MK22F51212

ADC16: 16-bit SAR Analog-to-Digital Converter Driver

void ADC16_Init(ADC_Type *base, const adc16_config_t *config)

Initializes the ADC16 module.

Parameters:
  • base – ADC16 peripheral base address.

  • config – Pointer to configuration structure. See “adc16_config_t”.

void ADC16_Deinit(ADC_Type *base)

De-initializes the ADC16 module.

Parameters:
  • base – ADC16 peripheral base address.

void ADC16_GetDefaultConfig(adc16_config_t *config)

Gets an available pre-defined settings for the converter’s configuration.

This function initializes the converter configuration structure with available settings. The default values are as follows.

config->referenceVoltageSource     = kADC16_ReferenceVoltageSourceVref;
config->clockSource                = kADC16_ClockSourceAsynchronousClock;
config->enableAsynchronousClock    = false;
config->clockDivider               = kADC16_ClockDivider8;
config->resolution                 = kADC16_ResolutionSE12Bit;
config->longSampleMode             = kADC16_LongSampleDisabled;
config->enableHighSpeed            = false;
config->enableLowPower             = false;
config->enableContinuousConversion = false;

Parameters:
  • config – Pointer to the configuration structure.

status_t ADC16_DoAutoCalibration(ADC_Type *base)

Automates the hardware calibration.

This auto calibration helps to adjust the plus/minus side gain automatically. Execute the calibration before using the converter. Note that the hardware trigger should be used during the calibration.

Parameters:
  • base – ADC16 peripheral base address.

Return values:
  • kStatus_Success – Calibration is done successfully.

  • kStatus_Fail – Calibration has failed.

Returns:

Execution status.

static inline void ADC16_SetOffsetValue(ADC_Type *base, int16_t value)

Sets the offset value for the conversion result.

This offset value takes effect on the conversion result. If the offset value is not zero, the reading result is subtracted by it. Note, the hardware calibration fills the offset value automatically.

Parameters:
  • base – ADC16 peripheral base address.

  • value – Setting offset value.

static inline void ADC16_EnableDMA(ADC_Type *base, bool enable)

Enables generating the DMA trigger when the conversion is complete.

Parameters:
  • base – ADC16 peripheral base address.

  • enable – Switcher of the DMA feature. “true” means enabled, “false” means not enabled.

static inline void ADC16_EnableHardwareTrigger(ADC_Type *base, bool enable)

Enables the hardware trigger mode.

Parameters:
  • base – ADC16 peripheral base address.

  • enable – Switcher of the hardware trigger feature. “true” means enabled, “false” means not enabled.

void ADC16_SetChannelMuxMode(ADC_Type *base, adc16_channel_mux_mode_t mode)

Sets the channel mux mode.

Some sample pins share the same channel index. The channel mux mode decides which pin is used for an indicated channel.

Parameters:
  • base – ADC16 peripheral base address.

  • mode – Setting channel mux mode. See “adc16_channel_mux_mode_t”.

void ADC16_SetHardwareCompareConfig(ADC_Type *base, const adc16_hardware_compare_config_t *config)

Configures the hardware compare mode.

The hardware compare mode provides a way to process the conversion result automatically by using hardware. Only the result in the compare range is available. To compare the range, see “adc16_hardware_compare_mode_t” or the appopriate reference manual for more information.

Parameters:
  • base – ADC16 peripheral base address.

  • config – Pointer to the “adc16_hardware_compare_config_t” structure. Passing “NULL” disables the feature.

void ADC16_SetHardwareAverage(ADC_Type *base, adc16_hardware_average_mode_t mode)

Sets the hardware average mode.

The hardware average mode provides a way to process the conversion result automatically by using hardware. The multiple conversion results are accumulated and averaged internally making them easier to read.

Parameters:
  • base – ADC16 peripheral base address.

  • mode – Setting the hardware average mode. See “adc16_hardware_average_mode_t”.

void ADC16_SetPGAConfig(ADC_Type *base, const adc16_pga_config_t *config)

Configures the PGA for the converter’s front end.

Parameters:
  • base – ADC16 peripheral base address.

  • config – Pointer to the “adc16_pga_config_t” structure. Passing “NULL” disables the feature.

uint32_t ADC16_GetStatusFlags(ADC_Type *base)

Gets the status flags of the converter.

Parameters:
  • base – ADC16 peripheral base address.

Returns:

Flags’ mask if indicated flags are asserted. See “_adc16_status_flags”.

void ADC16_ClearStatusFlags(ADC_Type *base, uint32_t mask)

Clears the status flags of the converter.

Parameters:
  • base – ADC16 peripheral base address.

  • mask – Mask value for the cleared flags. See “_adc16_status_flags”.

static inline void ADC16_EnableAsynchronousClockOutput(ADC_Type *base, bool enable)

Enable/disable ADC Asynchronous clock output to other modules.

Parameters:
  • base – ADC16 peripheral base address.

  • enable – Used to enable/disable ADC ADACK output.

    • true Asynchronous clock and clock output is enabled regardless of the state of the ADC.

    • false Asynchronous clock output disabled, asynchronous clock is enabled only if it is selected as input clock and a conversion is active.

void ADC16_SetChannelConfig(ADC_Type *base, uint32_t channelGroup, const adc16_channel_config_t *config)

Configures the conversion channel.

This operation triggers the conversion when in software trigger mode. When in hardware trigger mode, this API configures the channel while the external trigger source helps to trigger the conversion.

Note that the “Channel Group” has a detailed description. To allow sequential conversions of the ADC to be triggered by internal peripherals, the ADC has more than one group of status and control registers, one for each conversion. The channel group parameter indicates which group of registers are used, for example, channel group 0 is for Group A registers and channel group 1 is for Group B registers. The channel groups are used in a “ping-pong” approach to control the ADC operation. At any point, only one of the channel groups is actively controlling ADC conversions. The channel group 0 is used for both software and hardware trigger modes. Channel group 1 and greater indicates multiple channel group registers for use only in hardware trigger mode. See the chip configuration information in the appropriate MCU reference manual for the number of SC1n registers (channel groups) specific to this device. Channel group 1 or greater are not used for software trigger operation. Therefore, writing to these channel groups does not initiate a new conversion. Updating the channel group 0 while a different channel group is actively controlling a conversion is allowed and vice versa. Writing any of the channel group registers while that specific channel group is actively controlling a conversion aborts the current conversion.

Parameters:
  • base – ADC16 peripheral base address.

  • channelGroup – Channel group index.

  • config – Pointer to the “adc16_channel_config_t” structure for the conversion channel.

static inline uint32_t ADC16_GetChannelConversionValue(ADC_Type *base, uint32_t channelGroup)

Gets the conversion value.

Parameters:
  • base – ADC16 peripheral base address.

  • channelGroup – Channel group index.

Returns:

Conversion value.

uint32_t ADC16_GetChannelStatusFlags(ADC_Type *base, uint32_t channelGroup)

Gets the status flags of channel.

Parameters:
  • base – ADC16 peripheral base address.

  • channelGroup – Channel group index.

Returns:

Flags’ mask if indicated flags are asserted. See “_adc16_channel_status_flags”.

FSL_ADC16_DRIVER_VERSION

ADC16 driver version 2.3.0.

enum _adc16_channel_status_flags

Channel status flags.

Values:

enumerator kADC16_ChannelConversionDoneFlag

Conversion done.

enum _adc16_status_flags

Converter status flags.

Values:

enumerator kADC16_ActiveFlag

Converter is active.

enumerator kADC16_CalibrationFailedFlag

Calibration is failed.

enum _adc_channel_mux_mode

Channel multiplexer mode for each channel.

For some ADC16 channels, there are two pin selections in channel multiplexer. For example, ADC0_SE4a and ADC0_SE4b are the different channels that share the same channel number.

Values:

enumerator kADC16_ChannelMuxA

For channel with channel mux a.

enumerator kADC16_ChannelMuxB

For channel with channel mux b.

enum _adc16_clock_divider

Clock divider for the converter.

Values:

enumerator kADC16_ClockDivider1

For divider 1 from the input clock to the module.

enumerator kADC16_ClockDivider2

For divider 2 from the input clock to the module.

enumerator kADC16_ClockDivider4

For divider 4 from the input clock to the module.

enumerator kADC16_ClockDivider8

For divider 8 from the input clock to the module.

enum _adc16_resolution

Converter’s resolution.

Values:

enumerator kADC16_Resolution8or9Bit

Single End 8-bit or Differential Sample 9-bit.

enumerator kADC16_Resolution12or13Bit

Single End 12-bit or Differential Sample 13-bit.

enumerator kADC16_Resolution10or11Bit

Single End 10-bit or Differential Sample 11-bit.

enumerator kADC16_ResolutionSE8Bit

Single End 8-bit.

enumerator kADC16_ResolutionSE12Bit

Single End 12-bit.

enumerator kADC16_ResolutionSE10Bit

Single End 10-bit.

enumerator kADC16_ResolutionDF9Bit

Differential Sample 9-bit.

enumerator kADC16_ResolutionDF13Bit

Differential Sample 13-bit.

enumerator kADC16_ResolutionDF11Bit

Differential Sample 11-bit.

enum _adc16_clock_source

Clock source.

Values:

enumerator kADC16_ClockSourceAlt0

Selection 0 of the clock source.

enumerator kADC16_ClockSourceAlt1

Selection 1 of the clock source.

enumerator kADC16_ClockSourceAlt2

Selection 2 of the clock source.

enumerator kADC16_ClockSourceAlt3

Selection 3 of the clock source.

enumerator kADC16_ClockSourceAsynchronousClock

Using internal asynchronous clock.

enum _adc16_long_sample_mode

Long sample mode.

Values:

enumerator kADC16_LongSampleCycle24

20 extra ADCK cycles, 24 ADCK cycles total.

enumerator kADC16_LongSampleCycle16

12 extra ADCK cycles, 16 ADCK cycles total.

enumerator kADC16_LongSampleCycle10

6 extra ADCK cycles, 10 ADCK cycles total.

enumerator kADC16_LongSampleCycle6

2 extra ADCK cycles, 6 ADCK cycles total.

enumerator kADC16_LongSampleDisabled

Disable the long sample feature.

enum _adc16_reference_voltage_source

Reference voltage source.

Values:

enumerator kADC16_ReferenceVoltageSourceVref

For external pins pair of VrefH and VrefL.

enumerator kADC16_ReferenceVoltageSourceValt

For alternate reference pair of ValtH and ValtL.

enum _adc16_hardware_average_mode

Hardware average mode.

Values:

enumerator kADC16_HardwareAverageCount4

For hardware average with 4 samples.

enumerator kADC16_HardwareAverageCount8

For hardware average with 8 samples.

enumerator kADC16_HardwareAverageCount16

For hardware average with 16 samples.

enumerator kADC16_HardwareAverageCount32

For hardware average with 32 samples.

enumerator kADC16_HardwareAverageDisabled

Disable the hardware average feature.

enum _adc16_hardware_compare_mode

Hardware compare mode.

Values:

enumerator kADC16_HardwareCompareMode0

x < value1.

enumerator kADC16_HardwareCompareMode1

x > value1.

enumerator kADC16_HardwareCompareMode2

if value1 <= value2, then x < value1 || x > value2; else, value1 > x > value2.

enumerator kADC16_HardwareCompareMode3

if value1 <= value2, then value1 <= x <= value2; else x >= value1 || x <= value2.

enum _adc16_pga_gain

PGA’s Gain mode.

Values:

enumerator kADC16_PGAGainValueOf1

For amplifier gain of 1.

enumerator kADC16_PGAGainValueOf2

For amplifier gain of 2.

enumerator kADC16_PGAGainValueOf4

For amplifier gain of 4.

enumerator kADC16_PGAGainValueOf8

For amplifier gain of 8.

enumerator kADC16_PGAGainValueOf16

For amplifier gain of 16.

enumerator kADC16_PGAGainValueOf32

For amplifier gain of 32.

enumerator kADC16_PGAGainValueOf64

For amplifier gain of 64.

typedef enum _adc_channel_mux_mode adc16_channel_mux_mode_t

Channel multiplexer mode for each channel.

For some ADC16 channels, there are two pin selections in channel multiplexer. For example, ADC0_SE4a and ADC0_SE4b are the different channels that share the same channel number.

typedef enum _adc16_clock_divider adc16_clock_divider_t

Clock divider for the converter.

typedef enum _adc16_resolution adc16_resolution_t

Converter’s resolution.

typedef enum _adc16_clock_source adc16_clock_source_t

Clock source.

typedef enum _adc16_long_sample_mode adc16_long_sample_mode_t

Long sample mode.

typedef enum _adc16_reference_voltage_source adc16_reference_voltage_source_t

Reference voltage source.

typedef enum _adc16_hardware_average_mode adc16_hardware_average_mode_t

Hardware average mode.

typedef enum _adc16_hardware_compare_mode adc16_hardware_compare_mode_t

Hardware compare mode.

typedef enum _adc16_pga_gain adc16_pga_gain_t

PGA’s Gain mode.

typedef struct _adc16_config adc16_config_t

ADC16 converter configuration.

typedef struct _adc16_hardware_compare_config adc16_hardware_compare_config_t

ADC16 Hardware comparison configuration.

typedef struct _adc16_channel_config adc16_channel_config_t

ADC16 channel conversion configuration.

typedef struct _adc16_pga_config adc16_pga_config_t

ADC16 programmable gain amplifier configuration.

struct _adc16_config
#include <fsl_adc16.h>

ADC16 converter configuration.

Public Members

adc16_reference_voltage_source_t referenceVoltageSource

Select the reference voltage source.

adc16_clock_source_t clockSource

Select the input clock source to converter.

bool enableAsynchronousClock

Enable the asynchronous clock output.

adc16_clock_divider_t clockDivider

Select the divider of input clock source.

adc16_resolution_t resolution

Select the sample resolution mode.

adc16_long_sample_mode_t longSampleMode

Select the long sample mode.

bool enableHighSpeed

Enable the high-speed mode.

bool enableLowPower

Enable low power.

bool enableContinuousConversion

Enable continuous conversion mode.

adc16_hardware_average_mode_t hardwareAverageMode

Set hardware average mode.

struct _adc16_hardware_compare_config
#include <fsl_adc16.h>

ADC16 Hardware comparison configuration.

Public Members

adc16_hardware_compare_mode_t hardwareCompareMode

Select the hardware compare mode. See “adc16_hardware_compare_mode_t”.

int16_t value1

Setting value1 for hardware compare mode.

int16_t value2

Setting value2 for hardware compare mode.

struct _adc16_channel_config
#include <fsl_adc16.h>

ADC16 channel conversion configuration.

Public Members

uint32_t channelNumber

Setting the conversion channel number. The available range is 0-31. See channel connection information for each chip in Reference Manual document.

bool enableInterruptOnConversionCompleted

Generate an interrupt request once the conversion is completed.

bool enableDifferentialConversion

Using Differential sample mode.

struct _adc16_pga_config
#include <fsl_adc16.h>

ADC16 programmable gain amplifier configuration.

Public Members

adc16_pga_gain_t pgaGain

Setting PGA gain.

bool enableRunInNormalMode

Enable PGA working in normal mode, or low power mode by default.

bool disablePgaChopping

Disable the PGA chopping function. The PGA employs chopping to remove/reduce offset and 1/f noise and offers an offset measurement configuration that aids the offset calibration.

bool enableRunInOffsetMeasurement

Enable the PGA working in offset measurement mode. When this feature is enabled, the PGA disconnects itself from the external inputs and auto-configures into offset measurement mode. With this field set, run the ADC in the recommended settings and enable the maximum hardware averaging to get the PGA offset number. The output is the (PGA offset * (64+1)) for the given PGA setting.

Clock Driver

enum _clock_name

Clock name used to get clock frequency.

Values:

enumerator kCLOCK_CoreSysClk

Core/system clock

enumerator kCLOCK_PlatClk

Platform clock

enumerator kCLOCK_BusClk

Bus clock

enumerator kCLOCK_FlexBusClk

FlexBus clock

enumerator kCLOCK_FlashClk

Flash clock

enumerator kCLOCK_FastPeriphClk

Fast peripheral clock

enumerator kCLOCK_PllFllSelClk

The clock after SIM[PLLFLLSEL].

enumerator kCLOCK_Er32kClk

External reference 32K clock (ERCLK32K)

enumerator kCLOCK_Osc0ErClk

OSC0 external reference clock (OSC0ERCLK)

enumerator kCLOCK_Osc1ErClk

OSC1 external reference clock (OSC1ERCLK)

enumerator kCLOCK_Osc0ErClkUndiv

OSC0 external reference undivided clock(OSC0ERCLK_UNDIV).

enumerator kCLOCK_McgFixedFreqClk

MCG fixed frequency clock (MCGFFCLK)

enumerator kCLOCK_McgInternalRefClk

MCG internal reference clock (MCGIRCLK)

enumerator kCLOCK_McgFllClk

MCGFLLCLK

enumerator kCLOCK_McgPll0Clk

MCGPLL0CLK

enumerator kCLOCK_McgPll1Clk

MCGPLL1CLK

enumerator kCLOCK_McgExtPllClk

EXT_PLLCLK

enumerator kCLOCK_McgPeriphClk

MCG peripheral clock (MCGPCLK)

enumerator kCLOCK_McgIrc48MClk

MCG IRC48M clock

enumerator kCLOCK_LpoClk

LPO clock

enum _clock_usb_src

USB clock source definition.

Values:

enumerator kCLOCK_UsbSrcPll0

Use PLL0.

enumerator kCLOCK_UsbSrcIrc48M

Use IRC48M.

enumerator kCLOCK_UsbSrcExt

Use USB_CLKIN.

enum _clock_ip_name

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:

enumerator kCLOCK_IpInvalid
enumerator kCLOCK_Ewm0
enumerator kCLOCK_I2c0
enumerator kCLOCK_I2c1
enumerator kCLOCK_Uart0
enumerator kCLOCK_Uart1
enumerator kCLOCK_Uart2
enumerator kCLOCK_Usbfs0
enumerator kCLOCK_Cmp0
enumerator kCLOCK_Cmp1
enumerator kCLOCK_Vref0
enumerator kCLOCK_Lptmr0
enumerator kCLOCK_PortA
enumerator kCLOCK_PortB
enumerator kCLOCK_PortC
enumerator kCLOCK_PortD
enumerator kCLOCK_PortE
enumerator kCLOCK_Ftf0
enumerator kCLOCK_Dmamux0
enumerator kCLOCK_Ftm3
enumerator kCLOCK_Adc1
enumerator kCLOCK_Dac1
enumerator kCLOCK_Rnga0
enumerator kCLOCK_Lpuart0
enumerator kCLOCK_Spi0
enumerator kCLOCK_Spi1
enumerator kCLOCK_Sai0
enumerator kCLOCK_Crc0
enumerator kCLOCK_Pdb0
enumerator kCLOCK_Pit0
enumerator kCLOCK_Ftm0
enumerator kCLOCK_Ftm1
enumerator kCLOCK_Ftm2
enumerator kCLOCK_Adc0
enumerator kCLOCK_Rtc0
enumerator kCLOCK_Dac0
enumerator kCLOCK_Flexbus0
enumerator kCLOCK_Dma0
enum _osc_mode

OSC work mode.

Values:

enumerator kOSC_ModeExt

Use an external clock.

enumerator kOSC_ModeOscLowPower

Oscillator low power.

enumerator kOSC_ModeOscHighGain

Oscillator high gain.

enum _osc_cap_load

Oscillator capacitor load setting.

Values:

enumerator kOSC_Cap2P

2 pF capacitor load

enumerator kOSC_Cap4P

4 pF capacitor load

enumerator kOSC_Cap8P

8 pF capacitor load

enumerator kOSC_Cap16P

16 pF capacitor load

enum _oscer_enable_mode

OSCERCLK enable mode.

Values:

enumerator kOSC_ErClkEnable

Enable.

enumerator kOSC_ErClkEnableInStop

Enable in stop mode.

enum _mcg_fll_src

MCG FLL reference clock source select.

Values:

enumerator kMCG_FllSrcExternal

External reference clock is selected

enumerator kMCG_FllSrcInternal

The slow internal reference clock is selected

enum _mcg_irc_mode

MCG internal reference clock select.

Values:

enumerator kMCG_IrcSlow

Slow internal reference clock selected

enumerator kMCG_IrcFast

Fast internal reference clock selected

enum _mcg_dmx32

MCG DCO Maximum Frequency with 32.768 kHz Reference.

Values:

enumerator kMCG_Dmx32Default

DCO has a default range of 25%

enumerator kMCG_Dmx32Fine

DCO is fine-tuned for maximum frequency with 32.768 kHz reference

enum _mcg_drs

MCG DCO range select.

Values:

enumerator kMCG_DrsLow

Low frequency range

enumerator kMCG_DrsMid

Mid frequency range

enumerator kMCG_DrsMidHigh

Mid-High frequency range

enumerator kMCG_DrsHigh

High frequency range

enum _mcg_pll_ref_src

MCG PLL reference clock select.

Values:

enumerator kMCG_PllRefOsc0

Selects OSC0 as PLL reference clock

enumerator kMCG_PllRefOsc1

Selects OSC1 as PLL reference clock

enum _mcg_clkout_src

MCGOUT clock source.

Values:

enumerator kMCG_ClkOutSrcOut

Output of the FLL is selected (reset default)

enumerator kMCG_ClkOutSrcInternal

Internal reference clock is selected

enumerator kMCG_ClkOutSrcExternal

External reference clock is selected

enum _mcg_atm_select

MCG Automatic Trim Machine Select.

Values:

enumerator kMCG_AtmSel32k

32 kHz Internal Reference Clock selected

enumerator kMCG_AtmSel4m

4 MHz Internal Reference Clock selected

enum _mcg_oscsel

MCG OSC Clock Select.

Values:

enumerator kMCG_OscselOsc

Selects System Oscillator (OSCCLK)

enumerator kMCG_OscselRtc

Selects 32 kHz RTC Oscillator

enumerator kMCG_OscselIrc

Selects 48 MHz IRC Oscillator

enum _mcg_pll_clk_select

MCG PLLCS select.

Values:

enumerator kMCG_PllClkSelPll0

PLL0 output clock is selected

enumerator kMCG_PllClkSelPll1
enum _mcg_monitor_mode

MCG clock monitor mode.

Values:

enumerator kMCG_MonitorNone

Clock monitor is disabled.

enumerator kMCG_MonitorInt

Trigger interrupt when clock lost.

enumerator kMCG_MonitorReset

System reset when clock lost.

MCG status. Enumeration _mcg_status.

Values:

enumerator kStatus_MCG_ModeUnreachable

Can’t switch to target mode.

enumerator kStatus_MCG_ModeInvalid

Current mode invalid for the specific function.

enumerator kStatus_MCG_AtmBusClockInvalid

Invalid bus clock for ATM.

enumerator kStatus_MCG_AtmDesiredFreqInvalid

Invalid desired frequency for ATM.

enumerator kStatus_MCG_AtmIrcUsed

IRC is used when using ATM.

enumerator kStatus_MCG_AtmHardwareFail

Hardware fail occurs during ATM.

enumerator kStatus_MCG_SourceUsed

Can’t change the clock source because it is in use.

MCG status flags. Enumeration _mcg_status_flags_t.

Values:

enumerator kMCG_Osc0LostFlag

OSC0 lost.

enumerator kMCG_Osc0InitFlag

OSC0 crystal initialized.

enumerator kMCG_RtcOscLostFlag

RTC OSC lost.

enumerator kMCG_Pll0LostFlag

PLL0 lost.

enumerator kMCG_Pll0LockFlag

PLL0 locked.

MCG internal reference clock (MCGIRCLK) enable mode definition. Enumeration _mcg_irclk_enable_mode.

Values:

enumerator kMCG_IrclkEnable

MCGIRCLK enable.

enumerator kMCG_IrclkEnableInStop

MCGIRCLK enable in stop mode.

MCG PLL clock enable mode definition. Enumeration _mcg_pll_enable_mode.

Values:

enumerator kMCG_PllEnableIndependent

MCGPLLCLK enable independent of the MCG clock mode. Generally, the PLL is disabled in FLL modes (FEI/FBI/FEE/FBE). Setting the PLL clock enable independent, enables the PLL in the FLL modes.

enumerator kMCG_PllEnableInStop

MCGPLLCLK enable in STOP mode.

enum _mcg_mode

MCG mode definitions.

Values:

enumerator kMCG_ModeFEI

FEI - FLL Engaged Internal

enumerator kMCG_ModeFBI

FBI - FLL Bypassed Internal

enumerator kMCG_ModeBLPI

BLPI - Bypassed Low Power Internal

enumerator kMCG_ModeFEE

FEE - FLL Engaged External

enumerator kMCG_ModeFBE

FBE - FLL Bypassed External

enumerator kMCG_ModeBLPE

BLPE - Bypassed Low Power External

enumerator kMCG_ModePBE

PBE - PLL Bypassed External

enumerator kMCG_ModePEE

PEE - PLL Engaged External

enumerator kMCG_ModeError

Unknown mode

typedef enum _clock_name clock_name_t

Clock name used to get clock frequency.

typedef enum _clock_usb_src clock_usb_src_t

USB clock source definition.

typedef enum _clock_ip_name clock_ip_name_t

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef struct _sim_clock_config sim_clock_config_t

SIM configuration structure for clock setting.

typedef enum _osc_mode osc_mode_t

OSC work mode.

typedef struct _oscer_config oscer_config_t

OSC configuration for OSCERCLK.

typedef struct _osc_config osc_config_t

OSC Initialization Configuration Structure.

Defines the configuration data structure to initialize the OSC. When porting to a new board, set the following members according to the board setting:

  1. freq: The external frequency.

  2. workMode: The OSC module mode.

typedef enum _mcg_fll_src mcg_fll_src_t

MCG FLL reference clock source select.

typedef enum _mcg_irc_mode mcg_irc_mode_t

MCG internal reference clock select.

typedef enum _mcg_dmx32 mcg_dmx32_t

MCG DCO Maximum Frequency with 32.768 kHz Reference.

typedef enum _mcg_drs mcg_drs_t

MCG DCO range select.

typedef enum _mcg_pll_ref_src mcg_pll_ref_src_t

MCG PLL reference clock select.

typedef enum _mcg_clkout_src mcg_clkout_src_t

MCGOUT clock source.

typedef enum _mcg_atm_select mcg_atm_select_t

MCG Automatic Trim Machine Select.

typedef enum _mcg_oscsel mcg_oscsel_t

MCG OSC Clock Select.

typedef enum _mcg_pll_clk_select mcg_pll_clk_select_t

MCG PLLCS select.

typedef enum _mcg_monitor_mode mcg_monitor_mode_t

MCG clock monitor mode.

typedef enum _mcg_mode mcg_mode_t

MCG mode definitions.

typedef struct _mcg_pll_config mcg_pll_config_t

MCG PLL configuration.

typedef struct _mcg_config mcg_config_t

MCG mode change configuration structure.

When porting to a new board, set the following members according to the board setting:

  1. frdiv: If the FLL uses the external reference clock, set this value to ensure that the external reference clock divided by frdiv is in the 31.25 kHz to 39.0625 kHz range.

  2. The PLL reference clock divider PRDIV: PLL reference clock frequency after PRDIV should be in the FSL_FEATURE_MCG_PLL_REF_MIN to FSL_FEATURE_MCG_PLL_REF_MAX range.

volatile uint32_t g_xtal0Freq

External XTAL0 (OSC0) clock frequency.

The XTAL0/EXTAL0 (OSC0) clock frequency in Hz. When the clock is set up, use the function CLOCK_SetXtal0Freq to set the value in the clock driver. For example, if XTAL0 is 8 MHz:

Set up the OSC0
CLOCK_InitOsc0(...);
Set the XTAL0 value to the clock driver.
CLOCK_SetXtal0Freq(80000000);

This is important for the multicore platforms where only one core needs to set up the OSC0 using the CLOCK_InitOsc0. All other cores need to call the CLOCK_SetXtal0Freq to get a valid clock frequency.

volatile uint32_t g_xtal32Freq

External XTAL32/EXTAL32/RTC_CLKIN clock frequency.

The XTAL32/EXTAL32/RTC_CLKIN clock frequency in Hz. When the clock is set up, use the function CLOCK_SetXtal32Freq to set the value in the clock driver.

This is important for the multicore platforms where only one core needs to set up the clock. All other cores need to call the CLOCK_SetXtal32Freq to get a valid clock frequency.

static inline void CLOCK_EnableClock(clock_ip_name_t name)

Enable the clock for specific IP.

Parameters:
  • name – Which clock to enable, see clock_ip_name_t.

static inline void CLOCK_DisableClock(clock_ip_name_t name)

Disable the clock for specific IP.

Parameters:
  • name – Which clock to disable, see clock_ip_name_t.

static inline void CLOCK_SetLpuartClock(uint32_t src)

Set LPUART clock source.

Parameters:
  • src – The value to set LPUART clock source.

static inline void CLOCK_SetEr32kClock(uint32_t src)

Set ERCLK32K source.

Parameters:
  • src – The value to set ERCLK32K clock source.

static inline void CLOCK_SetTraceClock(uint32_t src)

Set debug trace clock source.

Parameters:
  • src – The value to set debug trace clock source.

static inline void CLOCK_SetPllFllSelClock(uint32_t src)

Set PLLFLLSEL clock source.

Parameters:
  • src – The value to set PLLFLLSEL clock source.

static inline void CLOCK_SetClkOutClock(uint32_t src)

Set CLKOUT source.

Parameters:
  • src – The value to set CLKOUT source.

static inline void CLOCK_SetRtcClkOutClock(uint32_t src)

Set RTC_CLKOUT source.

Parameters:
  • src – The value to set RTC_CLKOUT source.

bool CLOCK_EnableUsbfs0Clock(clock_usb_src_t src, uint32_t freq)

Enable USB FS clock.

Parameters:
  • src – USB FS clock source.

  • freq – The frequency specified by src.

Return values:
  • true – The clock is set successfully.

  • false – The clock source is invalid to get proper USB FS clock.

static inline void CLOCK_DisableUsbfs0Clock(void)

Disable USB FS clock.

Disable USB FS clock.

static inline void CLOCK_SetOutDiv(uint32_t outdiv1, uint32_t outdiv2, uint32_t outdiv3, uint32_t outdiv4)

System clock divider.

Set the SIM_CLKDIV1[OUTDIV1], SIM_CLKDIV1[OUTDIV2], SIM_CLKDIV1[OUTDIV3], SIM_CLKDIV1[OUTDIV4].

Parameters:
  • outdiv1 – Clock 1 output divider value.

  • outdiv2 – Clock 2 output divider value.

  • outdiv3 – Clock 3 output divider value.

  • outdiv4 – Clock 4 output divider value.

uint32_t CLOCK_GetFreq(clock_name_t clockName)

Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock frequency for a specific clock name defined in clock_name_t. The MCG must be properly configured before using this function.

Parameters:
  • clockName – Clock names defined in clock_name_t

Returns:

Clock frequency value in Hertz

uint32_t CLOCK_GetCoreSysClkFreq(void)

Get the core clock or system clock frequency.

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetPlatClkFreq(void)

Get the platform clock frequency.

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetBusClkFreq(void)

Get the bus clock frequency.

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetFlexBusClkFreq(void)

Get the flexbus clock frequency.

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetFlashClkFreq(void)

Get the flash clock frequency.

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetPllFllSelClkFreq(void)

Get the output clock frequency selected by SIM[PLLFLLSEL].

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetEr32kClkFreq(void)

Get the external reference 32K clock frequency (ERCLK32K).

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetOsc0ErClkUndivFreq(void)

Get the OSC0 external reference undivided clock frequency (OSC0ERCLK_UNDIV).

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetOsc0ErClkFreq(void)

Get the OSC0 external reference clock frequency (OSC0ERCLK).

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetOsc0ErClkDivFreq(void)

Get the OSC0 external reference divided clock frequency.

Returns:

Clock frequency in Hz.

void CLOCK_SetSimConfig(sim_clock_config_t const *config)

Set the clock configure in SIM module.

This function sets system layer clock settings in SIM module.

Parameters:
  • config – Pointer to the configure structure.

static inline void CLOCK_SetSimSafeDivs(void)

Set the system clock dividers in SIM to safe value.

The system level clocks (core clock, bus clock, flexbus clock and flash clock) must be in allowed ranges. During MCG clock mode switch, the MCG output clock changes then the system level clocks may be out of range. This function could be used before MCG mode change, to make sure system level clocks are in allowed range.

FSL_CLOCK_DRIVER_VERSION

CLOCK driver version 2.5.3.

MCG_INTERNAL_IRC_48M

IRC48M clock frequency in Hz.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
DMAMUX_CLOCKS

Clock ip name array for DMAMUX.

RTC_CLOCKS

Clock ip name array for RTC.

SAI_CLOCKS

Clock ip name array for SAI.

PORT_CLOCKS

Clock ip name array for PORT.

FLEXBUS_CLOCKS

Clock ip name array for FLEXBUS.

EWM_CLOCKS

Clock ip name array for EWM.

PIT_CLOCKS

Clock ip name array for PIT.

DSPI_CLOCKS

Clock ip name array for DSPI.

LPTMR_CLOCKS

Clock ip name array for LPTMR.

FTM_CLOCKS

Clock ip name array for FTM.

EDMA_CLOCKS

Clock ip name array for EDMA.

LPUART_CLOCKS

Clock ip name array for LPUART.

DAC_CLOCKS

Clock ip name array for DAC.

ADC16_CLOCKS

Clock ip name array for ADC16.

VREF_CLOCKS

Clock ip name array for VREF.

UART_CLOCKS

Clock ip name array for UART.

RNGA_CLOCKS

Clock ip name array for RNGA.

CRC_CLOCKS

Clock ip name array for CRC.

I2C_CLOCKS

Clock ip name array for I2C.

FTF_CLOCKS

Clock ip name array for FTF.

PDB_CLOCKS

Clock ip name array for PDB.

CMP_CLOCKS

Clock ip name array for CMP.

LPO_CLK_FREQ

LPO clock frequency.

SYS_CLK

Peripherals clock source definition.

BUS_CLK
FAST_CLK
I2C0_CLK_SRC
I2C1_CLK_SRC
DSPI0_CLK_SRC
DSPI1_CLK_SRC
UART0_CLK_SRC
UART1_CLK_SRC
UART2_CLK_SRC
CLK_GATE_REG_OFFSET_SHIFT
CLK_GATE_REG_OFFSET_MASK
CLK_GATE_BIT_SHIFT_SHIFT
CLK_GATE_BIT_SHIFT_MASK
CLK_GATE_DEFINE(reg_offset, bit_shift)
CLK_GATE_ABSTRACT_REG_OFFSET(x)
CLK_GATE_ABSTRACT_BITS_SHIFT(x)
uint32_t CLOCK_GetOutClkFreq(void)

Gets the MCG output clock (MCGOUTCLK) frequency.

This function gets the MCG output clock frequency in Hz based on the current MCG register value.

Returns:

The frequency of MCGOUTCLK.

uint32_t CLOCK_GetFllFreq(void)

Gets the MCG FLL clock (MCGFLLCLK) frequency.

This function gets the MCG FLL clock frequency in Hz based on the current MCG register value. The FLL is enabled in FEI/FBI/FEE/FBE mode and disabled in low power state in other modes.

Returns:

The frequency of MCGFLLCLK.

uint32_t CLOCK_GetInternalRefClkFreq(void)

Gets the MCG internal reference clock (MCGIRCLK) frequency.

This function gets the MCG internal reference clock frequency in Hz based on the current MCG register value.

Returns:

The frequency of MCGIRCLK.

uint32_t CLOCK_GetFixedFreqClkFreq(void)

Gets the MCG fixed frequency clock (MCGFFCLK) frequency.

This function gets the MCG fixed frequency clock frequency in Hz based on the current MCG register value.

Returns:

The frequency of MCGFFCLK.

uint32_t CLOCK_GetPll0Freq(void)

Gets the MCG PLL0 clock (MCGPLL0CLK) frequency.

This function gets the MCG PLL0 clock frequency in Hz based on the current MCG register value.

Returns:

The frequency of MCGPLL0CLK.

static inline void CLOCK_SetLowPowerEnable(bool enable)

Enables or disables the MCG low power.

Enabling the MCG low power disables the PLL and FLL in bypass modes. In other words, in FBE and PBE modes, enabling low power sets the MCG to BLPE mode. In FBI and PBI modes, enabling low power sets the MCG to BLPI mode. When disabling the MCG low power, the PLL or FLL are enabled based on MCG settings.

Parameters:
  • enable – True to enable MCG low power, false to disable MCG low power.

status_t CLOCK_SetInternalRefClkConfig(uint8_t enableMode, mcg_irc_mode_t ircs, uint8_t fcrdiv)

Configures the Internal Reference clock (MCGIRCLK).

This function sets the MCGIRCLK base on parameters. It also selects the IRC source. If the fast IRC is used, this function sets the fast IRC divider. This function also sets whether the MCGIRCLK is enabled in stop mode. Calling this function in FBI/PBI/BLPI modes may change the system clock. As a result, using the function in these modes it is not allowed.

Parameters:
  • enableMode – MCGIRCLK enable mode, OR’ed value of the enumeration _mcg_irclk_enable_mode.

  • ircs – MCGIRCLK clock source, choose fast or slow.

  • fcrdiv – Fast IRC divider setting (FCRDIV).

Return values:
  • kStatus_MCG_SourceUsed – Because the internal reference clock is used as a clock source, the configuration should not be changed. Otherwise, a glitch occurs.

  • kStatus_Success – MCGIRCLK configuration finished successfully.

status_t CLOCK_SetExternalRefClkConfig(mcg_oscsel_t oscsel)

Selects the MCG external reference clock.

Selects the MCG external reference clock source, changes the MCG_C7[OSCSEL], and waits for the clock source to be stable. Because the external reference clock should not be changed in FEE/FBE/BLPE/PBE/PEE modes, do not call this function in these modes.

Parameters:
  • oscsel – MCG external reference clock source, MCG_C7[OSCSEL].

Return values:
  • kStatus_MCG_SourceUsed – Because the external reference clock is used as a clock source, the configuration should not be changed. Otherwise, a glitch occurs.

  • kStatus_Success – External reference clock set successfully.

static inline void CLOCK_SetFllExtRefDiv(uint8_t frdiv)

Set the FLL external reference clock divider value.

Sets the FLL external reference clock divider value, the register MCG_C1[FRDIV].

Parameters:
  • frdiv – The FLL external reference clock divider value, MCG_C1[FRDIV].

void CLOCK_EnablePll0(mcg_pll_config_t const *config)

Enables the PLL0 in FLL mode.

This function sets us the PLL0 in FLL mode and reconfigures the PLL0. Ensure that the PLL reference clock is enabled before calling this function and that the PLL0 is not used as a clock source. The function CLOCK_CalcPllDiv gets the correct PLL divider values.

Parameters:
  • config – Pointer to the configuration structure.

static inline void CLOCK_DisablePll0(void)

Disables the PLL0 in FLL mode.

This function disables the PLL0 in FLL mode. It should be used together with the CLOCK_EnablePll0.

uint32_t CLOCK_CalcPllDiv(uint32_t refFreq, uint32_t desireFreq, uint8_t *prdiv, uint8_t *vdiv)

Calculates the PLL divider setting for a desired output frequency.

This function calculates the correct reference clock divider (PRDIV) and VCO divider (VDIV) to generate a desired PLL output frequency. It returns the closest frequency match with the corresponding PRDIV/VDIV returned from parameters. If a desired frequency is not valid, this function returns 0.

Parameters:
  • refFreq – PLL reference clock frequency.

  • desireFreq – Desired PLL output frequency.

  • prdiv – PRDIV value to generate desired PLL frequency.

  • vdiv – VDIV value to generate desired PLL frequency.

Returns:

Closest frequency match that the PLL was able generate.

void CLOCK_SetOsc0MonitorMode(mcg_monitor_mode_t mode)

Sets the OSC0 clock monitor mode.

This function sets the OSC0 clock monitor mode. See mcg_monitor_mode_t for details.

Parameters:
  • mode – Monitor mode to set.

void CLOCK_SetRtcOscMonitorMode(mcg_monitor_mode_t mode)

Sets the RTC OSC clock monitor mode.

This function sets the RTC OSC clock monitor mode. See mcg_monitor_mode_t for details.

Parameters:
  • mode – Monitor mode to set.

void CLOCK_SetPll0MonitorMode(mcg_monitor_mode_t mode)

Sets the PLL0 clock monitor mode.

This function sets the PLL0 clock monitor mode. See mcg_monitor_mode_t for details.

Parameters:
  • mode – Monitor mode to set.

uint32_t CLOCK_GetStatusFlags(void)

Gets the MCG status flags.

This function gets the MCG clock status flags. All status flags are returned as a logical OR of the enumeration refer to _mcg_status_flags_t. To check a specific flag, compare the return value with the flag.

Example:

To check the clock lost lock status of OSC0 and PLL0.
uint32_t mcgFlags;

mcgFlags = CLOCK_GetStatusFlags();

if (mcgFlags & kMCG_Osc0LostFlag)
{
    OSC0 clock lock lost. Do something.
}
if (mcgFlags & kMCG_Pll0LostFlag)
{
    PLL0 clock lock lost. Do something.
}

Returns:

Logical OR value of the enumeration _mcg_status_flags_t.

void CLOCK_ClearStatusFlags(uint32_t mask)

Clears the MCG status flags.

This function clears the MCG clock lock lost status. The parameter is a logical OR value of the flags to clear. See the enumeration _mcg_status_flags_t.

Example:

To clear the clock lost lock status flags of OSC0 and PLL0.

CLOCK_ClearStatusFlags(kMCG_Osc0LostFlag | kMCG_Pll0LostFlag);

Parameters:
  • mask – The status flags to clear. This is a logical OR of members of the enumeration _mcg_status_flags_t.

static inline void OSC_SetExtRefClkConfig(OSC_Type *base, oscer_config_t const *config)

Configures the OSC external reference clock (OSCERCLK).

This function configures the OSC external reference clock (OSCERCLK). This is an example to enable the OSCERCLK in normal and stop modes and also set the output divider to 1:

oscer_config_t config =
{
    .enableMode = kOSC_ErClkEnable | kOSC_ErClkEnableInStop,
    .erclkDiv   = 1U,
};

OSC_SetExtRefClkConfig(OSC, &config);
Parameters:
  • base – OSC peripheral address.

  • config – Pointer to the configuration structure.

static inline void OSC_SetCapLoad(OSC_Type *base, uint8_t capLoad)

Sets the capacitor load configuration for the oscillator.

This function sets the specified capacitors configuration for the oscillator. This should be done in the early system level initialization function call based on the system configuration.

Example:

To enable only 2 pF and 8 pF capacitor load, please use like this.
OSC_SetCapLoad(OSC, kOSC_Cap2P | kOSC_Cap8P);

Parameters:
  • base – OSC peripheral address.

  • capLoad – OR’ed value for the capacitor load option, see _osc_cap_load.

void CLOCK_InitOsc0(osc_config_t const *config)

Initializes the OSC0.

This function initializes the OSC0 according to the board configuration.

Parameters:
  • config – Pointer to the OSC0 configuration structure.

void CLOCK_DeinitOsc0(void)

Deinitializes the OSC0.

This function deinitializes the OSC0.

static inline void CLOCK_SetXtal0Freq(uint32_t freq)

Sets the XTAL0 frequency based on board settings.

Parameters:
  • freq – The XTAL0/EXTAL0 input clock frequency in Hz.

static inline void CLOCK_SetXtal32Freq(uint32_t freq)

Sets the XTAL32/RTC_CLKIN frequency based on board settings.

Parameters:
  • freq – The XTAL32/EXTAL32/RTC_CLKIN input clock frequency in Hz.

void CLOCK_SetSlowIrcFreq(uint32_t freq)

Set the Slow IRC frequency based on the trimmed value.

Parameters:
  • freq – The Slow IRC frequency input clock frequency in Hz.

void CLOCK_SetFastIrcFreq(uint32_t freq)

Set the Fast IRC frequency based on the trimmed value.

Parameters:
  • freq – The Fast IRC frequency input clock frequency in Hz.

status_t CLOCK_TrimInternalRefClk(uint32_t extFreq, uint32_t desireFreq, uint32_t *actualFreq, mcg_atm_select_t atms)

Auto trims the internal reference clock.

This function trims the internal reference clock by using the external clock. If successful, it returns the kStatus_Success and the frequency after trimming is received in the parameter actualFreq. If an error occurs, the error code is returned.

Parameters:
  • extFreq – External clock frequency, which should be a bus clock.

  • desireFreq – Frequency to trim to.

  • actualFreq – Actual frequency after trimming.

  • atms – Trim fast or slow internal reference clock.

Return values:
  • kStatus_Success – ATM success.

  • kStatus_MCG_AtmBusClockInvalid – The bus clock is not in allowed range for the ATM.

  • kStatus_MCG_AtmDesiredFreqInvalid – MCGIRCLK could not be trimmed to the desired frequency.

  • kStatus_MCG_AtmIrcUsed – Could not trim because MCGIRCLK is used as a bus clock source.

  • kStatus_MCG_AtmHardwareFail – Hardware fails while trimming.

mcg_mode_t CLOCK_GetMode(void)

Gets the current MCG mode.

This function checks the MCG registers and determines the current MCG mode.

Returns:

Current MCG mode or error code; See mcg_mode_t.

status_t CLOCK_SetFeiMode(mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))

Sets the MCG to FEI mode.

This function sets the MCG to FEI mode. If setting to FEI mode fails from the current mode, this function returns an error.

Note

If dmx32 is set to kMCG_Dmx32Fine, the slow IRC must not be trimmed to a frequency above 32768 Hz.

Parameters:
  • dmx32 – DMX32 in FEI mode.

  • drs – The DCO range selection.

  • fllStableDelay – Delay function to ensure that the FLL is stable. Passing NULL does not cause a delay.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetFeeMode(uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))

Sets the MCG to FEE mode.

This function sets the MCG to FEE mode. If setting to FEE mode fails from the current mode, this function returns an error.

Parameters:
  • frdiv – FLL reference clock divider setting, FRDIV.

  • dmx32 – DMX32 in FEE mode.

  • drs – The DCO range selection.

  • fllStableDelay – Delay function to make sure FLL is stable. Passing NULL does not cause a delay.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetFbiMode(mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))

Sets the MCG to FBI mode.

This function sets the MCG to FBI mode. If setting to FBI mode fails from the current mode, this function returns an error.

Note

If dmx32 is set to kMCG_Dmx32Fine, the slow IRC must not be trimmed to frequency above 32768 Hz.

Parameters:
  • dmx32 – DMX32 in FBI mode.

  • drs – The DCO range selection.

  • fllStableDelay – Delay function to make sure FLL is stable. If the FLL is not used in FBI mode, this parameter can be NULL. Passing NULL does not cause a delay.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetFbeMode(uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))

Sets the MCG to FBE mode.

This function sets the MCG to FBE mode. If setting to FBE mode fails from the current mode, this function returns an error.

Parameters:
  • frdiv – FLL reference clock divider setting, FRDIV.

  • dmx32 – DMX32 in FBE mode.

  • drs – The DCO range selection.

  • fllStableDelay – Delay function to make sure FLL is stable. If the FLL is not used in FBE mode, this parameter can be NULL. Passing NULL does not cause a delay.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetBlpiMode(void)

Sets the MCG to BLPI mode.

This function sets the MCG to BLPI mode. If setting to BLPI mode fails from the current mode, this function returns an error.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetBlpeMode(void)

Sets the MCG to BLPE mode.

This function sets the MCG to BLPE mode. If setting to BLPE mode fails from the current mode, this function returns an error.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetPbeMode(mcg_pll_clk_select_t pllcs, mcg_pll_config_t const *config)

Sets the MCG to PBE mode.

This function sets the MCG to PBE mode. If setting to PBE mode fails from the current mode, this function returns an error.

Note

  1. The parameter pllcs selects the PLL. For platforms with only one PLL, the parameter pllcs is kept for interface compatibility.

  2. The parameter config is the PLL configuration structure. On some platforms, it is possible to choose the external PLL directly, which renders the configuration structure not necessary. In this case, pass in NULL. For example: CLOCK_SetPbeMode(kMCG_OscselOsc, kMCG_PllClkSelExtPll, NULL);

Parameters:
  • pllcs – The PLL selection, PLLCS.

  • config – Pointer to the PLL configuration.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetPeeMode(void)

Sets the MCG to PEE mode.

This function sets the MCG to PEE mode.

Note

This function only changes the CLKS to use the PLL/FLL output. If the PRDIV/VDIV are different than in the PBE mode, set them up in PBE mode and wait. When the clock is stable, switch to PEE mode.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_ExternalModeToFbeModeQuick(void)

Switches the MCG to FBE mode from the external mode.

This function switches the MCG from external modes (PEE/PBE/BLPE/FEE) to the FBE mode quickly. The external clock is used as the system clock source and PLL is disabled. However, the FLL settings are not configured. This is a lite function with a small code size, which is useful during the mode switch. For example, to switch from PEE mode to FEI mode:

CLOCK_ExternalModeToFbeModeQuick();
CLOCK_SetFeiMode(...);
Return values:
  • kStatus_Success – Switched successfully.

  • kStatus_MCG_ModeInvalid – If the current mode is not an external mode, do not call this function.

status_t CLOCK_InternalModeToFbiModeQuick(void)

Switches the MCG to FBI mode from internal modes.

This function switches the MCG from internal modes (PEI/PBI/BLPI/FEI) to the FBI mode quickly. The MCGIRCLK is used as the system clock source and PLL is disabled. However, FLL settings are not configured. This is a lite function with a small code size, which is useful during the mode switch. For example, to switch from PEI mode to FEE mode:

CLOCK_InternalModeToFbiModeQuick();
CLOCK_SetFeeMode(...);
Return values:
  • kStatus_Success – Switched successfully.

  • kStatus_MCG_ModeInvalid – If the current mode is not an internal mode, do not call this function.

status_t CLOCK_BootToFeiMode(mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))

Sets the MCG to FEI mode during system boot up.

This function sets the MCG to FEI mode from the reset mode. It can also be used to set up MCG during system boot up.

Note

If dmx32 is set to kMCG_Dmx32Fine, the slow IRC must not be trimmed to frequency above 32768 Hz.

Parameters:
  • dmx32 – DMX32 in FEI mode.

  • drs – The DCO range selection.

  • fllStableDelay – Delay function to ensure that the FLL is stable.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_BootToFeeMode(mcg_oscsel_t oscsel, uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))

Sets the MCG to FEE mode during system bootup.

This function sets MCG to FEE mode from the reset mode. It can also be used to set up the MCG during system boot up.

Parameters:
  • oscsel – OSC clock select, OSCSEL.

  • frdiv – FLL reference clock divider setting, FRDIV.

  • dmx32 – DMX32 in FEE mode.

  • drs – The DCO range selection.

  • fllStableDelay – Delay function to ensure that the FLL is stable.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_BootToBlpiMode(uint8_t fcrdiv, mcg_irc_mode_t ircs, uint8_t ircEnableMode)

Sets the MCG to BLPI mode during system boot up.

This function sets the MCG to BLPI mode from the reset mode. It can also be used to set up the MCG during system boot up.

Parameters:
  • fcrdiv – Fast IRC divider, FCRDIV.

  • ircs – The internal reference clock to select, IRCS.

  • ircEnableMode – The MCGIRCLK enable mode, OR’ed value of the enumeration _mcg_irclk_enable_mode.

Return values:
  • kStatus_MCG_SourceUsed – Could not change MCGIRCLK setting.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_BootToBlpeMode(mcg_oscsel_t oscsel)

Sets the MCG to BLPE mode during system boot up.

This function sets the MCG to BLPE mode from the reset mode. It can also be used to set up the MCG during system boot up.

Parameters:
  • oscsel – OSC clock select, MCG_C7[OSCSEL].

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_BootToPeeMode(mcg_oscsel_t oscsel, mcg_pll_clk_select_t pllcs, mcg_pll_config_t const *config)

Sets the MCG to PEE mode during system boot up.

This function sets the MCG to PEE mode from reset mode. It can also be used to set up the MCG during system boot up.

Parameters:
  • oscsel – OSC clock select, MCG_C7[OSCSEL].

  • pllcs – The PLL selection, PLLCS.

  • config – Pointer to the PLL configuration.

Return values:
  • kStatus_MCG_ModeUnreachable – Could not switch to the target mode.

  • kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetMcgConfig(mcg_config_t const *config)

Sets the MCG to a target mode.

This function sets MCG to a target mode defined by the configuration structure. If switching to the target mode fails, this function chooses the correct path.

Note

If the external clock is used in the target mode, ensure that it is enabled. For example, if the OSC0 is used, set up OSC0 correctly before calling this function.

Parameters:
  • config – Pointer to the target MCG mode configuration structure.

Returns:

Return kStatus_Success if switched successfully; Otherwise, it returns an error code _mcg_status.

uint8_t pllFllSel

PLL/FLL/IRC48M selection.

uint8_t er32kSrc

ERCLK32K source selection.

uint32_t clkdiv1

SIM_CLKDIV1.

uint8_t enableMode

OSCERCLK enable mode. OR’ed value of _oscer_enable_mode.

uint8_t erclkDiv

Divider for OSCERCLK.

uint32_t freq

External clock frequency.

uint8_t capLoad

Capacitor load setting.

osc_mode_t workMode

OSC work mode setting.

oscer_config_t oscerConfig

Configuration for OSCERCLK.

uint8_t enableMode

Enable mode. OR’ed value of enumeration _mcg_pll_enable_mode.

uint8_t prdiv

Reference divider PRDIV.

uint8_t vdiv

VCO divider VDIV.

mcg_mode_t mcgMode

MCG mode.

uint8_t irclkEnableMode

MCGIRCLK enable mode.

mcg_irc_mode_t ircs

Source, MCG_C2[IRCS].

uint8_t fcrdiv

Divider, MCG_SC[FCRDIV].

uint8_t frdiv

Divider MCG_C1[FRDIV].

mcg_drs_t drs

DCO range MCG_C4[DRST_DRS].

mcg_dmx32_t dmx32

MCG_C4[DMX32].

mcg_oscsel_t oscsel

OSC select MCG_C7[OSCSEL].

mcg_pll_config_t pll0Config

MCGPLL0CLK configuration.

MCG_CONFIG_CHECK_PARAM

Configures whether to check a parameter in a function.

Some MCG settings must be changed with conditions, for example:

  1. MCGIRCLK settings, such as the source, divider, and the trim value should not change when MCGIRCLK is used as a system clock source.

  2. MCG_C7[OSCSEL] should not be changed when the external reference clock is used as a system clock source. For example, in FBE/BLPE/PBE modes.

  3. The users should only switch between the supported clock modes.

MCG functions check the parameter and MCG status before setting, if not allowed to change, the functions return error. The parameter checking increases code size, if code size is a critical requirement, change MCG_CONFIG_CHECK_PARAM to 0 to disable parameter checking.

FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL

Configure whether driver controls clock.

When set to 0, peripheral drivers will enable clock in initialize function and disable clock in de-initialize function. When set to 1, peripheral driver will not control the clock, application could control the clock out of the driver.

Note

All drivers share this feature switcher. If it is set to 1, application should handle clock enable and disable for all drivers.

struct _sim_clock_config
#include <fsl_clock.h>

SIM configuration structure for clock setting.

struct _oscer_config
#include <fsl_clock.h>

OSC configuration for OSCERCLK.

struct _osc_config
#include <fsl_clock.h>

OSC Initialization Configuration Structure.

Defines the configuration data structure to initialize the OSC. When porting to a new board, set the following members according to the board setting:

  1. freq: The external frequency.

  2. workMode: The OSC module mode.

struct _mcg_pll_config
#include <fsl_clock.h>

MCG PLL configuration.

struct _mcg_config
#include <fsl_clock.h>

MCG mode change configuration structure.

When porting to a new board, set the following members according to the board setting:

  1. frdiv: If the FLL uses the external reference clock, set this value to ensure that the external reference clock divided by frdiv is in the 31.25 kHz to 39.0625 kHz range.

  2. The PLL reference clock divider PRDIV: PLL reference clock frequency after PRDIV should be in the FSL_FEATURE_MCG_PLL_REF_MIN to FSL_FEATURE_MCG_PLL_REF_MAX range.

CMP: Analog Comparator Driver

void CMP_Init(CMP_Type *base, const cmp_config_t *config)

Initializes the CMP.

This function initializes the CMP module. The operations included are as follows.

  • Enabling the clock for CMP module.

  • Configuring the comparator.

  • Enabling the CMP module. Note that for some devices, multiple CMP instances share the same clock gate. In this case, to enable the clock for any instance enables all CMPs. See the appropriate MCU reference manual for the clock assignment of the CMP.

Parameters:
  • base – CMP peripheral base address.

  • config – Pointer to the configuration structure.

void CMP_Deinit(CMP_Type *base)

De-initializes the CMP module.

This function de-initializes the CMP module. The operations included are as follows.

  • Disabling the CMP module.

  • Disabling the clock for CMP module.

This function disables the clock for the CMP. Note that for some devices, multiple CMP instances share the same clock gate. In this case, before disabling the clock for the CMP, ensure that all the CMP instances are not used.

Parameters:
  • base – CMP peripheral base address.

static inline void CMP_Enable(CMP_Type *base, bool enable)

Enables/disables the CMP module.

Parameters:
  • base – CMP peripheral base address.

  • enable – Enables or disables the module.

void CMP_GetDefaultConfig(cmp_config_t *config)

Initializes the CMP user configuration structure.

This function initializes the user configuration structure to these default values.

config->enableCmp           = true;
config->hysteresisMode      = kCMP_HysteresisLevel0;
config->enableHighSpeed     = false;
config->enableInvertOutput  = false;
config->useUnfilteredOutput = false;
config->enablePinOut        = false;
config->enableTriggerMode   = false;

Parameters:
  • config – Pointer to the configuration structure.

void CMP_SetInputChannels(CMP_Type *base, uint8_t positiveChannel, uint8_t negativeChannel)

Sets the input channels for the comparator.

This function sets the input channels for the comparator. Note that two input channels cannot be set the same way in the application. When the user selects the same input from the analog mux to the positive and negative port, the comparator is disabled automatically.

Parameters:
  • base – CMP peripheral base address.

  • positiveChannel – Positive side input channel number. Available range is 0-7.

  • negativeChannel – Negative side input channel number. Available range is 0-7.

void CMP_EnableDMA(CMP_Type *base, bool enable)

Enables/disables the DMA request for rising/falling events.

This function enables/disables the DMA request for rising/falling events. Either event triggers the generation of the DMA request from CMP if the DMA feature is enabled. Both events are ignored for generating the DMA request from the CMP if the DMA is disabled.

Parameters:
  • base – CMP peripheral base address.

  • enable – Enables or disables the feature.

static inline void CMP_EnableWindowMode(CMP_Type *base, bool enable)

Enables/disables the window mode.

Parameters:
  • base – CMP peripheral base address.

  • enable – Enables or disables the feature.

static inline void CMP_EnablePassThroughMode(CMP_Type *base, bool enable)

Enables/disables the pass through mode.

Parameters:
  • base – CMP peripheral base address.

  • enable – Enables or disables the feature.

void CMP_SetFilterConfig(CMP_Type *base, const cmp_filter_config_t *config)

Configures the filter.

Parameters:
  • base – CMP peripheral base address.

  • config – Pointer to the configuration structure.

void CMP_SetDACConfig(CMP_Type *base, const cmp_dac_config_t *config)

Configures the internal DAC.

Parameters:
  • base – CMP peripheral base address.

  • config – Pointer to the configuration structure. “NULL” disables the feature.

void CMP_EnableInterrupts(CMP_Type *base, uint32_t mask)

Enables the interrupts.

Parameters:
  • base – CMP peripheral base address.

  • mask – Mask value for interrupts. See “_cmp_interrupt_enable”.

void CMP_DisableInterrupts(CMP_Type *base, uint32_t mask)

Disables the interrupts.

Parameters:
  • base – CMP peripheral base address.

  • mask – Mask value for interrupts. See “_cmp_interrupt_enable”.

uint32_t CMP_GetStatusFlags(CMP_Type *base)

Gets the status flags.

Parameters:
  • base – CMP peripheral base address.

Returns:

Mask value for the asserted flags. See “_cmp_status_flags”.

void CMP_ClearStatusFlags(CMP_Type *base, uint32_t mask)

Clears the status flags.

Parameters:
  • base – CMP peripheral base address.

  • mask – Mask value for the flags. See “_cmp_status_flags”.

FSL_CMP_DRIVER_VERSION

CMP driver version 2.0.3.

enum _cmp_interrupt_enable

Interrupt enable/disable mask.

Values:

enumerator kCMP_OutputRisingInterruptEnable

Comparator interrupt enable rising.

enumerator kCMP_OutputFallingInterruptEnable

Comparator interrupt enable falling.

enum _cmp_status_flags

Status flags’ mask.

Values:

enumerator kCMP_OutputRisingEventFlag

Rising-edge on the comparison output has occurred.

enumerator kCMP_OutputFallingEventFlag

Falling-edge on the comparison output has occurred.

enumerator kCMP_OutputAssertEventFlag

Return the current value of the analog comparator output.

enum _cmp_hysteresis_mode

CMP Hysteresis mode.

Values:

enumerator kCMP_HysteresisLevel0

Hysteresis level 0.

enumerator kCMP_HysteresisLevel1

Hysteresis level 1.

enumerator kCMP_HysteresisLevel2

Hysteresis level 2.

enumerator kCMP_HysteresisLevel3

Hysteresis level 3.

enum _cmp_reference_voltage_source

CMP Voltage Reference source.

Values:

enumerator kCMP_VrefSourceVin1

Vin1 is selected as a resistor ladder network supply reference Vin.

enumerator kCMP_VrefSourceVin2

Vin2 is selected as a resistor ladder network supply reference Vin.

typedef enum _cmp_hysteresis_mode cmp_hysteresis_mode_t

CMP Hysteresis mode.

typedef enum _cmp_reference_voltage_source cmp_reference_voltage_source_t

CMP Voltage Reference source.

typedef struct _cmp_config cmp_config_t

Configures the comparator.

typedef struct _cmp_filter_config cmp_filter_config_t

Configures the filter.

typedef struct _cmp_dac_config cmp_dac_config_t

Configures the internal DAC.

struct _cmp_config
#include <fsl_cmp.h>

Configures the comparator.

Public Members

bool enableCmp

Enable the CMP module.

cmp_hysteresis_mode_t hysteresisMode

CMP Hysteresis mode.

bool enableHighSpeed

Enable High-speed (HS) comparison mode.

bool enableInvertOutput

Enable the inverted comparator output.

bool useUnfilteredOutput

Set the compare output(COUT) to equal COUTA(true) or COUT(false).

bool enablePinOut

The comparator output is available on the associated pin.

bool enableTriggerMode

Enable the trigger mode.

struct _cmp_filter_config
#include <fsl_cmp.h>

Configures the filter.

Public Members

bool enableSample

Using the external SAMPLE as a sampling clock input or using a divided bus clock.

uint8_t filterCount

Filter Sample Count. Available range is 1-7; 0 disables the filter.

uint8_t filterPeriod

Filter Sample Period. The divider to the bus clock. Available range is 0-255.

struct _cmp_dac_config
#include <fsl_cmp.h>

Configures the internal DAC.

Public Members

cmp_reference_voltage_source_t referenceVoltageSource

Supply voltage reference source.

uint8_t DACValue

Value for the DAC Output Voltage. Available range is 0-63.

CRC: Cyclic Redundancy Check Driver

FSL_CRC_DRIVER_VERSION

CRC driver version. Version 2.0.4.

Current version: 2.0.4

Change log:

  • Version 2.0.4

    • Release peripheral from reset if necessary in init function.

  • Version 2.0.3

    • Fix MISRA issues

  • Version 2.0.2

    • Fix MISRA issues

  • Version 2.0.1

    • move DATA and DATALL macro definition from header file to source file

enum _crc_bits

CRC bit width.

Values:

enumerator kCrcBits16

Generate 16-bit CRC code

enumerator kCrcBits32

Generate 32-bit CRC code

enum _crc_result

CRC result type.

Values:

enumerator kCrcFinalChecksum

CRC data register read value is the final checksum. Reflect out and final xor protocol features are applied.

enumerator kCrcIntermediateChecksum

CRC data register read value is intermediate checksum (raw value). Reflect out and final xor protocol feature are not applied. Intermediate checksum can be used as a seed for CRC_Init() to continue adding data to this checksum.

typedef enum _crc_bits crc_bits_t

CRC bit width.

typedef enum _crc_result crc_result_t

CRC result type.

typedef struct _crc_config crc_config_t

CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_Init(CRC_Type *base, const crc_config_t *config)

Enables and configures the CRC peripheral module.

This function enables the clock gate in the SIM module for the CRC peripheral. It also configures the CRC module and starts a checksum computation by writing the seed.

Parameters:
  • base – CRC peripheral address.

  • config – CRC module configuration structure.

static inline void CRC_Deinit(CRC_Type *base)

Disables the CRC peripheral module.

This function disables the clock gate in the SIM module for the CRC peripheral.

Parameters:
  • base – CRC peripheral address.

void CRC_GetDefaultConfig(crc_config_t *config)

Loads default values to the CRC protocol configuration structure.

Loads default values to the CRC protocol configuration structure. The default values are as follows.

config->polynomial = 0x1021;
config->seed = 0xFFFF;
config->reflectIn = false;
config->reflectOut = false;
config->complementChecksum = false;
config->crcBits = kCrcBits16;
config->crcResult = kCrcFinalChecksum;

Parameters:
  • config – CRC protocol configuration structure.

void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)

Writes data to the CRC module.

Writes input data buffer bytes to the CRC data register. The configured type of transpose is applied.

Parameters:
  • base – CRC peripheral address.

  • data – Input data stream, MSByte in data[0].

  • dataSize – Size in bytes of the input data buffer.

uint32_t CRC_Get32bitResult(CRC_Type *base)

Reads the 32-bit checksum from the CRC module.

Reads the CRC data register (either an intermediate or the final checksum). The configured type of transpose and complement is applied.

Parameters:
  • base – CRC peripheral address.

Returns:

An intermediate or the final 32-bit checksum, after configured transpose and complement operations.

uint16_t CRC_Get16bitResult(CRC_Type *base)

Reads a 16-bit checksum from the CRC module.

Reads the CRC data register (either an intermediate or the final checksum). The configured type of transpose and complement is applied.

Parameters:
  • base – CRC peripheral address.

Returns:

An intermediate or the final 16-bit checksum, after configured transpose and complement operations.

CRC_DRIVER_USE_CRC16_CCIT_FALSE_AS_DEFAULT

Default configuration structure filled by CRC_GetDefaultConfig(). Use CRC16-CCIT-FALSE as defeault.

struct _crc_config
#include <fsl_crc.h>

CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members

uint32_t polynomial

CRC Polynomial, MSBit first. Example polynomial: 0x1021 = 1_0000_0010_0001 = x^12+x^5+1

uint32_t seed

Starting checksum value

bool reflectIn

Reflect bits on input.

bool reflectOut

Reflect bits on output.

bool complementChecksum

True if the result shall be complement of the actual checksum.

crc_bits_t crcBits

Selects 16- or 32- bit CRC protocol.

crc_result_t crcResult

Selects final or intermediate checksum return from CRC_Get16bitResult() or CRC_Get32bitResult()

DAC: Digital-to-Analog Converter Driver

void DAC_Init(DAC_Type *base, const dac_config_t *config)

Initializes the DAC module.

This function initializes the DAC module including the following operations.

  • Enabling the clock for DAC module.

  • Configuring the DAC converter with a user configuration.

  • Enabling the DAC module.

Parameters:
  • base – DAC peripheral base address.

  • config – Pointer to the configuration structure. See “dac_config_t”.

void DAC_Deinit(DAC_Type *base)

De-initializes the DAC module.

This function de-initializes the DAC module including the following operations.

  • Disabling the DAC module.

  • Disabling the clock for the DAC module.

Parameters:
  • base – DAC peripheral base address.

void DAC_GetDefaultConfig(dac_config_t *config)

Initializes the DAC user configuration structure.

This function initializes the user configuration structure to a default value. The default values are as follows.

config->referenceVoltageSource = kDAC_ReferenceVoltageSourceVref2;
config->enableLowPowerMode = false;

Parameters:
  • config – Pointer to the configuration structure. See “dac_config_t”.

static inline void DAC_Enable(DAC_Type *base, bool enable)

Enables the DAC module.

Parameters:
  • base – DAC peripheral base address.

  • enable – Enables or disables the feature.

static inline void DAC_EnableBuffer(DAC_Type *base, bool enable)

Enables the DAC buffer.

Parameters:
  • base – DAC peripheral base address.

  • enable – Enables or disables the feature.

void DAC_SetBufferConfig(DAC_Type *base, const dac_buffer_config_t *config)

Configures the CMP buffer.

Parameters:
  • base – DAC peripheral base address.

  • config – Pointer to the configuration structure. See “dac_buffer_config_t”.

void DAC_GetDefaultBufferConfig(dac_buffer_config_t *config)

Initializes the DAC buffer configuration structure.

This function initializes the DAC buffer configuration structure to default values. The default values are as follows.

config->triggerMode = kDAC_BufferTriggerBySoftwareMode;
config->watermark   = kDAC_BufferWatermark1Word;
config->workMode    = kDAC_BufferWorkAsNormalMode;
config->upperLimit  = DAC_DATL_COUNT - 1U;

Parameters:
  • config – Pointer to the configuration structure. See “dac_buffer_config_t”.

static inline void DAC_EnableBufferDMA(DAC_Type *base, bool enable)

Enables the DMA for DAC buffer.

Parameters:
  • base – DAC peripheral base address.

  • enable – Enables or disables the feature.

void DAC_SetBufferValue(DAC_Type *base, uint8_t index, uint16_t value)

Sets the value for items in the buffer.

Parameters:
  • base – DAC peripheral base address.

  • index – Setting the index for items in the buffer. The available index should not exceed the size of the DAC buffer.

  • value – Setting the value for items in the buffer. 12-bits are available.

static inline void DAC_DoSoftwareTriggerBuffer(DAC_Type *base)

Triggers the buffer using software and updates the read pointer of the DAC buffer.

This function triggers the function using software. The read pointer of the DAC buffer is updated with one step after this function is called. Changing the read pointer depends on the buffer’s work mode.

Parameters:
  • base – DAC peripheral base address.

static inline uint8_t DAC_GetBufferReadPointer(DAC_Type *base)

Gets the current read pointer of the DAC buffer.

This function gets the current read pointer of the DAC buffer. The current output value depends on the item indexed by the read pointer. It is updated either by a software trigger or a hardware trigger.

Parameters:
  • base – DAC peripheral base address.

Returns:

The current read pointer of the DAC buffer.

void DAC_SetBufferReadPointer(DAC_Type *base, uint8_t index)

Sets the current read pointer of the DAC buffer.

This function sets the current read pointer of the DAC buffer. The current output value depends on the item indexed by the read pointer. It is updated either by a software trigger or a hardware trigger. After the read pointer changes, the DAC output value also changes.

Parameters:
  • base – DAC peripheral base address.

  • index – Setting an index value for the pointer.

void DAC_EnableBufferInterrupts(DAC_Type *base, uint32_t mask)

Enables interrupts for the DAC buffer.

Parameters:
  • base – DAC peripheral base address.

  • mask – Mask value for interrupts. See “_dac_buffer_interrupt_enable”.

void DAC_DisableBufferInterrupts(DAC_Type *base, uint32_t mask)

Disables interrupts for the DAC buffer.

Parameters:
  • base – DAC peripheral base address.

  • mask – Mask value for interrupts. See “_dac_buffer_interrupt_enable”.

uint8_t DAC_GetBufferStatusFlags(DAC_Type *base)

Gets the flags of events for the DAC buffer.

Parameters:
  • base – DAC peripheral base address.

Returns:

Mask value for the asserted flags. See “_dac_buffer_status_flags”.

void DAC_ClearBufferStatusFlags(DAC_Type *base, uint32_t mask)

Clears the flags of events for the DAC buffer.

Parameters:
  • base – DAC peripheral base address.

  • mask – Mask value for flags. See “_dac_buffer_status_flags_t”.

FSL_DAC_DRIVER_VERSION

DAC driver version 2.0.2.

enum _dac_buffer_status_flags

DAC buffer flags.

Values:

enumerator kDAC_BufferWatermarkFlag

DAC Buffer Watermark Flag.

enumerator kDAC_BufferReadPointerTopPositionFlag

DAC Buffer Read Pointer Top Position Flag.

enumerator kDAC_BufferReadPointerBottomPositionFlag

DAC Buffer Read Pointer Bottom Position Flag.

enum _dac_buffer_interrupt_enable

DAC buffer interrupts.

Values:

enumerator kDAC_BufferWatermarkInterruptEnable

DAC Buffer Watermark Interrupt Enable.

enumerator kDAC_BufferReadPointerTopInterruptEnable

DAC Buffer Read Pointer Top Flag Interrupt Enable.

enumerator kDAC_BufferReadPointerBottomInterruptEnable

DAC Buffer Read Pointer Bottom Flag Interrupt Enable

enum _dac_reference_voltage_source

DAC reference voltage source.

Values:

enumerator kDAC_ReferenceVoltageSourceVref1

The DAC selects DACREF_1 as the reference voltage.

enumerator kDAC_ReferenceVoltageSourceVref2

The DAC selects DACREF_2 as the reference voltage.

enum _dac_buffer_trigger_mode

DAC buffer trigger mode.

Values:

enumerator kDAC_BufferTriggerByHardwareMode

The DAC hardware trigger is selected.

enumerator kDAC_BufferTriggerBySoftwareMode

The DAC software trigger is selected.

enum _dac_buffer_watermark

DAC buffer watermark.

Values:

enumerator kDAC_BufferWatermark1Word

1 word away from the upper limit.

enumerator kDAC_BufferWatermark2Word

2 words away from the upper limit.

enumerator kDAC_BufferWatermark3Word

3 words away from the upper limit.

enumerator kDAC_BufferWatermark4Word

4 words away from the upper limit.

enum _dac_buffer_work_mode

DAC buffer work mode.

Values:

enumerator kDAC_BufferWorkAsNormalMode

Normal mode.

enumerator kDAC_BufferWorkAsSwingMode

Swing mode.

enumerator kDAC_BufferWorkAsOneTimeScanMode

One-Time Scan mode.

enumerator kDAC_BufferWorkAsFIFOMode

FIFO mode.

typedef enum _dac_reference_voltage_source dac_reference_voltage_source_t

DAC reference voltage source.

typedef enum _dac_buffer_trigger_mode dac_buffer_trigger_mode_t

DAC buffer trigger mode.

typedef enum _dac_buffer_watermark dac_buffer_watermark_t

DAC buffer watermark.

typedef enum _dac_buffer_work_mode dac_buffer_work_mode_t

DAC buffer work mode.

typedef struct _dac_config dac_config_t

DAC module configuration.

typedef struct _dac_buffer_config dac_buffer_config_t

DAC buffer configuration.

struct _dac_config
#include <fsl_dac.h>

DAC module configuration.

Public Members

dac_reference_voltage_source_t referenceVoltageSource

Select the DAC reference voltage source.

bool enableLowPowerMode

Enable the low-power mode.

struct _dac_buffer_config
#include <fsl_dac.h>

DAC buffer configuration.

Public Members

dac_buffer_trigger_mode_t triggerMode

Select the buffer’s trigger mode.

dac_buffer_watermark_t watermark

Select the buffer’s watermark.

dac_buffer_work_mode_t workMode

Select the buffer’s work mode.

uint8_t upperLimit

Set the upper limit for the buffer index. Normally, 0-15 is available for a buffer with 16 items.

DMAMUX: Direct Memory Access Multiplexer Driver

void DMAMUX_Init(DMAMUX_Type *base)

Initializes the DMAMUX peripheral.

This function ungates the DMAMUX clock.

Parameters:
  • base – DMAMUX peripheral base address.

void DMAMUX_Deinit(DMAMUX_Type *base)

Deinitializes the DMAMUX peripheral.

This function gates the DMAMUX clock.

Parameters:
  • base – DMAMUX peripheral base address.

static inline void DMAMUX_EnableChannel(DMAMUX_Type *base, uint32_t channel)

Enables the DMAMUX channel.

This function enables the DMAMUX channel.

Parameters:
  • base – DMAMUX peripheral base address.

  • channel – DMAMUX channel number.

static inline void DMAMUX_DisableChannel(DMAMUX_Type *base, uint32_t channel)

Disables the DMAMUX channel.

This function disables the DMAMUX channel.

Note

The user must disable the DMAMUX channel before configuring it.

Parameters:
  • base – DMAMUX peripheral base address.

  • channel – DMAMUX channel number.

static inline void DMAMUX_SetSource(DMAMUX_Type *base, uint32_t channel, int32_t source)

Configures the DMAMUX channel source.

Parameters:
  • base – DMAMUX peripheral base address.

  • channel – DMAMUX channel number.

  • source – Channel source, which is used to trigger the DMA transfer.User need to use the dma_request_source_t type as the input parameter.

static inline void DMAMUX_EnablePeriodTrigger(DMAMUX_Type *base, uint32_t channel)

Enables the DMAMUX period trigger.

This function enables the DMAMUX period trigger feature.

Parameters:
  • base – DMAMUX peripheral base address.

  • channel – DMAMUX channel number.

static inline void DMAMUX_DisablePeriodTrigger(DMAMUX_Type *base, uint32_t channel)

Disables the DMAMUX period trigger.

This function disables the DMAMUX period trigger.

Parameters:
  • base – DMAMUX peripheral base address.

  • channel – DMAMUX channel number.

FSL_DMAMUX_DRIVER_VERSION

DMAMUX driver version 2.1.0.

DSPI: Serial Peripheral Interface Driver

DSPI Driver

void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig, uint32_t srcClock_Hz)

Initializes the DSPI master.

This function initializes the DSPI master configuration. This is an example use case.

dspi_master_config_t  masterConfig;
masterConfig.whichCtar                                = kDSPI_Ctar0;
masterConfig.ctarConfig.baudRate                      = 500000000U;
masterConfig.ctarConfig.bitsPerFrame                  = 8;
masterConfig.ctarConfig.cpol                          = kDSPI_ClockPolarityActiveHigh;
masterConfig.ctarConfig.cpha                          = kDSPI_ClockPhaseFirstEdge;
masterConfig.ctarConfig.direction                     = kDSPI_MsbFirst;
masterConfig.ctarConfig.pcsToSckDelayInNanoSec        = 1000000000U / masterConfig.ctarConfig.baudRate ;
masterConfig.ctarConfig.lastSckToPcsDelayInNanoSec    = 1000000000U / masterConfig.ctarConfig.baudRate ;
masterConfig.ctarConfig.betweenTransferDelayInNanoSec = 1000000000U / masterConfig.ctarConfig.baudRate ;
masterConfig.whichPcs                                 = kDSPI_Pcs0;
masterConfig.pcsActiveHighOrLow                       = kDSPI_PcsActiveLow;
masterConfig.enableContinuousSCK                      = false;
masterConfig.enableRxFifoOverWrite                    = false;
masterConfig.enableModifiedTimingFormat               = false;
masterConfig.samplePoint                              = kDSPI_SckToSin0Clock;
DSPI_MasterInit(base, &masterConfig, srcClock_Hz);

Parameters:
  • base – DSPI peripheral address.

  • masterConfig – Pointer to the structure dspi_master_config_t.

  • srcClock_Hz – Module source input clock in Hertz.

void DSPI_MasterGetDefaultConfig(dspi_master_config_t *masterConfig)

Sets the dspi_master_config_t structure to default values.

The purpose of this API is to get the configuration structure initialized for the DSPI_MasterInit(). Users may use the initialized structure unchanged in the DSPI_MasterInit() or modify the structure before calling the DSPI_MasterInit(). Example:

dspi_master_config_t  masterConfig;
DSPI_MasterGetDefaultConfig(&masterConfig);

Parameters:
  • masterConfig – pointer to dspi_master_config_t structure

void DSPI_SlaveInit(SPI_Type *base, const dspi_slave_config_t *slaveConfig)

DSPI slave configuration.

This function initializes the DSPI slave configuration. This is an example use case.

 dspi_slave_config_t  slaveConfig;
slaveConfig->whichCtar                  = kDSPI_Ctar0;
slaveConfig->ctarConfig.bitsPerFrame    = 8;
slaveConfig->ctarConfig.cpol            = kDSPI_ClockPolarityActiveHigh;
slaveConfig->ctarConfig.cpha            = kDSPI_ClockPhaseFirstEdge;
slaveConfig->enableContinuousSCK        = false;
slaveConfig->enableRxFifoOverWrite      = false;
slaveConfig->enableModifiedTimingFormat = false;
slaveConfig->samplePoint                = kDSPI_SckToSin0Clock;
 DSPI_SlaveInit(base, &slaveConfig);

Parameters:
  • base – DSPI peripheral address.

  • slaveConfig – Pointer to the structure dspi_master_config_t.

void DSPI_SlaveGetDefaultConfig(dspi_slave_config_t *slaveConfig)

Sets the dspi_slave_config_t structure to a default value.

The purpose of this API is to get the configuration structure initialized for the DSPI_SlaveInit(). Users may use the initialized structure unchanged in the DSPI_SlaveInit() or modify the structure before calling the DSPI_SlaveInit(). This is an example.

dspi_slave_config_t  slaveConfig;
DSPI_SlaveGetDefaultConfig(&slaveConfig);

Parameters:
  • slaveConfig – Pointer to the dspi_slave_config_t structure.

void DSPI_Deinit(SPI_Type *base)

De-initializes the DSPI peripheral. Call this API to disable the DSPI clock.

Parameters:
  • base – DSPI peripheral address.

static inline void DSPI_Enable(SPI_Type *base, bool enable)

Enables the DSPI peripheral and sets the MCR MDIS to 0.

Parameters:
  • base – DSPI peripheral address.

  • enable – Pass true to enable module, false to disable module.

static inline uint32_t DSPI_GetStatusFlags(SPI_Type *base)

Gets the DSPI status flag state.

Parameters:
  • base – DSPI peripheral address.

Returns:

DSPI status (in SR register).

static inline void DSPI_ClearStatusFlags(SPI_Type *base, uint32_t statusFlags)

Clears the DSPI status flag.

This function clears the desired status bit by using a write-1-to-clear. The user passes in the base and the desired status bit to clear. The list of status bits is defined in the dspi_status_and_interrupt_request_t. The function uses these bit positions in its algorithm to clear the desired flag state. This is an example.

DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag|kDSPI_EndOfQueueFlag);

Parameters:
  • base – DSPI peripheral address.

  • statusFlags – The status flag used from the type dspi_flags.

void DSPI_EnableInterrupts(SPI_Type *base, uint32_t mask)

Enables the DSPI interrupts.

This function configures various interrupt masks of the DSPI. The parameters are a base and an interrupt mask.

DSPI_EnableInterrupts(base, kDSPI_TxCompleteInterruptEnable | kDSPI_EndOfQueueInterruptEnable );

Note

For Tx Fill and Rx FIFO drain requests, enable the interrupt request and disable the DMA request. Do not use this API(write to RSER register) while DSPI is in running state.

Parameters:
  • base – DSPI peripheral address.

  • mask – The interrupt mask; use the enum _dspi_interrupt_enable.

static inline void DSPI_DisableInterrupts(SPI_Type *base, uint32_t mask)

Disables the DSPI interrupts.

DSPI_DisableInterrupts(base, kDSPI_TxCompleteInterruptEnable | kDSPI_EndOfQueueInterruptEnable );
Parameters:
  • base – DSPI peripheral address.

  • mask – The interrupt mask; use the enum _dspi_interrupt_enable.

static inline void DSPI_EnableDMA(SPI_Type *base, uint32_t mask)

Enables the DSPI DMA request.

This function configures the Rx and Tx DMA mask of the DSPI. The parameters are a base and a DMA mask.

DSPI_EnableDMA(base, kDSPI_TxDmaEnable | kDSPI_RxDmaEnable);

Parameters:
  • base – DSPI peripheral address.

  • mask – The interrupt mask; use the enum _dspi_dma_enable.

static inline void DSPI_DisableDMA(SPI_Type *base, uint32_t mask)

Disables the DSPI DMA request.

This function configures the Rx and Tx DMA mask of the DSPI. The parameters are a base and a DMA mask.

SPI_DisableDMA(base, kDSPI_TxDmaEnable | kDSPI_RxDmaEnable);

Parameters:
  • base – DSPI peripheral address.

  • mask – The interrupt mask; use the enum _dspi_dma_enable.

static inline uint32_t DSPI_MasterGetTxRegisterAddress(SPI_Type *base)

Gets the DSPI master PUSHR data register address for the DMA operation.

This function gets the DSPI master PUSHR data register address because this value is needed for the DMA operation.

Parameters:
  • base – DSPI peripheral address.

Returns:

The DSPI master PUSHR data register address.

static inline uint32_t DSPI_SlaveGetTxRegisterAddress(SPI_Type *base)

Gets the DSPI slave PUSHR data register address for the DMA operation.

This function gets the DSPI slave PUSHR data register address as this value is needed for the DMA operation.

Parameters:
  • base – DSPI peripheral address.

Returns:

The DSPI slave PUSHR data register address.

static inline uint32_t DSPI_GetRxRegisterAddress(SPI_Type *base)

Gets the DSPI POPR data register address for the DMA operation.

This function gets the DSPI POPR data register address as this value is needed for the DMA operation.

Parameters:
  • base – DSPI peripheral address.

Returns:

The DSPI POPR data register address.

uint32_t DSPI_GetInstance(SPI_Type *base)

Get instance number for DSPI module.

Parameters:
  • base – DSPI peripheral base address.

static inline void DSPI_SetMasterSlaveMode(SPI_Type *base, dspi_master_slave_mode_t mode)

Configures the DSPI for master or slave.

Parameters:
  • base – DSPI peripheral address.

  • mode – Mode setting (master or slave) of type dspi_master_slave_mode_t.

static inline bool DSPI_IsMaster(SPI_Type *base)

Returns whether the DSPI module is in master mode.

Parameters:
  • base – DSPI peripheral address.

Returns:

Returns true if the module is in master mode or false if the module is in slave mode.

static inline void DSPI_StartTransfer(SPI_Type *base)

Starts the DSPI transfers and clears HALT bit in MCR.

This function sets the module to start data transfer in either master or slave mode.

Parameters:
  • base – DSPI peripheral address.

static inline void DSPI_StopTransfer(SPI_Type *base)

Stops DSPI transfers and sets the HALT bit in MCR.

This function stops data transfers in either master or slave modes.

Parameters:
  • base – DSPI peripheral address.

static inline void DSPI_SetFifoEnable(SPI_Type *base, bool enableTxFifo, bool enableRxFifo)

Enables or disables the DSPI FIFOs.

This function allows the caller to disable/enable the Tx and Rx FIFOs independently.

Note

To disable, pass in a logic 0 (false) for the particular FIFO configuration. To enable, pass in a logic 1 (true).

Parameters:
  • base – DSPI peripheral address.

  • enableTxFifo – Disables (false) the TX FIFO; Otherwise, enables (true) the TX FIFO

  • enableRxFifo – Disables (false) the RX FIFO; Otherwise, enables (true) the RX FIFO

static inline void DSPI_FlushFifo(SPI_Type *base, bool flushTxFifo, bool flushRxFifo)

Flushes the DSPI FIFOs.

Parameters:
  • base – DSPI peripheral address.

  • flushTxFifo – Flushes (true) the Tx FIFO; Otherwise, does not flush (false) the Tx FIFO

  • flushRxFifo – Flushes (true) the Rx FIFO; Otherwise, does not flush (false) the Rx FIFO

static inline void DSPI_SetAllPcsPolarity(SPI_Type *base, uint32_t mask)

Configures the DSPI peripheral chip select polarity simultaneously. For example, PCS0 and PCS1 are set to active low and other PCS is set to active high. Note that the number of PCSs is specific to the device.

DSPI_SetAllPcsPolarity(base, kDSPI_Pcs0ActiveLow | kDSPI_Pcs1ActiveLow);

Parameters:
  • base – DSPI peripheral address.

  • mask – The PCS polarity mask; use the enum _dspi_pcs_polarity.

uint32_t DSPI_MasterSetBaudRate(SPI_Type *base, dspi_ctar_selection_t whichCtar, uint32_t baudRate_Bps, uint32_t srcClock_Hz)

Sets the DSPI baud rate in bits per second.

This function takes in the desired baudRate_Bps (baud rate) and calculates the nearest possible baud rate without exceeding the desired baud rate, and returns the calculated baud rate in bits-per-second. It requires that the caller also provide the frequency of the module source clock (in Hertz).

Parameters:
  • base – DSPI peripheral address.

  • whichCtar – The desired Clock and Transfer Attributes Register (CTAR) of the type dspi_ctar_selection_t

  • baudRate_Bps – The desired baud rate in bits per second

  • srcClock_Hz – Module source input clock in Hertz

Returns:

The actual calculated baud rate

void DSPI_MasterSetDelayScaler(SPI_Type *base, dspi_ctar_selection_t whichCtar, uint32_t prescaler, uint32_t scaler, dspi_delay_type_t whichDelay)

Manually configures the delay prescaler and scaler for a particular CTAR.

This function configures the PCS to SCK delay pre-scalar (PcsSCK) and scalar (CSSCK), after SCK delay pre-scalar (PASC) and scalar (ASC), and the delay after transfer pre-scalar (PDT) and scalar (DT).

These delay names are available in the type dspi_delay_type_t.

The user passes the delay to the configuration along with the prescaler and scaler value. This allows the user to directly set the prescaler/scaler values if pre-calculated or to manually increment either value.

Parameters:
  • base – DSPI peripheral address.

  • whichCtar – The desired Clock and Transfer Attributes Register (CTAR) of type dspi_ctar_selection_t.

  • prescaler – The prescaler delay value (can be an integer 0, 1, 2, or 3).

  • scaler – The scaler delay value (can be any integer between 0 to 15).

  • whichDelay – The desired delay to configure; must be of type dspi_delay_type_t

uint32_t DSPI_MasterSetDelayTimes(SPI_Type *base, dspi_ctar_selection_t whichCtar, dspi_delay_type_t whichDelay, uint32_t srcClock_Hz, uint32_t delayTimeInNanoSec)

Calculates the delay prescaler and scaler based on the desired delay input in nanoseconds.

This function calculates the values for the following. PCS to SCK delay pre-scalar (PCSSCK) and scalar (CSSCK), or After SCK delay pre-scalar (PASC) and scalar (ASC), or Delay after transfer pre-scalar (PDT) and scalar (DT).

These delay names are available in the type dspi_delay_type_t.

The user passes which delay to configure along with the desired delay value in nanoseconds. The function calculates the values needed for the prescaler and scaler. Note that returning the calculated delay as an exact delay match may not be possible. In this case, the closest match is calculated without going below the desired delay value input. It is possible to input a very large delay value that exceeds the capability of the part, in which case the maximum supported delay is returned. The higher-level peripheral driver alerts the user of an out of range delay input.

Parameters:
  • base – DSPI peripheral address.

  • whichCtar – The desired Clock and Transfer Attributes Register (CTAR) of type dspi_ctar_selection_t.

  • whichDelay – The desired delay to configure, must be of type dspi_delay_type_t

  • srcClock_Hz – Module source input clock in Hertz

  • delayTimeInNanoSec – The desired delay value in nanoseconds.

Returns:

The actual calculated delay value.

static inline void DSPI_MasterWriteData(SPI_Type *base, dspi_command_data_config_t *command, uint16_t data)

Writes data into the data buffer for master mode.

In master mode, the 16-bit data is appended to the 16-bit command info. The command portion provides characteristics of the data, such as the optional continuous chip select operation between transfers, the desired Clock and Transfer Attributes register to use for the associated SPI frame, the desired PCS signal to use for the data transfer, whether the current transfer is the last in the queue, and whether to clear the transfer count (normally needed when sending the first frame of a data packet). This is an example.

dspi_command_data_config_t commandConfig;
commandConfig.isPcsContinuous = true;
commandConfig.whichCtar = kDSPICtar0;
commandConfig.whichPcs = kDSPIPcs0;
commandConfig.clearTransferCount = false;
commandConfig.isEndOfQueue = false;
DSPI_MasterWriteData(base, &commandConfig, dataWord);

Parameters:
  • base – DSPI peripheral address.

  • command – Pointer to the command structure.

  • data – The data word to be sent.

void DSPI_GetDefaultDataCommandConfig(dspi_command_data_config_t *command)

Sets the dspi_command_data_config_t structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the DSPI_MasterWrite_xx(). Users may use the initialized structure unchanged in the DSPI_MasterWrite_xx() or modify the structure before calling the DSPI_MasterWrite_xx(). This is an example.

dspi_command_data_config_t  command;
DSPI_GetDefaultDataCommandConfig(&command);

Parameters:
  • command – Pointer to the dspi_command_data_config_t structure.

void DSPI_MasterWriteDataBlocking(SPI_Type *base, dspi_command_data_config_t *command, uint16_t data)

Writes data into the data buffer master mode and waits till complete to return.

In master mode, the 16-bit data is appended to the 16-bit command info. The command portion provides characteristics of the data, such as the optional continuous chip select operation between transfers, the desired Clock and Transfer Attributes register to use for the associated SPI frame, the desired PCS signal to use for the data transfer, whether the current transfer is the last in the queue, and whether to clear the transfer count (normally needed when sending the first frame of a data packet). This is an example.

dspi_command_config_t commandConfig;
commandConfig.isPcsContinuous = true;
commandConfig.whichCtar = kDSPICtar0;
commandConfig.whichPcs = kDSPIPcs1;
commandConfig.clearTransferCount = false;
commandConfig.isEndOfQueue = false;
DSPI_MasterWriteDataBlocking(base, &commandConfig, dataWord);

Note

This function does not return until after the transmit is complete. Also note that the DSPI must be enabled and running to transmit data (MCR[MDIS] & [HALT] = 0). Because the SPI is a synchronous protocol, the received data is available when the transmit completes.

Parameters:
  • base – DSPI peripheral address.

  • command – Pointer to the command structure.

  • data – The data word to be sent.

static inline uint32_t DSPI_MasterGetFormattedCommand(dspi_command_data_config_t *command)

Returns the DSPI command word formatted to the PUSHR data register bit field.

This function allows the caller to pass in the data command structure and returns the command word formatted according to the DSPI PUSHR register bit field placement. The user can then “OR” the returned command word with the desired data to send and use the function DSPI_HAL_WriteCommandDataMastermode or DSPI_HAL_WriteCommandDataMastermodeBlocking to write the entire 32-bit command data word to the PUSHR. This helps improve performance in cases where the command structure is constant. For example, the user calls this function before starting a transfer to generate the command word. When they are ready to transmit the data, they OR this formatted command word with the desired data to transmit. This process increases transmit performance when compared to calling send functions, such as DSPI_HAL_WriteDataMastermode, which format the command word each time a data word is to be sent.

Parameters:
  • command – Pointer to the command structure.

Returns:

The command word formatted to the PUSHR data register bit field.

void DSPI_MasterWriteCommandDataBlocking(SPI_Type *base, uint32_t data)

Writes a 32-bit data word (16-bit command appended with 16-bit data) into the data buffer master mode and waits till complete to return.

In this function, the user must append the 16-bit data to the 16-bit command information and then provide the total 32-bit word as the data to send. The command portion provides characteristics of the data, such as the optional continuous chip select operation between transfers, the desired Clock and Transfer Attributes register to use for the associated SPI frame, the desired PCS signal to use for the data transfer, whether the current transfer is the last in the queue, and whether to clear the transfer count (normally needed when sending the first frame of a data packet). The user is responsible for appending this command with the data to send. This is an example:

dataWord = <16-bit command> | <16-bit data>;
DSPI_MasterWriteCommandDataBlocking(base, dataWord);

For a blocking polling transfer, see methods below.

Option 1

uint32_t command_to_send = DSPI_MasterGetFormattedCommand(&command);

uint32_t data0 = command_to_send | data_need_to_send_0;

uint32_t data1 = command_to_send | data_need_to_send_1;

uint32_t data2 = command_to_send | data_need_to_send_2;

DSPI_MasterWriteCommandDataBlocking(base,data0);

DSPI_MasterWriteCommandDataBlocking(base,data1);

DSPI_MasterWriteCommandDataBlocking(base,data2);

Option 2

DSPI_MasterWriteDataBlocking(base,&command,data_need_to_send_0);

DSPI_MasterWriteDataBlocking(base,&command,data_need_to_send_1);

DSPI_MasterWriteDataBlocking(base,&command,data_need_to_send_2);

Note

This function does not return until after the transmit is complete. Also note that the DSPI must be enabled and running to transmit data (MCR[MDIS] & [HALT] = 0). Because the SPI is a synchronous protocol, the received data is available when the transmit completes.

Parameters:
  • base – DSPI peripheral address.

  • data – The data word (command and data combined) to be sent.

static inline void DSPI_SlaveWriteData(SPI_Type *base, uint32_t data)

Writes data into the data buffer in slave mode.

In slave mode, up to 16-bit words may be written.

Parameters:
  • base – DSPI peripheral address.

  • data – The data to send.

void DSPI_SlaveWriteDataBlocking(SPI_Type *base, uint32_t data)

Writes data into the data buffer in slave mode, waits till data was transmitted, and returns.

In slave mode, up to 16-bit words may be written. The function first clears the transmit complete flag, writes data into data register, and finally waits until the data is transmitted.

Parameters:
  • base – DSPI peripheral address.

  • data – The data to send.

static inline uint32_t DSPI_ReadData(SPI_Type *base)

Reads data from the data buffer.

Parameters:
  • base – DSPI peripheral address.

Returns:

The data from the read data buffer.

void DSPI_SetDummyData(SPI_Type *base, uint8_t dummyData)

Set up the dummy data.

Parameters:
  • base – DSPI peripheral address.

  • dummyData – Data to be transferred when tx buffer is NULL.

void DSPI_MasterTransferCreateHandle(SPI_Type *base, dspi_master_handle_t *handle, dspi_master_transfer_callback_t callback, void *userData)

Initializes the DSPI master handle.

This function initializes the DSPI handle, which can be used for other DSPI transactional APIs. Usually, for a specified DSPI instance, call this API once to get the initialized handle.

Parameters:
  • base – DSPI peripheral base address.

  • handle – DSPI handle pointer to _dspi_master_handle.

  • callback – DSPI callback.

  • userData – Callback function parameter.

status_t DSPI_MasterTransferBlocking(SPI_Type *base, dspi_transfer_t *transfer)

DSPI master transfer data using polling.

This function transfers data using polling. This is a blocking function, which does not return until all transfers have been completed.

Parameters:
  • base – DSPI peripheral base address.

  • transfer – Pointer to the dspi_transfer_t structure.

Returns:

status of status_t.

status_t DSPI_MasterTransferNonBlocking(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)

DSPI master transfer data using interrupts.

This function transfers data using interrupts. This is a non-blocking function, which returns right away. When all data is transferred, the callback function is called.

Parameters:
  • base – DSPI peripheral base address.

  • handle – Pointer to the _dspi_master_handle structure which stores the transfer state.

  • transfer – Pointer to the dspi_transfer_t structure.

Returns:

status of status_t.

status_t DSPI_MasterHalfDuplexTransferBlocking(SPI_Type *base, dspi_half_duplex_transfer_t *xfer)

Transfers a block of data using a polling method.

This function will do a half-duplex transfer for DSPI master, This is a blocking function, which does not retuen until all transfer have been completed. And data transfer will be half-duplex, users can set transmit first or receive first.

Parameters:
  • base – DSPI base pointer

  • xfer – pointer to dspi_half_duplex_transfer_t structure

Returns:

status of status_t.

status_t DSPI_MasterHalfDuplexTransferNonBlocking(SPI_Type *base, dspi_master_handle_t *handle, dspi_half_duplex_transfer_t *xfer)

Performs a non-blocking DSPI interrupt transfer.

This function transfers data using interrupts, the transfer mechanism is half-duplex. This is a non-blocking function, which returns right away. When all data is transferred, the callback function is called.

Parameters:
  • base – DSPI peripheral base address.

  • handle – pointer to _dspi_master_handle structure which stores the transfer state

  • xfer – pointer to dspi_half_duplex_transfer_t structure

Returns:

status of status_t.

status_t DSPI_MasterTransferGetCount(SPI_Type *base, dspi_master_handle_t *handle, size_t *count)

Gets the master transfer count.

This function gets the master transfer count.

Parameters:
  • base – DSPI peripheral base address.

  • handle – Pointer to the _dspi_master_handle structure which stores the transfer state.

  • count – The number of bytes transferred by using the non-blocking transaction.

Returns:

status of status_t.

void DSPI_MasterTransferAbort(SPI_Type *base, dspi_master_handle_t *handle)

DSPI master aborts a transfer using an interrupt.

This function aborts a transfer using an interrupt.

Parameters:
  • base – DSPI peripheral base address.

  • handle – Pointer to the _dspi_master_handle structure which stores the transfer state.

void DSPI_MasterTransferHandleIRQ(SPI_Type *base, dspi_master_handle_t *handle)

DSPI Master IRQ handler function.

This function processes the DSPI transmit and receive IRQ.

Parameters:
  • base – DSPI peripheral base address.

  • handle – Pointer to the _dspi_master_handle structure which stores the transfer state.

void DSPI_SlaveTransferCreateHandle(SPI_Type *base, dspi_slave_handle_t *handle, dspi_slave_transfer_callback_t callback, void *userData)

Initializes the DSPI slave handle.

This function initializes the DSPI handle, which can be used for other DSPI transactional APIs. Usually, for a specified DSPI instance, call this API once to get the initialized handle.

Parameters:
  • handle – DSPI handle pointer to the _dspi_slave_handle.

  • base – DSPI peripheral base address.

  • callback – DSPI callback.

  • userData – Callback function parameter.

status_t DSPI_SlaveTransferNonBlocking(SPI_Type *base, dspi_slave_handle_t *handle, dspi_transfer_t *transfer)

DSPI slave transfers data using an interrupt.

This function transfers data using an interrupt. This is a non-blocking function, which returns right away. When all data is transferred, the callback function is called.

Parameters:
  • base – DSPI peripheral base address.

  • handle – Pointer to the _dspi_slave_handle structure which stores the transfer state.

  • transfer – Pointer to the dspi_transfer_t structure.

Returns:

status of status_t.

status_t DSPI_SlaveTransferGetCount(SPI_Type *base, dspi_slave_handle_t *handle, size_t *count)

Gets the slave transfer count.

This function gets the slave transfer count.

Parameters:
  • base – DSPI peripheral base address.

  • handle – Pointer to the _dspi_master_handle structure which stores the transfer state.

  • count – The number of bytes transferred by using the non-blocking transaction.

Returns:

status of status_t.

void DSPI_SlaveTransferAbort(SPI_Type *base, dspi_slave_handle_t *handle)

DSPI slave aborts a transfer using an interrupt.

This function aborts a transfer using an interrupt.

Parameters:
  • base – DSPI peripheral base address.

  • handle – Pointer to the _dspi_slave_handle structure which stores the transfer state.

void DSPI_SlaveTransferHandleIRQ(SPI_Type *base, dspi_slave_handle_t *handle)

DSPI Master IRQ handler function.

This function processes the DSPI transmit and receive IRQ.

Parameters:
  • base – DSPI peripheral base address.

  • handle – Pointer to the _dspi_slave_handle structure which stores the transfer state.

uint8_t DSPI_GetDummyDataInstance(SPI_Type *base)

brief Dummy data for each instance.

The purpose of this API is to avoid MISRA rule8.5 : Multiple declarations of externally-linked object or function g_dspiDummyData.

param base DSPI peripheral base address.

FSL_DSPI_DRIVER_VERSION

DSPI driver version 2.2.7.

Status for the DSPI driver.

Values:

enumerator kStatus_DSPI_Busy

DSPI transfer is busy.

enumerator kStatus_DSPI_Error

DSPI driver error.

enumerator kStatus_DSPI_Idle

DSPI is idle.

enumerator kStatus_DSPI_OutOfRange

DSPI transfer out of range.

enum _dspi_flags

DSPI status flags in SPIx_SR register.

Values:

enumerator kDSPI_TxCompleteFlag

Transfer Complete Flag.

enumerator kDSPI_EndOfQueueFlag

End of Queue Flag.

enumerator kDSPI_TxFifoUnderflowFlag

Transmit FIFO Underflow Flag.

enumerator kDSPI_TxFifoFillRequestFlag

Transmit FIFO Fill Flag.

enumerator kDSPI_RxFifoOverflowFlag

Receive FIFO Overflow Flag.

enumerator kDSPI_RxFifoDrainRequestFlag

Receive FIFO Drain Flag.

enumerator kDSPI_TxAndRxStatusFlag

The module is in Stopped/Running state.

enumerator kDSPI_AllStatusFlag

All statuses above.

enum _dspi_interrupt_enable

DSPI interrupt source.

Values:

enumerator kDSPI_TxCompleteInterruptEnable

TCF interrupt enable.

enumerator kDSPI_EndOfQueueInterruptEnable

EOQF interrupt enable.

enumerator kDSPI_TxFifoUnderflowInterruptEnable

TFUF interrupt enable.

enumerator kDSPI_TxFifoFillRequestInterruptEnable

TFFF interrupt enable, DMA disable.

enumerator kDSPI_RxFifoOverflowInterruptEnable

RFOF interrupt enable.

enumerator kDSPI_RxFifoDrainRequestInterruptEnable

RFDF interrupt enable, DMA disable.

enumerator kDSPI_AllInterruptEnable

All above interrupts enable.

enum _dspi_dma_enable

DSPI DMA source.

Values:

enumerator kDSPI_TxDmaEnable

TFFF flag generates DMA requests. No Tx interrupt request.

enumerator kDSPI_RxDmaEnable

RFDF flag generates DMA requests. No Rx interrupt request.

enum _dspi_master_slave_mode

DSPI master or slave mode configuration.

Values:

enumerator kDSPI_Master

DSPI peripheral operates in master mode.

enumerator kDSPI_Slave

DSPI peripheral operates in slave mode.

enum _dspi_master_sample_point

DSPI Sample Point: Controls when the DSPI master samples SIN in the Modified Transfer Format. This field is valid only when the CPHA bit in the CTAR register is 0.

Values:

enumerator kDSPI_SckToSin0Clock

0 system clocks between SCK edge and SIN sample.

enumerator kDSPI_SckToSin1Clock

1 system clock between SCK edge and SIN sample.

enumerator kDSPI_SckToSin2Clock

2 system clocks between SCK edge and SIN sample.

enum _dspi_which_pcs_config

DSPI Peripheral Chip Select (Pcs) configuration (which Pcs to configure).

Values:

enumerator kDSPI_Pcs0

Pcs[0]

enumerator kDSPI_Pcs1

Pcs[1]

enumerator kDSPI_Pcs2

Pcs[2]

enumerator kDSPI_Pcs3

Pcs[3]

enumerator kDSPI_Pcs4

Pcs[4]

enumerator kDSPI_Pcs5

Pcs[5]

enum _dspi_pcs_polarity_config

DSPI Peripheral Chip Select (Pcs) Polarity configuration.

Values:

enumerator kDSPI_PcsActiveHigh

Pcs Active High (idles low).

enumerator kDSPI_PcsActiveLow

Pcs Active Low (idles high).

enum _dspi_pcs_polarity

DSPI Peripheral Chip Select (Pcs) Polarity.

Values:

enumerator kDSPI_Pcs0ActiveLow

Pcs0 Active Low (idles high).

enumerator kDSPI_Pcs1ActiveLow

Pcs1 Active Low (idles high).

enumerator kDSPI_Pcs2ActiveLow

Pcs2 Active Low (idles high).

enumerator kDSPI_Pcs3ActiveLow

Pcs3 Active Low (idles high).

enumerator kDSPI_Pcs4ActiveLow

Pcs4 Active Low (idles high).

enumerator kDSPI_Pcs5ActiveLow

Pcs5 Active Low (idles high).

enumerator kDSPI_PcsAllActiveLow

Pcs0 to Pcs5 Active Low (idles high).

enum _dspi_clock_polarity

DSPI clock polarity configuration for a given CTAR.

Values:

enumerator kDSPI_ClockPolarityActiveHigh

CPOL=0. Active-high DSPI clock (idles low).

enumerator kDSPI_ClockPolarityActiveLow

CPOL=1. Active-low DSPI clock (idles high).

enum _dspi_clock_phase

DSPI clock phase configuration for a given CTAR.

Values:

enumerator kDSPI_ClockPhaseFirstEdge

CPHA=0. Data is captured on the leading edge of the SCK and changed on the following edge.

enumerator kDSPI_ClockPhaseSecondEdge

CPHA=1. Data is changed on the leading edge of the SCK and captured on the following edge.

enum _dspi_shift_direction

DSPI data shifter direction options for a given CTAR.

Values:

enumerator kDSPI_MsbFirst

Data transfers start with most significant bit.

enumerator kDSPI_LsbFirst

Data transfers start with least significant bit. Shifting out of LSB is not supported for slave

enum _dspi_delay_type

DSPI delay type selection.

Values:

enumerator kDSPI_PcsToSck

Pcs-to-SCK delay.

enumerator kDSPI_LastSckToPcs

The last SCK edge to Pcs delay.

enumerator kDSPI_BetweenTransfer

Delay between transfers.

enum _dspi_ctar_selection

DSPI Clock and Transfer Attributes Register (CTAR) selection.

Values:

enumerator kDSPI_Ctar0

CTAR0 selection option for master or slave mode; note that CTAR0 and CTAR0_SLAVE are the same register address.

enumerator kDSPI_Ctar1

CTAR1 selection option for master mode only.

enumerator kDSPI_Ctar2

CTAR2 selection option for master mode only; note that some devices do not support CTAR2.

enumerator kDSPI_Ctar3

CTAR3 selection option for master mode only; note that some devices do not support CTAR3.

enumerator kDSPI_Ctar4

CTAR4 selection option for master mode only; note that some devices do not support CTAR4.

enumerator kDSPI_Ctar5

CTAR5 selection option for master mode only; note that some devices do not support CTAR5.

enumerator kDSPI_Ctar6

CTAR6 selection option for master mode only; note that some devices do not support CTAR6.

enumerator kDSPI_Ctar7

CTAR7 selection option for master mode only; note that some devices do not support CTAR7.

enum _dspi_transfer_config_flag_for_master

Use this enumeration for the DSPI master transfer configFlags.

Values:

enumerator kDSPI_MasterCtar0

DSPI master CTAR shift macro; used internally. DSPI master transfer use CTAR0 setting.

enumerator kDSPI_MasterCtar1

DSPI master CTAR shift macro; used internally. DSPI master transfer use CTAR1 setting.

enumerator kDSPI_MasterCtar2

DSPI master CTAR shift macro; used internally. DSPI master transfer use CTAR2 setting.

enumerator kDSPI_MasterCtar3

DSPI master CTAR shift macro; used internally. DSPI master transfer use CTAR3 setting.

enumerator kDSPI_MasterCtar4

DSPI master CTAR shift macro; used internally. DSPI master transfer use CTAR4 setting.

enumerator kDSPI_MasterCtar5

DSPI master CTAR shift macro; used internally. DSPI master transfer use CTAR5 setting.

enumerator kDSPI_MasterCtar6

DSPI master CTAR shift macro; used internally. DSPI master transfer use CTAR6 setting.

enumerator kDSPI_MasterCtar7

DSPI master CTAR shift macro; used internally. DSPI master transfer use CTAR7 setting.

enumerator kDSPI_MasterPcs0

DSPI master PCS shift macro; used internally. DSPI master transfer use PCS0 signal.

enumerator kDSPI_MasterPcs1

DSPI master PCS shift macro; used internally. DSPI master transfer use PCS1 signal.

enumerator kDSPI_MasterPcs2

DSPI master PCS shift macro; used internally. DSPI master transfer use PCS2 signal.

enumerator kDSPI_MasterPcs3

DSPI master PCS shift macro; used internally. DSPI master transfer use PCS3 signal.

enumerator kDSPI_MasterPcs4

DSPI master PCS shift macro; used internally. DSPI master transfer use PCS4 signal.

enumerator kDSPI_MasterPcs5

DSPI master PCS shift macro; used internally. DSPI master transfer use PCS5 signal.

enumerator kDSPI_MasterPcsContinuous

Indicates whether the PCS signal is continuous.

enumerator kDSPI_MasterActiveAfterTransfer

Indicates whether the PCS signal is active after the last frame transfer.

enum _dspi_transfer_config_flag_for_slave

Use this enumeration for the DSPI slave transfer configFlags.

Values:

enumerator kDSPI_SlaveCtar0

DSPI slave CTAR shift macro; used internally. DSPI slave transfer use CTAR0 setting. DSPI slave can only use PCS0.

enum _dspi_transfer_state

DSPI transfer state, which is used for DSPI transactional API state machine.

Values:

enumerator kDSPI_Idle

Nothing in the transmitter/receiver.

enumerator kDSPI_Busy

Transfer queue is not finished.

enumerator kDSPI_Error

Transfer error.

typedef enum _dspi_master_slave_mode dspi_master_slave_mode_t

DSPI master or slave mode configuration.

typedef enum _dspi_master_sample_point dspi_master_sample_point_t

DSPI Sample Point: Controls when the DSPI master samples SIN in the Modified Transfer Format. This field is valid only when the CPHA bit in the CTAR register is 0.

typedef enum _dspi_which_pcs_config dspi_which_pcs_t

DSPI Peripheral Chip Select (Pcs) configuration (which Pcs to configure).

typedef enum _dspi_pcs_polarity_config dspi_pcs_polarity_config_t

DSPI Peripheral Chip Select (Pcs) Polarity configuration.

typedef enum _dspi_clock_polarity dspi_clock_polarity_t

DSPI clock polarity configuration for a given CTAR.

typedef enum _dspi_clock_phase dspi_clock_phase_t

DSPI clock phase configuration for a given CTAR.

typedef enum _dspi_shift_direction dspi_shift_direction_t

DSPI data shifter direction options for a given CTAR.

typedef enum _dspi_delay_type dspi_delay_type_t

DSPI delay type selection.

typedef enum _dspi_ctar_selection dspi_ctar_selection_t

DSPI Clock and Transfer Attributes Register (CTAR) selection.

typedef struct _dspi_command_data_config dspi_command_data_config_t

DSPI master command date configuration used for the SPIx_PUSHR.

typedef struct _dspi_master_ctar_config dspi_master_ctar_config_t

DSPI master ctar configuration structure.

typedef struct _dspi_master_config dspi_master_config_t

DSPI master configuration structure.

typedef struct _dspi_slave_ctar_config dspi_slave_ctar_config_t

DSPI slave ctar configuration structure.

typedef struct _dspi_slave_config dspi_slave_config_t

DSPI slave configuration structure.

typedef struct _dspi_master_handle dspi_master_handle_t

Forward declaration of the _dspi_master_handle typedefs.

The master handle.

typedef struct _dspi_slave_handle dspi_slave_handle_t

Forward declaration of the _dspi_slave_handle typedefs.

The slave handle.

typedef void (*dspi_master_transfer_callback_t)(SPI_Type *base, dspi_master_handle_t *handle, status_t status, void *userData)

Completion callback function pointer type.

Param base:

DSPI peripheral address.

Param handle:

Pointer to the handle for the DSPI master.

Param status:

Success or error code describing whether the transfer completed.

Param userData:

Arbitrary pointer-dataSized value passed from the application.

typedef void (*dspi_slave_transfer_callback_t)(SPI_Type *base, dspi_slave_handle_t *handle, status_t status, void *userData)

Completion callback function pointer type.

Param base:

DSPI peripheral address.

Param handle:

Pointer to the handle for the DSPI slave.

Param status:

Success or error code describing whether the transfer completed.

Param userData:

Arbitrary pointer-dataSized value passed from the application.

typedef struct _dspi_transfer dspi_transfer_t

DSPI master/slave transfer structure.

typedef struct _dspi_half_duplex_transfer dspi_half_duplex_transfer_t

DSPI half-duplex(master) transfer structure.

volatile uint8_t g_dspiDummyData[]

Global variable for dummy data value setting.

DSPI_DUMMY_DATA

DSPI dummy data if there is no Tx data.

Dummy data used for Tx if there is no txData.

DSPI_MASTER_CTAR_SHIFT

DSPI master CTAR shift macro; used internally.

DSPI_MASTER_CTAR_MASK

DSPI master CTAR mask macro; used internally.

DSPI_MASTER_PCS_SHIFT

DSPI master PCS shift macro; used internally.

DSPI_MASTER_PCS_MASK

DSPI master PCS mask macro; used internally.

DSPI_SLAVE_CTAR_SHIFT

DSPI slave CTAR shift macro; used internally.

DSPI_SLAVE_CTAR_MASK

DSPI slave CTAR mask macro; used internally.

struct _dspi_command_data_config
#include <fsl_dspi.h>

DSPI master command date configuration used for the SPIx_PUSHR.

Public Members

bool isPcsContinuous

Option to enable the continuous assertion of the chip select between transfers.

uint8_t whichCtar

The desired Clock and Transfer Attributes Register (CTAR) to use for CTAS.

uint8_t whichPcs

The desired PCS signal to use for the data transfer.

bool isEndOfQueue

Signals that the current transfer is the last in the queue.

bool clearTransferCount

Clears the SPI Transfer Counter (SPI_TCNT) before transmission starts.

struct _dspi_master_ctar_config
#include <fsl_dspi.h>

DSPI master ctar configuration structure.

Public Members

uint32_t baudRate

Baud Rate for DSPI.

uint32_t bitsPerFrame

Bits per frame, minimum 4, maximum 16.

dspi_clock_polarity_t cpol

Clock polarity.

dspi_clock_phase_t cpha

Clock phase.

dspi_shift_direction_t direction

MSB or LSB data shift direction.

uint32_t pcsToSckDelayInNanoSec

PCS to SCK delay time in nanoseconds; setting to 0 sets the minimum delay. It also sets the boundary value if out of range.

uint32_t lastSckToPcsDelayInNanoSec

The last SCK to PCS delay time in nanoseconds; setting to 0 sets the minimum delay. It also sets the boundary value if out of range.

uint32_t betweenTransferDelayInNanoSec

After the SCK delay time in nanoseconds; setting to 0 sets the minimum delay. It also sets the boundary value if out of range.

struct _dspi_master_config
#include <fsl_dspi.h>

DSPI master configuration structure.

Public Members

dspi_ctar_selection_t whichCtar

The desired CTAR to use.

dspi_master_ctar_config_t ctarConfig

Set the ctarConfig to the desired CTAR.

dspi_which_pcs_t whichPcs

The desired Peripheral Chip Select (pcs).

dspi_pcs_polarity_config_t pcsActiveHighOrLow

The desired PCS active high or low.

bool enableContinuousSCK

CONT_SCKE, continuous SCK enable. Note that the continuous SCK is only supported for CPHA = 1.

bool enableRxFifoOverWrite

ROOE, receive FIFO overflow overwrite enable. If ROOE = 0, the incoming data is ignored and the data from the transfer that generated the overflow is also ignored. If ROOE = 1, the incoming data is shifted to the shift register.

bool enableModifiedTimingFormat

Enables a modified transfer format to be used if true.

dspi_master_sample_point_t samplePoint

Controls when the module master samples SIN in the Modified Transfer Format. It’s valid only when CPHA=0.

struct _dspi_slave_ctar_config
#include <fsl_dspi.h>

DSPI slave ctar configuration structure.

Public Members

uint32_t bitsPerFrame

Bits per frame, minimum 4, maximum 16.

dspi_clock_polarity_t cpol

Clock polarity.

dspi_clock_phase_t cpha

Clock phase. Slave only supports MSB and does not support LSB.

struct _dspi_slave_config
#include <fsl_dspi.h>

DSPI slave configuration structure.

Public Members

dspi_ctar_selection_t whichCtar

The desired CTAR to use.

dspi_slave_ctar_config_t ctarConfig

Set the ctarConfig to the desired CTAR.

bool enableContinuousSCK

CONT_SCKE, continuous SCK enable. Note that the continuous SCK is only supported for CPHA = 1.

bool enableRxFifoOverWrite

ROOE, receive FIFO overflow overwrite enable. If ROOE = 0, the incoming data is ignored and the data from the transfer that generated the overflow is also ignored. If ROOE = 1, the incoming data is shifted to the shift register.

bool enableModifiedTimingFormat

Enables a modified transfer format to be used if true.

dspi_master_sample_point_t samplePoint

Controls when the module master samples SIN in the Modified Transfer Format. It’s valid only when CPHA=0.

struct _dspi_transfer
#include <fsl_dspi.h>

DSPI master/slave transfer structure.

Public Members

const uint8_t *txData

Send buffer.

uint8_t *rxData

Receive buffer.

volatile size_t dataSize

Transfer bytes.

uint32_t configFlags

Transfer transfer configuration flags. Set from _dspi_transfer_config_flag_for_master if the transfer is used for master or _dspi_transfer_config_flag_for_slave enumeration if the transfer is used for slave.

struct _dspi_half_duplex_transfer
#include <fsl_dspi.h>

DSPI half-duplex(master) transfer structure.

Public Members

const uint8_t *txData

Send buffer

uint8_t *rxData

Receive buffer

size_t txDataSize

Transfer bytes for transmit

size_t rxDataSize

Transfer bytes

uint32_t configFlags

Transfer configuration flags; set from _dspi_transfer_config_flag_for_master.

bool isPcsAssertInTransfer

If Pcs pin keep assert between transmit and receive. true for assert and false for de-assert.

bool isTransmitFirst

True for transmit first and false for receive first.

struct _dspi_master_handle
#include <fsl_dspi.h>

DSPI master transfer handle structure used for transactional API.

Public Members

uint32_t bitsPerFrame

The desired number of bits per frame.

volatile uint32_t command

The desired data command.

volatile uint32_t lastCommand

The desired last data command.

uint8_t fifoSize

FIFO dataSize.

volatile bool isPcsActiveAfterTransfer

Indicates whether the PCS signal is active after the last frame transfer.

volatile bool isThereExtraByte

Indicates whether there are extra bytes.

const uint8_t *volatile txData

Send buffer.

uint8_t *volatile rxData

Receive buffer.

volatile size_t remainingSendByteCount

A number of bytes remaining to send.

volatile size_t remainingReceiveByteCount

A number of bytes remaining to receive.

size_t totalByteCount

A number of transfer bytes

volatile uint8_t state

DSPI transfer state, see _dspi_transfer_state.

dspi_master_transfer_callback_t callback

Completion callback.

void *userData

Callback user data.

struct _dspi_slave_handle
#include <fsl_dspi.h>

DSPI slave transfer handle structure used for the transactional API.

Public Members

uint32_t bitsPerFrame

The desired number of bits per frame.

volatile bool isThereExtraByte

Indicates whether there are extra bytes.

const uint8_t *volatile txData

Send buffer.

uint8_t *volatile rxData

Receive buffer.

volatile size_t remainingSendByteCount

A number of bytes remaining to send.

volatile size_t remainingReceiveByteCount

A number of bytes remaining to receive.

size_t totalByteCount

A number of transfer bytes

volatile uint8_t state

DSPI transfer state.

volatile uint32_t errorCount

Error count for slave transfer.

dspi_slave_transfer_callback_t callback

Completion callback.

void *userData

Callback user data.

DSPI eDMA Driver

void DSPI_MasterTransferCreateHandleEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_master_edma_transfer_callback_t callback, void *userData, edma_handle_t *edmaRxRegToRxDataHandle, edma_handle_t *edmaTxDataToIntermediaryHandle, edma_handle_t *edmaIntermediaryToTxRegHandle)

Initializes the DSPI master eDMA handle.

This function initializes the DSPI eDMA handle which can be used for other DSPI transactional APIs. Usually, for a specified DSPI instance, call this API once to get the initialized handle.

Note

DSPI eDMA has separated (RX and TX as two sources) or shared (RX and TX are the same source) DMA request source.

  • For the separated DMA request source, enable and set the RX DMAMUX source for edmaRxRegToRxDataHandle and TX DMAMUX source for edmaIntermediaryToTxRegHandle.

  • For the shared DMA request source, enable and set the RX/RX DMAMUX source for the edmaRxRegToRxDataHandle.

Parameters:
  • base – DSPI peripheral base address.

  • handle – DSPI handle pointer to _dspi_master_edma_handle.

  • callback – DSPI callback.

  • userData – A callback function parameter.

  • edmaRxRegToRxDataHandle – edmaRxRegToRxDataHandle pointer to edma_handle_t.

  • edmaTxDataToIntermediaryHandle – edmaTxDataToIntermediaryHandle pointer to edma_handle_t.

  • edmaIntermediaryToTxRegHandle – edmaIntermediaryToTxRegHandle pointer to edma_handle_t.

status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_transfer_t *transfer)

DSPI master transfer data using eDMA.

This function transfers data using eDMA. This is a non-blocking function, which returns right away. When all data is transferred, the callback function is called.

Note

The max transfer size of each transfer depends on whether the instance’s Tx/Rx shares the same DMA request. If FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(x) is true, then the max transfer size is 32767 datawidth of data, otherwise is 511.

Parameters:
  • base – DSPI peripheral base address.

  • handle – A pointer to the _dspi_master_edma_handle structure which stores the transfer state.

  • transfer – A pointer to the dspi_transfer_t structure.

Returns:

status of status_t.

status_t DSPI_MasterHalfDuplexTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_half_duplex_transfer_t *xfer)

Transfers a block of data using a eDMA method.

This function transfers data using eDNA, the transfer mechanism is half-duplex. This is a non-blocking function, which returns right away. When all data is transferred, the callback function is called.

Parameters:
  • base – DSPI base pointer

  • handle – A pointer to the _dspi_master_edma_handle structure which stores the transfer state.

  • xfer – A pointer to the dspi_half_duplex_transfer_t structure.

Returns:

status of status_t.

void DSPI_MasterTransferAbortEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle)

DSPI master aborts a transfer which is using eDMA.

This function aborts a transfer which is using eDMA.

Parameters:
  • base – DSPI peripheral base address.

  • handle – A pointer to the _dspi_master_edma_handle structure which stores the transfer state.

status_t DSPI_MasterTransferGetCountEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, size_t *count)

Gets the master eDMA transfer count.

This function gets the master eDMA transfer count.

Parameters:
  • base – DSPI peripheral base address.

  • handle – A pointer to the _dspi_master_edma_handle structure which stores the transfer state.

  • count – A number of bytes transferred by the non-blocking transaction.

Returns:

status of status_t.

void DSPI_SlaveTransferCreateHandleEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, dspi_slave_edma_transfer_callback_t callback, void *userData, edma_handle_t *edmaRxRegToRxDataHandle, edma_handle_t *edmaTxDataToTxRegHandle)

Initializes the DSPI slave eDMA handle.

This function initializes the DSPI eDMA handle which can be used for other DSPI transactional APIs. Usually, for a specified DSPI instance, call this API once to get the initialized handle.

Note

DSPI eDMA has separated (RN and TX in 2 sources) or shared (RX and TX are the same source) DMA request source.

  • For the separated DMA request source, enable and set the RX DMAMUX source for edmaRxRegToRxDataHandle and TX DMAMUX source for edmaTxDataToTxRegHandle.

  • For the shared DMA request source, enable and set the RX/RX DMAMUX source for the edmaRxRegToRxDataHandle.

Parameters:
  • base – DSPI peripheral base address.

  • handle – DSPI handle pointer to _dspi_slave_edma_handle.

  • callback – DSPI callback.

  • userData – A callback function parameter.

  • edmaRxRegToRxDataHandle – edmaRxRegToRxDataHandle pointer to edma_handle_t.

  • edmaTxDataToTxRegHandle – edmaTxDataToTxRegHandle pointer to edma_handle_t.

status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, dspi_transfer_t *transfer)

DSPI slave transfer data using eDMA.

This function transfers data using eDMA. This is a non-blocking function, which returns right away. When all data is transferred, the callback function is called. Note that the slave eDMA transfer doesn’t support transfer_size is 1 when the bitsPerFrame is greater than eight.

Note

The max transfer size of each transfer depends on whether the instance’s Tx/Rx shares the same DMA request. If FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(x) is true, then the max transfer size is 32767 datawidth of data, otherwise is 511.

Parameters:
  • base – DSPI peripheral base address.

  • handle – A pointer to the _dspi_slave_edma_handle structure which stores the transfer state.

  • transfer – A pointer to the dspi_transfer_t structure.

Returns:

status of status_t.

void DSPI_SlaveTransferAbortEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle)

DSPI slave aborts a transfer which is using eDMA.

This function aborts a transfer which is using eDMA.

Parameters:
  • base – DSPI peripheral base address.

  • handle – A pointer to the _dspi_slave_edma_handle structure which stores the transfer state.

status_t DSPI_SlaveTransferGetCountEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, size_t *count)

Gets the slave eDMA transfer count.

This function gets the slave eDMA transfer count.

Parameters:
  • base – DSPI peripheral base address.

  • handle – A pointer to the _dspi_slave_edma_handle structure which stores the transfer state.

  • count – A number of bytes transferred so far by the non-blocking transaction.

Returns:

status of status_t.

FSL_DSPI_EDMA_DRIVER_VERSION

DSPI EDMA driver version 2.2.7.

typedef struct _dspi_master_edma_handle dspi_master_edma_handle_t

Forward declaration of the DSPI eDMA master handle typedefs.

typedef struct _dspi_slave_edma_handle dspi_slave_edma_handle_t

Forward declaration of the DSPI eDMA slave handle typedefs.

typedef void (*dspi_master_edma_transfer_callback_t)(SPI_Type *base, dspi_master_edma_handle_t *handle, status_t status, void *userData)

Completion callback function pointer type.

Param base:

DSPI peripheral base address.

Param handle:

A pointer to the handle for the DSPI master.

Param status:

Success or error code describing whether the transfer completed.

Param userData:

An arbitrary pointer-dataSized value passed from the application.

typedef void (*dspi_slave_edma_transfer_callback_t)(SPI_Type *base, dspi_slave_edma_handle_t *handle, status_t status, void *userData)

Completion callback function pointer type.

Param base:

DSPI peripheral base address.

Param handle:

A pointer to the handle for the DSPI slave.

Param status:

Success or error code describing whether the transfer completed.

Param userData:

An arbitrary pointer-dataSized value passed from the application.

DSPI_EDMA_MAX_TRANSFER_SIZE(base, width)

DSPI EDMA max transfer data size calculate.

Parameters:
  • base – DSPI peripheral base address.

  • width – Transfer width

struct _dspi_master_edma_handle
#include <fsl_dspi_edma.h>

DSPI master eDMA transfer handle structure used for the transactional API.

Public Members

uint32_t bitsPerFrame

The desired number of bits per frame.

volatile uint32_t command

The desired data command.

volatile uint32_t lastCommand

The desired last data command.

uint8_t fifoSize

FIFO dataSize.

volatile bool isPcsActiveAfterTransfer

Indicates whether the PCS signal keeps active after the last frame transfer.

uint8_t nbytes

eDMA minor byte transfer count initially configured.

volatile uint8_t state

DSPI transfer state, see _dspi_transfer_state.

const uint8_t *volatile txData

Send buffer.

uint8_t *volatile rxData

Receive buffer.

volatile size_t remainingSendByteCount

A number of bytes remaining to send.

volatile size_t remainingReceiveByteCount

A number of bytes remaining to receive.

size_t totalByteCount

A number of transfer bytes

uint32_t rxBuffIfNull

Used if there is not rxData for DMA purpose.

uint32_t txBuffIfNull

Used if there is not txData for DMA purpose.

dspi_master_edma_transfer_callback_t callback

Completion callback.

void *userData

Callback user data.

edma_handle_t *edmaRxRegToRxDataHandle

edma_handle_t handle point used for RxReg to RxData buff

edma_handle_t *edmaTxDataToIntermediaryHandle

edma_handle_t handle point used for TxData to Intermediary

edma_handle_t *edmaIntermediaryToTxRegHandle

edma_handle_t handle point used for Intermediary to TxReg

edma_tcd_t dspiSoftwareTCD[2]

SoftwareTCD , internal used

struct _dspi_slave_edma_handle
#include <fsl_dspi_edma.h>

DSPI slave eDMA transfer handle structure used for the transactional API.

Public Members

uint32_t bitsPerFrame

The desired number of bits per frame.

const uint8_t *volatile txData

Send buffer.

uint8_t *volatile rxData

Receive buffer.

volatile size_t remainingSendByteCount

A number of bytes remaining to send.

volatile size_t remainingReceiveByteCount

A number of bytes remaining to receive.

size_t totalByteCount

A number of transfer bytes

uint32_t rxBuffIfNull

Used if there is not rxData for DMA purpose.

uint32_t txBuffIfNull

Used if there is not txData for DMA purpose.

uint32_t txLastData

Used if there is an extra byte when 16bits per frame for DMA purpose.

uint8_t nbytes

eDMA minor byte transfer count initially configured.

volatile uint8_t state

DSPI transfer state.

dspi_slave_edma_transfer_callback_t callback

Completion callback.

void *userData

Callback user data.

edma_handle_t *edmaRxRegToRxDataHandle

edma_handle_t handle point used for RxReg to RxData buff

edma_handle_t *edmaTxDataToTxRegHandle

edma_handle_t handle point used for TxData to TxReg

eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver

void EDMA_Init(DMA_Type *base, const edma_config_t *config)

Initializes the eDMA peripheral.

This function ungates the eDMA clock and configures the eDMA peripheral according to the configuration structure. All emda enabled request will be cleared in this function.

Note

This function enables the minor loop map feature.

Parameters:
  • base – eDMA peripheral base address.

  • config – A pointer to the configuration structure, see “edma_config_t”.

void EDMA_Deinit(DMA_Type *base)

Deinitializes the eDMA peripheral.

This function gates the eDMA clock.

Parameters:
  • base – eDMA peripheral base address.

void EDMA_InstallTCD(DMA_Type *base, uint32_t channel, edma_tcd_t *tcd)

Push content of TCD structure into hardware TCD register.

Parameters:
  • base – EDMA peripheral base address.

  • channel – EDMA channel number.

  • tcd – Point to TCD structure.

void EDMA_GetDefaultConfig(edma_config_t *config)

Gets the eDMA default configuration structure.

This function sets the configuration structure to default values. The default configuration is set to the following values.

config.enableContinuousLinkMode = false;
config.enableHaltOnError = true;
config.enableRoundRobinArbitration = false;
config.enableDebugMode = false;

Parameters:
  • config – A pointer to the eDMA configuration structure.

static inline void EDMA_EnableContinuousChannelLinkMode(DMA_Type *base, bool enable)

Enable/Disable continuous channel link mode.

Note

Do not use continuous link mode with a channel linking to itself if there is only one minor loop iteration per service request, for example, if the channel’s NBYTES value is the same as either the source or destination size. The same data transfer profile can be achieved by simply increasing the NBYTES value, which provides more efficient, faster processing.

Parameters:
  • base – EDMA peripheral base address.

  • enable – true is enable, false is disable.

static inline void EDMA_EnableMinorLoopMapping(DMA_Type *base, bool enable)

Enable/Disable minor loop mapping.

The TCDn.word2 is redefined to include individual enable fields, an offset field, and the NBYTES field.

Parameters:
  • base – EDMA peripheral base address.

  • enable – true is enable, false is disable.

void EDMA_ResetChannel(DMA_Type *base, uint32_t channel)

Sets all TCD registers to default values.

This function sets TCD registers for this channel to default values.

Note

This function must not be called while the channel transfer is ongoing or it causes unpredictable results.

Note

This function enables the auto stop request feature.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

void EDMA_SetTransferConfig(DMA_Type *base, uint32_t channel, const edma_transfer_config_t *config, edma_tcd_t *nextTcd)

Configures the eDMA transfer attribute.

This function configures the transfer attribute, including source address, destination address, transfer size, address offset, and so on. It also configures the scatter gather feature if the user supplies the TCD address. Example:

edma_transfer_t config;
edma_tcd_t tcd;
config.srcAddr = ..;
config.destAddr = ..;
...
EDMA_SetTransferConfig(DMA0, channel, &config, &stcd);

Note

If nextTcd is not NULL, it means scatter gather feature is enabled and DREQ bit is cleared in the previous transfer configuration, which is set in the eDMA_ResetChannel.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

  • config – Pointer to eDMA transfer configuration structure.

  • nextTcd – Point to TCD structure. It can be NULL if users do not want to enable scatter/gather feature.

void EDMA_SetMinorOffsetConfig(DMA_Type *base, uint32_t channel, const edma_minor_offset_config_t *config)

Configures the eDMA minor offset feature.

The minor offset means that the signed-extended value is added to the source address or destination address after each minor loop.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

  • config – A pointer to the minor offset configuration structure.

void EDMA_SetChannelPreemptionConfig(DMA_Type *base, uint32_t channel, const edma_channel_Preemption_config_t *config)

Configures the eDMA channel preemption feature.

This function configures the channel preemption attribute and the priority of the channel.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number

  • config – A pointer to the channel preemption configuration structure.

void EDMA_SetChannelLink(DMA_Type *base, uint32_t channel, edma_channel_link_type_t linkType, uint32_t linkedChannel)

Sets the channel link for the eDMA transfer.

This function configures either the minor link or the major link mode. The minor link means that the channel link is triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is exhausted.

Note

Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

  • linkType – A channel link type, which can be one of the following:

    • kEDMA_LinkNone

    • kEDMA_MinorLink

    • kEDMA_MajorLink

  • linkedChannel – The linked channel number.

void EDMA_SetBandWidth(DMA_Type *base, uint32_t channel, edma_bandwidth_t bandWidth)

Sets the bandwidth for the eDMA transfer.

Because the eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of each read/write access to control the bus request bandwidth seen by the crossbar switch.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

  • bandWidth – A bandwidth setting, which can be one of the following:

    • kEDMABandwidthStallNone

    • kEDMABandwidthStall4Cycle

    • kEDMABandwidthStall8Cycle

void EDMA_SetModulo(DMA_Type *base, uint32_t channel, edma_modulo_t srcModulo, edma_modulo_t destModulo)

Sets the source modulo and the destination modulo for the eDMA transfer.

This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides the ability to implement a circular data queue easily.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

  • srcModulo – A source modulo value.

  • destModulo – A destination modulo value.

static inline void EDMA_EnableAsyncRequest(DMA_Type *base, uint32_t channel, bool enable)

Enables an async request for the eDMA transfer.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

  • enable – The command to enable (true) or disable (false).

static inline void EDMA_EnableAutoStopRequest(DMA_Type *base, uint32_t channel, bool enable)

Enables an auto stop request for the eDMA transfer.

If enabling the auto stop request, the eDMA hardware automatically disables the hardware channel request.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

  • enable – The command to enable (true) or disable (false).

void EDMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask)

Enables the interrupt source for the eDMA transfer.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

  • mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.

void EDMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask)

Disables the interrupt source for the eDMA transfer.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

  • mask – The mask of the interrupt source to be set. Use the defined edma_interrupt_enable_t type.

void EDMA_SetMajorOffsetConfig(DMA_Type *base, uint32_t channel, int32_t sourceOffset, int32_t destOffset)

Configures the eDMA channel TCD major offset feature.

Adjustment value added to the source address at the completion of the major iteration count

Parameters:
  • base – eDMA peripheral base address.

  • channel – edma channel number.

  • sourceOffset – source address offset will be applied to source address after major loop done.

  • destOffset – destination address offset will be applied to source address after major loop done.

void EDMA_TcdReset(edma_tcd_t *tcd)

Sets all fields to default values for the TCD structure.

This function sets all fields for this TCD structure to default value.

Note

This function enables the auto stop request feature.

Parameters:
  • tcd – Pointer to the TCD structure.

void EDMA_TcdSetTransferConfig(edma_tcd_t *tcd, const edma_transfer_config_t *config, edma_tcd_t *nextTcd)

Configures the eDMA TCD transfer attribute.

The TCD is a transfer control descriptor. The content of the TCD is the same as the hardware TCD registers. The TCD is used in the scatter-gather mode. This function configures the TCD transfer attribute, including source address, destination address, transfer size, address offset, and so on. It also configures the scatter gather feature if the user supplies the next TCD address. Example:

edma_transfer_t config = {
...
}
edma_tcd_t tcd __aligned(32);
edma_tcd_t nextTcd __aligned(32);
EDMA_TcdSetTransferConfig(&tcd, &config, &nextTcd);

Note

TCD address should be 32 bytes aligned or it causes an eDMA error.

Note

If the nextTcd is not NULL, the scatter gather feature is enabled and DREQ bit is cleared in the previous transfer configuration, which is set in the EDMA_TcdReset.

Parameters:
  • tcd – Pointer to the TCD structure.

  • config – Pointer to eDMA transfer configuration structure.

  • nextTcd – Pointer to the next TCD structure. It can be NULL if users do not want to enable scatter/gather feature.

void EDMA_TcdSetMinorOffsetConfig(edma_tcd_t *tcd, const edma_minor_offset_config_t *config)

Configures the eDMA TCD minor offset feature.

A minor offset is a signed-extended value added to the source address or a destination address after each minor loop.

Parameters:
  • tcd – A point to the TCD structure.

  • config – A pointer to the minor offset configuration structure.

void EDMA_TcdSetChannelLink(edma_tcd_t *tcd, edma_channel_link_type_t linkType, uint32_t linkedChannel)

Sets the channel link for the eDMA TCD.

This function configures either a minor link or a major link. The minor link means the channel link is triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is exhausted.

Note

Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.

Parameters:
  • tcd – Point to the TCD structure.

  • linkType – Channel link type, it can be one of:

    • kEDMA_LinkNone

    • kEDMA_MinorLink

    • kEDMA_MajorLink

  • linkedChannel – The linked channel number.

static inline void EDMA_TcdSetBandWidth(edma_tcd_t *tcd, edma_bandwidth_t bandWidth)

Sets the bandwidth for the eDMA TCD.

Because the eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of each read/write access to control the bus request bandwidth seen by the crossbar switch.

Parameters:
  • tcd – A pointer to the TCD structure.

  • bandWidth – A bandwidth setting, which can be one of the following:

    • kEDMABandwidthStallNone

    • kEDMABandwidthStall4Cycle

    • kEDMABandwidthStall8Cycle

void EDMA_TcdSetModulo(edma_tcd_t *tcd, edma_modulo_t srcModulo, edma_modulo_t destModulo)

Sets the source modulo and the destination modulo for the eDMA TCD.

This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides the ability to implement a circular data queue easily.

Parameters:
  • tcd – A pointer to the TCD structure.

  • srcModulo – A source modulo value.

  • destModulo – A destination modulo value.

static inline void EDMA_TcdEnableAutoStopRequest(edma_tcd_t *tcd, bool enable)

Sets the auto stop request for the eDMA TCD.

If enabling the auto stop request, the eDMA hardware automatically disables the hardware channel request.

Parameters:
  • tcd – A pointer to the TCD structure.

  • enable – The command to enable (true) or disable (false).

void EDMA_TcdEnableInterrupts(edma_tcd_t *tcd, uint32_t mask)

Enables the interrupt source for the eDMA TCD.

Parameters:
  • tcd – Point to the TCD structure.

  • mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.

void EDMA_TcdDisableInterrupts(edma_tcd_t *tcd, uint32_t mask)

Disables the interrupt source for the eDMA TCD.

Parameters:
  • tcd – Point to the TCD structure.

  • mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.

void EDMA_TcdSetMajorOffsetConfig(edma_tcd_t *tcd, int32_t sourceOffset, int32_t destOffset)

Configures the eDMA TCD major offset feature.

Adjustment value added to the source address at the completion of the major iteration count

Parameters:
  • tcd – A point to the TCD structure.

  • sourceOffset – source address offset wiil be applied to source address after major loop done.

  • destOffset – destination address offset will be applied to source address after major loop done.

static inline void EDMA_EnableChannelRequest(DMA_Type *base, uint32_t channel)

Enables the eDMA hardware channel request.

This function enables the hardware channel request.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

static inline void EDMA_DisableChannelRequest(DMA_Type *base, uint32_t channel)

Disables the eDMA hardware channel request.

This function disables the hardware channel request.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

static inline void EDMA_TriggerChannelStart(DMA_Type *base, uint32_t channel)

Starts the eDMA transfer by using the software trigger.

This function starts a minor loop transfer.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

uint32_t EDMA_GetRemainingMajorLoopCount(DMA_Type *base, uint32_t channel)

Gets the remaining major loop count from the eDMA current channel TCD.

This function checks the TCD (Task Control Descriptor) status for a specified eDMA channel and returns the number of major loop count that has not finished.

Note

1. This function can only be used to get unfinished major loop count of transfer without the next TCD, or it might be inaccuracy.

  1. The unfinished/remaining transfer bytes cannot be obtained directly from registers while the channel is running. Because to calculate the remaining bytes, the initial NBYTES configured in DMA_TCDn_NBYTES_MLNO register is needed while the eDMA IP does not support getting it while a channel is active. In another word, the NBYTES value reading is always the actual (decrementing) NBYTES value the dma_engine is working with while a channel is running. Consequently, to get the remaining transfer bytes, a software-saved initial value of NBYTES (for example copied before enabling the channel) is needed. The formula to calculate it is shown below: RemainingBytes = RemainingMajorLoopCount * NBYTES(initially configured)

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

Returns:

Major loop count which has not been transferred yet for the current TCD.

static inline uint32_t EDMA_GetErrorStatusFlags(DMA_Type *base)

Gets the eDMA channel error status flags.

Parameters:
  • base – eDMA peripheral base address.

Returns:

The mask of error status flags. Users need to use the _edma_error_status_flags type to decode the return variables.

uint32_t EDMA_GetChannelStatusFlags(DMA_Type *base, uint32_t channel)

Gets the eDMA channel status flags.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

Returns:

The mask of channel status flags. Users need to use the _edma_channel_status_flags type to decode the return variables.

void EDMA_ClearChannelStatusFlags(DMA_Type *base, uint32_t channel, uint32_t mask)

Clears the eDMA channel status flags.

Parameters:
  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

  • mask – The mask of channel status to be cleared. Users need to use the defined _edma_channel_status_flags type.

void EDMA_CreateHandle(edma_handle_t *handle, DMA_Type *base, uint32_t channel)

Creates the eDMA handle.

This function is called if using the transactional API for eDMA. This function initializes the internal state of the eDMA handle.

Parameters:
  • handle – eDMA handle pointer. The eDMA handle stores callback function and parameters.

  • base – eDMA peripheral base address.

  • channel – eDMA channel number.

void EDMA_InstallTCDMemory(edma_handle_t *handle, edma_tcd_t *tcdPool, uint32_t tcdSize)

Installs the TCDs memory pool into the eDMA handle.

This function is called after the EDMA_CreateHandle to use scatter/gather feature. This function shall only be used while users need to use scatter gather mode. Scatter gather mode enables EDMA to load a new transfer control block (tcd) in hardware, and automatically reconfigure that DMA channel for a new transfer. Users need to prepare tcd memory and also configure tcds using interface EDMA_SubmitTransfer.

Parameters:
  • handle – eDMA handle pointer.

  • tcdPool – A memory pool to store TCDs. It must be 32 bytes aligned.

  • tcdSize – The number of TCD slots.

void EDMA_SetCallback(edma_handle_t *handle, edma_callback callback, void *userData)

Installs a callback function for the eDMA transfer.

This callback is called in the eDMA IRQ handler. Use the callback to do something after the current major loop transfer completes. This function will be called every time one tcd finished transfer.

Parameters:
  • handle – eDMA handle pointer.

  • callback – eDMA callback function pointer.

  • userData – A parameter for the callback function.

void EDMA_PrepareTransferConfig(edma_transfer_config_t *config, void *srcAddr, uint32_t srcWidth, int16_t srcOffset, void *destAddr, uint32_t destWidth, int16_t destOffset, uint32_t bytesEachRequest, uint32_t transferBytes)

Prepares the eDMA transfer structure configurations.

This function prepares the transfer configuration structure according to the user input.

Note

The data address and the data width must be consistent. For example, if the SRC is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error (SAE).

Parameters:
  • config – The user configuration structure of type edma_transfer_t.

  • srcAddr – eDMA transfer source address.

  • srcWidth – eDMA transfer source address width(bytes).

  • srcOffset – source address offset.

  • destAddr – eDMA transfer destination address.

  • destWidth – eDMA transfer destination address width(bytes).

  • destOffset – destination address offset.

  • bytesEachRequest – eDMA transfer bytes per channel request.

  • transferBytes – eDMA transfer bytes to be transferred.

void EDMA_PrepareTransfer(edma_transfer_config_t *config, void *srcAddr, uint32_t srcWidth, void *destAddr, uint32_t destWidth, uint32_t bytesEachRequest, uint32_t transferBytes, edma_transfer_type_t transferType)

Prepares the eDMA transfer structure.

This function prepares the transfer configuration structure according to the user input.

Note

The data address and the data width must be consistent. For example, if the SRC is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error (SAE).

Parameters:
  • config – The user configuration structure of type edma_transfer_t.

  • srcAddr – eDMA transfer source address.

  • srcWidth – eDMA transfer source address width(bytes).

  • destAddr – eDMA transfer destination address.

  • destWidth – eDMA transfer destination address width(bytes).

  • bytesEachRequest – eDMA transfer bytes per channel request.

  • transferBytes – eDMA transfer bytes to be transferred.

  • transferType – eDMA transfer type.

status_t EDMA_SubmitTransfer(edma_handle_t *handle, const edma_transfer_config_t *config)

Submits the eDMA transfer request.

This function submits the eDMA transfer request according to the transfer configuration structure. In scatter gather mode, call this function will add a configured tcd to the circular list of tcd pool. The tcd pools is setup by call function EDMA_InstallTCDMemory before.

Parameters:
  • handle – eDMA handle pointer.

  • config – Pointer to eDMA transfer configuration structure.

Return values:
  • kStatus_EDMA_Success – It means submit transfer request succeed.

  • kStatus_EDMA_QueueFull – It means TCD queue is full. Submit transfer request is not allowed.

  • kStatus_EDMA_Busy – It means the given channel is busy, need to submit request later.

void EDMA_StartTransfer(edma_handle_t *handle)

eDMA starts transfer.

This function enables the channel request. Users can call this function after submitting the transfer request or before submitting the transfer request.

Parameters:
  • handle – eDMA handle pointer.

void EDMA_StopTransfer(edma_handle_t *handle)

eDMA stops transfer.

This function disables the channel request to pause the transfer. Users can call EDMA_StartTransfer() again to resume the transfer.

Parameters:
  • handle – eDMA handle pointer.

void EDMA_AbortTransfer(edma_handle_t *handle)

eDMA aborts transfer.

This function disables the channel request and clear transfer status bits. Users can submit another transfer after calling this API.

Parameters:
  • handle – DMA handle pointer.

static inline uint32_t EDMA_GetUnusedTCDNumber(edma_handle_t *handle)

Get unused TCD slot number.

This function gets current tcd index which is run. If the TCD pool pointer is NULL, it will return 0.

Parameters:
  • handle – DMA handle pointer.

Returns:

The unused tcd slot number.

static inline uint32_t EDMA_GetNextTCDAddress(edma_handle_t *handle)

Get the next tcd address.

This function gets the next tcd address. If this is last TCD, return 0.

Parameters:
  • handle – DMA handle pointer.

Returns:

The next TCD address.

void EDMA_HandleIRQ(edma_handle_t *handle)

eDMA IRQ handler for the current major loop transfer completion.

This function clears the channel major interrupt flag and calls the callback function if it is not NULL.

Note: For the case using TCD queue, when the major iteration count is exhausted, additional operations are performed. These include the final address adjustments and reloading of the BITER field into the CITER. Assertion of an optional interrupt request also occurs at this time, as does a possible fetch of a new TCD from memory using the scatter/gather address pointer included in the descriptor (if scatter/gather is enabled).

For instance, when the time interrupt of TCD[0] happens, the TCD[1] has already been loaded into the eDMA engine. As sga and sga_index are calculated based on the DLAST_SGA bitfield lies in the TCD_CSR register, the sga_index in this case should be 2 (DLAST_SGA of TCD[1] stores the address of TCD[2]). Thus, the “tcdUsed” updated should be (tcdUsed - 2U) which indicates the number of TCDs can be loaded in the memory pool (because TCD[0] and TCD[1] have been loaded into the eDMA engine at this point already.).

For the last two continuous ISRs in a scatter/gather process, they both load the last TCD (The last ISR does not load a new TCD) from the memory pool to the eDMA engine when major loop completes. Therefore, ensure that the header and tcdUsed updated are identical for them. tcdUsed are both 0 in this case as no TCD to be loaded.

See the “eDMA basic data flow” in the eDMA Functional description section of the Reference Manual for further details.

Parameters:
  • handle – eDMA handle pointer.

FSL_EDMA_DRIVER_VERSION

eDMA driver version

Version 2.4.4.

enum _edma_transfer_size

eDMA transfer configuration

Values:

enumerator kEDMA_TransferSize1Bytes

Source/Destination data transfer size is 1 byte every time

enumerator kEDMA_TransferSize2Bytes

Source/Destination data transfer size is 2 bytes every time

enumerator kEDMA_TransferSize4Bytes

Source/Destination data transfer size is 4 bytes every time

enumerator kEDMA_TransferSize8Bytes

Source/Destination data transfer size is 8 bytes every time

enumerator kEDMA_TransferSize16Bytes

Source/Destination data transfer size is 16 bytes every time

enumerator kEDMA_TransferSize32Bytes

Source/Destination data transfer size is 32 bytes every time

enum _edma_modulo

eDMA modulo configuration

Values:

enumerator kEDMA_ModuloDisable

Disable modulo

enumerator kEDMA_Modulo2bytes

Circular buffer size is 2 bytes.

enumerator kEDMA_Modulo4bytes

Circular buffer size is 4 bytes.

enumerator kEDMA_Modulo8bytes

Circular buffer size is 8 bytes.

enumerator kEDMA_Modulo16bytes

Circular buffer size is 16 bytes.

enumerator kEDMA_Modulo32bytes

Circular buffer size is 32 bytes.

enumerator kEDMA_Modulo64bytes

Circular buffer size is 64 bytes.

enumerator kEDMA_Modulo128bytes

Circular buffer size is 128 bytes.

enumerator kEDMA_Modulo256bytes

Circular buffer size is 256 bytes.

enumerator kEDMA_Modulo512bytes

Circular buffer size is 512 bytes.

enumerator kEDMA_Modulo1Kbytes

Circular buffer size is 1 K bytes.

enumerator kEDMA_Modulo2Kbytes

Circular buffer size is 2 K bytes.

enumerator kEDMA_Modulo4Kbytes

Circular buffer size is 4 K bytes.

enumerator kEDMA_Modulo8Kbytes

Circular buffer size is 8 K bytes.

enumerator kEDMA_Modulo16Kbytes

Circular buffer size is 16 K bytes.

enumerator kEDMA_Modulo32Kbytes

Circular buffer size is 32 K bytes.

enumerator kEDMA_Modulo64Kbytes

Circular buffer size is 64 K bytes.

enumerator kEDMA_Modulo128Kbytes

Circular buffer size is 128 K bytes.

enumerator kEDMA_Modulo256Kbytes

Circular buffer size is 256 K bytes.

enumerator kEDMA_Modulo512Kbytes

Circular buffer size is 512 K bytes.

enumerator kEDMA_Modulo1Mbytes

Circular buffer size is 1 M bytes.

enumerator kEDMA_Modulo2Mbytes

Circular buffer size is 2 M bytes.

enumerator kEDMA_Modulo4Mbytes

Circular buffer size is 4 M bytes.

enumerator kEDMA_Modulo8Mbytes

Circular buffer size is 8 M bytes.

enumerator kEDMA_Modulo16Mbytes

Circular buffer size is 16 M bytes.

enumerator kEDMA_Modulo32Mbytes

Circular buffer size is 32 M bytes.

enumerator kEDMA_Modulo64Mbytes

Circular buffer size is 64 M bytes.

enumerator kEDMA_Modulo128Mbytes

Circular buffer size is 128 M bytes.

enumerator kEDMA_Modulo256Mbytes

Circular buffer size is 256 M bytes.

enumerator kEDMA_Modulo512Mbytes

Circular buffer size is 512 M bytes.

enumerator kEDMA_Modulo1Gbytes

Circular buffer size is 1 G bytes.

enumerator kEDMA_Modulo2Gbytes

Circular buffer size is 2 G bytes.

enum _edma_bandwidth

Bandwidth control.

Values:

enumerator kEDMA_BandwidthStallNone

No eDMA engine stalls.

enumerator kEDMA_BandwidthStall4Cycle

eDMA engine stalls for 4 cycles after each read/write.

enumerator kEDMA_BandwidthStall8Cycle

eDMA engine stalls for 8 cycles after each read/write.

enum _edma_channel_link_type

Channel link type.

Values:

enumerator kEDMA_LinkNone

No channel link

enumerator kEDMA_MinorLink

Channel link after each minor loop

enumerator kEDMA_MajorLink

Channel link while major loop count exhausted

_edma_channel_status_flags eDMA channel status flags.

Values:

enumerator kEDMA_DoneFlag

DONE flag, set while transfer finished, CITER value exhausted

enumerator kEDMA_ErrorFlag

eDMA error flag, an error occurred in a transfer

enumerator kEDMA_InterruptFlag

eDMA interrupt flag, set while an interrupt occurred of this channel

_edma_error_status_flags eDMA channel error status flags.

Values:

enumerator kEDMA_DestinationBusErrorFlag

Bus error on destination address

enumerator kEDMA_SourceBusErrorFlag

Bus error on the source address

enumerator kEDMA_ScatterGatherErrorFlag

Error on the Scatter/Gather address, not 32byte aligned.

enumerator kEDMA_NbytesErrorFlag

NBYTES/CITER configuration error

enumerator kEDMA_DestinationOffsetErrorFlag

Destination offset not aligned with destination size

enumerator kEDMA_DestinationAddressErrorFlag

Destination address not aligned with destination size

enumerator kEDMA_SourceOffsetErrorFlag

Source offset not aligned with source size

enumerator kEDMA_SourceAddressErrorFlag

Source address not aligned with source size

enumerator kEDMA_ErrorChannelFlag

Error channel number of the cancelled channel number

enumerator kEDMA_ChannelPriorityErrorFlag

Channel priority is not unique.

enumerator kEDMA_TransferCanceledFlag

Transfer cancelled

enumerator kEDMA_ValidFlag

No error occurred, this bit is 0. Otherwise, it is 1.

enum _edma_interrupt_enable

eDMA interrupt source

Values:

enumerator kEDMA_ErrorInterruptEnable

Enable interrupt while channel error occurs.

enumerator kEDMA_MajorInterruptEnable

Enable interrupt while major count exhausted.

enumerator kEDMA_HalfInterruptEnable

Enable interrupt while major count to half value.

enum _edma_transfer_type

eDMA transfer type

Values:

enumerator kEDMA_MemoryToMemory

Transfer from memory to memory

enumerator kEDMA_PeripheralToMemory

Transfer from peripheral to memory

enumerator kEDMA_MemoryToPeripheral

Transfer from memory to peripheral

enumerator kEDMA_PeripheralToPeripheral

Transfer from Peripheral to peripheral

_edma_transfer_status eDMA transfer status

Values:

enumerator kStatus_EDMA_QueueFull

TCD queue is full.

enumerator kStatus_EDMA_Busy

Channel is busy and can’t handle the transfer request.

typedef enum _edma_transfer_size edma_transfer_size_t

eDMA transfer configuration

typedef enum _edma_modulo edma_modulo_t

eDMA modulo configuration

typedef enum _edma_bandwidth edma_bandwidth_t

Bandwidth control.

typedef enum _edma_channel_link_type edma_channel_link_type_t

Channel link type.

typedef enum _edma_interrupt_enable edma_interrupt_enable_t

eDMA interrupt source

typedef enum _edma_transfer_type edma_transfer_type_t

eDMA transfer type

typedef struct _edma_config edma_config_t

eDMA global configuration structure.

typedef struct _edma_transfer_config edma_transfer_config_t

eDMA transfer configuration

This structure configures the source/destination transfer attribute.

typedef struct _edma_channel_Preemption_config edma_channel_Preemption_config_t

eDMA channel priority configuration

typedef struct _edma_minor_offset_config edma_minor_offset_config_t

eDMA minor offset configuration

typedef struct _edma_tcd edma_tcd_t

eDMA TCD.

This structure is same as TCD register which is described in reference manual, and is used to configure the scatter/gather feature as a next hardware TCD.

typedef void (*edma_callback)(struct _edma_handle *handle, void *userData, bool transferDone, uint32_t tcds)

Define callback function for eDMA.

This callback function is called in the EDMA interrupt handle. In normal mode, run into callback function means the transfer users need is done. In scatter gather mode, run into callback function means a transfer control block (tcd) is finished. Not all transfer finished, users can get the finished tcd numbers using interface EDMA_GetUnusedTCDNumber.

Param handle:

EDMA handle pointer, users shall not touch the values inside.

Param userData:

The callback user parameter pointer. Users can use this parameter to involve things users need to change in EDMA callback function.

Param transferDone:

If the current loaded transfer done. In normal mode it means if all transfer done. In scatter gather mode, this parameter shows is the current transfer block in EDMA register is done. As the load of core is different, it will be different if the new tcd loaded into EDMA registers while this callback called. If true, it always means new tcd still not loaded into registers, while false means new tcd already loaded into registers.

Param tcds:

How many tcds are done from the last callback. This parameter only used in scatter gather mode. It tells user how many tcds are finished between the last callback and this.

typedef struct _edma_handle edma_handle_t

eDMA transfer handle structure

DMA_DCHPRI_INDEX(channel)

Compute the offset unit from DCHPRI3.

struct _edma_config
#include <fsl_edma.h>

eDMA global configuration structure.

Public Members

bool enableContinuousLinkMode

Enable (true) continuous link mode. Upon minor loop completion, the channel activates again if that channel has a minor loop channel link enabled and the link channel is itself.

bool enableHaltOnError

Enable (true) transfer halt on error. Any error causes the HALT bit to set. Subsequently, all service requests are ignored until the HALT bit is cleared.

bool enableRoundRobinArbitration

Enable (true) round robin channel arbitration method or fixed priority arbitration is used for channel selection

bool enableDebugMode

Enable(true) eDMA debug mode. When in debug mode, the eDMA stalls the start of a new channel. Executing channels are allowed to complete.

struct _edma_transfer_config
#include <fsl_edma.h>

eDMA transfer configuration

This structure configures the source/destination transfer attribute.

Public Members

uint32_t srcAddr

Source data address.

uint32_t destAddr

Destination data address.

edma_transfer_size_t srcTransferSize

Source data transfer size.

edma_transfer_size_t destTransferSize

Destination data transfer size.

int16_t srcOffset

Sign-extended offset applied to the current source address to form the next-state value as each source read is completed.

int16_t destOffset

Sign-extended offset applied to the current destination address to form the next-state value as each destination write is completed.

uint32_t minorLoopBytes

Bytes to transfer in a minor loop

uint32_t majorLoopCounts

Major loop iteration count.

struct _edma_channel_Preemption_config
#include <fsl_edma.h>

eDMA channel priority configuration

Public Members

bool enableChannelPreemption

If true: a channel can be suspended by other channel with higher priority

bool enablePreemptAbility

If true: a channel can suspend other channel with low priority

uint8_t channelPriority

Channel priority

struct _edma_minor_offset_config
#include <fsl_edma.h>

eDMA minor offset configuration

Public Members

bool enableSrcMinorOffset

Enable(true) or Disable(false) source minor loop offset.

bool enableDestMinorOffset

Enable(true) or Disable(false) destination minor loop offset.

uint32_t minorOffset

Offset for a minor loop mapping.

struct _edma_tcd
#include <fsl_edma.h>

eDMA TCD.

This structure is same as TCD register which is described in reference manual, and is used to configure the scatter/gather feature as a next hardware TCD.

Public Members

__IO uint32_t SADDR

SADDR register, used to save source address

__IO uint16_t SOFF

SOFF register, save offset bytes every transfer

__IO uint16_t ATTR

ATTR register, source/destination transfer size and modulo

__IO uint32_t NBYTES

Nbytes register, minor loop length in bytes

__IO uint32_t SLAST

SLAST register

__IO uint32_t DADDR

DADDR register, used for destination address

__IO uint16_t DOFF

DOFF register, used for destination offset

__IO uint16_t CITER

CITER register, current minor loop numbers, for unfinished minor loop.

__IO uint32_t DLAST_SGA

DLASTSGA register, next tcd address used in scatter-gather mode

__IO uint16_t CSR

CSR register, for TCD control status

__IO uint16_t BITER

BITER register, begin minor loop count.

struct _edma_handle
#include <fsl_edma.h>

eDMA transfer handle structure

Public Members

edma_callback callback

Callback function for major count exhausted.

void *userData

Callback function parameter.

DMA_Type *base

eDMA peripheral base address.

edma_tcd_t *tcdPool

Pointer to memory stored TCDs.

uint8_t channel

eDMA channel number.

volatile int8_t header

The first TCD index. Should point to the next TCD to be loaded into the eDMA engine.

volatile int8_t tail

The last TCD index. Should point to the next TCD to be stored into the memory pool.

volatile int8_t tcdUsed

The number of used TCD slots. Should reflect the number of TCDs can be used/loaded in the memory.

volatile int8_t tcdSize

The total number of TCD slots in the queue.

uint8_t flags

The status of the current channel.

EWM: External Watchdog Monitor Driver

void EWM_Init(EWM_Type *base, const ewm_config_t *config)

Initializes the EWM peripheral.

This function is used to initialize the EWM. After calling, the EWM runs immediately according to the configuration. Note that, except for the interrupt enable control bit, other control bits and registers are write once after a CPU reset. Modifying them more than once generates a bus transfer error.

This is an example.

ewm_config_t config;
EWM_GetDefaultConfig(&config);
config.compareHighValue = 0xAAU;
EWM_Init(ewm_base,&config);

Parameters:
  • base – EWM peripheral base address

  • config – The configuration of the EWM

void EWM_Deinit(EWM_Type *base)

Deinitializes the EWM peripheral.

This function is used to shut down the EWM.

Parameters:
  • base – EWM peripheral base address

void EWM_GetDefaultConfig(ewm_config_t *config)

Initializes the EWM configuration structure.

This function initializes the EWM configuration structure to default values. The default values are as follows.

ewmConfig->enableEwm = true;
ewmConfig->enableEwmInput = false;
ewmConfig->setInputAssertLogic = false;
ewmConfig->enableInterrupt = false;
ewmConfig->ewm_lpo_clock_source_t = kEWM_LpoClockSource0;
ewmConfig->prescaler = 0;
ewmConfig->compareLowValue = 0;
ewmConfig->compareHighValue = 0xFEU;

See also

ewm_config_t

Parameters:
  • config – Pointer to the EWM configuration structure.

static inline void EWM_EnableInterrupts(EWM_Type *base, uint32_t mask)

Enables the EWM interrupt.

This function enables the EWM interrupt.

Parameters:
  • base – EWM peripheral base address

  • mask – The interrupts to enable The parameter can be combination of the following source if defined

    • kEWM_InterruptEnable

static inline void EWM_DisableInterrupts(EWM_Type *base, uint32_t mask)

Disables the EWM interrupt.

This function enables the EWM interrupt.

Parameters:
  • base – EWM peripheral base address

  • mask – The interrupts to disable The parameter can be combination of the following source if defined

    • kEWM_InterruptEnable

static inline uint32_t EWM_GetStatusFlags(EWM_Type *base)

Gets all status flags.

This function gets all status flags.

This is an example for getting the running flag.

uint32_t status;
status = EWM_GetStatusFlags(ewm_base) & kEWM_RunningFlag;

See also

_ewm_status_flags_t

  • True: a related status flag has been set.

  • False: a related status flag is not set.

Parameters:
  • base – EWM peripheral base address

Returns:

State of the status flag: asserted (true) or not-asserted (false).

void EWM_Refresh(EWM_Type *base)

Services the EWM.

This function resets the EWM counter to zero.

Parameters:
  • base – EWM peripheral base address

FSL_EWM_DRIVER_VERSION

EWM driver version 2.0.3.

enum _ewm_lpo_clock_source

Describes EWM clock source.

Values:

enumerator kEWM_LpoClockSource0

EWM clock sourced from lpo_clk[0]

enumerator kEWM_LpoClockSource1

EWM clock sourced from lpo_clk[1]

enumerator kEWM_LpoClockSource2

EWM clock sourced from lpo_clk[2]

enumerator kEWM_LpoClockSource3

EWM clock sourced from lpo_clk[3]

enum _ewm_interrupt_enable_t

EWM interrupt configuration structure with default settings all disabled.

This structure contains the settings for all of EWM interrupt configurations.

Values:

enumerator kEWM_InterruptEnable

Enable the EWM to generate an interrupt

enum _ewm_status_flags_t

EWM status flags.

This structure contains the constants for the EWM status flags for use in the EWM functions.

Values:

enumerator kEWM_RunningFlag

Running flag, set when EWM is enabled

typedef enum _ewm_lpo_clock_source ewm_lpo_clock_source_t

Describes EWM clock source.

typedef struct _ewm_config ewm_config_t

Data structure for EWM configuration.

This structure is used to configure the EWM.

struct _ewm_config
#include <fsl_ewm.h>

Data structure for EWM configuration.

This structure is used to configure the EWM.

Public Members

bool enableEwm

Enable EWM module

bool enableEwmInput

Enable EWM_in input

bool setInputAssertLogic

EWM_in signal assertion state

bool enableInterrupt

Enable EWM interrupt

ewm_lpo_clock_source_t clockSource

Clock source select

uint8_t prescaler

Clock prescaler value

uint8_t compareLowValue

Compare low-register value

uint8_t compareHighValue

Compare high-register value

FGPIO Driver

C90TFS Flash Driver

FlexBus: External Bus Interface Driver

void FLEXBUS_Init(FB_Type *base, const flexbus_config_t *config)

Initializes and configures the FlexBus module.

This function enables the clock gate for FlexBus module. Only chip 0 is validated and set to known values. Other chips are disabled. Note that in this function, certain parameters, depending on external memories, must be set before using the FLEXBUS_Init() function. This example shows how to set up the uart_state_t and the flexbus_config_t parameters and how to call the FLEXBUS_Init function by passing in these parameters.

flexbus_config_t flexbusConfig;
FLEXBUS_GetDefaultConfig(&flexbusConfig);
flexbusConfig.waitStates            = 2U;
flexbusConfig.chipBaseAddress       = 0x60000000U;
flexbusConfig.chipBaseAddressMask   = 7U;
FLEXBUS_Init(FB, &flexbusConfig);

Parameters:
  • base – FlexBus peripheral address.

  • config – Pointer to the configuration structure

void FLEXBUS_Deinit(FB_Type *base)

De-initializes a FlexBus instance.

This function disables the clock gate of the FlexBus module clock.

Parameters:
  • base – FlexBus peripheral address.

void FLEXBUS_GetDefaultConfig(flexbus_config_t *config)

Initializes the FlexBus configuration structure.

This function initializes the FlexBus configuration structure to default value. The default values are.

fbConfig->chip                   = 0;
fbConfig->writeProtect           = 0;
fbConfig->burstWrite             = 0;
fbConfig->burstRead              = 0;
fbConfig->byteEnableMode         = 0;
fbConfig->autoAcknowledge        = true;
fbConfig->extendTransferAddress  = 0;
fbConfig->secondaryWaitStates    = 0;
fbConfig->byteLaneShift          = kFLEXBUS_NotShifted;
fbConfig->writeAddressHold       = kFLEXBUS_Hold1Cycle;
fbConfig->readAddressHold        = kFLEXBUS_Hold1Or0Cycles;
fbConfig->addressSetup           = kFLEXBUS_FirstRisingEdge;
fbConfig->portSize               = kFLEXBUS_1Byte;
fbConfig->group1MultiplexControl = kFLEXBUS_MultiplexGroup1_FB_ALE;
fbConfig->group2MultiplexControl = kFLEXBUS_MultiplexGroup2_FB_CS4 ;
fbConfig->group3MultiplexControl = kFLEXBUS_MultiplexGroup3_FB_CS5;
fbConfig->group4MultiplexControl = kFLEXBUS_MultiplexGroup4_FB_TBST;
fbConfig->group5MultiplexControl = kFLEXBUS_MultiplexGroup5_FB_TA;

See also

FLEXBUS_Init

Parameters:
  • config – Pointer to the initialization structure.

FSL_FLEXBUS_DRIVER_VERSION

Version 2.1.1.

enum _flexbus_port_size

Defines port size for FlexBus peripheral.

Values:

enumerator kFLEXBUS_4Bytes

32-bit port size

enumerator kFLEXBUS_1Byte

8-bit port size

enumerator kFLEXBUS_2Bytes

16-bit port size

enum _flexbus_write_address_hold

Defines number of cycles to hold address and attributes for FlexBus peripheral.

Values:

enumerator kFLEXBUS_Hold1Cycle

Hold address and attributes one cycles after FB_CSn negates on writes

enumerator kFLEXBUS_Hold2Cycles

Hold address and attributes two cycles after FB_CSn negates on writes

enumerator kFLEXBUS_Hold3Cycles

Hold address and attributes three cycles after FB_CSn negates on writes

enumerator kFLEXBUS_Hold4Cycles

Hold address and attributes four cycles after FB_CSn negates on writes

enum _flexbus_read_address_hold

Defines number of cycles to hold address and attributes for FlexBus peripheral.

Values:

enumerator kFLEXBUS_Hold1Or0Cycles

Hold address and attributes 1 or 0 cycles on reads

enumerator kFLEXBUS_Hold2Or1Cycles

Hold address and attributes 2 or 1 cycles on reads

enumerator kFLEXBUS_Hold3Or2Cycle

Hold address and attributes 3 or 2 cycles on reads

enumerator kFLEXBUS_Hold4Or3Cycle

Hold address and attributes 4 or 3 cycles on reads

enum _flexbus_address_setup

Address setup for FlexBus peripheral.

Values:

enumerator kFLEXBUS_FirstRisingEdge

Assert FB_CSn on first rising clock edge after address is asserted

enumerator kFLEXBUS_SecondRisingEdge

Assert FB_CSn on second rising clock edge after address is asserted

enumerator kFLEXBUS_ThirdRisingEdge

Assert FB_CSn on third rising clock edge after address is asserted

enumerator kFLEXBUS_FourthRisingEdge

Assert FB_CSn on fourth rising clock edge after address is asserted

enum _flexbus_bytelane_shift

Defines byte-lane shift for FlexBus peripheral.

Values:

enumerator kFLEXBUS_NotShifted

Not shifted. Data is left-justified on FB_AD

enumerator kFLEXBUS_Shifted

Shifted. Data is right justified on FB_AD

enum _flexbus_multiplex_group1_signal

Defines multiplex group1 valid signals.

Values:

enumerator kFLEXBUS_MultiplexGroup1_FB_ALE

FB_ALE

enumerator kFLEXBUS_MultiplexGroup1_FB_CS1

FB_CS1

enumerator kFLEXBUS_MultiplexGroup1_FB_TS

FB_TS

enum _flexbus_multiplex_group2_signal

Defines multiplex group2 valid signals.

Values:

enumerator kFLEXBUS_MultiplexGroup2_FB_CS4

FB_CS4

enumerator kFLEXBUS_MultiplexGroup2_FB_TSIZ0

FB_TSIZ0

enumerator kFLEXBUS_MultiplexGroup2_FB_BE_31_24

FB_BE_31_24

enum _flexbus_multiplex_group3_signal

Defines multiplex group3 valid signals.

Values:

enumerator kFLEXBUS_MultiplexGroup3_FB_CS5

FB_CS5

enumerator kFLEXBUS_MultiplexGroup3_FB_TSIZ1

FB_TSIZ1

enumerator kFLEXBUS_MultiplexGroup3_FB_BE_23_16

FB_BE_23_16

enum _flexbus_multiplex_group4_signal

Defines multiplex group4 valid signals.

Values:

enumerator kFLEXBUS_MultiplexGroup4_FB_TBST

FB_TBST

enumerator kFLEXBUS_MultiplexGroup4_FB_CS2

FB_CS2

enumerator kFLEXBUS_MultiplexGroup4_FB_BE_15_8

FB_BE_15_8

enum _flexbus_multiplex_group5_signal

Defines multiplex group5 valid signals.

Values:

enumerator kFLEXBUS_MultiplexGroup5_FB_TA

FB_TA

enumerator kFLEXBUS_MultiplexGroup5_FB_CS3

FB_CS3

enumerator kFLEXBUS_MultiplexGroup5_FB_BE_7_0

FB_BE_7_0

typedef enum _flexbus_port_size flexbus_port_size_t

Defines port size for FlexBus peripheral.

typedef enum _flexbus_write_address_hold flexbus_write_address_hold_t

Defines number of cycles to hold address and attributes for FlexBus peripheral.

typedef enum _flexbus_read_address_hold flexbus_read_address_hold_t

Defines number of cycles to hold address and attributes for FlexBus peripheral.

typedef enum _flexbus_address_setup flexbus_address_setup_t

Address setup for FlexBus peripheral.

typedef enum _flexbus_bytelane_shift flexbus_bytelane_shift_t

Defines byte-lane shift for FlexBus peripheral.

typedef enum _flexbus_multiplex_group1_signal flexbus_multiplex_group1_t

Defines multiplex group1 valid signals.

typedef enum _flexbus_multiplex_group2_signal flexbus_multiplex_group2_t

Defines multiplex group2 valid signals.

typedef enum _flexbus_multiplex_group3_signal flexbus_multiplex_group3_t

Defines multiplex group3 valid signals.

typedef enum _flexbus_multiplex_group4_signal flexbus_multiplex_group4_t

Defines multiplex group4 valid signals.

typedef enum _flexbus_multiplex_group5_signal flexbus_multiplex_group5_t

Defines multiplex group5 valid signals.

typedef struct _flexbus_config flexbus_config_t

Configuration structure that the user needs to set.

struct _flexbus_config
#include <fsl_flexbus.h>

Configuration structure that the user needs to set.

Public Members

uint8_t chip

Chip FlexBus for validation

uint8_t waitStates

Value of wait states

uint8_t secondaryWaitStates

Value of secondary wait states

uint32_t chipBaseAddress

Chip base address for using FlexBus

uint32_t chipBaseAddressMask

Chip base address mask

bool writeProtect

Write protected

bool burstWrite

Burst-Write enable

bool burstRead

Burst-Read enable

bool byteEnableMode

Byte-enable mode support

bool autoAcknowledge

Auto acknowledge setting

bool extendTransferAddress

Extend transfer start/extend address latch enable

bool secondaryWaitStatesEnable

Enable secondary wait states

flexbus_port_size_t portSize

Port size of transfer

flexbus_bytelane_shift_t byteLaneShift

Byte-lane shift enable

flexbus_write_address_hold_t writeAddressHold

Write address hold or deselect option

flexbus_read_address_hold_t readAddressHold

Read address hold or deselect option

flexbus_address_setup_t addressSetup

Address setup setting

flexbus_multiplex_group1_t group1MultiplexControl

FlexBus Signal Group 1 Multiplex control

flexbus_multiplex_group2_t group2MultiplexControl

FlexBus Signal Group 2 Multiplex control

flexbus_multiplex_group3_t group3MultiplexControl

FlexBus Signal Group 3 Multiplex control

flexbus_multiplex_group4_t group4MultiplexControl

FlexBus Signal Group 4 Multiplex control

flexbus_multiplex_group5_t group5MultiplexControl

FlexBus Signal Group 5 Multiplex control

ftfx adapter

Ftftx CACHE Driver

enum _ftfx_cache_ram_func_constants

Constants for execute-in-RAM flash function.

Values:

enumerator kFTFx_CACHE_RamFuncMaxSizeInWords

The maximum size of execute-in-RAM function.

typedef struct _flash_prefetch_speculation_status ftfx_prefetch_speculation_status_t

FTFx prefetch speculation status.

typedef struct _ftfx_cache_config ftfx_cache_config_t

FTFx cache driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

status_t FTFx_CACHE_Init(ftfx_cache_config_t *config)

Initializes the global FTFx cache structure members.

This function checks and initializes the Flash module for the other FTFx cache APIs.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

status_t FTFx_CACHE_ClearCachePrefetchSpeculation(ftfx_cache_config_t *config, bool isPreProcess)

Process the cache/prefetch/speculation to the flash.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • isPreProcess – The possible option used to control flash cache/prefetch/speculation

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – Invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

status_t FTFx_CACHE_PflashSetPrefetchSpeculation(ftfx_prefetch_speculation_status_t *speculationStatus)

Sets the PFlash prefetch speculation to the intended speculation status.

Parameters:
  • speculationStatus – The expected protect status to set to the PFlash protection register. Each bit is

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidSpeculationOption – An invalid speculation option argument is provided.

status_t FTFx_CACHE_PflashGetPrefetchSpeculation(ftfx_prefetch_speculation_status_t *speculationStatus)

Gets the PFlash prefetch speculation status.

Parameters:
  • speculationStatus – Speculation status returned by the PFlash IP.

Return values:

kStatus_FTFx_Success – API was executed successfully.

struct _flash_prefetch_speculation_status
#include <fsl_ftfx_cache.h>

FTFx prefetch speculation status.

Public Members

bool instructionOff

Instruction speculation.

bool dataOff

Data speculation.

union function_bit_operation_ptr_t
#include <fsl_ftfx_cache.h>

Public Members

uint32_t commadAddr
void (*callFlashCommand)(volatile uint32_t *base, uint32_t bitMask, uint32_t bitShift, uint32_t bitValue)
struct _ftfx_cache_config
#include <fsl_ftfx_cache.h>

FTFx cache driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

Public Members

uint8_t flashMemoryIndex

0 - primary flash; 1 - secondary flash

function_bit_operation_ptr_t bitOperFuncAddr

An buffer point to the flash execute-in-RAM function.

ftfx controller

FTFx driver status codes.

Values:

enumerator kStatus_FTFx_Success

API is executed successfully

enumerator kStatus_FTFx_InvalidArgument

Invalid argument

enumerator kStatus_FTFx_SizeError

Error size

enumerator kStatus_FTFx_AlignmentError

Parameter is not aligned with the specified baseline

enumerator kStatus_FTFx_AddressError

Address is out of range

enumerator kStatus_FTFx_AccessError

Invalid instruction codes and out-of bound addresses

enumerator kStatus_FTFx_ProtectionViolation

The program/erase operation is requested to execute on protected areas

enumerator kStatus_FTFx_CommandFailure

Run-time error during command execution.

enumerator kStatus_FTFx_UnknownProperty

Unknown property.

enumerator kStatus_FTFx_EraseKeyError

API erase key is invalid.

enumerator kStatus_FTFx_RegionExecuteOnly

The current region is execute-only.

enumerator kStatus_FTFx_ExecuteInRamFunctionNotReady

Execute-in-RAM function is not available.

enumerator kStatus_FTFx_PartitionStatusUpdateFailure

Failed to update partition status.

enumerator kStatus_FTFx_SetFlexramAsEepromError

Failed to set FlexRAM as EEPROM.

enumerator kStatus_FTFx_RecoverFlexramAsRamError

Failed to recover FlexRAM as RAM.

enumerator kStatus_FTFx_SetFlexramAsRamError

Failed to set FlexRAM as RAM.

enumerator kStatus_FTFx_RecoverFlexramAsEepromError

Failed to recover FlexRAM as EEPROM.

enumerator kStatus_FTFx_CommandNotSupported

Flash API is not supported.

enumerator kStatus_FTFx_SwapSystemNotInUninitialized

Swap system is not in an uninitialzed state.

enumerator kStatus_FTFx_SwapIndicatorAddressError

The swap indicator address is invalid.

enumerator kStatus_FTFx_ReadOnlyProperty

The flash property is read-only.

enumerator kStatus_FTFx_InvalidPropertyValue

The flash property value is out of range.

enumerator kStatus_FTFx_InvalidSpeculationOption

The option of flash prefetch speculation is invalid.

enumerator kStatus_FTFx_CommandOperationInProgress

The option of flash command is processing.

enum _ftfx_driver_api_keys

Enumeration for FTFx driver API keys.

Note

The resulting value is built with a byte order such that the string being readable in expected order when viewed in a hex editor, if the value is treated as a 32-bit little endian value.

Values:

enumerator kFTFx_ApiEraseKey

Key value used to validate all FTFx erase APIs.

void FTFx_API_Init(ftfx_config_t *config)

Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

status_t FTFx_API_UpdateFlexnvmPartitionStatus(ftfx_config_t *config)

Updates FlexNVM memory partition status according to data flash 0 IFR.

This function updates FlexNVM memory partition status.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FTFx_CMD_Erase(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)

Erases the flash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start address and length.

Parameters:
  • config – The pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be word-aligned.

  • key – The value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

  • kStatus_FTFx_EraseKeyError – The API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_EraseSectorNonBlocking(ftfx_config_t *config, uint32_t start, uint32_t key)

Erases the flash sectors encompassed by parameters passed into function.

This function erases one flash sector size based on the start address.

Parameters:
  • config – The pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.

  • key – The value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

  • kStatus_FTFx_EraseKeyError – The API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

status_t FTFx_CMD_EraseAll(ftfx_config_t *config, uint32_t key)

Erases entire flash.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FTFx_CMD_EraseAllUnsecure(ftfx_config_t *config, uint32_t key)

Erases the entire flash, including protected sectors.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FTFx_CMD_EraseAllExecuteOnlySegments(ftfx_config_t *config, uint32_t key)

Erases all program flash execute-only segments defined by the FXACC registers.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_Program(ftfx_config_t *config, uint32_t start, const uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_ProgramOnce(ftfx_config_t *config, uint32_t index, const uint8_t *src, uint32_t lengthInBytes)

Programs Program Once Field through parameters.

This function programs the Program Once Field with the desired data for a given flash area as determined by the index and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • index – The index indicating which area of the Program Once Field to be programmed.

  • src – A pointer to the source buffer of data that is to be programmed into the Program Once Field.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_ProgramSection(ftfx_config_t *config, uint32_t start, const uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters via the Program Section command.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM as EEPROM.

status_t FTFx_CMD_ProgramPartition(ftfx_config_t *config, ftfx_partition_flexram_load_opt_t option, uint32_t eepromDataSizeCode, uint32_t flexnvmPartitionCode)

Prepares the FlexNVM block for use as data flash, EEPROM backup, or a combination of both and initializes the FlexRAM.

Parameters:
  • config – Pointer to storage for the driver runtime state.

  • option – The option used to set FlexRAM load behavior during reset.

  • eepromDataSizeCode – Determines the amount of FlexRAM used in each of the available EEPROM subsystems.

  • flexnvmPartitionCode – Specifies how to split the FlexNVM block between data flash memory and EEPROM backup memory supporting EEPROM functions.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – Invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

status_t FTFx_CMD_ReadOnce(ftfx_config_t *config, uint32_t index, uint8_t *dst, uint32_t lengthInBytes)

Reads the Program Once Field through parameters.

This function reads the read once feild with given index and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • index – The index indicating the area of program once field to be read.

  • dst – A pointer to the destination buffer of data that is used to store data to be read.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_ReadResource(ftfx_config_t *config, uint32_t start, uint8_t *dst, uint32_t lengthInBytes, ftfx_read_resource_opt_t option)

Reads the resource with data at locations passed in through parameters.

This function reads the flash memory with the desired location for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • dst – A pointer to the destination buffer of data that is used to store data to be read.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be read. Must be word-aligned.

  • option – The resource option which indicates which area should be read back.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_VerifyErase(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, ftfx_margin_value_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start address and length to check whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_VerifyEraseAll(ftfx_config_t *config, ftfx_margin_value_t margin)

Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_VerifyEraseAllExecuteOnlySegments(ftfx_config_t *config, ftfx_margin_value_t margin)

Verifies whether the program flash execute-only segments have been erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_VerifyProgram(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, ftfx_margin_value_t margin, uint32_t *failedAddress, uint32_t *failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programed in the flash memory using the Flash Program Check Command and compares it to the expected data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. Must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • expectedData – A pointer to the expected data that is to be verified against.

  • margin – Read margin choice.

  • failedAddress – A pointer to the returned failing address.

  • failedData – A pointer to the returned failing data. Some derivatives do not include failed data as part of the FCCOBx registers. In this case, zeros are returned upon failure.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_REG_GetSecurityState(ftfx_config_t *config, ftfx_security_state_t *state)

Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling state and the backdoor key enabling state.

Parameters:
  • config – A pointer to storage for the driver runtime state.

  • state – A pointer to the value returned for the current security status code:

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FTFx_CMD_SecurityBypass(ftfx_config_t *config, const uint8_t *backdoorKey)

Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided backdoor key with ones in the flash configuration field.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • backdoorKey – A pointer to the user buffer containing the backdoor key.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_SetFlexramFunction(ftfx_config_t *config, ftfx_flexram_func_opt_t option)

Sets the FlexRAM function command.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • option – The option used to set the work mode of FlexRAM.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_SwapControl(ftfx_config_t *config, uint32_t address, ftfx_swap_control_opt_t option, ftfx_swap_state_config_t *returnInfo)

Configures the Swap function or checks the swap state of the Flash module.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • address – Address used to configure the flash Swap function.

  • option – The possible option used to configure Flash Swap function or check the flash Swap status

  • returnInfo – A pointer to the data which is used to return the information of flash Swap.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_SwapIndicatorAddressError – Swap indicator address is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

enum _ftfx_partition_flexram_load_option

Enumeration for the FlexRAM load during reset option.

Values:

enumerator kFTFx_PartitionFlexramLoadOptLoadedWithValidEepromData

FlexRAM is loaded with valid EEPROM data during reset sequence.

enumerator kFTFx_PartitionFlexramLoadOptNotLoaded

FlexRAM is not loaded during reset sequence.

enum _ftfx_read_resource_opt

Enumeration for the two possible options of flash read resource command.

Values:

enumerator kFTFx_ResourceOptionFlashIfr

Select code for Program flash 0 IFR, Program flash swap 0 IFR, Data flash 0 IFR

enumerator kFTFx_ResourceOptionVersionId

Select code for the version ID

enum _ftfx_margin_value

Enumeration for supported FTFx margin levels.

Values:

enumerator kFTFx_MarginValueNormal

Use the ‘normal’ read level for 1s.

enumerator kFTFx_MarginValueUser

Apply the ‘User’ margin to the normal read-1 level.

enumerator kFTFx_MarginValueFactory

Apply the ‘Factory’ margin to the normal read-1 level.

enumerator kFTFx_MarginValueInvalid

Not real margin level, Used to determine the range of valid margin level.

enum _ftfx_security_state

Enumeration for the three possible FTFx security states.

Values:

enumerator kFTFx_SecurityStateNotSecure

Flash is not secure.

enumerator kFTFx_SecurityStateBackdoorEnabled

Flash backdoor is enabled.

enumerator kFTFx_SecurityStateBackdoorDisabled

Flash backdoor is disabled.

enum _ftfx_flexram_function_option

Enumeration for the two possilbe options of set FlexRAM function command.

Values:

enumerator kFTFx_FlexramFuncOptAvailableAsRam

An option used to make FlexRAM available as RAM

enumerator kFTFx_FlexramFuncOptAvailableForEeprom

An option used to make FlexRAM available for EEPROM

enum _flash_acceleration_ram_property

Enumeration for acceleration ram property.

Values:

enumerator kFLASH_AccelerationRamSize
enum _ftfx_swap_control_option

Enumeration for the possible options of Swap control commands.

Values:

enumerator kFTFx_SwapControlOptionIntializeSystem

An option used to initialize the Swap system

enumerator kFTFx_SwapControlOptionSetInUpdateState

An option used to set the Swap in an update state

enumerator kFTFx_SwapControlOptionSetInCompleteState

An option used to set the Swap in a complete state

enumerator kFTFx_SwapControlOptionReportStatus

An option used to report the Swap status

enumerator kFTFx_SwapControlOptionDisableSystem

An option used to disable the Swap status

enum _ftfx_swap_state

Enumeration for the possible flash Swap status.

Values:

enumerator kFTFx_SwapStateUninitialized

Flash Swap system is in an uninitialized state.

enumerator kFTFx_SwapStateReady

Flash Swap system is in a ready state.

enumerator kFTFx_SwapStateUpdate

Flash Swap system is in an update state.

enumerator kFTFx_SwapStateUpdateErased

Flash Swap system is in an updateErased state.

enumerator kFTFx_SwapStateComplete

Flash Swap system is in a complete state.

enumerator kFTFx_SwapStateDisabled

Flash Swap system is in a disabled state.

enum _ftfx_swap_block_status

Enumeration for the possible flash Swap block status.

Values:

enumerator kFTFx_SwapBlockStatusLowerHalfProgramBlocksAtZero

Swap block status is that lower half program block at zero.

enumerator kFTFx_SwapBlockStatusUpperHalfProgramBlocksAtZero

Swap block status is that upper half program block at zero.

enum _ftfx_memory_type

Enumeration for FTFx memory type.

Values:

enumerator kFTFx_MemTypePflash
enumerator kFTFx_MemTypeFlexnvm
typedef enum _ftfx_partition_flexram_load_option ftfx_partition_flexram_load_opt_t

Enumeration for the FlexRAM load during reset option.

typedef enum _ftfx_read_resource_opt ftfx_read_resource_opt_t

Enumeration for the two possible options of flash read resource command.

typedef enum _ftfx_margin_value ftfx_margin_value_t

Enumeration for supported FTFx margin levels.

typedef enum _ftfx_security_state ftfx_security_state_t

Enumeration for the three possible FTFx security states.

typedef enum _ftfx_flexram_function_option ftfx_flexram_func_opt_t

Enumeration for the two possilbe options of set FlexRAM function command.

typedef enum _ftfx_swap_control_option ftfx_swap_control_opt_t

Enumeration for the possible options of Swap control commands.

typedef enum _ftfx_swap_state ftfx_swap_state_t

Enumeration for the possible flash Swap status.

typedef enum _ftfx_swap_block_status ftfx_swap_block_status_t

Enumeration for the possible flash Swap block status.

typedef struct _ftfx_swap_state_config ftfx_swap_state_config_t

Flash Swap information.

typedef struct _ftfx_special_mem ftfx_spec_mem_t

ftfx special memory access information.

typedef struct _ftfx_mem_descriptor ftfx_mem_desc_t

Flash memory descriptor.

typedef struct _ftfx_ops_config ftfx_ops_config_t

Active FTFx information for the current operation.

typedef struct _ftfx_ifr_descriptor ftfx_ifr_desc_t

Flash IFR memory descriptor.

typedef struct _ftfx_config ftfx_config_t

Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

struct _ftfx_swap_state_config
#include <fsl_ftfx_controller.h>

Flash Swap information.

Public Members

ftfx_swap_state_t flashSwapState

The current Swap system status.

ftfx_swap_block_status_t currentSwapBlockStatus

The current Swap block status.

ftfx_swap_block_status_t nextSwapBlockStatus

The next Swap block status.

struct _ftfx_special_mem
#include <fsl_ftfx_controller.h>

ftfx special memory access information.

Public Members

uint32_t base

Base address of flash special memory.

uint32_t size

size of flash special memory.

uint32_t count

flash special memory count.

struct _ftfx_mem_descriptor
#include <fsl_ftfx_controller.h>

Flash memory descriptor.

Public Members

uint32_t blockBase

A base address of the flash block

uint32_t aliasBlockBase

A base address of the alias flash block

uint32_t totalSize

The size of the flash block.

uint32_t sectorSize

The size in bytes of a sector of flash.

uint32_t blockCount

A number of flash blocks.

struct _ftfx_ops_config
#include <fsl_ftfx_controller.h>

Active FTFx information for the current operation.

Public Members

uint32_t convertedAddress

A converted address for the current flash type.

struct _ftfx_ifr_descriptor
#include <fsl_ftfx_controller.h>

Flash IFR memory descriptor.

union function_ptr_t
#include <fsl_ftfx_controller.h>

Public Members

uint32_t commadAddr
void (*callFlashCommand)(volatile uint8_t *FTMRx_fstat)
struct _ftfx_config
#include <fsl_ftfx_controller.h>

Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

Public Members

uint32_t flexramBlockBase

The base address of the FlexRAM/acceleration RAM

uint32_t flexramTotalSize

The size of the FlexRAM/acceleration RAM

uint16_t eepromTotalSize

The size of EEPROM area which was partitioned from FlexRAM

function_ptr_t runCmdFuncAddr

An buffer point to the flash execute-in-RAM function.

struct __unnamed11__

Public Members

uint8_t type

Type of flash block.

uint8_t index

Index of flash block.

struct feature
struct addrAligment
struct feature
struct resRange

Public Members

uint8_t versionIdStart

Version ID start address

uint32_t pflashIfrStart

Program Flash 0 IFR start address

uint32_t dflashIfrStart

Data Flash 0 IFR start address

uint32_t pflashSwapIfrStart

Program Flash Swap IFR start address

struct idxInfo

ftfx feature

FTFx_DRIVER_IS_FLASH_RESIDENT

Flash driver location.

Used for the flash resident application.

FTFx_DRIVER_IS_EXPORTED

Flash Driver Export option.

Used for the MCUXpresso SDK application.

FTFx_FLASH1_HAS_PROT_CONTROL

Indicates whether the secondary flash has its own protection register in flash module.

FTFx_FLASH1_HAS_XACC_CONTROL

Indicates whether the secondary flash has its own Execute-Only access register in flash module.

FTFx_DRIVER_HAS_FLASH1_SUPPORT

Indicates whether the secondary flash is supported in the Flash driver.

FTFx_FLASH_COUNT
FTFx_FLASH1_IS_INDEPENDENT_BLOCK

Ftftx FLASH Driver

status_t FLASH_Init(flash_config_t *config)

Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)

Erases the Dflash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start address and length.

Parameters:
  • config – The pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be word-aligned.

  • key – The value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the appropriate number of flash sectors based on the desired start address and length were erased successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

  • kStatus_FTFx_EraseKeyError – The API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_EraseSectorNonBlocking(flash_config_t *config, uint32_t start, uint32_t key)

Erases the Dflash sectors encompassed by parameters passed into function.

This function erases one flash sector size based on the start address, and it is executed asynchronously.

NOTE: This function can only erase one flash sector at a time, and the other commands can be executed after the previous command has been completed.

Parameters:
  • config – The pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.

  • key – The value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

  • kStatus_FTFx_EraseKeyError – The API erase key is invalid.

status_t FLASH_EraseAll(flash_config_t *config, uint32_t key)

Erases entire flexnvm.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the all pflash and flexnvm were erased successfully, the swap and eeprom have been reset to unconfigured state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key)

Erases the entire flexnvm, including protected sectors.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the protected sectors of flash were reset to unprotected status.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLASH_Program(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired data were programed successfully into flash based on desired start address and length.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_ProgramOnce(flash_config_t *config, uint32_t index, uint8_t *src, uint32_t lengthInBytes)

Program the Program-Once-Field through parameters.

This function Program the Program-once-feild with given index and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • index – The index indicating the area of program once field to be read.

  • src – A pointer to the source buffer of data that is used to store data to be write.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; The index indicating the area of program once field was programed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_ProgramSection(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters via the Program Section command.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired data have been programed successfully into flash based on start address and length.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM as EEPROM.

status_t FLASH_ReadResource(flash_config_t *config, uint32_t start, uint8_t *dst, uint32_t lengthInBytes, ftfx_read_resource_opt_t option)

Reads the resource with data at locations passed in through parameters.

This function reads the flash memory with the desired location for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • dst – A pointer to the destination buffer of data that is used to store data to be read.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be read. Must be word-aligned.

  • option – The resource option which indicates which area should be read back.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the data have been read successfully from program flash IFR, data flash IFR space, and the Version ID field.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_ReadOnce(flash_config_t *config, uint32_t index, uint8_t *dst, uint32_t lengthInBytes)

Reads the Program Once Field through parameters.

This function reads the read once feild with given index and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • index – The index indicating the area of program once field to be read.

  • dst – A pointer to the destination buffer of data that is used to store data to be read.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the data have been successfuly read form Program flash0 IFR map and Program Once field based on index and length.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, ftfx_margin_value_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start address and length to check whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the specified FLASH region has been erased.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_VerifyEraseAll(flash_config_t *config, ftfx_margin_value_t margin)

Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; all program flash and flexnvm were in erased state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_VerifyProgram(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, ftfx_margin_value_t margin, uint32_t *failedAddress, uint32_t *failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programmed in the flash memory using the Flash Program Check Command and compares it to the expected data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. Must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • expectedData – A pointer to the expected data that is to be verified against.

  • margin – Read margin choice.

  • failedAddress – A pointer to the returned failing address.

  • failedData – A pointer to the returned failing data. Some derivatives do not include failed data as part of the FCCOBx registers. In this case, zeros are returned upon failure.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired data have been successfully programed into specified FLASH region.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_GetSecurityState(flash_config_t *config, ftfx_security_state_t *state)

Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling state and the backdoor key enabling state.

Parameters:
  • config – A pointer to storage for the driver runtime state.

  • state – A pointer to the value returned for the current security status code:

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the security state of flash was stored to state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey)

Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided backdoor key with ones in the flash configuration field.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • backdoorKey – A pointer to the user buffer containing the backdoor key.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_SetFlexramFunction(flash_config_t *config, ftfx_flexram_func_opt_t option)

Sets the FlexRAM function command.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • option – The option used to set the work mode of FlexRAM.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the FlexRAM has been successfully configured as RAM or EEPROM.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_Swap(flash_config_t *config, uint32_t address, bool isSetEnable)

Swaps the lower half flash with the higher half flash.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • address – Address used to configure the flash swap function

  • isSetEnable – The possible option used to configure the Flash Swap function or check the flash Swap status.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the lower half flash and higher half flash have been swaped.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_SwapIndicatorAddressError – Swap indicator address is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_SwapSystemNotInUninitialized – Swap system is not in an uninitialized state.

status_t FLASH_IsProtected(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_prot_state_t *protection_state)

Returns the protection state of the desired flash area via the pointer passed into the function.

This function retrieves the current flash protect status for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be checked. Must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words) to be checked. Must be word-aligned.

  • protection_state – A pointer to the value returned for the current protection status code for the desired flash area.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the protection state of specified FLASH region was stored to protection_state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

status_t FLASH_IsExecuteOnly(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_xacc_state_t *access_state)

Returns the access state of the desired flash area via the pointer passed into the function.

This function retrieves the current flash access status for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be checked. Must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be checked. Must be word-aligned.

  • access_state – A pointer to the value returned for the current access status code for the desired flash area.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the executeOnly state of specified FLASH region was stored to access_state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned to the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

status_t FLASH_PflashSetProtection(flash_config_t *config, pflash_prot_status_t *protectStatus)

Sets the PFlash Protection to the intended protection status.

Parameters:
  • config – A pointer to storage for the driver runtime state.

  • protectStatus – The expected protect status to set to the PFlash protection register. Each bit is corresponding to protection of 1/32(64) of the total PFlash. The least significant bit is corresponding to the lowest address area of PFlash. The most significant bit is corresponding to the highest address area of PFlash. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the specified FLASH region is protected.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

status_t FLASH_PflashGetProtection(flash_config_t *config, pflash_prot_status_t *protectStatus)

Gets the PFlash protection status.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • protectStatus – Protect status returned by the PFlash IP. Each bit is corresponding to the protection of 1/32(64) of the total PFlash. The least significant bit corresponds to the lowest address area of the PFlash. The most significant bit corresponds to the highest address area of PFlash. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the Protection state was stored to protectStatus;

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t *value)

Returns the desired flash property.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • whichProperty – The desired property from the list of properties in enum flash_property_tag_t

  • value – A pointer to the value returned for the desired flash property.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the flash property was stored to value.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_UnknownProperty – An unknown property tag.

status_t FLASH_GetCommandState(void)

Get previous command status.

This function is used to obtain the execution status of the previous command.

Return values:
  • kStatus_FTFx_Success – The previous command is executed successfully.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

FSL_FLASH_DRIVER_VERSION

Flash driver version for SDK.

Version 3.1.3.

FSL_FLASH_DRIVER_VERSION_ROM

Flash driver version for ROM.

Version 3.0.0.

enum _flash_protection_state

Enumeration for the three possible flash protection levels.

Values:

enumerator kFLASH_ProtectionStateUnprotected

Flash region is not protected.

enumerator kFLASH_ProtectionStateProtected

Flash region is protected.

enumerator kFLASH_ProtectionStateMixed

Flash is mixed with protected and unprotected region.

enum _flash_execute_only_access_state

Enumeration for the three possible flash execute access levels.

Values:

enumerator kFLASH_AccessStateUnLimited

Flash region is unlimited.

enumerator kFLASH_AccessStateExecuteOnly

Flash region is execute only.

enumerator kFLASH_AccessStateMixed

Flash is mixed with unlimited and execute only region.

enum _flash_property_tag

Enumeration for various flash properties.

Values:

enumerator kFLASH_PropertyPflash0SectorSize

Pflash sector size property.

enumerator kFLASH_PropertyPflash0TotalSize

Pflash total size property.

enumerator kFLASH_PropertyPflash0BlockSize

Pflash block size property.

enumerator kFLASH_PropertyPflash0BlockCount

Pflash block count property.

enumerator kFLASH_PropertyPflash0BlockBaseAddr

Pflash block base address property.

enumerator kFLASH_PropertyPflash0FacSupport

Pflash fac support property.

enumerator kFLASH_PropertyPflash0AccessSegmentSize

Pflash access segment size property.

enumerator kFLASH_PropertyPflash0AccessSegmentCount

Pflash access segment count property.

enumerator kFLASH_PropertyPflash1SectorSize

Pflash sector size property.

enumerator kFLASH_PropertyPflash1TotalSize

Pflash total size property.

enumerator kFLASH_PropertyPflash1BlockSize

Pflash block size property.

enumerator kFLASH_PropertyPflash1BlockCount

Pflash block count property.

enumerator kFLASH_PropertyPflash1BlockBaseAddr

Pflash block base address property.

enumerator kFLASH_PropertyPflash1FacSupport

Pflash fac support property.

enumerator kFLASH_PropertyPflash1AccessSegmentSize

Pflash access segment size property.

enumerator kFLASH_PropertyPflash1AccessSegmentCount

Pflash access segment count property.

enumerator kFLASH_PropertyFlexRamBlockBaseAddr

FlexRam block base address property.

enumerator kFLASH_PropertyFlexRamTotalSize

FlexRam total size property.

typedef enum _flash_protection_state flash_prot_state_t

Enumeration for the three possible flash protection levels.

typedef union _pflash_protection_status pflash_prot_status_t

PFlash protection status.

typedef enum _flash_execute_only_access_state flash_xacc_state_t

Enumeration for the three possible flash execute access levels.

typedef enum _flash_property_tag flash_property_tag_t

Enumeration for various flash properties.

typedef struct _flash_config flash_config_t

Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

kStatus_FLASH_Success
kFLASH_ApiEraseKey
union _pflash_protection_status
#include <fsl_ftfx_flash.h>

PFlash protection status.

Public Members

uint32_t protl

PROT[31:0] .

uint32_t proth

PROT[63:32].

uint8_t protsl

PROTS[7:0] .

uint8_t protsh

PROTS[15:8] .

uint8_t reserved[2]
struct _flash_config
#include <fsl_ftfx_flash.h>

Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

Ftftx FLEXNVM Driver

status_t FLEXNVM_Init(flexnvm_config_t *config)

Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLEXNVM_DflashErase(flexnvm_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)

Erases the Dflash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start address and length.

Parameters:
  • config – The pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be word-aligned.

  • key – The value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the appropriate number of date flash sectors based on the desired start address and length were erased successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

  • kStatus_FTFx_EraseKeyError – The API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_EraseAll(flexnvm_config_t *config, uint32_t key)

Erases entire flexnvm.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the entire flexnvm has been erased successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLEXNVM_EraseAllUnsecure(flexnvm_config_t *config, uint32_t key)

Erases the entire flexnvm, including protected sectors.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the flexnvm is not in securityi state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLEXNVM_DflashProgram(flexnvm_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired date have been successfully programed into specified date flash region.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_DflashProgramSection(flexnvm_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters via the Program Section command.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired date have been successfully programed into specified date flash area.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM as EEPROM.

status_t FLEXNVM_ProgramPartition(flexnvm_config_t *config, ftfx_partition_flexram_load_opt_t option, uint32_t eepromDataSizeCode, uint32_t flexnvmPartitionCode)

Prepares the FlexNVM block for use as data flash, EEPROM backup, or a combination of both and initializes the FlexRAM.

Parameters:
  • config – Pointer to storage for the driver runtime state.

  • option – The option used to set FlexRAM load behavior during reset.

  • eepromDataSizeCode – Determines the amount of FlexRAM used in each of the available EEPROM subsystems.

  • flexnvmPartitionCode – Specifies how to split the FlexNVM block between data flash memory and EEPROM backup memory supporting EEPROM functions.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the FlexNVM block for use as data flash, EEPROM backup, or a combination of both have been Prepared.

  • kStatus_FTFx_InvalidArgument – Invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

status_t FLEXNVM_ReadResource(flexnvm_config_t *config, uint32_t start, uint8_t *dst, uint32_t lengthInBytes, ftfx_read_resource_opt_t option)

Reads the resource with data at locations passed in through parameters.

This function reads the flash memory with the desired location for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • dst – A pointer to the destination buffer of data that is used to store data to be read.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be read. Must be word-aligned.

  • option – The resource option which indicates which area should be read back.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the data have been read successfully from program flash IFR, data flash IFR space, and the Version ID field

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_DflashVerifyErase(flexnvm_config_t *config, uint32_t start, uint32_t lengthInBytes, ftfx_margin_value_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start address and length to check whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the specified data flash region is in erased state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_VerifyEraseAll(flexnvm_config_t *config, ftfx_margin_value_t margin)

Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the entire flexnvm region is in erased state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_DflashVerifyProgram(flexnvm_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, ftfx_margin_value_t margin, uint32_t *failedAddress, uint32_t *failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programmed in the flash memory using the Flash Program Check Command and compares it to the expected data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. Must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • expectedData – A pointer to the expected data that is to be verified against.

  • margin – Read margin choice.

  • failedAddress – A pointer to the returned failing address.

  • failedData – A pointer to the returned failing data. Some derivatives do not include failed data as part of the FCCOBx registers. In this case, zeros are returned upon failure.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired data hve been programed successfully into specified data flash region.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_GetSecurityState(flexnvm_config_t *config, ftfx_security_state_t *state)

Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling state and the backdoor key enabling state.

Parameters:
  • config – A pointer to storage for the driver runtime state.

  • state – A pointer to the value returned for the current security status code:

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the security state of flexnvm was stored to state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FLEXNVM_SecurityBypass(flexnvm_config_t *config, const uint8_t *backdoorKey)

Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided backdoor key with ones in the flash configuration field.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • backdoorKey – A pointer to the user buffer containing the backdoor key.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_SetFlexramFunction(flexnvm_config_t *config, ftfx_flexram_func_opt_t option)

Sets the FlexRAM function command.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • option – The option used to set the work mode of FlexRAM.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the FlexRAM has been successfully configured as RAM or EEPROM

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_DflashSetProtection(flexnvm_config_t *config, uint8_t protectStatus)

Sets the DFlash protection to the intended protection status.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • protectStatus – The expected protect status to set to the DFlash protection register. Each bit corresponds to the protection of the 1/8 of the total DFlash. The least significant bit corresponds to the lowest address area of the DFlash. The most significant bit corresponds to the highest address area of the DFlash. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the specified DFlash region is protected.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_CommandNotSupported – Flash API is not supported.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

status_t FLEXNVM_DflashGetProtection(flexnvm_config_t *config, uint8_t *protectStatus)

Gets the DFlash protection status.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • protectStatus – DFlash Protect status returned by the PFlash IP. Each bit corresponds to the protection of the 1/8 of the total DFlash. The least significant bit corresponds to the lowest address area of the DFlash. The most significant bit corresponds to the highest address area of the DFlash, and so on. There are two possible cases as below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_CommandNotSupported – Flash API is not supported.

status_t FLEXNVM_EepromSetProtection(flexnvm_config_t *config, uint8_t protectStatus)

Sets the EEPROM protection to the intended protection status.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • protectStatus – The expected protect status to set to the EEPROM protection register. Each bit corresponds to the protection of the 1/8 of the total EEPROM. The least significant bit corresponds to the lowest address area of the EEPROM. The most significant bit corresponds to the highest address area of EEPROM, and so on. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_CommandNotSupported – Flash API is not supported.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

status_t FLEXNVM_EepromGetProtection(flexnvm_config_t *config, uint8_t *protectStatus)

Gets the EEPROM protection status.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • protectStatus – DFlash Protect status returned by the PFlash IP. Each bit corresponds to the protection of the 1/8 of the total EEPROM. The least significant bit corresponds to the lowest address area of the EEPROM. The most significant bit corresponds to the highest address area of the EEPROM. There are two possible cases as below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_CommandNotSupported – Flash API is not supported.

status_t FLEXNVM_GetProperty(flexnvm_config_t *config, flexnvm_property_tag_t whichProperty, uint32_t *value)

Returns the desired flexnvm property.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • whichProperty – The desired property from the list of properties in enum flexnvm_property_tag_t

  • value – A pointer to the value returned for the desired flexnvm property.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_UnknownProperty – An unknown property tag.

enum _flexnvm_property_tag

Enumeration for various flexnvm properties.

Values:

enumerator kFLEXNVM_PropertyDflashSectorSize

Dflash sector size property.

enumerator kFLEXNVM_PropertyDflashTotalSize

Dflash total size property.

enumerator kFLEXNVM_PropertyDflashBlockSize

Dflash block size property.

enumerator kFLEXNVM_PropertyDflashBlockCount

Dflash block count property.

enumerator kFLEXNVM_PropertyDflashBlockBaseAddr

Dflash block base address property.

enumerator kFLEXNVM_PropertyAliasDflashBlockBaseAddr

Dflash block base address Alias property.

enumerator kFLEXNVM_PropertyFlexRamBlockBaseAddr

FlexRam block base address property.

enumerator kFLEXNVM_PropertyFlexRamTotalSize

FlexRam total size property.

enumerator kFLEXNVM_PropertyEepromTotalSize

EEPROM total size property.

typedef enum _flexnvm_property_tag flexnvm_property_tag_t

Enumeration for various flexnvm properties.

typedef struct _flexnvm_config flexnvm_config_t

Flexnvm driver state information.

An instance of this structure is allocated by the user of the Flexnvm driver and passed into each of the driver APIs.

status_t FLEXNVM_EepromWrite(flexnvm_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)

Programs the EEPROM with data at locations passed in through parameters.

This function programs the emulated EEPROM with the desired data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desires data have been successfully programed into specified eeprom region.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_SetFlexramAsEepromError – Failed to set flexram as eeprom.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_RecoverFlexramAsRamError – Failed to recover the FlexRAM as RAM.

struct _flexnvm_config
#include <fsl_ftfx_flexnvm.h>

Flexnvm driver state information.

An instance of this structure is allocated by the user of the Flexnvm driver and passed into each of the driver APIs.

ftfx utilities

ALIGN_DOWN(x, a)

Alignment(down) utility.

ALIGN_UP(x, a)

Alignment(up) utility.

MAKE_VERSION(major, minor, bugfix)

Constructs the version number for drivers.

MAKE_STATUS(group, code)

Constructs a status code value from a group and a code number.

FOUR_CHAR_CODE(a, b, c, d)

Constructs the four character code for the Flash driver API key.

B1P4(b)

bytes2word utility.

B1P3(b)
B1P2(b)
B1P1(b)
B2P3(b)
B2P2(b)
B2P1(b)
B3P2(b)
B3P1(b)
BYTE2WORD_1_3(x, y)
BYTE2WORD_2_2(x, y)
BYTE2WORD_3_1(x, y)
BYTE2WORD_1_1_2(x, y, z)
BYTE2WORD_1_2_1(x, y, z)
BYTE2WORD_2_1_1(x, y, z)
BYTE2WORD_1_1_1_1(x, y, z, w)

FTM: FlexTimer Driver

status_t FTM_Init(FTM_Type *base, const ftm_config_t *config)

Ungates the FTM clock and configures the peripheral for basic operation.

Note

This API should be called at the beginning of the application which is using the FTM driver. If the FTM instance has only TPM features, please use the TPM driver.

Parameters:
  • base – FTM peripheral base address

  • config – Pointer to the user configuration structure.

Returns:

kStatus_Success indicates success; Else indicates failure.

void FTM_Deinit(FTM_Type *base)

Gates the FTM clock.

Parameters:
  • base – FTM peripheral base address

void FTM_GetDefaultConfig(ftm_config_t *config)

Fills in the FTM configuration structure with the default settings.

The default values are:

config->prescale = kFTM_Prescale_Divide_1;
config->bdmMode = kFTM_BdmMode_0;
config->pwmSyncMode = kFTM_SoftwareTrigger;
config->reloadPoints = 0;
config->faultMode = kFTM_Fault_Disable;
config->faultFilterValue = 0;
config->deadTimePrescale = kFTM_Deadtime_Prescale_1;
config->deadTimeValue =  0;
config->extTriggers = 0;
config->chnlInitState = 0;
config->chnlPolarity = 0;
config->useGlobalTimeBase = false;
config->hwTriggerResetCount = false;
config->swTriggerResetCount = true;

Parameters:
  • config – Pointer to the user configuration structure.

static inline ftm_clock_prescale_t FTM_CalculateCounterClkDiv(FTM_Type *base, uint32_t counterPeriod_Hz, uint32_t srcClock_Hz)

brief Calculates the counter clock prescaler.

This function calculates the values for SC[PS] bit.

param base FTM peripheral base address param counterPeriod_Hz The desired frequency in Hz which corresponding to the time when the counter reaches the mod value param srcClock_Hz FTM counter clock in Hz

return Calculated clock prescaler value, see ftm_clock_prescale_t.

status_t FTM_SetupPwm(FTM_Type *base, const ftm_chnl_pwm_signal_param_t *chnlParams, uint8_t numOfChnls, ftm_pwm_mode_t mode, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz)

Configures the PWM signal parameters.

Call this function to configure the PWM signal period, mode, duty cycle, and edge. Use this function to configure all FTM channels that are used to output a PWM signal.

Parameters:
  • base – FTM peripheral base address

  • chnlParams – Array of PWM channel parameters to configure the channel(s)

  • numOfChnls – Number of channels to configure; This should be the size of the array passed in

  • mode – PWM operation mode, options available in enumeration ftm_pwm_mode_t

  • pwmFreq_Hz – PWM signal frequency in Hz

  • srcClock_Hz – FTM counter clock in Hz

Returns:

kStatus_Success if the PWM setup was successful kStatus_Error on failure

status_t FTM_UpdatePwmDutycycle(FTM_Type *base, ftm_chnl_t chnlNumber, ftm_pwm_mode_t currentPwmMode, uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

Parameters:
  • base – FTM peripheral base address

  • chnlNumber – The channel/channel pair number. In combined mode, this represents the channel pair number

  • currentPwmMode – The current PWM mode set during PWM setup

  • dutyCyclePercent – New PWM pulse width; The value should be between 0 to 100 0=inactive signal(0% duty cycle)… 100=active signal (100% duty cycle)

Returns:

kStatus_Success if the PWM update was successful kStatus_Error on failure

void FTM_UpdateChnlEdgeLevelSelect(FTM_Type *base, ftm_chnl_t chnlNumber, uint8_t level)

Updates the edge level selection for a channel.

Parameters:
  • base – FTM peripheral base address

  • chnlNumber – The channel number

  • level – The level to be set to the ELSnB:ELSnA field; Valid values are 00, 01, 10, 11. See the Kinetis SoC reference manual for details about this field.

status_t FTM_SetupPwmMode(FTM_Type *base, const ftm_chnl_pwm_config_param_t *chnlParams, uint8_t numOfChnls, ftm_pwm_mode_t mode)

Configures the PWM mode parameters.

Call this function to configure the PWM signal mode, duty cycle in ticks, and edge. Use this function to configure all FTM channels that are used to output a PWM signal. Please note that: This API is similar with FTM_SetupPwm() API, but will not set the timer period, and this API will set channel match value in timer ticks, not period percent.

Parameters:
  • base – FTM peripheral base address

  • chnlParams – Array of PWM channel parameters to configure the channel(s)

  • numOfChnls – Number of channels to configure; This should be the size of the array passed in

  • mode – PWM operation mode, options available in enumeration ftm_pwm_mode_t

Returns:

kStatus_Success if the PWM setup was successful kStatus_Error on failure

void FTM_SetupInputCapture(FTM_Type *base, ftm_chnl_t chnlNumber, ftm_input_capture_edge_t captureMode, uint32_t filterValue)

Enables capturing an input signal on the channel using the function parameters.

When the edge specified in the captureMode argument occurs on the channel, the FTM counter is captured into the CnV register. The user has to read the CnV register separately to get this value. The filter function is disabled if the filterVal argument passed in is 0. The filter function is available only for channels 0, 1, 2, 3.

Parameters:
  • base – FTM peripheral base address

  • chnlNumber – The channel number

  • captureMode – Specifies which edge to capture

  • filterValue – Filter value, specify 0 to disable filter. Available only for channels 0-3.

void FTM_SetupOutputCompare(FTM_Type *base, ftm_chnl_t chnlNumber, ftm_output_compare_mode_t compareMode, uint32_t compareValue)

Configures the FTM to generate timed pulses.

When the FTM counter matches the value of compareVal argument (this is written into CnV reg), the channel output is changed based on what is specified in the compareMode argument.

Parameters:
  • base – FTM peripheral base address

  • chnlNumber – The channel number

  • compareMode – Action to take on the channel output when the compare condition is met

  • compareValue – Value to be programmed in the CnV register.

void FTM_SetupDualEdgeCapture(FTM_Type *base, ftm_chnl_t chnlPairNumber, const ftm_dual_edge_capture_param_t *edgeParam, uint32_t filterValue)

Configures the dual edge capture mode of the FTM.

This function sets up the dual edge capture mode on a channel pair. The capture edge for the channel pair and the capture mode (one-shot or continuous) is specified in the parameter argument. The filter function is disabled if the filterVal argument passed is zero. The filter function is available only on channels 0 and 2. The user has to read the channel CnV registers separately to get the capture values.

Parameters:
  • base – FTM peripheral base address

  • chnlPairNumber – The FTM channel pair number; options are 0, 1, 2, 3

  • edgeParam – Sets up the dual edge capture function

  • filterValue – Filter value, specify 0 to disable filter. Available only for channel pair 0 and 1.

void FTM_EnableInterrupts(FTM_Type *base, uint32_t mask)

Enables the selected FTM interrupts.

Parameters:
  • base – FTM peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration ftm_interrupt_enable_t

void FTM_DisableInterrupts(FTM_Type *base, uint32_t mask)

Disables the selected FTM interrupts.

Parameters:
  • base – FTM peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration ftm_interrupt_enable_t

uint32_t FTM_GetEnabledInterrupts(FTM_Type *base)

Gets the enabled FTM interrupts.

Parameters:
  • base – FTM peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration ftm_interrupt_enable_t

uint32_t FTM_GetInstance(FTM_Type *base)

Gets the instance from the base address.

Parameters:
  • base – FTM peripheral base address

Returns:

The FTM instance

uint32_t FTM_GetStatusFlags(FTM_Type *base)

Gets the FTM status flags.

Parameters:
  • base – FTM peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration ftm_status_flags_t

void FTM_ClearStatusFlags(FTM_Type *base, uint32_t mask)

Clears the FTM status flags.

Parameters:
  • base – FTM peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration ftm_status_flags_t

static inline void FTM_SetTimerPeriod(FTM_Type *base, uint32_t ticks)

Sets the timer period in units of ticks.

Timers counts from 0 until it equals the count value set here. The count value is written to the MOD register.

Note

  1. This API allows the user to use the FTM module as a timer. Do not mix usage of this API with FTM’s PWM setup API’s.

  2. Call the utility macros provided in the fsl_common.h to convert usec or msec to ticks.

Parameters:
  • base – FTM peripheral base address

  • ticks – A timer period in units of ticks, which should be equal or greater than 1.

static inline uint32_t FTM_GetCurrentTimerCount(FTM_Type *base)

Reads the current timer counting value.

This function returns the real-time timer counting value in a range from 0 to a timer period.

Note

Call the utility macros provided in the fsl_common.h to convert ticks to usec or msec.

Parameters:
  • base – FTM peripheral base address

Returns:

The current counter value in ticks

static inline uint32_t FTM_GetInputCaptureValue(FTM_Type *base, ftm_chnl_t chnlNumber)

Reads the captured value.

This function returns the captured value of a FTM channel configured in input capture or dual edge capture mode.

Note

Call the utility macros provided in the fsl_common.h to convert ticks to usec or msec.

Parameters:
  • base – FTM peripheral base address

  • chnlNumber – Channel to be read

Returns:

The captured FTM counter value of the input modes.

static inline void FTM_StartTimer(FTM_Type *base, ftm_clock_source_t clockSource)

Starts the FTM counter.

Parameters:
  • base – FTM peripheral base address

  • clockSource – FTM clock source; After the clock source is set, the counter starts running.

static inline void FTM_StopTimer(FTM_Type *base)

Stops the FTM counter.

Parameters:
  • base – FTM peripheral base address

static inline void FTM_SetSoftwareCtrlEnable(FTM_Type *base, ftm_chnl_t chnlNumber, bool value)

Enables or disables the channel software output control.

Parameters:
  • base – FTM peripheral base address

  • chnlNumber – Channel to be enabled or disabled

  • value – true: channel output is affected by software output control false: channel output is unaffected by software output control

static inline void FTM_SetSoftwareCtrlVal(FTM_Type *base, ftm_chnl_t chnlNumber, bool value)

Sets the channel software output control value.

Parameters:
  • base – FTM peripheral base address.

  • chnlNumber – Channel to be configured

  • value – true to set 1, false to set 0

static inline void FTM_SetFaultControlEnable(FTM_Type *base, ftm_chnl_t chnlPairNumber, bool value)

This function enables/disables the fault control in a channel pair.

Parameters:
  • base – FTM peripheral base address

  • chnlPairNumber – The FTM channel pair number; options are 0, 1, 2, 3

  • value – true: Enable fault control for this channel pair; false: No fault control

static inline void FTM_SetDeadTimeEnable(FTM_Type *base, ftm_chnl_t chnlPairNumber, bool value)

This function enables/disables the dead time insertion in a channel pair.

Parameters:
  • base – FTM peripheral base address

  • chnlPairNumber – The FTM channel pair number; options are 0, 1, 2, 3

  • value – true: Insert dead time in this channel pair; false: No dead time inserted

static inline void FTM_SetComplementaryEnable(FTM_Type *base, ftm_chnl_t chnlPairNumber, bool value)

This function enables/disables complementary mode in a channel pair.

Parameters:
  • base – FTM peripheral base address

  • chnlPairNumber – The FTM channel pair number; options are 0, 1, 2, 3

  • value – true: enable complementary mode; false: disable complementary mode

static inline void FTM_SetInvertEnable(FTM_Type *base, ftm_chnl_t chnlPairNumber, bool value)

This function enables/disables inverting control in a channel pair.

Parameters:
  • base – FTM peripheral base address

  • chnlPairNumber – The FTM channel pair number; options are 0, 1, 2, 3

  • value – true: enable inverting; false: disable inverting

void FTM_SetupQuadDecode(FTM_Type *base, const ftm_phase_params_t *phaseAParams, const ftm_phase_params_t *phaseBParams, ftm_quad_decode_mode_t quadMode)

Configures the parameters and activates the quadrature decoder mode.

Parameters:
  • base – FTM peripheral base address

  • phaseAParams – Phase A configuration parameters

  • phaseBParams – Phase B configuration parameters

  • quadMode – Selects encoding mode used in quadrature decoder mode

static inline void FTM_SetQuadDecoderModuloValue(FTM_Type *base, uint32_t startValue, uint32_t overValue)

Sets the modulo values for Quad Decoder.

The modulo values configure the minimum and maximum values that the Quad decoder counter can reach. After the counter goes over, the counter value goes to the other side and decrease/increase again.

Parameters:
  • base – FTM peripheral base address.

  • startValue – The low limit value for Quad Decoder counter.

  • overValue – The high limit value for Quad Decoder counter.

static inline uint32_t FTM_GetQuadDecoderCounterValue(FTM_Type *base)

Gets the current Quad Decoder counter value.

Parameters:
  • base – FTM peripheral base address.

Returns:

Current quad Decoder counter value.

static inline void FTM_ClearQuadDecoderCounterValue(FTM_Type *base)

Clears the current Quad Decoder counter value.

The counter is set as the initial value.

Parameters:
  • base – FTM peripheral base address.

FSL_FTM_DRIVER_VERSION

FTM driver version 2.6.1.

enum _ftm_chnl

List of FTM channels.

Note

Actual number of available channels is SoC dependent

Values:

enumerator kFTM_Chnl_0

FTM channel number 0

enumerator kFTM_Chnl_1

FTM channel number 1

enumerator kFTM_Chnl_2

FTM channel number 2

enumerator kFTM_Chnl_3

FTM channel number 3

enumerator kFTM_Chnl_4

FTM channel number 4

enumerator kFTM_Chnl_5

FTM channel number 5

enumerator kFTM_Chnl_6

FTM channel number 6

enumerator kFTM_Chnl_7

FTM channel number 7

enum _ftm_fault_input

List of FTM faults.

Values:

enumerator kFTM_Fault_0

FTM fault 0 input pin

enumerator kFTM_Fault_1

FTM fault 1 input pin

enumerator kFTM_Fault_2

FTM fault 2 input pin

enumerator kFTM_Fault_3

FTM fault 3 input pin

enum _ftm_pwm_mode

FTM PWM operation modes.

Values:

enumerator kFTM_EdgeAlignedPwm

Edge-aligned PWM

enumerator kFTM_CenterAlignedPwm

Center-aligned PWM

enumerator kFTM_EdgeAlignedCombinedPwm

Edge-aligned combined PWM

enumerator kFTM_CenterAlignedCombinedPwm

Center-aligned combined PWM

enumerator kFTM_AsymmetricalCombinedPwm

Asymmetrical combined PWM

enum _ftm_pwm_level_select

FTM PWM output pulse mode: high-true, low-true or no output.

Values:

enumerator kFTM_NoPwmSignal

No PWM output on pin

enumerator kFTM_LowTrue

Low true pulses

enumerator kFTM_HighTrue

High true pulses

enum _ftm_output_compare_mode

FlexTimer output compare mode.

Values:

enumerator kFTM_NoOutputSignal

No channel output when counter reaches CnV

enumerator kFTM_ToggleOnMatch

Toggle output

enumerator kFTM_ClearOnMatch

Clear output

enumerator kFTM_SetOnMatch

Set output

enum _ftm_input_capture_edge

FlexTimer input capture edge.

Values:

enumerator kFTM_RisingEdge

Capture on rising edge only

enumerator kFTM_FallingEdge

Capture on falling edge only

enumerator kFTM_RiseAndFallEdge

Capture on rising or falling edge

enum _ftm_dual_edge_capture_mode

FlexTimer dual edge capture modes.

Values:

enumerator kFTM_OneShot

One-shot capture mode

enumerator kFTM_Continuous

Continuous capture mode

enum _ftm_quad_decode_mode

FlexTimer quadrature decode modes.

Values:

enumerator kFTM_QuadPhaseEncode

Phase A and Phase B encoding mode

enumerator kFTM_QuadCountAndDir

Count and direction encoding mode

enum _ftm_phase_polarity

FlexTimer quadrature phase polarities.

Values:

enumerator kFTM_QuadPhaseNormal

Phase input signal is not inverted

enumerator kFTM_QuadPhaseInvert

Phase input signal is inverted

enum _ftm_deadtime_prescale

FlexTimer pre-scaler factor for the dead time insertion.

Values:

enumerator kFTM_Deadtime_Prescale_1

Divide by 1

enumerator kFTM_Deadtime_Prescale_4

Divide by 4

enumerator kFTM_Deadtime_Prescale_16

Divide by 16

enum _ftm_clock_source

FlexTimer clock source selection.

Values:

enumerator kFTM_SystemClock

System clock selected

enumerator kFTM_FixedClock

Fixed frequency clock

enumerator kFTM_ExternalClock

External clock

enum _ftm_clock_prescale

FlexTimer pre-scaler factor selection for the clock source.

Values:

enumerator kFTM_Prescale_Divide_1

Divide by 1

enumerator kFTM_Prescale_Divide_2

Divide by 2

enumerator kFTM_Prescale_Divide_4

Divide by 4

enumerator kFTM_Prescale_Divide_8

Divide by 8

enumerator kFTM_Prescale_Divide_16

Divide by 16

enumerator kFTM_Prescale_Divide_32

Divide by 32

enumerator kFTM_Prescale_Divide_64

Divide by 64

enumerator kFTM_Prescale_Divide_128

Divide by 128

enum _ftm_bdm_mode

Options for the FlexTimer behaviour in BDM Mode.

Values:

enumerator kFTM_BdmMode_0

FTM counter stopped, CH(n)F bit can be set, FTM channels in functional mode, writes to MOD,CNTIN and C(n)V registers bypass the register buffers

enumerator kFTM_BdmMode_1

FTM counter stopped, CH(n)F bit is not set, FTM channels outputs are forced to their safe value , writes to MOD,CNTIN and C(n)V registers bypass the register buffers

enumerator kFTM_BdmMode_2

FTM counter stopped, CH(n)F bit is not set, FTM channels outputs are frozen when chip enters in BDM mode, writes to MOD,CNTIN and C(n)V registers bypass the register buffers

enumerator kFTM_BdmMode_3

FTM counter in functional mode, CH(n)F bit can be set, FTM channels in functional mode, writes to MOD,CNTIN and C(n)V registers is in fully functional mode

enum _ftm_fault_mode

Options for the FTM fault control mode.

Values:

enumerator kFTM_Fault_Disable

Fault control is disabled for all channels

enumerator kFTM_Fault_EvenChnls

Enabled for even channels only(0,2,4,6) with manual fault clearing

enumerator kFTM_Fault_AllChnlsMan

Enabled for all channels with manual fault clearing

enumerator kFTM_Fault_AllChnlsAuto

Enabled for all channels with automatic fault clearing

enum _ftm_external_trigger

FTM external trigger options.

Note

Actual available external trigger sources are SoC-specific

Values:

enumerator kFTM_Chnl0Trigger

Generate trigger when counter equals chnl 0 CnV reg

enumerator kFTM_Chnl1Trigger

Generate trigger when counter equals chnl 1 CnV reg

enumerator kFTM_Chnl2Trigger

Generate trigger when counter equals chnl 2 CnV reg

enumerator kFTM_Chnl3Trigger

Generate trigger when counter equals chnl 3 CnV reg

enumerator kFTM_Chnl4Trigger

Generate trigger when counter equals chnl 4 CnV reg

enumerator kFTM_Chnl5Trigger

Generate trigger when counter equals chnl 5 CnV reg

enumerator kFTM_Chnl6Trigger

Available on certain SoC’s, generate trigger when counter equals chnl 6 CnV reg

enumerator kFTM_Chnl7Trigger

Available on certain SoC’s, generate trigger when counter equals chnl 7 CnV reg

enumerator kFTM_InitTrigger

Generate Trigger when counter is updated with CNTIN

enumerator kFTM_ReloadInitTrigger

Available on certain SoC’s, trigger on reload point

enum _ftm_pwm_sync_method

FlexTimer PWM sync options to update registers with buffer.

Values:

enumerator kFTM_SoftwareTrigger

Software triggers PWM sync

enumerator kFTM_HardwareTrigger_0

Hardware trigger 0 causes PWM sync

enumerator kFTM_HardwareTrigger_1

Hardware trigger 1 causes PWM sync

enumerator kFTM_HardwareTrigger_2

Hardware trigger 2 causes PWM sync

enum _ftm_reload_point

FTM options available as loading point for register reload.

Note

Actual available reload points are SoC-specific

Values:

enumerator kFTM_Chnl0Match

Channel 0 match included as a reload point

enumerator kFTM_Chnl1Match

Channel 1 match included as a reload point

enumerator kFTM_Chnl2Match

Channel 2 match included as a reload point

enumerator kFTM_Chnl3Match

Channel 3 match included as a reload point

enumerator kFTM_Chnl4Match

Channel 4 match included as a reload point

enumerator kFTM_Chnl5Match

Channel 5 match included as a reload point

enumerator kFTM_Chnl6Match

Channel 6 match included as a reload point

enumerator kFTM_Chnl7Match

Channel 7 match included as a reload point

enumerator kFTM_CntMax

Use in up-down count mode only, reload when counter reaches the maximum value

enumerator kFTM_CntMin

Use in up-down count mode only, reload when counter reaches the minimum value

enumerator kFTM_HalfCycMatch

Available on certain SoC’s, half cycle match reload point

enum _ftm_interrupt_enable

List of FTM interrupts.

Note

Actual available interrupts are SoC-specific

Values:

enumerator kFTM_Chnl0InterruptEnable

Channel 0 interrupt

enumerator kFTM_Chnl1InterruptEnable

Channel 1 interrupt

enumerator kFTM_Chnl2InterruptEnable

Channel 2 interrupt

enumerator kFTM_Chnl3InterruptEnable

Channel 3 interrupt

enumerator kFTM_Chnl4InterruptEnable

Channel 4 interrupt

enumerator kFTM_Chnl5InterruptEnable

Channel 5 interrupt

enumerator kFTM_Chnl6InterruptEnable

Channel 6 interrupt

enumerator kFTM_Chnl7InterruptEnable

Channel 7 interrupt

enumerator kFTM_FaultInterruptEnable

Fault interrupt

enumerator kFTM_TimeOverflowInterruptEnable

Time overflow interrupt

enumerator kFTM_ReloadInterruptEnable

Reload interrupt; Available only on certain SoC’s

enum _ftm_status_flags

List of FTM flags.

Note

Actual available flags are SoC-specific

Values:

enumerator kFTM_Chnl0Flag

Channel 0 Flag

enumerator kFTM_Chnl1Flag

Channel 1 Flag

enumerator kFTM_Chnl2Flag

Channel 2 Flag

enumerator kFTM_Chnl3Flag

Channel 3 Flag

enumerator kFTM_Chnl4Flag

Channel 4 Flag

enumerator kFTM_Chnl5Flag

Channel 5 Flag

enumerator kFTM_Chnl6Flag

Channel 6 Flag

enumerator kFTM_Chnl7Flag

Channel 7 Flag

enumerator kFTM_FaultFlag

Fault Flag

enumerator kFTM_TimeOverflowFlag

Time overflow Flag

enumerator kFTM_ChnlTriggerFlag

Channel trigger Flag

enumerator kFTM_ReloadFlag

Reload Flag; Available only on certain SoC’s

typedef enum _ftm_chnl ftm_chnl_t

List of FTM channels.

Note

Actual number of available channels is SoC dependent

typedef enum _ftm_fault_input ftm_fault_input_t

List of FTM faults.

typedef enum _ftm_pwm_mode ftm_pwm_mode_t

FTM PWM operation modes.

typedef enum _ftm_pwm_level_select ftm_pwm_level_select_t

FTM PWM output pulse mode: high-true, low-true or no output.

typedef struct _ftm_chnl_pwm_signal_param ftm_chnl_pwm_signal_param_t

Options to configure a FTM channel’s PWM signal.

typedef struct _ftm_chnl_pwm_config_param ftm_chnl_pwm_config_param_t

Options to configure a FTM channel using precise setting.

typedef enum _ftm_output_compare_mode ftm_output_compare_mode_t

FlexTimer output compare mode.

typedef enum _ftm_input_capture_edge ftm_input_capture_edge_t

FlexTimer input capture edge.

typedef enum _ftm_dual_edge_capture_mode ftm_dual_edge_capture_mode_t

FlexTimer dual edge capture modes.

typedef struct _ftm_dual_edge_capture_param ftm_dual_edge_capture_param_t

FlexTimer dual edge capture parameters.

typedef enum _ftm_quad_decode_mode ftm_quad_decode_mode_t

FlexTimer quadrature decode modes.

typedef enum _ftm_phase_polarity ftm_phase_polarity_t

FlexTimer quadrature phase polarities.

typedef struct _ftm_phase_param ftm_phase_params_t

FlexTimer quadrature decode phase parameters.

typedef struct _ftm_fault_param ftm_fault_param_t

Structure is used to hold the parameters to configure a FTM fault.

typedef enum _ftm_deadtime_prescale ftm_deadtime_prescale_t

FlexTimer pre-scaler factor for the dead time insertion.

typedef enum _ftm_clock_source ftm_clock_source_t

FlexTimer clock source selection.

typedef enum _ftm_clock_prescale ftm_clock_prescale_t

FlexTimer pre-scaler factor selection for the clock source.

typedef enum _ftm_bdm_mode ftm_bdm_mode_t

Options for the FlexTimer behaviour in BDM Mode.

typedef enum _ftm_fault_mode ftm_fault_mode_t

Options for the FTM fault control mode.

typedef enum _ftm_external_trigger ftm_external_trigger_t

FTM external trigger options.

Note

Actual available external trigger sources are SoC-specific

typedef enum _ftm_pwm_sync_method ftm_pwm_sync_method_t

FlexTimer PWM sync options to update registers with buffer.

typedef enum _ftm_reload_point ftm_reload_point_t

FTM options available as loading point for register reload.

Note

Actual available reload points are SoC-specific

typedef enum _ftm_interrupt_enable ftm_interrupt_enable_t

List of FTM interrupts.

Note

Actual available interrupts are SoC-specific

typedef enum _ftm_status_flags ftm_status_flags_t

List of FTM flags.

Note

Actual available flags are SoC-specific

typedef struct _ftm_config ftm_config_t

FTM configuration structure.

This structure holds the configuration settings for the FTM peripheral. To initialize this structure to reasonable defaults, call the FTM_GetDefaultConfig() function and pass a pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

void FTM_SetupFaultInput(FTM_Type *base, ftm_fault_input_t faultNumber, const ftm_fault_param_t *faultParams)

Sets up the working of the FTM fault inputs protection.

FTM can have up to 4 fault inputs. This function sets up fault parameters, fault level, and input filter.

Parameters:
  • base – FTM peripheral base address

  • faultNumber – FTM fault to configure.

  • faultParams – Parameters passed in to set up the fault

static inline void FTM_SetGlobalTimeBaseOutputEnable(FTM_Type *base, bool enable)

Enables or disables the FTM global time base signal generation to other FTMs.

Parameters:
  • base – FTM peripheral base address

  • enable – true to enable, false to disable

static inline void FTM_SetOutputMask(FTM_Type *base, ftm_chnl_t chnlNumber, bool mask)

Sets the FTM peripheral timer channel output mask.

Parameters:
  • base – FTM peripheral base address

  • chnlNumber – Channel to be configured

  • mask – true: masked, channel is forced to its inactive state; false: unmasked

static inline void FTM_SetPwmOutputEnable(FTM_Type *base, ftm_chnl_t chnlNumber, bool value)

Allows users to enable an output on an FTM channel.

To enable the PWM channel output call this function with val=true. For input mode, call this function with val=false.

Parameters:
  • base – FTM peripheral base address

  • chnlNumber – Channel to be configured

  • value – true: enable output; false: output is disabled, used in input mode

static inline void FTM_SetSoftwareTrigger(FTM_Type *base, bool enable)

Enables or disables the FTM software trigger for PWM synchronization.

Parameters:
  • base – FTM peripheral base address

  • enable – true: software trigger is selected, false: software trigger is not selected

static inline void FTM_SetWriteProtection(FTM_Type *base, bool enable)

Enables or disables the FTM write protection.

Parameters:
  • base – FTM peripheral base address

  • enable – true: Write-protection is enabled, false: Write-protection is disabled

static inline void FTM_EnableDmaTransfer(FTM_Type *base, ftm_chnl_t chnlNumber, bool enable)

Enable DMA transfer or not.

Note: CHnIE bit needs to be set when calling this API. The channel DMA transfer request is generated and the channel interrupt is not generated if (CHnF = 1) when DMA and CHnIE bits are set.

Parameters:
  • base – FTM peripheral base address.

  • chnlNumber – Channel to be configured

  • enable – true to enable, false to disable

static inline void FTM_SetLdok(FTM_Type *base, bool value)

Enable the LDOK bit.

This function enables loading updated values.

Parameters:
  • base – FTM peripheral base address

  • value – true: loading updated values is enabled; false: loading updated values is disabled.

static inline void FTM_SetHalfCycReloadMatchValue(FTM_Type *base, uint32_t ticks)

Sets the half cycle relade period in units of ticks.

This function can be callled to set the half-cycle reload value when half-cycle matching is enabled as a reload point. Note: Need enable kFTM_HalfCycMatch as reload point, and when this API call after FTM_StartTimer(), the new HCR value will not be active until next reload point (need call FTM_SetLdok to set LDOK) or register synchronization.

Parameters:
  • base – FTM peripheral base address

  • ticks – A timer period in units of ticks, which should be equal or greater than 1.

static inline void FTM_SetLoadFreq(FTM_Type *base, uint32_t loadfreq)

Set load frequency value.

Parameters:
  • base – FTM peripheral base address.

  • loadfreq – PWM reload frequency, range: 0 ~ 31.

struct _ftm_chnl_pwm_signal_param
#include <fsl_ftm.h>

Options to configure a FTM channel’s PWM signal.

Public Members

ftm_chnl_t chnlNumber

The channel/channel pair number. In combined mode, this represents the channel pair number.

ftm_pwm_level_select_t level

PWM output active level select.

uint8_t dutyCyclePercent

PWM pulse width, value should be between 0 to 100 0 = inactive signal(0% duty cycle)… 100 = always active signal (100% duty cycle).

uint8_t firstEdgeDelayPercent

Used only in kFTM_AsymmetricalCombinedPwm mode to generate an asymmetrical PWM. Specifies the delay to the first edge in a PWM period. If unsure leave as 0; Should be specified as a percentage of the PWM period

bool enableComplementary

Used only in combined PWM mode. true: The combined channels output complementary signals; false: The combined channels output same signals;

bool enableDeadtime

Used only in combined PWM mode with enable complementary. true: The deadtime insertion in this pair of channels is enabled; false: The deadtime insertion in this pair of channels is disabled.

struct _ftm_chnl_pwm_config_param
#include <fsl_ftm.h>

Options to configure a FTM channel using precise setting.

Public Members

ftm_chnl_t chnlNumber

The channel/channel pair number. In combined mode, this represents the channel pair number.

ftm_pwm_level_select_t level

PWM output active level select.

uint16_t dutyValue

PWM pulse width, the uint of this value is timer ticks.

uint16_t firstEdgeValue

Used only in kFTM_AsymmetricalCombinedPwm mode to generate an asymmetrical PWM. Specifies the delay to the first edge in a PWM period. If unsure leave as 0, uint of this value is timer ticks.

bool enableComplementary

Used only in combined PWM mode. true: The combined channels output complementary signals; false: The combined channels output same signals;

bool enableDeadtime

Used only in combined PWM mode with enable complementary. true: The deadtime insertion in this pair of channels is enabled; false: The deadtime insertion in this pair of channels is disabled.

struct _ftm_dual_edge_capture_param
#include <fsl_ftm.h>

FlexTimer dual edge capture parameters.

Public Members

ftm_dual_edge_capture_mode_t mode

Dual Edge Capture mode

ftm_input_capture_edge_t currChanEdgeMode

Input capture edge select for channel n

ftm_input_capture_edge_t nextChanEdgeMode

Input capture edge select for channel n+1

struct _ftm_phase_param
#include <fsl_ftm.h>

FlexTimer quadrature decode phase parameters.

Public Members

bool enablePhaseFilter

True: enable phase filter; false: disable filter

uint32_t phaseFilterVal

Filter value, used only if phase filter is enabled

ftm_phase_polarity_t phasePolarity

Phase polarity

struct _ftm_fault_param
#include <fsl_ftm.h>

Structure is used to hold the parameters to configure a FTM fault.

Public Members

bool enableFaultInput

True: Fault input is enabled; false: Fault input is disabled

bool faultLevel

True: Fault polarity is active low; in other words, ‘0’ indicates a fault; False: Fault polarity is active high

bool useFaultFilter

True: Use the filtered fault signal; False: Use the direct path from fault input

struct _ftm_config
#include <fsl_ftm.h>

FTM configuration structure.

This structure holds the configuration settings for the FTM peripheral. To initialize this structure to reasonable defaults, call the FTM_GetDefaultConfig() function and pass a pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

ftm_clock_prescale_t prescale

FTM clock prescale value

ftm_bdm_mode_t bdmMode

FTM behavior in BDM mode

uint32_t pwmSyncMode

Synchronization methods to use to update buffered registers; Multiple update modes can be used by providing an OR’ed list of options available in enumeration ftm_pwm_sync_method_t.

uint32_t reloadPoints

FTM reload points; When using this, the PWM synchronization is not required. Multiple reload points can be used by providing an OR’ed list of options available in enumeration ftm_reload_point_t.

ftm_fault_mode_t faultMode

FTM fault control mode

uint8_t faultFilterValue

Fault input filter value

ftm_deadtime_prescale_t deadTimePrescale

The dead time prescalar value

uint32_t deadTimeValue

The dead time value deadTimeValue’s available range is 0-1023 when register has DTVALEX, otherwise its available range is 0-63.

uint32_t extTriggers

External triggers to enable. Multiple trigger sources can be enabled by providing an OR’ed list of options available in enumeration ftm_external_trigger_t.

uint8_t chnlInitState

Defines the initialization value of the channels in OUTINT register

uint8_t chnlPolarity

Defines the output polarity of the channels in POL register

bool useGlobalTimeBase

True: Use of an external global time base is enabled; False: disabled

bool swTriggerResetCount

FTM counter synchronization activated by software trigger, avtive when (syncMethod & FTM_SYNC_SWSYNC_MASK) != 0U

bool hwTriggerResetCount

FTM counter synchronization activated by hardware trigger, avtive when (syncMethod & (FTM_SYNC_TRIG0_MASK | FTM_SYNC_TRIG1_MASK | FTM_SYNC_TRIG2_MASK)) != 0U

GPIO: General-Purpose Input/Output Driver

FSL_GPIO_DRIVER_VERSION

GPIO driver version.

enum _gpio_pin_direction

GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput

Set current pin as digital input

enumerator kGPIO_DigitalOutput

Set current pin as digital output

enum _gpio_checker_attribute

GPIO checker attribute.

Values:

enumerator kGPIO_UsernonsecureRWUsersecureRWPrivilegedsecureRW

User nonsecure:Read+Write; User Secure:Read+Write; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureRUsersecureRWPrivilegedsecureRW

User nonsecure:Read; User Secure:Read+Write; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureRWPrivilegedsecureRW

User nonsecure:None; User Secure:Read+Write; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureRUsersecureRPrivilegedsecureRW

User nonsecure:Read; User Secure:Read; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureRPrivilegedsecureRW

User nonsecure:None; User Secure:Read; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureRW

User nonsecure:None; User Secure:None; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureR

User nonsecure:None; User Secure:None; Privileged Secure:Read

enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureN

User nonsecure:None; User Secure:None; Privileged Secure:None

enumerator kGPIO_IgnoreAttributeCheck

Ignores the attribute check

typedef enum _gpio_pin_direction gpio_pin_direction_t

GPIO direction definition.

typedef enum _gpio_checker_attribute gpio_checker_attribute_t

GPIO checker attribute.

typedef struct _gpio_pin_config gpio_pin_config_t

The GPIO pin configuration structure.

Each pin can only be configured as either an output pin or an input pin at a time. If configured as an input pin, leave the outputConfig unused. Note that in some use cases, the corresponding port property should be configured in advance with the PORT_SetPinConfig().

GPIO_FIT_REG(value)
struct _gpio_pin_config
#include <fsl_gpio.h>

The GPIO pin configuration structure.

Each pin can only be configured as either an output pin or an input pin at a time. If configured as an input pin, leave the outputConfig unused. Note that in some use cases, the corresponding port property should be configured in advance with the PORT_SetPinConfig().

Public Members

gpio_pin_direction_t pinDirection

GPIO direction, input or output

uint8_t outputLogic

Set a default output logic, which has no use in input

GPIO Driver

void GPIO_PortInit(GPIO_Type *base)

Initializes the GPIO peripheral.

This function ungates the GPIO clock.

Parameters:
  • base – GPIO peripheral base pointer.

void GPIO_PortDenit(GPIO_Type *base)

Denitializes the GPIO peripheral.

Parameters:
  • base – GPIO peripheral base pointer.

void GPIO_PinInit(GPIO_Type *base, uint32_t pin, const gpio_pin_config_t *config)

Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, as either input or output, in the user file. Then, call the GPIO_PinInit() function.

This is an example to define an input pin or an output pin configuration.

Define a digital input pin configuration,
gpio_pin_config_t config =
{
  kGPIO_DigitalInput,
  0,
}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
  kGPIO_DigitalOutput,
  0,
}

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • pin – GPIO port pin number

  • config – GPIO pin configuration pointer

static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t pin, uint8_t output)

Sets the output level of the multiple GPIO pins to the logic 1 or 0.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • pin – GPIO pin number

  • output – GPIO pin output logic level.

    • 0: corresponding pin output low-logic level.

    • 1: corresponding pin output high-logic level.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t mask)

Sets the output level of the multiple GPIO pins to the logic 1.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • mask – GPIO pin number macro

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t mask)

Sets the output level of the multiple GPIO pins to the logic 0.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • mask – GPIO pin number macro

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t mask)

Reverses the current output logic of the multiple GPIO pins.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • mask – GPIO pin number macro

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t pin)

Reads the current input value of the GPIO port.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • pin – GPIO pin number

Return values:

GPIO – port input value

  • 0: corresponding pin input low-logic level.

  • 1: corresponding pin input high-logic level.

uint32_t GPIO_PortGetInterruptFlags(GPIO_Type *base)

Reads the GPIO port interrupt status flag.

If a pin is configured to generate the DMA request, the corresponding flag is cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic one is written to that flag. If configured for a level sensitive interrupt that remains asserted, the flag is set again immediately.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

Return values:

The – current GPIO port interrupt status flag, for example, 0x00010001 means the pin 0 and 17 have the interrupt.

void GPIO_PortClearInterruptFlags(GPIO_Type *base, uint32_t mask)

Clears multiple GPIO pin interrupt status flags.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • mask – GPIO pin number macro

void GPIO_CheckAttributeBytes(GPIO_Type *base, gpio_checker_attribute_t attribute)

brief The GPIO module supports a device-specific number of data ports, organized as 32-bit words/8-bit Bytes. Each 32-bit/8-bit data port includes a GACR register, which defines the byte-level attributes required for a successful access to the GPIO programming model. If the GPIO module’s GACR register organized as 32-bit words, the attribute controls for the 4 data bytes in the GACR follow a standard little endian data convention.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • attribute – GPIO checker attribute

I2C: Inter-Integrated Circuit Driver

I2C Driver

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)

Initializes the I2C peripheral. Call this API to ungate the I2C clock and configure the I2C with master configuration.

Note

This API should be called at the beginning of the application. Otherwise, any operation to the I2C module can cause a hard fault because the clock is not enabled. The configuration structure can be custom filled or it can be set with default values by using the I2C_MasterGetDefaultConfig(). After calling this API, the master is ready to transfer. This is an example.

i2c_master_config_t config = {
.enableMaster = true,
.enableStopHold = false,
.highDrive = false,
.baudRate_Bps = 100000,
.glitchFilterWidth = 0
};
I2C_MasterInit(I2C0, &config, 12000000U);

Parameters:
  • base – I2C base pointer

  • masterConfig – A pointer to the master configuration structure

  • srcClock_Hz – I2C peripheral clock frequency in Hz

void I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)

Initializes the I2C peripheral. Call this API to ungate the I2C clock and initialize the I2C with the slave configuration.

Note

This API should be called at the beginning of the application. Otherwise, any operation to the I2C module can cause a hard fault because the clock is not enabled. The configuration structure can partly be set with default values by I2C_SlaveGetDefaultConfig() or it can be custom filled by the user. This is an example.

i2c_slave_config_t config = {
.enableSlave = true,
.enableGeneralCall = false,
.addressingMode = kI2C_Address7bit,
.slaveAddress = 0x1DU,
.enableWakeUp = false,
.enablehighDrive = false,
.enableBaudRateCtl = false,
.sclStopHoldTime_ns = 4000
};
I2C_SlaveInit(I2C0, &config, 12000000U);

Parameters:
  • base – I2C base pointer

  • slaveConfig – A pointer to the slave configuration structure

  • srcClock_Hz – I2C peripheral clock frequency in Hz

void I2C_MasterDeinit(I2C_Type *base)

De-initializes the I2C master peripheral. Call this API to gate the I2C clock. The I2C master module can’t work unless the I2C_MasterInit is called.

Parameters:
  • base – I2C base pointer

void I2C_SlaveDeinit(I2C_Type *base)

De-initializes the I2C slave peripheral. Calling this API gates the I2C clock. The I2C slave module can’t work unless the I2C_SlaveInit is called to enable the clock.

Parameters:
  • base – I2C base pointer

uint32_t I2C_GetInstance(I2C_Type *base)

Get instance number for I2C module.

Parameters:
  • base – I2C peripheral base address.

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)

Sets the I2C master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the I2C_MasterConfigure(). Use the initialized structure unchanged in the I2C_MasterConfigure() or modify the structure before calling the I2C_MasterConfigure(). This is an example.

i2c_master_config_t config;
I2C_MasterGetDefaultConfig(&config);

Parameters:
  • masterConfig – A pointer to the master configuration structure.

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)

Sets the I2C slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the I2C_SlaveConfigure(). Modify fields of the structure before calling the I2C_SlaveConfigure(). This is an example.

i2c_slave_config_t config;
I2C_SlaveGetDefaultConfig(&config);

Parameters:
  • slaveConfig – A pointer to the slave configuration structure.

static inline void I2C_Enable(I2C_Type *base, bool enable)

Enables or disables the I2C peripheral operation.

Parameters:
  • base – I2C base pointer

  • enable – Pass true to enable and false to disable the module.

uint32_t I2C_MasterGetStatusFlags(I2C_Type *base)

Gets the I2C status flags.

Parameters:
  • base – I2C base pointer

Returns:

status flag, use status flag to AND _i2c_flags to get the related status.

static inline uint32_t I2C_SlaveGetStatusFlags(I2C_Type *base)

Gets the I2C status flags.

Parameters:
  • base – I2C base pointer

Returns:

status flag, use status flag to AND _i2c_flags to get the related status.

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and kI2C_IntPendingFlag.

Parameters:
  • base – I2C base pointer

  • statusMask – The status flag mask, defined in type i2c_status_flag_t. The parameter can be any combination of the following values:

    • kI2C_StartDetectFlag (if available)

    • kI2C_StopDetectFlag (if available)

    • kI2C_ArbitrationLostFlag

    • kI2C_IntPendingFlagFlag

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and kI2C_IntPendingFlag

Parameters:
  • base – I2C base pointer

  • statusMask – The status flag mask, defined in type i2c_status_flag_t. The parameter can be any combination of the following values:

    • kI2C_StartDetectFlag (if available)

    • kI2C_StopDetectFlag (if available)

    • kI2C_ArbitrationLostFlag

    • kI2C_IntPendingFlagFlag

void I2C_EnableInterrupts(I2C_Type *base, uint32_t mask)

Enables I2C interrupt requests.

Parameters:
  • base – I2C base pointer

  • mask – interrupt source The parameter can be combination of the following source if defined:

    • kI2C_GlobalInterruptEnable

    • kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

    • kI2C_SdaTimeoutInterruptEnable

void I2C_DisableInterrupts(I2C_Type *base, uint32_t mask)

Disables I2C interrupt requests.

Parameters:
  • base – I2C base pointer

  • mask – interrupt source The parameter can be combination of the following source if defined:

    • kI2C_GlobalInterruptEnable

    • kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

    • kI2C_SdaTimeoutInterruptEnable

static inline void I2C_EnableDMA(I2C_Type *base, bool enable)

Enables/disables the I2C DMA interrupt.

Parameters:
  • base – I2C base pointer

  • enable – true to enable, false to disable

static inline uint32_t I2C_GetDataRegAddr(I2C_Type *base)

Gets the I2C tx/rx data register address. This API is used to provide a transfer address for I2C DMA transfer configuration.

Parameters:
  • base – I2C base pointer

Returns:

data register address

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)

Sets the I2C master transfer baud rate.

Parameters:
  • base – I2C base pointer

  • baudRate_Bps – the baud rate value in bps

  • srcClock_Hz – Source clock

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal. The slave address is sent following the I2C START signal.

Parameters:
  • base – I2C peripheral base pointer

  • address – 7-bit slave device address.

  • direction – Master transfer directions(transmit/receive).

Return values:
  • kStatus_Success – Successfully send the start signal.

  • kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)

Sends a STOP signal on the I2C bus.

Return values:
  • kStatus_Success – Successfully send the stop signal.

  • kStatus_I2C_Timeout – Send stop signal failed, timeout.

status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a REPEATED START on the I2C bus.

Parameters:
  • base – I2C peripheral base pointer

  • address – 7-bit slave device address.

  • direction – Master transfer directions(transmit/receive).

Return values:
  • kStatus_Success – Successfully send the start signal.

  • kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C master.

status_t I2C_MasterWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize, uint32_t flags)

Performs a polling send transaction on the I2C bus.

Parameters:
  • base – The I2C peripheral base pointer.

  • txBuff – The pointer to the data to be transferred.

  • txSize – The length in bytes of the data to be transferred.

  • flags – Transfer control flag to decide whether need to send a stop, use kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not send a stop.

Return values:
  • kStatus_Success – Successfully complete the data transmission.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

status_t I2C_MasterReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize, uint32_t flags)

Performs a polling receive transaction on the I2C bus.

Note

The I2C_MasterReadBlocking function stops the bus before reading the final byte. Without stopping the bus prior for the final read, the bus issues another read, resulting in garbage data being read into the data register.

Parameters:
  • base – I2C peripheral base pointer.

  • rxBuff – The pointer to the data to store the received data.

  • rxSize – The length in bytes of the data to be received.

  • flags – Transfer control flag to decide whether need to send a stop, use kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not send a stop.

Return values:
  • kStatus_Success – Successfully complete the data transmission.

  • kStatus_I2C_Timeout – Send stop signal failed, timeout.

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)

Performs a polling send transaction on the I2C bus.

Parameters:
  • base – The I2C peripheral base pointer.

  • txBuff – The pointer to the data to be transferred.

  • txSize – The length in bytes of the data to be transferred.

Return values:
  • kStatus_Success – Successfully complete the data transmission.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)

Performs a polling receive transaction on the I2C bus.

Parameters:
  • base – I2C peripheral base pointer.

  • rxBuff – The pointer to the data to store the received data.

  • rxSize – The length in bytes of the data to be received.

Return values:
  • kStatus_Success – Successfully complete data receive.

  • kStatus_I2C_Timeout – Wait status flag timeout.

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)

Performs a master polling transfer on the I2C bus.

Note

The API does not return until the transfer succeeds or fails due to arbitration lost or receiving a NAK.

Parameters:
  • base – I2C peripheral base address.

  • xfer – Pointer to the transfer structure.

Return values:
  • kStatus_Success – Successfully complete the data transmission.

  • kStatus_I2C_Busy – Previous transmission still not finished.

  • kStatus_I2C_Timeout – Transfer error, wait signal timeout.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_master_handle_t structure to store the transfer state.

  • callback – pointer to user callback function.

  • userData – user parameter passed to the callback function.

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)

Performs a master interrupt non-blocking transfer on the I2C bus.

Note

Calling the API returns immediately after transfer initiates. The user needs to call I2C_MasterGetTransferCount to poll the transfer status to check whether the transfer is finished. If the return status is not kStatus_I2C_Busy, the transfer is finished.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_master_handle_t structure which stores the transfer state.

  • xfer – pointer to i2c_master_transfer_t structure.

Return values:
  • kStatus_Success – Successfully start the data transmission.

  • kStatus_I2C_Busy – Previous transmission still not finished.

  • kStatus_I2C_Timeout – Transfer error, wait signal timeout.

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count)

Gets the master transfer status during a interrupt non-blocking transfer.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_master_handle_t structure which stores the transfer state.

  • count – Number of bytes transferred so far by the non-blocking transaction.

Return values:
  • kStatus_InvalidArgument – count is Invalid.

  • kStatus_Success – Successfully return the count.

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)

Aborts an interrupt non-blocking transfer early.

Note

This API can be called at any time when an interrupt non-blocking transfer initiates to abort the transfer early.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_master_handle_t structure which stores the transfer state

Return values:
  • kStatus_I2C_Timeout – Timeout during polling flag.

  • kStatus_Success – Successfully abort the transfer.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)

Master interrupt handler.

Parameters:
  • base – I2C base pointer.

  • i2cHandle – pointer to i2c_master_handle_t structure.

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_slave_handle_t structure to store the transfer state.

  • callback – pointer to user callback function.

  • userData – user parameter passed to the callback function.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask)

Starts accepting slave transfers.

Call this API after calling the I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start processing transactions driven by an I2C master. The slave monitors the I2C bus and passes events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The callback is always invoked from the interrupt context.

The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kLPI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.

  • eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.

Return values:
  • kStatus_Success – Slave transfers were successfully started.

  • kStatus_I2C_Busy – Slave transfers have already been started on this handle.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)

Aborts the slave transfer.

Note

This API can be called at any time to stop slave for handling the bus events.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_slave_handle_t structure which stores the transfer state.

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)

Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_slave_handle_t structure.

  • count – Number of bytes transferred so far by the non-blocking transaction.

Return values:
  • kStatus_InvalidArgument – count is Invalid.

  • kStatus_Success – Successfully return the count.

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)

Slave interrupt handler.

Parameters:
  • base – I2C base pointer.

  • i2cHandle – pointer to i2c_slave_handle_t structure which stores the transfer state

FSL_I2C_DRIVER_VERSION

I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy

I2C is busy with current transfer.

enumerator kStatus_I2C_Idle

Bus is Idle.

enumerator kStatus_I2C_Nak

NAK received during transfer.

enumerator kStatus_I2C_ArbitrationLost

Arbitration lost during transfer.

enumerator kStatus_I2C_Timeout

Timeout polling status flags.

enumerator kStatus_I2C_Addr_Nak

NAK received during the address probe.

enum _i2c_flags

I2C peripheral flags.

Note

These enumerations are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ReceiveNakFlag

I2C receive NAK flag.

enumerator kI2C_IntPendingFlag

I2C interrupt pending flag. This flag can be cleared.

enumerator kI2C_TransferDirectionFlag

I2C transfer direction flag.

enumerator kI2C_RangeAddressMatchFlag

I2C range address match flag.

enumerator kI2C_ArbitrationLostFlag

I2C arbitration lost flag. This flag can be cleared.

enumerator kI2C_BusBusyFlag

I2C bus busy flag.

enumerator kI2C_AddressMatchFlag

I2C address match flag.

enumerator kI2C_TransferCompleteFlag

I2C transfer complete flag.

enumerator kI2C_StopDetectFlag

I2C stop detect flag. This flag can be cleared.

enumerator kI2C_StartDetectFlag

I2C start detect flag. This flag can be cleared.

enum _i2c_interrupt_enable

I2C feature interrupt source.

Values:

enumerator kI2C_GlobalInterruptEnable

I2C global interrupt.

enumerator kI2C_StopDetectInterruptEnable

I2C stop detect interrupt.

enumerator kI2C_StartStopDetectInterruptEnable

I2C start&stop detect interrupt.

enum _i2c_direction

The direction of master and slave transfers.

Values:

enumerator kI2C_Write

Master transmits to the slave.

enumerator kI2C_Read

Master receives from the slave.

enum _i2c_slave_address_mode

Addressing mode.

Values:

enumerator kI2C_Address7bit

7-bit addressing mode.

enumerator kI2C_RangeMatch

Range address match addressing mode.

enum _i2c_master_transfer_flags

I2C transfer control flag.

Values:

enumerator kI2C_TransferDefaultFlag

A transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag

A transfer starts without a start signal, only support write only or write+read with no start flag, do not support read only with no start flag.

enumerator kI2C_TransferRepeatedStartFlag

A transfer starts with a repeated start signal.

enumerator kI2C_TransferNoStopFlag

A transfer ends without a stop signal.

enum _i2c_slave_transfer_event

Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.

Note

These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent

Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent

A callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_SlaveReceiveEvent

A callback is requested to provide a buffer in which to place received data (slave-receiver role).

enumerator kI2C_SlaveTransmitAckEvent

A callback needs to either transmit an ACK or NACK.

enumerator kI2C_SlaveStartEvent

A start/repeated start was detected.

enumerator kI2C_SlaveCompletionEvent

A stop was detected or finished transfer, completing the transfer.

enumerator kI2C_SlaveGenaralcallEvent

Received the general call address after a start or repeated start.

enumerator kI2C_SlaveAllEvents

A bit mask of all available events.

Common sets of flags used by the driver.

Values:

enumerator kClearFlags

All flags which are cleared by the driver upon starting a transfer.

enumerator kIrqFlags
typedef enum _i2c_direction i2c_direction_t

The direction of master and slave transfers.

typedef enum _i2c_slave_address_mode i2c_slave_address_mode_t

Addressing mode.

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t

Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.

Note

These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_master_config i2c_master_config_t

I2C master user configuration.

typedef struct _i2c_slave_config i2c_slave_config_t

I2C slave user configuration.

typedef struct _i2c_master_handle i2c_master_handle_t

I2C master handle typedef.

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle, status_t status, void *userData)

I2C master transfer callback typedef.

typedef struct _i2c_slave_handle i2c_slave_handle_t

I2C slave handle typedef.

typedef struct _i2c_master_transfer i2c_master_transfer_t

I2C master transfer structure.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t

I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, i2c_slave_transfer_t *xfer, void *userData)

I2C slave transfer callback typedef.

I2C_RETRY_TIMES

Retry times for waiting flag.

I2C_MASTER_FACK_CONTROL

Mater Fast ack control, control if master needs to manually write ack, this is used to low the speed of transfer for SoCs with feature FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING.

I2C_HAS_STOP_DETECT
struct _i2c_master_config
#include <fsl_i2c.h>

I2C master user configuration.

Public Members

bool enableMaster

Enables the I2C peripheral at initialization time.

bool enableStopHold

Controls the stop hold enable.

bool enableDoubleBuffering

Controls double buffer enable; notice that enabling the double buffer disables the clock stretch.

uint32_t baudRate_Bps

Baud rate configuration of I2C peripheral.

uint8_t glitchFilterWidth

Controls the width of the glitch.

struct _i2c_slave_config
#include <fsl_i2c.h>

I2C slave user configuration.

Public Members

bool enableSlave

Enables the I2C peripheral at initialization time.

bool enableGeneralCall

Enables the general call addressing mode.

bool enableWakeUp

Enables/disables waking up MCU from low-power mode.

bool enableDoubleBuffering

Controls a double buffer enable; notice that enabling the double buffer disables the clock stretch.

bool enableBaudRateCtl

Enables/disables independent slave baud rate on SCL in very fast I2C modes.

uint16_t slaveAddress

A slave address configuration.

uint16_t upperAddress

A maximum boundary slave address used in a range matching mode.

i2c_slave_address_mode_t addressingMode

An addressing mode configuration of i2c_slave_address_mode_config_t.

uint32_t sclStopHoldTime_ns

the delay from the rising edge of SCL (I2C clock) to the rising edge of SDA (I2C data) while SCL is high (stop condition), SDA hold time and SCL start hold time are also configured according to the SCL stop hold time.

struct _i2c_master_transfer
#include <fsl_i2c.h>

I2C master transfer structure.

Public Members

uint32_t flags

A transfer flag which controls the transfer.

uint8_t slaveAddress

7-bit slave address.

i2c_direction_t direction

A transfer direction, read or write.

uint32_t subaddress

A sub address. Transferred MSB first.

uint8_t subaddressSize

A size of the command buffer.

uint8_t *volatile data

A transfer buffer.

volatile size_t dataSize

A transfer size.

struct _i2c_master_handle
#include <fsl_i2c.h>

I2C master handle structure.

Public Members

i2c_master_transfer_t transfer

I2C master transfer copy.

size_t transferSize

Total bytes to be transferred.

uint8_t state

A transfer state maintained during transfer.

i2c_master_transfer_callback_t completionCallback

A callback function called when the transfer is finished.

void *userData

A callback parameter passed to the callback function.

struct _i2c_slave_transfer
#include <fsl_i2c.h>

I2C slave transfer structure.

Public Members

i2c_slave_transfer_event_t event

A reason that the callback is invoked.

uint8_t *volatile data

A transfer buffer.

volatile size_t dataSize

A transfer size.

status_t completionStatus

Success or error code describing how the transfer completed. Only applies for kI2C_SlaveCompletionEvent.

size_t transferredCount

A number of bytes actually transferred since the start or since the last repeated start.

struct _i2c_slave_handle
#include <fsl_i2c.h>

I2C slave handle structure.

Public Members

volatile bool isBusy

Indicates whether a transfer is busy.

i2c_slave_transfer_t transfer

I2C slave transfer copy.

uint32_t eventMask

A mask of enabled events.

i2c_slave_transfer_callback_t callback

A callback function called at the transfer event.

void *userData

A callback parameter passed to the callback.

I2C eDMA Driver

void I2C_MasterCreateEDMAHandle(I2C_Type *base, i2c_master_edma_handle_t *handle, i2c_master_edma_transfer_callback_t callback, void *userData, edma_handle_t *edmaHandle)

Initializes the I2C handle which is used in transactional functions.

Parameters:
  • base – I2C peripheral base address.

  • handle – A pointer to the i2c_master_edma_handle_t structure.

  • callback – A pointer to the user callback function.

  • userData – A user parameter passed to the callback function.

  • edmaHandle – eDMA handle pointer.

status_t I2C_MasterTransferEDMA(I2C_Type *base, i2c_master_edma_handle_t *handle, i2c_master_transfer_t *xfer)

Performs a master eDMA non-blocking transfer on the I2C bus.

Parameters:
  • base – I2C peripheral base address.

  • handle – A pointer to the i2c_master_edma_handle_t structure.

  • xfer – A pointer to the transfer structure of i2c_master_transfer_t.

Return values:
  • kStatus_Success – Successfully completed the data transmission.

  • kStatus_I2C_Busy – A previous transmission is still not finished.

  • kStatus_I2C_Timeout – Transfer error, waits for a signal timeout.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

status_t I2C_MasterTransferGetCountEDMA(I2C_Type *base, i2c_master_edma_handle_t *handle, size_t *count)

Gets a master transfer status during the eDMA non-blocking transfer.

Parameters:
  • base – I2C peripheral base address.

  • handle – A pointer to the i2c_master_edma_handle_t structure.

  • count – A number of bytes transferred by the non-blocking transaction.

void I2C_MasterTransferAbortEDMA(I2C_Type *base, i2c_master_edma_handle_t *handle)

Aborts a master eDMA non-blocking transfer early.

Parameters:
  • base – I2C peripheral base address.

  • handle – A pointer to the i2c_master_edma_handle_t structure.

FSL_I2C_EDMA_DRIVER_VERSION

I2C EDMA driver version.

typedef struct _i2c_master_edma_handle i2c_master_edma_handle_t

Retry times for waiting flag.

I2C master eDMA handle typedef.

typedef void (*i2c_master_edma_transfer_callback_t)(I2C_Type *base, i2c_master_edma_handle_t *handle, status_t status, void *userData)

I2C master eDMA transfer callback typedef.

struct _i2c_master_edma_handle
#include <fsl_i2c_edma.h>

I2C master eDMA transfer structure.

Public Members

i2c_master_transfer_t transfer

I2C master transfer structure.

size_t transferSize

Total bytes to be transferred.

uint8_t nbytes

eDMA minor byte transfer count initially configured.

uint8_t state

I2C master transfer status.

edma_handle_t *dmaHandle

The eDMA handler used.

i2c_master_edma_transfer_callback_t completionCallback

A callback function called after the eDMA transfer is finished.

void *userData

A callback parameter passed to the callback function.

Common Driver

FSL_COMMON_DRIVER_VERSION

common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE

No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART

Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART

Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI

Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC

Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM

Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART

Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART

Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART

Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO

Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI

Debug console based on QSCI.

MIN(a, b)

Computes the minimum of a and b.

MAX(a, b)

Computes the maximum of a and b.

UINT16_MAX

Max value of uint16_t type.

UINT32_MAX

Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)

Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)

Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)

Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)

Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)

Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)

For the variable at address address, clear the bits specifiled by clearBits and set the bits specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)

For the variable at address address, check whether the value equal to expected. If value same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)

For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)

Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)

Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)

Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)

Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER
SDK_SIZEALIGN(var, alignbytes)

Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

AT_NONCACHEABLE_SECTION(var)

Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)

Define a variable var, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)

Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)

Define a variable var with initial value, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.

enum _status_groups

Status group numbers.

Values:

enumerator kStatusGroup_Generic

Group number for generic status codes.

enumerator kStatusGroup_FLASH

Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI

Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI

Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI

Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART

Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C

Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C

Group number for LPI2C status codes.

enumerator kStatusGroup_UART

Group number for UART status codes.

enumerator kStatusGroup_I2C

Group number for UART status codes.

enumerator kStatusGroup_LPSCI

Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART

Group number for LPUART status codes.

enumerator kStatusGroup_SPI

Group number for SPI status code.

enumerator kStatusGroup_XRDC

Group number for XRDC status code.

enumerator kStatusGroup_SEMA42

Group number for SEMA42 status code.

enumerator kStatusGroup_SDHC

Group number for SDHC status code

enumerator kStatusGroup_SDMMC

Group number for SDMMC status code

enumerator kStatusGroup_SAI

Group number for SAI status code

enumerator kStatusGroup_MCG

Group number for MCG status codes.

enumerator kStatusGroup_SCG

Group number for SCG status codes.

enumerator kStatusGroup_SDSPI

Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S

Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD

Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP

Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C

Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S

Group number for I2S status codes

enumerator kStatusGroup_IUART

Group number for IUART status codes

enumerator kStatusGroup_CSI

Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI

Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC

Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER

Group number for POWER status codes.

enumerator kStatusGroup_ENET

Group number for ENET status codes.

enumerator kStatusGroup_PHY

Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX

Group number for TRGMUX status codes.

enumerator kStatusGroup_SMARTCARD

Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM

Group number for LMEM status codes.

enumerator kStatusGroup_QSPI

Group number for QSPI status codes.

enumerator kStatusGroup_DMA

Group number for DMA status codes.

enumerator kStatusGroup_EDMA

Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR

Group number for DMAMGR status codes.

enumerator kStatusGroup_FLEXCAN

Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC

Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA

Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI

Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART

Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC

Group number for DMIC status codes.

enumerator kStatusGroup_SDIF

Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI

Group number for SPIFI status codes.

enumerator kStatusGroup_OTP

Group number for OTP status codes.

enumerator kStatusGroup_MCAN

Group number for MCAN status codes.

enumerator kStatusGroup_CAAM

Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI

Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC

Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C

Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP

Group number for DCP status codes.

enumerator kStatusGroup_MSCAN

Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI

Group number for ESAI status codes.

enumerator kStatusGroup_FLEXSPI

Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC

Group number for MMDC status codes.

enumerator kStatusGroup_PDM

Group number for MIC status codes.

enumerator kStatusGroup_SDMA

Group number for SDMA status codes.

enumerator kStatusGroup_ICS

Group number for ICS status codes.

enumerator kStatusGroup_SPDIF

Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI

Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT

Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP

Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C

Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1

Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER

Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole

Group number for debug console status codes.

enumerator kStatusGroup_SEMC

Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart

Starting number for application groups.

enumerator kStatusGroup_IAP

Group number for IAP status codes

enumerator kStatusGroup_SFA

Group number for SFA status codes

enumerator kStatusGroup_SPC

Group number for SPC status codes.

enumerator kStatusGroup_PUF

Group number for PUF status codes.

enumerator kStatusGroup_TOUCH_PANEL

Group number for touch panel status codes

enumerator kStatusGroup_VBAT

Group number for VBAT status codes

enumerator kStatusGroup_XSPI

Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC

Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC

Group number for JPEGDEC status codes

enumerator kStatusGroup_HAL_GPIO

Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART

Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER

Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI

Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C

Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH

Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM

Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG

Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S

Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR

Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER

Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER

Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED

Group number for LED status codes.

enumerator kStatusGroup_BUTTON

Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM

Group number for EXTERN EEPROM status codes.

enumerator kStatusGroup_SHELL

Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER

Group number for MEM MANAGER status codes.

enumerator kStatusGroup_LIST

Group number for List status codes.

enumerator kStatusGroup_OSA

Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK

Group number for Common task status codes.

enumerator kStatusGroup_MSG

Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP

Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR

Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC

Group number for codec status codes.

enumerator kStatusGroup_ASRC

Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD

Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV

Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC

Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS

Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG

Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS

Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI

Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU

Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI

Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER

Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED

Group number for IPED status codes.

enumerator kStatusGroup_ELS_PKC

Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC

Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF

Group number for HOSTIF status codes.

enumerator kStatusGroup_CLIF

Group number for CLIF status codes.

enumerator kStatusGroup_BMA

Group number for BMA status codes.

enumerator kStatusGroup_NETC

Group number for NETC status codes.

enumerator kStatusGroup_ELE

Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY

Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER

Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON

Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3

Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE

Group number for HIPERFACE status codes.

Generic status return codes.

Values:

enumerator kStatus_Success

Generic status for Success.

enumerator kStatus_Fail

Generic status for Fail.

enumerator kStatus_ReadOnly

Generic status for read only failure.

enumerator kStatus_OutOfRange

Generic status for out of range access.

enumerator kStatus_InvalidArgument

Generic status for invalid argument check.

enumerator kStatus_Timeout

Generic status for timeout.

enumerator kStatus_NoTransferInProgress

Generic status for no transfer in progress.

enumerator kStatus_Busy

Generic status for module is busy.

enumerator kStatus_NoData

Generic status for no data is found for the operation.

typedef int32_t status_t

Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)

Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters:
  • size – The length required to malloc.

  • alignbytes – The alignment size.

Return values:

The – allocated memory.

void SDK_Free(void *ptr)

Free memory.

Parameters:
  • ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)

Delay at least for some time. Please note that, this API uses while loop for delay, different run-time environments make the time not precise, if precise delay count was needed, please implement a new delay function with hardware timer.

Parameters:
  • delayTime_us – Delay time in unit of microsecond.

  • coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)

Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ number.

Return values:
  • kStatus_Success – Interrupt enabled successfully

  • kStatus_Fail – Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)

Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ number.

Return values:
  • kStatus_Success – Interrupt disabled successfully

  • kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)

Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ to Enable.

  • priNum – Priority number set to interrupt controller register.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)

Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ to set.

  • priNum – Priority number set to interrupt controller register.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)

Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The flag which IRQ to clear.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)

Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to provided the primask register for the EnableGlobalIRQ().

Returns:

Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)

Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask. The idea is for the convenience of integration of RTOS. some RTOS get its own management mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlobalIRQ() in pair.

Parameters:
  • primask – value of primask register to be restored. The primask value is supposed to be provided by the DisableGlobalIRQ().

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t newValue)
static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ

Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)

Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)

Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit platforms(such as DSC).

| Unused    || Major Version || Minor Version ||  Bug Fix    |
31        25  24           17  16            9  8            0
ARRAY_SIZE(x)

Computes the number of elements in an array.

UINT64_H(X)

Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)

Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()

For switch case code block, if case section ends without “break;” statement, there wil be fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)

Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)

Convert the register address to the one used in non-secure mode.

Lin_lpuart_driver

FSL_LIN_LPUART_DRIVER_VERSION

LIN LPUART driver version.

enum _lin_lpuart_stop_bit_count

Values:

enumerator kLPUART_OneStopBit

One stop bit

enumerator kLPUART_TwoStopBit

Two stop bits

enum _lin_lpuart_flags

Values:

enumerator kLPUART_TxDataRegEmptyFlag

Transmit data register empty flag, sets when transmit buffer is empty

enumerator kLPUART_TransmissionCompleteFlag

Transmission complete flag, sets when transmission activity complete

enumerator kLPUART_RxDataRegFullFlag

Receive data register full flag, sets when the receive data buffer is full

enumerator kLPUART_IdleLineFlag

Idle line detect flag, sets when idle line detected

enumerator kLPUART_RxOverrunFlag

Receive Overrun, sets when new data is received before data is read from receive register

enumerator kLPUART_NoiseErrorFlag

Receive takes 3 samples of each received bit. If any of these samples differ, noise flag sets

enumerator kLPUART_FramingErrorFlag

Frame error flag, sets if logic 0 was detected where stop bit expected

enumerator kLPUART_ParityErrorFlag

If parity enabled, sets upon parity error detection

enumerator kLPUART_LinBreakFlag

LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit enabled

enumerator kLPUART_RxActiveEdgeFlag

Receive pin active edge interrupt flag, sets when active edge detected

enumerator kLPUART_RxActiveFlag

Receiver Active Flag (RAF), sets at beginning of valid start bit

enumerator kLPUART_DataMatch1Flag

The next character to be read from LPUART_DATA matches MA1

enumerator kLPUART_DataMatch2Flag

The next character to be read from LPUART_DATA matches MA2

enumerator kLPUART_NoiseErrorInRxDataRegFlag

NOISY bit, sets if noise detected in current data word

enumerator kLPUART_ParityErrorInRxDataRegFlag

PARITY bit, sets if noise detected in current data word

enumerator kLPUART_TxFifoEmptyFlag

TXEMPT bit, sets if transmit buffer is empty

enumerator kLPUART_RxFifoEmptyFlag

RXEMPT bit, sets if receive buffer is empty

enumerator kLPUART_TxFifoOverflowFlag

TXOF bit, sets if transmit buffer overflow occurred

enumerator kLPUART_RxFifoUnderflowFlag

RXUF bit, sets if receive buffer underflow occurred

enum _lin_lpuart_interrupt_enable

Values:

enumerator kLPUART_LinBreakInterruptEnable

LIN break detect.

enumerator kLPUART_RxActiveEdgeInterruptEnable

Receive Active Edge.

enumerator kLPUART_TxDataRegEmptyInterruptEnable

Transmit data register empty.

enumerator kLPUART_TransmissionCompleteInterruptEnable

Transmission complete.

enumerator kLPUART_RxDataRegFullInterruptEnable

Receiver data register full.

enumerator kLPUART_IdleLineInterruptEnable

Idle line.

enumerator kLPUART_RxOverrunInterruptEnable

Receiver Overrun.

enumerator kLPUART_NoiseErrorInterruptEnable

Noise error flag.

enumerator kLPUART_FramingErrorInterruptEnable

Framing error flag.

enumerator kLPUART_ParityErrorInterruptEnable

Parity error flag.

enumerator kLPUART_TxFifoOverflowInterruptEnable

Transmit FIFO Overflow.

enumerator kLPUART_RxFifoUnderflowInterruptEnable

Receive FIFO Underflow.

enum _lin_lpuart_status

Values:

enumerator kStatus_LPUART_TxBusy

TX busy

enumerator kStatus_LPUART_RxBusy

RX busy

enumerator kStatus_LPUART_TxIdle

LPUART transmitter is idle.

enumerator kStatus_LPUART_RxIdle

LPUART receiver is idle.

enumerator kStatus_LPUART_TxWatermarkTooLarge

TX FIFO watermark too large

enumerator kStatus_LPUART_RxWatermarkTooLarge

RX FIFO watermark too large

enumerator kStatus_LPUART_FlagCannotClearManually

Some flag can’t manually clear

enumerator kStatus_LPUART_Error

Error happens on LPUART.

enumerator kStatus_LPUART_RxRingBufferOverrun

LPUART RX software ring buffer overrun.

enumerator kStatus_LPUART_RxHardwareOverrun

LPUART RX receiver overrun.

enumerator kStatus_LPUART_NoiseError

LPUART noise error.

enumerator kStatus_LPUART_FramingError

LPUART framing error.

enumerator kStatus_LPUART_ParityError

LPUART parity error.

enum lin_lpuart_bit_count_per_char_t

Values:

enumerator LPUART_8_BITS_PER_CHAR

8-bit data characters

enumerator LPUART_9_BITS_PER_CHAR

9-bit data characters

enumerator LPUART_10_BITS_PER_CHAR

10-bit data characters

typedef enum _lin_lpuart_stop_bit_count lin_lpuart_stop_bit_count_t
static inline bool LIN_LPUART_GetRxDataPolarity(const LPUART_Type *base)
static inline void LIN_LPUART_SetRxDataPolarity(LPUART_Type *base, bool polarity)
static inline void LIN_LPUART_WriteByte(LPUART_Type *base, uint8_t data)
static inline void LIN_LPUART_ReadByte(const LPUART_Type *base, uint8_t *readData)
status_t LIN_LPUART_CalculateBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz, uint32_t *osr, uint16_t *sbr)

Calculates the best osr and sbr value for configured baudrate.

Parameters:
  • base – LPUART peripheral base address

  • baudRate_Bps – user configuration structure of type #lin_user_config_t

  • srcClock_Hz – pointer to the LIN_LPUART driver state structure

  • osr – pointer to osr value

  • sbr – pointer to sbr value

Returns:

An error code or lin_status_t

void LIN_LPUART_SetBaudRate(LPUART_Type *base, uint32_t *osr, uint16_t *sbr)

Configure baudrate according to osr and sbr value.

Parameters:
  • base – LPUART peripheral base address

  • osr – pointer to osr value

  • sbr – pointer to sbr value

lin_status_t LIN_LPUART_Init(LPUART_Type *base, lin_user_config_t *linUserConfig, lin_state_t *linCurrentState, uint32_t linSourceClockFreq)

Initializes an LIN_LPUART instance for LIN Network.

The caller provides memory for the driver state structures during initialization. The user must select the LIN_LPUART clock source in the application to initialize the LIN_LPUART. This function initializes a LPUART instance for operation. This function will initialize the run-time state structure to keep track of the on-going transfers, initialize the module to user defined settings and default settings, set break field length to be 13 bit times minimum, enable the break detect interrupt, Rx complete interrupt, frame error detect interrupt, and enable the LPUART module transmitter and receiver

Parameters:
  • base – LPUART peripheral base address

  • linUserConfig – user configuration structure of type #lin_user_config_t

  • linCurrentState – pointer to the LIN_LPUART driver state structure

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_Deinit(LPUART_Type *base)

Shuts down the LIN_LPUART by disabling interrupts and transmitter/receiver.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_SendFrameDataBlocking(LPUART_Type *base, const uint8_t *txBuff, uint8_t txSize, uint32_t timeoutMSec)

Sends Frame data out through the LIN_LPUART module using blocking method. This function will calculate the checksum byte and send it with the frame data. Blocking means that the function does not return until the transmission is complete.

Parameters:
  • base – LPUART peripheral base address

  • txBuff – source buffer containing 8-bit data chars to send

  • txSize – the number of bytes to send

  • timeoutMSec – timeout value in milli seconds

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_SendFrameData(LPUART_Type *base, const uint8_t *txBuff, uint8_t txSize)

Sends frame data out through the LIN_LPUART module using non-blocking method. This enables an a-sync method for transmitting data. Non-blocking means that the function returns immediately. The application has to get the transmit status to know when the transmit is complete. This function will calculate the checksum byte and send it with the frame data.

Parameters:
  • base – LPUART peripheral base address

  • txBuff – source buffer containing 8-bit data chars to send

  • txSize – the number of bytes to send

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_GetTransmitStatus(LPUART_Type *base, uint8_t *bytesRemaining)

Get status of an on-going non-blocking transmission While sending frame data using non-blocking method, users can use this function to get status of that transmission. This function return LIN_TX_BUSY while sending, or LIN_TIMEOUT if timeout has occurred, or return LIN_SUCCESS when the transmission is complete. The bytesRemaining shows number of bytes that still needed to transmit.

Parameters:
  • base – LPUART peripheral base address

  • bytesRemaining – Number of bytes still needed to transmit

Returns:

lin_status_t LIN_TX_BUSY, LIN_SUCCESS or LIN_TIMEOUT

lin_status_t LIN_LPUART_RecvFrmDataBlocking(LPUART_Type *base, uint8_t *rxBuff, uint8_t rxSize, uint32_t timeoutMSec)

Receives frame data through the LIN_LPUART module using blocking method. This function will check the checksum byte. If the checksum is correct, it will receive the frame data. Blocking means that the function does not return until the reception is complete.

Parameters:
  • base – LPUART peripheral base address

  • rxBuff – buffer containing 8-bit received data

  • rxSize – the number of bytes to receive

  • timeoutMSec – timeout value in milli seconds

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_RecvFrmData(LPUART_Type *base, uint8_t *rxBuff, uint8_t rxSize)

Receives frame data through the LIN_LPUART module using non-blocking method. This function will check the checksum byte. If the checksum is correct, it will receive it with the frame data. Non-blocking means that the function returns immediately. The application has to get the receive status to know when the reception is complete.

Parameters:
  • base – LPUART peripheral base address

  • rxBuff – buffer containing 8-bit received data

  • rxSize – the number of bytes to receive

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_AbortTransferData(LPUART_Type *base)

Aborts an on-going non-blocking transmission/reception. While performing a non-blocking transferring data, users can call this function to terminate immediately the transferring.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_GetReceiveStatus(LPUART_Type *base, uint8_t *bytesRemaining)

Get status of an on-going non-blocking reception While receiving frame data using non-blocking method, users can use this function to get status of that receiving. This function return the current event ID, LIN_RX_BUSY while receiving and return LIN_SUCCESS, or timeout (LIN_TIMEOUT) when the reception is complete. The bytesRemaining shows number of bytes that still needed to receive.

Parameters:
  • base – LPUART peripheral base address

  • bytesRemaining – Number of bytes still needed to receive

Returns:

lin_status_t LIN_RX_BUSY, LIN_TIMEOUT or LIN_SUCCESS

lin_status_t LIN_LPUART_GoToSleepMode(LPUART_Type *base)

This function puts current node to sleep mode This function changes current node state to LIN_NODE_STATE_SLEEP_MODE.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_GotoIdleState(LPUART_Type *base)

Puts current LIN node to Idle state This function changes current node state to LIN_NODE_STATE_IDLE.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_SendWakeupSignal(LPUART_Type *base)

Sends a wakeup signal through the LIN_LPUART interface.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_MasterSendHeader(LPUART_Type *base, uint8_t id)

Sends frame header out through the LIN_LPUART module using a non-blocking method. This function sends LIN Break field, sync field then the ID with correct parity.

Parameters:
  • base – LPUART peripheral base address

  • id – Frame Identifier

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_EnableIRQ(LPUART_Type *base)

Enables LIN_LPUART hardware interrupts.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_DisableIRQ(LPUART_Type *base)

Disables LIN_LPUART hardware interrupts.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_AutoBaudCapture(uint32_t instance)

This function capture bits time to detect break char, calculate baudrate from sync bits and enable transceiver if autobaud successful. This function should only be used in Slave. The timer should be in mode input capture of both rising and falling edges. The timer input capture pin should be externally connected to RXD pin.

Parameters:
  • instance – LPUART instance

Returns:

lin_status_t

void LIN_LPUART_IRQHandler(LPUART_Type *base)

LIN_LPUART RX TX interrupt handler.

Parameters:
  • base – LPUART peripheral base address

Returns:

void

AUTOBAUD_BAUDRATE_TOLERANCE
BIT_RATE_TOLERANCE_UNSYNC
BIT_DURATION_MAX_19200
BIT_DURATION_MIN_19200
BIT_DURATION_MAX_14400
BIT_DURATION_MIN_14400
BIT_DURATION_MAX_9600
BIT_DURATION_MIN_9600
BIT_DURATION_MAX_4800
BIT_DURATION_MIN_4800
BIT_DURATION_MAX_2400
BIT_DURATION_MIN_2400
TWO_BIT_DURATION_MAX_19200
TWO_BIT_DURATION_MIN_19200
TWO_BIT_DURATION_MAX_14400
TWO_BIT_DURATION_MIN_14400
TWO_BIT_DURATION_MAX_9600
TWO_BIT_DURATION_MIN_9600
TWO_BIT_DURATION_MAX_4800
TWO_BIT_DURATION_MIN_4800
TWO_BIT_DURATION_MAX_2400
TWO_BIT_DURATION_MIN_2400
AUTOBAUD_BREAK_TIME_MIN

LLWU: Low-Leakage Wakeup Unit Driver

static inline void LLWU_GetVersionId(LLWU_Type *base, llwu_version_id_t *versionId)

Gets the LLWU version ID.

This function gets the LLWU version ID, including the major version number, the minor version number, and the feature specification number.

Parameters:
  • base – LLWU peripheral base address.

  • versionId – A pointer to the version ID structure.

static inline void LLWU_GetParam(LLWU_Type *base, llwu_param_t *param)

Gets the LLWU parameter.

This function gets the LLWU parameter, including a wakeup pin number, a module number, a DMA number, and a pin filter number.

Parameters:
  • base – LLWU peripheral base address.

  • param – A pointer to the LLWU parameter structure.

void LLWU_SetExternalWakeupPinMode(LLWU_Type *base, uint32_t pinIndex, llwu_external_pin_mode_t pinMode)

Sets the external input pin source mode.

This function sets the external input pin source mode that is used as a wake up source.

Parameters:
  • base – LLWU peripheral base address.

  • pinIndex – A pin index to be enabled as an external wakeup source starting from 1.

  • pinMode – A pin configuration mode defined in the llwu_external_pin_modes_t.

bool LLWU_GetExternalWakeupPinFlag(LLWU_Type *base, uint32_t pinIndex)

Gets the external wakeup source flag.

This function checks the external pin flag to detect whether the MCU is woken up by the specific pin.

Parameters:
  • base – LLWU peripheral base address.

  • pinIndex – A pin index, which starts from 1.

Returns:

True if the specific pin is a wakeup source.

void LLWU_ClearExternalWakeupPinFlag(LLWU_Type *base, uint32_t pinIndex)

Clears the external wakeup source flag.

This function clears the external wakeup source flag for a specific pin.

Parameters:
  • base – LLWU peripheral base address.

  • pinIndex – A pin index, which starts from 1.

static inline void LLWU_EnableInternalModuleInterruptWakup(LLWU_Type *base, uint32_t moduleIndex, bool enable)

Enables/disables the internal module source.

This function enables/disables the internal module source mode that is used as a wake up source.

Parameters:
  • base – LLWU peripheral base address.

  • moduleIndex – A module index to be enabled as an internal wakeup source starting from 1.

  • enable – An enable or a disable setting

static inline void LLWU_EnableInternalModuleDmaRequestWakup(LLWU_Type *base, uint32_t moduleIndex, bool enable)

Enables/disables the internal module DMA wakeup source.

This function enables/disables the internal DMA that is used as a wake up source.

Parameters:
  • base – LLWU peripheral base address.

  • moduleIndex – An internal module index which is used as a DMA request source, starting from 1.

  • enable – Enable or disable the DMA request source

void LLWU_SetPinFilterMode(LLWU_Type *base, uint32_t filterIndex, llwu_external_pin_filter_mode_t filterMode)

Sets the pin filter configuration.

This function sets the pin filter configuration.

Parameters:
  • base – LLWU peripheral base address.

  • filterIndex – A pin filter index used to enable/disable the digital filter, starting from 1.

  • filterMode – A filter mode configuration

bool LLWU_GetPinFilterFlag(LLWU_Type *base, uint32_t filterIndex)

Gets the pin filter configuration.

This function gets the pin filter flag.

Parameters:
  • base – LLWU peripheral base address.

  • filterIndex – A pin filter index, which starts from 1.

Returns:

True if the flag is a source of the existing low-leakage power mode.

void LLWU_ClearPinFilterFlag(LLWU_Type *base, uint32_t filterIndex)

Clears the pin filter configuration.

This function clears the pin filter flag.

Parameters:
  • base – LLWU peripheral base address.

  • filterIndex – A pin filter index to clear the flag, starting from 1.

void LLWU_SetResetPinMode(LLWU_Type *base, bool pinEnable, bool pinFilterEnable)

Sets the reset pin mode.

This function determines how the reset pin is used as a low leakage mode exit source.

Parameters:
  • base – LLWU peripheral base address.

  • pinEnable – Enable reset the pin filter

  • pinFilterEnable – Specify whether the pin filter is enabled in Low-Leakage power mode.

FSL_LLWU_DRIVER_VERSION

LLWU driver version.

enum _llwu_external_pin_mode

External input pin control modes.

Values:

enumerator kLLWU_ExternalPinDisable

Pin disabled as a wakeup input.

enumerator kLLWU_ExternalPinRisingEdge

Pin enabled with the rising edge detection.

enumerator kLLWU_ExternalPinFallingEdge

Pin enabled with the falling edge detection.

enumerator kLLWU_ExternalPinAnyEdge

Pin enabled with any change detection.

enum _llwu_pin_filter_mode

Digital filter control modes.

Values:

enumerator kLLWU_PinFilterDisable

Filter disabled.

enumerator kLLWU_PinFilterRisingEdge

Filter positive edge detection.

enumerator kLLWU_PinFilterFallingEdge

Filter negative edge detection.

enumerator kLLWU_PinFilterAnyEdge

Filter any edge detection.

typedef enum _llwu_external_pin_mode llwu_external_pin_mode_t

External input pin control modes.

typedef enum _llwu_pin_filter_mode llwu_pin_filter_mode_t

Digital filter control modes.

typedef struct _llwu_version_id llwu_version_id_t

IP version ID definition.

typedef struct _llwu_param llwu_param_t

IP parameter definition.

typedef struct _llwu_external_pin_filter_mode llwu_external_pin_filter_mode_t

An external input pin filter control structure.

LLWU_REG_VAL(x)
struct _llwu_version_id
#include <fsl_llwu.h>

IP version ID definition.

Public Members

uint16_t feature

A feature specification number.

uint8_t minor

The minor version number.

uint8_t major

The major version number.

struct _llwu_param
#include <fsl_llwu.h>

IP parameter definition.

Public Members

uint8_t filters

A number of the pin filter.

uint8_t dmas

A number of the wakeup DMA.

uint8_t modules

A number of the wakeup module.

uint8_t pins

A number of the wake up pin.

struct _llwu_external_pin_filter_mode
#include <fsl_llwu.h>

An external input pin filter control structure.

Public Members

uint32_t pinIndex

A pin number

llwu_pin_filter_mode_t filterMode

Filter mode

LPTMR: Low-Power Timer

void LPTMR_Init(LPTMR_Type *base, const lptmr_config_t *config)

Ungates the LPTMR clock and configures the peripheral for a basic operation.

Note

This API should be called at the beginning of the application using the LPTMR driver.

Parameters:
  • base – LPTMR peripheral base address

  • config – A pointer to the LPTMR configuration structure.

void LPTMR_Deinit(LPTMR_Type *base)

Gates the LPTMR clock.

Parameters:
  • base – LPTMR peripheral base address

void LPTMR_GetDefaultConfig(lptmr_config_t *config)

Fills in the LPTMR configuration structure with default settings.

The default values are as follows.

config->timerMode = kLPTMR_TimerModeTimeCounter;
config->pinSelect = kLPTMR_PinSelectInput_0;
config->pinPolarity = kLPTMR_PinPolarityActiveHigh;
config->enableFreeRunning = false;
config->bypassPrescaler = true;
config->prescalerClockSource = kLPTMR_PrescalerClock_1;
config->value = kLPTMR_Prescale_Glitch_0;

Parameters:
  • config – A pointer to the LPTMR configuration structure.

static inline void LPTMR_EnableInterrupts(LPTMR_Type *base, uint32_t mask)

Enables the selected LPTMR interrupts.

Parameters:
  • base – LPTMR peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration lptmr_interrupt_enable_t

static inline void LPTMR_DisableInterrupts(LPTMR_Type *base, uint32_t mask)

Disables the selected LPTMR interrupts.

Parameters:
  • base – LPTMR peripheral base address

  • mask – The interrupts to disable. This is a logical OR of members of the enumeration lptmr_interrupt_enable_t.

static inline uint32_t LPTMR_GetEnabledInterrupts(LPTMR_Type *base)

Gets the enabled LPTMR interrupts.

Parameters:
  • base – LPTMR peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration lptmr_interrupt_enable_t

static inline uint32_t LPTMR_GetStatusFlags(LPTMR_Type *base)

Gets the LPTMR status flags.

Parameters:
  • base – LPTMR peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration lptmr_status_flags_t

static inline void LPTMR_ClearStatusFlags(LPTMR_Type *base, uint32_t mask)

Clears the LPTMR status flags.

Parameters:
  • base – LPTMR peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration lptmr_status_flags_t.

static inline void LPTMR_SetTimerPeriod(LPTMR_Type *base, uint32_t ticks)

Sets the timer period in units of count.

Timers counts from 0 until it equals the count value set here. The count value is written to the CMR register.

Note

  1. The TCF flag is set with the CNR equals the count provided here and then increments.

  2. Call the utility macros provided in the fsl_common.h to convert to ticks.

Parameters:
  • base – LPTMR peripheral base address

  • ticks – A timer period in units of ticks, which should be equal or greater than 1.

static inline uint32_t LPTMR_GetCurrentTimerCount(LPTMR_Type *base)

Reads the current timer counting value.

This function returns the real-time timer counting value in a range from 0 to a timer period.

Note

Call the utility macros provided in the fsl_common.h to convert ticks to usec or msec.

Parameters:
  • base – LPTMR peripheral base address

Returns:

The current counter value in ticks

static inline void LPTMR_StartTimer(LPTMR_Type *base)

Starts the timer.

After calling this function, the timer counts up to the CMR register value. Each time the timer reaches the CMR value and then increments, it generates a trigger pulse and sets the timeout interrupt flag. An interrupt is also triggered if the timer interrupt is enabled.

Parameters:
  • base – LPTMR peripheral base address

static inline void LPTMR_StopTimer(LPTMR_Type *base)

Stops the timer.

This function stops the timer and resets the timer’s counter register.

Parameters:
  • base – LPTMR peripheral base address

FSL_LPTMR_DRIVER_VERSION

Driver Version

enum _lptmr_pin_select

LPTMR pin selection used in pulse counter mode.

Values:

enumerator kLPTMR_PinSelectInput_0

Pulse counter input 0 is selected

enumerator kLPTMR_PinSelectInput_1

Pulse counter input 1 is selected

enumerator kLPTMR_PinSelectInput_2

Pulse counter input 2 is selected

enumerator kLPTMR_PinSelectInput_3

Pulse counter input 3 is selected

enum _lptmr_pin_polarity

LPTMR pin polarity used in pulse counter mode.

Values:

enumerator kLPTMR_PinPolarityActiveHigh

Pulse Counter input source is active-high

enumerator kLPTMR_PinPolarityActiveLow

Pulse Counter input source is active-low

enum _lptmr_timer_mode

LPTMR timer mode selection.

Values:

enumerator kLPTMR_TimerModeTimeCounter

Time Counter mode

enumerator kLPTMR_TimerModePulseCounter

Pulse Counter mode

enum _lptmr_prescaler_glitch_value

LPTMR prescaler/glitch filter values.

Values:

enumerator kLPTMR_Prescale_Glitch_0

Prescaler divide 2, glitch filter does not support this setting

enumerator kLPTMR_Prescale_Glitch_1

Prescaler divide 4, glitch filter 2

enumerator kLPTMR_Prescale_Glitch_2

Prescaler divide 8, glitch filter 4

enumerator kLPTMR_Prescale_Glitch_3

Prescaler divide 16, glitch filter 8

enumerator kLPTMR_Prescale_Glitch_4

Prescaler divide 32, glitch filter 16

enumerator kLPTMR_Prescale_Glitch_5

Prescaler divide 64, glitch filter 32

enumerator kLPTMR_Prescale_Glitch_6

Prescaler divide 128, glitch filter 64

enumerator kLPTMR_Prescale_Glitch_7

Prescaler divide 256, glitch filter 128

enumerator kLPTMR_Prescale_Glitch_8

Prescaler divide 512, glitch filter 256

enumerator kLPTMR_Prescale_Glitch_9

Prescaler divide 1024, glitch filter 512

enumerator kLPTMR_Prescale_Glitch_10

Prescaler divide 2048 glitch filter 1024

enumerator kLPTMR_Prescale_Glitch_11

Prescaler divide 4096, glitch filter 2048

enumerator kLPTMR_Prescale_Glitch_12

Prescaler divide 8192, glitch filter 4096

enumerator kLPTMR_Prescale_Glitch_13

Prescaler divide 16384, glitch filter 8192

enumerator kLPTMR_Prescale_Glitch_14

Prescaler divide 32768, glitch filter 16384

enumerator kLPTMR_Prescale_Glitch_15

Prescaler divide 65536, glitch filter 32768

enum _lptmr_prescaler_clock_select

LPTMR prescaler/glitch filter clock select.

Note

Clock connections are SoC-specific

Values:

enumerator kLPTMR_PrescalerClock_0

Prescaler/glitch filter clock 0 selected.

enumerator kLPTMR_PrescalerClock_1

Prescaler/glitch filter clock 1 selected.

enumerator kLPTMR_PrescalerClock_2

Prescaler/glitch filter clock 2 selected.

enumerator kLPTMR_PrescalerClock_3

Prescaler/glitch filter clock 3 selected.

enum _lptmr_interrupt_enable

List of the LPTMR interrupts.

Values:

enumerator kLPTMR_TimerInterruptEnable

Timer interrupt enable

enum _lptmr_status_flags

List of the LPTMR status flags.

Values:

enumerator kLPTMR_TimerCompareFlag

Timer compare flag

typedef enum _lptmr_pin_select lptmr_pin_select_t

LPTMR pin selection used in pulse counter mode.

typedef enum _lptmr_pin_polarity lptmr_pin_polarity_t

LPTMR pin polarity used in pulse counter mode.

typedef enum _lptmr_timer_mode lptmr_timer_mode_t

LPTMR timer mode selection.

typedef enum _lptmr_prescaler_glitch_value lptmr_prescaler_glitch_value_t

LPTMR prescaler/glitch filter values.

typedef enum _lptmr_prescaler_clock_select lptmr_prescaler_clock_select_t

LPTMR prescaler/glitch filter clock select.

Note

Clock connections are SoC-specific

typedef enum _lptmr_interrupt_enable lptmr_interrupt_enable_t

List of the LPTMR interrupts.

typedef enum _lptmr_status_flags lptmr_status_flags_t

List of the LPTMR status flags.

typedef struct _lptmr_config lptmr_config_t

LPTMR config structure.

This structure holds the configuration settings for the LPTMR peripheral. To initialize this structure to reasonable defaults, call the LPTMR_GetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration struct can be made constant so it resides in flash.

static inline void LPTMR_EnableTimerDMA(LPTMR_Type *base, bool enable)

Enable or disable timer DMA request.

Parameters:
  • base – base LPTMR peripheral base address

  • enable – Switcher of timer DMA feature. “true” means to enable, “false” means to disable.

struct _lptmr_config
#include <fsl_lptmr.h>

LPTMR config structure.

This structure holds the configuration settings for the LPTMR peripheral. To initialize this structure to reasonable defaults, call the LPTMR_GetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration struct can be made constant so it resides in flash.

Public Members

lptmr_timer_mode_t timerMode

Time counter mode or pulse counter mode

lptmr_pin_select_t pinSelect

LPTMR pulse input pin select; used only in pulse counter mode

lptmr_pin_polarity_t pinPolarity

LPTMR pulse input pin polarity; used only in pulse counter mode

bool enableFreeRunning

True: enable free running, counter is reset on overflow False: counter is reset when the compare flag is set

bool bypassPrescaler

True: bypass prescaler; false: use clock from prescaler

lptmr_prescaler_clock_select_t prescalerClockSource

LPTMR clock source

lptmr_prescaler_glitch_value_t value

Prescaler or glitch filter value

LPUART: Low Power Universal Asynchronous Receiver/Transmitter Driver

LPUART Driver

static inline void LPUART_SoftwareReset(LPUART_Type *base)

Resets the LPUART using software.

This function resets all internal logic and registers except the Global Register. Remains set until cleared by software.

Parameters:
  • base – LPUART peripheral base address.

status_t LPUART_Init(LPUART_Type *base, const lpuart_config_t *config, uint32_t srcClock_Hz)

Initializes an LPUART instance with the user configuration structure and the peripheral clock.

This function configures the LPUART module with user-defined settings. Call the LPUART_GetDefaultConfig() function to configure the configuration structure and get the default configuration. The example below shows how to use this API to configure the LPUART.

lpuart_config_t lpuartConfig;
lpuartConfig.baudRate_Bps = 115200U;
lpuartConfig.parityMode = kLPUART_ParityDisabled;
lpuartConfig.dataBitsCount = kLPUART_EightDataBits;
lpuartConfig.isMsb = false;
lpuartConfig.stopBitCount = kLPUART_OneStopBit;
lpuartConfig.txFifoWatermark = 0;
lpuartConfig.rxFifoWatermark = 1;
LPUART_Init(LPUART1, &lpuartConfig, 20000000U);

Parameters:
  • base – LPUART peripheral base address.

  • config – Pointer to a user-defined configuration structure.

  • srcClock_Hz – LPUART clock source frequency in HZ.

Return values:
  • kStatus_LPUART_BaudrateNotSupport – Baudrate is not support in current clock source.

  • kStatus_Success – LPUART initialize succeed

void LPUART_Deinit(LPUART_Type *base)

Deinitializes a LPUART instance.

This function waits for transmit to complete, disables TX and RX, and disables the LPUART clock.

Parameters:
  • base – LPUART peripheral base address.

void LPUART_GetDefaultConfig(lpuart_config_t *config)

Gets the default configuration structure.

This function initializes the LPUART configuration structure to a default value. The default values are: lpuartConfig->baudRate_Bps = 115200U; lpuartConfig->parityMode = kLPUART_ParityDisabled; lpuartConfig->dataBitsCount = kLPUART_EightDataBits; lpuartConfig->isMsb = false; lpuartConfig->stopBitCount = kLPUART_OneStopBit; lpuartConfig->txFifoWatermark = 0; lpuartConfig->rxFifoWatermark = 1; lpuartConfig->rxIdleType = kLPUART_IdleTypeStartBit; lpuartConfig->rxIdleConfig = kLPUART_IdleCharacter1; lpuartConfig->enableTx = false; lpuartConfig->enableRx = false;

Parameters:
  • config – Pointer to a configuration structure.

status_t LPUART_SetBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)

Sets the LPUART instance baudrate.

This function configures the LPUART module baudrate. This function is used to update the LPUART module baudrate after the LPUART module is initialized by the LPUART_Init.

LPUART_SetBaudRate(LPUART1, 115200U, 20000000U);

Parameters:
  • base – LPUART peripheral base address.

  • baudRate_Bps – LPUART baudrate to be set.

  • srcClock_Hz – LPUART clock source frequency in HZ.

Return values:
  • kStatus_LPUART_BaudrateNotSupport – Baudrate is not supported in the current clock source.

  • kStatus_Success – Set baudrate succeeded.

void LPUART_Enable9bitMode(LPUART_Type *base, bool enable)

Enable 9-bit data mode for LPUART.

This function set the 9-bit mode for LPUART module. The 9th bit is not used for parity thus can be modified by user.

Parameters:
  • base – LPUART peripheral base address.

  • enable – true to enable, flase to disable.

static inline void LPUART_SetMatchAddress(LPUART_Type *base, uint16_t address1, uint16_t address2)

Set the LPUART address.

This function configures the address for LPUART module that works as slave in 9-bit data mode. One or two address fields can be configured. When the address field’s match enable bit is set, the frame it receices with MSB being 1 is considered as an address frame, otherwise it is considered as data frame. Once the address frame matches one of slave’s own addresses, this slave is addressed. This address frame and its following data frames are stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave, just send an address frame with unmatched address.

Note

Any LPUART instance joined in the multi-slave system can work as slave. The position of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit data formats.

Parameters:
  • base – LPUART peripheral base address.

  • address1 – LPUART slave address1.

  • address2 – LPUART slave address2.

static inline void LPUART_EnableMatchAddress(LPUART_Type *base, bool match1, bool match2)

Enable the LPUART match address feature.

Parameters:
  • base – LPUART peripheral base address.

  • match1 – true to enable match address1, false to disable.

  • match2 – true to enable match address2, false to disable.

static inline void LPUART_SetRxFifoWatermark(LPUART_Type *base, uint8_t water)

Sets the rx FIFO watermark.

Parameters:
  • base – LPUART peripheral base address.

  • water – Rx FIFO watermark.

static inline void LPUART_SetTxFifoWatermark(LPUART_Type *base, uint8_t water)

Sets the tx FIFO watermark.

Parameters:
  • base – LPUART peripheral base address.

  • water – Tx FIFO watermark.

static inline void LPUART_TransferEnable16Bit(lpuart_handle_t *handle, bool enable)

Sets the LPUART using 16bit transmit, only for 9bit or 10bit mode.

This function Enable 16bit Data transmit in lpuart_handle_t.

Parameters:
  • handle – LPUART handle pointer.

  • enable – true to enable, false to disable.

uint32_t LPUART_GetStatusFlags(LPUART_Type *base)

Gets LPUART status flags.

This function gets all LPUART status flags. The flags are returned as the logical OR value of the enumerators _lpuart_flags. To check for a specific status, compare the return value with enumerators in the _lpuart_flags. For example, to check whether the TX is empty:

if (kLPUART_TxDataRegEmptyFlag & LPUART_GetStatusFlags(LPUART1))
{
    ...
}

Parameters:
  • base – LPUART peripheral base address.

Returns:

LPUART status flags which are ORed by the enumerators in the _lpuart_flags.

status_t LPUART_ClearStatusFlags(LPUART_Type *base, uint32_t mask)

Clears status flags with a provided mask.

This function clears LPUART status flags with a provided mask. Automatically cleared flags can’t be cleared by this function. Flags that can only cleared or set by hardware are: kLPUART_TxDataRegEmptyFlag, kLPUART_TransmissionCompleteFlag, kLPUART_RxDataRegFullFlag, kLPUART_RxActiveFlag, kLPUART_NoiseErrorFlag, kLPUART_ParityErrorFlag, kLPUART_TxFifoEmptyFlag,kLPUART_RxFifoEmptyFlag Note: This API should be called when the Tx/Rx is idle, otherwise it takes no effects.

Parameters:
  • base – LPUART peripheral base address.

  • mask – the status flags to be cleared. The user can use the enumerators in the _lpuart_status_flag_t to do the OR operation and get the mask.

Return values:
  • kStatus_LPUART_FlagCannotClearManually – The flag can’t be cleared by this function but it is cleared automatically by hardware.

  • kStatus_Success – Status in the mask are cleared.

Returns:

0 succeed, others failed.

void LPUART_EnableInterrupts(LPUART_Type *base, uint32_t mask)

Enables LPUART interrupts according to a provided mask.

This function enables the LPUART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See the _lpuart_interrupt_enable. This examples shows how to enable TX empty interrupt and RX full interrupt:

LPUART_EnableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);

Parameters:
  • base – LPUART peripheral base address.

  • mask – The interrupts to enable. Logical OR of _lpuart_interrupt_enable.

void LPUART_DisableInterrupts(LPUART_Type *base, uint32_t mask)

Disables LPUART interrupts according to a provided mask.

This function disables the LPUART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See _lpuart_interrupt_enable. This example shows how to disable the TX empty interrupt and RX full interrupt:

LPUART_DisableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);

Parameters:
  • base – LPUART peripheral base address.

  • mask – The interrupts to disable. Logical OR of _lpuart_interrupt_enable.

uint32_t LPUART_GetEnabledInterrupts(LPUART_Type *base)

Gets enabled LPUART interrupts.

This function gets the enabled LPUART interrupts. The enabled interrupts are returned as the logical OR value of the enumerators _lpuart_interrupt_enable. To check a specific interrupt enable status, compare the return value with enumerators in _lpuart_interrupt_enable. For example, to check whether the TX empty interrupt is enabled:

uint32_t enabledInterrupts = LPUART_GetEnabledInterrupts(LPUART1);

if (kLPUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)
{
    ...
}

Parameters:
  • base – LPUART peripheral base address.

Returns:

LPUART interrupt flags which are logical OR of the enumerators in _lpuart_interrupt_enable.

static inline uintptr_t LPUART_GetDataRegisterAddress(LPUART_Type *base)

Gets the LPUART data register address.

This function returns the LPUART data register address, which is mainly used by the DMA/eDMA.

Parameters:
  • base – LPUART peripheral base address.

Returns:

LPUART data register addresses which are used both by the transmitter and receiver.

static inline void LPUART_EnableTxDMA(LPUART_Type *base, bool enable)

Enables or disables the LPUART transmitter DMA request.

This function enables or disables the transmit data register empty flag, STAT[TDRE], to generate DMA requests.

Parameters:
  • base – LPUART peripheral base address.

  • enable – True to enable, false to disable.

static inline void LPUART_EnableRxDMA(LPUART_Type *base, bool enable)

Enables or disables the LPUART receiver DMA.

This function enables or disables the receiver data register full flag, STAT[RDRF], to generate DMA requests.

Parameters:
  • base – LPUART peripheral base address.

  • enable – True to enable, false to disable.

uint32_t LPUART_GetInstance(LPUART_Type *base)

Get the LPUART instance from peripheral base address.

Parameters:
  • base – LPUART peripheral base address.

Returns:

LPUART instance.

static inline void LPUART_EnableTx(LPUART_Type *base, bool enable)

Enables or disables the LPUART transmitter.

This function enables or disables the LPUART transmitter.

Parameters:
  • base – LPUART peripheral base address.

  • enable – True to enable, false to disable.

static inline void LPUART_EnableRx(LPUART_Type *base, bool enable)

Enables or disables the LPUART receiver.

This function enables or disables the LPUART receiver.

Parameters:
  • base – LPUART peripheral base address.

  • enable – True to enable, false to disable.

static inline void LPUART_WriteByte(LPUART_Type *base, uint8_t data)

Writes to the transmitter register.

This function writes data to the transmitter register directly. The upper layer must ensure that the TX register is empty or that the TX FIFO has room before calling this function.

Parameters:
  • base – LPUART peripheral base address.

  • data – Data write to the TX register.

static inline uint8_t LPUART_ReadByte(LPUART_Type *base)

Reads the receiver register.

This function reads data from the receiver register directly. The upper layer must ensure that the receiver register is full or that the RX FIFO has data before calling this function.

Parameters:
  • base – LPUART peripheral base address.

Returns:

Data read from data register.

static inline uint8_t LPUART_GetRxFifoCount(LPUART_Type *base)

Gets the rx FIFO data count.

Parameters:
  • base – LPUART peripheral base address.

Returns:

rx FIFO data count.

static inline uint8_t LPUART_GetTxFifoCount(LPUART_Type *base)

Gets the tx FIFO data count.

Parameters:
  • base – LPUART peripheral base address.

Returns:

tx FIFO data count.

void LPUART_SendAddress(LPUART_Type *base, uint8_t address)

Transmit an address frame in 9-bit data mode.

Parameters:
  • base – LPUART peripheral base address.

  • address – LPUART slave address.

status_t LPUART_WriteBlocking(LPUART_Type *base, const uint8_t *data, size_t length)

Writes to the transmitter register using a blocking method.

This function polls the transmitter register, first waits for the register to be empty or TX FIFO to have room, and writes data to the transmitter buffer, then waits for the dat to be sent out to the bus.

Parameters:
  • base – LPUART peripheral base address.

  • data – Start address of the data to write.

  • length – Size of the data to write.

Return values:
  • kStatus_LPUART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully wrote all data.

status_t LPUART_WriteBlocking16bit(LPUART_Type *base, const uint16_t *data, size_t length)

Writes to the transmitter register using a blocking method in 9bit or 10bit mode.

Note

This function only support 9bit or 10bit transfer. Please make sure only 10bit of data is valid and other bits are 0.

Parameters:
  • base – LPUART peripheral base address.

  • data – Start address of the data to write.

  • length – Size of the data to write.

Return values:
  • kStatus_LPUART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully wrote all data.

status_t LPUART_ReadBlocking(LPUART_Type *base, uint8_t *data, size_t length)

Reads the receiver data register using a blocking method.

This function polls the receiver register, waits for the receiver register full or receiver FIFO has data, and reads data from the TX register.

Parameters:
  • base – LPUART peripheral base address.

  • data – Start address of the buffer to store the received data.

  • length – Size of the buffer.

Return values:
  • kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened while receiving data.

  • kStatus_LPUART_NoiseError – Noise error happened while receiving data.

  • kStatus_LPUART_FramingError – Framing error happened while receiving data.

  • kStatus_LPUART_ParityError – Parity error happened while receiving data.

  • kStatus_LPUART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully received all data.

status_t LPUART_ReadBlocking16bit(LPUART_Type *base, uint16_t *data, size_t length)

Reads the receiver data register in 9bit or 10bit mode.

Note

This function only support 9bit or 10bit transfer.

Parameters:
  • base – LPUART peripheral base address.

  • data – Start address of the buffer to store the received data by 16bit, only 10bit is valid.

  • length – Size of the buffer.

Return values:
  • kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened while receiving data.

  • kStatus_LPUART_NoiseError – Noise error happened while receiving data.

  • kStatus_LPUART_FramingError – Framing error happened while receiving data.

  • kStatus_LPUART_ParityError – Parity error happened while receiving data.

  • kStatus_LPUART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully received all data.

void LPUART_TransferCreateHandle(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_callback_t callback, void *userData)

Initializes the LPUART handle.

This function initializes the LPUART handle, which can be used for other LPUART transactional APIs. Usually, for a specified LPUART instance, call this API once to get the initialized handle.

The LPUART driver supports the “background” receiving, which means that user can set up an RX ring buffer optionally. Data received is stored into the ring buffer even when the user doesn’t call the LPUART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly. The ring buffer is disabled if passing NULL as ringBuffer.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • callback – Callback function.

  • userData – User data.

status_t LPUART_TransferSendNonBlocking(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function send data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data written to the transmitter register. When all data is written to the TX register in the ISR, the LPUART driver calls the callback function and passes the kStatus_LPUART_TxIdle as status parameter.

Note

The kStatus_LPUART_TxIdle is passed to the upper layer when all data are written to the TX register. However, there is no check to ensure that all the data sent out. Before disabling the TX, check the kLPUART_TransmissionCompleteFlag to ensure that the transmit is finished.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • xfer – LPUART transfer structure, see lpuart_transfer_t.

Return values:
  • kStatus_Success – Successfully start the data transmission.

  • kStatus_LPUART_TxBusy – Previous transmission still not finished, data not all written to the TX register.

  • kStatus_InvalidArgument – Invalid argument.

void LPUART_TransferStartRingBuffer(LPUART_Type *base, lpuart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific UART handle.

When the RX ring buffer is used, data received is stored into the ring buffer even when the user doesn’t call the UART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly.

Note

When using RX ring buffer, one byte is reserved for internal use. In other words, if ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • ringBuffer – Start address of ring buffer for background receiving. Pass NULL to disable the ring buffer.

  • ringBufferSize – size of the ring buffer.

void LPUART_TransferStopRingBuffer(LPUART_Type *base, lpuart_handle_t *handle)

Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

size_t LPUART_TransferGetRxRingBufferLength(LPUART_Type *base, lpuart_handle_t *handle)

Get the length of received data in RX ring buffer.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

Returns:

Length of received data in RX ring buffer.

void LPUART_TransferAbortSend(LPUART_Type *base, lpuart_handle_t *handle)

Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out how many bytes are not sent out.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

status_t LPUART_TransferGetSendCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)

Gets the number of bytes that have been sent out to bus.

This function gets the number of bytes that have been sent out to bus by an interrupt method.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • count – Send bytes count.

Return values:
  • kStatus_NoTransferInProgress – No send in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

status_t LPUART_TransferReceiveNonBlocking(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using the interrupt method.

This function receives data using an interrupt method. This is a non-blocking function which returns without waiting to ensure that all data are received. If the RX ring buffer is used and not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is not enough for read, the receive request is saved by the LPUART driver. When the new data arrives, the receive request is serviced first. When all data is received, the LPUART driver notifies the upper layer through a callback function and passes a status parameter kStatus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in ring buffer. The 5 bytes are copied to xfer->data, which returns with the parameter receivedBytes set to 5. For the remaining 5 bytes, the newly arrived data is saved from xfer->data[5]. When 5 bytes are received, the LPUART driver notifies the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to xfer->data. When all data is received, the upper layer is notified.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • xfer – LPUART transfer structure, see uart_transfer_t.

  • receivedBytes – Bytes received from the ring buffer directly.

Return values:
  • kStatus_Success – Successfully queue the transfer into the transmit queue.

  • kStatus_LPUART_RxBusy – Previous receive request is not finished.

  • kStatus_InvalidArgument – Invalid argument.

void LPUART_TransferAbortReceive(LPUART_Type *base, lpuart_handle_t *handle)

Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out how many bytes not received yet.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

status_t LPUART_TransferGetReceiveCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)

Gets the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • count – Receive bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

void LPUART_TransferHandleIRQ(LPUART_Type *base, void *irqHandle)

LPUART IRQ handle function.

This function handles the LPUART transmit and receive IRQ request.

Parameters:
  • base – LPUART peripheral base address.

  • irqHandle – LPUART handle pointer.

void LPUART_TransferHandleErrorIRQ(LPUART_Type *base, void *irqHandle)

LPUART Error IRQ handle function.

This function handles the LPUART error IRQ request.

Parameters:
  • base – LPUART peripheral base address.

  • irqHandle – LPUART handle pointer.

FSL_LPUART_DRIVER_VERSION

LPUART driver version.

Error codes for the LPUART driver.

Values:

enumerator kStatus_LPUART_TxBusy

TX busy

enumerator kStatus_LPUART_RxBusy

RX busy

enumerator kStatus_LPUART_TxIdle

LPUART transmitter is idle.

enumerator kStatus_LPUART_RxIdle

LPUART receiver is idle.

enumerator kStatus_LPUART_TxWatermarkTooLarge

TX FIFO watermark too large

enumerator kStatus_LPUART_RxWatermarkTooLarge

RX FIFO watermark too large

enumerator kStatus_LPUART_FlagCannotClearManually

Some flag can’t manually clear

enumerator kStatus_LPUART_Error

Error happens on LPUART.

enumerator kStatus_LPUART_RxRingBufferOverrun

LPUART RX software ring buffer overrun.

enumerator kStatus_LPUART_RxHardwareOverrun

LPUART RX receiver overrun.

enumerator kStatus_LPUART_NoiseError

LPUART noise error.

enumerator kStatus_LPUART_FramingError

LPUART framing error.

enumerator kStatus_LPUART_ParityError

LPUART parity error.

enumerator kStatus_LPUART_BaudrateNotSupport

Baudrate is not support in current clock source

enumerator kStatus_LPUART_IdleLineDetected

IDLE flag.

enumerator kStatus_LPUART_Timeout

LPUART times out.

enum _lpuart_parity_mode

LPUART parity mode.

Values:

enumerator kLPUART_ParityDisabled

Parity disabled

enumerator kLPUART_ParityEven

Parity enabled, type even, bit setting: PE|PT = 10

enumerator kLPUART_ParityOdd

Parity enabled, type odd, bit setting: PE|PT = 11

enum _lpuart_data_bits

LPUART data bits count.

Values:

enumerator kLPUART_EightDataBits

Eight data bit

enumerator kLPUART_SevenDataBits

Seven data bit

enum _lpuart_stop_bit_count

LPUART stop bit count.

Values:

enumerator kLPUART_OneStopBit

One stop bit

enumerator kLPUART_TwoStopBit

Two stop bits

enum _lpuart_transmit_cts_source

LPUART transmit CTS source.

Values:

enumerator kLPUART_CtsSourcePin

CTS resource is the LPUART_CTS pin.

enumerator kLPUART_CtsSourceMatchResult

CTS resource is the match result.

enum _lpuart_transmit_cts_config

LPUART transmit CTS configure.

Values:

enumerator kLPUART_CtsSampleAtStart

CTS input is sampled at the start of each character.

enumerator kLPUART_CtsSampleAtIdle

CTS input is sampled when the transmitter is idle

enum _lpuart_idle_type_select

LPUART idle flag type defines when the receiver starts counting.

Values:

enumerator kLPUART_IdleTypeStartBit

Start counting after a valid start bit.

enumerator kLPUART_IdleTypeStopBit

Start counting after a stop bit.

enum _lpuart_idle_config

LPUART idle detected configuration. This structure defines the number of idle characters that must be received before the IDLE flag is set.

Values:

enumerator kLPUART_IdleCharacter1

the number of idle characters.

enumerator kLPUART_IdleCharacter2

the number of idle characters.

enumerator kLPUART_IdleCharacter4

the number of idle characters.

enumerator kLPUART_IdleCharacter8

the number of idle characters.

enumerator kLPUART_IdleCharacter16

the number of idle characters.

enumerator kLPUART_IdleCharacter32

the number of idle characters.

enumerator kLPUART_IdleCharacter64

the number of idle characters.

enumerator kLPUART_IdleCharacter128

the number of idle characters.

enum _lpuart_interrupt_enable

LPUART interrupt configuration structure, default settings all disabled.

This structure contains the settings for all LPUART interrupt configurations.

Values:

enumerator kLPUART_LinBreakInterruptEnable

LIN break detect. bit 7

enumerator kLPUART_RxActiveEdgeInterruptEnable

Receive Active Edge. bit 6

enumerator kLPUART_TxDataRegEmptyInterruptEnable

Transmit data register empty. bit 23

enumerator kLPUART_TransmissionCompleteInterruptEnable

Transmission complete. bit 22

enumerator kLPUART_RxDataRegFullInterruptEnable

Receiver data register full. bit 21

enumerator kLPUART_IdleLineInterruptEnable

Idle line. bit 20

enumerator kLPUART_RxOverrunInterruptEnable

Receiver Overrun. bit 27

enumerator kLPUART_NoiseErrorInterruptEnable

Noise error flag. bit 26

enumerator kLPUART_FramingErrorInterruptEnable

Framing error flag. bit 25

enumerator kLPUART_ParityErrorInterruptEnable

Parity error flag. bit 24

enumerator kLPUART_Match1InterruptEnable

Parity error flag. bit 15

enumerator kLPUART_Match2InterruptEnable

Parity error flag. bit 14

enumerator kLPUART_TxFifoOverflowInterruptEnable

Transmit FIFO Overflow. bit 9

enumerator kLPUART_RxFifoUnderflowInterruptEnable

Receive FIFO Underflow. bit 8

enumerator kLPUART_AllInterruptEnable
enum _lpuart_flags

LPUART status flags.

This provides constants for the LPUART status flags for use in the LPUART functions.

Values:

enumerator kLPUART_TxDataRegEmptyFlag

Transmit data register empty flag, sets when transmit buffer is empty. bit 23

enumerator kLPUART_TransmissionCompleteFlag

Transmission complete flag, sets when transmission activity complete. bit 22

enumerator kLPUART_RxDataRegFullFlag

Receive data register full flag, sets when the receive data buffer is full. bit 21

enumerator kLPUART_IdleLineFlag

Idle line detect flag, sets when idle line detected. bit 20

enumerator kLPUART_RxOverrunFlag

Receive Overrun, sets when new data is received before data is read from receive register. bit 19

enumerator kLPUART_NoiseErrorFlag

Receive takes 3 samples of each received bit. If any of these samples differ, noise flag sets. bit 18

enumerator kLPUART_FramingErrorFlag

Frame error flag, sets if logic 0 was detected where stop bit expected. bit 17

enumerator kLPUART_ParityErrorFlag

If parity enabled, sets upon parity error detection. bit 16

enumerator kLPUART_LinBreakFlag

LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit enabled. bit 31

enumerator kLPUART_RxActiveEdgeFlag

Receive pin active edge interrupt flag, sets when active edge detected. bit 30

enumerator kLPUART_RxActiveFlag

Receiver Active Flag (RAF), sets at beginning of valid start. bit 24

enumerator kLPUART_DataMatch1Flag

The next character to be read from LPUART_DATA matches MA1. bit 15

enumerator kLPUART_DataMatch2Flag

The next character to be read from LPUART_DATA matches MA2. bit 14

enumerator kLPUART_TxFifoEmptyFlag

TXEMPT bit, sets if transmit buffer is empty. bit 7

enumerator kLPUART_RxFifoEmptyFlag

RXEMPT bit, sets if receive buffer is empty. bit 6

enumerator kLPUART_TxFifoOverflowFlag

TXOF bit, sets if transmit buffer overflow occurred. bit 1

enumerator kLPUART_RxFifoUnderflowFlag

RXUF bit, sets if receive buffer underflow occurred. bit 0

enumerator kLPUART_AllClearFlags
enumerator kLPUART_AllFlags
typedef enum _lpuart_parity_mode lpuart_parity_mode_t

LPUART parity mode.

typedef enum _lpuart_data_bits lpuart_data_bits_t

LPUART data bits count.

typedef enum _lpuart_stop_bit_count lpuart_stop_bit_count_t

LPUART stop bit count.

typedef enum _lpuart_transmit_cts_source lpuart_transmit_cts_source_t

LPUART transmit CTS source.

typedef enum _lpuart_transmit_cts_config lpuart_transmit_cts_config_t

LPUART transmit CTS configure.

typedef enum _lpuart_idle_type_select lpuart_idle_type_select_t

LPUART idle flag type defines when the receiver starts counting.

typedef enum _lpuart_idle_config lpuart_idle_config_t

LPUART idle detected configuration. This structure defines the number of idle characters that must be received before the IDLE flag is set.

typedef struct _lpuart_config lpuart_config_t

LPUART configuration structure.

typedef struct _lpuart_transfer lpuart_transfer_t

LPUART transfer structure.

typedef struct _lpuart_handle lpuart_handle_t
typedef void (*lpuart_transfer_callback_t)(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *userData)

LPUART transfer callback function.

typedef void (*lpuart_isr_t)(LPUART_Type *base, void *handle)
void *s_lpuartHandle[]
const IRQn_Type s_lpuartTxIRQ[]
lpuart_isr_t s_lpuartIsr[]
UART_RETRY_TIMES

Retry times for waiting flag.

struct _lpuart_config
#include <fsl_lpuart.h>

LPUART configuration structure.

Public Members

uint32_t baudRate_Bps

LPUART baud rate

lpuart_parity_mode_t parityMode

Parity mode, disabled (default), even, odd

lpuart_data_bits_t dataBitsCount

Data bits count, eight (default), seven

bool isMsb

Data bits order, LSB (default), MSB

lpuart_stop_bit_count_t stopBitCount

Number of stop bits, 1 stop bit (default) or 2 stop bits

uint8_t txFifoWatermark

TX FIFO watermark

uint8_t rxFifoWatermark

RX FIFO watermark

bool enableRxRTS

RX RTS enable

bool enableTxCTS

TX CTS enable

lpuart_transmit_cts_source_t txCtsSource

TX CTS source

lpuart_transmit_cts_config_t txCtsConfig

TX CTS configure

lpuart_idle_type_select_t rxIdleType

RX IDLE type.

lpuart_idle_config_t rxIdleConfig

RX IDLE configuration.

bool enableTx

Enable TX

bool enableRx

Enable RX

struct _lpuart_transfer
#include <fsl_lpuart.h>

LPUART transfer structure.

Public Members

size_t dataSize

The byte count to be transfer.

struct _lpuart_handle
#include <fsl_lpuart.h>

LPUART handle structure.

Public Members

volatile size_t txDataSize

Size of the remaining data to send.

size_t txDataSizeAll

Size of the data to send out.

volatile size_t rxDataSize

Size of the remaining data to receive.

size_t rxDataSizeAll

Size of the data to receive.

size_t rxRingBufferSize

Size of the ring buffer.

volatile uint16_t rxRingBufferHead

Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail

Index for the user to get data from the ring buffer.

lpuart_transfer_callback_t callback

Callback function.

void *userData

LPUART callback function parameter.

volatile uint8_t txState

TX transfer state.

volatile uint8_t rxState

RX transfer state.

bool isSevenDataBits

Seven data bits flag.

bool is16bitData

16bit data bits flag, only used for 9bit or 10bit data

union __unnamed21__

Public Members

uint8_t *data

The buffer of data to be transfer.

uint8_t *rxData

The buffer to receive data.

uint16_t *rxData16

The buffer to receive data.

const uint8_t *txData

The buffer of data to be sent.

const uint16_t *txData16

The buffer of data to be sent.

union __unnamed23__

Public Members

const uint8_t *volatile txData

Address of remaining data to send.

const uint16_t *volatile txData16

Address of remaining data to send.

union __unnamed25__

Public Members

uint8_t *volatile rxData

Address of remaining data to receive.

uint16_t *volatile rxData16

Address of remaining data to receive.

union __unnamed27__

Public Members

uint8_t *rxRingBuffer

Start address of the receiver ring buffer.

uint16_t *rxRingBuffer16

Start address of the receiver ring buffer.

LPUART eDMA Driver

void LPUART_TransferCreateHandleEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle, lpuart_edma_transfer_callback_t callback, void *userData, edma_handle_t *txEdmaHandle, edma_handle_t *rxEdmaHandle)

Initializes the LPUART handle which is used in transactional functions.

Note

This function disables all LPUART interrupts.

Parameters:
  • base – LPUART peripheral base address.

  • handle – Pointer to lpuart_edma_handle_t structure.

  • callback – Callback function.

  • userData – User data.

  • txEdmaHandle – User requested DMA handle for TX DMA transfer.

  • rxEdmaHandle – User requested DMA handle for RX DMA transfer.

status_t LPUART_SendEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle, lpuart_transfer_t *xfer)

Sends data using eDMA.

This function sends data using eDMA. This is a non-blocking function, which returns right away. When all data is sent, the send callback function is called.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • xfer – LPUART eDMA transfer structure. See lpuart_transfer_t.

Return values:
  • kStatus_Success – if succeed, others failed.

  • kStatus_LPUART_TxBusy – Previous transfer on going.

  • kStatus_InvalidArgument – Invalid argument.

status_t LPUART_ReceiveEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle, lpuart_transfer_t *xfer)

Receives data using eDMA.

This function receives data using eDMA. This is non-blocking function, which returns right away. When all data is received, the receive callback function is called.

Parameters:
  • base – LPUART peripheral base address.

  • handle – Pointer to lpuart_edma_handle_t structure.

  • xfer – LPUART eDMA transfer structure, see lpuart_transfer_t.

Return values:
  • kStatus_Success – if succeed, others fail.

  • kStatus_LPUART_RxBusy – Previous transfer ongoing.

  • kStatus_InvalidArgument – Invalid argument.

void LPUART_TransferAbortSendEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle)

Aborts the sent data using eDMA.

This function aborts the sent data using eDMA.

Parameters:
  • base – LPUART peripheral base address.

  • handle – Pointer to lpuart_edma_handle_t structure.

void LPUART_TransferAbortReceiveEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle)

Aborts the received data using eDMA.

This function aborts the received data using eDMA.

Parameters:
  • base – LPUART peripheral base address.

  • handle – Pointer to lpuart_edma_handle_t structure.

status_t LPUART_TransferGetSendCountEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle, uint32_t *count)

Gets the number of bytes written to the LPUART TX register.

This function gets the number of bytes written to the LPUART TX register by DMA.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • count – Send bytes count.

Return values:
  • kStatus_NoTransferInProgress – No send in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

status_t LPUART_TransferGetReceiveCountEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle, uint32_t *count)

Gets the number of received bytes.

This function gets the number of received bytes.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • count – Receive bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

void LPUART_TransferEdmaHandleIRQ(LPUART_Type *base, void *lpuartEdmaHandle)

LPUART eDMA IRQ handle function.

This function handles the LPUART tx complete IRQ request and invoke user callback. It is not set to static so that it can be used in user application.

Note

This function is used as default IRQ handler by double weak mechanism. If user’s specific IRQ handler is implemented, make sure this function is invoked in the handler.

Parameters:
  • base – LPUART peripheral base address.

  • lpuartEdmaHandle – LPUART handle pointer.

FSL_LPUART_EDMA_DRIVER_VERSION

LPUART EDMA driver version.

typedef struct _lpuart_edma_handle lpuart_edma_handle_t
typedef void (*lpuart_edma_transfer_callback_t)(LPUART_Type *base, lpuart_edma_handle_t *handle, status_t status, void *userData)

LPUART transfer callback function.

struct _lpuart_edma_handle
#include <fsl_lpuart_edma.h>

LPUART eDMA handle.

Public Members

lpuart_edma_transfer_callback_t callback

Callback function.

void *userData

LPUART callback function parameter.

size_t rxDataSizeAll

Size of the data to receive.

size_t txDataSizeAll

Size of the data to send out.

edma_handle_t *txEdmaHandle

The eDMA TX channel used.

edma_handle_t *rxEdmaHandle

The eDMA RX channel used.

uint8_t nbytes

eDMA minor byte transfer count initially configured.

volatile uint8_t txState

TX transfer state.

volatile uint8_t rxState

RX transfer state

MCM: Miscellaneous Control Module

FSL_MCM_DRIVER_VERSION

MCM driver version.

Enum _mcm_interrupt_flag. Interrupt status flag mask. .

Values:

enumerator kMCM_CacheWriteBuffer

Cache Write Buffer Error Enable.

enumerator kMCM_ParityError

Cache Parity Error Enable.

enumerator kMCM_FPUInvalidOperation

FPU Invalid Operation Interrupt Enable.

enumerator kMCM_FPUDivideByZero

FPU Divide-by-zero Interrupt Enable.

enumerator kMCM_FPUOverflow

FPU Overflow Interrupt Enable.

enumerator kMCM_FPUUnderflow

FPU Underflow Interrupt Enable.

enumerator kMCM_FPUInexact

FPU Inexact Interrupt Enable.

enumerator kMCM_FPUInputDenormalInterrupt

FPU Input Denormal Interrupt Enable.

typedef union _mcm_buffer_fault_attribute mcm_buffer_fault_attribute_t

The union of buffer fault attribute.

typedef union _mcm_lmem_fault_attribute mcm_lmem_fault_attribute_t

The union of LMEM fault attribute.

static inline void MCM_EnableCrossbarRoundRobin(MCM_Type *base, bool enable)

Enables/Disables crossbar round robin.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable crossbar round robin.

    • true Enable crossbar round robin.

    • false disable crossbar round robin.

static inline void MCM_EnableInterruptStatus(MCM_Type *base, uint32_t mask)

Enables the interrupt.

Parameters:
  • base – MCM peripheral base address.

  • mask – Interrupt status flags mask(_mcm_interrupt_flag).

static inline void MCM_DisableInterruptStatus(MCM_Type *base, uint32_t mask)

Disables the interrupt.

Parameters:
  • base – MCM peripheral base address.

  • mask – Interrupt status flags mask(_mcm_interrupt_flag).

static inline uint16_t MCM_GetInterruptStatus(MCM_Type *base)

Gets the Interrupt status .

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_ClearCacheWriteBufferErroStatus(MCM_Type *base)

Clears the Interrupt status .

Parameters:
  • base – MCM peripheral base address.

static inline uint32_t MCM_GetBufferFaultAddress(MCM_Type *base)

Gets buffer fault address.

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_GetBufferFaultAttribute(MCM_Type *base, mcm_buffer_fault_attribute_t *bufferfault)

Gets buffer fault attributes.

Parameters:
  • base – MCM peripheral base address.

static inline uint32_t MCM_GetBufferFaultData(MCM_Type *base)

Gets buffer fault data.

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_LimitCodeCachePeripheralWriteBuffering(MCM_Type *base, bool enable)

Limit code cache peripheral write buffering.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable limit code cache peripheral write buffering.

    • true Enable limit code cache peripheral write buffering.

    • false disable limit code cache peripheral write buffering.

static inline void MCM_BypassFixedCodeCacheMap(MCM_Type *base, bool enable)

Bypass fixed code cache map.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable bypass fixed code cache map.

    • true Enable bypass fixed code cache map.

    • false disable bypass fixed code cache map.

static inline void MCM_EnableCodeBusCache(MCM_Type *base, bool enable)

Enables/Disables code bus cache.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to disable/enable code bus cache.

    • true Enable code bus cache.

    • false disable code bus cache.

static inline void MCM_ForceCodeCacheToNoAllocation(MCM_Type *base, bool enable)

Force code cache to no allocation.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to force code cache to allocation or no allocation.

    • true Force code cache to no allocation.

    • false Force code cache to allocation.

static inline void MCM_EnableCodeCacheWriteBuffer(MCM_Type *base, bool enable)

Enables/Disables code cache write buffer.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable code cache write buffer.

    • true Enable code cache write buffer.

    • false Disable code cache write buffer.

static inline void MCM_ClearCodeBusCache(MCM_Type *base)

Clear code bus cache.

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_EnablePcParityFaultReport(MCM_Type *base, bool enable)

Enables/Disables PC Parity Fault Report.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable PC Parity Fault Report.

    • true Enable PC Parity Fault Report.

    • false disable PC Parity Fault Report.

static inline void MCM_EnablePcParity(MCM_Type *base, bool enable)

Enables/Disables PC Parity.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable PC Parity.

    • true Enable PC Parity.

    • false disable PC Parity.

static inline void MCM_LockConfigState(MCM_Type *base)

Lock the configuration state.

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_EnableCacheParityReporting(MCM_Type *base, bool enable)

Enables/Disables cache parity reporting.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable cache parity reporting.

    • true Enable cache parity reporting.

    • false disable cache parity reporting.

static inline uint32_t MCM_GetLmemFaultAddress(MCM_Type *base)

Gets LMEM fault address.

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_GetLmemFaultAttribute(MCM_Type *base, mcm_lmem_fault_attribute_t *lmemFault)

Get LMEM fault attributes.

Parameters:
  • base – MCM peripheral base address.

static inline uint64_t MCM_GetLmemFaultData(MCM_Type *base)

Gets LMEM fault data.

Parameters:
  • base – MCM peripheral base address.

MCM_LMFATR_TYPE_MASK
MCM_LMFATR_MODE_MASK
MCM_LMFATR_BUFF_MASK
MCM_LMFATR_CACH_MASK
MCM_ISCR_STAT_MASK
MCM_ISCR_CPEE_MASK
FSL_COMPONENT_ID
union _mcm_buffer_fault_attribute
#include <fsl_mcm.h>

The union of buffer fault attribute.

Public Members

uint32_t attribute

Indicates the faulting attributes, when a properly-enabled cache write buffer error interrupt event is detected.

struct _mcm_buffer_fault_attribute._mcm_buffer_fault_attribut attribute_memory
struct _mcm_buffer_fault_attribut
#include <fsl_mcm.h>

Public Members

uint32_t busErrorDataAccessType

Indicates the type of cache write buffer access.

uint32_t busErrorPrivilegeLevel

Indicates the privilege level of the cache write buffer access.

uint32_t busErrorSize

Indicates the size of the cache write buffer access.

uint32_t busErrorAccess

Indicates the type of system bus access.

uint32_t busErrorMasterID

Indicates the crossbar switch bus master number of the captured cache write buffer bus error.

uint32_t busErrorOverrun

Indicates if another cache write buffer bus error is detected.

union _mcm_lmem_fault_attribute
#include <fsl_mcm.h>

The union of LMEM fault attribute.

Public Members

uint32_t attribute

Indicates the attributes of the LMEM fault detected.

struct _mcm_lmem_fault_attribute._mcm_lmem_fault_attribut attribute_memory
struct _mcm_lmem_fault_attribut
#include <fsl_mcm.h>

Public Members

uint32_t parityFaultProtectionSignal

Indicates the features of parity fault protection signal.

uint32_t parityFaultMasterSize

Indicates the parity fault master size.

uint32_t parityFaultWrite

Indicates the parity fault is caused by read or write.

uint32_t backdoorAccess

Indicates the LMEM access fault is initiated by core access or backdoor access.

uint32_t parityFaultSyndrome

Indicates the parity fault syndrome.

uint32_t overrun

Indicates the number of faultss.

PDB: Programmable Delay Block

void PDB_Init(PDB_Type *base, const pdb_config_t *config)

Initializes the PDB module.

This function initializes the PDB module. The operations included are as follows.

  • Enable the clock for PDB instance.

  • Configure the PDB module.

  • Enable the PDB module.

Parameters:
  • base – PDB peripheral base address.

  • config – Pointer to the configuration structure. See “pdb_config_t”.

void PDB_Deinit(PDB_Type *base)

De-initializes the PDB module.

Parameters:
  • base – PDB peripheral base address.

void PDB_GetDefaultConfig(pdb_config_t *config)

Initializes the PDB user configuration structure.

This function initializes the user configuration structure to a default value. The default values are as follows.

config->loadValueMode = kPDB_LoadValueImmediately;
config->prescalerDivider = kPDB_PrescalerDivider1;
config->dividerMultiplicationFactor = kPDB_DividerMultiplicationFactor1;
config->triggerInputSource = kPDB_TriggerSoftware;
config->enableContinuousMode = false;

Parameters:
  • config – Pointer to configuration structure. See “pdb_config_t”.

static inline void PDB_Enable(PDB_Type *base, bool enable)

Enables the PDB module.

Parameters:
  • base – PDB peripheral base address.

  • enable – Enable the module or not.

static inline void PDB_DoSoftwareTrigger(PDB_Type *base)

Triggers the PDB counter by software.

Parameters:
  • base – PDB peripheral base address.

static inline void PDB_DoLoadValues(PDB_Type *base)

Loads the counter values.

This function loads the counter values from the internal buffer. See “pdb_load_value_mode_t” about PDB’s load mode.

Parameters:
  • base – PDB peripheral base address.

static inline void PDB_EnableDMA(PDB_Type *base, bool enable)

Enables the DMA for the PDB module.

Parameters:
  • base – PDB peripheral base address.

  • enable – Enable the feature or not.

static inline void PDB_EnableInterrupts(PDB_Type *base, uint32_t mask)

Enables the interrupts for the PDB module.

Parameters:
  • base – PDB peripheral base address.

  • mask – Mask value for interrupts. See “_pdb_interrupt_enable”.

static inline void PDB_DisableInterrupts(PDB_Type *base, uint32_t mask)

Disables the interrupts for the PDB module.

Parameters:
  • base – PDB peripheral base address.

  • mask – Mask value for interrupts. See “_pdb_interrupt_enable”.

static inline uint32_t PDB_GetStatusFlags(PDB_Type *base)

Gets the status flags of the PDB module.

Parameters:
  • base – PDB peripheral base address.

Returns:

Mask value for asserted flags. See “_pdb_status_flags”.

static inline void PDB_ClearStatusFlags(PDB_Type *base, uint32_t mask)

Clears the status flags of the PDB module.

Parameters:
  • base – PDB peripheral base address.

  • mask – Mask value of flags. See “_pdb_status_flags”.

static inline void PDB_SetModulusValue(PDB_Type *base, uint32_t value)

Specifies the counter period.

Parameters:
  • base – PDB peripheral base address.

  • value – Setting value for the modulus. 16-bit is available.

static inline uint32_t PDB_GetCounterValue(PDB_Type *base)

Gets the PDB counter’s current value.

Parameters:
  • base – PDB peripheral base address.

Returns:

PDB counter’s current value.

static inline void PDB_SetCounterDelayValue(PDB_Type *base, uint32_t value)

Sets the value for the PDB counter delay event.

Parameters:
  • base – PDB peripheral base address.

  • value – Setting value for PDB counter delay event. 16-bit is available.

static inline void PDB_SetADCPreTriggerConfig(PDB_Type *base, pdb_adc_trigger_channel_t channel, pdb_adc_pretrigger_config_t *config)

Configures the ADC pre-trigger in the PDB module.

Parameters:
  • base – PDB peripheral base address.

  • channel – Channel index for ADC instance.

  • config – Pointer to the configuration structure. See “pdb_adc_pretrigger_config_t”.

static inline void PDB_SetADCPreTriggerDelayValue(PDB_Type *base, pdb_adc_trigger_channel_t channel, pdb_adc_pretrigger_t pretriggerNumber, uint32_t value)

Sets the value for the ADC pre-trigger delay event.

This function sets the value for ADC pre-trigger delay event. It specifies the delay value for the channel’s corresponding pre-trigger. The pre-trigger asserts when the PDB counter is equal to the set value.

Parameters:
  • base – PDB peripheral base address.

  • channel – Channel index for ADC instance.

  • pretriggerNumber – Channel group index for ADC instance.

  • value – Setting value for ADC pre-trigger delay event. 16-bit is available.

static inline uint32_t PDB_GetADCPreTriggerStatusFlags(PDB_Type *base, pdb_adc_trigger_channel_t channel)

Gets the ADC pre-trigger’s status flags.

Parameters:
  • base – PDB peripheral base address.

  • channel – Channel index for ADC instance.

Returns:

Mask value for asserted flags. See “_pdb_adc_pretrigger_flags”.

static inline void PDB_ClearADCPreTriggerStatusFlags(PDB_Type *base, pdb_adc_trigger_channel_t channel, uint32_t mask)

Clears the ADC pre-trigger status flags.

Parameters:
  • base – PDB peripheral base address.

  • channel – Channel index for ADC instance.

  • mask – Mask value for flags. See “_pdb_adc_pretrigger_flags”.

void PDB_SetDACTriggerConfig(PDB_Type *base, pdb_dac_trigger_channel_t channel, pdb_dac_trigger_config_t *config)

Configures the DAC trigger in the PDB module.

Parameters:
  • base – PDB peripheral base address.

  • channel – Channel index for DAC instance.

  • config – Pointer to the configuration structure. See “pdb_dac_trigger_config_t”.

static inline void PDB_SetDACTriggerIntervalValue(PDB_Type *base, pdb_dac_trigger_channel_t channel, uint32_t value)

Sets the value for the DAC interval event.

This function sets the value for DAC interval event. DAC interval trigger triggers the DAC module to update the buffer when the DAC interval counter is equal to the set value.

Parameters:
  • base – PDB peripheral base address.

  • channel – Channel index for DAC instance.

  • value – Setting value for the DAC interval event.

static inline void PDB_EnablePulseOutTrigger(PDB_Type *base, pdb_pulse_out_channel_mask_t channelMask, bool enable)

Enables the pulse out trigger channels.

Parameters:
  • base – PDB peripheral base address.

  • channelMask – Channel mask value for multiple pulse out trigger channel.

  • enable – Whether the feature is enabled or not.

static inline void PDB_SetPulseOutTriggerDelayValue(PDB_Type *base, pdb_pulse_out_trigger_channel_t channel, uint32_t value1, uint32_t value2)

Sets event values for the pulse out trigger.

This function is used to set event values for the pulse output trigger. These pulse output trigger delay values specify the delay for the PDB Pulse-out. Pulse-out goes high when the PDB counter is equal to the pulse output high value (value1). Pulse-out goes low when the PDB counter is equal to the pulse output low value (value2).

Parameters:
  • base – PDB peripheral base address.

  • channel – Channel index for pulse out trigger channel.

  • value1 – Setting value for pulse out high.

  • value2 – Setting value for pulse out low.

FSL_PDB_DRIVER_VERSION

PDB driver version 2.0.4.

enum _pdb_status_flags

PDB flags.

Values:

enumerator kPDB_LoadOKFlag

This flag is automatically cleared when the values in buffers are loaded into the internal registers after the LDOK bit is set or the PDBEN is cleared.

enumerator kPDB_DelayEventFlag

PDB timer delay event flag.

enum _pdb_adc_pretrigger_flags

PDB ADC PreTrigger channel flags.

Values:

enumerator kPDB_ADCPreTriggerChannel0Flag

Pre-trigger 0 flag.

enumerator kPDB_ADCPreTriggerChannel1Flag

Pre-trigger 1 flag.

enumerator kPDB_ADCPreTriggerChannel0ErrorFlag

Pre-trigger 0 Error.

enumerator kPDB_ADCPreTriggerChannel1ErrorFlag

Pre-trigger 1 Error.

enum _pdb_interrupt_enable

PDB buffer interrupts.

Values:

enumerator kPDB_SequenceErrorInterruptEnable

PDB sequence error interrupt enable.

enumerator kPDB_DelayInterruptEnable

PDB delay interrupt enable.

enum _pdb_load_value_mode

PDB load value mode.

Selects the mode to load the internal values after doing the load operation (write 1 to PDBx_SC[LDOK]). These values are for the following operations.

  • PDB counter (PDBx_MOD, PDBx_IDLY)

  • ADC trigger (PDBx_CHnDLYm)

  • DAC trigger (PDBx_DACINTx)

  • CMP trigger (PDBx_POyDLY)

Values:

enumerator kPDB_LoadValueImmediately

Load immediately after 1 is written to LDOK.

enumerator kPDB_LoadValueOnCounterOverflow

Load when the PDB counter overflows (reaches the MOD register value).

enumerator kPDB_LoadValueOnTriggerInput

Load a trigger input event is detected.

enumerator kPDB_LoadValueOnCounterOverflowOrTriggerInput

Load either when the PDB counter overflows or a trigger input is detected.

enum _pdb_prescaler_divider

Prescaler divider.

Counting uses the peripheral clock divided by multiplication factor selected by times of MULT.

Values:

enumerator kPDB_PrescalerDivider1

Divider x1.

enumerator kPDB_PrescalerDivider2

Divider x2.

enumerator kPDB_PrescalerDivider4

Divider x4.

enumerator kPDB_PrescalerDivider8

Divider x8.

enumerator kPDB_PrescalerDivider16

Divider x16.

enumerator kPDB_PrescalerDivider32

Divider x32.

enumerator kPDB_PrescalerDivider64

Divider x64.

enumerator kPDB_PrescalerDivider128

Divider x128.

enum _pdb_divider_multiplication_factor

Multiplication factor select for prescaler.

Selects the multiplication factor of the prescaler divider for the counter clock.

Values:

enumerator kPDB_DividerMultiplicationFactor1

Multiplication factor is 1.

enumerator kPDB_DividerMultiplicationFactor10

Multiplication factor is 10.

enumerator kPDB_DividerMultiplicationFactor20

Multiplication factor is 20.

enumerator kPDB_DividerMultiplicationFactor40

Multiplication factor is 40.

enum _pdb_trigger_input_source

Trigger input source.

Selects the trigger input source for the PDB. The trigger input source can be internal or external (EXTRG pin), or the software trigger. See chip configuration details for the actual PDB input trigger connections.

Values:

enumerator kPDB_TriggerInput0

Trigger-In 0.

enumerator kPDB_TriggerInput1

Trigger-In 1.

enumerator kPDB_TriggerInput2

Trigger-In 2.

enumerator kPDB_TriggerInput3

Trigger-In 3.

enumerator kPDB_TriggerInput4

Trigger-In 4.

enumerator kPDB_TriggerInput5

Trigger-In 5.

enumerator kPDB_TriggerInput6

Trigger-In 6.

enumerator kPDB_TriggerInput7

Trigger-In 7.

enumerator kPDB_TriggerInput8

Trigger-In 8.

enumerator kPDB_TriggerInput9

Trigger-In 9.

enumerator kPDB_TriggerInput10

Trigger-In 10.

enumerator kPDB_TriggerInput11

Trigger-In 11.

enumerator kPDB_TriggerInput12

Trigger-In 12.

enumerator kPDB_TriggerInput13

Trigger-In 13.

enumerator kPDB_TriggerInput14

Trigger-In 14.

enumerator kPDB_TriggerSoftware

Trigger-In 15, software trigger.

enum _pdb_adc_trigger_channel

List of PDB ADC trigger channels.

Note

Actual number of available channels is SoC dependent

Values:

enumerator kPDB_ADCTriggerChannel0

PDB ADC trigger channel number 0

enumerator kPDB_ADCTriggerChannel1

PDB ADC trigger channel number 1

enumerator kPDB_ADCTriggerChannel2

PDB ADC trigger channel number 2

enumerator kPDB_ADCTriggerChannel3

PDB ADC trigger channel number 3

enum _pdb_adc_pretrigger

List of PDB ADC pretrigger.

Note

Actual number of available pretrigger channels is SoC dependent

Values:

enumerator kPDB_ADCPreTrigger0

PDB ADC pretrigger number 0

enumerator kPDB_ADCPreTrigger1

PDB ADC pretrigger number 1

enumerator kPDB_ADCPreTrigger2

PDB ADC pretrigger number 2

enumerator kPDB_ADCPreTrigger3

PDB ADC pretrigger number 3

enumerator kPDB_ADCPreTrigger4

PDB ADC pretrigger number 4

enumerator kPDB_ADCPreTrigger5

PDB ADC pretrigger number 5

enumerator kPDB_ADCPreTrigger6

PDB ADC pretrigger number 6

enumerator kPDB_ADCPreTrigger7

PDB ADC pretrigger number 7

enum _pdb_dac_trigger_channel

List of PDB DAC trigger channels.

Note

Actual number of available channels is SoC dependent

Values:

enumerator kPDB_DACTriggerChannel0

PDB DAC trigger channel number 0

enumerator kPDB_DACTriggerChannel1

PDB DAC trigger channel number 1

enum _pdb_pulse_out_trigger_channel

List of PDB pulse out trigger channels.

Note

Actual number of available channels is SoC dependent

Values:

enumerator kPDB_PulseOutTriggerChannel0

PDB pulse out trigger channel number 0

enumerator kPDB_PulseOutTriggerChannel1

PDB pulse out trigger channel number 1

enumerator kPDB_PulseOutTriggerChannel2

PDB pulse out trigger channel number 2

enumerator kPDB_PulseOutTriggerChannel3

PDB pulse out trigger channel number 3

enum _pdb_pulse_out_channel_mask

List of PDB pulse out trigger channels mask.

Note

Actual number of available channels mask is SoC dependent

Values:

enumerator kPDB_PulseOutChannel0Mask

PDB pulse out trigger channel number 0 mask

enumerator kPDB_PulseOutChannel1Mask

PDB pulse out trigger channel number 1 mask

enumerator kPDB_PulseOutChannel2Mask

PDB pulse out trigger channel number 2 mask

enumerator kPDB_PulseOutChannel3Mask

PDB pulse out trigger channel number 3 mask

typedef enum _pdb_load_value_mode pdb_load_value_mode_t

PDB load value mode.

Selects the mode to load the internal values after doing the load operation (write 1 to PDBx_SC[LDOK]). These values are for the following operations.

  • PDB counter (PDBx_MOD, PDBx_IDLY)

  • ADC trigger (PDBx_CHnDLYm)

  • DAC trigger (PDBx_DACINTx)

  • CMP trigger (PDBx_POyDLY)

typedef enum _pdb_prescaler_divider pdb_prescaler_divider_t

Prescaler divider.

Counting uses the peripheral clock divided by multiplication factor selected by times of MULT.

typedef enum _pdb_divider_multiplication_factor pdb_divider_multiplication_factor_t

Multiplication factor select for prescaler.

Selects the multiplication factor of the prescaler divider for the counter clock.

typedef enum _pdb_trigger_input_source pdb_trigger_input_source_t

Trigger input source.

Selects the trigger input source for the PDB. The trigger input source can be internal or external (EXTRG pin), or the software trigger. See chip configuration details for the actual PDB input trigger connections.

typedef enum _pdb_adc_trigger_channel pdb_adc_trigger_channel_t

List of PDB ADC trigger channels.

Note

Actual number of available channels is SoC dependent

typedef enum _pdb_adc_pretrigger pdb_adc_pretrigger_t

List of PDB ADC pretrigger.

Note

Actual number of available pretrigger channels is SoC dependent

typedef enum _pdb_dac_trigger_channel pdb_dac_trigger_channel_t

List of PDB DAC trigger channels.

Note

Actual number of available channels is SoC dependent

typedef enum _pdb_pulse_out_trigger_channel pdb_pulse_out_trigger_channel_t

List of PDB pulse out trigger channels.

Note

Actual number of available channels is SoC dependent

typedef enum _pdb_pulse_out_channel_mask pdb_pulse_out_channel_mask_t

List of PDB pulse out trigger channels mask.

Note

Actual number of available channels mask is SoC dependent

typedef struct _pdb_config pdb_config_t

PDB module configuration.

typedef struct _pdb_adc_pretrigger_config pdb_adc_pretrigger_config_t

PDB ADC Pre-trigger configuration.

typedef struct _pdb_dac_trigger_config pdb_dac_trigger_config_t

PDB DAC trigger configuration.

struct _pdb_config
#include <fsl_pdb.h>

PDB module configuration.

Public Members

pdb_load_value_mode_t loadValueMode

Select the load value mode.

pdb_prescaler_divider_t prescalerDivider

Select the prescaler divider.

pdb_divider_multiplication_factor_t dividerMultiplicationFactor

Multiplication factor select for prescaler.

pdb_trigger_input_source_t triggerInputSource

Select the trigger input source.

bool enableContinuousMode

Enable the PDB operation in Continuous mode.

struct _pdb_adc_pretrigger_config
#include <fsl_pdb.h>

PDB ADC Pre-trigger configuration.

Public Members

uint32_t enablePreTriggerMask

PDB Channel Pre-trigger Enable.

uint32_t enableOutputMask

PDB Channel Pre-trigger Output Select. PDB channel’s corresponding pre-trigger asserts when the counter reaches the channel delay register.

uint32_t enableBackToBackOperationMask

PDB Channel pre-trigger Back-to-Back Operation Enable. Back-to-back operation enables the ADC conversions complete to trigger the next PDB channel pre-trigger and trigger output, so that the ADC conversions can be triggered on next set of configuration and results registers.

struct _pdb_dac_trigger_config
#include <fsl_pdb.h>

PDB DAC trigger configuration.

Public Members

bool enableExternalTriggerInput

Enables the external trigger for DAC interval counter.

bool enableIntervalTrigger

Enables the DAC interval trigger.

PIT: Periodic Interrupt Timer

void PIT_Init(PIT_Type *base, const pit_config_t *config)

Ungates the PIT clock, enables the PIT module, and configures the peripheral for basic operations.

Note

This API should be called at the beginning of the application using the PIT driver.

Parameters:
  • base – PIT peripheral base address

  • config – Pointer to the user’s PIT config structure

void PIT_Deinit(PIT_Type *base)

Gates the PIT clock and disables the PIT module.

Parameters:
  • base – PIT peripheral base address

static inline void PIT_GetDefaultConfig(pit_config_t *config)

Fills in the PIT configuration structure with the default settings.

The default values are as follows.

config->enableRunInDebug = false;

Parameters:
  • config – Pointer to the configuration structure.

static inline void PIT_SetTimerChainMode(PIT_Type *base, pit_chnl_t channel, bool enable)

Enables or disables chaining a timer with the previous timer.

When a timer has a chain mode enabled, it only counts after the previous timer has expired. If the timer n-1 has counted down to 0, counter n decrements the value by one. Each timer is 32-bits, which allows the developers to chain timers together and form a longer timer (64-bits and larger). The first timer (timer 0) can’t be chained to any other timer.

Parameters:
  • base – PIT peripheral base address

  • channel – Timer channel number which is chained with the previous timer

  • enable – Enable or disable chain. true: Current timer is chained with the previous timer. false: Timer doesn’t chain with other timers.

static inline void PIT_EnableInterrupts(PIT_Type *base, pit_chnl_t channel, uint32_t mask)

Enables the selected PIT interrupts.

Parameters:
  • base – PIT peripheral base address

  • channel – Timer channel number

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration pit_interrupt_enable_t

static inline void PIT_DisableInterrupts(PIT_Type *base, pit_chnl_t channel, uint32_t mask)

Disables the selected PIT interrupts.

Parameters:
  • base – PIT peripheral base address

  • channel – Timer channel number

  • mask – The interrupts to disable. This is a logical OR of members of the enumeration pit_interrupt_enable_t

static inline uint32_t PIT_GetEnabledInterrupts(PIT_Type *base, pit_chnl_t channel)

Gets the enabled PIT interrupts.

Parameters:
  • base – PIT peripheral base address

  • channel – Timer channel number

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration pit_interrupt_enable_t

static inline uint32_t PIT_GetStatusFlags(PIT_Type *base, pit_chnl_t channel)

Gets the PIT status flags.

Parameters:
  • base – PIT peripheral base address

  • channel – Timer channel number

Returns:

The status flags. This is the logical OR of members of the enumeration pit_status_flags_t

static inline void PIT_ClearStatusFlags(PIT_Type *base, pit_chnl_t channel, uint32_t mask)

Clears the PIT status flags.

Parameters:
  • base – PIT peripheral base address

  • channel – Timer channel number

  • mask – The status flags to clear. This is a logical OR of members of the enumeration pit_status_flags_t

static inline void PIT_SetTimerPeriod(PIT_Type *base, pit_chnl_t channel, uint32_t count)

Sets the timer period in units of count.

Timers begin counting from the value set by this function until it reaches 0, then it generates an interrupt and load this register value again. Writing a new value to this register does not restart the timer. Instead, the value is loaded after the timer expires.

Note

Users can call the utility macros provided in fsl_common.h to convert to ticks.

Parameters:
  • base – PIT peripheral base address

  • channel – Timer channel number

  • count – Timer period in units of ticks

static inline uint32_t PIT_GetCurrentTimerCount(PIT_Type *base, pit_chnl_t channel)

Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note

Users can call the utility macros provided in fsl_common.h to convert ticks to usec or msec.

Parameters:
  • base – PIT peripheral base address

  • channel – Timer channel number

Returns:

Current timer counting value in ticks

static inline void PIT_StartTimer(PIT_Type *base, pit_chnl_t channel)

Starts the timer counting.

After calling this function, timers load period value, count down to 0 and then load the respective start value again. Each time a timer reaches 0, it generates a trigger pulse and sets the timeout interrupt flag.

Parameters:
  • base – PIT peripheral base address

  • channel – Timer channel number.

static inline void PIT_StopTimer(PIT_Type *base, pit_chnl_t channel)

Stops the timer counting.

This function stops every timer counting. Timers reload their periods respectively after the next time they call the PIT_DRV_StartTimer.

Parameters:
  • base – PIT peripheral base address

  • channel – Timer channel number.

FSL_PIT_DRIVER_VERSION

PIT Driver Version 2.0.5.

enum _pit_chnl

List of PIT channels.

Note

Actual number of available channels is SoC dependent

Values:

enumerator kPIT_Chnl_0

PIT channel number 0

enumerator kPIT_Chnl_1

PIT channel number 1

enumerator kPIT_Chnl_2

PIT channel number 2

enumerator kPIT_Chnl_3

PIT channel number 3

enum _pit_interrupt_enable

List of PIT interrupts.

Values:

enumerator kPIT_TimerInterruptEnable

Timer interrupt enable

enum _pit_status_flags

List of PIT status flags.

Values:

enumerator kPIT_TimerFlag

Timer flag

typedef enum _pit_chnl pit_chnl_t

List of PIT channels.

Note

Actual number of available channels is SoC dependent

typedef enum _pit_interrupt_enable pit_interrupt_enable_t

List of PIT interrupts.

typedef enum _pit_status_flags pit_status_flags_t

List of PIT status flags.

typedef struct _pit_config pit_config_t

PIT configuration structure.

This structure holds the configuration settings for the PIT peripheral. To initialize this structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer to your config structure instance.

The configuration structure can be made constant so it resides in flash.

uint64_t PIT_GetLifetimeTimerCount(PIT_Type *base)

Reads the current lifetime counter value.

The lifetime timer is a 64-bit timer which chains timer 0 and timer 1 together. Timer 0 and 1 are chained by calling the PIT_SetTimerChainMode before using this timer. The period of lifetime timer is equal to the “period of timer 0 * period of timer 1”. For the 64-bit value, the higher 32-bit has the value of timer 1, and the lower 32-bit has the value of timer 0.

Parameters:
  • base – PIT peripheral base address

Returns:

Current lifetime timer value

struct _pit_config
#include <fsl_pit.h>

PIT configuration structure.

This structure holds the configuration settings for the PIT peripheral. To initialize this structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer to your config structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableRunInDebug

true: Timers run in debug mode; false: Timers stop in debug mode

PMC: Power Management Controller

static inline void PMC_GetVersionId(PMC_Type *base, pmc_version_id_t *versionId)

Gets the PMC version ID.

This function gets the PMC version ID, including major version number, minor version number, and a feature specification number.

Parameters:
  • base – PMC peripheral base address.

  • versionId – Pointer to version ID structure.

void PMC_GetParam(PMC_Type *base, pmc_param_t *param)

Gets the PMC parameter.

This function gets the PMC parameter including the VLPO enable and the HVD enable.

Parameters:
  • base – PMC peripheral base address.

  • param – Pointer to PMC param structure.

void PMC_ConfigureLowVoltDetect(PMC_Type *base, const pmc_low_volt_detect_config_t *config)

Configures the low-voltage detect setting.

This function configures the low-voltage detect setting, including the trip point voltage setting, enables or disables the interrupt, enables or disables the system reset.

Parameters:
  • base – PMC peripheral base address.

  • config – Low-voltage detect configuration structure.

static inline bool PMC_GetLowVoltDetectFlag(PMC_Type *base)

Gets the Low-voltage Detect Flag status.

This function reads the current LVDF status. If it returns 1, a low-voltage event is detected.

Parameters:
  • base – PMC peripheral base address.

Returns:

Current low-voltage detect flag

  • true: Low-voltage detected

  • false: Low-voltage not detected

static inline void PMC_ClearLowVoltDetectFlag(PMC_Type *base)

Acknowledges clearing the Low-voltage Detect flag.

This function acknowledges the low-voltage detection errors (write 1 to clear LVDF).

Parameters:
  • base – PMC peripheral base address.

void PMC_ConfigureLowVoltWarning(PMC_Type *base, const pmc_low_volt_warning_config_t *config)

Configures the low-voltage warning setting.

This function configures the low-voltage warning setting, including the trip point voltage setting and enabling or disabling the interrupt.

Parameters:
  • base – PMC peripheral base address.

  • config – Low-voltage warning configuration structure.

static inline bool PMC_GetLowVoltWarningFlag(PMC_Type *base)

Gets the Low-voltage Warning Flag status.

This function polls the current LVWF status. When 1 is returned, it indicates a low-voltage warning event. LVWF is set when V Supply transitions below the trip point or after reset and V Supply is already below the V LVW.

Parameters:
  • base – PMC peripheral base address.

Returns:

Current LVWF status

  • true: Low-voltage Warning Flag is set.

  • false: the Low-voltage Warning does not happen.

static inline void PMC_ClearLowVoltWarningFlag(PMC_Type *base)

Acknowledges the Low-voltage Warning flag.

This function acknowledges the low voltage warning errors (write 1 to clear LVWF).

Parameters:
  • base – PMC peripheral base address.

void PMC_ConfigureHighVoltDetect(PMC_Type *base, const pmc_high_volt_detect_config_t *config)

Configures the high-voltage detect setting.

This function configures the high-voltage detect setting, including the trip point voltage setting, enabling or disabling the interrupt, enabling or disabling the system reset.

Parameters:
  • base – PMC peripheral base address.

  • config – High-voltage detect configuration structure.

static inline bool PMC_GetHighVoltDetectFlag(PMC_Type *base)

Gets the High-voltage Detect Flag status.

This function reads the current HVDF status. If it returns 1, a low voltage event is detected.

Parameters:
  • base – PMC peripheral base address.

Returns:

Current high-voltage detect flag

  • true: High-voltage detected

  • false: High-voltage not detected

static inline void PMC_ClearHighVoltDetectFlag(PMC_Type *base)

Acknowledges clearing the High-voltage Detect flag.

This function acknowledges the high-voltage detection errors (write 1 to clear HVDF).

Parameters:
  • base – PMC peripheral base address.

void PMC_ConfigureBandgapBuffer(PMC_Type *base, const pmc_bandgap_buffer_config_t *config)

Configures the PMC bandgap.

This function configures the PMC bandgap, including the drive select and behavior in low-power mode.

Parameters:
  • base – PMC peripheral base address.

  • config – Pointer to the configuration structure

static inline bool PMC_GetPeriphIOIsolationFlag(PMC_Type *base)

Gets the acknowledge Peripherals and I/O pads isolation flag.

This function reads the Acknowledge Isolation setting that indicates whether certain peripherals and the I/O pads are in a latched state as a result of having been in the VLLS mode.

Parameters:
  • base – PMC peripheral base address.

  • base – Base address for current PMC instance.

Returns:

ACK isolation 0 - Peripherals and I/O pads are in a normal run state. 1 - Certain peripherals and I/O pads are in an isolated and latched state.

static inline void PMC_ClearPeriphIOIsolationFlag(PMC_Type *base)

Acknowledges the isolation flag to Peripherals and I/O pads.

This function clears the ACK Isolation flag. Writing one to this setting when it is set releases the I/O pads and certain peripherals to their normal run mode state.

Parameters:
  • base – PMC peripheral base address.

static inline bool PMC_IsRegulatorInRunRegulation(PMC_Type *base)

Gets the regulator regulation status.

This function returns the regulator to run a regulation status. It provides the current status of the internal voltage regulator.

Parameters:
  • base – PMC peripheral base address.

  • base – Base address for current PMC instance.

Returns:

Regulation status 0 - Regulator is in a stop regulation or in transition to/from the regulation. 1 - Regulator is in a run regulation.

FSL_PMC_DRIVER_VERSION

PMC driver version.

Version 2.0.3.

enum _pmc_low_volt_detect_volt_select

Low-voltage Detect Voltage Select.

Values:

enumerator kPMC_LowVoltDetectLowTrip

Low-trip point selected (VLVD = VLVDL )

enumerator kPMC_LowVoltDetectHighTrip

High-trip point selected (VLVD = VLVDH )

enum _pmc_low_volt_warning_volt_select

Low-voltage Warning Voltage Select.

Values:

enumerator kPMC_LowVoltWarningLowTrip

Low-trip point selected (VLVW = VLVW1)

enumerator kPMC_LowVoltWarningMid1Trip

Mid 1 trip point selected (VLVW = VLVW2)

enumerator kPMC_LowVoltWarningMid2Trip

Mid 2 trip point selected (VLVW = VLVW3)

enumerator kPMC_LowVoltWarningHighTrip

High-trip point selected (VLVW = VLVW4)

enum _pmc_high_volt_detect_volt_select

High-voltage Detect Voltage Select.

Values:

enumerator kPMC_HighVoltDetectLowTrip

Low-trip point selected (VHVD = VHVDL )

enumerator kPMC_HighVoltDetectHighTrip

High-trip point selected (VHVD = VHVDH )

enum _pmc_bandgap_buffer_drive_select

Bandgap Buffer Drive Select.

Values:

enumerator kPMC_BandgapBufferDriveLow

Low-drive.

enumerator kPMC_BandgapBufferDriveHigh

High-drive.

enum _pmc_vlp_freq_option

VLPx Option.

Values:

enumerator kPMC_FreqRestrict

Frequency is restricted in VLPx mode.

enumerator kPMC_FreqUnrestrict

Frequency is unrestricted in VLPx mode.

typedef enum _pmc_low_volt_detect_volt_select pmc_low_volt_detect_volt_select_t

Low-voltage Detect Voltage Select.

typedef enum _pmc_low_volt_warning_volt_select pmc_low_volt_warning_volt_select_t

Low-voltage Warning Voltage Select.

typedef enum _pmc_high_volt_detect_volt_select pmc_high_volt_detect_volt_select_t

High-voltage Detect Voltage Select.

typedef enum _pmc_bandgap_buffer_drive_select pmc_bandgap_buffer_drive_select_t

Bandgap Buffer Drive Select.

typedef enum _pmc_vlp_freq_option pmc_vlp_freq_mode_t

VLPx Option.

typedef struct _pmc_version_id pmc_version_id_t

IP version ID definition.

typedef struct _pmc_param pmc_param_t

IP parameter definition.

typedef struct _pmc_low_volt_detect_config pmc_low_volt_detect_config_t

Low-voltage Detect Configuration Structure.

typedef struct _pmc_low_volt_warning_config pmc_low_volt_warning_config_t

Low-voltage Warning Configuration Structure.

typedef struct _pmc_high_volt_detect_config pmc_high_volt_detect_config_t

High-voltage Detect Configuration Structure.

typedef struct _pmc_bandgap_buffer_config pmc_bandgap_buffer_config_t

Bandgap Buffer configuration.

struct _pmc_version_id
#include <fsl_pmc.h>

IP version ID definition.

Public Members

uint16_t feature

Feature Specification Number.

uint8_t minor

Minor version number.

uint8_t major

Major version number.

struct _pmc_param
#include <fsl_pmc.h>

IP parameter definition.

Public Members

bool vlpoEnable

VLPO enable.

bool hvdEnable

HVD enable.

struct _pmc_low_volt_detect_config
#include <fsl_pmc.h>

Low-voltage Detect Configuration Structure.

Public Members

bool enableInt

Enable interrupt when Low-voltage detect

bool enableReset

Enable system reset when Low-voltage detect

pmc_low_volt_detect_volt_select_t voltSelect

Low-voltage detect trip point voltage selection

struct _pmc_low_volt_warning_config
#include <fsl_pmc.h>

Low-voltage Warning Configuration Structure.

Public Members

bool enableInt

Enable interrupt when low-voltage warning

pmc_low_volt_warning_volt_select_t voltSelect

Low-voltage warning trip point voltage selection

struct _pmc_high_volt_detect_config
#include <fsl_pmc.h>

High-voltage Detect Configuration Structure.

Public Members

bool enableInt

Enable interrupt when high-voltage detect

bool enableReset

Enable system reset when high-voltage detect

pmc_high_volt_detect_volt_select_t voltSelect

High-voltage detect trip point voltage selection

struct _pmc_bandgap_buffer_config
#include <fsl_pmc.h>

Bandgap Buffer configuration.

Public Members

bool enable

Enable bandgap buffer.

bool enableInLowPowerMode

Enable bandgap buffer in low-power mode.

pmc_bandgap_buffer_drive_select_t drive

Bandgap buffer drive select.

PORT: Port Control and Interrupts

static inline void PORT_SetPinConfig(PORT_Type *base, uint32_t pin, const port_pin_config_t *config)

Sets the port PCR register.

This is an example to define an input pin or output pin PCR configuration.

// Define a digital input pin PCR configuration
port_pin_config_t config = {
     kPORT_PullUp,
     kPORT_FastSlewRate,
     kPORT_PassiveFilterDisable,
     kPORT_OpenDrainDisable,
     kPORT_LowDriveStrength,
     kPORT_MuxAsGpio,
     kPORT_UnLockRegister,
};

Parameters:
  • base – PORT peripheral base pointer.

  • pin – PORT pin number.

  • config – PORT PCR register configuration structure.

static inline void PORT_SetMultiplePinsConfig(PORT_Type *base, uint32_t mask, const port_pin_config_t *config)

Sets the port PCR register for multiple pins.

This is an example to define input pins or output pins PCR configuration.

Define a digital input pin PCR configuration
port_pin_config_t config = {
     kPORT_PullUp ,
     kPORT_PullEnable,
     kPORT_FastSlewRate,
     kPORT_PassiveFilterDisable,
     kPORT_OpenDrainDisable,
     kPORT_LowDriveStrength,
     kPORT_MuxAsGpio,
     kPORT_UnlockRegister,
};

Parameters:
  • base – PORT peripheral base pointer.

  • mask – PORT pin number macro.

  • config – PORT PCR register configuration structure.

static inline void PORT_SetMultipleInterruptPinsConfig(PORT_Type *base, uint32_t mask, port_interrupt_t config)

Sets the port interrupt configuration in PCR register for multiple pins.

Parameters:
  • base – PORT peripheral base pointer.

  • mask – PORT pin number macro.

  • config – PORT pin interrupt configuration.

    • kPORT_InterruptOrDMADisabled: Interrupt/DMA request disabled.

    • kPORT_DMARisingEdge : DMA request on rising edge(if the DMA requests exit).

    • kPORT_DMAFallingEdge: DMA request on falling edge(if the DMA requests exit).

    • kPORT_DMAEitherEdge : DMA request on either edge(if the DMA requests exit).

    • kPORT_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).

    • kPORT_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).

    • kPORT_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).

    • kPORT_InterruptLogicZero : Interrupt when logic zero.

    • kPORT_InterruptRisingEdge : Interrupt on rising edge.

    • kPORT_InterruptFallingEdge: Interrupt on falling edge.

    • kPORT_InterruptEitherEdge : Interrupt on either edge.

    • kPORT_InterruptLogicOne : Interrupt when logic one.

    • kPORT_ActiveHighTriggerOutputEnable : Enable active high-trigger output (if the trigger states exit).

    • kPORT_ActiveLowTriggerOutputEnable : Enable active low-trigger output (if the trigger states exit)..

static inline void PORT_SetPinMux(PORT_Type *base, uint32_t pin, port_mux_t mux)

Configures the pin muxing.

Note

: This function is NOT recommended to use together with the PORT_SetPinsConfig, because the PORT_SetPinsConfig need to configure the pin mux anyway (Otherwise the pin mux is reset to zero : kPORT_PinDisabledOrAnalog). This function is recommended to use to reset the pin mux

Parameters:
  • base – PORT peripheral base pointer.

  • pin – PORT pin number.

  • mux – pin muxing slot selection.

    • kPORT_PinDisabledOrAnalog: Pin disabled or work in analog function.

    • kPORT_MuxAsGpio : Set as GPIO.

    • kPORT_MuxAlt2 : chip-specific.

    • kPORT_MuxAlt3 : chip-specific.

    • kPORT_MuxAlt4 : chip-specific.

    • kPORT_MuxAlt5 : chip-specific.

    • kPORT_MuxAlt6 : chip-specific.

    • kPORT_MuxAlt7 : chip-specific.

static inline void PORT_EnablePinsDigitalFilter(PORT_Type *base, uint32_t mask, bool enable)

Enables the digital filter in one port, each bit of the 32-bit register represents one pin.

Parameters:
  • base – PORT peripheral base pointer.

  • mask – PORT pin number macro.

  • enable – PORT digital filter configuration.

static inline void PORT_SetDigitalFilterConfig(PORT_Type *base, const port_digital_filter_config_t *config)

Sets the digital filter in one port, each bit of the 32-bit register represents one pin.

Parameters:
  • base – PORT peripheral base pointer.

  • config – PORT digital filter configuration structure.

static inline void PORT_SetPinInterruptConfig(PORT_Type *base, uint32_t pin, port_interrupt_t config)

Configures the port pin interrupt/DMA request.

Parameters:
  • base – PORT peripheral base pointer.

  • pin – PORT pin number.

  • config – PORT pin interrupt configuration.

    • kPORT_InterruptOrDMADisabled: Interrupt/DMA request disabled.

    • kPORT_DMARisingEdge : DMA request on rising edge(if the DMA requests exit).

    • kPORT_DMAFallingEdge: DMA request on falling edge(if the DMA requests exit).

    • kPORT_DMAEitherEdge : DMA request on either edge(if the DMA requests exit).

    • kPORT_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).

    • kPORT_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).

    • kPORT_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).

    • kPORT_InterruptLogicZero : Interrupt when logic zero.

    • kPORT_InterruptRisingEdge : Interrupt on rising edge.

    • kPORT_InterruptFallingEdge: Interrupt on falling edge.

    • kPORT_InterruptEitherEdge : Interrupt on either edge.

    • kPORT_InterruptLogicOne : Interrupt when logic one.

    • kPORT_ActiveHighTriggerOutputEnable : Enable active high-trigger output (if the trigger states exit).

    • kPORT_ActiveLowTriggerOutputEnable : Enable active low-trigger output (if the trigger states exit).

static inline void PORT_SetPinDriveStrength(PORT_Type *base, uint32_t pin, uint8_t strength)

Configures the port pin drive strength.

Parameters:
  • base – PORT peripheral base pointer.

  • pin – PORT pin number.

  • strength – PORT pin drive strength

    • kPORT_LowDriveStrength = 0U - Low-drive strength is configured.

    • kPORT_HighDriveStrength = 1U - High-drive strength is configured.

static inline uint32_t PORT_GetPinsInterruptFlags(PORT_Type *base)

Reads the whole port status flag.

If a pin is configured to generate the DMA request, the corresponding flag is cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic one is written to that flag. If configured for a level sensitive interrupt that remains asserted, the flag is set again immediately.

Parameters:
  • base – PORT peripheral base pointer.

Returns:

Current port interrupt status flags, for example, 0x00010001 means the pin 0 and 16 have the interrupt.

static inline void PORT_ClearPinsInterruptFlags(PORT_Type *base, uint32_t mask)

Clears the multiple pin interrupt status flag.

Parameters:
  • base – PORT peripheral base pointer.

  • mask – PORT pin number macro.

FSL_PORT_DRIVER_VERSION

PORT driver version.

enum _port_pull

Internal resistor pull feature selection.

Values:

enumerator kPORT_PullDisable

Internal pull-up/down resistor is disabled.

enumerator kPORT_PullDown

Internal pull-down resistor is enabled.

enumerator kPORT_PullUp

Internal pull-up resistor is enabled.

enum _port_slew_rate

Slew rate selection.

Values:

enumerator kPORT_FastSlewRate

Fast slew rate is configured.

enumerator kPORT_SlowSlewRate

Slow slew rate is configured.

enum _port_open_drain_enable

Open Drain feature enable/disable.

Values:

enumerator kPORT_OpenDrainDisable

Open drain output is disabled.

enumerator kPORT_OpenDrainEnable

Open drain output is enabled.

enum _port_passive_filter_enable

Passive filter feature enable/disable.

Values:

enumerator kPORT_PassiveFilterDisable

Passive input filter is disabled.

enumerator kPORT_PassiveFilterEnable

Passive input filter is enabled.

enum _port_drive_strength

Configures the drive strength.

Values:

enumerator kPORT_LowDriveStrength

Low-drive strength is configured.

enumerator kPORT_HighDriveStrength

High-drive strength is configured.

enum _port_lock_register

Unlock/lock the pin control register field[15:0].

Values:

enumerator kPORT_UnlockRegister

Pin Control Register fields [15:0] are not locked.

enumerator kPORT_LockRegister

Pin Control Register fields [15:0] are locked.

enum _port_mux

Pin mux selection.

Values:

enumerator kPORT_PinDisabledOrAnalog

Corresponding pin is disabled, but is used as an analog pin.

enumerator kPORT_MuxAsGpio

Corresponding pin is configured as GPIO.

enumerator kPORT_MuxAlt0

Chip-specific

enumerator kPORT_MuxAlt1

Chip-specific

enumerator kPORT_MuxAlt2

Chip-specific

enumerator kPORT_MuxAlt3

Chip-specific

enumerator kPORT_MuxAlt4

Chip-specific

enumerator kPORT_MuxAlt5

Chip-specific

enumerator kPORT_MuxAlt6

Chip-specific

enumerator kPORT_MuxAlt7

Chip-specific

enumerator kPORT_MuxAlt8

Chip-specific

enumerator kPORT_MuxAlt9

Chip-specific

enumerator kPORT_MuxAlt10

Chip-specific

enumerator kPORT_MuxAlt11

Chip-specific

enumerator kPORT_MuxAlt12

Chip-specific

enumerator kPORT_MuxAlt13

Chip-specific

enumerator kPORT_MuxAlt14

Chip-specific

enumerator kPORT_MuxAlt15

Chip-specific

enum _port_interrupt

Configures the interrupt generation condition.

Values:

enumerator kPORT_InterruptOrDMADisabled

Interrupt/DMA request is disabled.

enumerator kPORT_DMARisingEdge

DMA request on rising edge.

enumerator kPORT_DMAFallingEdge

DMA request on falling edge.

enumerator kPORT_DMAEitherEdge

DMA request on either edge.

enumerator kPORT_FlagRisingEdge

Flag sets on rising edge.

enumerator kPORT_FlagFallingEdge

Flag sets on falling edge.

enumerator kPORT_FlagEitherEdge

Flag sets on either edge.

enumerator kPORT_InterruptLogicZero

Interrupt when logic zero.

enumerator kPORT_InterruptRisingEdge

Interrupt on rising edge.

enumerator kPORT_InterruptFallingEdge

Interrupt on falling edge.

enumerator kPORT_InterruptEitherEdge

Interrupt on either edge.

enumerator kPORT_InterruptLogicOne

Interrupt when logic one.

enumerator kPORT_ActiveHighTriggerOutputEnable

Enable active high-trigger output.

enumerator kPORT_ActiveLowTriggerOutputEnable

Enable active low-trigger output.

enum _port_digital_filter_clock_source

Digital filter clock source selection.

Values:

enumerator kPORT_BusClock

Digital filters are clocked by the bus clock.

enumerator kPORT_LpoClock

Digital filters are clocked by the 1 kHz LPO clock.

typedef enum _port_mux port_mux_t

Pin mux selection.

typedef enum _port_interrupt port_interrupt_t

Configures the interrupt generation condition.

typedef enum _port_digital_filter_clock_source port_digital_filter_clock_source_t

Digital filter clock source selection.

typedef struct _port_digital_filter_config port_digital_filter_config_t

PORT digital filter feature configuration definition.

typedef struct _port_pin_config port_pin_config_t

PORT pin configuration structure.

FSL_COMPONENT_ID
struct _port_digital_filter_config
#include <fsl_port.h>

PORT digital filter feature configuration definition.

Public Members

uint32_t digitalFilterWidth

Set digital filter width

port_digital_filter_clock_source_t clockSource

Set digital filter clockSource

struct _port_pin_config
#include <fsl_port.h>

PORT pin configuration structure.

Public Members

uint16_t pullSelect

No-pull/pull-down/pull-up select

uint16_t slewRate

Fast/slow slew rate Configure

uint16_t passiveFilterEnable

Passive filter enable/disable

uint16_t openDrainEnable

Open drain enable/disable

uint16_t driveStrength

Fast/slow drive strength configure

uint16_t lockRegister

Lock/unlock the PCR field[15:0]

RCM: Reset Control Module Driver

static inline void RCM_GetVersionId(RCM_Type *base, rcm_version_id_t *versionId)

Gets the RCM version ID.

This function gets the RCM version ID including the major version number, the minor version number, and the feature specification number.

Parameters:
  • base – RCM peripheral base address.

  • versionId – Pointer to the version ID structure.

static inline uint32_t RCM_GetResetSourceImplementedStatus(RCM_Type *base)

Gets the reset source implemented status.

This function gets the RCM parameter that indicates whether the corresponding reset source is implemented. Use source masks defined in the rcm_reset_source_t to get the desired source status.

This is an example.

uint32_t status;

To test whether the MCU is reset using Watchdog.
status = RCM_GetResetSourceImplementedStatus(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);

Parameters:
  • base – RCM peripheral base address.

Returns:

All reset source implemented status bit map.

static inline uint32_t RCM_GetPreviousResetSources(RCM_Type *base)

Gets the reset source status which caused a previous reset.

This function gets the current reset source status. Use source masks defined in the rcm_reset_source_t to get the desired source status.

This is an example.

uint32_t resetStatus;

To get all reset source statuses.
resetStatus = RCM_GetPreviousResetSources(RCM) & kRCM_SourceAll;

To test whether the MCU is reset using Watchdog.
resetStatus = RCM_GetPreviousResetSources(RCM) & kRCM_SourceWdog;

To test multiple reset sources.
resetStatus = RCM_GetPreviousResetSources(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);

Parameters:
  • base – RCM peripheral base address.

Returns:

All reset source status bit map.

static inline uint32_t RCM_GetStickyResetSources(RCM_Type *base)

Gets the sticky reset source status.

This function gets the current reset source status that has not been cleared by software for a specific source.

This is an example.

uint32_t resetStatus;

To get all reset source statuses.
resetStatus = RCM_GetStickyResetSources(RCM) & kRCM_SourceAll;

To test whether the MCU is reset using Watchdog.
resetStatus = RCM_GetStickyResetSources(RCM) & kRCM_SourceWdog;

To test multiple reset sources.
resetStatus = RCM_GetStickyResetSources(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);

Parameters:
  • base – RCM peripheral base address.

Returns:

All reset source status bit map.

static inline void RCM_ClearStickyResetSources(RCM_Type *base, uint32_t sourceMasks)

Clears the sticky reset source status.

This function clears the sticky system reset flags indicated by source masks.

This is an example.

Clears multiple reset sources.
RCM_ClearStickyResetSources(kRCM_SourceWdog | kRCM_SourcePin);

Parameters:
  • base – RCM peripheral base address.

  • sourceMasks – reset source status bit map

void RCM_ConfigureResetPinFilter(RCM_Type *base, const rcm_reset_pin_filter_config_t *config)

Configures the reset pin filter.

This function sets the reset pin filter including the filter source, filter width, and so on.

Parameters:
  • base – RCM peripheral base address.

  • config – Pointer to the configuration structure.

static inline bool RCM_GetEasyPortModePinStatus(RCM_Type *base)

Gets the EZP_MS_B pin assert status.

This function gets the easy port mode status (EZP_MS_B) pin assert status.

Parameters:
  • base – RCM peripheral base address.

Returns:

status true - asserted, false - reasserted

static inline rcm_boot_rom_config_t RCM_GetBootRomSource(RCM_Type *base)

Gets the ROM boot source.

This function gets the ROM boot source during the last chip reset.

Parameters:
  • base – RCM peripheral base address.

Returns:

The ROM boot source.

static inline void RCM_ClearBootRomSource(RCM_Type *base)

Clears the ROM boot source flag.

This function clears the ROM boot source flag.

Parameters:
  • base – Register base address of RCM

void RCM_SetForceBootRomSource(RCM_Type *base, rcm_boot_rom_config_t config)

Forces the boot from ROM.

This function forces booting from ROM during all subsequent system resets.

Parameters:
  • base – RCM peripheral base address.

  • config – Boot configuration.

static inline void RCM_SetSystemResetInterruptConfig(RCM_Type *base, uint32_t intMask, rcm_reset_delay_t delay)

Sets the system reset interrupt configuration.

For a graceful shut down, the RCM supports delaying the assertion of the system reset for a period of time when the reset interrupt is generated. This function can be used to enable the interrupt and the delay period. The interrupts are passed in as bit mask. See rcm_int_t for details. For example, to delay a reset for 512 LPO cycles after the WDOG timeout or loss-of-clock occurs, configure as follows: RCM_SetSystemResetInterruptConfig(kRCM_IntWatchDog | kRCM_IntLossOfClk, kRCM_ResetDelay512Lpo);

Parameters:
  • base – RCM peripheral base address.

  • intMask – Bit mask of the system reset interrupts to enable. See rcm_interrupt_enable_t for details.

  • delay – Bit mask of the system reset interrupts to enable.

FSL_RCM_DRIVER_VERSION

RCM driver version 2.0.4.

enum _rcm_reset_source

System Reset Source Name definitions.

Values:

enumerator kRCM_SourceWakeup

Low-leakage wakeup reset

enumerator kRCM_SourceLvd

Low-voltage detect reset

enumerator kRCM_SourceLoc

Loss of clock reset

enumerator kRCM_SourceLol

Loss of lock reset

enumerator kRCM_SourceWdog

Watchdog reset

enumerator kRCM_SourcePin

External pin reset

enumerator kRCM_SourcePor

Power on reset

enumerator kRCM_SourceJtag

JTAG generated reset

enumerator kRCM_SourceLockup

Core lock up reset

enumerator kRCM_SourceSw

Software reset

enumerator kRCM_SourceMdmap

MDM-AP system reset

enumerator kRCM_SourceEzpt

EzPort reset

enumerator kRCM_SourceSackerr

Parameter could get all reset flags

enumerator kRCM_SourceAll
enum _rcm_run_wait_filter_mode

Reset pin filter select in Run and Wait modes.

Values:

enumerator kRCM_FilterDisable

All filtering disabled

enumerator kRCM_FilterBusClock

Bus clock filter enabled

enumerator kRCM_FilterLpoClock

LPO clock filter enabled

enum _rcm_boot_rom_config

Boot from ROM configuration.

Values:

enumerator kRCM_BootFlash

Boot from flash

enumerator kRCM_BootRomCfg0

Boot from boot ROM due to BOOTCFG0

enumerator kRCM_BootRomFopt

Boot from boot ROM due to FOPT[7]

enumerator kRCM_BootRomBoth

Boot from boot ROM due to both BOOTCFG0 and FOPT[7]

enum _rcm_reset_delay

Maximum delay time from interrupt asserts to system reset.

Values:

enumerator kRCM_ResetDelay8Lpo

Delay 8 LPO cycles.

enumerator kRCM_ResetDelay32Lpo

Delay 32 LPO cycles.

enumerator kRCM_ResetDelay128Lpo

Delay 128 LPO cycles.

enumerator kRCM_ResetDelay512Lpo

Delay 512 LPO cycles.

enum _rcm_interrupt_enable

System reset interrupt enable bit definitions.

Values:

enumerator kRCM_IntNone

No interrupt enabled.

enumerator kRCM_IntLossOfClk

Loss of clock interrupt.

enumerator kRCM_IntLossOfLock

Loss of lock interrupt.

enumerator kRCM_IntWatchDog

Watch dog interrupt.

enumerator kRCM_IntExternalPin

External pin interrupt.

enumerator kRCM_IntGlobal

Global interrupts.

enumerator kRCM_IntCoreLockup

Core lock up interrupt

enumerator kRCM_IntSoftware

software interrupt

enumerator kRCM_IntStopModeAckErr

Stop mode ACK error interrupt.

enumerator kRCM_IntCore1

Core 1 interrupt.

enumerator kRCM_IntAll

Enable all interrupts.

typedef enum _rcm_reset_source rcm_reset_source_t

System Reset Source Name definitions.

typedef enum _rcm_run_wait_filter_mode rcm_run_wait_filter_mode_t

Reset pin filter select in Run and Wait modes.

typedef enum _rcm_boot_rom_config rcm_boot_rom_config_t

Boot from ROM configuration.

typedef enum _rcm_reset_delay rcm_reset_delay_t

Maximum delay time from interrupt asserts to system reset.

typedef enum _rcm_interrupt_enable rcm_interrupt_enable_t

System reset interrupt enable bit definitions.

typedef struct _rcm_version_id rcm_version_id_t

IP version ID definition.

typedef struct _rcm_reset_pin_filter_config rcm_reset_pin_filter_config_t

Reset pin filter configuration.

struct _rcm_version_id
#include <fsl_rcm.h>

IP version ID definition.

Public Members

uint16_t feature

Feature Specification Number.

uint8_t minor

Minor version number.

uint8_t major

Major version number.

struct _rcm_reset_pin_filter_config
#include <fsl_rcm.h>

Reset pin filter configuration.

Public Members

bool enableFilterInStop

Reset pin filter select in stop mode.

rcm_run_wait_filter_mode_t filterInRunWait

Reset pin filter in run/wait mode.

uint8_t busClockFilterCount

Reset pin bus clock filter width.

RNGA: Random Number Generator Accelerator Driver

FSL_RNGA_DRIVER_VERSION

RNGA driver version 2.0.2.

enum _rnga_mode

RNGA working mode.

Values:

enumerator kRNGA_ModeNormal

Normal Mode. The ring-oscillator clocks are active; RNGA generates entropy (randomness) from the clocks and stores it in shift registers.

enumerator kRNGA_ModeSleep

Sleep Mode. The ring-oscillator clocks are inactive; RNGA does not generate entropy.

typedef enum _rnga_mode rnga_mode_t

RNGA working mode.

void RNGA_Init(RNG_Type *base)

Initializes the RNGA.

This function initializes the RNGA. When called, the RNGA entropy generation starts immediately.

Parameters:
  • base – RNGA base address

void RNGA_Deinit(RNG_Type *base)

Shuts down the RNGA.

This function shuts down the RNGA.

Parameters:
  • base – RNGA base address

status_t RNGA_GetRandomData(RNG_Type *base, void *data, size_t data_size)

Gets random data.

This function gets random data from the RNGA.

Parameters:
  • base – RNGA base address

  • data – pointer to user buffer to be filled by random data

  • data_size – size of data in bytes

Returns:

RNGA status

void RNGA_Seed(RNG_Type *base, uint32_t seed)

Feeds the RNGA module.

This function inputs an entropy value that the RNGA uses to seed its pseudo-random algorithm.

Parameters:
  • base – RNGA base address

  • seed – input seed value

void RNGA_SetMode(RNG_Type *base, rnga_mode_t mode)

Sets the RNGA in normal mode or sleep mode.

This function sets the RNGA in sleep mode or normal mode.

Parameters:
  • base – RNGA base address

  • mode – normal mode or sleep mode

rnga_mode_t RNGA_GetMode(RNG_Type *base)

Gets the RNGA working mode.

This function gets the RNGA working mode.

Parameters:
  • base – RNGA base address

Returns:

normal mode or sleep mode

RTC: Real Time Clock

void RTC_Init(RTC_Type *base, const rtc_config_t *config)

Ungates the RTC clock and configures the peripheral for basic operation.

This function issues a software reset if the timer invalid flag is set.

Note

This API should be called at the beginning of the application using the RTC driver.

Parameters:
  • base – RTC peripheral base address

  • config – Pointer to the user’s RTC configuration structure.

static inline void RTC_Deinit(RTC_Type *base)

Stops the timer and gate the RTC clock.

Parameters:
  • base – RTC peripheral base address

void RTC_GetDefaultConfig(rtc_config_t *config)

Fills in the RTC config struct with the default settings.

The default values are as follows.

config->wakeupSelect = false;
config->updateMode = false;
config->supervisorAccess = false;
config->compensationInterval = 0;
config->compensationTime = 0;

Parameters:
  • config – Pointer to the user’s RTC configuration structure.

status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)

Sets the RTC date and time according to the given time structure.

The RTC counter must be stopped prior to calling this function because writes to the RTC seconds register fail if the RTC counter is running.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to the structure where the date and time details are stored.

Returns:

kStatus_Success: Success in setting the time and starting the RTC kStatus_InvalidArgument: Error because the datetime format is incorrect

void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)

Gets the RTC time and stores it in the given time structure.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to the structure where the date and time details are stored.

status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)

Sets the RTC alarm time.

The function checks whether the specified alarm time is greater than the present time. If not, the function does not set the alarm and returns an error.

Parameters:
  • base – RTC peripheral base address

  • alarmTime – Pointer to the structure where the alarm time is stored.

Returns:

kStatus_Success: success in setting the RTC alarm kStatus_InvalidArgument: Error because the alarm datetime format is incorrect kStatus_Fail: Error because the alarm time has already passed

void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)

Returns the RTC alarm time.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to the structure where the alarm date and time details are stored.

void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)

Enables the selected RTC interrupts.

Parameters:
  • base – RTC peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t

void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)

Disables the selected RTC interrupts.

Parameters:
  • base – RTC peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t

uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)

Gets the enabled RTC interrupts.

Parameters:
  • base – RTC peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration rtc_interrupt_enable_t

uint32_t RTC_GetStatusFlags(RTC_Type *base)

Gets the RTC status flags.

Parameters:
  • base – RTC peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration rtc_status_flags_t

void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)

Clears the RTC status flags.

Parameters:
  • base – RTC peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration rtc_status_flags_t

static inline void RTC_EnableOscillatorClock(RTC_Type *base, bool enable)

Enable/Disable RTC 32kHz Oscillator clock.

Note

After setting this bit, wait the oscillator startup time before enabling the time counter to allow the 32.768 kHz clock time to stabilize.

Parameters:
  • base – RTC peripheral base address

  • enable – Enable/Disable RTC 32.768 kHz clock

static inline void RTC_SetClockSource(RTC_Type *base)

Set RTC clock source.

Deprecated:

Do not use this function. It has been superceded by RTC_EnableOscillatorClock

Note

After setting this bit, wait the oscillator startup time before enabling the time counter to allow the 32.768 kHz clock time to stabilize.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_EnableLPOClock(RTC_Type *base, bool enable)

Enable/Disable RTC 1kHz LPO clock.

Note

After setting this bit, RTC prescaler increments using the LPO 1kHz clock and not the RTC 32kHz crystal clock.

Parameters:
  • base – RTC peripheral base address

  • enable – Enable/Disable RTC 1kHz LPO clock

static inline void RTC_StartTimer(RTC_Type *base)

Starts the RTC time counter.

After calling this function, the timer counter increments once a second provided SR[TOF] or SR[TIF] are not set.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_StopTimer(RTC_Type *base)

Stops the RTC time counter.

RTC’s seconds register can be written to only when the timer is stopped.

Parameters:
  • base – RTC peripheral base address

void RTC_GetMonotonicCounter(RTC_Type *base, uint64_t *counter)

Reads the values of the Monotonic Counter High and Monotonic Counter Low and returns them as a single value.

Parameters:
  • base – RTC peripheral base address

  • counter – Pointer to variable where the value is stored.

void RTC_SetMonotonicCounter(RTC_Type *base, uint64_t counter)

Writes values Monotonic Counter High and Monotonic Counter Low by decomposing the given single value. The Monotonic Overflow Flag in RTC_SR is cleared due to the API.

Parameters:
  • base – RTC peripheral base address

  • counter – Counter value

status_t RTC_IncrementMonotonicCounter(RTC_Type *base)

Increments the Monotonic Counter by one.

Increments the Monotonic Counter (registers RTC_MCLR and RTC_MCHR accordingly) by setting the monotonic counter enable (MER[MCE]) and then writing to the RTC_MCLR register. A write to the monotonic counter low that causes it to overflow also increments the monotonic counter high.

Parameters:
  • base – RTC peripheral base address

Returns:

kStatus_Success: success kStatus_Fail: error occurred, either time invalid or monotonic overflow flag was found

FSL_RTC_DRIVER_VERSION

Version 2.3.0

enum _rtc_interrupt_enable

List of RTC interrupts.

Values:

enumerator kRTC_TimeInvalidInterruptEnable

Time invalid interrupt.

enumerator kRTC_TimeOverflowInterruptEnable

Time overflow interrupt.

enumerator kRTC_AlarmInterruptEnable

Alarm interrupt.

enumerator kRTC_MonotonicOverflowInterruptEnable

Monotonic Overflow Interrupt Enable

enumerator kRTC_SecondsInterruptEnable

Seconds interrupt.

enumerator kRTC_TestModeInterruptEnable
enumerator kRTC_FlashSecurityInterruptEnable
enumerator kRTC_TamperPinInterruptEnable
enumerator kRTC_SecurityModuleInterruptEnable
enumerator kRTC_LossOfClockInterruptEnable
enum _rtc_status_flags

List of RTC flags.

Values:

enumerator kRTC_TimeInvalidFlag

Time invalid flag

enumerator kRTC_TimeOverflowFlag

Time overflow flag

enumerator kRTC_AlarmFlag

Alarm flag

enumerator kRTC_MonotonicOverflowFlag

Monotonic Overflow Flag

enumerator kRTC_TamperInterruptDetectFlag

Tamper interrupt detect flag

enumerator kRTC_TestModeFlag
enumerator kRTC_FlashSecurityFlag
enumerator kRTC_TamperPinFlag
enumerator kRTC_SecurityTamperFlag
enumerator kRTC_LossOfClockTamperFlag
enum _rtc_osc_cap_load

List of RTC Oscillator capacitor load settings.

Values:

enumerator kRTC_Capacitor_2p

2 pF capacitor load

enumerator kRTC_Capacitor_4p

4 pF capacitor load

enumerator kRTC_Capacitor_8p

8 pF capacitor load

enumerator kRTC_Capacitor_16p

16 pF capacitor load

typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t

List of RTC interrupts.

typedef enum _rtc_status_flags rtc_status_flags_t

List of RTC flags.

typedef enum _rtc_osc_cap_load rtc_osc_cap_load_t

List of RTC Oscillator capacitor load settings.

typedef struct _rtc_datetime rtc_datetime_t

Structure is used to hold the date and time.

typedef struct _rtc_pin_config rtc_pin_config_t

RTC pin config structure.

typedef struct _rtc_config rtc_config_t

RTC config structure.

This structure holds the configuration settings for the RTC peripheral. To initialize this structure to reasonable defaults, call the RTC_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

static inline uint32_t RTC_GetTamperTimeSeconds(RTC_Type *base)

Get the RTC tamper time seconds.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_SetOscCapLoad(RTC_Type *base, uint32_t capLoad)

This function sets the specified capacitor configuration for the RTC oscillator.

Parameters:
  • base – RTC peripheral base address

  • capLoad – Oscillator loads to enable. This is a logical OR of members of the enumeration rtc_osc_cap_load_t

static inline void RTC_Reset(RTC_Type *base)

Performs a software reset on the RTC module.

This resets all RTC registers except for the SWR bit and the RTC_WAR and RTC_RAR registers. The SWR bit is cleared by software explicitly clearing it.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_EnableWakeUpPin(RTC_Type *base, bool enable)

Enables or disables the RTC Wakeup Pin Operation.

This function enable or disable RTC Wakeup Pin. The wakeup pin is optional and not available on all devices.

Parameters:
  • base – RTC_Type base pointer.

  • enable – true to enable, false to disable.

struct _rtc_datetime
#include <fsl_rtc.h>

Structure is used to hold the date and time.

Public Members

uint16_t year

Range from 1970 to 2099.

uint8_t month

Range from 1 to 12.

uint8_t day

Range from 1 to 31 (depending on month).

uint8_t hour

Range from 0 to 23.

uint8_t minute

Range from 0 to 59.

uint8_t second

Range from 0 to 59.

struct _rtc_pin_config
#include <fsl_rtc.h>

RTC pin config structure.

Public Members

bool inputLogic

true: Tamper pin input data is logic one. false: Tamper pin input data is logic zero.

bool pinActiveLow

true: Tamper pin is active low. false: Tamper pin is active high.

bool filterEnable

true: Input filter is enabled on the tamper pin. false: Input filter is disabled on the tamper pin.

bool pullSelectNegate

true: Tamper pin pull resistor direction will negate the tamper pin. false: Tamper pin pull resistor direction will assert the tamper pin.

bool pullEnable

true: Pull resistor is enabled on tamper pin. false: Pull resistor is disabled on tamper pin.

struct _rtc_config
#include <fsl_rtc.h>

RTC config structure.

This structure holds the configuration settings for the RTC peripheral. To initialize this structure to reasonable defaults, call the RTC_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool wakeupSelect

true: Wakeup pin outputs the 32 KHz clock; false:Wakeup pin used to wakeup the chip

bool updateMode

true: Registers can be written even when locked under certain conditions, false: No writes allowed when registers are locked

bool supervisorAccess

true: Non-supervisor accesses are allowed; false: Non-supervisor accesses are not supported

uint32_t compensationInterval

Compensation interval that is written to the CIR field in RTC TCR Register

uint32_t compensationTime

Compensation time that is written to the TCR field in RTC TCR Register

SAI: Serial Audio Interface

SAI Driver

void SAI_Init(I2S_Type *base)

Initializes the SAI peripheral.

This API gates the SAI clock. The SAI module can’t operate unless SAI_Init is called to enable the clock.

Parameters:
  • base – SAI base pointer.

void SAI_Deinit(I2S_Type *base)

De-initializes the SAI peripheral.

This API gates the SAI clock. The SAI module can’t operate unless SAI_TxInit or SAI_RxInit is called to enable the clock.

Parameters:
  • base – SAI base pointer.

void SAI_TxReset(I2S_Type *base)

Resets the SAI Tx.

This function enables the software reset and FIFO reset of SAI Tx. After reset, clear the reset bit.

Parameters:
  • base – SAI base pointer

void SAI_RxReset(I2S_Type *base)

Resets the SAI Rx.

This function enables the software reset and FIFO reset of SAI Rx. After reset, clear the reset bit.

Parameters:
  • base – SAI base pointer

void SAI_TxEnable(I2S_Type *base, bool enable)

Enables/disables the SAI Tx.

Parameters:
  • base – SAI base pointer.

  • enable – True means enable SAI Tx, false means disable.

void SAI_RxEnable(I2S_Type *base, bool enable)

Enables/disables the SAI Rx.

Parameters:
  • base – SAI base pointer.

  • enable – True means enable SAI Rx, false means disable.

static inline void SAI_TxSetBitClockDirection(I2S_Type *base, sai_master_slave_t masterSlave)

Set Rx bit clock direction.

Select bit clock direction, master or slave.

Parameters:
  • base – SAI base pointer.

  • masterSlave – reference sai_master_slave_t.

static inline void SAI_RxSetBitClockDirection(I2S_Type *base, sai_master_slave_t masterSlave)

Set Rx bit clock direction.

Select bit clock direction, master or slave.

Parameters:
  • base – SAI base pointer.

  • masterSlave – reference sai_master_slave_t.

static inline void SAI_RxSetFrameSyncDirection(I2S_Type *base, sai_master_slave_t masterSlave)

Set Rx frame sync direction.

Select frame sync direction, master or slave.

Parameters:
  • base – SAI base pointer.

  • masterSlave – reference sai_master_slave_t.

static inline void SAI_TxSetFrameSyncDirection(I2S_Type *base, sai_master_slave_t masterSlave)

Set Tx frame sync direction.

Select frame sync direction, master or slave.

Parameters:
  • base – SAI base pointer.

  • masterSlave – reference sai_master_slave_t.

void SAI_TxSetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate, uint32_t bitWidth, uint32_t channelNumbers)

Transmitter bit clock rate configurations.

Parameters:
  • base – SAI base pointer.

  • sourceClockHz – Bit clock source frequency.

  • sampleRate – Audio data sample rate.

  • bitWidth – Audio data bitWidth.

  • channelNumbers – Audio channel numbers.

void SAI_RxSetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate, uint32_t bitWidth, uint32_t channelNumbers)

Receiver bit clock rate configurations.

Parameters:
  • base – SAI base pointer.

  • sourceClockHz – Bit clock source frequency.

  • sampleRate – Audio data sample rate.

  • bitWidth – Audio data bitWidth.

  • channelNumbers – Audio channel numbers.

void SAI_TxSetBitclockConfig(I2S_Type *base, sai_master_slave_t masterSlave, sai_bit_clock_t *config)

Transmitter Bit clock configurations.

Parameters:
  • base – SAI base pointer.

  • masterSlave – master or slave.

  • config – bit clock other configurations, can be NULL in slave mode.

void SAI_RxSetBitclockConfig(I2S_Type *base, sai_master_slave_t masterSlave, sai_bit_clock_t *config)

Receiver Bit clock configurations.

Parameters:
  • base – SAI base pointer.

  • masterSlave – master or slave.

  • config – bit clock other configurations, can be NULL in slave mode.

void SAI_SetMasterClockConfig(I2S_Type *base, sai_master_clock_t *config)

Master clock configurations.

Parameters:
  • base – SAI base pointer.

  • config – master clock configurations.

void SAI_TxSetFifoConfig(I2S_Type *base, sai_fifo_t *config)

SAI transmitter fifo configurations.

Parameters:
  • base – SAI base pointer.

  • config – fifo configurations.

void SAI_RxSetFifoConfig(I2S_Type *base, sai_fifo_t *config)

SAI receiver fifo configurations.

Parameters:
  • base – SAI base pointer.

  • config – fifo configurations.

void SAI_TxSetFrameSyncConfig(I2S_Type *base, sai_master_slave_t masterSlave, sai_frame_sync_t *config)

SAI transmitter Frame sync configurations.

Parameters:
  • base – SAI base pointer.

  • masterSlave – master or slave.

  • config – frame sync configurations, can be NULL in slave mode.

void SAI_RxSetFrameSyncConfig(I2S_Type *base, sai_master_slave_t masterSlave, sai_frame_sync_t *config)

SAI receiver Frame sync configurations.

Parameters:
  • base – SAI base pointer.

  • masterSlave – master or slave.

  • config – frame sync configurations, can be NULL in slave mode.

void SAI_TxSetSerialDataConfig(I2S_Type *base, sai_serial_data_t *config)

SAI transmitter Serial data configurations.

Parameters:
  • base – SAI base pointer.

  • config – serial data configurations.

void SAI_RxSetSerialDataConfig(I2S_Type *base, sai_serial_data_t *config)

SAI receiver Serial data configurations.

Parameters:
  • base – SAI base pointer.

  • config – serial data configurations.

void SAI_TxSetConfig(I2S_Type *base, sai_transceiver_t *config)

SAI transmitter configurations.

Parameters:
  • base – SAI base pointer.

  • config – transmitter configurations.

void SAI_RxSetConfig(I2S_Type *base, sai_transceiver_t *config)

SAI receiver configurations.

Parameters:
  • base – SAI base pointer.

  • config – receiver configurations.

void SAI_GetClassicI2SConfig(sai_transceiver_t *config, sai_word_width_t bitWidth, sai_mono_stereo_t mode, uint32_t saiChannelMask)

Get classic I2S mode configurations.

Parameters:
  • config – transceiver configurations.

  • bitWidth – audio data bitWidth.

  • mode – audio data channel.

  • saiChannelMask – mask value of the channel to be enable.

void SAI_GetLeftJustifiedConfig(sai_transceiver_t *config, sai_word_width_t bitWidth, sai_mono_stereo_t mode, uint32_t saiChannelMask)

Get left justified mode configurations.

Parameters:
  • config – transceiver configurations.

  • bitWidth – audio data bitWidth.

  • mode – audio data channel.

  • saiChannelMask – mask value of the channel to be enable.

void SAI_GetRightJustifiedConfig(sai_transceiver_t *config, sai_word_width_t bitWidth, sai_mono_stereo_t mode, uint32_t saiChannelMask)

Get right justified mode configurations.

Parameters:
  • config – transceiver configurations.

  • bitWidth – audio data bitWidth.

  • mode – audio data channel.

  • saiChannelMask – mask value of the channel to be enable.

void SAI_GetTDMConfig(sai_transceiver_t *config, sai_frame_sync_len_t frameSyncWidth, sai_word_width_t bitWidth, uint32_t dataWordNum, uint32_t saiChannelMask)

Get TDM mode configurations.

Parameters:
  • config – transceiver configurations.

  • frameSyncWidth – length of frame sync.

  • bitWidth – audio data word width.

  • dataWordNum – word number in one frame.

  • saiChannelMask – mask value of the channel to be enable.

void SAI_GetDSPConfig(sai_transceiver_t *config, sai_frame_sync_len_t frameSyncWidth, sai_word_width_t bitWidth, sai_mono_stereo_t mode, uint32_t saiChannelMask)

Get DSP mode configurations.

DSP/PCM MODE B configuration flow for TX. RX is similiar but uses SAI_RxSetConfig instead of SAI_TxSetConfig:

SAI_GetDSPConfig(config, kSAI_FrameSyncLenOneBitClk, bitWidth, kSAI_Stereo, channelMask)
SAI_TxSetConfig(base, config)

Note

DSP mode is also called PCM mode which support MODE A and MODE B, DSP/PCM MODE A configuration flow. RX is similiar but uses SAI_RxSetConfig instead of SAI_TxSetConfig:

SAI_GetDSPConfig(config, kSAI_FrameSyncLenOneBitClk, bitWidth, kSAI_Stereo, channelMask)
config->frameSync.frameSyncEarly    = true;
SAI_TxSetConfig(base, config)

Parameters:
  • config – transceiver configurations.

  • frameSyncWidth – length of frame sync.

  • bitWidth – audio data bitWidth.

  • mode – audio data channel.

  • saiChannelMask – mask value of the channel to enable.

static inline uint32_t SAI_TxGetStatusFlag(I2S_Type *base)

Gets the SAI Tx status flag state.

Parameters:
  • base – SAI base pointer

Returns:

SAI Tx status flag value. Use the Status Mask to get the status value needed.

static inline void SAI_TxClearStatusFlags(I2S_Type *base, uint32_t mask)

Clears the SAI Tx status flag state.

Parameters:
  • base – SAI base pointer

  • mask – State mask. It can be a combination of the following source if defined:

    • kSAI_WordStartFlag

    • kSAI_SyncErrorFlag

    • kSAI_FIFOErrorFlag

static inline uint32_t SAI_RxGetStatusFlag(I2S_Type *base)

Gets the SAI Tx status flag state.

Parameters:
  • base – SAI base pointer

Returns:

SAI Rx status flag value. Use the Status Mask to get the status value needed.

static inline void SAI_RxClearStatusFlags(I2S_Type *base, uint32_t mask)

Clears the SAI Rx status flag state.

Parameters:
  • base – SAI base pointer

  • mask – State mask. It can be a combination of the following sources if defined.

    • kSAI_WordStartFlag

    • kSAI_SyncErrorFlag

    • kSAI_FIFOErrorFlag

void SAI_TxSoftwareReset(I2S_Type *base, sai_reset_type_t resetType)

Do software reset or FIFO reset .

FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. Software reset means clear the Tx internal logic, including the bit clock, frame count etc. But software reset will not clear any configuration registers like TCR1~TCR5. This function will also clear all the error flags such as FIFO error, sync error etc.

Parameters:
  • base – SAI base pointer

  • resetType – Reset type, FIFO reset or software reset

void SAI_RxSoftwareReset(I2S_Type *base, sai_reset_type_t resetType)

Do software reset or FIFO reset .

FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. Software reset means clear the Rx internal logic, including the bit clock, frame count etc. But software reset will not clear any configuration registers like RCR1~RCR5. This function will also clear all the error flags such as FIFO error, sync error etc.

Parameters:
  • base – SAI base pointer

  • resetType – Reset type, FIFO reset or software reset

void SAI_TxSetChannelFIFOMask(I2S_Type *base, uint8_t mask)

Set the Tx channel FIFO enable mask.

Parameters:
  • base – SAI base pointer

  • mask – Channel enable mask, 0 means all channel FIFO disabled, 1 means channel 0 enabled, 3 means both channel 0 and channel 1 enabled.

void SAI_RxSetChannelFIFOMask(I2S_Type *base, uint8_t mask)

Set the Rx channel FIFO enable mask.

Parameters:
  • base – SAI base pointer

  • mask – Channel enable mask, 0 means all channel FIFO disabled, 1 means channel 0 enabled, 3 means both channel 0 and channel 1 enabled.

void SAI_TxSetDataOrder(I2S_Type *base, sai_data_order_t order)

Set the Tx data order.

Parameters:
  • base – SAI base pointer

  • order – Data order MSB or LSB

void SAI_RxSetDataOrder(I2S_Type *base, sai_data_order_t order)

Set the Rx data order.

Parameters:
  • base – SAI base pointer

  • order – Data order MSB or LSB

void SAI_TxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity)

Set the Tx data order.

Parameters:
  • base – SAI base pointer

  • polarity

void SAI_RxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity)

Set the Rx data order.

Parameters:
  • base – SAI base pointer

  • polarity

void SAI_TxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity)

Set the Tx data order.

Parameters:
  • base – SAI base pointer

  • polarity

void SAI_RxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity)

Set the Rx data order.

Parameters:
  • base – SAI base pointer

  • polarity

void SAI_TxSetFIFOPacking(I2S_Type *base, sai_fifo_packing_t pack)

Set Tx FIFO packing feature.

Parameters:
  • base – SAI base pointer.

  • pack – FIFO pack type. It is element of sai_fifo_packing_t.

void SAI_RxSetFIFOPacking(I2S_Type *base, sai_fifo_packing_t pack)

Set Rx FIFO packing feature.

Parameters:
  • base – SAI base pointer.

  • pack – FIFO pack type. It is element of sai_fifo_packing_t.

static inline void SAI_TxSetFIFOErrorContinue(I2S_Type *base, bool isEnabled)

Set Tx FIFO error continue.

FIFO error continue mode means SAI will keep running while FIFO error occurred. If this feature not enabled, SAI will hang and users need to clear FEF flag in TCSR register.

Parameters:
  • base – SAI base pointer.

  • isEnabled – Is FIFO error continue enabled, true means enable, false means disable.

static inline void SAI_RxSetFIFOErrorContinue(I2S_Type *base, bool isEnabled)

Set Rx FIFO error continue.

FIFO error continue mode means SAI will keep running while FIFO error occurred. If this feature not enabled, SAI will hang and users need to clear FEF flag in RCSR register.

Parameters:
  • base – SAI base pointer.

  • isEnabled – Is FIFO error continue enabled, true means enable, false means disable.

static inline void SAI_TxEnableInterrupts(I2S_Type *base, uint32_t mask)

Enables the SAI Tx interrupt requests.

Parameters:
  • base – SAI base pointer

  • mask – interrupt source The parameter can be a combination of the following sources if defined.

    • kSAI_WordStartInterruptEnable

    • kSAI_SyncErrorInterruptEnable

    • kSAI_FIFOWarningInterruptEnable

    • kSAI_FIFORequestInterruptEnable

    • kSAI_FIFOErrorInterruptEnable

static inline void SAI_RxEnableInterrupts(I2S_Type *base, uint32_t mask)

Enables the SAI Rx interrupt requests.

Parameters:
  • base – SAI base pointer

  • mask – interrupt source The parameter can be a combination of the following sources if defined.

    • kSAI_WordStartInterruptEnable

    • kSAI_SyncErrorInterruptEnable

    • kSAI_FIFOWarningInterruptEnable

    • kSAI_FIFORequestInterruptEnable

    • kSAI_FIFOErrorInterruptEnable

static inline void SAI_TxDisableInterrupts(I2S_Type *base, uint32_t mask)

Disables the SAI Tx interrupt requests.

Parameters:
  • base – SAI base pointer

  • mask – interrupt source The parameter can be a combination of the following sources if defined.

    • kSAI_WordStartInterruptEnable

    • kSAI_SyncErrorInterruptEnable

    • kSAI_FIFOWarningInterruptEnable

    • kSAI_FIFORequestInterruptEnable

    • kSAI_FIFOErrorInterruptEnable

static inline void SAI_RxDisableInterrupts(I2S_Type *base, uint32_t mask)

Disables the SAI Rx interrupt requests.

Parameters:
  • base – SAI base pointer

  • mask – interrupt source The parameter can be a combination of the following sources if defined.

    • kSAI_WordStartInterruptEnable

    • kSAI_SyncErrorInterruptEnable

    • kSAI_FIFOWarningInterruptEnable

    • kSAI_FIFORequestInterruptEnable

    • kSAI_FIFOErrorInterruptEnable

static inline void SAI_TxEnableDMA(I2S_Type *base, uint32_t mask, bool enable)

Enables/disables the SAI Tx DMA requests.

Parameters:
  • base – SAI base pointer

  • mask – DMA source The parameter can be combination of the following sources if defined.

    • kSAI_FIFOWarningDMAEnable

    • kSAI_FIFORequestDMAEnable

  • enable – True means enable DMA, false means disable DMA.

static inline void SAI_RxEnableDMA(I2S_Type *base, uint32_t mask, bool enable)

Enables/disables the SAI Rx DMA requests.

Parameters:
  • base – SAI base pointer

  • mask – DMA source The parameter can be a combination of the following sources if defined.

    • kSAI_FIFOWarningDMAEnable

    • kSAI_FIFORequestDMAEnable

  • enable – True means enable DMA, false means disable DMA.

static inline uintptr_t SAI_TxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)

Gets the SAI Tx data register address.

This API is used to provide a transfer address for the SAI DMA transfer configuration.

Parameters:
  • base – SAI base pointer.

  • channel – Which data channel used.

Returns:

data register address.

static inline uintptr_t SAI_RxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)

Gets the SAI Rx data register address.

This API is used to provide a transfer address for the SAI DMA transfer configuration.

Parameters:
  • base – SAI base pointer.

  • channel – Which data channel used.

Returns:

data register address.

void SAI_WriteBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size)

Sends data using a blocking method.

Note

This function blocks by polling until data is ready to be sent.

Parameters:
  • base – SAI base pointer.

  • channel – Data channel used.

  • bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

  • buffer – Pointer to the data to be written.

  • size – Bytes to be written.

void SAI_WriteMultiChannelBlocking(I2S_Type *base, uint32_t channel, uint32_t channelMask, uint32_t bitWidth, uint8_t *buffer, uint32_t size)

Sends data to multi channel using a blocking method.

Note

This function blocks by polling until data is ready to be sent.

Parameters:
  • base – SAI base pointer.

  • channel – Data channel used.

  • channelMask – channel mask.

  • bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

  • buffer – Pointer to the data to be written.

  • size – Bytes to be written.

static inline void SAI_WriteData(I2S_Type *base, uint32_t channel, uint32_t data)

Writes data into SAI FIFO.

Parameters:
  • base – SAI base pointer.

  • channel – Data channel used.

  • data – Data needs to be written.

void SAI_ReadBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size)

Receives data using a blocking method.

Note

This function blocks by polling until data is ready to be sent.

Parameters:
  • base – SAI base pointer.

  • channel – Data channel used.

  • bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

  • buffer – Pointer to the data to be read.

  • size – Bytes to be read.

void SAI_ReadMultiChannelBlocking(I2S_Type *base, uint32_t channel, uint32_t channelMask, uint32_t bitWidth, uint8_t *buffer, uint32_t size)

Receives multi channel data using a blocking method.

Note

This function blocks by polling until data is ready to be sent.

Parameters:
  • base – SAI base pointer.

  • channel – Data channel used.

  • channelMask – channel mask.

  • bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

  • buffer – Pointer to the data to be read.

  • size – Bytes to be read.

static inline uint32_t SAI_ReadData(I2S_Type *base, uint32_t channel)

Reads data from the SAI FIFO.

Parameters:
  • base – SAI base pointer.

  • channel – Data channel used.

Returns:

Data in SAI FIFO.

void SAI_TransferTxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t callback, void *userData)

Initializes the SAI Tx handle.

This function initializes the Tx handle for the SAI Tx transactional APIs. Call this function once to get the handle initialized.

Parameters:
  • base – SAI base pointer

  • handle – SAI handle pointer.

  • callback – Pointer to the user callback function.

  • userData – User parameter passed to the callback function

void SAI_TransferRxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t callback, void *userData)

Initializes the SAI Rx handle.

This function initializes the Rx handle for the SAI Rx transactional APIs. Call this function once to get the handle initialized.

Parameters:
  • base – SAI base pointer.

  • handle – SAI handle pointer.

  • callback – Pointer to the user callback function.

  • userData – User parameter passed to the callback function.

void SAI_TransferTxSetConfig(I2S_Type *base, sai_handle_t *handle, sai_transceiver_t *config)

SAI transmitter transfer configurations.

This function initializes the Tx, include bit clock, frame sync, master clock, serial data and fifo configurations.

Parameters:
  • base – SAI base pointer.

  • handle – SAI handle pointer.

  • config – tranmitter configurations.

void SAI_TransferRxSetConfig(I2S_Type *base, sai_handle_t *handle, sai_transceiver_t *config)

SAI receiver transfer configurations.

This function initializes the Rx, include bit clock, frame sync, master clock, serial data and fifo configurations.

Parameters:
  • base – SAI base pointer.

  • handle – SAI handle pointer.

  • config – receiver configurations.

status_t SAI_TransferSendNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t *xfer)

Performs an interrupt non-blocking send transfer on SAI.

Note

This API returns immediately after the transfer initiates. Call the SAI_TxGetTransferStatusIRQ to poll the transfer status and check whether the transfer is finished. If the return status is not kStatus_SAI_Busy, the transfer is finished.

Parameters:
  • base – SAI base pointer.

  • handle – Pointer to the sai_handle_t structure which stores the transfer state.

  • xfer – Pointer to the sai_transfer_t structure.

Return values:
  • kStatus_Success – Successfully started the data receive.

  • kStatus_SAI_TxBusy – Previous receive still not finished.

  • kStatus_InvalidArgument – The input parameter is invalid.

status_t SAI_TransferReceiveNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t *xfer)

Performs an interrupt non-blocking receive transfer on SAI.

Note

This API returns immediately after the transfer initiates. Call the SAI_RxGetTransferStatusIRQ to poll the transfer status and check whether the transfer is finished. If the return status is not kStatus_SAI_Busy, the transfer is finished.

Parameters:
  • base – SAI base pointer

  • handle – Pointer to the sai_handle_t structure which stores the transfer state.

  • xfer – Pointer to the sai_transfer_t structure.

Return values:
  • kStatus_Success – Successfully started the data receive.

  • kStatus_SAI_RxBusy – Previous receive still not finished.

  • kStatus_InvalidArgument – The input parameter is invalid.

status_t SAI_TransferGetSendCount(I2S_Type *base, sai_handle_t *handle, size_t *count)

Gets a set byte count.

Parameters:
  • base – SAI base pointer.

  • handle – Pointer to the sai_handle_t structure which stores the transfer state.

  • count – Bytes count sent.

Return values:
  • kStatus_Success – Succeed get the transfer count.

  • kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.

status_t SAI_TransferGetReceiveCount(I2S_Type *base, sai_handle_t *handle, size_t *count)

Gets a received byte count.

Parameters:
  • base – SAI base pointer.

  • handle – Pointer to the sai_handle_t structure which stores the transfer state.

  • count – Bytes count received.

Return values:
  • kStatus_Success – Succeed get the transfer count.

  • kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.

void SAI_TransferAbortSend(I2S_Type *base, sai_handle_t *handle)

Aborts the current send.

Note

This API can be called any time when an interrupt non-blocking transfer initiates to abort the transfer early.

Parameters:
  • base – SAI base pointer.

  • handle – Pointer to the sai_handle_t structure which stores the transfer state.

void SAI_TransferAbortReceive(I2S_Type *base, sai_handle_t *handle)

Aborts the current IRQ receive.

Note

This API can be called when an interrupt non-blocking transfer initiates to abort the transfer early.

Parameters:
  • base – SAI base pointer

  • handle – Pointer to the sai_handle_t structure which stores the transfer state.

void SAI_TransferTerminateSend(I2S_Type *base, sai_handle_t *handle)

Terminate all SAI send.

This function will clear all transfer slots buffered in the sai queue. If users only want to abort the current transfer slot, please call SAI_TransferAbortSend.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

void SAI_TransferTerminateReceive(I2S_Type *base, sai_handle_t *handle)

Terminate all SAI receive.

This function will clear all transfer slots buffered in the sai queue. If users only want to abort the current transfer slot, please call SAI_TransferAbortReceive.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

void SAI_TransferTxHandleIRQ(I2S_Type *base, sai_handle_t *handle)

Tx interrupt handler.

Parameters:
  • base – SAI base pointer.

  • handle – Pointer to the sai_handle_t structure.

void SAI_TransferRxHandleIRQ(I2S_Type *base, sai_handle_t *handle)

Tx interrupt handler.

Parameters:
  • base – SAI base pointer.

  • handle – Pointer to the sai_handle_t structure.

FSL_SAI_DRIVER_VERSION

Version 2.4.4

_sai_status_t, SAI return status.

Values:

enumerator kStatus_SAI_TxBusy

SAI Tx is busy.

enumerator kStatus_SAI_RxBusy

SAI Rx is busy.

enumerator kStatus_SAI_TxError

SAI Tx FIFO error.

enumerator kStatus_SAI_RxError

SAI Rx FIFO error.

enumerator kStatus_SAI_QueueFull

SAI transfer queue is full.

enumerator kStatus_SAI_TxIdle

SAI Tx is idle

enumerator kStatus_SAI_RxIdle

SAI Rx is idle

_sai_channel_mask,.sai channel mask value, actual channel numbers is depend soc specific

Values:

enumerator kSAI_Channel0Mask

channel 0 mask value

enumerator kSAI_Channel1Mask

channel 1 mask value

enumerator kSAI_Channel2Mask

channel 2 mask value

enumerator kSAI_Channel3Mask

channel 3 mask value

enumerator kSAI_Channel4Mask

channel 4 mask value

enumerator kSAI_Channel5Mask

channel 5 mask value

enumerator kSAI_Channel6Mask

channel 6 mask value

enumerator kSAI_Channel7Mask

channel 7 mask value

enum _sai_protocol

Define the SAI bus type.

Values:

enumerator kSAI_BusLeftJustified

Uses left justified format.

enumerator kSAI_BusRightJustified

Uses right justified format.

enumerator kSAI_BusI2S

Uses I2S format.

enumerator kSAI_BusPCMA

Uses I2S PCM A format.

enumerator kSAI_BusPCMB

Uses I2S PCM B format.

enum _sai_master_slave

Master or slave mode.

Values:

enumerator kSAI_Master

Master mode include bclk and frame sync

enumerator kSAI_Slave

Slave mode include bclk and frame sync

enumerator kSAI_Bclk_Master_FrameSync_Slave

bclk in master mode, frame sync in slave mode

enumerator kSAI_Bclk_Slave_FrameSync_Master

bclk in slave mode, frame sync in master mode

enum _sai_mono_stereo

Mono or stereo audio format.

Values:

enumerator kSAI_Stereo

Stereo sound.

enumerator kSAI_MonoRight

Only Right channel have sound.

enumerator kSAI_MonoLeft

Only left channel have sound.

enum _sai_data_order

SAI data order, MSB or LSB.

Values:

enumerator kSAI_DataLSB

LSB bit transferred first

enumerator kSAI_DataMSB

MSB bit transferred first

enum _sai_clock_polarity

SAI clock polarity, active high or low.

Values:

enumerator kSAI_PolarityActiveHigh

Drive outputs on rising edge

enumerator kSAI_PolarityActiveLow

Drive outputs on falling edge

enumerator kSAI_SampleOnFallingEdge

Sample inputs on falling edge

enumerator kSAI_SampleOnRisingEdge

Sample inputs on rising edge

enum _sai_sync_mode

Synchronous or asynchronous mode.

Values:

enumerator kSAI_ModeAsync

Asynchronous mode

enumerator kSAI_ModeSync

Synchronous mode (with receiver or transmit)

enum _sai_mclk_source

Mater clock source.

Values:

enumerator kSAI_MclkSourceSysclk

Master clock from the system clock

enumerator kSAI_MclkSourceSelect1

Master clock from source 1

enumerator kSAI_MclkSourceSelect2

Master clock from source 2

enumerator kSAI_MclkSourceSelect3

Master clock from source 3

enum _sai_bclk_source

Bit clock source.

Values:

enumerator kSAI_BclkSourceBusclk

Bit clock using bus clock

enumerator kSAI_BclkSourceMclkOption1

Bit clock MCLK option 1

enumerator kSAI_BclkSourceMclkOption2

Bit clock MCLK option2

enumerator kSAI_BclkSourceMclkOption3

Bit clock MCLK option3

enumerator kSAI_BclkSourceMclkDiv

Bit clock using master clock divider

enumerator kSAI_BclkSourceOtherSai0

Bit clock from other SAI device

enumerator kSAI_BclkSourceOtherSai1

Bit clock from other SAI device

_sai_interrupt_enable_t, The SAI interrupt enable flag

Values:

enumerator kSAI_WordStartInterruptEnable

Word start flag, means the first word in a frame detected

enumerator kSAI_SyncErrorInterruptEnable

Sync error flag, means the sync error is detected

enumerator kSAI_FIFOWarningInterruptEnable

FIFO warning flag, means the FIFO is empty

enumerator kSAI_FIFOErrorInterruptEnable

FIFO error flag

enumerator kSAI_FIFORequestInterruptEnable

FIFO request, means reached watermark

_sai_dma_enable_t, The DMA request sources

Values:

enumerator kSAI_FIFOWarningDMAEnable

FIFO warning caused by the DMA request

enumerator kSAI_FIFORequestDMAEnable

FIFO request caused by the DMA request

_sai_flags, The SAI status flag

Values:

enumerator kSAI_WordStartFlag

Word start flag, means the first word in a frame detected

enumerator kSAI_SyncErrorFlag

Sync error flag, means the sync error is detected

enumerator kSAI_FIFOErrorFlag

FIFO error flag

enumerator kSAI_FIFORequestFlag

FIFO request flag.

enumerator kSAI_FIFOWarningFlag

FIFO warning flag

enum _sai_reset_type

The reset type.

Values:

enumerator kSAI_ResetTypeSoftware

Software reset, reset the logic state

enumerator kSAI_ResetTypeFIFO

FIFO reset, reset the FIFO read and write pointer

enumerator kSAI_ResetAll

All reset.

enum _sai_fifo_packing

The SAI packing mode The mode includes 8 bit and 16 bit packing.

Values:

enumerator kSAI_FifoPackingDisabled

Packing disabled

enumerator kSAI_FifoPacking8bit

8 bit packing enabled

enumerator kSAI_FifoPacking16bit

16bit packing enabled

enum _sai_sample_rate

Audio sample rate.

Values:

enumerator kSAI_SampleRate8KHz

Sample rate 8000 Hz

enumerator kSAI_SampleRate11025Hz

Sample rate 11025 Hz

enumerator kSAI_SampleRate12KHz

Sample rate 12000 Hz

enumerator kSAI_SampleRate16KHz

Sample rate 16000 Hz

enumerator kSAI_SampleRate22050Hz

Sample rate 22050 Hz

enumerator kSAI_SampleRate24KHz

Sample rate 24000 Hz

enumerator kSAI_SampleRate32KHz

Sample rate 32000 Hz

enumerator kSAI_SampleRate44100Hz

Sample rate 44100 Hz

enumerator kSAI_SampleRate48KHz

Sample rate 48000 Hz

enumerator kSAI_SampleRate96KHz

Sample rate 96000 Hz

enumerator kSAI_SampleRate192KHz

Sample rate 192000 Hz

enumerator kSAI_SampleRate384KHz

Sample rate 384000 Hz

enum _sai_word_width

Audio word width.

Values:

enumerator kSAI_WordWidth8bits

Audio data width 8 bits

enumerator kSAI_WordWidth16bits

Audio data width 16 bits

enumerator kSAI_WordWidth24bits

Audio data width 24 bits

enumerator kSAI_WordWidth32bits

Audio data width 32 bits

enum _sai_data_pin_state

sai data pin state definition

Values:

enumerator kSAI_DataPinStateTriState

transmit data pins are tri-stated when slots are masked or channels are disabled

enumerator kSAI_DataPinStateOutputZero

transmit data pins are never tri-stated and will output zero when slots are masked or channel disabled

enum _sai_fifo_combine

sai fifo combine mode definition

Values:

enumerator kSAI_FifoCombineDisabled

sai TX/RX fifo combine mode disabled

enumerator kSAI_FifoCombineModeEnabledOnRead

sai TX fifo combine mode enabled on FIFO reads

enumerator kSAI_FifoCombineModeEnabledOnWrite

sai TX fifo combine mode enabled on FIFO write

enumerator kSAI_RxFifoCombineModeEnabledOnWrite

sai RX fifo combine mode enabled on FIFO write

enumerator kSAI_RXFifoCombineModeEnabledOnRead

sai RX fifo combine mode enabled on FIFO reads

enumerator kSAI_FifoCombineModeEnabledOnReadWrite

sai TX/RX fifo combined mode enabled on FIFO read/writes

enum _sai_transceiver_type

sai transceiver type

Values:

enumerator kSAI_Transmitter

sai transmitter

enumerator kSAI_Receiver

sai receiver

enum _sai_frame_sync_len

sai frame sync len

Values:

enumerator kSAI_FrameSyncLenOneBitClk

1 bit clock frame sync len for DSP mode

enumerator kSAI_FrameSyncLenPerWordWidth

Frame sync length decided by word width

typedef enum _sai_protocol sai_protocol_t

Define the SAI bus type.

typedef enum _sai_master_slave sai_master_slave_t

Master or slave mode.

typedef enum _sai_mono_stereo sai_mono_stereo_t

Mono or stereo audio format.

typedef enum _sai_data_order sai_data_order_t

SAI data order, MSB or LSB.

typedef enum _sai_clock_polarity sai_clock_polarity_t

SAI clock polarity, active high or low.

typedef enum _sai_sync_mode sai_sync_mode_t

Synchronous or asynchronous mode.

typedef enum _sai_mclk_source sai_mclk_source_t

Mater clock source.

typedef enum _sai_bclk_source sai_bclk_source_t

Bit clock source.

typedef enum _sai_reset_type sai_reset_type_t

The reset type.

typedef enum _sai_fifo_packing sai_fifo_packing_t

The SAI packing mode The mode includes 8 bit and 16 bit packing.

typedef struct _sai_config sai_config_t

SAI user configuration structure.

typedef enum _sai_sample_rate sai_sample_rate_t

Audio sample rate.

typedef enum _sai_word_width sai_word_width_t

Audio word width.

typedef enum _sai_data_pin_state sai_data_pin_state_t

sai data pin state definition

typedef enum _sai_fifo_combine sai_fifo_combine_t

sai fifo combine mode definition

typedef enum _sai_transceiver_type sai_transceiver_type_t

sai transceiver type

typedef enum _sai_frame_sync_len sai_frame_sync_len_t

sai frame sync len

typedef struct _sai_transfer_format sai_transfer_format_t

sai transfer format

typedef struct _sai_master_clock sai_master_clock_t

master clock configurations

typedef struct _sai_fifo sai_fifo_t

sai fifo configurations

typedef struct _sai_bit_clock sai_bit_clock_t

sai bit clock configurations

typedef struct _sai_frame_sync sai_frame_sync_t

sai frame sync configurations

typedef struct _sai_serial_data sai_serial_data_t

sai serial data configurations

typedef struct _sai_transceiver sai_transceiver_t

sai transceiver configurations

typedef struct _sai_transfer sai_transfer_t

SAI transfer structure.

typedef struct _sai_handle sai_handle_t
typedef void (*sai_transfer_callback_t)(I2S_Type *base, sai_handle_t *handle, status_t status, void *userData)

SAI transfer callback prototype.

SAI_XFER_QUEUE_SIZE

SAI transfer queue size, user can refine it according to use case.

FSL_SAI_HAS_FIFO_EXTEND_FEATURE

sai fifo feature

struct _sai_config
#include <fsl_sai.h>

SAI user configuration structure.

Public Members

sai_protocol_t protocol

Audio bus protocol in SAI

sai_sync_mode_t syncMode

SAI sync mode, control Tx/Rx clock sync

bool mclkOutputEnable

Master clock output enable, true means master clock divider enabled

sai_mclk_source_t mclkSource

Master Clock source

sai_bclk_source_t bclkSource

Bit Clock source

sai_master_slave_t masterSlave

Master or slave

struct _sai_transfer_format
#include <fsl_sai.h>

sai transfer format

Public Members

uint32_t sampleRate_Hz

Sample rate of audio data

uint32_t bitWidth

Data length of audio data, usually 8/16/24/32 bits

sai_mono_stereo_t stereo

Mono or stereo

uint32_t masterClockHz

Master clock frequency in Hz

uint8_t watermark

Watermark value

uint8_t channel

Transfer start channel

uint8_t channelMask

enabled channel mask value, reference _sai_channel_mask

uint8_t endChannel

end channel number

uint8_t channelNums

Total enabled channel numbers

sai_protocol_t protocol

Which audio protocol used

bool isFrameSyncCompact

True means Frame sync length is configurable according to bitWidth, false means frame sync length is 64 times of bit clock.

struct _sai_master_clock
#include <fsl_sai.h>

master clock configurations

Public Members

bool mclkOutputEnable

master clock output enable

sai_mclk_source_t mclkSource

Master Clock source

uint32_t mclkHz

target mclk frequency

uint32_t mclkSourceClkHz

mclk source frequency

struct _sai_fifo
#include <fsl_sai.h>

sai fifo configurations

Public Members

bool fifoContinueOneError

fifo continues when error occur

sai_fifo_combine_t fifoCombine

fifo combine mode

sai_fifo_packing_t fifoPacking

fifo packing mode

uint8_t fifoWatermark

fifo watermark

struct _sai_bit_clock
#include <fsl_sai.h>

sai bit clock configurations

Public Members

bool bclkSrcSwap

bit clock source swap

bool bclkInputDelay

bit clock actually used by the transmitter is delayed by the pad output delay, this has effect of decreasing the data input setup time, but increasing the data output valid time .

sai_clock_polarity_t bclkPolarity

bit clock polarity

sai_bclk_source_t bclkSource

bit Clock source

struct _sai_frame_sync
#include <fsl_sai.h>

sai frame sync configurations

Public Members

uint8_t frameSyncWidth

frame sync width in number of bit clocks

bool frameSyncEarly

TRUE is frame sync assert one bit before the first bit of frame FALSE is frame sync assert with the first bit of the frame

bool frameSyncGenerateOnDemand

internal frame sync is generated when FIFO waring flag is clear

sai_clock_polarity_t frameSyncPolarity

frame sync polarity

struct _sai_serial_data
#include <fsl_sai.h>

sai serial data configurations

Public Members

sai_data_pin_state_t dataMode

sai data pin state when slots masked or channel disabled

sai_data_order_t dataOrder

configure whether the LSB or MSB is transmitted first

uint8_t dataWord0Length

configure the number of bits in the first word in each frame

uint8_t dataWordNLength

configure the number of bits in the each word in each frame, except the first word

uint8_t dataWordLength

used to record the data length for dma transfer

uint8_t dataFirstBitShifted

Configure the bit index for the first bit transmitted for each word in the frame

uint8_t dataWordNum

configure the number of words in each frame

uint32_t dataMaskedWord

configure whether the transmit word is masked

struct _sai_transceiver
#include <fsl_sai.h>

sai transceiver configurations

Public Members

sai_serial_data_t serialData

serial data configurations

sai_frame_sync_t frameSync

ws configurations

sai_bit_clock_t bitClock

bit clock configurations

sai_fifo_t fifo

fifo configurations

sai_master_slave_t masterSlave

transceiver is master or slave

sai_sync_mode_t syncMode

transceiver sync mode

uint8_t startChannel

Transfer start channel

uint8_t channelMask

enabled channel mask value, reference _sai_channel_mask

uint8_t endChannel

end channel number

uint8_t channelNums

Total enabled channel numbers

struct _sai_transfer
#include <fsl_sai.h>

SAI transfer structure.

Public Members

uint8_t *data

Data start address to transfer.

size_t dataSize

Transfer size.

struct _sai_handle
#include <fsl_sai.h>

SAI handle structure.

Public Members

I2S_Type *base

base address

uint32_t state

Transfer status

sai_transfer_callback_t callback

Callback function called at transfer event

void *userData

Callback parameter passed to callback function

uint8_t bitWidth

Bit width for transfer, 8/16/24/32 bits

uint8_t channel

Transfer start channel

uint8_t channelMask

enabled channel mask value, refernece _sai_channel_mask

uint8_t endChannel

end channel number

uint8_t channelNums

Total enabled channel numbers

sai_transfer_t saiQueue[(4U)]

Transfer queue storing queued transfer

size_t transferSize[(4U)]

Data bytes need to transfer

volatile uint8_t queueUser

Index for user to queue transfer

volatile uint8_t queueDriver

Index for driver to get the transfer data and size

uint8_t watermark

Watermark value

SAI EDMA Driver

void SAI_TransferTxCreateHandleEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_edma_callback_t callback, void *userData, edma_handle_t *txDmaHandle)

Initializes the SAI eDMA handle.

This function initializes the SAI master DMA handle, which can be used for other SAI master transactional APIs. Usually, for a specified SAI instance, call this API once to get the initialized handle.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

  • callback – Pointer to user callback function.

  • userData – User parameter passed to the callback function.

  • txDmaHandle – eDMA handle pointer, this handle shall be static allocated by users.

void SAI_TransferRxCreateHandleEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_edma_callback_t callback, void *userData, edma_handle_t *rxDmaHandle)

Initializes the SAI Rx eDMA handle.

This function initializes the SAI slave DMA handle, which can be used for other SAI master transactional APIs. Usually, for a specified SAI instance, call this API once to get the initialized handle.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

  • callback – Pointer to user callback function.

  • userData – User parameter passed to the callback function.

  • rxDmaHandle – eDMA handle pointer, this handle shall be static allocated by users.

void SAI_TransferSetInterleaveType(sai_edma_handle_t *handle, sai_edma_interleave_t interleaveType)

Initializes the SAI interleave type.

This function initializes the SAI DMA handle member interleaveType, it shall be called only when application would like to use type kSAI_EDMAInterleavePerChannelBlock, since the default interleaveType is kSAI_EDMAInterleavePerChannelSample always

Parameters:
  • handle – SAI eDMA handle pointer.

  • interleaveType – Multi channel interleave type.

void SAI_TransferTxSetConfigEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transceiver_t *saiConfig)

Configures the SAI Tx.

Note

SAI eDMA supports data transfer in a multiple SAI channels if the FIFO Combine feature is supported. To activate the multi-channel transfer enable SAI channels by filling the channelMask of sai_transceiver_t with the corresponding values of _sai_channel_mask enum, enable the FIFO Combine mode by assigning kSAI_FifoCombineModeEnabledOnWrite to the fifoCombine member of sai_fifo_combine_t which is a member of sai_transceiver_t. This is an example of multi-channel data transfer configuration step.

sai_transceiver_t config;
SAI_GetClassicI2SConfig(&config, kSAI_WordWidth16bits, kSAI_Stereo, kSAI_Channel0Mask|kSAI_Channel1Mask);
config.fifo.fifoCombine = kSAI_FifoCombineModeEnabledOnWrite;
SAI_TransferTxSetConfigEDMA(I2S0, &edmaHandle, &config);

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

  • saiConfig – sai configurations.

void SAI_TransferRxSetConfigEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transceiver_t *saiConfig)

Configures the SAI Rx.

Note

SAI eDMA supports data transfer in a multiple SAI channels if the FIFO Combine feature is supported. To activate the multi-channel transfer enable SAI channels by filling the channelMask of sai_transceiver_t with the corresponding values of _sai_channel_mask enum, enable the FIFO Combine mode by assigning kSAI_FifoCombineModeEnabledOnRead to the fifoCombine member of sai_fifo_combine_t which is a member of sai_transceiver_t. This is an example of multi-channel data transfer configuration step.

sai_transceiver_t config;
SAI_GetClassicI2SConfig(&config, kSAI_WordWidth16bits, kSAI_Stereo, kSAI_Channel0Mask|kSAI_Channel1Mask);
config.fifo.fifoCombine = kSAI_FifoCombineModeEnabledOnRead;
SAI_TransferRxSetConfigEDMA(I2S0, &edmaHandle, &config);

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

  • saiConfig – sai configurations.

status_t SAI_TransferSendEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t *xfer)

Performs a non-blocking SAI transfer using DMA.

This function support multi channel transfer,

  1. for the sai IP support fifo combine mode, application should enable the fifo combine mode, no limitation on channel numbers

  2. for the sai IP not support fifo combine mode, sai edma provide another solution which using EDMA modulo feature, but support 2 or 4 channels only.

Note

This interface returns immediately after the transfer initiates. Call SAI_GetTransferStatus to poll the transfer status and check whether the SAI transfer is finished.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

  • xfer – Pointer to the DMA transfer structure.

Return values:
  • kStatus_Success – Start a SAI eDMA send successfully.

  • kStatus_InvalidArgument – The input argument is invalid.

  • kStatus_TxBusy – SAI is busy sending data.

status_t SAI_TransferReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t *xfer)

Performs a non-blocking SAI receive using eDMA.

This function support multi channel transfer,

  1. for the sai IP support fifo combine mode, application should enable the fifo combine mode, no limitation on channel numbers

  2. for the sai IP not support fifo combine mode, sai edma provide another solution which using EDMA modulo feature, but support 2 or 4 channels only.

Note

This interface returns immediately after the transfer initiates. Call the SAI_GetReceiveRemainingBytes to poll the transfer status and check whether the SAI transfer is finished.

Parameters:
  • base – SAI base pointer

  • handle – SAI eDMA handle pointer.

  • xfer – Pointer to DMA transfer structure.

Return values:
  • kStatus_Success – Start a SAI eDMA receive successfully.

  • kStatus_InvalidArgument – The input argument is invalid.

  • kStatus_RxBusy – SAI is busy receiving data.

status_t SAI_TransferSendLoopEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t *xfer, uint32_t loopTransferCount)

Performs a non-blocking SAI loop transfer using eDMA.

Once the loop transfer start, application can use function SAI_TransferAbortSendEDMA to stop the loop transfer.

Note

This function support loop transfer only,such as A->B->…->A, application must be aware of that the more counts of the loop transfer, then more tcd memory required, as the function use the tcd pool in sai_edma_handle_t, so application could redefine the SAI_XFER_QUEUE_SIZE to determine the proper TCD pool size. This function support one sai channel only.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

  • xfer – Pointer to the DMA transfer structure, should be a array with elements counts >=1(loopTransferCount).

  • loopTransferCount – the counts of xfer array.

Return values:
  • kStatus_Success – Start a SAI eDMA send successfully.

  • kStatus_InvalidArgument – The input argument is invalid.

status_t SAI_TransferReceiveLoopEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t *xfer, uint32_t loopTransferCount)

Performs a non-blocking SAI loop transfer using eDMA.

Once the loop transfer start, application can use function SAI_TransferAbortReceiveEDMA to stop the loop transfer.

Note

This function support loop transfer only,such as A->B->…->A, application must be aware of that the more counts of the loop transfer, then more tcd memory required, as the function use the tcd pool in sai_edma_handle_t, so application could redefine the SAI_XFER_QUEUE_SIZE to determine the proper TCD pool size. This function support one sai channel only.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

  • xfer – Pointer to the DMA transfer structure, should be a array with elements counts >=1(loopTransferCount).

  • loopTransferCount – the counts of xfer array.

Return values:
  • kStatus_Success – Start a SAI eDMA receive successfully.

  • kStatus_InvalidArgument – The input argument is invalid.

void SAI_TransferTerminateSendEDMA(I2S_Type *base, sai_edma_handle_t *handle)

Terminate all SAI send.

This function will clear all transfer slots buffered in the sai queue. If users only want to abort the current transfer slot, please call SAI_TransferAbortSendEDMA.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

void SAI_TransferTerminateReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle)

Terminate all SAI receive.

This function will clear all transfer slots buffered in the sai queue. If users only want to abort the current transfer slot, please call SAI_TransferAbortReceiveEDMA.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

void SAI_TransferAbortSendEDMA(I2S_Type *base, sai_edma_handle_t *handle)

Aborts a SAI transfer using eDMA.

This function only aborts the current transfer slots, the other transfer slots’ information still kept in the handler. If users want to terminate all transfer slots, just call SAI_TransferTerminateSendEDMA.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

void SAI_TransferAbortReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle)

Aborts a SAI receive using eDMA.

This function only aborts the current transfer slots, the other transfer slots’ information still kept in the handler. If users want to terminate all transfer slots, just call SAI_TransferTerminateReceiveEDMA.

Parameters:
  • base – SAI base pointer

  • handle – SAI eDMA handle pointer.

status_t SAI_TransferGetSendCountEDMA(I2S_Type *base, sai_edma_handle_t *handle, size_t *count)

Gets byte count sent by SAI.

Parameters:
  • base – SAI base pointer.

  • handle – SAI eDMA handle pointer.

  • count – Bytes count sent by SAI.

Return values:
  • kStatus_Success – Succeed get the transfer count.

  • kStatus_NoTransferInProgress – There is no non-blocking transaction in progress.

status_t SAI_TransferGetReceiveCountEDMA(I2S_Type *base, sai_edma_handle_t *handle, size_t *count)

Gets byte count received by SAI.

Parameters:
  • base – SAI base pointer

  • handle – SAI eDMA handle pointer.

  • count – Bytes count received by SAI.

Return values:
  • kStatus_Success – Succeed get the transfer count.

  • kStatus_NoTransferInProgress – There is no non-blocking transaction in progress.

uint32_t SAI_TransferGetValidTransferSlotsEDMA(I2S_Type *base, sai_edma_handle_t *handle)

Gets valid transfer slot.

This function can be used to query the valid transfer request slot that the application can submit. It should be called in the critical section, that means the application could call it in the corresponding callback function or disable IRQ before calling it in the application, otherwise, the returned value may not correct.

Parameters:
  • base – SAI base pointer

  • handle – SAI eDMA handle pointer.

Return values:

valid – slot count that application submit.

FSL_SAI_EDMA_DRIVER_VERSION

Version 2.7.1

enum _sai_edma_interleave

sai interleave type

Values:

enumerator kSAI_EDMAInterleavePerChannelSample
enumerator kSAI_EDMAInterleavePerChannelBlock
typedef struct sai_edma_handle sai_edma_handle_t
typedef void (*sai_edma_callback_t)(I2S_Type *base, sai_edma_handle_t *handle, status_t status, void *userData)

SAI eDMA transfer callback function for finish and error.

typedef enum _sai_edma_interleave sai_edma_interleave_t

sai interleave type

struct sai_edma_handle
#include <fsl_sai_edma.h>

SAI DMA transfer handle, users should not touch the content of the handle.

Public Members

edma_handle_t *dmaHandle

DMA handler for SAI send

uint8_t nbytes

eDMA minor byte transfer count initially configured.

uint8_t bytesPerFrame

Bytes in a frame

uint8_t channelMask

Enabled channel mask value, reference _sai_channel_mask

uint8_t channelNums

total enabled channel nums

uint8_t channel

Which data channel

uint8_t count

The transfer data count in a DMA request

uint32_t state

Internal state for SAI eDMA transfer

sai_edma_callback_t callback

Callback for users while transfer finish or error occurs

void *userData

User callback parameter

uint8_t tcd[((4U) + 1U) * sizeof(edma_tcd_t)]

TCD pool for eDMA transfer.

sai_transfer_t saiQueue[(4U)]

Transfer queue storing queued transfer.

size_t transferSize[(4U)]

Data bytes need to transfer

sai_edma_interleave_t interleaveType

Transfer interleave type

volatile uint8_t queueUser

Index for user to queue transfer.

volatile uint8_t queueDriver

Index for driver to get the transfer data and size

SIM: System Integration Module Driver

FSL_SIM_DRIVER_VERSION

Driver version.

enum _sim_usb_volt_reg_enable_mode

USB voltage regulator enable setting.

Values:

enumerator kSIM_UsbVoltRegEnable

Enable voltage regulator.

enumerator kSIM_UsbVoltRegEnableInLowPower

Enable voltage regulator in VLPR/VLPW modes.

enumerator kSIM_UsbVoltRegEnableInStop

Enable voltage regulator in STOP/VLPS/LLS/VLLS modes.

enumerator kSIM_UsbVoltRegEnableInAllModes

Enable voltage regulator in all power modes.

enum _sim_flash_mode

Flash enable mode.

Values:

enumerator kSIM_FlashDisableInWait

Disable flash in wait mode.

enumerator kSIM_FlashDisable

Disable flash in normal mode.

typedef struct _sim_uid sim_uid_t

Unique ID.

void SIM_SetUsbVoltRegulatorEnableMode(uint32_t mask)

Sets the USB voltage regulator setting.

This function configures whether the USB voltage regulator is enabled in normal RUN mode, STOP/VLPS/LLS/VLLS modes, and VLPR/VLPW modes. The configurations are passed in as mask value of _sim_usb_volt_reg_enable_mode. For example, to enable USB voltage regulator in RUN/VLPR/VLPW modes and disable in STOP/VLPS/LLS/VLLS mode, use:

SIM_SetUsbVoltRegulatorEnableMode(kSIM_UsbVoltRegEnable | kSIM_UsbVoltRegEnableInLowPower);

Parameters:
  • mask – USB voltage regulator enable setting.

void SIM_GetUniqueId(sim_uid_t *uid)

Gets the unique identification register value.

Parameters:
  • uid – Pointer to the structure to save the UID value.

static inline void SIM_SetFlashMode(uint8_t mode)

Sets the flash enable mode.

Parameters:
  • mode – The mode to set; see _sim_flash_mode for mode details.

struct _sim_uid
#include <fsl_sim.h>

Unique ID.

Public Members

uint32_t H

UIDH.

uint32_t M

SIM_UIDM.

uint32_t L

UIDL.

Smartcard

FSL_SMARTCARD_DRIVER_VERSION

Smart card driver version 2.3.0.

Smart card Error codes.

Values:

enumerator kStatus_SMARTCARD_Success

Transfer ends successfully

enumerator kStatus_SMARTCARD_TxBusy

Transmit in progress

enumerator kStatus_SMARTCARD_RxBusy

Receiving in progress

enumerator kStatus_SMARTCARD_NoTransferInProgress

No transfer in progress

enumerator kStatus_SMARTCARD_Timeout

Transfer ends with time-out

enumerator kStatus_SMARTCARD_Initialized

Smart card driver is already initialized

enumerator kStatus_SMARTCARD_PhyInitialized

Smart card PHY drive is already initialized

enumerator kStatus_SMARTCARD_CardNotActivated

Smart card is not activated

enumerator kStatus_SMARTCARD_InvalidInput

Function called with invalid input arguments

enumerator kStatus_SMARTCARD_OtherError

Some other error occur

enum _smartcard_control

Control codes for the Smart card protocol timers and misc.

Values:

enumerator kSMARTCARD_EnableADT
enumerator kSMARTCARD_DisableADT
enumerator kSMARTCARD_EnableGTV
enumerator kSMARTCARD_DisableGTV
enumerator kSMARTCARD_ResetWWT
enumerator kSMARTCARD_EnableWWT
enumerator kSMARTCARD_DisableWWT
enumerator kSMARTCARD_ResetCWT
enumerator kSMARTCARD_EnableCWT
enumerator kSMARTCARD_DisableCWT
enumerator kSMARTCARD_ResetBWT
enumerator kSMARTCARD_EnableBWT
enumerator kSMARTCARD_DisableBWT
enumerator kSMARTCARD_EnableInitDetect
enumerator kSMARTCARD_EnableAnack
enumerator kSMARTCARD_DisableAnack
enumerator kSMARTCARD_ConfigureBaudrate
enumerator kSMARTCARD_SetupATRMode
enumerator kSMARTCARD_SetupT0Mode
enumerator kSMARTCARD_SetupT1Mode
enumerator kSMARTCARD_EnableReceiverMode
enumerator kSMARTCARD_DisableReceiverMode
enumerator kSMARTCARD_EnableTransmitterMode
enumerator kSMARTCARD_DisableTransmitterMode
enumerator kSMARTCARD_ResetWaitTimeMultiplier
enum _smartcard_card_voltage_class

Defines Smart card interface voltage class values.

Values:

enumerator kSMARTCARD_VoltageClassUnknown
enumerator kSMARTCARD_VoltageClassA5_0V
enumerator kSMARTCARD_VoltageClassB3_3V
enumerator kSMARTCARD_VoltageClassC1_8V
enum _smartcard_transfer_state

Defines Smart card I/O transfer states.

Values:

enumerator kSMARTCARD_IdleState
enumerator kSMARTCARD_WaitingForTSState
enumerator kSMARTCARD_InvalidTSDetecetedState
enumerator kSMARTCARD_ReceivingState
enumerator kSMARTCARD_TransmittingState
enum _smartcard_reset_type

Defines Smart card reset types.

Values:

enumerator kSMARTCARD_ColdReset
enumerator kSMARTCARD_WarmReset
enumerator kSMARTCARD_NoColdReset
enumerator kSMARTCARD_NoWarmReset
enum _smartcard_transport_type

Defines Smart card transport protocol types.

Values:

enumerator kSMARTCARD_T0Transport
enumerator kSMARTCARD_T1Transport
enum _smartcard_parity_type

Defines Smart card data parity types.

Values:

enumerator kSMARTCARD_EvenParity
enumerator kSMARTCARD_OddParity
enum _smartcard_card_convention

Defines data Convention format.

Values:

enumerator kSMARTCARD_DirectConvention
enumerator kSMARTCARD_InverseConvention
enum _smartcard_interface_control

Defines Smart card interface IC control types.

Values:

enumerator kSMARTCARD_InterfaceSetVcc
enumerator kSMARTCARD_InterfaceSetClockToResetDelay
enumerator kSMARTCARD_InterfaceReadStatus
enum _smartcard_direction

Defines transfer direction.

Values:

enumerator kSMARTCARD_Receive
enumerator kSMARTCARD_Transmit
typedef enum _smartcard_control smartcard_control_t

Control codes for the Smart card protocol timers and misc.

typedef enum _smartcard_card_voltage_class smartcard_card_voltage_class_t

Defines Smart card interface voltage class values.

typedef enum _smartcard_transfer_state smartcard_transfer_state_t

Defines Smart card I/O transfer states.

typedef enum _smartcard_reset_type smartcard_reset_type_t

Defines Smart card reset types.

typedef enum _smartcard_transport_type smartcard_transport_type_t

Defines Smart card transport protocol types.

typedef enum _smartcard_parity_type smartcard_parity_type_t

Defines Smart card data parity types.

typedef enum _smartcard_card_convention smartcard_card_convention_t

Defines data Convention format.

typedef enum _smartcard_interface_control smartcard_interface_control_t

Defines Smart card interface IC control types.

typedef enum _smartcard_direction smartcard_direction_t

Defines transfer direction.

typedef void (*smartcard_interface_callback_t)(void *smartcardContext, void *param)

Smart card interface interrupt callback function type.

typedef void (*smartcard_transfer_callback_t)(void *smartcardContext, void *param)

Smart card transfer interrupt callback function type.

typedef void (*smartcard_time_delay_t)(uint32_t us)

Time Delay function used to passive waiting using RTOS [us].

typedef struct _smartcard_card_params smartcard_card_params_t

Defines card-specific parameters for Smart card driver.

typedef struct _smartcard_timers_state smartcard_timers_state_t

Smart card defines the state of the EMV timers in the Smart card driver.

typedef struct _smartcard_interface_config smartcard_interface_config_t

Defines user specified configuration of Smart card interface.

typedef struct _smartcard_xfer smartcard_xfer_t

Defines user transfer structure used to initialize transfer.

typedef struct _smartcard_context smartcard_context_t

Runtime state of the Smart card driver.

SMARTCARD_INIT_DELAY_CLOCK_CYCLES

Smart card global define which specify number of clock cycles until initial ‘TS’ character has to be received.

SMARTCARD_EMV_ATR_DURATION_ETU

Smart card global define which specify number of clock cycles during which ATR string has to be received.

SMARTCARD_TS_DIRECT_CONVENTION

Smart card specification initial TS character definition of direct convention.

SMARTCARD_TS_INVERSE_CONVENTION

Smart card specification initial TS character definition of inverse convention.

struct _smartcard_card_params
#include <fsl_smartcard.h>

Defines card-specific parameters for Smart card driver.

Public Members

uint16_t Fi

4 bits Fi - clock rate conversion integer

uint8_t fMax

Maximum Smart card frequency in MHz

uint8_t WI

8 bits WI - work wait time integer

uint8_t Di

4 bits DI - baud rate divisor

uint8_t BWI

4 bits BWI - block wait time integer

uint8_t CWI

4 bits CWI - character wait time integer

uint8_t BGI

4 bits BGI - block guard time integer

uint8_t GTN

8 bits GTN - extended guard time integer

uint8_t IFSC

Indicates IFSC value of the card

uint8_t modeNegotiable

Indicates if the card acts in negotiable or a specific mode.

uint8_t currentD

4 bits DI - current baud rate divisor

uint8_t status

Indicates smart card status

bool t0Indicated

Indicates ff T=0 indicated in TD1 byte

bool t1Indicated

Indicates if T=1 indicated in TD2 byte

bool atrComplete

Indicates whether the ATR received from the card was complete or not

bool atrValid

Indicates whether the ATR received from the card was valid or not

bool present

Indicates if a smart card is present

bool active

Indicates if the smart card is activated

bool faulty

Indicates whether smart card/interface is faulty

smartcard_card_convention_t convention

Card convention, kSMARTCARD_DirectConvention for direct convention, kSMARTCARD_InverseConvention for inverse convention

struct _smartcard_timers_state
#include <fsl_smartcard.h>

Smart card defines the state of the EMV timers in the Smart card driver.

Public Members

volatile bool adtExpired

Indicates whether ADT timer expired

volatile bool wwtExpired

Indicates whether WWT timer expired

volatile bool cwtExpired

Indicates whether CWT timer expired

volatile bool bwtExpired

Indicates whether BWT timer expired

volatile bool initCharTimerExpired

Indicates whether reception timer for initialization character (TS) after the RST has expired

struct _smartcard_interface_config
#include <fsl_smartcard.h>

Defines user specified configuration of Smart card interface.

Public Members

uint32_t smartCardClock

Smart card interface clock [Hz]

uint32_t clockToResetDelay

Indicates clock to RST apply delay [smart card clock cycles]

uint8_t clockModule

Smart card clock module number

uint8_t clockModuleChannel

Smart card clock module channel number

uint8_t clockModuleSourceClock

Smart card clock module source clock [e.g., BusClk]

smartcard_card_voltage_class_t vcc

Smart card voltage class

uint8_t controlPort

Smart card PHY control port instance

uint8_t controlPin

Smart card PHY control pin instance

uint8_t irqPort

Smart card PHY Interrupt port instance

uint8_t irqPin

Smart card PHY Interrupt pin instance

uint8_t resetPort

Smart card reset port instance

uint8_t resetPin

Smart card reset pin instance

uint8_t vsel0Port

Smart card PHY Vsel0 control port instance

uint8_t vsel0Pin

Smart card PHY Vsel0 control pin instance

uint8_t vsel1Port

Smart card PHY Vsel1 control port instance

uint8_t vsel1Pin

Smart card PHY Vsel1 control pin instance

uint8_t dataPort

Smart card PHY data port instance

uint8_t dataPin

Smart card PHY data pin instance

uint8_t dataPinMux

Smart card PHY data pin mux option

uint8_t tsTimerId

Numerical identifier of the External HW timer for Initial character detection

struct _smartcard_xfer
#include <fsl_smartcard.h>

Defines user transfer structure used to initialize transfer.

Public Members

smartcard_direction_t direction

Direction of communication. (RX/TX)

uint8_t *buff

The buffer of data.

size_t size

The number of transferred units.

struct _smartcard_context
#include <fsl_smartcard.h>

Runtime state of the Smart card driver.

Public Members

void *base

Smart card module base address

smartcard_direction_t direction

Direction of communication. (RX/TX)

uint8_t *xBuff

The buffer of data being transferred.

volatile size_t xSize

The number of bytes to be transferred.

volatile bool xIsBusy

True if there is an active transfer.

uint8_t txFifoEntryCount

Number of data word entries in transmit FIFO.

uint8_t rxFifoThreshold

The max value of the receiver FIFO threshold.

smartcard_interface_callback_t interfaceCallback

Callback to invoke after interface IC raised interrupt.

smartcard_transfer_callback_t transferCallback

Callback to invoke after transfer event occur.

void *interfaceCallbackParam

Interface callback parameter pointer.

void *transferCallbackParam

Transfer callback parameter pointer.

smartcard_time_delay_t timeDelay

Function which handles time delay defined by user or RTOS.

smartcard_reset_type_t resetType

Indicates whether a Cold reset or Warm reset was requested.

smartcard_transport_type_t tType

Indicates current transfer protocol (T0 or T1)

volatile smartcard_transfer_state_t transferState

Indicates the current transfer state

smartcard_timers_state_t timersState

Indicates the state of different protocol timers used in driver

smartcard_card_params_t cardParams

Smart card parameters(ATR and current) and interface slots states(ATR and current)

uint8_t IFSD

Indicates the terminal IFSD

smartcard_parity_type_t parity

Indicates current parity even/odd

volatile bool rxtCrossed

Indicates whether RXT thresholds has been crossed

volatile bool txtCrossed

Indicates whether TXT thresholds has been crossed

volatile bool wtxRequested

Indicates whether WTX has been requested or not

volatile bool parityError

Indicates whether a parity error has been detected

uint8_t statusBytes[2]

Used to store Status bytes SW1, SW2 of the last executed card command response

smartcard_interface_config_t interfaceConfig

Smart card interface configuration structure

bool abortTransfer

Used to abort transfer.

Smart Card PHY Driver

void SMARTCARD_PHY_GetDefaultConfig(smartcard_interface_config_t *config)

Fills in the configuration structure with default values.

Parameters:
  • config – The Smart card user configuration structure which contains configuration structure of type smartcard_interface_config_t. Function fill in members: clockToResetDelay = 42000, vcc = kSmartcardVoltageClassB3_3V, with default values.

status_t SMARTCARD_PHY_Init(void *base, smartcard_interface_config_t const *config, uint32_t srcClock_Hz)

Initializes a Smart card interface instance.

Parameters:
  • base – The Smart card peripheral base address.

  • config – The user configuration structure of type smartcard_interface_config_t. Call the function SMARTCARD_PHY_GetDefaultConfig() to fill the configuration structure.

  • srcClock_Hz – Smart card clock generation module source clock.

Return values:

kStatus_SMARTCARD_Success – or kStatus_SMARTCARD_OtherError in case of error.

void SMARTCARD_PHY_Deinit(void *base, smartcard_interface_config_t const *config)

De-initializes a Smart card interface, stops the Smart card clock, and disables the VCC.

Parameters:
  • base – The Smart card peripheral module base address.

  • config – The user configuration structure of type smartcard_interface_config_t.

status_t SMARTCARD_PHY_Activate(void *base, smartcard_context_t *context, smartcard_reset_type_t resetType)

Activates the Smart card IC.

Parameters:
  • base – The Smart card peripheral module base address.

  • context – A pointer to a Smart card driver context structure.

  • resetType – type of reset to be performed, possible values = kSmartcardColdReset, kSmartcardWarmReset

Return values:

kStatus_SMARTCARD_Success – or kStatus_SMARTCARD_OtherError in case of error.

status_t SMARTCARD_PHY_Deactivate(void *base, smartcard_context_t *context)

De-activates the Smart card IC.

Parameters:
  • base – The Smart card peripheral module base address.

  • context – A pointer to a Smart card driver context structure.

Return values:

kStatus_SMARTCARD_Success – or kStatus_SMARTCARD_OtherError in case of error.

status_t SMARTCARD_PHY_Control(void *base, smartcard_context_t *context, smartcard_interface_control_t control, uint32_t param)

Controls the Smart card interface IC.

Parameters:
  • base – The Smart card peripheral module base address.

  • context – A pointer to a Smart card driver context structure.

  • control – A interface command type.

  • param – Integer value specific to control type

Return values:

kStatus_SMARTCARD_Success – or kStatus_SMARTCARD_OtherError in case of error.

SMARTCARD_ATR_DURATION_ADJUSTMENT

Smart card definition which specifies the adjustment number of clock cycles during which an ATR string has to be received.

SMARTCARD_INIT_DELAY_CLOCK_CYCLES_ADJUSTMENT

Smart card definition which specifies the adjustment number of clock cycles until an initial ‘TS’ character has to be received.

Smart Card PHY GPIO Driver

Smart Card PHY TDA8035 Driver

Smart Card UART Driver

void SMARTCARD_UART_GetDefaultConfig(smartcard_card_params_t *cardParams)

Fills in the smartcard_card_params structure with default values according to the EMV 4.3 specification.

Parameters:
  • cardParams – The configuration structure of type smartcard_interface_config_t. Function fill in members: Fi = 372; Di = 1; currentD = 1; WI = 0x0A; GTN = 0x00; with default values.

status_t SMARTCARD_UART_Init(UART_Type *base, smartcard_context_t *context, uint32_t srcClock_Hz)

Initializes a UART peripheral for the Smart card/ISO-7816 operation.

This function un-gates the UART clock, initializes the module to EMV default settings, configures the IRQ, enables the module-level interrupt to the core, and initializes the driver context.

Parameters:
  • base – The UART peripheral base address.

  • context – A pointer to a smart card driver context structure.

  • srcClock_Hz – Smart card clock generation module source clock.

Returns:

An error code or kStatus_SMARTCARD_Success.

void SMARTCARD_UART_Deinit(UART_Type *base)

This function disables the UART interrupts, disables the transmitter and receiver, and flushes the FIFOs (for modules that support FIFOs) and gates UART clock in SIM.

Parameters:
  • base – The UART peripheral base address.

int32_t SMARTCARD_UART_GetTransferRemainingBytes(UART_Type *base, smartcard_context_t *context)

Returns whether the previous UART transfer has finished.

When performing an async transfer, call this function to ascertain the context of the current transfer: in progress (or busy) or complete (success). If the transfer is still in progress, the user can obtain the number of words that have not been transferred by reading xSize of smart card context structure.

Parameters:
  • base – The UART peripheral base address.

  • context – A pointer to a Smart card driver context structure.

Returns:

The number of bytes not transferred.

status_t SMARTCARD_UART_AbortTransfer(UART_Type *base, smartcard_context_t *context)

Terminates an asynchronous UART transfer early.

During an async UART transfer, the user can terminate the transfer early if the transfer is still in progress.

Parameters:
  • base – The UART peripheral base address.

  • context – A pointer to a Smart card driver context structure.

Return values:
  • kStatus_SMARTCARD_Success – The transfer abort was successful.

  • kStatus_SMARTCARD_NoTransmitInProgress – No transmission is currently in progress.

status_t SMARTCARD_UART_TransferNonBlocking(UART_Type *base, smartcard_context_t *context, smartcard_xfer_t *xfer)

Transfers data using interrupts.

A non-blocking (also known as asynchronous) function means that the function returns immediately after initiating the transfer function. The application has to get the transfer status to see when the transfer is complete. In other words, after calling non-blocking (asynchronous) transfer function, the application must get the transfer status to check if transmit is completed or not.

Parameters:
  • base – The UART peripheral base address.

  • context – A pointer to a Smart card driver context structure.

  • xfer – A pointer to Smart card transfer structure where the linked buffers and sizes are stored.

Returns:

An error code or kStatus_SMARTCARD_Success.

status_t SMARTCARD_UART_Control(UART_Type *base, smartcard_context_t *context, smartcard_control_t control, uint32_t param)

Controls the UART module per different user requests.

return An kStatus_SMARTCARD_OtherError in case of error return kStatus_SMARTCARD_Success in success

Parameters:
  • base – The UART peripheral base address.

  • context – A pointer to a smart card driver context structure.

  • control – Smart card command type.

  • param – Integer value specific to a control command.

void SMARTCARD_UART_IRQHandler(UART_Type *base, smartcard_context_t *context)

Interrupt handler for UART.

This handler uses the buffers stored in the smartcard_context_t structures to transfer data. The Smart card driver requires this function to call when the UART interrupt occurs.

Parameters:
  • base – The UART peripheral base address.

  • context – A pointer to a Smart card driver context structure.

void SMARTCARD_UART_ErrIRQHandler(UART_Type *base, smartcard_context_t *context)

Error interrupt handler for UART.

This function handles error conditions during a transfer.

Parameters:
  • base – The UART peripheral base address.

  • context – A pointer to a Smart card driver context structure.

void SMARTCARD_UART_TSExpiryCallback(UART_Type *base, smartcard_context_t *context)

Handles initial TS character timer time-out event.

Parameters:
  • base – The UART peripheral base address.

  • context – A pointer to a Smart card driver context structure.

void smartcard_uart_TimerStart(uint8_t channel, uint32_t time)

Initializes timer specific channel with input period, enable channel interrupt and start counter.

Parameters:
  • channel – The timer channel.

  • time – The time period.

SMARTCARD_EMV_RX_NACK_THRESHOLD

EMV RX NACK interrupt generation threshold.

SMARTCARD_EMV_TX_NACK_THRESHOLD

EMV TX NACK interrupt generation threshold.

SMARTCARD_EMV_RX_TO_TX_GUARD_TIME_T0

EMV TX & RX GUART TIME default value.

SBR_CAL_ADJUST_D1_T0
BRFA_CAL_ADJUST_D1_T0
SBR_CAL_ADJUST_D2_T0
BRFA_CAL_ADJUST_D2_T0
SBR_CAL_ADJUST_D4_T0
BRFA_CAL_ADJUST_D4_T0
SBR_CAL_ADJUST_D1_T1
BRFA_CAL_ADJUST_D1_T1
SBR_CAL_ADJUST_D2_T1
BRFA_CAL_ADJUST_D2_T1
SBR_CAL_ADJUST_D4_T1
BRFA_CAL_ADJUST_D4_T1

SMC: System Mode Controller Driver

static inline void SMC_GetVersionId(SMC_Type *base, smc_version_id_t *versionId)

Gets the SMC version ID.

This function gets the SMC version ID, including major version number, minor version number, and feature specification number.

Parameters:
  • base – SMC peripheral base address.

  • versionId – Pointer to the version ID structure.

void SMC_GetParam(SMC_Type *base, smc_param_t *param)

Gets the SMC parameter.

This function gets the SMC parameter including the enabled power mdoes.

Parameters:
  • base – SMC peripheral base address.

  • param – Pointer to the SMC param structure.

static inline void SMC_SetPowerModeProtection(SMC_Type *base, uint8_t allowedModes)

Configures all power mode protection settings.

This function configures the power mode protection settings for supported power modes in the specified chip family. The available power modes are defined in the smc_power_mode_protection_t. This should be done at an early system level initialization stage. See the reference manual for details. This register can only write once after the power reset.

The allowed modes are passed as bit map. For example, to allow LLS and VLLS, use SMC_SetPowerModeProtection(kSMC_AllowPowerModeVlls | kSMC_AllowPowerModeVlps). To allow all modes, use SMC_SetPowerModeProtection(kSMC_AllowPowerModeAll).

Parameters:
  • base – SMC peripheral base address.

  • allowedModes – Bitmap of the allowed power modes.

static inline smc_power_state_t SMC_GetPowerModeState(SMC_Type *base)

Gets the current power mode status.

This function returns the current power mode status. After the application switches the power mode, it should always check the status to check whether it runs into the specified mode or not. The application should check this mode before switching to a different mode. The system requires that only certain modes can switch to other specific modes. See the reference manual for details and the smc_power_state_t for information about the power status.

Parameters:
  • base – SMC peripheral base address.

Returns:

Current power mode status.

void SMC_PreEnterStopModes(void)

Prepares to enter stop modes.

This function should be called before entering STOP/VLPS/LLS/VLLS modes.

void SMC_PostExitStopModes(void)

Recovers after wake up from stop modes.

This function should be called after wake up from STOP/VLPS/LLS/VLLS modes. It is used with SMC_PreEnterStopModes.

void SMC_PreEnterWaitModes(void)

Prepares to enter wait modes.

This function should be called before entering WAIT/VLPW modes.

void SMC_PostExitWaitModes(void)

Recovers after wake up from stop modes.

This function should be called after wake up from WAIT/VLPW modes. It is used with SMC_PreEnterWaitModes.

status_t SMC_SetPowerModeRun(SMC_Type *base)

Configures the system to RUN power mode.

Parameters:
  • base – SMC peripheral base address.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeHsrun(SMC_Type *base)

Configures the system to HSRUN power mode.

Parameters:
  • base – SMC peripheral base address.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeWait(SMC_Type *base)

Configures the system to WAIT power mode.

Parameters:
  • base – SMC peripheral base address.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeStop(SMC_Type *base, smc_partial_stop_option_t option)

Configures the system to Stop power mode.

Parameters:
  • base – SMC peripheral base address.

  • option – Partial Stop mode option.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeVlpr(SMC_Type *base, bool wakeupMode)

Configures the system to VLPR power mode.

Parameters:
  • base – SMC peripheral base address.

  • wakeupMode – Enter Normal Run mode if true, else stay in VLPR mode.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeVlpw(SMC_Type *base)

Configures the system to VLPW power mode.

Parameters:
  • base – SMC peripheral base address.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeVlps(SMC_Type *base)

Configures the system to VLPS power mode.

Parameters:
  • base – SMC peripheral base address.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeLls(SMC_Type *base, const smc_power_mode_lls_config_t *config)

Configures the system to LLS power mode.

Parameters:
  • base – SMC peripheral base address.

  • config – The LLS power mode configuration structure

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeVlls(SMC_Type *base, const smc_power_mode_vlls_config_t *config)

Configures the system to VLLS power mode.

Parameters:
  • base – SMC peripheral base address.

  • config – The VLLS power mode configuration structure.

Returns:

SMC configuration error code.

FSL_SMC_DRIVER_VERSION

SMC driver version.

enum _smc_power_mode_protection

Power Modes Protection.

Values:

enumerator kSMC_AllowPowerModeVlls

Allow Very-low-leakage Stop Mode.

enumerator kSMC_AllowPowerModeLls

Allow Low-leakage Stop Mode.

enumerator kSMC_AllowPowerModeVlp

Allow Very-Low-power Mode.

enumerator kSMC_AllowPowerModeHsrun

Allow High-speed Run mode.

enumerator kSMC_AllowPowerModeAll

Allow all power mode.

enum _smc_power_state

Power Modes in PMSTAT.

Values:

enumerator kSMC_PowerStateRun

0000_0001 - Current power mode is RUN

enumerator kSMC_PowerStateStop

0000_0010 - Current power mode is STOP

enumerator kSMC_PowerStateVlpr

0000_0100 - Current power mode is VLPR

enumerator kSMC_PowerStateVlpw

0000_1000 - Current power mode is VLPW

enumerator kSMC_PowerStateVlps

0001_0000 - Current power mode is VLPS

enumerator kSMC_PowerStateLls

0010_0000 - Current power mode is LLS

enumerator kSMC_PowerStateVlls

0100_0000 - Current power mode is VLLS

enumerator kSMC_PowerStateHsrun

1000_0000 - Current power mode is HSRUN

enum _smc_run_mode

Run mode definition.

Values:

enumerator kSMC_RunNormal

Normal RUN mode.

enumerator kSMC_RunVlpr

Very-low-power RUN mode.

enumerator kSMC_Hsrun

High-speed Run mode (HSRUN).

enum _smc_stop_mode

Stop mode definition.

Values:

enumerator kSMC_StopNormal

Normal STOP mode.

enumerator kSMC_StopVlps

Very-low-power STOP mode.

enumerator kSMC_StopLls

Low-leakage Stop mode.

enumerator kSMC_StopVlls

Very-low-leakage Stop mode.

enum _smc_stop_submode

VLLS/LLS stop sub mode definition.

Values:

enumerator kSMC_StopSub0

Stop submode 0, for VLLS0/LLS0.

enumerator kSMC_StopSub1

Stop submode 1, for VLLS1/LLS1.

enumerator kSMC_StopSub2

Stop submode 2, for VLLS2/LLS2.

enumerator kSMC_StopSub3

Stop submode 3, for VLLS3/LLS3.

enum _smc_partial_stop_mode

Partial STOP option.

Values:

enumerator kSMC_PartialStop

STOP - Normal Stop mode

enumerator kSMC_PartialStop1

Partial Stop with both system and bus clocks disabled

enumerator kSMC_PartialStop2

Partial Stop with system clock disabled and bus clock enabled

_smc_status, SMC configuration status.

Values:

enumerator kStatus_SMC_StopAbort

Entering Stop mode is abort

typedef enum _smc_power_mode_protection smc_power_mode_protection_t

Power Modes Protection.

typedef enum _smc_power_state smc_power_state_t

Power Modes in PMSTAT.

typedef enum _smc_run_mode smc_run_mode_t

Run mode definition.

typedef enum _smc_stop_mode smc_stop_mode_t

Stop mode definition.

typedef enum _smc_stop_submode smc_stop_submode_t

VLLS/LLS stop sub mode definition.

typedef enum _smc_partial_stop_mode smc_partial_stop_option_t

Partial STOP option.

typedef struct _smc_version_id smc_version_id_t

IP version ID definition.

typedef struct _smc_param smc_param_t

IP parameter definition.

typedef struct _smc_power_mode_lls_config smc_power_mode_lls_config_t

SMC Low-Leakage Stop power mode configuration.

typedef struct _smc_power_mode_vlls_config smc_power_mode_vlls_config_t

SMC Very Low-Leakage Stop power mode configuration.

struct _smc_version_id
#include <fsl_smc.h>

IP version ID definition.

Public Members

uint16_t feature

Feature Specification Number.

uint8_t minor

Minor version number.

uint8_t major

Major version number.

struct _smc_param
#include <fsl_smc.h>

IP parameter definition.

Public Members

bool hsrunEnable

HSRUN mode enable.

bool llsEnable

LLS mode enable.

bool lls2Enable

LLS2 mode enable.

bool vlls0Enable

VLLS0 mode enable.

struct _smc_power_mode_lls_config
#include <fsl_smc.h>

SMC Low-Leakage Stop power mode configuration.

Public Members

smc_stop_submode_t subMode

Low-leakage Stop sub-mode

bool enableLpoClock

Enable LPO clock in LLS mode

struct _smc_power_mode_vlls_config
#include <fsl_smc.h>

SMC Very Low-Leakage Stop power mode configuration.

Public Members

smc_stop_submode_t subMode

Very Low-leakage Stop sub-mode

bool enablePorDetectInVlls0

Enable Power on reset detect in VLLS mode

bool enableRam2InVlls2

Enable RAM2 power in VLLS2

bool enableLpoClock

Enable LPO clock in VLLS mode

UART: Universal Asynchronous Receiver/Transmitter Driver

UART Driver

status_t UART_Init(UART_Type *base, const uart_config_t *config, uint32_t srcClock_Hz)

Initializes a UART instance with a user configuration structure and peripheral clock.

This function configures the UART module with the user-defined settings. The user can configure the configuration structure and also get the default configuration by using the UART_GetDefaultConfig() function. The example below shows how to use this API to configure UART.

uart_config_t uartConfig;
uartConfig.baudRate_Bps = 115200U;
uartConfig.parityMode = kUART_ParityDisabled;
uartConfig.stopBitCount = kUART_OneStopBit;
uartConfig.txFifoWatermark = 0;
uartConfig.rxFifoWatermark = 1;
UART_Init(UART1, &uartConfig, 20000000U);

Parameters:
  • base – UART peripheral base address.

  • config – Pointer to the user-defined configuration structure.

  • srcClock_Hz – UART clock source frequency in HZ.

Return values:
  • kStatus_UART_BaudrateNotSupport – Baudrate is not support in current clock source.

  • kStatus_Success – Status UART initialize succeed

void UART_Deinit(UART_Type *base)

Deinitializes a UART instance.

This function waits for TX complete, disables TX and RX, and disables the UART clock.

Parameters:
  • base – UART peripheral base address.

void UART_GetDefaultConfig(uart_config_t *config)

Gets the default configuration structure.

This function initializes the UART configuration structure to a default value. The default values are as follows. uartConfig->baudRate_Bps = 115200U; uartConfig->bitCountPerChar = kUART_8BitsPerChar; uartConfig->parityMode = kUART_ParityDisabled; uartConfig->stopBitCount = kUART_OneStopBit; uartConfig->txFifoWatermark = 0; uartConfig->rxFifoWatermark = 1; uartConfig->idleType = kUART_IdleTypeStartBit; uartConfig->enableTx = false; uartConfig->enableRx = false;

Parameters:
  • config – Pointer to configuration structure.

status_t UART_SetBaudRate(UART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)

Sets the UART instance baud rate.

This function configures the UART module baud rate. This function is used to update the UART module baud rate after the UART module is initialized by the UART_Init.

UART_SetBaudRate(UART1, 115200U, 20000000U);

Parameters:
  • base – UART peripheral base address.

  • baudRate_Bps – UART baudrate to be set.

  • srcClock_Hz – UART clock source frequency in Hz.

Return values:
  • kStatus_UART_BaudrateNotSupport – Baudrate is not support in the current clock source.

  • kStatus_Success – Set baudrate succeeded.

void UART_Enable9bitMode(UART_Type *base, bool enable)

Enable 9-bit data mode for UART.

This function set the 9-bit mode for UART module. The 9th bit is not used for parity thus can be modified by user.

Parameters:
  • base – UART peripheral base address.

  • enable – true to enable, flase to disable.

static inline void UART_SetMatchAddress(UART_Type *base, uint8_t address1, uint8_t address2)

Set the UART slave address.

This function configures the address for UART module that works as slave in 9-bit data mode. One or two address fields can be configured. When the address field’s match enable bit is set, the frame it receices with MSB being 1 is considered as an address frame, otherwise it is considered as data frame. Once the address frame matches one of slave’s own addresses, this slave is addressed. This address frame and its following data frames are stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave, just send an address frame with unmatched address.

Note

Any UART instance joined in the multi-slave system can work as slave. The position of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit data formats.

Parameters:
  • base – UART peripheral base address.

  • address1 – UART slave address 1.

  • address2 – UART slave address 2.

static inline void UART_EnableMatchAddress(UART_Type *base, bool match1, bool match2)

Enable the UART match address feature.

Parameters:
  • base – UART peripheral base address.

  • match1 – true to enable match address1, false to disable.

  • match2 – true to enable match address2, false to disable.

static inline void UART_Set9thTransmitBit(UART_Type *base)

Set UART 9th transmit bit.

Parameters:
  • base – UART peripheral base address.

static inline void UART_Clear9thTransmitBit(UART_Type *base)

Clear UART 9th transmit bit.

Parameters:
  • base – UART peripheral base address.

uint32_t UART_GetStatusFlags(UART_Type *base)

Gets UART status flags.

This function gets all UART status flags. The flags are returned as the logical OR value of the enumerators _uart_flags. To check a specific status, compare the return value with enumerators in _uart_flags. For example, to check whether the TX is empty, do the following.

if (kUART_TxDataRegEmptyFlag & UART_GetStatusFlags(UART1))
{
    ...
}

Parameters:
  • base – UART peripheral base address.

Returns:

UART status flags which are ORed by the enumerators in the _uart_flags.

status_t UART_ClearStatusFlags(UART_Type *base, uint32_t mask)

Clears status flags with the provided mask.

This function clears UART status flags with a provided mask. An automatically cleared flag can’t be cleared by this function. These flags can only be cleared or set by hardware. kUART_TxDataRegEmptyFlag, kUART_TransmissionCompleteFlag, kUART_RxDataRegFullFlag, kUART_RxActiveFlag, kUART_NoiseErrorInRxDataRegFlag, kUART_ParityErrorInRxDataRegFlag, kUART_TxFifoEmptyFlag,kUART_RxFifoEmptyFlag

Note

that this API should be called when the Tx/Rx is idle. Otherwise it has no effect.

Parameters:
  • base – UART peripheral base address.

  • mask – The status flags to be cleared; it is logical OR value of _uart_flags.

Return values:
  • kStatus_UART_FlagCannotClearManually – The flag can’t be cleared by this function but it is cleared automatically by hardware.

  • kStatus_Success – Status in the mask is cleared.

void UART_EnableInterrupts(UART_Type *base, uint32_t mask)

Enables UART interrupts according to the provided mask.

This function enables the UART interrupts according to the provided mask. The mask is a logical OR of enumeration members. See _uart_interrupt_enable. For example, to enable TX empty interrupt and RX full interrupt, do the following.

UART_EnableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_RxDataRegFullInterruptEnable);

Parameters:
  • base – UART peripheral base address.

  • mask – The interrupts to enable. Logical OR of _uart_interrupt_enable.

void UART_DisableInterrupts(UART_Type *base, uint32_t mask)

Disables the UART interrupts according to the provided mask.

This function disables the UART interrupts according to the provided mask. The mask is a logical OR of enumeration members. See _uart_interrupt_enable. For example, to disable TX empty interrupt and RX full interrupt do the following.

UART_DisableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_RxDataRegFullInterruptEnable);

Parameters:
  • base – UART peripheral base address.

  • mask – The interrupts to disable. Logical OR of _uart_interrupt_enable.

uint32_t UART_GetEnabledInterrupts(UART_Type *base)

Gets the enabled UART interrupts.

This function gets the enabled UART interrupts. The enabled interrupts are returned as the logical OR value of the enumerators _uart_interrupt_enable. To check a specific interrupts enable status, compare the return value with enumerators in _uart_interrupt_enable. For example, to check whether TX empty interrupt is enabled, do the following.

uint32_t enabledInterrupts = UART_GetEnabledInterrupts(UART1);

if (kUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)
{
    ...
}

Parameters:
  • base – UART peripheral base address.

Returns:

UART interrupt flags which are logical OR of the enumerators in _uart_interrupt_enable.

static inline uint32_t UART_GetDataRegisterAddress(UART_Type *base)

Gets the UART data register address.

This function returns the UART data register address, which is mainly used by DMA/eDMA.

Parameters:
  • base – UART peripheral base address.

Returns:

UART data register addresses which are used both by the transmitter and the receiver.

static inline void UART_EnableTxDMA(UART_Type *base, bool enable)

Enables or disables the UART transmitter DMA request.

This function enables or disables the transmit data register empty flag, S1[TDRE], to generate the DMA requests.

Parameters:
  • base – UART peripheral base address.

  • enable – True to enable, false to disable.

static inline void UART_EnableRxDMA(UART_Type *base, bool enable)

Enables or disables the UART receiver DMA.

This function enables or disables the receiver data register full flag, S1[RDRF], to generate DMA requests.

Parameters:
  • base – UART peripheral base address.

  • enable – True to enable, false to disable.

static inline void UART_EnableTx(UART_Type *base, bool enable)

Enables or disables the UART transmitter.

This function enables or disables the UART transmitter.

Parameters:
  • base – UART peripheral base address.

  • enable – True to enable, false to disable.

static inline void UART_EnableRx(UART_Type *base, bool enable)

Enables or disables the UART receiver.

This function enables or disables the UART receiver.

Parameters:
  • base – UART peripheral base address.

  • enable – True to enable, false to disable.

static inline void UART_WriteByte(UART_Type *base, uint8_t data)

Writes to the TX register.

This function writes data to the TX register directly. The upper layer must ensure that the TX register is empty or TX FIFO has empty room before calling this function.

Parameters:
  • base – UART peripheral base address.

  • data – The byte to write.

static inline uint8_t UART_ReadByte(UART_Type *base)

Reads the RX register directly.

This function reads data from the RX register directly. The upper layer must ensure that the RX register is full or that the TX FIFO has data before calling this function.

Parameters:
  • base – UART peripheral base address.

Returns:

The byte read from UART data register.

static inline uint8_t UART_GetRxFifoCount(UART_Type *base)

Gets the rx FIFO data count.

Parameters:
  • base – UART peripheral base address.

Returns:

rx FIFO data count.

static inline uint8_t UART_GetTxFifoCount(UART_Type *base)

Gets the tx FIFO data count.

Parameters:
  • base – UART peripheral base address.

Returns:

tx FIFO data count.

void UART_SendAddress(UART_Type *base, uint8_t address)

Transmit an address frame in 9-bit data mode.

Parameters:
  • base – UART peripheral base address.

  • address – UART slave address.

status_t UART_WriteBlocking(UART_Type *base, const uint8_t *data, size_t length)

Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty or for the TX FIFO to have room and writes data to the TX buffer.

Parameters:
  • base – UART peripheral base address.

  • data – Start address of the data to write.

  • length – Size of the data to write.

Return values:
  • kStatus_UART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully wrote all data.

status_t UART_ReadBlocking(UART_Type *base, uint8_t *data, size_t length)

Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full or for RX FIFO to have data, and reads data from the TX register.

Parameters:
  • base – UART peripheral base address.

  • data – Start address of the buffer to store the received data.

  • length – Size of the buffer.

Return values:
  • kStatus_UART_RxHardwareOverrun – Receiver overrun occurred while receiving data.

  • kStatus_UART_NoiseError – A noise error occurred while receiving data.

  • kStatus_UART_FramingError – A framing error occurred while receiving data.

  • kStatus_UART_ParityError – A parity error occurred while receiving data.

  • kStatus_UART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully received all data.

void UART_TransferCreateHandle(UART_Type *base, uart_handle_t *handle, uart_transfer_callback_t callback, void *userData)

Initializes the UART handle.

This function initializes the UART handle which can be used for other UART transactional APIs. Usually, for a specified UART instance, call this API once to get the initialized handle.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

  • callback – The callback function.

  • userData – The parameter of the callback function.

void UART_TransferStartRingBuffer(UART_Type *base, uart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific UART handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when the user doesn’t call the UART_TransferReceiveNonBlocking() API. If data is already received in the ring buffer, the user can get the received data from the ring buffer directly.

Note

When using the RX ring buffer, one byte is reserved for internal use. In other words, if ringBufferSize is 32, only 31 bytes are used for saving data.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

  • ringBuffer – Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer.

  • ringBufferSize – Size of the ring buffer.

void UART_TransferStopRingBuffer(UART_Type *base, uart_handle_t *handle)

Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

size_t UART_TransferGetRxRingBufferLength(uart_handle_t *handle)

Get the length of received data in RX ring buffer.

Parameters:
  • handle – UART handle pointer.

Returns:

Length of received data in RX ring buffer.

status_t UART_TransferSendNonBlocking(UART_Type *base, uart_handle_t *handle, uart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data to be written to the TX register. When all data is written to the TX register in the ISR, the UART driver calls the callback function and passes the kStatus_UART_TxIdle as status parameter.

Note

The kStatus_UART_TxIdle is passed to the upper layer when all data is written to the TX register. However, it does not ensure that all data is sent out. Before disabling the TX, check the kUART_TransmissionCompleteFlag to ensure that the TX is finished.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

  • xfer – UART transfer structure. See uart_transfer_t.

Return values:
  • kStatus_Success – Successfully start the data transmission.

  • kStatus_UART_TxBusy – Previous transmission still not finished; data not all written to TX register yet.

  • kStatus_InvalidArgument – Invalid argument.

void UART_TransferAbortSend(UART_Type *base, uart_handle_t *handle)

Aborts the interrupt-driven data transmit.

This function aborts the interrupt-driven data sending. The user can get the remainBytes to find out how many bytes are not sent out.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

status_t UART_TransferGetSendCount(UART_Type *base, uart_handle_t *handle, uint32_t *count)

Gets the number of bytes sent out to bus.

This function gets the number of bytes sent out to bus by using the interrupt method.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

  • count – Send bytes count.

Return values:
  • kStatus_NoTransferInProgress – No send in progress.

  • kStatus_InvalidArgument – The parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

status_t UART_TransferReceiveNonBlocking(UART_Type *base, uart_handle_t *handle, uart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function, which returns without waiting for all data to be received. If the RX ring buffer is used and not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is not enough to read, the receive request is saved by the UART driver. When the new data arrives, the receive request is serviced first. When all data is received, the UART driver notifies the upper layer through a callback function and passes the status parameter kStatus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns with the parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved from the xfer->data[5]. When 5 bytes are received, the UART driver notifies the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to the xfer->data. When all data is received, the upper layer is notified.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

  • xfer – UART transfer structure, see uart_transfer_t.

  • receivedBytes – Bytes received from the ring buffer directly.

Return values:
  • kStatus_Success – Successfully queue the transfer into transmit queue.

  • kStatus_UART_RxBusy – Previous receive request is not finished.

  • kStatus_InvalidArgument – Invalid argument.

void UART_TransferAbortReceive(UART_Type *base, uart_handle_t *handle)

Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes to know how many bytes are not received yet.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

status_t UART_TransferGetReceiveCount(UART_Type *base, uart_handle_t *handle, uint32_t *count)

Gets the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

  • count – Receive bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

status_t UART_EnableTxFIFO(UART_Type *base, bool enable)

Enables or disables the UART Tx FIFO.

This function enables or disables the UART Tx FIFO.

param base UART peripheral base address. param enable true to enable, false to disable. retval kStatus_Success Successfully turn on or turn off Tx FIFO. retval kStatus_Fail Fail to turn on or turn off Tx FIFO.

status_t UART_EnableRxFIFO(UART_Type *base, bool enable)

Enables or disables the UART Rx FIFO.

This function enables or disables the UART Rx FIFO.

param base UART peripheral base address. param enable true to enable, false to disable. retval kStatus_Success Successfully turn on or turn off Rx FIFO. retval kStatus_Fail Fail to turn on or turn off Rx FIFO.

static inline void UART_SetRxFifoWatermark(UART_Type *base, uint8_t water)

Sets the rx FIFO watermark.

Parameters:
  • base – UART peripheral base address.

  • water – Rx FIFO watermark.

static inline void UART_SetTxFifoWatermark(UART_Type *base, uint8_t water)

Sets the tx FIFO watermark.

Parameters:
  • base – UART peripheral base address.

  • water – Tx FIFO watermark.

void UART_TransferHandleIRQ(UART_Type *base, void *irqHandle)

UART IRQ handle function.

This function handles the UART transmit and receive IRQ request.

Parameters:
  • base – UART peripheral base address.

  • irqHandle – UART handle pointer.

void UART_TransferHandleErrorIRQ(UART_Type *base, void *irqHandle)

UART Error IRQ handle function.

This function handles the UART error IRQ request.

Parameters:
  • base – UART peripheral base address.

  • irqHandle – UART handle pointer.

FSL_UART_DRIVER_VERSION

UART driver version.

Error codes for the UART driver.

Values:

enumerator kStatus_UART_TxBusy

Transmitter is busy.

enumerator kStatus_UART_RxBusy

Receiver is busy.

enumerator kStatus_UART_TxIdle

UART transmitter is idle.

enumerator kStatus_UART_RxIdle

UART receiver is idle.

enumerator kStatus_UART_TxWatermarkTooLarge

TX FIFO watermark too large

enumerator kStatus_UART_RxWatermarkTooLarge

RX FIFO watermark too large

enumerator kStatus_UART_FlagCannotClearManually

UART flag can’t be manually cleared.

enumerator kStatus_UART_Error

Error happens on UART.

enumerator kStatus_UART_RxRingBufferOverrun

UART RX software ring buffer overrun.

enumerator kStatus_UART_RxHardwareOverrun

UART RX receiver overrun.

enumerator kStatus_UART_NoiseError

UART noise error.

enumerator kStatus_UART_FramingError

UART framing error.

enumerator kStatus_UART_ParityError

UART parity error.

enumerator kStatus_UART_BaudrateNotSupport

Baudrate is not support in current clock source

enumerator kStatus_UART_IdleLineDetected

UART IDLE line detected.

enumerator kStatus_UART_Timeout

UART times out.

enum _uart_parity_mode

UART parity mode.

Values:

enumerator kUART_ParityDisabled

Parity disabled

enumerator kUART_ParityEven

Parity enabled, type even, bit setting: PE|PT = 10

enumerator kUART_ParityOdd

Parity enabled, type odd, bit setting: PE|PT = 11

enum _uart_stop_bit_count

UART stop bit count.

Values:

enumerator kUART_OneStopBit

One stop bit

enumerator kUART_TwoStopBit

Two stop bits

enum _uart_idle_type_select

UART idle type select.

Values:

enumerator kUART_IdleTypeStartBit

Start counting after a valid start bit.

enumerator kUART_IdleTypeStopBit

Start counting after a stop bit.

enum _uart_interrupt_enable

UART interrupt configuration structure, default settings all disabled.

This structure contains the settings for all of the UART interrupt configurations.

Values:

enumerator kUART_LinBreakInterruptEnable

LIN break detect interrupt.

enumerator kUART_RxActiveEdgeInterruptEnable

RX active edge interrupt.

enumerator kUART_TxDataRegEmptyInterruptEnable

Transmit data register empty interrupt.

enumerator kUART_TransmissionCompleteInterruptEnable

Transmission complete interrupt.

enumerator kUART_RxDataRegFullInterruptEnable

Receiver data register full interrupt.

enumerator kUART_IdleLineInterruptEnable

Idle line interrupt.

enumerator kUART_RxOverrunInterruptEnable

Receiver overrun interrupt.

enumerator kUART_NoiseErrorInterruptEnable

Noise error flag interrupt.

enumerator kUART_FramingErrorInterruptEnable

Framing error flag interrupt.

enumerator kUART_ParityErrorInterruptEnable

Parity error flag interrupt.

enumerator kUART_RxFifoOverflowInterruptEnable

RX FIFO overflow interrupt.

enumerator kUART_TxFifoOverflowInterruptEnable

TX FIFO overflow interrupt.

enumerator kUART_RxFifoUnderflowInterruptEnable

RX FIFO underflow interrupt.

enumerator kUART_AllInterruptsEnable

UART status flags.

This provides constants for the UART status flags for use in the UART functions.

Values:

enumerator kUART_TxDataRegEmptyFlag

TX data register empty flag.

enumerator kUART_TransmissionCompleteFlag

Transmission complete flag.

enumerator kUART_RxDataRegFullFlag

RX data register full flag.

enumerator kUART_IdleLineFlag

Idle line detect flag.

enumerator kUART_RxOverrunFlag

RX overrun flag.

enumerator kUART_NoiseErrorFlag

RX takes 3 samples of each received bit. If any of these samples differ, noise flag sets

enumerator kUART_FramingErrorFlag

Frame error flag, sets if logic 0 was detected where stop bit expected

enumerator kUART_ParityErrorFlag

If parity enabled, sets upon parity error detection

enumerator kUART_LinBreakFlag

LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit enabled

enumerator kUART_RxActiveEdgeFlag

RX pin active edge interrupt flag,sets when active edge detected

enumerator kUART_RxActiveFlag

Receiver Active Flag (RAF), sets at beginning of valid start bit

enumerator kUART_NoiseErrorInRxDataRegFlag

Noisy bit, sets if noise detected.

enumerator kUART_ParityErrorInRxDataRegFlag

Parity bit, sets if parity error detected.

enumerator kUART_TxFifoEmptyFlag

TXEMPT bit, sets if TX buffer is empty

enumerator kUART_RxFifoEmptyFlag

RXEMPT bit, sets if RX buffer is empty

enumerator kUART_TxFifoOverflowFlag

TXOF bit, sets if TX buffer overflow occurred

enumerator kUART_RxFifoOverflowFlag

RXOF bit, sets if receive buffer overflow

enumerator kUART_RxFifoUnderflowFlag

RXUF bit, sets if receive buffer underflow

typedef enum _uart_parity_mode uart_parity_mode_t

UART parity mode.

typedef enum _uart_stop_bit_count uart_stop_bit_count_t

UART stop bit count.

typedef enum _uart_idle_type_select uart_idle_type_select_t

UART idle type select.

typedef struct _uart_config uart_config_t

UART configuration structure.

typedef struct _uart_transfer uart_transfer_t

UART transfer structure.

typedef struct _uart_handle uart_handle_t
typedef void (*uart_transfer_callback_t)(UART_Type *base, uart_handle_t *handle, status_t status, void *userData)

UART transfer callback function.

typedef void (*uart_isr_t)(UART_Type *base, void *handle)
void *s_uartHandle[]

Pointers to uart handles for each instance.

const IRQn_Type s_uartIRQ[]
uart_isr_t s_uartIsr

Pointer to uart IRQ handler for each instance.

uint32_t UART_GetInstance(UART_Type *base)

Get the UART instance from peripheral base address.

Parameters:
  • base – UART peripheral base address.

Returns:

UART instance.

UART_RETRY_TIMES

Retry times for waiting flag.

struct _uart_config
#include <fsl_uart.h>

UART configuration structure.

Public Members

uint32_t baudRate_Bps

UART baud rate

uart_parity_mode_t parityMode

Parity mode, disabled (default), even, odd

uart_stop_bit_count_t stopBitCount

Number of stop bits, 1 stop bit (default) or 2 stop bits

uint8_t txFifoWatermark

TX FIFO watermark

uint8_t rxFifoWatermark

RX FIFO watermark

bool enableRxRTS

RX RTS enable

bool enableTxCTS

TX CTS enable

uart_idle_type_select_t idleType

IDLE type select.

bool enableTx

Enable TX

bool enableRx

Enable RX

struct _uart_transfer
#include <fsl_uart.h>

UART transfer structure.

Public Members

size_t dataSize

The byte count to be transfer.

struct _uart_handle
#include <fsl_uart.h>

UART handle structure.

Public Members

const uint8_t *volatile txData

Address of remaining data to send.

volatile size_t txDataSize

Size of the remaining data to send.

size_t txDataSizeAll

Size of the data to send out.

uint8_t *volatile rxData

Address of remaining data to receive.

volatile size_t rxDataSize

Size of the remaining data to receive.

size_t rxDataSizeAll

Size of the data to receive.

uint8_t *rxRingBuffer

Start address of the receiver ring buffer.

size_t rxRingBufferSize

Size of the ring buffer.

volatile uint16_t rxRingBufferHead

Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail

Index for the user to get data from the ring buffer.

uart_transfer_callback_t callback

Callback function.

void *userData

UART callback function parameter.

volatile uint8_t txState

TX transfer state.

volatile uint8_t rxState

RX transfer state

union __unnamed39__

Public Members

uint8_t *data

The buffer of data to be transfer.

uint8_t *rxData

The buffer to receive data.

const uint8_t *txData

The buffer of data to be sent.

UART eDMA Driver

void UART_TransferCreateHandleEDMA(UART_Type *base, uart_edma_handle_t *handle, uart_edma_transfer_callback_t callback, void *userData, edma_handle_t *txEdmaHandle, edma_handle_t *rxEdmaHandle)

Initializes the UART handle which is used in transactional functions.

Parameters:
  • base – UART peripheral base address.

  • handle – Pointer to the uart_edma_handle_t structure.

  • callback – UART callback, NULL means no callback.

  • userData – User callback function data.

  • rxEdmaHandle – User-requested DMA handle for RX DMA transfer.

  • txEdmaHandle – User-requested DMA handle for TX DMA transfer.

status_t UART_SendEDMA(UART_Type *base, uart_edma_handle_t *handle, uart_transfer_t *xfer)

Sends data using eDMA.

This function sends data using eDMA. This is a non-blocking function, which returns right away. When all data is sent, the send callback function is called.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

  • xfer – UART eDMA transfer structure. See uart_transfer_t.

Return values:
  • kStatus_Success – if succeeded; otherwise failed.

  • kStatus_UART_TxBusy – Previous transfer ongoing.

  • kStatus_InvalidArgument – Invalid argument.

status_t UART_ReceiveEDMA(UART_Type *base, uart_edma_handle_t *handle, uart_transfer_t *xfer)

Receives data using eDMA.

This function receives data using eDMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.

Parameters:
  • base – UART peripheral base address.

  • handle – Pointer to the uart_edma_handle_t structure.

  • xfer – UART eDMA transfer structure. See uart_transfer_t.

Return values:
  • kStatus_Success – if succeeded; otherwise failed.

  • kStatus_UART_RxBusy – Previous transfer ongoing.

  • kStatus_InvalidArgument – Invalid argument.

void UART_TransferAbortSendEDMA(UART_Type *base, uart_edma_handle_t *handle)

Aborts the sent data using eDMA.

This function aborts sent data using eDMA.

Parameters:
  • base – UART peripheral base address.

  • handle – Pointer to the uart_edma_handle_t structure.

void UART_TransferAbortReceiveEDMA(UART_Type *base, uart_edma_handle_t *handle)

Aborts the receive data using eDMA.

This function aborts receive data using eDMA.

Parameters:
  • base – UART peripheral base address.

  • handle – Pointer to the uart_edma_handle_t structure.

status_t UART_TransferGetSendCountEDMA(UART_Type *base, uart_edma_handle_t *handle, uint32_t *count)

Gets the number of bytes that have been written to UART TX register.

This function gets the number of bytes that have been written to UART TX register by DMA.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

  • count – Send bytes count.

Return values:
  • kStatus_NoTransferInProgress – No send in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

status_t UART_TransferGetReceiveCountEDMA(UART_Type *base, uart_edma_handle_t *handle, uint32_t *count)

Gets the number of received bytes.

This function gets the number of received bytes.

Parameters:
  • base – UART peripheral base address.

  • handle – UART handle pointer.

  • count – Receive bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

void UART_TransferEdmaHandleIRQ(UART_Type *base, void *uartEdmaHandle)

UART eDMA IRQ handle function.

This function handles the UART transmit complete IRQ request and invoke user callback.

Parameters:
  • base – UART peripheral base address.

  • uartEdmaHandle – UART handle pointer.

FSL_UART_EDMA_DRIVER_VERSION

UART EDMA driver version.

typedef struct _uart_edma_handle uart_edma_handle_t
typedef void (*uart_edma_transfer_callback_t)(UART_Type *base, uart_edma_handle_t *handle, status_t status, void *userData)

UART transfer callback function.

struct _uart_edma_handle
#include <fsl_uart_edma.h>

UART eDMA handle.

Public Members

uart_edma_transfer_callback_t callback

Callback function.

void *userData

UART callback function parameter.

size_t rxDataSizeAll

Size of the data to receive.

size_t txDataSizeAll

Size of the data to send out.

edma_handle_t *txEdmaHandle

The eDMA TX channel used.

edma_handle_t *rxEdmaHandle

The eDMA RX channel used.

uint8_t nbytes

eDMA minor byte transfer count initially configured.

volatile uint8_t txState

TX transfer state.

volatile uint8_t rxState

RX transfer state

VREF: Voltage Reference Driver

void VREF_Init(VREF_Type *base, const vref_config_t *config)

Enables the clock gate and configures the VREF module according to the configuration structure.

This function must be called before calling all other VREF driver functions, read/write registers, and configurations with user-defined settings. The example below shows how to set up vref_config_t parameters and how to call the VREF_Init function by passing in these parameters. This is an example.

vref_config_t vrefConfig;
vrefConfig.bufferMode = kVREF_ModeHighPowerBuffer;
vrefConfig.enableExternalVoltRef = false;
vrefConfig.enableLowRef = false;
VREF_Init(VREF, &vrefConfig);

Parameters:
  • base – VREF peripheral address.

  • config – Pointer to the configuration structure.

void VREF_Deinit(VREF_Type *base)

Stops and disables the clock for the VREF module.

This function should be called to shut down the module. This is an example.

vref_config_t vrefUserConfig;
VREF_Init(VREF);
VREF_GetDefaultConfig(&vrefUserConfig);
...
VREF_Deinit(VREF);

Parameters:
  • base – VREF peripheral address.

void VREF_GetDefaultConfig(vref_config_t *config)

Initializes the VREF configuration structure.

This function initializes the VREF configuration structure to default values. This is an example.

vrefConfig->bufferMode = kVREF_ModeHighPowerBuffer;
vrefConfig->enableExternalVoltRef = false;
vrefConfig->enableLowRef = false;

Parameters:
  • config – Pointer to the initialization structure.

void VREF_SetTrimVal(VREF_Type *base, uint8_t trimValue)

Sets a TRIM value for the reference voltage.

This function sets a TRIM value for the reference voltage. Note that the TRIM value maximum is 0x3F.

Parameters:
  • base – VREF peripheral address.

  • trimValue – Value of the trim register to set the output reference voltage (maximum 0x3F (6-bit)).

static inline uint8_t VREF_GetTrimVal(VREF_Type *base)

Reads the value of the TRIM meaning output voltage.

This function gets the TRIM value from the TRM register.

Parameters:
  • base – VREF peripheral address.

Returns:

Six-bit value of trim setting.

void VREF_SetTrim2V1Val(VREF_Type *base, uint8_t trimValue)

Sets a TRIM value for the reference voltage (2V1).

This function sets a TRIM value for the reference voltage (2V1). Note that the TRIM value maximum is 0x3F.

Parameters:
  • base – VREF peripheral address.

  • trimValue – Value of the trim register to set the output reference voltage (maximum 0x3F (6-bit)).

static inline uint8_t VREF_GetTrim2V1Val(VREF_Type *base)

Reads the value of the TRIM meaning output voltage (2V1).

This function gets the TRIM value from the VREF_TRM4 register.

Parameters:
  • base – VREF peripheral address.

Returns:

Six-bit value of trim setting.

void VREF_SetLowReferenceTrimVal(VREF_Type *base, uint8_t trimValue)

Sets the TRIM value for the low voltage reference.

This function sets the TRIM value for low reference voltage. Note the following.

  • The TRIM value maximum is 0x05U

  • The values 111b and 110b are not valid/allowed.

Parameters:
  • base – VREF peripheral address.

  • trimValue – Value of the trim register to set output low reference voltage (maximum 0x05U (3-bit)).

static inline uint8_t VREF_GetLowReferenceTrimVal(VREF_Type *base)

Reads the value of the TRIM meaning output voltage.

This function gets the TRIM value from the VREFL_TRM register.

Parameters:
  • base – VREF peripheral address.

Returns:

Three-bit value of the trim setting.

FSL_VREF_DRIVER_VERSION

Version 2.1.2.

enum _vref_buffer_mode

VREF modes.

Values:

enumerator kVREF_ModeBandgapOnly

Bandgap on only, for stabilization and startup

enumerator kVREF_ModeHighPowerBuffer

High-power buffer mode enabled

enumerator kVREF_ModeLowPowerBuffer

Low-power buffer mode enabled

typedef enum _vref_buffer_mode vref_buffer_mode_t

VREF modes.

typedef struct _vref_config vref_config_t

The description structure for the VREF module.

VREF_SC_MODE_LV
VREF_SC_REGEN
VREF_SC_VREFEN
VREF_SC_ICOMPEN
VREF_SC_REGEN_MASK
VREF_SC_VREFST_MASK
VREF_SC_VREFEN_MASK
VREF_SC_MODE_LV_MASK
VREF_SC_ICOMPEN_MASK
TRM
VREF_TRM_TRIM
VREF_TRM_CHOPEN_MASK
VREF_TRM_TRIM_MASK
VREF_TRM_CHOPEN_SHIFT
VREF_TRM_TRIM_SHIFT
VREF_SC_MODE_LV_SHIFT
VREF_SC_REGEN_SHIFT
VREF_SC_VREFST_SHIFT
VREF_SC_ICOMPEN_SHIFT
struct _vref_config
#include <fsl_vref.h>

The description structure for the VREF module.

Public Members

vref_buffer_mode_t bufferMode

Buffer mode selection

bool enableLowRef

Set VREFL (0.4 V) reference buffer enable or disable

bool enableExternalVoltRef

Select external voltage reference or not (internal)

bool enable2V1VoltRef

Enable Internal Voltage Reference (2.1V)

WDOG: Watchdog Timer Driver

void WDOG_GetDefaultConfig(wdog_config_t *config)

Initializes the WDOG configuration structure.

This function initializes the WDOG configuration structure to default values. The default values are as follows.

wdogConfig->enableWdog = true;
wdogConfig->clockSource = kWDOG_LpoClockSource;
wdogConfig->prescaler = kWDOG_ClockPrescalerDivide1;
wdogConfig->workMode.enableWait = true;
wdogConfig->workMode.enableStop = false;
wdogConfig->workMode.enableDebug = false;
wdogConfig->enableUpdate = true;
wdogConfig->enableInterrupt = false;
wdogConfig->enableWindowMode = false;
wdogConfig->windowValue = 0;
wdogConfig->timeoutValue = 0xFFFFU;

See also

wdog_config_t

Parameters:
  • config – Pointer to the WDOG configuration structure.

void WDOG_Init(WDOG_Type *base, const wdog_config_t *config)

Initializes the WDOG.

This function initializes the WDOG. When called, the WDOG runs according to the configuration. To reconfigure WDOG without forcing a reset first, enableUpdate must be set to true in the configuration.

This is an example.

wdog_config_t config;
WDOG_GetDefaultConfig(&config);
config.timeoutValue = 0x7ffU;
config.enableUpdate = true;
WDOG_Init(wdog_base,&config);

Parameters:
  • base – WDOG peripheral base address

  • config – The configuration of WDOG

void WDOG_Deinit(WDOG_Type *base)

Shuts down the WDOG.

This function shuts down the WDOG. Ensure that the WDOG_STCTRLH.ALLOWUPDATE is 1 which indicates that the register update is enabled.

void WDOG_SetTestModeConfig(WDOG_Type *base, wdog_test_config_t *config)

Configures the WDOG functional test.

This function is used to configure the WDOG functional test. When called, the WDOG goes into test mode and runs according to the configuration. Ensure that the WDOG_STCTRLH.ALLOWUPDATE is 1 which means that the register update is enabled.

This is an example.

wdog_test_config_t test_config;
test_config.testMode = kWDOG_QuickTest;
test_config.timeoutValue = 0xfffffu;
WDOG_SetTestModeConfig(wdog_base, &test_config);

Parameters:
  • base – WDOG peripheral base address

  • config – The functional test configuration of WDOG

static inline void WDOG_Enable(WDOG_Type *base)

Enables the WDOG module.

This function write value into WDOG_STCTRLH register to enable the WDOG, it is a write-once register, make sure that the WCT window is still open and this register has not been written in this WCT while this function is called.

Parameters:
  • base – WDOG peripheral base address

static inline void WDOG_Disable(WDOG_Type *base)

Disables the WDOG module.

This function writes a value into the WDOG_STCTRLH register to disable the WDOG. It is a write-once register. Ensure that the WCT window is still open and that register has not been written to in this WCT while the function is called.

Parameters:
  • base – WDOG peripheral base address

static inline void WDOG_EnableInterrupts(WDOG_Type *base, uint32_t mask)

Enables the WDOG interrupt.

This function writes a value into the WDOG_STCTRLH register to enable the WDOG interrupt. It is a write-once register. Ensure that the WCT window is still open and the register has not been written to in this WCT while the function is called.

Parameters:
  • base – WDOG peripheral base address

  • mask – The interrupts to enable The parameter can be combination of the following source if defined.

    • kWDOG_InterruptEnable

static inline void WDOG_DisableInterrupts(WDOG_Type *base, uint32_t mask)

Disables the WDOG interrupt.

This function writes a value into the WDOG_STCTRLH register to disable the WDOG interrupt. It is a write-once register. Ensure that the WCT window is still open and the register has not been written to in this WCT while the function is called.

Parameters:
  • base – WDOG peripheral base address

  • mask – The interrupts to disable The parameter can be combination of the following source if defined.

    • kWDOG_InterruptEnable

uint32_t WDOG_GetStatusFlags(WDOG_Type *base)

Gets the WDOG all status flags.

This function gets all status flags.

This is an example for getting the Running Flag.

uint32_t status;
status = WDOG_GetStatusFlags (wdog_base) & kWDOG_RunningFlag;

See also

_wdog_status_flags_t

  • true: a related status flag has been set.

  • false: a related status flag is not set.

Parameters:
  • base – WDOG peripheral base address

Returns:

State of the status flag: asserted (true) or not-asserted (false).

void WDOG_ClearStatusFlags(WDOG_Type *base, uint32_t mask)

Clears the WDOG flag.

This function clears the WDOG status flag.

This is an example for clearing the timeout (interrupt) flag.

WDOG_ClearStatusFlags(wdog_base,kWDOG_TimeoutFlag);

Parameters:
  • base – WDOG peripheral base address

  • mask – The status flags to clear. The parameter could be any combination of the following values. kWDOG_TimeoutFlag

static inline void WDOG_SetTimeoutValue(WDOG_Type *base, uint32_t timeoutCount)

Sets the WDOG timeout value.

This function sets the timeout value. It should be ensured that the time-out value for the WDOG is always greater than 2xWCT time + 20 bus clock cycles. This function writes a value into WDOG_TOVALH and WDOG_TOVALL registers which are wirte-once. Ensure the WCT window is still open and the two registers have not been written to in this WCT while the function is called.

Parameters:
  • base – WDOG peripheral base address

  • timeoutCount – WDOG timeout value; count of WDOG clock tick.

static inline void WDOG_SetWindowValue(WDOG_Type *base, uint32_t windowValue)

Sets the WDOG window value.

This function sets the WDOG window value. This function writes a value into WDOG_WINH and WDOG_WINL registers which are wirte-once. Ensure the WCT window is still open and the two registers have not been written to in this WCT while the function is called.

Parameters:
  • base – WDOG peripheral base address

  • windowValue – WDOG window value.

static inline void WDOG_Unlock(WDOG_Type *base)

Unlocks the WDOG register written.

This function unlocks the WDOG register written. Before starting the unlock sequence and following configuration, disable the global interrupts. Otherwise, an interrupt may invalidate the unlocking sequence and the WCT may expire. After the configuration finishes, re-enable the global interrupts.

Parameters:
  • base – WDOG peripheral base address

void WDOG_Refresh(WDOG_Type *base)

Refreshes the WDOG timer.

This function feeds the WDOG. This function should be called before the WDOG timer is in timeout. Otherwise, a reset is asserted.

Parameters:
  • base – WDOG peripheral base address

static inline uint16_t WDOG_GetResetCount(WDOG_Type *base)

Gets the WDOG reset count.

This function gets the WDOG reset count value.

Parameters:
  • base – WDOG peripheral base address

Returns:

WDOG reset count value.

static inline void WDOG_ClearResetCount(WDOG_Type *base)

Clears the WDOG reset count.

This function clears the WDOG reset count value.

Parameters:
  • base – WDOG peripheral base address

FSL_WDOG_DRIVER_VERSION

Defines WDOG driver version 2.0.1.

WDOG_FIRST_WORD_OF_UNLOCK

First word of unlock sequence

WDOG_SECOND_WORD_OF_UNLOCK

Second word of unlock sequence

WDOG_FIRST_WORD_OF_REFRESH

First word of refresh sequence

WDOG_SECOND_WORD_OF_REFRESH

Second word of refresh sequence

enum _wdog_clock_source

Describes WDOG clock source.

Values:

enumerator kWDOG_LpoClockSource

WDOG clock sourced from LPO

enumerator kWDOG_AlternateClockSource

WDOG clock sourced from alternate clock source

enum _wdog_clock_prescaler

Describes the selection of the clock prescaler.

Values:

enumerator kWDOG_ClockPrescalerDivide1

Divided by 1

enumerator kWDOG_ClockPrescalerDivide2

Divided by 2

enumerator kWDOG_ClockPrescalerDivide3

Divided by 3

enumerator kWDOG_ClockPrescalerDivide4

Divided by 4

enumerator kWDOG_ClockPrescalerDivide5

Divided by 5

enumerator kWDOG_ClockPrescalerDivide6

Divided by 6

enumerator kWDOG_ClockPrescalerDivide7

Divided by 7

enumerator kWDOG_ClockPrescalerDivide8

Divided by 8

enum _wdog_test_mode

Describes WDOG test mode.

Values:

enumerator kWDOG_QuickTest

Selects quick test

enumerator kWDOG_ByteTest

Selects byte test

enum _wdog_tested_byte

Describes WDOG tested byte selection in byte test mode.

Values:

enumerator kWDOG_TestByte0

Byte 0 selected in byte test mode

enumerator kWDOG_TestByte1

Byte 1 selected in byte test mode

enumerator kWDOG_TestByte2

Byte 2 selected in byte test mode

enumerator kWDOG_TestByte3

Byte 3 selected in byte test mode

enum _wdog_interrupt_enable_t

WDOG interrupt configuration structure, default settings all disabled.

This structure contains the settings for all of the WDOG interrupt configurations.

Values:

enumerator kWDOG_InterruptEnable

WDOG timeout generates an interrupt before reset

enum _wdog_status_flags_t

WDOG status flags.

This structure contains the WDOG status flags for use in the WDOG functions.

Values:

enumerator kWDOG_RunningFlag

Running flag, set when WDOG is enabled

enumerator kWDOG_TimeoutFlag

Interrupt flag, set when an exception occurs

typedef enum _wdog_clock_source wdog_clock_source_t

Describes WDOG clock source.

typedef struct _wdog_work_mode wdog_work_mode_t

Defines WDOG work mode.

typedef enum _wdog_clock_prescaler wdog_clock_prescaler_t

Describes the selection of the clock prescaler.

typedef struct _wdog_config wdog_config_t

Describes WDOG configuration structure.

typedef enum _wdog_test_mode wdog_test_mode_t

Describes WDOG test mode.

typedef enum _wdog_tested_byte wdog_tested_byte_t

Describes WDOG tested byte selection in byte test mode.

typedef struct _wdog_test_config wdog_test_config_t

Describes WDOG test mode configuration structure.

struct _wdog_work_mode
#include <fsl_wdog.h>

Defines WDOG work mode.

Public Members

bool enableWait

Enables or disables WDOG in wait mode

bool enableStop

Enables or disables WDOG in stop mode

bool enableDebug

Enables or disables WDOG in debug mode

struct _wdog_config
#include <fsl_wdog.h>

Describes WDOG configuration structure.

Public Members

bool enableWdog

Enables or disables WDOG

wdog_clock_source_t clockSource

Clock source select

wdog_clock_prescaler_t prescaler

Clock prescaler value

wdog_work_mode_t workMode

Configures WDOG work mode in debug stop and wait mode

bool enableUpdate

Update write-once register enable

bool enableInterrupt

Enables or disables WDOG interrupt

bool enableWindowMode

Enables or disables WDOG window mode

uint32_t windowValue

Window value

uint32_t timeoutValue

Timeout value

struct _wdog_test_config
#include <fsl_wdog.h>

Describes WDOG test mode configuration structure.

Public Members

wdog_test_mode_t testMode

Selects test mode

wdog_tested_byte_t testedByte

Selects tested byte in byte test mode

uint32_t timeoutValue

Timeout value