug mode exception.
- Parameters:
base – WDOG peripheral base address
-
static inline void WDOG_Disable(WDOG_Type *base)
Disables the WDOG module.
This function writes a value into the WDOG_WCR register to disable the WDOG. This is a write one once only bit. It is not possible to clear this bit by a software write,once the bit is set. only debug mode exception
- Parameters:
base – WDOG peripheral base address
-
static inline void WDOG_TriggerSystemSoftwareReset(WDOG_Type *base)
Trigger the system software reset.
This function will write to the WCR[SRS] bit to trigger a software system reset. This bit will automatically resets to “1” after it has been asserted to “0”. Note: Calling this API will reset the system right now, please using it with more attention.
- Parameters:
base – WDOG peripheral base address
-
static inline void WDOG_TriggerSoftwareSignal(WDOG_Type *base)
Trigger an output assertion.
This function will write to the WCR[WDA] bit to trigger WDOG_B signal assertion. The WDOG_B signal can be routed to external pin of the chip, the output pin will turn to assertion along with WDOG_B signal. Note: The WDOG_B signal will remain assert until a power on reset occurred, so, please take more attention while calling it.
- Parameters:
base – WDOG peripheral base address
-
static inline void WDOG_EnableInterrupts(WDOG_Type *base, uint16_t mask)
Enables the WDOG interrupt.
This bit is a write once only bit. Once the software does a write access to this bit, it will get locked and cannot be reprogrammed until the next system reset assertion
- Parameters:
base – WDOG peripheral base address
mask – The interrupts to enable The parameter can be combination of the following source if defined.
kWDOG_InterruptEnable
-
uint16_t WDOG_GetStatusFlags(WDOG_Type *base)
Gets the WDOG all reset status flags.
This function gets all reset status flags.
uint16_t status; status = WDOG_GetStatusFlags (wdog_base);
See also
_wdog_status_flags
true: a related status flag has been set.
false: a related status flag is not set.
- Parameters:
base – WDOG peripheral base address
- Returns:
State of the status flag: asserted (true) or not-asserted (false).
-
void WDOG_ClearInterruptStatus(WDOG_Type *base, uint16_t mask)
Clears the WDOG flag.
This function clears the WDOG status flag.
This is an example for clearing the interrupt flag.
WDOG_ClearStatusFlags(wdog_base,KWDOG_InterruptFlag);
- Parameters:
base – WDOG peripheral base address
mask – The status flags to clear. The parameter could be any combination of the following values. kWDOG_TimeoutFlag
-
static inline void WDOG_SetTimeoutValue(WDOG_Type *base, uint16_t timeoutCount)
Sets the WDOG timeout value.
This function sets the timeout value. This function writes a value into WCR registers. The time-out value can be written at any point of time but it is loaded to the counter at the time when WDOG is enabled or after the service routine has been performed.
- Parameters:
base – WDOG peripheral base address
timeoutCount – WDOG timeout value; count of WDOG clock tick.
-
static inline void WDOG_SetInterrputTimeoutValue(WDOG_Type *base, uint16_t timeoutCount)
Sets the WDOG interrupt count timeout value.
This function sets the interrupt count timeout value. This function writes a value into WIC registers which are wirte-once. This field is write once only. Once the software does a write access to this field, it will get locked and cannot be reprogrammed until the next system reset assertion.
- Parameters:
base – WDOG peripheral base address
timeoutCount – WDOG timeout value; count of WDOG clock tick.
-
static inline void WDOG_DisablePowerDownEnable(WDOG_Type *base)
Disable the WDOG power down enable bit.
This function disable the WDOG power down enable(PDE). This function writes a value into WMCR registers which are wirte-once. This field is write once only. Once software sets this bit it cannot be reset until the next system reset.
- Parameters:
base – WDOG peripheral base address
-
void WDOG_Refresh(WDOG_Type *base)
Refreshes the WDOG timer.
This function feeds the WDOG. This function should be called before the WDOG timer is in timeout. Otherwise, a reset is asserted.
- Parameters:
base – WDOG peripheral base address
-
FSL_WDOG_DRIVER_VERSION
Defines WDOG driver version.
-
WDOG_REFRESH_KEY
-
enum _wdog_interrupt_enable
WDOG interrupt configuration structure, default settings all disabled.
This structure contains the settings for all of the WDOG interrupt configurations.
Values:
-
enumerator kWDOG_InterruptEnable
WDOG timeout generates an interrupt before reset
-
enumerator kWDOG_InterruptEnable
-
enum _wdog_status_flags
WDOG status flags.
This structure contains the WDOG status flags for use in the WDOG functions.
Values:
-
enumerator kWDOG_RunningFlag
Running flag, set when WDOG is enabled
-
enumerator kWDOG_PowerOnResetFlag
Power On flag, set when reset is the result of a powerOnReset
-
enumerator kWDOG_TimeoutResetFlag
Timeout flag, set when reset is the result of a timeout
-
enumerator kWDOG_SoftwareResetFlag
Software flag, set when reset is the result of a software
-
enumerator kWDOG_InterruptFlag
interrupt flag,whether interrupt has occurred or not
-
enumerator kWDOG_RunningFlag
-
typedef struct _wdog_work_mode wdog_work_mode_t
Defines WDOG work mode.
-
typedef struct _wdog_config wdog_config_t
Describes WDOG configuration structure.
-
struct _wdog_work_mode
- #include <fsl_wdog.h>
Defines WDOG work mode.
Public Members
-
bool enableWait
If set to true, WDOG continues in wait mode
-
bool enableStop
If set to true, WDOG continues in stop mode
-
bool enableDebug
If set to true, WDOG continues in debug mode
-
bool enableWait
-
struct _wdog_config
- #include <fsl_wdog.h>
Describes WDOG configuration structure.
Public Members
-
bool enableWdog
Enables or disables WDOG
-
wdog_work_mode_t workMode
Configures WDOG work mode in debug stop and wait mode
-
bool enableInterrupt
Enables or disables WDOG interrupt
-
uint16_t timeoutValue
Timeout value
-
uint16_t interruptTimeValue
Interrupt count timeout value
-
bool softwareResetExtension
software reset extension
-
bool enablePowerDown
power down enable bit
-
bool enableTimeOutAssert
Enable WDOG_B timeout assertion.
-
bool enableWdog