MCXA156
AOI: Crossbar AND/OR/INVERT Driver
-
void AOI_Init(AOI_Type *base)
Initializes an AOI instance for operation.
This function un-gates the AOI clock.
- Parameters:
base – AOI peripheral address.
-
void AOI_Deinit(AOI_Type *base)
Deinitializes an AOI instance for operation.
This function shutdowns AOI module.
- Parameters:
base – AOI peripheral address.
-
void AOI_GetEventLogicConfig(AOI_Type *base, aoi_event_t event, aoi_event_config_t *config)
Gets the Boolean evaluation associated.
This function returns the Boolean evaluation associated.
Example:
aoi_event_config_t demoEventLogicStruct; AOI_GetEventLogicConfig(AOI, kAOI_Event0, &demoEventLogicStruct);
- Parameters:
base – AOI peripheral address.
event – Index of the event which will be set of type aoi_event_t.
config – Selected input configuration .
-
void AOI_SetEventLogicConfig(AOI_Type *base, aoi_event_t event, const aoi_event_config_t *eventConfig)
Configures an AOI event.
This function configures an AOI event according to the aoiEventConfig structure. This function configures all inputs (A, B, C, and D) of all product terms (0, 1, 2, and 3) of a desired event.
Example:
aoi_event_config_t demoEventLogicStruct; demoEventLogicStruct.PT0AC = kAOI_InvInputSignal; demoEventLogicStruct.PT0BC = kAOI_InputSignal; demoEventLogicStruct.PT0CC = kAOI_LogicOne; demoEventLogicStruct.PT0DC = kAOI_LogicOne; demoEventLogicStruct.PT1AC = kAOI_LogicZero; demoEventLogicStruct.PT1BC = kAOI_LogicOne; demoEventLogicStruct.PT1CC = kAOI_LogicOne; demoEventLogicStruct.PT1DC = kAOI_LogicOne; demoEventLogicStruct.PT2AC = kAOI_LogicZero; demoEventLogicStruct.PT2BC = kAOI_LogicOne; demoEventLogicStruct.PT2CC = kAOI_LogicOne; demoEventLogicStruct.PT2DC = kAOI_LogicOne; demoEventLogicStruct.PT3AC = kAOI_LogicZero; demoEventLogicStruct.PT3BC = kAOI_LogicOne; demoEventLogicStruct.PT3CC = kAOI_LogicOne; demoEventLogicStruct.PT3DC = kAOI_LogicOne; AOI_SetEventLogicConfig(AOI, kAOI_Event0, demoEventLogicStruct);
- Parameters:
base – AOI peripheral address.
event – Event which will be configured of type aoi_event_t.
eventConfig – Pointer to type aoi_event_config_t structure. The user is responsible for filling out the members of this structure and passing the pointer to this function.
-
FSL_AOI_DRIVER_VERSION
Version 2.0.2.
-
enum _aoi_input_config
AOI input configurations.
The selection item represents the Boolean evaluations.
Values:
-
enumerator kAOI_LogicZero
Forces the input to logical zero.
-
enumerator kAOI_InputSignal
Passes the input signal.
-
enumerator kAOI_InvInputSignal
Inverts the input signal.
-
enumerator kAOI_LogicOne
Forces the input to logical one.
-
enumerator kAOI_LogicZero
-
enum _aoi_event
AOI event indexes, where an event is the collection of the four product terms (0, 1, 2, and 3) and the four signal inputs (A, B, C, and D).
Values:
-
enumerator kAOI_Event0
Event 0 index
-
enumerator kAOI_Event1
Event 1 index
-
enumerator kAOI_Event2
Event 2 index
-
enumerator kAOI_Event3
Event 3 index
-
enumerator kAOI_Event0
-
typedef enum _aoi_input_config aoi_input_config_t
AOI input configurations.
The selection item represents the Boolean evaluations.
-
typedef enum _aoi_event aoi_event_t
AOI event indexes, where an event is the collection of the four product terms (0, 1, 2, and 3) and the four signal inputs (A, B, C, and D).
-
typedef struct _aoi_event_config aoi_event_config_t
AOI event configuration structure.
Defines structure _aoi_event_config and use the AOI_SetEventLogicConfig() function to make whole event configuration.
-
AOI
AOI peripheral address
-
struct _aoi_event_config
- #include <fsl_aoi.h>
AOI event configuration structure.
Defines structure _aoi_event_config and use the AOI_SetEventLogicConfig() function to make whole event configuration.
Public Members
-
aoi_input_config_t PT0AC
Product term 0 input A
-
aoi_input_config_t PT0BC
Product term 0 input B
-
aoi_input_config_t PT0CC
Product term 0 input C
-
aoi_input_config_t PT0DC
Product term 0 input D
-
aoi_input_config_t PT1AC
Product term 1 input A
-
aoi_input_config_t PT1BC
Product term 1 input B
-
aoi_input_config_t PT1CC
Product term 1 input C
-
aoi_input_config_t PT1DC
Product term 1 input D
-
aoi_input_config_t PT2AC
Product term 2 input A
-
aoi_input_config_t PT2BC
Product term 2 input B
-
aoi_input_config_t PT2CC
Product term 2 input C
-
aoi_input_config_t PT2DC
Product term 2 input D
-
aoi_input_config_t PT3AC
Product term 3 input A
-
aoi_input_config_t PT3BC
Product term 3 input B
-
aoi_input_config_t PT3CC
Product term 3 input C
-
aoi_input_config_t PT3DC
Product term 3 input D
-
aoi_input_config_t PT0AC
CDOG
-
status_t CDOG_Init(CDOG_Type *base, cdog_config_t *conf)
Initialize CDOG.
This function initializes CDOG block and setting.
- Parameters:
base – CDOG peripheral base address
conf – CDOG configuration structure
- Returns:
Status of the init operation
-
void CDOG_Deinit(CDOG_Type *base)
Deinitialize CDOG.
This function deinitializes CDOG secure counter.
- Parameters:
base – CDOG peripheral base address
-
void CDOG_GetDefaultConfig(cdog_config_t *conf)
Sets the default configuration of CDOG.
This function initialize CDOG config structure to default values.
- Parameters:
conf – CDOG configuration structure
-
void CDOG_Stop(CDOG_Type *base, uint32_t stop)
Stops secure counter and instruction timer.
This function stops instruction timer and secure counter. This also change state od CDOG to IDLE.
- Parameters:
base – CDOG peripheral base address
stop – expected value which will be compared with value of secure counter
-
void CDOG_Start(CDOG_Type *base, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.
This function sets value in RELOAD and START registers for instruction timer and secure counter
- Parameters:
base – CDOG peripheral base address
reload – reload value
start – start value
-
void CDOG_Check(CDOG_Type *base, uint32_t check)
Checks secure counter.
This function compares stop value in handler with secure counter value by writting to RELOAD refister.
- Parameters:
base – CDOG peripheral base address
check – expected (stop) value
-
void CDOG_Set(CDOG_Type *base, uint32_t stop, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.
This function sets value in STOP, RELOAD and START registers for instruction timer and secure counter.
- Parameters:
base – CDOG peripheral base address
stop – expected value which will be compared with value of secure counter
reload – reload value for instruction timer
start – start value for secure timer
-
void CDOG_Add(CDOG_Type *base, uint32_t add)
Add value to secure counter.
This function add specified value to secure counter.
- Parameters:
base – CDOG peripheral base address.
add – Value to be added.
-
void CDOG_Add1(CDOG_Type *base)
Add 1 to secure counter.
This function add 1 to secure counter.
- Parameters:
base – CDOG peripheral base address.
-
void CDOG_Add16(CDOG_Type *base)
Add 16 to secure counter.
This function add 16 to secure counter.
- Parameters:
base – CDOG peripheral base address.
-
void CDOG_Add256(CDOG_Type *base)
Add 256 to secure counter.
This function add 256 to secure counter.
- Parameters:
base – CDOG peripheral base address.
-
void CDOG_Sub(CDOG_Type *base, uint32_t sub)
brief Substract value to secure counter
This function substract specified value to secure counter.
param base CDOG peripheral base address. param sub Value to be substracted.
-
void CDOG_Sub1(CDOG_Type *base)
Substract 1 from secure counter.
This function substract specified 1 from secure counter.
- Parameters:
base – CDOG peripheral base address.
-
void CDOG_Sub16(CDOG_Type *base)
Substract 16 from secure counter.
This function substract specified 16 from secure counter.
- Parameters:
base – CDOG peripheral base address.
-
void CDOG_Sub256(CDOG_Type *base)
Substract 256 from secure counter.
This function substract specified 256 from secure counter.
- Parameters:
base – CDOG peripheral base address.
-
void CDOG_WritePersistent(CDOG_Type *base, uint32_t value)
Set the CDOG persistent word.
- Parameters:
base – CDOG peripheral base address.
value – The value to be written.
-
uint32_t CDOG_ReadPersistent(CDOG_Type *base)
Get the CDOG persistent word.
- Parameters:
base – CDOG peripheral base address.
- Returns:
The persistent word.
-
FSL_CDOG_DRIVER_VERSION
Defines CDOG driver version 2.1.3.
Change log:
Version 2.1.3
Re-design multiple instance IRQs and Clocks
Add fix for RESTART command errata
Version 2.1.2
Support multiple IRQs
Fix default CONTROL values
Version 2.1.1
Remove bit CONTROL[CONTROL_CTRL]
Version 2.1.0
Rename CWT to CDOG
Version 2.0.2
Fix MISRA-2012 issues
Version 2.0.1
Fix doxygen issues
Version 2.0.0
initial version
-
enum __cdog_debug_Action_ctrl_enum
Values:
-
enumerator kCDOG_DebugHaltCtrl_Run
-
enumerator kCDOG_DebugHaltCtrl_Pause
-
enumerator kCDOG_DebugHaltCtrl_Run
-
enum __cdog_irq_pause_ctrl_enum
Values:
-
enumerator kCDOG_IrqPauseCtrl_Run
-
enumerator kCDOG_IrqPauseCtrl_Pause
-
enumerator kCDOG_IrqPauseCtrl_Run
-
enum __cdog_fault_ctrl_enum
Values:
-
enumerator kCDOG_FaultCtrl_EnableReset
-
enumerator kCDOG_FaultCtrl_EnableInterrupt
-
enumerator kCDOG_FaultCtrl_NoAction
-
enumerator kCDOG_FaultCtrl_EnableReset
-
enum __code_lock_ctrl_enum
Values:
-
enumerator kCDOG_LockCtrl_Lock
-
enumerator kCDOG_LockCtrl_Unlock
-
enumerator kCDOG_LockCtrl_Lock
-
typedef uint32_t secure_counter_t
-
SC_ADD(add)
-
SC_ADD1
-
SC_ADD16
-
SC_ADD256
-
SC_SUB(sub)
-
SC_SUB1
-
SC_SUB16
-
SC_SUB256
-
SC_CHECK(val)
-
struct cdog_config_t
- #include <fsl_cdog.h>
Clock Driver
-
enum _clock_ip_name
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.
Values:
-
enumerator kCLOCK_InputMux
Clock gate name: INPUTMUX0
-
enumerator kCLOCK_GateINPUTMUX0
Clock gate name: INPUTMUX0
-
enumerator kCLOCK_GateI3C0
Clock gate name: I3C0
-
enumerator kCLOCK_GateCTIMER0
Clock gate name: CTIMER0
-
enumerator kCLOCK_GateCTIMER1
Clock gate name: CTIMER1
-
enumerator kCLOCK_GateCTIMER2
Clock gate name: CTIMER2
-
enumerator kCLOCK_GateCTIMER3
Clock gate name: CTIMER3
-
enumerator kCLOCK_GateCTIMER4
Clock gate name: CTIMER4
-
enumerator kCLOCK_GateFREQME
Clock gate name: FREQME
-
enumerator kCLOCK_GateUTICK0
Clock gate name: UTICK0
-
enumerator kCLOCK_GateWWDT0
Clock gate name: WWDT0
-
enumerator kCLOCK_GateDMA
Clock gate name: DMA
-
enumerator kCLOCK_GateAOI0
Clock gate name: AOI0
-
enumerator kCLOCK_GateCRC0
Clock gate name: CRC0
-
enumerator kCLOCK_Crc0
Clock gate name: CRC0
-
enumerator kCLOCK_GateEIM0
Clock gate name: EIM0
-
enumerator kCLOCK_GateERM0
Clock gate name: ERM0
-
enumerator kCLOCK_GateFMC
Clock gate name: FMC
-
enumerator kCLOCK_GateAOI1
Clock gate name: AOI1
-
enumerator kCLOCK_GateFLEXIO0
Clock gate name: FLEXIO0
-
enumerator kCLOCK_GateLPI2C0
Clock gate name: LPI2C0
-
enumerator kCLOCK_GateLPI2C1
Clock gate name: LPI2C1
-
enumerator kCLOCK_GateLPSPI0
Clock gate name: LPSPI0
-
enumerator kCLOCK_GateLPSPI1
Clock gate name: LPSPI1
-
enumerator kCLOCK_GateLPUART0
Clock gate name: LPUART0
-
enumerator kCLOCK_GateLPUART1
Clock gate name: LPUART1
-
enumerator kCLOCK_GateLPUART2
Clock gate name: LPUART2
-
enumerator kCLOCK_GateLPUART3
Clock gate name: LPUART3
-
enumerator kCLOCK_GateLPUART4
Clock gate name: LPUART4
-
enumerator kCLOCK_GateUSB0
Clock gate name: USB0
-
enumerator kCLOCK_GateQDC0
Clock gate name: QDC0
-
enumerator kCLOCK_GateQDC1
Clock gate name: QDC1
-
enumerator kCLOCK_GateFLEXPWM0
Clock gate name: FLEXPWM0
-
enumerator kCLOCK_GateFLEXPWM1
Clock gate name: FLEXPWM1
-
enumerator kCLOCK_GateOSTIMER0
Clock gate name: OSTIMER0
-
enumerator kCLOCK_GateADC0
Clock gate name: ADC0
-
enumerator kCLOCK_GateADC1
Clock gate name: ADC1
-
enumerator kCLOCK_GateCMP0
Clock gate name: CMP0
-
enumerator kCLOCK_GateCMP1
Clock gate name: CMP1
-
enumerator kCLOCK_GateDAC0
Clock gate name: DAC0
-
enumerator kCLOCK_GateOPAMP0
Clock gate name: OPAMP0
-
enumerator kCLOCK_GatePORT0
Clock gate name: PORT0
-
enumerator kCLOCK_GatePORT1
Clock gate name: PORT1
-
enumerator kCLOCK_GatePORT2
Clock gate name: PORT2
-
enumerator kCLOCK_GatePORT3
Clock gate name: PORT3
-
enumerator kCLOCK_GatePORT4
Clock gate name: PORT4
-
enumerator kCLOCK_GateFLEXCAN0
Clock gate name: FLEXCAN0
-
enumerator kCLOCK_GateLPI2C2
Clock gate name: LPI2C2
-
enumerator kCLOCK_GateLPI2C3
Clock gate name: LPI2C3
-
enumerator kCLOCK_GateMTR
Clock gate name: MTR
-
enumerator kCLOCK_GateTCU
Clock gate name: TCU
-
enumerator kCLOCK_GateRAMA
Clock gate name: RAMA
-
enumerator kCLOCK_GateRAMB
Clock gate name: RAMB
-
enumerator kCLOCK_GateGPIO0
Clock gate name: GPIO0
-
enumerator kCLOCK_GateGPIO1
Clock gate name: GPIO1
-
enumerator kCLOCK_GateGPIO2
Clock gate name: GPIO2
-
enumerator kCLOCK_GateGPIO3
Clock gate name: GPIO3
-
enumerator kCLOCK_GateGPIO4
Clock gate name: GPIO4
-
enumerator kCLOCK_GateROMC
Clock gate name: ROMC
-
enumerator kCLOCK_GatePWM0SM0
Clock gate name: FlexPWM0 SM0
-
enumerator kCLOCK_GatePWM0SM1
Clock gate name: FlexPWM0 SM1
-
enumerator kCLOCK_GatePWM0SM2
Clock gate name: FlexPWM0 SM2
-
enumerator kCLOCK_GatePWM1SM0
Clock gate name: FlexPWM1 SM0
-
enumerator kCLOCK_GatePWM1SM1
Clock gate name: FlexPWM1 SM1
-
enumerator kCLOCK_GatePWM1SM2
Clock gate name: FlexPWM1 SM2
-
enumerator kCLOCK_GateNotAvail
Clock gate name: None
-
enumerator kCLOCK_InputMux
-
enum _clock_name
Clock name used to get clock frequency.
Values:
-
enumerator kCLOCK_MainClk
MAIN_CLK
-
enumerator kCLOCK_CoreSysClk
Core/system clock(CPU_CLK)
-
enumerator kCLOCK_SYSTEM_CLK
AHB clock
-
enumerator kCLOCK_BusClk
Bus clock (AHB clock)
-
enumerator kCLOCK_ExtClk
External Clock
-
enumerator kCLOCK_FroHf
FRO192
-
enumerator kCLOCK_FroHfDiv
Divided by FRO192
-
enumerator kCLOCK_Clk48M
CLK48M
-
enumerator kCLOCK_Fro12M
FRO12M
-
enumerator kCLOCK_Clk1M
CLK1M
-
enumerator kCLOCK_Fro16K
FRO16K
-
enumerator kCLOCK_Clk16K0
CLK16K[0]
-
enumerator kCLOCK_Clk16K1
CLK16K[1]
-
enumerator kCLOCK_SLOW_CLK
SYSTEM_CLK divided by 4
-
enumerator kCLOCK_MainClk
-
enum _clock_select_name
Clock name used to get clock frequency.
Values:
-
enumerator kCLOCK_SelI3C0_FCLK
-
enumerator kCLOCK_SelCTIMER0
-
enumerator kCLOCK_SelCTIMER1
-
enumerator kCLOCK_SelCTIMER2
-
enumerator kCLOCK_SelCTIMER3
-
enumerator kCLOCK_SelCTIMER4
-
enumerator kCLOCK_SelFLEXIO0
-
enumerator kCLOCK_SelLPI2C0
-
enumerator kCLOCK_SelLPI2C1
-
enumerator kCLOCK_SelLPSPI0
-
enumerator kCLOCK_SelLPSPI1
-
enumerator kCLOCK_SelLPUART0
-
enumerator kCLOCK_SelLPUART1
-
enumerator kCLOCK_SelLPUART2
-
enumerator kCLOCK_SelLPUART3
-
enumerator kCLOCK_SelLPUART4
-
enumerator kCLOCK_SelUSB0
-
enumerator kCLOCK_SelLPTMR0
-
enumerator kCLOCK_SelOSTIMER0
-
enumerator kCLOCK_SelADC0
-
enumerator kCLOCK_SelADC1
-
enumerator kCLOCK_SelCMP0_RR
-
enumerator kCLOCK_SelCMP1_RR
-
enumerator kCLOCK_SelDAC0
-
enumerator kCLOCK_SelFLEXCAN0
-
enumerator kCLOCK_SelLPI2C2
-
enumerator kCLOCK_SelLPI2C3
-
enumerator kCLOCK_SelTRACE
-
enumerator kCLOCK_SelCLKOUT
-
enumerator kCLOCK_SelSYSTICK
-
enumerator kCLOCK_SelSCGSCS
SCG SCS clock selection
-
enumerator kCLOCK_SelMax
MAX clock selection
-
enumerator kCLOCK_SelI3C0_FCLK
-
enum _clock_attach_id
The enumerator of clock attach Id.
Values:
-
enumerator kCLK_IN_to_MAIN_CLK
Attach clk_in to MAIN_CLK.
-
enumerator kFRO12M_to_MAIN_CLK
Attach FRO_12M to MAIN_CLK.
-
enumerator kFRO_HF_to_MAIN_CLK
Attach FRO_HF to MAIN_CLK.
-
enumerator kCLK_16K_to_MAIN_CLK
Attach CLK_16K[1] to MAIN_CLK.
-
enumerator kNONE_to_MAIN_CLK
Attach NONE to MAIN_CLK.
-
enumerator kFRO12M_to_I3C0FCLK
Attach FRO12M to I3C0FCLK.
-
enumerator kFRO_HF_DIV_to_I3C0FCLK
Attach FRO_HF_DIV to I3C0FCLK.
-
enumerator kCLK_IN_to_I3C0FCLK
Attach CLK_IN to I3C0FCLK.
-
enumerator kCLK_1M_to_I3C0FCLK
Attach CLK_1M to I3C0FCLK.
-
enumerator kNONE_to_I3C0FCLK
Attach NONE to I3C0FCLK.
-
enumerator kFRO12M_to_CTIMER0
Attach FRO12M to CTIMER0.
-
enumerator kFRO_HF_to_CTIMER0
Attach FRO_HF to CTIMER0.
-
enumerator kCLK_IN_to_CTIMER0
Attach CLK_IN to CTIMER0.
-
enumerator kCLK_16K_to_CTIMER0
Attach CLK_16K to CTIMER0.
-
enumerator kCLK_1M_to_CTIMER0
Attach CLK_1M to CTIMER0.
-
enumerator kNONE_to_CTIMER0
Attach NONE to CTIMER0.
-
enumerator kFRO12M_to_CTIMER1
Attach FRO12M to CTIMER1.
-
enumerator kFRO_HF_to_CTIMER1
Attach FRO_HF to CTIMER1.
-
enumerator kCLK_IN_to_CTIMER1
Attach CLK_IN to CTIMER1.
-
enumerator kCLK_16K_to_CTIMER1
Attach CLK_16K to CTIMER1.
-
enumerator kCLK_1M_to_CTIMER1
Attach CLK_1M to CTIMER1.
-
enumerator kNONE_to_CTIMER1
Attach NONE to CTIMER1.
-
enumerator kFRO12M_to_CTIMER2
Attach FRO12M to CTIMER2.
-
enumerator kFRO_HF_to_CTIMER2
Attach FRO_HF to CTIMER2.
-
enumerator kCLK_IN_to_CTIMER2
Attach CLK_IN to CTIMER2.
-
enumerator kCLK_16K_to_CTIMER2
Attach CLK_16K to CTIMER2.
-
enumerator kCLK_1M_to_CTIMER2
Attach CLK_1M to CTIMER2.
-
enumerator kNONE_to_CTIMER2
Attach NONE to CTIMER2.
-
enumerator kFRO12M_to_CTIMER3
Attach FRO12M to CTIMER3.
-
enumerator kFRO_HF_to_CTIMER3
Attach FRO_HF to CTIMER3.
-
enumerator kCLK_IN_to_CTIMER3
Attach CLK_IN to CTIMER3.
-
enumerator kCLK_16K_to_CTIMER3
Attach CLK_16K to CTIMER3.
-
enumerator kCLK_1M_to_CTIMER3
Attach CLK_1M to CTIMER3.
-
enumerator kNONE_to_CTIMER3
Attach NONE to CTIMER3.
-
enumerator kFRO12M_to_CTIMER4
Attach FRO12M to CTIMER4.
-
enumerator kFRO_HF_to_CTIMER4
Attach FRO_HF to CTIMER4.
-
enumerator kCLK_IN_to_CTIMER4
Attach CLK_IN to CTIMER4.
-
enumerator kCLK_16K_to_CTIMER4
Attach CLK_16K to CTIMER4.
-
enumerator kCLK_1M_to_CTIMER4
Attach CLK_1M to CTIMER4.
-
enumerator kNONE_to_CTIMER4
Attach NONE to CTIMER4.
-
enumerator kFRO12M_to_FLEXIO0
Attach FRO12M to FLEXIO0.
-
enumerator kFRO_HF_to_FLEXIO0
Attach FRO_HF to FLEXIO0.
-
enumerator kCLK_IN_to_FLEXIO0
Attach CLK_IN to FLEXIO0.
-
enumerator kCLK_1M_to_FLEXIO0
Attach CLK_1M to FLEXIO0.
-
enumerator kNONE_to_FLEXIO0
Attach NONE to FLEXIO0.
-
enumerator kFRO_HF_DIV_to_FLEXCAN0
Attach FRO_HF_DIV to FLEXCAN0.
-
enumerator kCLK_IN_to_FLEXCAN0
Attach CLK_IN to FLEXCAN0.
-
enumerator kNONE_to_FLEXCAN0
Attach NONE to FLEXCAN0.
-
enumerator kFRO12M_to_DAC0
Attach FRO12M to DAC0.
-
enumerator kFRO_HF_DIV_to_DAC0
Attach FRO_HF_DIV to DAC0.
-
enumerator kCLK_IN_to_DAC0
Attach CLK_IN to DAC0.
-
enumerator kCLK_1M_to_DAC0
Attach CLK_1M to DAC0.
-
enumerator kNONE_to_DAC0
Attach NONE to DAC0.
-
enumerator kFRO12M_to_LPI2C0
Attach FRO12M to LPI2C0.
-
enumerator kFRO_HF_DIV_to_LPI2C0
Attach FRO_HF_DIV to LPI2C0.
-
enumerator kCLK_IN_to_LPI2C0
Attach CLK_IN to LPI2C0.
-
enumerator kCLK_1M_to_LPI2C0
Attach CLK_1M to LPI2C0.
-
enumerator kNONE_to_LPI2C0
Attach NONE to LPI2C0.
-
enumerator kFRO12M_to_LPI2C1
Attach FRO12M to LPI2C1.
-
enumerator kFRO_HF_DIV_to_LPI2C1
Attach FRO_HF_DIV to LPI2C1.
-
enumerator kCLK_IN_to_LPI2C1
Attach CLK_IN to LPI2C1.
-
enumerator kCLK_1M_to_LPI2C1
Attach CLK_1M to LPI2C1.
-
enumerator kNONE_to_LPI2C1
Attach NONE to LPI2C1.
-
enumerator kFRO12M_to_LPI2C2
Attach FRO12M to LPI2C2.
-
enumerator kFRO_HF_DIV_to_LPI2C2
Attach FRO_HF_DIV to LPI2C2.
-
enumerator kCLK_IN_to_LPI2C2
Attach CLK_IN to LPI2C2.
-
enumerator kCLK_1M_to_LPI2C2
Attach CLK_1M to LPI2C2.
-
enumerator kNONE_to_LPI2C2
Attach NONE to LPI2C2.
-
enumerator kFRO12M_to_LPI2C3
Attach FRO12M to LPI2C3.
-
enumerator kFRO_HF_DIV_to_LPI2C3
Attach FRO_HF_DIV to LPI2C3.
-
enumerator kCLK_IN_to_LPI2C3
Attach CLK_IN to LPI2C3.
-
enumerator kCLK_1M_to_LPI2C3
Attach CLK_1M to LPI2C3.
-
enumerator kNONE_to_LPI2C3
Attach NONE to LPI2C3.
-
enumerator kFRO12M_to_LPSPI0
Attach FRO12M to LPSPI0.
-
enumerator kFRO_HF_DIV_to_LPSPI0
Attach FRO_HF_DIV to LPSPI0.
-
enumerator kCLK_IN_to_LPSPI0
Attach CLK_IN to LPSPI0.
-
enumerator kCLK_1M_to_LPSPI0
Attach CLK_1M to LPSPI0.
-
enumerator kNONE_to_LPSPI0
Attach NONE to LPSPI0.
-
enumerator kFRO12M_to_LPSPI1
Attach FRO12M to LPSPI1.
-
enumerator kFRO_HF_DIV_to_LPSPI1
Attach FRO_HF_DIV to LPSPI1.
-
enumerator kCLK_IN_to_LPSPI1
Attach CLK_IN to LPSPI1.
-
enumerator kCLK_1M_to_LPSPI1
Attach CLK_1M to LPSPI1.
-
enumerator kNONE_to_LPSPI1
Attach NONE to LPSPI1.
-
enumerator kFRO12M_to_LPUART0
Attach FRO12M to LPUART0.
-
enumerator kFRO_HF_DIV_to_LPUART0
Attach FRO_HF_DIV to LPUART0.
-
enumerator kCLK_IN_to_LPUART0
Attach CLK_IN to LPUART0.
-
enumerator kCLK_16K_to_LPUART0
Attach CLK_16K to LPUART0.
-
enumerator kCLK_1M_to_LPUART0
Attach CLK_1M to LPUART0.
-
enumerator kNONE_to_LPUART0
Attach NONE to LPUART0.
-
enumerator kFRO12M_to_LPUART1
Attach FRO12M to LPUART1.
-
enumerator kFRO_HF_DIV_to_LPUART1
Attach FRO_HF_DIV to LPUART1.
-
enumerator kCLK_IN_to_LPUART1
Attach CLK_IN to LPUART1.
-
enumerator kCLK_16K_to_LPUART1
Attach CLK_16K to LPUART1.
-
enumerator kCLK_1M_to_LPUART1
Attach CLK_1M to LPUART1.
-
enumerator kNONE_to_LPUART1
Attach NONE to LPUART1.
-
enumerator kFRO12M_to_LPUART2
Attach FRO12M to LPUART2.
-
enumerator kFRO_HF_DIV_to_LPUART2
Attach FRO_HF_DIV to LPUART2.
-
enumerator kCLK_IN_to_LPUART2
Attach CLK_IN to LPUART2.
-
enumerator kCLK_16K_to_LPUART2
Attach CLK_16K to LPUART2.
-
enumerator kCLK_1M_to_LPUART2
Attach CLK_1M to LPUART2.
-
enumerator kNONE_to_LPUART2
Attach NONE to LPUART2.
-
enumerator kFRO12M_to_LPUART3
Attach FRO12M to LPUART2.
-
enumerator kFRO_HF_DIV_to_LPUART3
Attach FRO_HF_DIV to LPUART2.
-
enumerator kCLK_IN_to_LPUART3
Attach CLK_IN to LPUART2.
-
enumerator kCLK_16K_to_LPUART3
Attach CLK_16K to LPUART2.
-
enumerator kCLK_1M_to_LPUART3
Attach CLK_1M to LPUART2.
-
enumerator kNONE_to_LPUART3
Attach NONE to LPUART2.
-
enumerator kFRO12M_to_LPUART4
Attach FRO12M to LPUART4.
-
enumerator kFRO_HF_DIV_to_LPUART4
Attach FRO_HF_DIV to LPUART4.
-
enumerator kCLK_IN_to_LPUART4
Attach CLK_IN to LPUART4.
-
enumerator kCLK_16K_to_LPUART4
Attach CLK_16K to LPUART4.
-
enumerator kCLK_1M_to_LPUART4
Attach CLK_1M to LPUART4.
-
enumerator kNONE_to_LPUART4
Attach NONE to LPUART4.
-
enumerator kCLK_48M_to_USB0
Attach FRO12M to USB0.
-
enumerator kCLK_IN_to_USB0
Attach CLK_IN to USB0.
-
enumerator kNONE_to_USB0
Attach NONE to USB0.
-
enumerator kFRO12M_to_LPTMR0
Attach FRO12M to LPTMR0.
-
enumerator kFRO_HF_DIV_to_LPTMR0
Attach FRO_HF_DIV to LPTMR0.
-
enumerator kCLK_IN_to_LPTMR0
Attach CLK_IN to LPTMR0.
-
enumerator kCLK_1M_to_LPTMR0
Attach CLK_1M to LPTMR0.
-
enumerator kNONE_to_LPTMR0
Attach NONE to LPTMR0.
-
enumerator kCLK_16K_to_OSTIMER
Attach FRO16K to OSTIMER0.
-
enumerator kCLK_1M_to_OSTIMER
Attach CLK_1M to OSTIMER0.
-
enumerator kNONE_to_OSTIMER
Attach NONE to OSTIMER0.
-
enumerator kFRO12M_to_ADC0
Attach FRO12M to ADC0.
-
enumerator kFRO_HF_to_ADC0
Attach FRO_HF to ADC0.
-
enumerator kCLK_IN_to_ADC0
Attach CLK_IN to ADC0.
-
enumerator kCLK_1M_to_ADC0
Attach CLK_1M to ADC0.
-
enumerator kNONE_to_ADC0
Attach NONE to ADC0.
-
enumerator kFRO12M_to_ADC1
Attach FRO12M to ADC1.
-
enumerator kFRO_HF_to_ADC1
Attach FRO_HF to ADC1.
-
enumerator kCLK_IN_to_ADC1
Attach CLK_IN to ADC1.
-
enumerator kCLK_1M_to_ADC1
Attach CLK_1M to ADC1.
-
enumerator kNONE_to_ADC1
Attach NONE to ADC1.
-
enumerator kFRO12M_to_CMP0
Attach FRO12M to CMP0.
-
enumerator kFRO_HF_DIV_to_CMP0
Attach FRO_HF_DIV to CMP0.
-
enumerator kCLK_IN_to_CMP0
Attach CLK_IN to CMP0.
-
enumerator kCLK_1M_to_CMP0
Attach CLK_1M to CMP0.
-
enumerator kNONE_to_CMP0
Attach NONE to CMP0.
-
enumerator kFRO12M_to_CMP1
Attach FRO12M to CMP1.
-
enumerator kFRO_HF_DIV_to_CMP1
Attach FRO_HF_DIV to CMP1.
-
enumerator kCLK_IN_to_CMP1
Attach CLK_IN to CMP1.
-
enumerator kCLK_1M_to_CMP1
Attach CLK_1M to CMP1.
-
enumerator kNONE_to_CMP1
Attach NONE to CMP1.
-
enumerator kCPU_CLK_to_TRACE
Attach CPU_CLK to TRACE.
-
enumerator kCLK_1M_to_TRACE
Attach CLK_1M to TRACE.
-
enumerator kCLK_16K_to_TRACE
Attach CLK_16K to TRACE.
-
enumerator kNONE_to_TRACE
Attach NONE to TRACE.
-
enumerator kFRO12M_to_CLKOUT
Attach FRO12M to CLKOUT.
-
enumerator kFRO_HF_DIV_to_CLKOUT
Attach FRO_HF_DIV to CLKOUT.
-
enumerator kCLK_IN_to_CLKOUT
Attach CLK_IN to CLKOUT.
-
enumerator kCLK_16K_to_CLKOUT
Attach CLK_16K to CLKOUT.
-
enumerator kSLOW_CLK_to_CLKOUT
Attach SLOW_CLK to CLKOUT.
-
enumerator kNONE_to_CLKOUT
Attach NONE to CLKOUT.
-
enumerator kCPU_CLK_to_SYSTICK
Attach CPU_CLK to SYSTICK.
-
enumerator kCLK_1M_to_SYSTICK
Attach CLK_1M to SYSTICK.
-
enumerator kCLK_16K_to_SYSTICK
Attach CLK_16K to SYSTICK.
-
enumerator kNONE_to_SYSTICK
Attach NONE to SYSTICK.
-
enumerator kNONE_to_NONE
Attach NONE to NONE.
-
enumerator kCLK_IN_to_MAIN_CLK
-
enum _clock_div_name
Clock dividers.
Values:
-
enumerator kCLOCK_DivI3C0_FCLK
I3C0_FCLK clock divider
-
enumerator kCLOCK_DivCTIMER0
CTIMER0 clock divider
-
enumerator kCLOCK_DivCTIMER1
CTIMER1 clock divider
-
enumerator kCLOCK_DivCTIMER2
CTIMER2 clock divider
-
enumerator kCLOCK_DivCTIMER3
CTIMER3 clock divider
-
enumerator kCLOCK_DivCTIMER4
CTIMER4 clock divider
-
enumerator kCLOCK_DivWWDT0
WWDT0 clock divider
-
enumerator kCLOCK_DivFLEXIO0
FLEXIO0 clock divider
-
enumerator kCLOCK_DivLPI2C0
LPI2C0 clock divider
-
enumerator kCLOCK_DivLPI2C1
LPI2C1 clock divider
-
enumerator kCLOCK_DivLPSPI0
LPSPI0 clock divider
-
enumerator kCLOCK_DivLPSPI1
LPSPI1 clock divider
-
enumerator kCLOCK_DivLPUART0
LPUART0 clock divider
-
enumerator kCLOCK_DivLPUART1
LPUART1 clock divider
-
enumerator kCLOCK_DivLPUART2
LPUART2 clock divider
-
enumerator kCLOCK_DivLPUART3
LPUART3 clock divider
-
enumerator kCLOCK_DivLPUART4
LPUART4 clock divider
-
enumerator kCLOCK_DivLPTMR0
LPTMR0 clock divider
-
enumerator kCLOCK_DivADC0
ADC0 clock divider
-
enumerator kCLOCK_DivADC1
ADC1 clock divider
-
enumerator kCLOCK_DivCMP0_FUNC
CMP0_FUNC clock divider
-
enumerator kCLOCK_DivCMP0_RR
CMP0_RR clock divider
-
enumerator kCLOCK_DivCMP1_FUNC
CMP1_FUNC clock divider
-
enumerator kCLOCK_DivCMP1_RR
CMP1_RR clock divider
-
enumerator kCLOCK_DivDAC0
DAC0 clock divider
-
enumerator kCLOCK_DivFLEXCAN0
FLEXCAN0 clock divider
-
enumerator kCLOCK_DivLPI2C2
LPI2C2 clock divider
-
enumerator kCLOCK_DivLPI2C3
LPI2C3 clock divider
-
enumerator kCLOCK_DivDBG_TRACE
DBG_TRACE clock divider
-
enumerator kCLOCK_DivTRACE
DBG_TRACE clock divider
-
enumerator kCLOCK_DivCLKOUT
CLKOUT clock divider
-
enumerator kCLOCK_DivSYSTICK
SYSTICK clock divider
-
enumerator kCLOCK_DivFRO_HF_DIV
FRO_HF_DIV clock divider
-
enumerator kCLOCK_DivSLOWCLK
SLOWCLK clock divider
-
enumerator kCLOCK_DivAHBCLK
System clock divider
-
enumerator kCLOCK_DivMax
MAX clock divider
-
enumerator kCLOCK_DivI3C0_FCLK
-
enum _firc_trim_mode
firc trim mode.
Values:
-
enumerator kSCG_FircTrimNonUpdate
Trim enable but not enable trim value update. In this mode, the trim value is fixed to the initialized value which is defined by trimCoar and trimFine in configure structure firc_trim_config_t.
-
enumerator kSCG_FircTrimUpdate
Trim enable and trim value update enable. In this mode, the trim value is auto update.
-
enumerator kSCG_FircTrimNonUpdate
-
enum _firc_trim_src
firc trim source.
Values:
-
enumerator kSCG_FircTrimSrcUsb0
USB0 start of frame (1kHz).
-
enumerator kSCG_FircTrimSrcSysOsc
System OSC.
-
enumerator kSCG_FircTrimSrcUsb0
-
enum _sirc_trim_mode
sirc trim mode.
Values:
-
enumerator kSCG_SircTrimNonUpdate
Trim enable but not enable trim value update. In this mode, the trim value is fixed to the initialized value which is defined by trimCoar and trimFine in configure structure sirc_trim_config_t.
-
enumerator kSCG_SircTrimUpdate
Trim enable and trim value update enable. In this mode, the trim value is auto update.
-
enumerator kSCG_SircTrimNonUpdate
-
enum _sirc_trim_src
sirc trim source.
Values:
-
enumerator kNoTrimSrc
No external tirm source.
-
enumerator kSCG_SircTrimSrcSysOsc
System OSC.
-
enumerator kNoTrimSrc
-
enum _scg_sosc_monitor_mode
SCG system OSC monitor mode.
Values:
-
enumerator kSCG_SysOscMonitorDisable
Monitor disabled.
-
enumerator kSCG_SysOscMonitorInt
Interrupt when the SOSC error is detected.
-
enumerator kSCG_SysOscMonitorReset
Reset when the SOSC error is detected.
-
enumerator kSCG_SysOscMonitorDisable
-
enum _clke_16k
firc trim source.
Values:
-
enumerator kCLKE_16K_SYSTEM
To VSYS domain.
-
enumerator kCLKE_16K_COREMAIN
To VDD_CORE domain.
-
enumerator kCLKE_16K_SYSTEM
-
typedef enum _clock_ip_name clock_ip_name_t
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.
-
typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.
-
typedef enum _clock_select_name clock_select_name_t
Clock name used to get clock frequency.
-
typedef enum _clock_attach_id clock_attach_id_t
The enumerator of clock attach Id.
-
typedef enum _clock_div_name clock_div_name_t
Clock dividers.
-
typedef enum _firc_trim_mode firc_trim_mode_t
firc trim mode.
-
typedef enum _firc_trim_src firc_trim_src_t
firc trim source.
-
typedef struct _firc_trim_config firc_trim_config_t
firc trim configuration.
-
typedef enum _sirc_trim_mode sirc_trim_mode_t
sirc trim mode.
-
typedef enum _sirc_trim_src sirc_trim_src_t
sirc trim source.
-
typedef struct _sirc_trim_config sirc_trim_config_t
sirc trim configuration.
-
typedef enum _scg_sosc_monitor_mode scg_sosc_monitor_mode_t
SCG system OSC monitor mode.
-
typedef enum _clke_16k clke_16k_t
firc trim source.
-
static inline void CLOCK_EnableClock(clock_ip_name_t clk)
Enable the clock for specific IP.
- Parameters:
clk – : Clock to be enabled.
- Returns:
Nothing
-
static inline void CLOCK_DisableClock(clock_ip_name_t clk)
Disable the clock for specific IP.
- Parameters:
clk – : Clock to be Disabled.
- Returns:
Nothing
-
void CLOCK_AttachClk(clock_attach_id_t connection)
Configure the clock selection muxes.
- Parameters:
connection – : Clock to be configured.
- Returns:
Nothing
-
clock_attach_id_t CLOCK_GetClockAttachId(clock_attach_id_t connection)
Get the actual clock attach id. This fuction uses the offset in input attach id, then it reads the actual source value in the register and combine the offset to obtain an actual attach id.
- Parameters:
connection – : Clock attach id to get.
- Returns:
Clock source value.
-
void CLOCK_SetClockSelect(clock_select_name_t sel_name, uint32_t value)
Set the clock select value. This fuction set the peripheral clock select value.
- Parameters:
sel_name – : Clock select.
value – : value to be set.
-
uint32_t CLOCK_GetClockSelect(clock_select_name_t sel_name)
Get the clock select value. This fuction get the peripheral clock select value.
- Parameters:
sel_name – : Clock select.
- Returns:
Clock source value.
-
void CLOCK_SetClockDiv(clock_div_name_t div_name, uint32_t value)
Setup peripheral clock dividers.
- Parameters:
div_name – : Clock divider name
value – : Value to be divided
- Returns:
Nothing
-
uint32_t CLOCK_GetClockDiv(clock_div_name_t div_name)
Get peripheral clock dividers.
- Parameters:
div_name – : Clock divider name
- Returns:
peripheral clock dividers
-
void CLOCK_HaltClockDiv(clock_div_name_t div_name)
Halt peripheral clock dividers.
- Parameters:
div_name – : Clock divider name
- Returns:
Nothing
-
status_t CLOCK_SetupFROHFClocking(uint32_t iFreq)
Initialize the FROHF to given frequency (48,64,96,192). This function turns on FIRC and select the given frequency as the source of fro_hf.
- Parameters:
iFreq – : Desired frequency.
- Returns:
returns success or fail status.
-
status_t CLOCK_SetupFRO12MClocking(void)
Initialize the FRO12M. This function turns on FRO12M.
- Returns:
returns success or fail status.
-
status_t CLOCK_SetupFRO16KClocking(uint8_t clk_16k_enable_mask)
Initialize the FRO16K. This function turns on FRO16K.
- Parameters:
clk_16k_enable_mask – 0-3 0b00: disable both clk_16k0 and clk_16k1 0b01: only enable clk_16k0 0b10: only enable clk_16k1 0b11: enable both clk_16k0 and clk_16k1
- Returns:
returns success or fail status.
-
status_t CLOCK_SetupExtClocking(uint32_t iFreq)
Initialize the external osc clock to given frequency.
- Parameters:
iFreq – : Desired frequency (must be equal to exact rate in Hz)
- Returns:
returns success or fail status.
-
status_t CLOCK_SetupExtRefClocking(uint32_t iFreq)
Initialize the external reference clock to given frequency.
- Parameters:
iFreq – : Desired frequency (must be equal to exact rate in Hz)
- Returns:
returns success or fail status.
-
uint32_t CLOCK_GetFreq(clock_name_t clockName)
Return Frequency of selected clock.
- Returns:
Frequency of selected clock
-
uint32_t CLOCK_GetCoreSysClkFreq(void)
Return Frequency of core.
- Returns:
Frequency of the core
-
uint32_t CLOCK_GetI3CFClkFreq(void)
Return Frequency of I3C FCLK.
- Returns:
Frequency of I3C FCLK.
-
uint32_t CLOCK_GetCTimerClkFreq(uint32_t id)
Return Frequency of CTimer functional Clock.
- Returns:
Frequency of CTimer functional Clock
-
uint32_t CLOCK_GetLpi2cClkFreq(uint32_t id)
Return Frequency of LPI2C0 functional Clock.
- Returns:
Frequency of LPI2C0 functional Clock
-
uint32_t CLOCK_GetLpspiClkFreq(uint32_t id)
Return Frequency of LPSPI functional Clock.
- Returns:
Frequency of LPSPI functional Clock
-
uint32_t CLOCK_GetLpuartClkFreq(uint32_t id)
Return Frequency of LPUART functional Clock.
- Returns:
Frequency of LPUART functional Clock
-
uint32_t CLOCK_GetLptmrClkFreq(void)
Return Frequency of LPTMR functional Clock.
- Returns:
Frequency of LPTMR functional Clock
-
uint32_t CLOCK_GetOstimerClkFreq(void)
Return Frequency of OSTIMER.
- Returns:
Frequency of OSTIMER Clock
-
uint32_t CLOCK_GetAdcClkFreq(uint32_t id)
Return Frequency of Adc Clock.
- Returns:
Frequency of Adc.
-
uint32_t CLOCK_GetDacClkFreq(void)
Return Frequency of Dac Clock.
- Returns:
Frequency of Dac.
-
uint32_t CLOCK_GetCmpFClkFreq(uint32_t id)
Return Frequency of CMP Function Clock.
- Returns:
Frequency of CMP Function.
-
uint32_t CLOCK_GetCmpRRClkFreq(uint32_t id)
Return Frequency of CMP Round Robin Clock.
- Returns:
Frequency of CMP Round Robin.
-
uint32_t CLOCK_GetTraceClkFreq(void)
Return Frequency of Trace Clock.
- Returns:
Frequency of Trace.
-
uint32_t CLOCK_GetClkoutClkFreq(void)
Return Frequency of CLKOUT Clock.
- Returns:
Frequency of CLKOUT.
-
uint32_t CLOCK_GetSystickClkFreq(void)
Return Frequency of Systick Clock.
- Returns:
Frequency of Systick.
-
uint32_t CLOCK_GetWwdtClkFreq(void)
brief Return Frequency of Systick Clock return Frequency of Systick.
-
uint32_t CLOCK_GetFlexioClkFreq(void)
Return Frequency of FLEXIO FCLK.
- Returns:
Frequency of FLEXIO FCLK.
-
uint32_t CLOCK_GetFlexcanClkFreq(void)
Return Frequency of FlexCAN FCLK.
- Returns:
Frequency of FlexCAN FCLK.
-
status_t CLOCK_FROHFTrimConfig(firc_trim_config_t config)
Setup FROHF trim.
- Parameters:
config – : FROHF trim value
- Returns:
returns success or fail status.
-
status_t CLOCK_FRO12MTrimConfig(sirc_trim_config_t config)
Setup FRO 12M trim.
- Parameters:
config – : FRO 12M trim value
- Returns:
returns success or fail status.
-
void CLOCK_SetSysOscMonitorMode(scg_sosc_monitor_mode_t mode)
Sets the system OSC monitor mode.
This function sets the system OSC monitor mode. The mode can be disabled, it can generate an interrupt when the error is disabled, or reset when the error is detected.
- Parameters:
mode – Monitor mode to set.
-
bool CLOCK_EnableUsbfsClock(void)
brief Enable USB FS clock. Enable USB Full Speed clock.
-
FSL_CLOCK_DRIVER_VERSION
CLOCK driver version 2.0.0.
-
FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
Configure whether driver controls clock.
When set to 0, peripheral drivers will enable clock in initialize function and disable clock in de-initialize function. When set to 1, peripheral driver will not control the clock, application could control the clock out of the driver.
Note
All drivers share this feature switcher. If it is set to 1, application should handle clock enable and disable for all drivers.
-
SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
-
CLK_GATE_REG_OFFSET(value)
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.
-
CLK_GATE_BIT_SHIFT(value)
-
REG_PWM0SUBCTL
-
REG_PWM1SUBCTL
-
AOI_CLOCKS
Clock ip name array for AOI.
-
CRC_CLOCKS
Clock ip name array for CRC.
-
CTIMER_CLOCKS
Clock ip name array for CTIMER.
-
LPDAC_CLOCKS
Clock ip name array for DAC.
-
DMA_CLOCKS
Clock ip name array for DMA.
-
EDMA_CLOCKS
Clock gate name array for EDMA.
-
ERM_CLOCKS
Clock ip name array for ERM.
-
EIM_CLOCKS
Clock ip name array for EIM.
-
FLEXCAN_CLOCKS
Clock ip name array for FLEXCAN.
-
FLEXIO_CLOCKS
Clock ip name array for FLEXIO.
-
FREQME_CLOCKS
Clock ip name array for FREQME.
-
GPIO_CLOCKS
Clock ip name array for GPIO.
-
I3C_CLOCKS
Clock ip name array for I3C.
-
INPUTMUX_CLOCKS
Clock ip name array for INPUTMUX.
-
LPCMP_CLOCKS
Clock ip name array for GPIO.
-
LPADC_CLOCKS
Clock ip name array for LPADC.
-
LPUART_CLOCKS
Clock ip name array for LPUART.
-
LPI2C_CLOCKS
Clock ip name array for LPI2C.
-
LPSPI_CLOCKS
Clock ip name array for LSPI.
-
MTR_CLOCKS
Clock ip name array for MTR.
-
OSTIMER_CLOCKS
Clock ip name array for OSTIMER.
-
OPAMP_CLOCKS
Clock ip name array for DAC.
-
PWM_CLOCKS
Clock ip name array for PWM.
-
QDC_CLOCKS
Clock ip name array for QDC.
-
UTICK_CLOCKS
Clock ip name array for UTICK.
-
WWDT_CLOCKS
Clock ip name array for WWDT.
-
BUS_CLK
Peripherals clock source definition.
-
CLK_ATTACH_REG_OFFSET(value)
Clock Mux Switches The encoding is as follows each connection identified is 32bits wide while 24bits are valuable starting from LSB upwards.
[4 bits for choice, 0 means invalid choice] [8 bits mux ID]*
-
CLK_ATTACH_CLK_SEL(value)
-
CLK_ATTACH_MUX(reg, sel)
-
firc_trim_mode_t trimMode
Trim mode.
-
firc_trim_src_t trimSrc
Trim source.
-
uint16_t trimDiv
Divider of SOSC.
-
uint8_t trimCoar
Trim coarse value; Irrelevant if trimMode is kSCG_TrimUpdate.
-
uint8_t trimFine
Trim fine value; Irrelevant if trimMode is kSCG_TrimUpdate.
-
sirc_trim_mode_t trimMode
Trim mode.
-
sirc_trim_src_t trimSrc
Trim source.
-
uint16_t trimDiv
Divider of SOSC.
-
uint8_t cltrim
Trim coarse value; Irrelevant if trimMode is kSCG_TrimUpdate.
-
uint8_t ccotrim
Trim fine value; Irrelevant if trimMode is kSCG_TrimUpdate.
-
struct _firc_trim_config
- #include <fsl_clock.h>
firc trim configuration.
-
struct _sirc_trim_config
- #include <fsl_clock.h>
sirc trim configuration.
CRC: Cyclic Redundancy Check Driver
-
FSL_CRC_DRIVER_VERSION
CRC driver version. Version 2.0.4.
Current version: 2.0.4
Change log:
Version 2.0.4
Release peripheral from reset if necessary in init function.
Version 2.0.3
Fix MISRA issues
Version 2.0.2
Fix MISRA issues
Version 2.0.1
move DATA and DATALL macro definition from header file to source file
-
enum _crc_bits
CRC bit width.
Values:
-
enumerator kCrcBits16
Generate 16-bit CRC code
-
enumerator kCrcBits32
Generate 32-bit CRC code
-
enumerator kCrcBits16
-
enum _crc_result
CRC result type.
Values:
-
enumerator kCrcFinalChecksum
CRC data register read value is the final checksum. Reflect out and final xor protocol features are applied.
-
enumerator kCrcIntermediateChecksum
CRC data register read value is intermediate checksum (raw value). Reflect out and final xor protocol feature are not applied. Intermediate checksum can be used as a seed for CRC_Init() to continue adding data to this checksum.
-
enumerator kCrcFinalChecksum
-
typedef enum _crc_bits crc_bits_t
CRC bit width.
-
typedef enum _crc_result crc_result_t
CRC result type.
-
typedef struct _crc_config crc_config_t
CRC protocol configuration.
This structure holds the configuration for the CRC protocol.
-
void CRC_Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.
This function enables the clock gate in the SIM module for the CRC peripheral. It also configures the CRC module and starts a checksum computation by writing the seed.
- Parameters:
base – CRC peripheral address.
config – CRC module configuration structure.
-
static inline void CRC_Deinit(CRC_Type *base)
Disables the CRC peripheral module.
This function disables the clock gate in the SIM module for the CRC peripheral.
- Parameters:
base – CRC peripheral address.
-
void CRC_GetDefaultConfig(crc_config_t *config)
Loads default values to the CRC protocol configuration structure.
Loads default values to the CRC protocol configuration structure. The default values are as follows.
config->polynomial = 0x1021; config->seed = 0xFFFF; config->reflectIn = false; config->reflectOut = false; config->complementChecksum = false; config->crcBits = kCrcBits16; config->crcResult = kCrcFinalChecksum;
- Parameters:
config – CRC protocol configuration structure.
-
void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.
Writes input data buffer bytes to the CRC data register. The configured type of transpose is applied.
- Parameters:
base – CRC peripheral address.
data – Input data stream, MSByte in data[0].
dataSize – Size in bytes of the input data buffer.
-
uint32_t CRC_Get32bitResult(CRC_Type *base)
Reads the 32-bit checksum from the CRC module.
Reads the CRC data register (either an intermediate or the final checksum). The configured type of transpose and complement is applied.
- Parameters:
base – CRC peripheral address.
- Returns:
An intermediate or the final 32-bit checksum, after configured transpose and complement operations.
-
uint16_t CRC_Get16bitResult(CRC_Type *base)
Reads a 16-bit checksum from the CRC module.
Reads the CRC data register (either an intermediate or the final checksum). The configured type of transpose and complement is applied.
- Parameters:
base – CRC peripheral address.
- Returns:
An intermediate or the final 16-bit checksum, after configured transpose and complement operations.
-
CRC_DRIVER_USE_CRC16_CCIT_FALSE_AS_DEFAULT
Default configuration structure filled by CRC_GetDefaultConfig(). Use CRC16-CCIT-FALSE as defeault.
-
struct _crc_config
- #include <fsl_crc.h>
CRC protocol configuration.
This structure holds the configuration for the CRC protocol.
Public Members
-
uint32_t polynomial
CRC Polynomial, MSBit first. Example polynomial: 0x1021 = 1_0000_0010_0001 = x^12+x^5+1
-
uint32_t seed
Starting checksum value
-
bool reflectIn
Reflect bits on input.
-
bool reflectOut
Reflect bits on output.
-
bool complementChecksum
True if the result shall be complement of the actual checksum.
-
crc_bits_t crcBits
Selects 16- or 32- bit CRC protocol.
-
crc_result_t crcResult
Selects final or intermediate checksum return from CRC_Get16bitResult() or CRC_Get32bitResult()
-
uint32_t polynomial
CTIMER: Standard counter/timers
-
void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)
Ungates the clock and configures the peripheral for basic operation.
Note
This API should be called at the beginning of the application before using the driver.
- Parameters:
base – Ctimer peripheral base address
config – Pointer to the user configuration structure.
-
void CTIMER_Deinit(CTIMER_Type *base)
Gates the timer clock.
- Parameters:
base – Ctimer peripheral base address
-
void CTIMER_GetDefaultConfig(ctimer_config_t *config)
Fills in the timers configuration structure with the default settings.
The default values are:
config->mode = kCTIMER_TimerMode; config->input = kCTIMER_Capture_0; config->prescale = 0;
- Parameters:
config – Pointer to the user configuration structure.
-
status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint32_t pwmPeriod, uint32_t pulsePeriod, bool enableInt)
Configures the PWM signal parameters.
Enables PWM mode on the match channel passed in and will then setup the match value and other match parameters to generate a PWM signal. This function can manually assign the specified channel to set the PWM cycle.
Note
When setting PWM output from multiple output pins, all should use the same PWM period
- Parameters:
base – Ctimer peripheral base address
pwmPeriodChannel – Specify the channel to control the PWM period
matchChannel – Match pin to be used to output the PWM signal
pwmPeriod – PWM period match value
pulsePeriod – Pulse width match value
enableInt – Enable interrupt when the timer value reaches the match value of the PWM pulse, if it is 0 then no interrupt will be generated.
- Returns:
kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeriodChannel; this channel is reserved to set the PWM cycle If PWM pulse width register value is larger than 0xFFFFFFFF.
-
status_t CTIMER_SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint8_t dutyCyclePercent, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz, bool enableInt)
Configures the PWM signal parameters.
Enables PWM mode on the match channel passed in and will then setup the match value and other match parameters to generate a PWM signal. This function can manually assign the specified channel to set the PWM cycle.
Note
When setting PWM output from multiple output pins, all should use the same PWM frequency. Please use CTIMER_SetupPwmPeriod to set up the PWM with high resolution.
- Parameters:
base – Ctimer peripheral base address
pwmPeriodChannel – Specify the channel to control the PWM period
matchChannel – Match pin to be used to output the PWM signal
dutyCyclePercent – PWM pulse width; the value should be between 0 to 100
pwmFreq_Hz – PWM signal frequency in Hz
srcClock_Hz – Timer counter clock in Hz
enableInt – Enable interrupt when the timer value reaches the match value of the PWM pulse, if it is 0 then no interrupt will be generated.
-
static inline void CTIMER_UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t matchChannel, uint32_t pulsePeriod)
Updates the pulse period of an active PWM signal.
- Parameters:
base – Ctimer peripheral base address
matchChannel – Match pin to be used to output the PWM signal
pulsePeriod – New PWM pulse width match value
-
status_t CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint8_t dutyCyclePercent)
Updates the duty cycle of an active PWM signal.
Note
Please use CTIMER_SetupPwmPeriod to update the PWM with high resolution. This function can manually assign the specified channel to set the PWM cycle.
- Parameters:
base – Ctimer peripheral base address
pwmPeriodChannel – Specify the channel to control the PWM period
matchChannel – Match pin to be used to output the PWM signal
dutyCyclePercent – New PWM pulse width; the value should be between 0 to 100
- Returns:
kStatus_Success on success kStatus_Fail If PWM pulse width register value is larger than 0xFFFFFFFF.
-
static inline void CTIMER_EnableInterrupts(CTIMER_Type *base, uint32_t mask)
Enables the selected Timer interrupts.
- Parameters:
base – Ctimer peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration ctimer_interrupt_enable_t
-
static inline void CTIMER_DisableInterrupts(CTIMER_Type *base, uint32_t mask)
Disables the selected Timer interrupts.
- Parameters:
base – Ctimer peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration ctimer_interrupt_enable_t
-
static inline uint32_t CTIMER_GetEnabledInterrupts(CTIMER_Type *base)
Gets the enabled Timer interrupts.
- Parameters:
base – Ctimer peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration ctimer_interrupt_enable_t
-
static inline uint32_t CTIMER_GetStatusFlags(CTIMER_Type *base)
Gets the Timer status flags.
- Parameters:
base – Ctimer peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration ctimer_status_flags_t
-
static inline void CTIMER_ClearStatusFlags(CTIMER_Type *base, uint32_t mask)
Clears the Timer status flags.
- Parameters:
base – Ctimer peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration ctimer_status_flags_t
-
static inline void CTIMER_StartTimer(CTIMER_Type *base)
Starts the Timer counter.
- Parameters:
base – Ctimer peripheral base address
-
static inline void CTIMER_StopTimer(CTIMER_Type *base)
Stops the Timer counter.
- Parameters:
base – Ctimer peripheral base address
-
FSL_CTIMER_DRIVER_VERSION
Version 2.3.3
-
enum _ctimer_capture_channel
List of Timer capture channels.
Values:
-
enumerator kCTIMER_Capture_0
Timer capture channel 0
-
enumerator kCTIMER_Capture_1
Timer capture channel 1
-
enumerator kCTIMER_Capture_3
Timer capture channel 3
-
enumerator kCTIMER_Capture_0
-
enum _ctimer_capture_edge
List of capture edge options.
Values:
-
enumerator kCTIMER_Capture_RiseEdge
Capture on rising edge
-
enumerator kCTIMER_Capture_FallEdge
Capture on falling edge
-
enumerator kCTIMER_Capture_BothEdge
Capture on rising and falling edge
-
enumerator kCTIMER_Capture_RiseEdge
-
enum _ctimer_match
List of Timer match registers.
Values:
-
enumerator kCTIMER_Match_0
Timer match register 0
-
enumerator kCTIMER_Match_1
Timer match register 1
-
enumerator kCTIMER_Match_2
Timer match register 2
-
enumerator kCTIMER_Match_3
Timer match register 3
-
enumerator kCTIMER_Match_0
-
enum _ctimer_external_match
List of external match.
Values:
-
enumerator kCTIMER_External_Match_0
External match 0
-
enumerator kCTIMER_External_Match_1
External match 1
-
enumerator kCTIMER_External_Match_2
External match 2
-
enumerator kCTIMER_External_Match_3
External match 3
-
enumerator kCTIMER_External_Match_0
-
enum _ctimer_match_output_control
List of output control options.
Values:
-
enumerator kCTIMER_Output_NoAction
No action is taken
-
enumerator kCTIMER_Output_Clear
Clear the EM bit/output to 0
-
enumerator kCTIMER_Output_Set
Set the EM bit/output to 1
-
enumerator kCTIMER_Output_Toggle
Toggle the EM bit/output
-
enumerator kCTIMER_Output_NoAction
-
enum _ctimer_timer_mode
List of Timer modes.
Values:
-
enumerator kCTIMER_TimerMode
-
enumerator kCTIMER_IncreaseOnRiseEdge
-
enumerator kCTIMER_IncreaseOnFallEdge
-
enumerator kCTIMER_IncreaseOnBothEdge
-
enumerator kCTIMER_TimerMode
-
enum _ctimer_interrupt_enable
List of Timer interrupts.
Values:
-
enumerator kCTIMER_Match0InterruptEnable
Match 0 interrupt
-
enumerator kCTIMER_Match1InterruptEnable
Match 1 interrupt
-
enumerator kCTIMER_Match2InterruptEnable
Match 2 interrupt
-
enumerator kCTIMER_Match3InterruptEnable
Match 3 interrupt
-
enumerator kCTIMER_Match0InterruptEnable
-
enum _ctimer_status_flags
List of Timer flags.
Values:
-
enumerator kCTIMER_Match0Flag
Match 0 interrupt flag
-
enumerator kCTIMER_Match1Flag
Match 1 interrupt flag
-
enumerator kCTIMER_Match2Flag
Match 2 interrupt flag
-
enumerator kCTIMER_Match3Flag
Match 3 interrupt flag
-
enumerator kCTIMER_Match0Flag
-
enum ctimer_callback_type_t
Callback type when registering for a callback. When registering a callback an array of function pointers is passed the size could be 1 or 8, the callback type will tell that.
Values:
-
enumerator kCTIMER_SingleCallback
Single Callback type where there is only one callback for the timer. based on the status flags different channels needs to be handled differently
-
enumerator kCTIMER_MultipleCallback
Multiple Callback type where there can be 8 valid callbacks, one per channel. for both match/capture
-
enumerator kCTIMER_SingleCallback
-
typedef enum _ctimer_capture_channel ctimer_capture_channel_t
List of Timer capture channels.
-
typedef enum _ctimer_capture_edge ctimer_capture_edge_t
List of capture edge options.
-
typedef enum _ctimer_match ctimer_match_t
List of Timer match registers.
-
typedef enum _ctimer_external_match ctimer_external_match_t
List of external match.
-
typedef enum _ctimer_match_output_control ctimer_match_output_control_t
List of output control options.
-
typedef enum _ctimer_timer_mode ctimer_timer_mode_t
List of Timer modes.
-
typedef enum _ctimer_interrupt_enable ctimer_interrupt_enable_t
List of Timer interrupts.
-
typedef enum _ctimer_status_flags ctimer_status_flags_t
List of Timer flags.
-
typedef void (*ctimer_callback_t)(uint32_t flags)
-
typedef struct _ctimer_match_config ctimer_match_config_t
Match configuration.
This structure holds the configuration settings for each match register.
-
typedef struct _ctimer_config ctimer_config_t
Timer configuration structure.
This structure holds the configuration settings for the Timer peripheral. To initialize this structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.
The configuration structure can be made constant so as to reside in flash.
-
void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const ctimer_match_config_t *config)
Setup the match register.
User configuration is used to setup the match value and action to be taken when a match occurs.
- Parameters:
base – Ctimer peripheral base address
matchChannel – Match register to configure
config – Pointer to the match configuration structure
-
uint32_t CTIMER_GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
Get the status of output match.
This function gets the status of output MAT, whether or not this output is connected to a pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 = LOW. 1 = HIGH.
- Parameters:
base – Ctimer peripheral base address
matchChannel – External match channel, user can obtain the status of multiple match channels at the same time by using the logic of “|” enumeration ctimer_external_match_t
- Returns:
The mask of external match channel status flags. Users need to use the _ctimer_external_match type to decode the return variables.
-
void CTIMER_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, ctimer_capture_edge_t edge, bool enableInt)
Setup the capture.
- Parameters:
base – Ctimer peripheral base address
capture – Capture channel to configure
edge – Edge on the channel that will trigger a capture
enableInt – Flag to enable channel interrupts, if enabled then the registered call back is called upon capture
-
static inline uint32_t CTIMER_GetTimerCountValue(CTIMER_Type *base)
Get the timer count value from TC register.
- Parameters:
base – Ctimer peripheral base address.
- Returns:
return the timer count value.
-
void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func, ctimer_callback_type_t cb_type)
Register callback.
- Parameters:
base – Ctimer peripheral base address
cb_func – callback function
cb_type – callback function type, singular or multiple
-
static inline void CTIMER_Reset(CTIMER_Type *base)
Reset the counter.
The timer counter and prescale counter are reset on the next positive edge of the APB clock.
- Parameters:
base – Ctimer peripheral base address
-
static inline void CTIMER_SetPrescale(CTIMER_Type *base, uint32_t prescale)
Setup the timer prescale value.
Specifies the maximum value for the Prescale Counter.
- Parameters:
base – Ctimer peripheral base address
prescale – Prescale value
-
static inline uint32_t CTIMER_GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel_t capture)
Get capture channel value.
Get the counter/timer value on the corresponding capture channel.
- Parameters:
base – Ctimer peripheral base address
capture – Select capture channel
- Returns:
The timer count capture value.
-
static inline void CTIMER_EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t match, bool enable)
Enable reset match channel.
Set the specified match channel reset operation.
- Parameters:
base – Ctimer peripheral base address
match – match channel used
enable – Enable match channel reset operation.
-
static inline void CTIMER_EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t match, bool enable)
Enable stop match channel.
Set the specified match channel stop operation.
- Parameters:
base – Ctimer peripheral base address.
match – match channel used.
enable – Enable match channel stop operation.
-
static inline void CTIMER_EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t match, bool enable)
Enable reload channel falling edge.
Enable the specified match channel reload match shadow value.
- Parameters:
base – Ctimer peripheral base address.
match – match channel used.
enable – Enable .
-
static inline void CTIMER_EnableRisingEdgeCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, bool enable)
Enable capture channel rising edge.
Sets the specified capture channel for rising edge capture.
- Parameters:
base – Ctimer peripheral base address.
capture – capture channel used.
enable – Enable rising edge capture.
-
static inline void CTIMER_EnableFallingEdgeCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, bool enable)
Enable capture channel falling edge.
Sets the specified capture channel for falling edge capture.
- Parameters:
base – Ctimer peripheral base address.
capture – capture channel used.
enable – Enable falling edge capture.
-
static inline void CTIMER_SetShadowValue(CTIMER_Type *base, ctimer_match_t match, uint32_t matchvalue)
Set the specified match shadow channel.
- Parameters:
base – Ctimer peripheral base address.
match – match channel used.
matchvalue – Reload the value of the corresponding match register.
-
struct _ctimer_match_config
- #include <fsl_ctimer.h>
Match configuration.
This structure holds the configuration settings for each match register.
Public Members
-
uint32_t matchValue
This is stored in the match register
-
bool enableCounterReset
true: Match will reset the counter false: Match will not reser the counter
-
bool enableCounterStop
true: Match will stop the counter false: Match will not stop the counter
-
ctimer_match_output_control_t outControl
Action to be taken on a match on the EM bit/output
-
bool outPinInitState
Initial value of the EM bit/output
-
bool enableInterrupt
true: Generate interrupt upon match false: Do not generate interrupt on match
-
uint32_t matchValue
-
struct _ctimer_config
- #include <fsl_ctimer.h>
Timer configuration structure.
This structure holds the configuration settings for the Timer peripheral. To initialize this structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.
The configuration structure can be made constant so as to reside in flash.
Public Members
-
ctimer_timer_mode_t mode
Timer mode
-
ctimer_capture_channel_t input
Input channel to increment the timer, used only in timer modes that rely on this input signal to increment TC
-
uint32_t prescale
Prescale value
-
ctimer_timer_mode_t mode
DAC: Digital-to-Analog Converter Driver
-
void DAC_Init(LPDAC_Type *base, const dac_config_t *config)
Initialize the DAC module with common configuartion.
The clock will be enabled in this function.
- Parameters:
base – DAC peripheral base address.
config – Pointer to configuration structure.
-
void DAC_GetDefaultConfig(dac_config_t *config)
Get the default settings for initialization’s configuration.
This function initializes the user configuration structure to a default value. The default values are:
config->fifoWatermarkLevel = 0U; config->fifoTriggerMode = kDAC_FIFOTriggerByHardwareMode; config->fifoWorkMode = kDAC_FIFODisabled; config->enableLowPowerMode = false; config->referenceVoltageSource = kDAC_ReferenceVoltageSourceAlt1;
- Parameters:
config – Pointer to configuration structure.
-
void DAC_Deinit(LPDAC_Type *base)
De-initialize the DAC module.
The clock will be disabled in this function.
- Parameters:
base – DAC peripheral base address.
-
static inline void DAC_SetReset(LPDAC_Type *base, uint32_t mask)
Assert the reset control to part hardware.
This function is to assert the reset control to part hardware. Responding part hardware would remain reset untill cleared by software.
- Parameters:
base – DAC peripheral base address.
mask – The reset control mask, see to _dac_reset_control_t.
-
static inline void DAC_ClearReset(LPDAC_Type *base, uint32_t mask)
Clear the reset control to part hardware.
This function is to clear the reset control to part hardware. Responding part hardware would work after the reset control is cleared by software.
- Parameters:
base – DAC peripheral base address.
mask – The reset control mask, see to _dac_reset_control_t.
-
static inline void DAC_Enable(LPDAC_Type *base, bool enable)
Enable the DAC hardware system or not.
This function is to start the Programmable Reference Generator operation or not.
- Parameters:
base – DAC peripheral base address.
enable – Assertion of indicated event.
-
static inline void DAC_EnableInterrupts(LPDAC_Type *base, uint32_t mask)
Enable the interrupts.
- Parameters:
base – DAC peripheral base address.
mask – Mask value of indicated interrupt events. See to _dac_interrupt_enable.
-
static inline void DAC_DisableInterrupts(LPDAC_Type *base, uint32_t mask)
Disable the interrupts.
- Parameters:
base – DAC peripheral base address.
mask – Mask value of indicated interrupt events. See to _dac_interrupt_enable.
-
static inline void DAC_EnableDMA(LPDAC_Type *base, uint32_t mask, bool enable)
Enable the DMA switchers or not.
- Parameters:
base – DAC peripheral base address.
mask – Mask value of indicated DMA requeset. See to _dac_dma_enable.
enable – Enable the DMA or not.
-
static inline uint32_t DAC_GetStatusFlags(LPDAC_Type *base)
Get status flags of DAC module.
- Parameters:
base – DAC peripheral base address.
- Returns:
Mask value of status flags. See to _dac_status_flags.
-
static inline void DAC_ClearStatusFlags(LPDAC_Type *base, uint32_t flags)
Clear status flags of DAC module.
- Parameters:
base – DAC peripheral base address.
flags – Mask value of status flags to be cleared. See to _dac_status_flags.
-
static inline void DAC_SetData(LPDAC_Type *base, uint32_t value)
Set data into the entry of FIFO buffer.
- Parameters:
base – DAC peripheral base address.
value – Setting value into FIFO buffer.
-
static inline uint32_t DAC_GetFIFOWritePointer(LPDAC_Type *base)
Get the value of the FIFO write pointer.
- Parameters:
base – DAC peripheral base address.
- Returns:
Current value of the FIFO write pointer.
-
static inline uint32_t DAC_GetFIFOReadPointer(LPDAC_Type *base)
Get the value of the FIFO read pointer.
- Parameters:
base – DAC peripheral base address.
- Returns:
Current value of the FIFO read pointer.
-
static inline void DAC_DoSoftwareTriggerFIFO(LPDAC_Type *base)
Do software trigger to FIFO when in software mode.
- Parameters:
base – DAC peripheral base address.
-
FSL_DAC_DRIVER_VERSION
DAC driver version 2.1.2.
DAC reset control.
Values:
-
enumerator kDAC_ResetFIFO
Resets the FIFO pointers and flags.
-
enumerator kDAC_ResetLogic
Resets all DAC registers and internal logic.
-
enumerator kDAC_ResetFIFO
DAC interrupts.
Values:
-
enumerator kDAC_FIFOFullInterruptEnable
FIFO full interrupt enable.
-
enumerator kDAC_FIFOEmptyInterruptEnable
FIFO empty interrupt enable.
-
enumerator kDAC_FIFOWatermarkInterruptEnable
FIFO watermark interrupt enable.
-
enumerator kDAC_SwingBackInterruptEnable
Swing back one cycle complete interrupt enable.
-
enumerator kDAC_FIFOOverflowInterruptEnable
FIFO overflow interrupt enable.
-
enumerator kDAC_FIFOUnderflowInterruptEnable
FIFO underflow interrupt enable.
-
enumerator kDAC_PeriodTriggerCompleteInterruptEnable
Period trigger mode conversion complete interrupt enable
-
enumerator kDAC_FIFOFullInterruptEnable
DAC DMA switchers.
Values:
-
enumerator kDAC_FIFOEmptyDMAEnable
FIFO empty DMA enable.
-
enumerator kDAC_FIFOWatermarkDMAEnable
FIFO watermark DMA enable.
-
enumerator kDAC_FIFOEmptyDMAEnable
DAC status flags.
Values:
-
enumerator kDAC_FIFOUnderflowFlag
This flag means that there is a new trigger after the buffer is empty. The FIFO read pointer will not increase in this case and the data sent to DAC analog conversion will not changed. This flag is cleared by writing a 1 to it.
-
enumerator kDAC_FIFOOverflowFlag
This flag indicates that data is intended to write into FIFO after the buffer is full. The writer pointer will not increase in this case. The extra data will not be written into the FIFO. This flag is cleared by writing a 1 to it.
-
enumerator kDAC_FIFOSwingBackFlag
This flag indicates that the DAC has completed one period of conversion in swing back mode. It means that the read pointer has increased to the top (write pointer) once and then decreased to zero once. For example, after three data is written to FIFO, the writer pointer is now 3. Then, if continually triggered, the read pointer will swing like: 0-1-2-1-0-1-2-, and so on. After the fourth trigger, the flag is set. This flag is cleared by writing a 1 to it.
-
enumerator kDAC_FIFOWatermarkFlag
This field is set if the remaining data in FIFO is less than or equal to the setting value of wartermark. By writing data into FIFO by DMA or CPU, this flag is cleared automatically when the data in FIFO is more than the setting value of watermark.
-
enumerator kDAC_FIFOEmptyFlag
FIFO empty flag.
-
enumerator kDAC_FIFOFullFlag
FIFO full flag.
-
enumerator kDAC_PeriodTriggerCompleteFlag
Period trigger mode conversion complete flag.
-
enumerator kDAC_FIFOUnderflowFlag
-
enum _dac_fifo_trigger_mode
DAC FIFO trigger mode.
Values:
-
enumerator kDAC_FIFOTriggerByHardwareMode
Buffer would be triggered by hardware.
-
enumerator kDAC_FIFOTriggerBySoftwareMode
Buffer would be triggered by software.
-
enumerator kDAC_FIFOTriggerByHardwareMode
-
enum _dac_fifo_work_mode
DAC FIFO work mode.
Values:
-
enumerator kDAC_FIFODisabled
FIFO mode is disabled and buffer mode is enabled. Any data written to DATA[DATA] goes to buffer then goes to conversion.
-
enumerator kDAC_FIFOWorkAsNormalMode
FIFO mode is enabled. Data will be first read from FIFO to buffer then goes to conversion.
-
enumerator kDAC_FIFOWorkAsSwingMode
In swing mode, the read pointer swings between the writer pointer and zero. That is, the trigger increases the read pointer till reach the writer pointer and decreases the read pointer till zero, and so on. The FIFO empty/full/watermark flag will not update during swing back mode.
-
enumerator kDAC_FIFOWorkAsPeriodTriggerMode
In periodic trigger mode, user only needs to send the first trigger. Then after every [PTG_PERIOD+1] RCLK cycles, DAC will be automatically triggered by internal trigger. There will be [PTG_NUM] internal triggers, thus in total [PTG_NUM+1] conversions including the first trigger sent by user. User can terminate the current conversion queue by clearing the GCR[PTGEN] bit. Then, after the current conversion is completed, the conversion is terminated and the PTGCOCO flag is set. If PCR[PTG_NUM] is set to zero, there will be infinite triggers following the first hardware/software trigger, until the GCR[PTGEN] is cleared by software. In any case, the conversion can be terminated by FIFORST/SWRST.
-
enumerator kDAC_FIFOWorkAsPeriodTriggerAndSwingMode
Periodically trigger DAC and swing back.
-
enumerator kDAC_FIFODisabled
-
enum _dac_reference_voltage_source
DAC reference voltage source.
Values:
-
enumerator kDAC_ReferenceVoltageSourceAlt1
The DAC selects VREFH_INT as the reference voltage.
-
enumerator kDAC_ReferenceVoltageSourceAlt2
The DAC selects VREFH_EXT as the reference voltage.
-
enumerator kDAC_ReferenceVoltageSourceAlt1
-
enum _dac_reference_current_source
Values:
-
enumerator kDAC_ReferenceCurrentSourcePtat
-
enumerator kDAC_ReferenceCurrentSourceZtc
-
enumerator kDAC_ReferenceCurrentSourcePtat
-
typedef enum _dac_fifo_trigger_mode dac_fifo_trigger_mode_t
DAC FIFO trigger mode.
-
typedef enum _dac_fifo_work_mode dac_fifo_work_mode_t
DAC FIFO work mode.
-
typedef enum _dac_reference_voltage_source dac_reference_voltage_source_t
DAC reference voltage source.
-
typedef enum _dac_reference_current_source dac_reference_current_source_t
-
typedef struct _dac_config dac_config_t
DAC configuration structure.
-
struct _dac_config
- #include <fsl_dac.h>
DAC configuration structure.
Public Members
-
uint32_t fifoWatermarkLevel
FIFO’s watermark, the max value can be the hardware FIFO size.
-
dac_fifo_trigger_mode_t fifoTriggerMode
Select the trigger mode for FIFO.
-
dac_fifo_work_mode_t fifoWorkMode
Select the work mode for FIFO.
-
bool enableOpampBuffer
Opamp is used as buffer.
-
bool enableLowerLowPowerMode
Enable the lower low power mode.
-
uint32_t periodicTriggerNumber
There will be ‘periodicTriggerNumber’ internal triggers following the first hardware/software trigger. So there will be ‘periodicTriggerNumber + 1’ conversions in total. If set to zero, there will be infinite triggers following the first hw/sw trigger, until the GCR[PTGEN] is cleared.
-
uint32_t periodicTriggerWidth
Control the periodic trigger frequency. There will be ‘periodicTriggerWidth + 1’ RCLK cycles between each periodic trigger. The periodic trigger frequency should be configured to not larger than the analog conversion speed.
-
uint32_t syncTime
RCLK cycles before data latch. accessible range is 0-15. It is used to configure the DAC sync cycles which is helpful to reduce glitch on the output. The sync time is (LATCH_CYC+1) RCLK cycles. User should configure this register according to the RCLK frequency. The recommended sync time is at least 40ns.
-
dac_reference_current_source_t referenceCurrentSource
Select the internal reference current source.
-
dac_reference_voltage_source_t referenceVoltageSource
Select the reference voltage source.
-
uint32_t fifoWatermarkLevel
eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver
-
void EDMA_Init(EDMA_Type *base, const edma_config_t *config)
Initializes the eDMA peripheral.
This function ungates the eDMA clock and configures the eDMA peripheral according to the configuration structure. All emda enabled request will be cleared in this function.
Note
This function enables the minor loop map feature.
- Parameters:
base – eDMA peripheral base address.
config – A pointer to the configuration structure, see “edma_config_t”.
-
void EDMA_Deinit(EDMA_Type *base)
Deinitializes the eDMA peripheral.
This function gates the eDMA clock.
- Parameters:
base – eDMA peripheral base address.
-
void EDMA_InstallTCD(EDMA_Type *base, uint32_t channel, edma_tcd_t *tcd)
Push content of TCD structure into hardware TCD register.
- Parameters:
base – EDMA peripheral base address.
channel – EDMA channel number.
tcd – Point to TCD structure.
-
void EDMA_GetDefaultConfig(edma_config_t *config)
Gets the eDMA default configuration structure.
This function sets the configuration structure to default values. The default configuration is set to the following values.
config.enableContinuousLinkMode = false; config.enableHaltOnError = true; config.enableRoundRobinArbitration = false; config.enableDebugMode = false;
- Parameters:
config – A pointer to the eDMA configuration structure.
-
void EDMA_InitChannel(EDMA_Type *base, uint32_t channel, edma_channel_config_t *channelConfig)
EDMA Channel initialization.
- Parameters:
base – eDMA4 peripheral base address.
channel – eDMA4 channel number.
channelConfig – pointer to user’s eDMA4 channel config structure, see edma_channel_config_t for detail.
-
static inline void EDMA_SetChannelMemoryAttribute(EDMA_Type *base, uint32_t channel, edma_channel_memory_attribute_t writeAttribute, edma_channel_memory_attribute_t readAttribute)
Set channel memory attribute.
- Parameters:
base – eDMA4 peripheral base address.
channel – eDMA4 channel number.
writeAttribute – Attributes associated with a write transaction.
readAttribute – Attributes associated with a read transaction.
-
static inline void EDMA_SetChannelSignExtension(EDMA_Type *base, uint32_t channel, uint8_t position)
Set channel sign extension.
- Parameters:
base – eDMA4 peripheral base address.
channel – eDMA4 channel number.
position – A non-zero value specifing the sign extend bit position. If 0, sign extension is disabled.
-
static inline void EDMA_SetChannelSwapSize(EDMA_Type *base, uint32_t channel, edma_channel_swap_size_t swapSize)
Set channel swap size.
- Parameters:
base – eDMA4 peripheral base address.
channel – eDMA4 channel number.
swapSize – Swap occurs with respect to the specified transfer size. If 0, swap is disabled.
-
static inline void EDMA_SetChannelAccessType(EDMA_Type *base, uint32_t channel, edma_channel_access_type_t channelAccessType)
Set channel access type.
- Parameters:
base – eDMA4 peripheral base address.
channel – eDMA4 channel number.
channelAccessType – eDMA4’s transactions type on the system bus when the channel is active.
-
static inline void EDMA_SetChannelMux(EDMA_Type *base, uint32_t channel, uint32_t channelRequestSource)
Set channel request source.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
channelRequestSource – eDMA hardware service request source for the channel. User need to use the dma_request_source_t type as the input parameter. Note that devices may use other enum type to express dma request source and User can fined it in SOC header or fsl_edma_soc.h.
-
static inline uint32_t EDMA_GetChannelSystemBusInformation(EDMA_Type *base, uint32_t channel)
Gets the channel identification and attribute information on the system bus interface.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
- Returns:
The mask of the channel system bus information. Users need to use the _edma_channel_sys_bus_info type to decode the return variables.
-
static inline void EDMA_EnableChannelMasterIDReplication(EDMA_Type *base, uint32_t channel, bool enable)
Set channel master ID replication.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
enable – true is enable, false is disable.
-
static inline void EDMA_SetChannelProtectionLevel(EDMA_Type *base, uint32_t channel, edma_channel_protection_level_t level)
Set channel security level.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
level – security level.
-
void EDMA_ResetChannel(EDMA_Type *base, uint32_t channel)
Sets all TCD registers to default values.
This function sets TCD registers for this channel to default values.
Note
This function must not be called while the channel transfer is ongoing or it causes unpredictable results.
Note
This function enables the auto stop request feature.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
-
void EDMA_SetTransferConfig(EDMA_Type *base, uint32_t channel, const edma_transfer_config_t *config, edma_tcd_t *nextTcd)
Configures the eDMA transfer attribute.
This function configures the transfer attribute, including source address, destination address, transfer size, address offset, and so on. It also configures the scatter gather feature if the user supplies the TCD address. Example:
edma_transfer_t config; edma_tcd_t tcd; config.srcAddr = ..; config.destAddr = ..; ... EDMA_SetTransferConfig(DMA0, channel, &config, &stcd);
Note
If nextTcd is not NULL, it means scatter gather feature is enabled and DREQ bit is cleared in the previous transfer configuration, which is set in the eDMA_ResetChannel.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
config – Pointer to eDMA transfer configuration structure.
nextTcd – Point to TCD structure. It can be NULL if users do not want to enable scatter/gather feature.
-
void EDMA_SetMinorOffsetConfig(EDMA_Type *base, uint32_t channel, const edma_minor_offset_config_t *config)
Configures the eDMA minor offset feature.
The minor offset means that the signed-extended value is added to the source address or destination address after each minor loop.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
config – A pointer to the minor offset configuration structure.
-
void EDMA_SetChannelPreemptionConfig(EDMA_Type *base, uint32_t channel, const edma_channel_Preemption_config_t *config)
Configures the eDMA channel preemption feature.
This function configures the channel preemption attribute and the priority of the channel.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number
config – A pointer to the channel preemption configuration structure.
-
void EDMA_SetChannelLink(EDMA_Type *base, uint32_t channel, edma_channel_link_type_t type, uint32_t linkedChannel)
Sets the channel link for the eDMA transfer.
This function configures either the minor link or the major link mode. The minor link means that the channel link is triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is exhausted.
Note
Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
type – A channel link type, which can be one of the following:
kEDMA_LinkNone
kEDMA_MinorLink
kEDMA_MajorLink
linkedChannel – The linked channel number.
-
void EDMA_SetBandWidth(EDMA_Type *base, uint32_t channel, edma_bandwidth_t bandWidth)
Sets the bandwidth for the eDMA transfer.
Because the eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of each read/write access to control the bus request bandwidth seen by the crossbar switch.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
bandWidth – A bandwidth setting, which can be one of the following:
kEDMABandwidthStallNone
kEDMABandwidthStall4Cycle
kEDMABandwidthStall8Cycle
-
void EDMA_SetModulo(EDMA_Type *base, uint32_t channel, edma_modulo_t srcModulo, edma_modulo_t destModulo)
Sets the source modulo and the destination modulo for the eDMA transfer.
This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides the ability to implement a circular data queue easily.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
srcModulo – A source modulo value.
destModulo – A destination modulo value.
-
static inline void EDMA_EnableAsyncRequest(EDMA_Type *base, uint32_t channel, bool enable)
Enables an async request for the eDMA transfer.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
enable – The command to enable (true) or disable (false).
-
static inline void EDMA_EnableAutoStopRequest(EDMA_Type *base, uint32_t channel, bool enable)
Enables an auto stop request for the eDMA transfer.
If enabling the auto stop request, the eDMA hardware automatically disables the hardware channel request.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
enable – The command to enable (true) or disable (false).
-
void EDMA_EnableChannelInterrupts(EDMA_Type *base, uint32_t channel, uint32_t mask)
Enables the interrupt source for the eDMA transfer.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.
-
void EDMA_DisableChannelInterrupts(EDMA_Type *base, uint32_t channel, uint32_t mask)
Disables the interrupt source for the eDMA transfer.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
mask – The mask of the interrupt source to be set. Use the defined edma_interrupt_enable_t type.
-
void EDMA_SetMajorOffsetConfig(EDMA_Type *base, uint32_t channel, int32_t sourceOffset, int32_t destOffset)
Configures the eDMA channel TCD major offset feature.
Adjustment value added to the source address at the completion of the major iteration count
- Parameters:
base – eDMA peripheral base address.
channel – edma channel number.
sourceOffset – source address offset will be applied to source address after major loop done.
destOffset – destination address offset will be applied to source address after major loop done.
-
void EDMA_ConfigChannelSoftwareTCD(edma_tcd_t *tcd, const edma_transfer_config_t *transfer)
Sets TCD fields according to the user’s channel transfer configuration structure, edma_transfer_config_t.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_ConfigChannelSoftwareTCDExt
Application should be careful about the TCD pool buffer storage class,
For the platform has cache, the software TCD should be put in non cache section
The TCD pool buffer should have a consistent storage class.
Note
This function enables the auto stop request feature.
- Parameters:
tcd – Pointer to the TCD structure.
transfer – channel transfer configuration pointer.
-
void EDMA_TcdReset(edma_tcd_t *tcd)
Sets all fields to default values for the TCD structure.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_TcdResetExt
This function sets all fields for this TCD structure to default value.
Note
This function enables the auto stop request feature.
- Parameters:
tcd – Pointer to the TCD structure.
-
void EDMA_TcdSetTransferConfig(edma_tcd_t *tcd, const edma_transfer_config_t *config, edma_tcd_t *nextTcd)
Configures the eDMA TCD transfer attribute.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_TcdSetTransferConfigExt
The TCD is a transfer control descriptor. The content of the TCD is the same as the hardware TCD registers. The TCD is used in the scatter-gather mode. This function configures the TCD transfer attribute, including source address, destination address, transfer size, address offset, and so on. It also configures the scatter gather feature if the user supplies the next TCD address. Example:
edma_transfer_t config = { ... } edma_tcd_t tcd __aligned(32); edma_tcd_t nextTcd __aligned(32); EDMA_TcdSetTransferConfig(&tcd, &config, &nextTcd);
Note
TCD address should be 32 bytes aligned or it causes an eDMA error.
Note
If the nextTcd is not NULL, the scatter gather feature is enabled and DREQ bit is cleared in the previous transfer configuration, which is set in the EDMA_TcdReset.
- Parameters:
tcd – Pointer to the TCD structure.
config – Pointer to eDMA transfer configuration structure.
nextTcd – Pointer to the next TCD structure. It can be NULL if users do not want to enable scatter/gather feature.
-
void EDMA_TcdSetMinorOffsetConfig(edma_tcd_t *tcd, const edma_minor_offset_config_t *config)
Configures the eDMA TCD minor offset feature.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_TcdSetMinorOffsetConfigExt
A minor offset is a signed-extended value added to the source address or a destination address after each minor loop.
- Parameters:
tcd – A point to the TCD structure.
config – A pointer to the minor offset configuration structure.
-
void EDMA_TcdSetChannelLink(edma_tcd_t *tcd, edma_channel_link_type_t type, uint32_t linkedChannel)
Sets the channel link for the eDMA TCD.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_TcdSetChannelLinkExt
This function configures either a minor link or a major link. The minor link means the channel link is triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is exhausted.
Note
Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.
- Parameters:
tcd – Point to the TCD structure.
type – Channel link type, it can be one of:
kEDMA_LinkNone
kEDMA_MinorLink
kEDMA_MajorLink
linkedChannel – The linked channel number.
-
static inline void EDMA_TcdSetBandWidth(edma_tcd_t *tcd, edma_bandwidth_t bandWidth)
Sets the bandwidth for the eDMA TCD.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_TcdSetBandWidthExt
Because the eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of each read/write access to control the bus request bandwidth seen by the crossbar switch.
- Parameters:
tcd – A pointer to the TCD structure.
bandWidth – A bandwidth setting, which can be one of the following:
kEDMABandwidthStallNone
kEDMABandwidthStall4Cycle
kEDMABandwidthStall8Cycle
-
void EDMA_TcdSetModulo(edma_tcd_t *tcd, edma_modulo_t srcModulo, edma_modulo_t destModulo)
Sets the source modulo and the destination modulo for the eDMA TCD.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_TcdSetModuloExt
This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides the ability to implement a circular data queue easily.
- Parameters:
tcd – A pointer to the TCD structure.
srcModulo – A source modulo value.
destModulo – A destination modulo value.
-
static inline void EDMA_TcdEnableAutoStopRequest(edma_tcd_t *tcd, bool enable)
Sets the auto stop request for the eDMA TCD.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_TcdEnableAutoStopRequestExt
If enabling the auto stop request, the eDMA hardware automatically disables the hardware channel request.
- Parameters:
tcd – A pointer to the TCD structure.
enable – The command to enable (true) or disable (false).
-
void EDMA_TcdEnableInterrupts(edma_tcd_t *tcd, uint32_t mask)
Enables the interrupt source for the eDMA TCD.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_TcdEnableInterruptsExt
- Parameters:
tcd – Point to the TCD structure.
mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.
-
void EDMA_TcdDisableInterrupts(edma_tcd_t *tcd, uint32_t mask)
Disables the interrupt source for the eDMA TCD.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_TcdDisableInterruptsExt
- Parameters:
tcd – Point to the TCD structure.
mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.
-
void EDMA_TcdSetMajorOffsetConfig(edma_tcd_t *tcd, int32_t sourceOffset, int32_t destOffset)
Configures the eDMA TCD major offset feature.
@Note This API only supports EDMA4 TCD type. It can be used to support all types with extension API EDMA_TcdSetMajorOffsetConfigExt
Adjustment value added to the source address at the completion of the major iteration count
- Parameters:
tcd – A point to the TCD structure.
sourceOffset – source address offset wiil be applied to source address after major loop done.
destOffset – destination address offset will be applied to source address after major loop done.
-
void EDMA_ConfigChannelSoftwareTCDExt(EDMA_Type *base, edma_tcd_t *tcd, const edma_transfer_config_t *transfer)
Sets TCD fields according to the user’s channel transfer configuration structure, edma_transfer_config_t.
Application should be careful about the TCD pool buffer storage class,
For the platform has cache, the software TCD should be put in non cache section
The TCD pool buffer should have a consistent storage class.
Note
This function enables the auto stop request feature.
- Parameters:
base – eDMA peripheral base address.
tcd – Pointer to the TCD structure.
transfer – channel transfer configuration pointer.
-
void EDMA_TcdResetExt(EDMA_Type *base, edma_tcd_t *tcd)
Sets all fields to default values for the TCD structure.
This function sets all fields for this TCD structure to default value.
Note
This function enables the auto stop request feature.
- Parameters:
base – eDMA peripheral base address.
tcd – Pointer to the TCD structure.
-
void EDMA_TcdSetTransferConfigExt(EDMA_Type *base, edma_tcd_t *tcd, const edma_transfer_config_t *config, edma_tcd_t *nextTcd)
Configures the eDMA TCD transfer attribute.
The TCD is a transfer control descriptor. The content of the TCD is the same as the hardware TCD registers. The TCD is used in the scatter-gather mode. This function configures the TCD transfer attribute, including source address, destination address, transfer size, address offset, and so on. It also configures the scatter gather feature if the user supplies the next TCD address. Example:
edma_transfer_t config = { ... } edma_tcd_t tcd __aligned(32); edma_tcd_t nextTcd __aligned(32); EDMA_TcdSetTransferConfig(&tcd, &config, &nextTcd);
Note
TCD address should be 32 bytes aligned or it causes an eDMA error.
Note
If the nextTcd is not NULL, the scatter gather feature is enabled and DREQ bit is cleared in the previous transfer configuration, which is set in the EDMA_TcdReset.
- Parameters:
base – eDMA peripheral base address.
tcd – Pointer to the TCD structure.
config – Pointer to eDMA transfer configuration structure.
nextTcd – Pointer to the next TCD structure. It can be NULL if users do not want to enable scatter/gather feature.
-
void EDMA_TcdSetMinorOffsetConfigExt(EDMA_Type *base, edma_tcd_t *tcd, const edma_minor_offset_config_t *config)
Configures the eDMA TCD minor offset feature.
A minor offset is a signed-extended value added to the source address or a destination address after each minor loop.
- Parameters:
base – eDMA peripheral base address.
tcd – A point to the TCD structure.
config – A pointer to the minor offset configuration structure.
-
void EDMA_TcdSetChannelLinkExt(EDMA_Type *base, edma_tcd_t *tcd, edma_channel_link_type_t type, uint32_t linkedChannel)
Sets the channel link for the eDMA TCD.
This function configures either a minor link or a major link. The minor link means the channel link is triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is exhausted.
Note
Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.
- Parameters:
base – eDMA peripheral base address.
tcd – Point to the TCD structure.
type – Channel link type, it can be one of:
kEDMA_LinkNone
kEDMA_MinorLink
kEDMA_MajorLink
linkedChannel – The linked channel number.
-
static inline void EDMA_TcdSetBandWidthExt(EDMA_Type *base, edma_tcd_t *tcd, edma_bandwidth_t bandWidth)
Sets the bandwidth for the eDMA TCD.
Because the eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of each read/write access to control the bus request bandwidth seen by the crossbar switch.
- Parameters:
base – eDMA peripheral base address.
tcd – A pointer to the TCD structure.
bandWidth – A bandwidth setting, which can be one of the following:
kEDMABandwidthStallNone
kEDMABandwidthStall4Cycle
kEDMABandwidthStall8Cycle
-
void EDMA_TcdSetModuloExt(EDMA_Type *base, edma_tcd_t *tcd, edma_modulo_t srcModulo, edma_modulo_t destModulo)
Sets the source modulo and the destination modulo for the eDMA TCD.
This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides the ability to implement a circular data queue easily.
- Parameters:
base – eDMA peripheral base address.
tcd – A pointer to the TCD structure.
srcModulo – A source modulo value.
destModulo – A destination modulo value.
-
static inline void EDMA_TcdEnableAutoStopRequestExt(EDMA_Type *base, edma_tcd_t *tcd, bool enable)
Sets the auto stop request for the eDMA TCD.
If enabling the auto stop request, the eDMA hardware automatically disables the hardware channel request.
- Parameters:
base – eDMA peripheral base address.
tcd – A pointer to the TCD structure.
enable – The command to enable (true) or disable (false).
-
void EDMA_TcdEnableInterruptsExt(EDMA_Type *base, edma_tcd_t *tcd, uint32_t mask)
Enables the interrupt source for the eDMA TCD.
- Parameters:
base – eDMA peripheral base address.
tcd – Point to the TCD structure.
mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.
-
void EDMA_TcdDisableInterruptsExt(EDMA_Type *base, edma_tcd_t *tcd, uint32_t mask)
Disables the interrupt source for the eDMA TCD.
- Parameters:
base – eDMA peripheral base address.
tcd – Point to the TCD structure.
mask – The mask of interrupt source to be set. Users need to use the defined edma_interrupt_enable_t type.
-
void EDMA_TcdSetMajorOffsetConfigExt(EDMA_Type *base, edma_tcd_t *tcd, int32_t sourceOffset, int32_t destOffset)
Configures the eDMA TCD major offset feature.
Adjustment value added to the source address at the completion of the major iteration count
- Parameters:
base – eDMA peripheral base address.
tcd – A point to the TCD structure.
sourceOffset – source address offset wiil be applied to source address after major loop done.
destOffset – destination address offset will be applied to source address after major loop done.
-
static inline void EDMA_EnableChannelRequest(EDMA_Type *base, uint32_t channel)
Enables the eDMA hardware channel request.
This function enables the hardware channel request.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
-
static inline void EDMA_DisableChannelRequest(EDMA_Type *base, uint32_t channel)
Disables the eDMA hardware channel request.
This function disables the hardware channel request.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
-
static inline void EDMA_TriggerChannelStart(EDMA_Type *base, uint32_t channel)
Starts the eDMA transfer by using the software trigger.
This function starts a minor loop transfer.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
-
uint32_t EDMA_GetRemainingMajorLoopCount(EDMA_Type *base, uint32_t channel)
Gets the remaining major loop count from the eDMA current channel TCD.
This function checks the TCD (Task Control Descriptor) status for a specified eDMA channel and returns the number of major loop count that has not finished.
Note
1. This function can only be used to get unfinished major loop count of transfer without the next TCD, or it might be inaccuracy.
The unfinished/remaining transfer bytes cannot be obtained directly from registers while the channel is running. Because to calculate the remaining bytes, the initial NBYTES configured in DMA_TCDn_NBYTES_MLNO register is needed while the eDMA IP does not support getting it while a channel is active. In another word, the NBYTES value reading is always the actual (decrementing) NBYTES value the dma_engine is working with while a channel is running. Consequently, to get the remaining transfer bytes, a software-saved initial value of NBYTES (for example copied before enabling the channel) is needed. The formula to calculate it is shown below: RemainingBytes = RemainingMajorLoopCount * NBYTES(initially configured)
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
- Returns:
Major loop count which has not been transferred yet for the current TCD.
-
static inline uint32_t EDMA_GetErrorStatusFlags(EDMA_Type *base)
Gets the eDMA channel error status flags.
- Parameters:
base – eDMA peripheral base address.
- Returns:
The mask of error status flags. Users need to use the _edma_error_status_flags type to decode the return variables.
-
uint32_t EDMA_GetChannelStatusFlags(EDMA_Type *base, uint32_t channel)
Gets the eDMA channel status flags.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
- Returns:
The mask of channel status flags. Users need to use the _edma_channel_status_flags type to decode the return variables.
-
void EDMA_ClearChannelStatusFlags(EDMA_Type *base, uint32_t channel, uint32_t mask)
Clears the eDMA channel status flags.
- Parameters:
base – eDMA peripheral base address.
channel – eDMA channel number.
mask – The mask of channel status to be cleared. Users need to use the defined _edma_channel_status_flags type.
-
void EDMA_CreateHandle(edma_handle_t *handle, EDMA_Type *base, uint32_t channel)
Creates the eDMA handle.
This function is called if using the transactional API for eDMA. This function initializes the internal state of the eDMA handle.
- Parameters:
handle – eDMA handle pointer. The eDMA handle stores callback function and parameters.
base – eDMA peripheral base address.
channel – eDMA channel number.
-
void EDMA_InstallTCDMemory(edma_handle_t *handle, edma_tcd_t *tcdPool, uint32_t tcdSize)
Installs the TCDs memory pool into the eDMA handle.
This function is called after the EDMA_CreateHandle to use scatter/gather feature. This function shall only be used while users need to use scatter gather mode. Scatter gather mode enables EDMA to load a new transfer control block (tcd) in hardware, and automatically reconfigure that DMA channel for a new transfer. Users need to prepare tcd memory and also configure tcds using interface EDMA_SubmitTransfer.
- Parameters:
handle – eDMA handle pointer.
tcdPool – A memory pool to store TCDs. It must be 32 bytes aligned.
tcdSize – The number of TCD slots.
-
void EDMA_SetCallback(edma_handle_t *handle, edma_callback callback, void *userData)
Installs a callback function for the eDMA transfer.
This callback is called in the eDMA IRQ handler. Use the callback to do something after the current major loop transfer completes. This function will be called every time one tcd finished transfer.
- Parameters:
handle – eDMA handle pointer.
callback – eDMA callback function pointer.
userData – A parameter for the callback function.
-
void EDMA_PrepareTransferConfig(edma_transfer_config_t *config, void *srcAddr, uint32_t srcWidth, int16_t srcOffset, void *destAddr, uint32_t destWidth, int16_t destOffset, uint32_t bytesEachRequest, uint32_t transferBytes)
Prepares the eDMA transfer structure configurations.
This function prepares the transfer configuration structure according to the user input.
Note
The data address and the data width must be consistent. For example, if the SRC is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error (SAE). User can check if 128 bytes support is available for specific instance by FSL_FEATURE_EDMA_INSTANCE_SUPPORT_128_BYTES_TRANSFERn.
- Parameters:
config – The user configuration structure of type edma_transfer_t.
srcAddr – eDMA transfer source address.
srcWidth – eDMA transfer source address width(bytes).
srcOffset – source address offset.
destAddr – eDMA transfer destination address.
destWidth – eDMA transfer destination address width(bytes).
destOffset – destination address offset.
bytesEachRequest – eDMA transfer bytes per channel request.
transferBytes – eDMA transfer bytes to be transferred.
-
void EDMA_PrepareTransfer(edma_transfer_config_t *config, void *srcAddr, uint32_t srcWidth, void *destAddr, uint32_t destWidth, uint32_t bytesEachRequest, uint32_t transferBytes, edma_transfer_type_t type)
Prepares the eDMA transfer structure.
This function prepares the transfer configuration structure according to the user input.
Note
The data address and the data width must be consistent. For example, if the SRC is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error (SAE).
- Parameters:
config – The user configuration structure of type edma_transfer_t.
srcAddr – eDMA transfer source address.
srcWidth – eDMA transfer source address width(bytes).
destAddr – eDMA transfer destination address.
destWidth – eDMA transfer destination address width(bytes).
bytesEachRequest – eDMA transfer bytes per channel request.
transferBytes – eDMA transfer bytes to be transferred.
type – eDMA transfer type.
-
void EDMA_PrepareTransferTCD(edma_handle_t *handle, edma_tcd_t *tcd, void *srcAddr, uint32_t srcWidth, int16_t srcOffset, void *destAddr, uint32_t destWidth, int16_t destOffset, uint32_t bytesEachRequest, uint32_t transferBytes, edma_tcd_t *nextTcd)
Prepares the eDMA transfer content descriptor.
This function prepares the transfer content descriptor structure according to the user input.
Note
The data address and the data width must be consistent. For example, if the SRC is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error (SAE).
- Parameters:
handle – eDMA handle pointer.
tcd – Pointer to eDMA transfer content descriptor structure.
srcAddr – eDMA transfer source address.
srcWidth – eDMA transfer source address width(bytes).
srcOffset – source address offset.
destAddr – eDMA transfer destination address.
destWidth – eDMA transfer destination address width(bytes).
destOffset – destination address offset.
bytesEachRequest – eDMA transfer bytes per channel request.
transferBytes – eDMA transfer bytes to be transferred.
nextTcd – eDMA transfer linked TCD address.
-
status_t EDMA_SubmitTransferTCD(edma_handle_t *handle, edma_tcd_t *tcd)
Submits the eDMA transfer content descriptor.
This function submits the eDMA transfer request according to the transfer content descriptor. In scatter gather mode, call this function will add a configured tcd to the circular list of tcd pool. The tcd pools is setup by call function EDMA_InstallTCDMemory before.
Typical user case:
submit single transfer
edma_tcd_t tcd; EDMA_PrepareTransferTCD(handle, tcd, ....) EDMA_SubmitTransferTCD(handle, tcd) EDMA_StartTransfer(handle)
submit static link transfer,
edma_tcd_t tcd[2]; EDMA_PrepareTransferTCD(handle, &tcd[0], ....) EDMA_PrepareTransferTCD(handle, &tcd[1], ....) EDMA_SubmitTransferTCD(handle, &tcd[0]) EDMA_StartTransfer(handle)
submit dynamic link transfer
edma_tcd_t tcdpool[2]; EDMA_InstallTCDMemory(&g_DMA_Handle, tcdpool, 2); edma_tcd_t tcd; EDMA_PrepareTransferTCD(handle, tcd, ....) EDMA_SubmitTransferTCD(handle, tcd) EDMA_PrepareTransferTCD(handle, tcd, ....) EDMA_SubmitTransferTCD(handle, tcd) EDMA_StartTransfer(handle)
submit loop transfer
edma_tcd_t tcd[2]; EDMA_PrepareTransferTCD(handle, &tcd[0], ...,&tcd[1]) EDMA_PrepareTransferTCD(handle, &tcd[1], ..., &tcd[0]) EDMA_SubmitTransferTCD(handle, &tcd[0]) EDMA_StartTransfer(handle)
- Parameters:
handle – eDMA handle pointer.
tcd – Pointer to eDMA transfer content descriptor structure.
- Return values:
kStatus_EDMA_Success – It means submit transfer request succeed.
kStatus_EDMA_QueueFull – It means TCD queue is full. Submit transfer request is not allowed.
kStatus_EDMA_Busy – It means the given channel is busy, need to submit request later.
-
status_t EDMA_SubmitTransfer(edma_handle_t *handle, const edma_transfer_config_t *config)
Submits the eDMA transfer request.
This function submits the eDMA transfer request according to the transfer configuration structure. In scatter gather mode, call this function will add a configured tcd to the circular list of tcd pool. The tcd pools is setup by call function EDMA_InstallTCDMemory before.
- Parameters:
handle – eDMA handle pointer.
config – Pointer to eDMA transfer configuration structure.
- Return values:
kStatus_EDMA_Success – It means submit transfer request succeed.
kStatus_EDMA_QueueFull – It means TCD queue is full. Submit transfer request is not allowed.
kStatus_EDMA_Busy – It means the given channel is busy, need to submit request later.
-
status_t EDMA_SubmitLoopTransfer(edma_handle_t *handle, edma_transfer_config_t *transfer, uint32_t transferLoopCount)
Submits the eDMA scatter gather transfer configurations.
The function is target for submit loop transfer request, the ring transfer request means that the transfer request TAIL is link to HEAD, such as, A->B->C->D->A, or A->A
To use the ring transfer feature, the application should allocate several transfer object, such as
Then eDMA driver will link transfer[0] and transfer[1] to each otheredma_channel_transfer_config_t transfer[2]; EDMA_TransferSubmitLoopTransfer(psHandle, &transfer, 2U);
Note
Application should check the return value of this function to avoid transfer request submit failed
- Parameters:
handle – eDMA handle pointer
transfer – pointer to user’s eDMA channel configure structure, see edma_channel_transfer_config_t for detail
transferLoopCount – the count of the transfer ring, if loop count is 1, that means that the one will link to itself.
- Return values:
kStatus_Success – It means submit transfer request succeed
kStatus_EDMA_Busy – channel is in busy status
kStatus_InvalidArgument – Invalid Argument
-
void EDMA_StartTransfer(edma_handle_t *handle)
eDMA starts transfer.
This function enables the channel request. Users can call this function after submitting the transfer request or before submitting the transfer request.
- Parameters:
handle – eDMA handle pointer.
-
void EDMA_StopTransfer(edma_handle_t *handle)
eDMA stops transfer.
This function disables the channel request to pause the transfer. Users can call EDMA_StartTransfer() again to resume the transfer.
- Parameters:
handle – eDMA handle pointer.
-
void EDMA_AbortTransfer(edma_handle_t *handle)
eDMA aborts transfer.
This function disables the channel request and clear transfer status bits. Users can submit another transfer after calling this API.
- Parameters:
handle – DMA handle pointer.
-
static inline uint32_t EDMA_GetUnusedTCDNumber(edma_handle_t *handle)
Get unused TCD slot number.
This function gets current tcd index which is run. If the TCD pool pointer is NULL, it will return 0.
- Parameters:
handle – DMA handle pointer.
- Returns:
The unused tcd slot number.
-
static inline uint32_t EDMA_GetNextTCDAddress(edma_handle_t *handle)
Get the next tcd address.
This function gets the next tcd address. If this is last TCD, return 0.
- Parameters:
handle – DMA handle pointer.
- Returns:
The next TCD address.
-
void EDMA_HandleIRQ(edma_handle_t *handle)
eDMA IRQ handler for the current major loop transfer completion.
This function clears the channel major interrupt flag and calls the callback function if it is not NULL.
Note: For the case using TCD queue, when the major iteration count is exhausted, additional operations are performed. These include the final address adjustments and reloading of the BITER field into the CITER. Assertion of an optional interrupt request also occurs at this time, as does a possible fetch of a new TCD from memory using the scatter/gather address pointer included in the descriptor (if scatter/gather is enabled).
For instance, when the time interrupt of TCD[0] happens, the TCD[1] has already been loaded into the eDMA engine. As sga and sga_index are calculated based on the DLAST_SGA bitfield lies in the TCD_CSR register, the sga_index in this case should be 2 (DLAST_SGA of TCD[1] stores the address of TCD[2]). Thus, the “tcdUsed” updated should be (tcdUsed - 2U) which indicates the number of TCDs can be loaded in the memory pool (because TCD[0] and TCD[1] have been loaded into the eDMA engine at this point already.).
For the last two continuous ISRs in a scatter/gather process, they both load the last TCD (The last ISR does not load a new TCD) from the memory pool to the eDMA engine when major loop completes. Therefore, ensure that the header and tcdUsed updated are identical for them. tcdUsed are both 0 in this case as no TCD to be loaded.
See the “eDMA basic data flow” in the eDMA Functional description section of the Reference Manual for further details.
- Parameters:
handle – eDMA handle pointer.
-
FSL_EDMA_DRIVER_VERSION
eDMA driver version
Version 2.10.4.
_edma_transfer_status eDMA transfer status
Values:
-
enumerator kStatus_EDMA_QueueFull
TCD queue is full.
-
enumerator kStatus_EDMA_Busy
Channel is busy and can’t handle the transfer request.
-
enumerator kStatus_EDMA_QueueFull
-
enum _edma_transfer_size
eDMA transfer configuration
Values:
-
enumerator kEDMA_TransferSize1Bytes
Source/Destination data transfer size is 1 byte every time
-
enumerator kEDMA_TransferSize2Bytes
Source/Destination data transfer size is 2 bytes every time
-
enumerator kEDMA_TransferSize4Bytes
Source/Destination data transfer size is 4 bytes every time
-
enumerator kEDMA_TransferSize8Bytes
Source/Destination data transfer size is 8 bytes every time
-
enumerator kEDMA_TransferSize16Bytes
Source/Destination data transfer size is 16 bytes every time
-
enumerator kEDMA_TransferSize32Bytes
Source/Destination data transfer size is 32 bytes every time
-
enumerator kEDMA_TransferSize64Bytes
Source/Destination data transfer size is 64 bytes every time
-
enumerator kEDMA_TransferSize128Bytes
Source/Destination data transfer size is 128 bytes every time
-
enumerator kEDMA_TransferSize1Bytes
-
enum _edma_modulo
eDMA modulo configuration
Values:
-
enumerator kEDMA_ModuloDisable
Disable modulo
-
enumerator kEDMA_Modulo2bytes
Circular buffer size is 2 bytes.
-
enumerator kEDMA_Modulo4bytes
Circular buffer size is 4 bytes.
-
enumerator kEDMA_Modulo8bytes
Circular buffer size is 8 bytes.
-
enumerator kEDMA_Modulo16bytes
Circular buffer size is 16 bytes.
-
enumerator kEDMA_Modulo32bytes
Circular buffer size is 32 bytes.
-
enumerator kEDMA_Modulo64bytes
Circular buffer size is 64 bytes.
-
enumerator kEDMA_Modulo128bytes
Circular buffer size is 128 bytes.
-
enumerator kEDMA_Modulo256bytes
Circular buffer size is 256 bytes.
-
enumerator kEDMA_Modulo512bytes
Circular buffer size is 512 bytes.
-
enumerator kEDMA_Modulo1Kbytes
Circular buffer size is 1 K bytes.
-
enumerator kEDMA_Modulo2Kbytes
Circular buffer size is 2 K bytes.
-
enumerator kEDMA_Modulo4Kbytes
Circular buffer size is 4 K bytes.
-
enumerator kEDMA_Modulo8Kbytes
Circular buffer size is 8 K bytes.
-
enumerator kEDMA_Modulo16Kbytes
Circular buffer size is 16 K bytes.
-
enumerator kEDMA_Modulo32Kbytes
Circular buffer size is 32 K bytes.
-
enumerator kEDMA_Modulo64Kbytes
Circular buffer size is 64 K bytes.
-
enumerator kEDMA_Modulo128Kbytes
Circular buffer size is 128 K bytes.
-
enumerator kEDMA_Modulo256Kbytes
Circular buffer size is 256 K bytes.
-
enumerator kEDMA_Modulo512Kbytes
Circular buffer size is 512 K bytes.
-
enumerator kEDMA_Modulo1Mbytes
Circular buffer size is 1 M bytes.
-
enumerator kEDMA_Modulo2Mbytes
Circular buffer size is 2 M bytes.
-
enumerator kEDMA_Modulo4Mbytes
Circular buffer size is 4 M bytes.
-
enumerator kEDMA_Modulo8Mbytes
Circular buffer size is 8 M bytes.
-
enumerator kEDMA_Modulo16Mbytes
Circular buffer size is 16 M bytes.
-
enumerator kEDMA_Modulo32Mbytes
Circular buffer size is 32 M bytes.
-
enumerator kEDMA_Modulo64Mbytes
Circular buffer size is 64 M bytes.
-
enumerator kEDMA_Modulo128Mbytes
Circular buffer size is 128 M bytes.
-
enumerator kEDMA_Modulo256Mbytes
Circular buffer size is 256 M bytes.
-
enumerator kEDMA_Modulo512Mbytes
Circular buffer size is 512 M bytes.
-
enumerator kEDMA_Modulo1Gbytes
Circular buffer size is 1 G bytes.
-
enumerator kEDMA_Modulo2Gbytes
Circular buffer size is 2 G bytes.
-
enumerator kEDMA_ModuloDisable
-
enum _edma_bandwidth
Bandwidth control.
Values:
-
enumerator kEDMA_BandwidthStallNone
No eDMA engine stalls.
-
enumerator kEDMA_BandwidthStall4Cycle
eDMA engine stalls for 4 cycles after each read/write.
-
enumerator kEDMA_BandwidthStall8Cycle
eDMA engine stalls for 8 cycles after each read/write.
-
enumerator kEDMA_BandwidthStallNone
-
enum _edma_channel_link_type
Channel link type.
Values:
-
enumerator kEDMA_LinkNone
No channel link
-
enumerator kEDMA_MinorLink
Channel link after each minor loop
-
enumerator kEDMA_MajorLink
Channel link while major loop count exhausted
-
enumerator kEDMA_LinkNone
_edma_channel_status_flags eDMA channel status flags.
Values:
-
enumerator kEDMA_DoneFlag
DONE flag, set while transfer finished, CITER value exhausted
-
enumerator kEDMA_ErrorFlag
eDMA error flag, an error occurred in a transfer
-
enumerator kEDMA_InterruptFlag
eDMA interrupt flag, set while an interrupt occurred of this channel
-
enumerator kEDMA_DoneFlag
_edma_error_status_flags eDMA channel error status flags.
Values:
-
enumerator kEDMA_DestinationBusErrorFlag
Bus error on destination address
-
enumerator kEDMA_SourceBusErrorFlag
Bus error on the source address
-
enumerator kEDMA_ScatterGatherErrorFlag
Error on the Scatter/Gather address, not 32byte aligned.
-
enumerator kEDMA_NbytesErrorFlag
NBYTES/CITER configuration error
-
enumerator kEDMA_DestinationOffsetErrorFlag
Destination offset not aligned with destination size
-
enumerator kEDMA_DestinationAddressErrorFlag
Destination address not aligned with destination size
-
enumerator kEDMA_SourceOffsetErrorFlag
Source offset not aligned with source size
-
enumerator kEDMA_SourceAddressErrorFlag
Source address not aligned with source size
-
enumerator kEDMA_ErrorChannelFlag
Error channel number of the cancelled channel number
-
enumerator kEDMA_TransferCanceledFlag
Transfer cancelled
-
enumerator kEDMA_ValidFlag
No error occurred, this bit is 0. Otherwise, it is 1.
-
enumerator kEDMA_DestinationBusErrorFlag
_edma_interrupt_enable eDMA interrupt source
Values:
-
enumerator kEDMA_ErrorInterruptEnable
Enable interrupt while channel error occurs.
-
enumerator kEDMA_MajorInterruptEnable
Enable interrupt while major count exhausted.
-
enumerator kEDMA_HalfInterruptEnable
Enable interrupt while major count to half value.
-
enumerator kEDMA_ErrorInterruptEnable
-
enum _edma_transfer_type
eDMA transfer type
Values:
-
enumerator kEDMA_MemoryToMemory
Transfer from memory to memory
-
enumerator kEDMA_PeripheralToMemory
Transfer from peripheral to memory
-
enumerator kEDMA_MemoryToPeripheral
Transfer from memory to peripheral
-
enumerator kEDMA_PeripheralToPeripheral
Transfer from Peripheral to peripheral
-
enumerator kEDMA_MemoryToMemory
-
enum edma_channel_memory_attribute
eDMA channel memory attribute
Values:
-
enumerator kEDMA_ChannelNoWriteNoReadNoCacheNoBuffer
No write allocate, no read allocate, non-cacheable, non-bufferable.
-
enumerator kEDMA_ChannelNoWriteNoReadNoCacheBufferable
No write allocate, no read allocate, non-cacheable, bufferable.
-
enumerator kEDMA_ChannelNoWriteNoReadCacheableNoBuffer
No write allocate, no read allocate, cacheable, non-bufferable.
-
enumerator kEDMA_ChannelNoWriteNoReadCacheableBufferable
No write allocate, no read allocate, cacheable, bufferable.
-
enumerator kEDMA_ChannelNoWriteReadNoCacheNoBuffer
No write allocate, read allocate, non-cacheable, non-bufferable.
-
enumerator kEDMA_ChannelNoWriteReadNoCacheBufferable
No write allocate, read allocate, non-cacheable, bufferable.
-
enumerator kEDMA_ChannelNoWriteReadCacheableNoBuffer
No write allocate, read allocate, cacheable, non-bufferable.
-
enumerator kEDMA_ChannelNoWriteReadCacheableBufferable
No write allocate, read allocate, cacheable, bufferable.
-
enumerator kEDMA_ChannelWriteNoReadNoCacheNoBuffer
write allocate, no read allocate, non-cacheable, non-bufferable.
-
enumerator kEDMA_ChannelWriteNoReadNoCacheBufferable
write allocate, no read allocate, non-cacheable, bufferable.
-
enumerator kEDMA_ChannelWriteNoReadCacheableNoBuffer
write allocate, no read allocate, cacheable, non-bufferable.
-
enumerator kEDMA_ChannelWriteNoReadCacheableBufferable
write allocate, no read allocate, cacheable, bufferable.
-
enumerator kEDMA_ChannelWriteReadNoCacheNoBuffer
write allocate, read allocate, non-cacheable, non-bufferable.
-
enumerator kEDMA_ChannelWriteReadNoCacheBufferable
write allocate, read allocate, non-cacheable, bufferable.
-
enumerator kEDMA_ChannelWriteReadCacheableNoBuffer
write allocate, read allocate, cacheable, non-bufferable.
-
enumerator kEDMA_ChannelWriteReadCacheableBufferable
write allocate, read allocate, cacheable, bufferable.
-
enumerator kEDMA_ChannelNoWriteNoReadNoCacheNoBuffer
-
enum _edma_channel_swap_size
eDMA4 channel swap size
Values:
-
enumerator kEDMA_ChannelSwapDisabled
Swap is disabled.
-
enumerator kEDMA_ChannelReadWith8bitSwap
Swap occurs with respect to the read 8bit.
-
enumerator kEDMA_ChannelReadWith16bitSwap
Swap occurs with respect to the read 16bit.
-
enumerator kEDMA_ChannelReadWith32bitSwap
Swap occurs with respect to the read 32bit.
-
enumerator kEDMA_ChannelWriteWith8bitSwap
Swap occurs with respect to the write 8bit.
-
enumerator kEDMA_ChannelWriteWith16bitSwap
Swap occurs with respect to the write 16bit.
-
enumerator kEDMA_ChannelWriteWith32bitSwap
Swap occurs with respect to the write 32bit.
-
enumerator kEDMA_ChannelSwapDisabled
eDMA channel system bus information, _edma_channel_sys_bus_info
Values:
-
enumerator kEDMA_PrivilegedAccessLevel
Privileged Access Level for DMA transfers. 0b - User protection level; 1b - Privileged protection level.
-
enumerator kEDMA_MasterId
DMA’s master ID when channel is active and master ID replication is enabled.
-
enumerator kEDMA_PrivilegedAccessLevel
-
enum _edma_channel_access_type
eDMA4 channel access type
Values:
-
enumerator kEDMA_ChannelDataAccess
Data access for eDMA4 transfers.
-
enumerator kEDMA_ChannelInstructionAccess
Instruction access for eDMA4 transfers.
-
enumerator kEDMA_ChannelDataAccess
-
enum _edma_channel_protection_level
eDMA4 channel protection level
Values:
-
enumerator kEDMA_ChannelProtectionLevelUser
user protection level for eDMA transfers.
-
enumerator kEDMA_ChannelProtectionLevelPrivileged
Privileged protection level eDMA transfers.
-
enumerator kEDMA_ChannelProtectionLevelUser
-
typedef enum _edma_transfer_size edma_transfer_size_t
eDMA transfer configuration
-
typedef enum _edma_modulo edma_modulo_t
eDMA modulo configuration
-
typedef enum _edma_bandwidth edma_bandwidth_t
Bandwidth control.
-
typedef enum _edma_channel_link_type edma_channel_link_type_t
Channel link type.
-
typedef enum _edma_transfer_type edma_transfer_type_t
eDMA transfer type
-
typedef struct _edma_channel_Preemption_config edma_channel_Preemption_config_t
eDMA channel priority configuration
-
typedef struct _edma_minor_offset_config edma_minor_offset_config_t
eDMA minor offset configuration
-
typedef enum edma_channel_memory_attribute edma_channel_memory_attribute_t
eDMA channel memory attribute
-
typedef enum _edma_channel_swap_size edma_channel_swap_size_t
eDMA4 channel swap size
-
typedef enum _edma_channel_access_type edma_channel_access_type_t
eDMA4 channel access type
-
typedef enum _edma_channel_protection_level edma_channel_protection_level_t
eDMA4 channel protection level
-
typedef struct _edma_channel_config edma_channel_config_t
eDMA4 channel configuration
-
typedef edma_core_tcd_t edma_tcd_t
eDMA TCD.
This structure is same as TCD register which is described in reference manual, and is used to configure the scatter/gather feature as a next hardware TCD.
-
typedef struct _edma_transfer_config edma_transfer_config_t
edma4 channel transfer configuration
The transfer configuration structure support full feature configuration of the transfer control descriptor.
1.To perform a simple transfer, below members should be initialized at least .srcAddr - source address .dstAddr - destination address .srcWidthOfEachTransfer - data width of source address .dstWidthOfEachTransfer - data width of destination address, normally it should be as same as srcWidthOfEachTransfer .bytesEachRequest - bytes to be transferred in each DMA request .totalBytes - total bytes to be transferred .srcOffsetOfEachTransfer - offset value in bytes unit to be applied to source address as each source read is completed .dstOffsetOfEachTransfer - offset value in bytes unit to be applied to destination address as each destination write is completed enablchannelRequest - channel request can be enabled together with transfer configure submission
2.The transfer configuration structure also support advance feature: Programmable source/destination address range(MODULO) Programmable minor loop offset Programmable major loop offset Programmable channel chain feature Programmable channel transfer control descriptor link feature
Note
User should pay attention to the transfer size alignment limitation
the bytesEachRequest should align with the srcWidthOfEachTransfer and the dstWidthOfEachTransfer that is to say bytesEachRequest % srcWidthOfEachTransfer should be 0
the srcOffsetOfEachTransfer and dstOffsetOfEachTransfer must be aligne with transfer width
the totalBytes should align with the bytesEachRequest
the srcAddr should align with the srcWidthOfEachTransfer
the dstAddr should align with the dstWidthOfEachTransfer
the srcAddr should align with srcAddrModulo if modulo feature is enabled
the dstAddr should align with dstAddrModulo if modulo feature is enabled If anyone of above condition can not be satisfied, the edma4 interfaces will generate assert error.
-
typedef struct _edma_config edma_config_t
eDMA global configuration structure.
-
typedef void (*edma_callback)(struct _edma_handle *handle, void *userData, bool transferDone, uint32_t tcds)
Define callback function for eDMA.
This callback function is called in the EDMA interrupt handle. In normal mode, run into callback function means the transfer users need is done. In scatter gather mode, run into callback function means a transfer control block (tcd) is finished. Not all transfer finished, users can get the finished tcd numbers using interface EDMA_GetUnusedTCDNumber.
- Param handle:
EDMA handle pointer, users shall not touch the values inside.
- Param userData:
The callback user parameter pointer. Users can use this parameter to involve things users need to change in EDMA callback function.
- Param transferDone:
If the current loaded transfer done. In normal mode it means if all transfer done. In scatter gather mode, this parameter shows is the current transfer block in EDMA register is done. As the load of core is different, it will be different if the new tcd loaded into EDMA registers while this callback called. If true, it always means new tcd still not loaded into registers, while false means new tcd already loaded into registers.
- Param tcds:
How many tcds are done from the last callback. This parameter only used in scatter gather mode. It tells user how many tcds are finished between the last callback and this.
-
typedef struct _edma_handle edma_handle_t
eDMA transfer handle structure
-
FSL_EDMA_DRIVER_EDMA4
eDMA driver name
-
EDMA_ALLOCATE_TCD(name, number)
Macro used for allocate edma TCD.
-
DMA_DCHPRI_INDEX(channel)
Compute the offset unit from DCHPRI3.
-
struct _edma_channel_Preemption_config
- #include <fsl_edma.h>
eDMA channel priority configuration
Public Members
-
bool enableChannelPreemption
If true: a channel can be suspended by other channel with higher priority
-
bool enablePreemptAbility
If true: a channel can suspend other channel with low priority
-
uint8_t channelPriority
Channel priority
-
bool enableChannelPreemption
-
struct _edma_minor_offset_config
- #include <fsl_edma.h>
eDMA minor offset configuration
Public Members
-
bool enableSrcMinorOffset
Enable(true) or Disable(false) source minor loop offset.
-
bool enableDestMinorOffset
Enable(true) or Disable(false) destination minor loop offset.
-
uint32_t minorOffset
Offset for a minor loop mapping.
-
bool enableSrcMinorOffset
-
struct _edma_channel_config
- #include <fsl_edma.h>
eDMA4 channel configuration
Public Members
-
edma_channel_Preemption_config_t channelPreemptionConfig
channel preemption configuration
-
edma_channel_memory_attribute_t channelReadMemoryAttribute
channel memory read attribute configuration
-
edma_channel_memory_attribute_t channelWriteMemoryAttribute
channel memory write attribute configuration
-
edma_channel_swap_size_t channelSwapSize
channel swap size configuration
-
edma_channel_access_type_t channelAccessType
channel access type configuration
-
uint8_t channelDataSignExtensionBitPosition
channel data sign extension bit psition configuration
-
uint32_t channelRequestSource
hardware service request source for the channel
-
bool enableMasterIDReplication
enable master ID replication
-
edma_channel_protection_level_t protectionLevel
protection level
-
edma_channel_Preemption_config_t channelPreemptionConfig
-
struct _edma_transfer_config
- #include <fsl_edma.h>
edma4 channel transfer configuration
The transfer configuration structure support full feature configuration of the transfer control descriptor.
1.To perform a simple transfer, below members should be initialized at least .srcAddr - source address .dstAddr - destination address .srcWidthOfEachTransfer - data width of source address .dstWidthOfEachTransfer - data width of destination address, normally it should be as same as srcWidthOfEachTransfer .bytesEachRequest - bytes to be transferred in each DMA request .totalBytes - total bytes to be transferred .srcOffsetOfEachTransfer - offset value in bytes unit to be applied to source address as each source read is completed .dstOffsetOfEachTransfer - offset value in bytes unit to be applied to destination address as each destination write is completed enablchannelRequest - channel request can be enabled together with transfer configure submission
2.The transfer configuration structure also support advance feature: Programmable source/destination address range(MODULO) Programmable minor loop offset Programmable major loop offset Programmable channel chain feature Programmable channel transfer control descriptor link feature
Note
User should pay attention to the transfer size alignment limitation
the bytesEachRequest should align with the srcWidthOfEachTransfer and the dstWidthOfEachTransfer that is to say bytesEachRequest % srcWidthOfEachTransfer should be 0
the srcOffsetOfEachTransfer and dstOffsetOfEachTransfer must be aligne with transfer width
the totalBytes should align with the bytesEachRequest
the srcAddr should align with the srcWidthOfEachTransfer
the dstAddr should align with the dstWidthOfEachTransfer
the srcAddr should align with srcAddrModulo if modulo feature is enabled
the dstAddr should align with dstAddrModulo if modulo feature is enabled If anyone of above condition can not be satisfied, the edma4 interfaces will generate assert error.
Public Members
-
uint32_t srcAddr
Source data address.
-
uint32_t destAddr
Destination data address.
-
edma_transfer_size_t srcTransferSize
Source data transfer size.
-
edma_transfer_size_t destTransferSize
Destination data transfer size.
-
int16_t srcOffset
Sign-extended offset value in byte unit applied to the current source address to form the next-state value as each source read is completed
-
int16_t destOffset
Sign-extended offset value in byte unit applied to the current destination address to form the next-state value as each destination write is completed.
-
uint32_t minorLoopBytes
bytes in each minor loop or each request range: 1 - (2^30 -1) when minor loop mapping is enabled range: 1 - (2^10 - 1) when minor loop mapping is enabled and source or dest minor loop offset is enabled range: 1 - (2^32 - 1) when minor loop mapping is disabled
-
uint32_t majorLoopCounts
minor loop counts in each major loop, should be 1 at least for each transfer range: (0 - (2^15 - 1)) when minor loop channel link is disabled range: (0 - (2^9 - 1)) when minor loop channel link is enabled total bytes in a transfer = minorLoopCountsEachMajorLoop * bytesEachMinorLoop
-
uint16_t enabledInterruptMask
channel interrupt to enable, can be OR’ed value of _edma_interrupt_enable
-
edma_modulo_t srcAddrModulo
source circular data queue range
-
int32_t srcMajorLoopOffset
source major loop offset
-
edma_modulo_t dstAddrModulo
destination circular data queue range
-
int32_t dstMajorLoopOffset
destination major loop offset
-
bool enableSrcMinorLoopOffset
enable source minor loop offset
-
bool enableDstMinorLoopOffset
enable dest minor loop offset
-
int32_t minorLoopOffset
burst offset, the offset will be applied after minor loop update
-
bool enableChannelMajorLoopLink
channel link when major loop complete
-
uint32_t majorLoopLinkChannel
major loop link channel number
-
bool enableChannelMinorLoopLink
channel link when minor loop complete
-
uint32_t minorLoopLinkChannel
minor loop link channel number
-
edma_tcd_t *linkTCD
pointer to the link transfer control descriptor
-
struct _edma_config
- #include <fsl_edma.h>
eDMA global configuration structure.
Public Members
-
bool enableMasterIdReplication
Enable (true) master ID replication. If Master ID replication is disabled, the privileged protection level (supervisor mode) for eDMA4 transfers is used.
-
bool enableGlobalChannelLink
Enable(true) channel linking is available and controlled by each channel’s link settings.
-
bool enableHaltOnError
Enable (true) transfer halt on error. Any error causes the HALT bit to set. Subsequently, all service requests are ignored until the HALT bit is cleared.
-
bool enableDebugMode
Enable(true) eDMA4 debug mode. When in debug mode, the eDMA4 stalls the start of a new channel. Executing channels are allowed to complete.
-
bool enableRoundRobinArbitration
Enable(true) channel linking is available and controlled by each channel’s link settings.
-
edma_channel_config_t *channelConfig[1]
channel preemption configuration
-
bool enableMasterIdReplication
-
struct _edma_handle
- #include <fsl_edma.h>
eDMA transfer handle structure
Public Members
-
edma_callback callback
Callback function for major count exhausted.
-
void *userData
Callback function parameter.
-
EDMA_ChannelType *channelBase
eDMA peripheral channel base address.
-
EDMA_Type *base
eDMA peripheral base address
-
EDMA_TCDType *tcdBase
eDMA peripheral tcd base address.
-
edma_tcd_t *tcdPool
Pointer to memory stored TCDs.
-
uint32_t channel
eDMA channel number.
-
volatile int8_t header
The first TCD index. Should point to the next TCD to be loaded into the eDMA engine.
-
volatile int8_t tail
The last TCD index. Should point to the next TCD to be stored into the memory pool.
-
volatile int8_t tcdUsed
The number of used TCD slots. Should reflect the number of TCDs can be used/loaded in the memory.
-
volatile int8_t tcdSize
The total number of TCD slots in the queue.
-
edma_callback callback
eDMA core Driver
-
enum _edma_tcd_type
eDMA tcd flag type
Values:
-
enumerator kEDMA_EDMA4Flag
Data access for eDMA4 transfers.
-
enumerator kEDMA_EDMA5Flag
Instruction access for eDMA4 transfers.
-
enumerator kEDMA_EDMA4Flag
-
typedef struct _edma_core_mp edma_core_mp_t
edma core channel struture definition
-
typedef struct _edma_core_channel edma_core_channel_t
edma core channel struture definition
-
typedef enum _edma_tcd_type edma_tcd_type_t
eDMA tcd flag type
-
typedef struct _edma5_core_tcd edma5_core_tcd_t
edma5 core TCD struture definition
-
typedef struct _edma4_core_tcd edma4_core_tcd_t
edma4 core TCD struture definition
-
typedef struct _edma_core_tcd edma_core_tcd_t
edma core TCD struture definition
-
typedef edma_core_channel_t EDMA_ChannelType
EDMA typedef.
-
typedef edma_core_tcd_t EDMA_TCDType
-
typedef void EDMA_Type
-
DMA_CORE_MP_CSR_EDBG_MASK
-
DMA_CORE_MP_CSR_ERCA_MASK
-
DMA_CORE_MP_CSR_HAE_MASK
-
DMA_CORE_MP_CSR_HALT_MASK
-
DMA_CORE_MP_CSR_GCLC_MASK
-
DMA_CORE_MP_CSR_GMRC_MASK
-
DMA_CORE_MP_CSR_EDBG(x)
-
DMA_CORE_MP_CSR_ERCA(x)
-
DMA_CORE_MP_CSR_HAE(x)
-
DMA_CORE_MP_CSR_HALT(x)
-
DMA_CORE_MP_CSR_GCLC(x)
-
DMA_CORE_MP_CSR_GMRC(x)
-
DMA_CSR_INTMAJOR_MASK
-
DMA_CSR_INTHALF_MASK
-
DMA_CSR_DREQ_MASK
-
DMA_CSR_ESG_MASK
-
DMA_CSR_BWC_MASK
-
DMA_CSR_BWC(x)
-
DMA_CSR_START_MASK
-
DMA_CITER_ELINKNO_CITER_MASK
-
DMA_BITER_ELINKNO_BITER_MASK
-
DMA_CITER_ELINKNO_CITER_SHIFT
-
DMA_CITER_ELINKYES_CITER_MASK
-
DMA_CITER_ELINKYES_CITER_SHIFT
-
DMA_ATTR_SMOD_MASK
-
DMA_ATTR_DMOD_MASK
-
DMA_CITER_ELINKNO_ELINK_MASK
-
DMA_CSR_MAJORELINK_MASK
-
DMA_BITER_ELINKYES_ELINK_MASK
-
DMA_CITER_ELINKYES_ELINK_MASK
-
DMA_CSR_MAJORLINKCH_MASK
-
DMA_BITER_ELINKYES_LINKCH_MASK
-
DMA_CITER_ELINKYES_LINKCH_MASK
-
DMA_NBYTES_MLOFFYES_MLOFF_MASK
-
DMA_NBYTES_MLOFFYES_DMLOE_MASK
-
DMA_NBYTES_MLOFFYES_SMLOE_MASK
-
DMA_NBYTES_MLOFFNO_NBYTES_MASK
-
DMA_ATTR_DMOD(x)
-
DMA_ATTR_SMOD(x)
-
DMA_BITER_ELINKYES_LINKCH(x)
-
DMA_CITER_ELINKYES_LINKCH(x)
-
DMA_NBYTES_MLOFFYES_MLOFF(x)
-
DMA_NBYTES_MLOFFYES_DMLOE(x)
-
DMA_NBYTES_MLOFFYES_SMLOE(x)
-
DMA_NBYTES_MLOFFNO_NBYTES(x)
-
DMA_NBYTES_MLOFFYES_NBYTES(x)
-
DMA_ATTR_DSIZE(x)
-
DMA_ATTR_SSIZE(x)
-
DMA_CSR_DREQ(x)
-
DMA_CSR_MAJORLINKCH(x)
-
DMA_CH_MATTR_WCACHE(x)
-
DMA_CH_MATTR_RCACHE(x)
-
DMA_CH_CSR_SIGNEXT_MASK
-
DMA_CH_CSR_SIGNEXT_SHIFT
-
DMA_CH_CSR_SWAP_MASK
-
DMA_CH_CSR_SWAP_SHIFT
-
DMA_CH_SBR_INSTR_MASK
-
DMA_CH_SBR_INSTR_SHIFT
-
DMA_CH_MUX_SOURCE(x)
-
DMA_ERR_DBE_FLAG
DMA error flag.
-
DMA_ERR_SBE_FLAG
-
DMA_ERR_SGE_FLAG
-
DMA_ERR_NCE_FLAG
-
DMA_ERR_DOE_FLAG
-
DMA_ERR_DAE_FLAG
-
DMA_ERR_SOE_FLAG
-
DMA_ERR_SAE_FLAG
-
DMA_ERR_ERRCHAN_FLAG
-
DMA_ERR_ECX_FLAG
-
DMA_ERR_FLAG
-
DMA_CLEAR_DONE_STATUS(base, channel)
get/clear DONE bit
-
DMA_GET_DONE_STATUS(base, channel)
-
DMA_ENABLE_ERROR_INT(base, channel)
enable/disable error interupt
-
DMA_DISABLE_ERROR_INT(base, channel)
-
DMA_CLEAR_ERROR_STATUS(base, channel)
get/clear error status
-
DMA_GET_ERROR_STATUS(base, channel)
-
DMA_CLEAR_INT_STATUS(base, channel)
get/clear INT status
-
DMA_GET_INT_STATUS(base, channel)
-
DMA_ENABLE_MAJOR_INT(base, channel)
enable/dsiable MAJOR/HALF INT
-
DMA_ENABLE_HALF_INT(base, channel)
-
DMA_DISABLE_MAJOR_INT(base, channel)
-
DMA_DISABLE_HALF_INT(base, channel)
-
EDMA_TCD_ALIGN_SIZE
EDMA tcd align size.
-
EDMA_CORE_BASE(base)
EDMA base address convert macro.
-
EDMA_MP_BASE(base)
-
EDMA_CHANNEL_BASE(base, channel)
-
EDMA_TCD_BASE(base, channel)
-
EDMA_TCD_TYPE(x)
EDMA TCD type macro.
-
EDMA_TCD_SADDR(tcd, flag)
EDMA TCD address convert macro.
-
EDMA_TCD_SOFF(tcd, flag)
-
EDMA_TCD_ATTR(tcd, flag)
-
EDMA_TCD_NBYTES(tcd, flag)
-
EDMA_TCD_SLAST(tcd, flag)
-
EDMA_TCD_DADDR(tcd, flag)
-
EDMA_TCD_DOFF(tcd, flag)
-
EDMA_TCD_CITER(tcd, flag)
-
EDMA_TCD_DLAST_SGA(tcd, flag)
-
EDMA_TCD_CSR(tcd, flag)
-
EDMA_TCD_BITER(tcd, flag)
-
struct _edma_core_mp
- #include <fsl_edma_core.h>
edma core channel struture definition
Public Members
- __IO uint32_t MP_CSR
Channel Control and Status, array offset: 0x10000, array step: 0x10000
- __IO uint32_t MP_ES
Channel Error Status, array offset: 0x10004, array step: 0x10000
-
struct _edma_core_channel
- #include <fsl_edma_core.h>
edma core channel struture definition
Public Members
- __IO uint32_t CH_CSR
Channel Control and Status, array offset: 0x10000, array step: 0x10000
- __IO uint32_t CH_ES
Channel Error Status, array offset: 0x10004, array step: 0x10000
- __IO uint32_t CH_INT
Channel Interrupt Status, array offset: 0x10008, array step: 0x10000
- __IO uint32_t CH_SBR
Channel System Bus, array offset: 0x1000C, array step: 0x10000
- __IO uint32_t CH_PRI
Channel Priority, array offset: 0x10010, array step: 0x10000
-
struct _edma5_core_tcd
- #include <fsl_edma_core.h>
edma5 core TCD struture definition
Public Members
- __IO uint32_t SADDR
SADDR register, used to save source address
- __IO uint32_t SADDR_HIGH
SADDR HIGH register, used to save source address
- __IO uint16_t SOFF
SOFF register, save offset bytes every transfer
- __IO uint16_t ATTR
ATTR register, source/destination transfer size and modulo
- __IO uint32_t NBYTES
Nbytes register, minor loop length in bytes
- __IO uint32_t SLAST
SLAST register
- __IO uint32_t SLAST_SDA_HIGH
SLAST SDA HIGH register
- __IO uint32_t DADDR
DADDR register, used for destination address
- __IO uint32_t DADDR_HIGH
DADDR HIGH register, used for destination address
- __IO uint32_t DLAST_SGA
DLASTSGA register, next tcd address used in scatter-gather mode
- __IO uint32_t DLAST_SGA_HIGH
DLASTSGA HIGH register, next tcd address used in scatter-gather mode
- __IO uint16_t DOFF
DOFF register, used for destination offset
- __IO uint16_t CITER
CITER register, current minor loop numbers, for unfinished minor loop.
- __IO uint16_t CSR
CSR register, for TCD control status
- __IO uint16_t BITER
BITER register, begin minor loop count.
-
uint8_t RESERVED[16]
Aligned 64 bytes
-
struct _edma4_core_tcd
- #include <fsl_edma_core.h>
edma4 core TCD struture definition
Public Members
- __IO uint32_t SADDR
SADDR register, used to save source address
- __IO uint16_t SOFF
SOFF register, save offset bytes every transfer
- __IO uint16_t ATTR
ATTR register, source/destination transfer size and modulo
- __IO uint32_t NBYTES
Nbytes register, minor loop length in bytes
- __IO uint32_t SLAST
SLAST register
- __IO uint32_t DADDR
DADDR register, used for destination address
- __IO uint16_t DOFF
DOFF register, used for destination offset
- __IO uint16_t CITER
CITER register, current minor loop numbers, for unfinished minor loop.
- __IO uint32_t DLAST_SGA
DLASTSGA register, next tcd address used in scatter-gather mode
- __IO uint16_t CSR
CSR register, for TCD control status
- __IO uint16_t BITER
BITER register, begin minor loop count.
-
struct _edma_core_tcd
- #include <fsl_edma_core.h>
edma core TCD struture definition
-
union MP_REGS
Public Members
-
struct _edma_core_mp EDMA5_REG
-
struct _edma_core_mp EDMA5_REG
-
struct EDMA5_REG
Public Members
- __IO uint32_t MP_INT_LOW
Channel Control and Status, array offset: 0x10008, array step: 0x10000
- __I uint32_t MP_INT_HIGH
Channel Control and Status, array offset: 0x1000C, array step: 0x10000
- __I uint32_t MP_HRS_LOW
Channel Control and Status, array offset: 0x10010, array step: 0x10000
- __I uint32_t MP_HRS_HIGH
Channel Control and Status, array offset: 0x10014, array step: 0x10000
- __IO uint32_t MP_STOPCH
Channel Control and Status, array offset: 0x10020, array step: 0x10000
- __I uint32_t MP_SSR_LOW
Channel Control and Status, array offset: 0x10030, array step: 0x10000
- __I uint32_t MP_SSR_HIGH
Channel Control and Status, array offset: 0x10034, array step: 0x10000
- __IO uint32_t CH_GRPRI [64]
Channel Control and Status, array offset: 0x10100, array step: 0x10000
- __IO uint32_t CH_MUX [64]
Channel Control and Status, array offset: 0x10200, array step: 0x10000
- __IO uint32_t CH_PROT [64]
Channel Control and Status, array offset: 0x10400, array step: 0x10000
-
union CH_REGS
-
struct EDMA5_REG
Public Members
- __IO uint32_t CH_MATTR
Memory Attributes Register, array offset: 0x10018, array step: 0x8000
-
struct EDMA4_REG
Public Members
- __IO uint32_t CH_MUX
Channel Multiplexor Configuration, array offset: 0x10014, array step: 0x10000
- __IO uint16_t CH_MATTR
Memory Attributes Register, array offset: 0x10018, array step: 0x8000
-
union TCD_REGS
Public Members
-
edma4_core_tcd_t edma4_tcd
-
edma4_core_tcd_t edma4_tcd
eDMA soc Driver
-
FSL_EDMA_SOC_DRIVER_VERSION
Driver version 2.0.0.
-
FSL_EDMA_SOC_IP_DMA3
DMA IP version.
-
FSL_EDMA_SOC_IP_DMA4
-
EDMA_BASE_PTRS
DMA base table.
-
EDMA_CHN_IRQS
-
EDMA_CHANNEL_OFFSET
EDMA base address convert macro.
-
EDMA_CHANNEL_ARRAY_STEP(base)
EIM: error injection module
-
FSL_ERM_DRIVER_VERSION
Driver version.
-
void EIM_Init(EIM_Type *base)
EIM module initialization function.
- Parameters:
base – EIM base address.
-
void EIM_Deinit(EIM_Type *base)
De-initializes the EIM.
EQDC: Enhanced Quadrature Encoder/Decoder
-
void EQDC_Init(EQDC_Type *base, const eqdc_config_t *psConfig)
Initializes the EQDC module.
This function initializes the EQDC by enabling the IP bus clock (optional).
- Parameters:
base – EQDC peripheral base address.
psConfig – Pointer to configuration structure.
-
void EQDC_GetDefaultConfig(eqdc_config_t *psConfig)
Gets an available pre-defined configuration.
The default value are:
psConfig->enableReverseDirection = false; psConfig->countOnce = false; psConfig->operateMode = kEQDC_QuadratureDecodeOperationMode; psConfig->countMode = kEQDC_QuadratureX4; psConfig->homeEnableInitPosCounterMode = kEQDC_HomeInitPosCounterDisabled; psConfig->indexPresetInitPosCounterMode = kEQDC_IndexInitPosCounterDisabled; psConfig->enableIndexInitPositionCounter = false; psConfig->enableDma = false; psConfig->bufferedRegisterLoadMode = false; psConfig->enableTriggerInitPositionCounter = false; psConfig->enableTriggerClearPositionRegisters = false; psConfig->enableTriggerHoldPositionRegisters = false; psConfig->enableWatchdog = false; psConfig->watchdogTimeoutValue = 0xFFFFU; psConfig->filterPhaseA = 0U; psConfig->filterPhaseB = 0U; psConfig->filterIndPre = 0U; psConfig->filterHomEna = 0U; psConfig->filterClockSourceselection = false; psConfig->filterSampleCount = kEQDC_Filter3Samples; psConfig->filterSamplePeriod = 0U; psConfig->outputPulseMode = kEQDC_OutputPulseOnCounterEqualCompare; psConfig->positionCompareValue[0] = 0xFFFFFFFFU; psConfig->positionCompareValue[1] = 0xFFFFFFFFU; psConfig->positionCompareValue[2] = 0xFFFFFFFFU; psConfig->positionCompareValue[3] = 0xFFFFFFFFU; psConfig->revolutionCountCondition = kEQDC_RevolutionCountOnIndexPulse; psConfig->positionModulusValue = 0U; psConfig->positionInitialValue = 0U; psConfig->positionCounterValue = 0U; psConfig->enablePeriodMeasurement = false; psConfig->prescaler = kEQDC_Prescaler1; psConfig->enabledInterruptsMask = 0U;
- Parameters:
psConfig – Pointer to configuration structure.
-
void EQDC_Deinit(EQDC_Type *base)
De-initializes the EQDC module.
This function deinitializes the EQDC by disabling the IP bus clock (optional).
- Parameters:
base – EQDC peripheral base address.
-
void EQDC_SetOperateMode(EQDC_Type *base, eqdc_operate_mode_t operateMode)
Initializes the mode of operation.
This function initializes mode of operation by enabling the IP bus clock (optional).
- Parameters:
base – EQDC peripheral base address.
operateMode – Select operation mode.
-
static inline void EQDC_SetCountMode(EQDC_Type *base, eqdc_count_mode_t countMode)
Initializes the mode of count.
These bits control the basic counting and behavior of Position Counter and Position Difference Counter. Setting CTRL[REV] to 1 can reverse the counting direction. 1.In quadrature Mode (CTRL[PH1] = 0): 00b - CM0: Normal/Reverse Quadrature X4 01b - CM1: Normal/Reverse Quadrature X2 10b - CM2: Normal/Reverse Quadrature X1 11b - CM3: Reserved 2.In Single Phase Mode (CTRL[PH1] = 1): 00b - CM0: UP/DOWN Pulse Count Mode 01b - CM1: Signed Mode, count PHASEA rising/falling edge, position counter counts up when PHASEB is low and counts down when PHASEB is high 10b - CM2: Signed Count Mode,count PHASEA rising edge only, position counter counts up when PHASEB is low and counts down when PHASEB is high 11b - CM3: Reserved
- Parameters:
base – EQDC peripheral base address.
countMode – Select count mode.
-
static inline void EQDC_EnableWatchdog(EQDC_Type *base, bool bEnable)
Enable watchdog for EQDC module.
- Parameters:
base – EQDC peripheral base address
bEnable – Enables or disables the watchdog
-
static inline void EQDC_SetWatchdogTimeout(EQDC_Type *base, uint16_t u16Timeout)
Set watchdog timeout value.
- Parameters:
base – EQDC peripheral base address
u16Timeout – Number of clock cycles, plus one clock cycle that the watchdog timer counts before timing out
-
static inline void EQDC_EnableDMA(EQDC_Type *base, bool bEnable)
Enable DMA for EQDC module.
- Parameters:
base – EQDC peripheral base address
bEnable – Enables or disables the DMA
-
static inline void EQDC_SetBufferedRegisterLoadUpdateMode(EQDC_Type *base)
Set Buffered Register Load (Update) Mode.
This bit selects the loading time point of the buffered compare registers UCOMPx/LCOMPx, x=0~3, initial register (UINIT/LINIT), and modulus register (UMOD/LMOD). Buffered registers are loaded and take effect at the next roll-over or roll-under if CTRL[LDOK] is set.
- Parameters:
base – EQDC peripheral base address
-
static inline void EQDC_ClearBufferedRegisterLoadUpdateMode(EQDC_Type *base)
Clear Buffered Register Load (Update) Mode.
Buffered Register Load (Update) Mode bit selects the loading time point of the buffered compare registers UCOMPx/LCOMPx, x=0~3, initial register (UINIT/LINIT), and modulus register (UMOD/LMOD). Buffered registers are loaded and take effect immediately upon CTRL[LDOK] is set.
- Parameters:
base – EQDC peripheral base address
-
static inline void EQDC_SetEqdcLdok(EQDC_Type *base)
Set load okay.
Load okay enables that the outer-set values of buffered compare registers (UCOMPx/LCOMPx, x=0~3), initial register(UINIT/LINIT) and modulus register(UMOD/LMOD) can be loaded into their inner-sets and take effect. When LDOK is set, this loading action occurs at the next position counter roll-over or roll-under if CTRL2[LDMOD] is set, or it occurs immediately if CTRL2[LDMOD] is cleared. LDOK is automatically cleared after the values in outer-set is loaded into the inner-set.
- Parameters:
base – EQDC peripheral base address.
-
static inline uint8_t EQDC_GetEqdcLdok(EQDC_Type *base)
Get load okay.
- Parameters:
base – EQDC peripheral base address.
-
static inline void EQDC_ClearEqdcLdok(EQDC_Type *base)
Clear load okay.
- Parameters:
base – EQDC peripheral base address.
-
static inline uint32_t EQDC_GetStatusFlags(EQDC_Type *base)
Get the status flags.
- Parameters:
base – EQDC peripheral base address.
- Returns:
Logical OR’ed value of the status flags, _eqdc_status_flags.
-
static inline void EQDC_ClearStatusFlags(EQDC_Type *base, uint32_t u32Flags)
Clear the status flags.
- Parameters:
base – EQDC peripheral base address.
u32Flags – Logical OR’ed value of the flags to clear, _eqdc_status_flags.
-
static inline uint16_t EQDC_GetSignalStatusFlags(EQDC_Type *base)
Get the signals’ real-time status.
- Parameters:
base – EQDC peripheral base address.
- Returns:
Logical OR’ed value of the real-time signal status, _eqdc_signal_status.
-
static inline eqdc_count_direction_flag_t EQDC_GetLastCountDirection(EQDC_Type *base)
Get the direction of the last count.
- Parameters:
base – EQDC peripheral base address.
- Returns:
Direction of the last count.
-
static inline void EQDC_EnableInterrupts(EQDC_Type *base, uint32_t u32Interrupts)
Enable the interrupts.
- Parameters:
base – EQDC peripheral base address.
u32Interrupts – Logical OR’ed value of the interrupts, _eqdc_interrupt_enable.
-
static inline void EQDC_DisableInterrupts(EQDC_Type *base, uint32_t u32Interrupts)
Disable the interrupts.
- Parameters:
base – EQDC peripheral base address.
u32Interrupts – Logical OR’ed value of the interrupts, _eqdc_interrupt_enable.
-
static inline void EQDC_DoSoftwareLoadInitialPositionValue(EQDC_Type *base)
Load the initial position value to position counter.
Software trigger to load the initial position value (UINIT and LINIT) contents to position counter (UPOS and LPOS), so that to provide the consistent operation the position counter registers.
- Parameters:
base – EQDC peripheral base address.
-
static inline void EQDC_SetInitialPositionValue(EQDC_Type *base, uint32_t u32PositionInitValue)
Set initial position value for EQDC module.
Set the position counter initial value (UINIT, LINIT). After writing values to the UINIT and LINIT registers, the values are “buffered” into outer-set registers temporarily. Values will be loaded into inner-set registers and take effect using the following two methods:
If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at the next roll-over or roll-under if CTRL[LDOK] is set.
If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect immediately when CTRL[LDOK] is set.
- Parameters:
base – EQDC peripheral base address
u32PositionInitValue – Position initial value
-
static inline void EQDC_SetPositionCounterValue(EQDC_Type *base, uint32_t positionCounterValue)
Set position counter value.
Set the position counter value (POS or UPOS, LPOS).
- Parameters:
base – EQDC peripheral base address
positionCounterValue – Position counter value
-
static inline void EQDC_SetPositionModulusValue(EQDC_Type *base, uint32_t positionModulusValue)
Set position counter modulus value.
Set the position counter modulus value (UMOD, LMOD). After writing values to the UMOD and LMOD registers, the values are “buffered” into outer-set registers temporarily. Values will be loaded into inner-set registers and take effect using the following two methods:
If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at the next roll-over or roll-under if CTRL[LDOK] is set.
If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect immediately when CTRL[LDOK] is set.
- Parameters:
base – EQDC peripheral base address
positionModulusValue – Position modulus value
-
static inline void EQDC_SetPositionCompare0Value(EQDC_Type *base, uint32_t u32PositionComp0Value)
Set position counter compare 0 value.
Set the position counter compare 0 value (UCOMP0, LCOMP0). After writing values to the UCOMP0 and LCOMP0 registers, the values are “buffered” into outer-set registers temporarily. Values will be loaded into inner-set registers and take effect using the following two methods:
If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at the next roll-over or roll-under if CTRL[LDOK] is set.
If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect immediately when CTRL[LDOK] is set.
- Parameters:
base – EQDC peripheral base address
u32PositionComp0Value – Position modulus value
-
static inline void EQDC_SetPositionCompare1Value(EQDC_Type *base, uint32_t u32PositionComp1Value)
Set position counter compare 1 value.
Set the position counter compare 1 value (UCOMP1, LCOMP1). After writing values to the UCOMP1 and LCOMP1 registers, the values are “buffered” into outer-set registers temporarily. Values will be loaded into inner-set registers and take effect using the following two methods:
If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at the next roll-over or roll-under if CTRL[LDOK] is set.
If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect immediately when CTRL[LDOK] is set.
- Parameters:
base – EQDC peripheral base address
u32PositionComp1Value – Position modulus value
-
static inline void EQDC_SetPositionCompare2Value(EQDC_Type *base, uint32_t u32PositionComp2Value)
Set position counter compare 2 value.
Set the position counter compare 2 value (UCOMP2, LCOMP2). After writing values to the UCOMP2 and LCOMP2 registers, the values are “buffered” into outer-set registers temporarily. Values will be loaded into inner-set registers and take effect using the following two methods:
If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at the next roll-over or roll-under if CTRL[LDOK] is set.
If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect immediately when CTRL[LDOK] is set.
- Parameters:
base – EQDC peripheral base address
u32PositionComp2Value – Position modulus value
-
static inline void EQDC_SetPositionCompare3Value(EQDC_Type *base, uint32_t u32PositionComp3Value)
Set position counter compare 3 value.
Set the position counter compare 3 value (UCOMP3, LCOMP3). After writing values to the UCOMP3 and LCOMP3 registers, the values are “buffered” into outer-set registers temporarily. Values will be loaded into inner-set registers and take effect using the following two methods:
If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at the next roll-over or roll-under if CTRL[LDOK] is set.
If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect immediately when CTRL[LDOK] is set.
- Parameters:
base – EQDC peripheral base address
u32PositionComp3Value – Position modulus value
-
static inline uint32_t EQDC_GetPosition(EQDC_Type *base)
Get the current position counter’s value.
- Parameters:
base – EQDC peripheral base address.
- Returns:
Current position counter’s value.
-
static inline uint32_t EQDC_GetHoldPosition(EQDC_Type *base)
Get the hold position counter’s value.
The position counter (POS or UPOS, LPOS) value is loaded to hold position (POSH or UPOSH, LPOSH) when:
Position register (POS or UPOS, LPOS), or position difference register (POSD), or revolution register (REV) is read.
TRIGGER happens and TRIGGER is enabled to update the hold registers.
- Parameters:
base – EQDC peripheral base address.
- Returns:
Hold position counter’s value.
-
static inline uint32_t EQDC_GetHoldPosition1(EQDC_Type *base)
Get the hold position counter1’s value.
The Upper Position Counter Hold Register 1(UPOSH1) shares the same address with UCOMP1. When read, this register means the value of UPOSH1, which is the upper 16 bits of POSH1. The Lower Position Counter Hold Register 1(LPOSH1) shares the same address with LCOMP1. When read, this register means the value of LPOSH1, which is the lower 16 bits of POSH1. Position counter is captured into POSH1 on the rising edge of ICAP[1].
- Parameters:
base – EQDC peripheral base address.
- Returns:
Hold position counter1’s value.
-
static inline uint32_t EQDC_GetHoldPosition2(EQDC_Type *base)
Get the hold position counter2’s value.
The Upper Position Counter Hold Register 2(UPOSH2) shares the same address with UCOMP2. When read,this register means the value of UPOSH2, which is the upper 16 bits of POSH2. The Lower Position Counter Hold Register 2(LPOSH2) shares the same address with LCOMP2. When read, this register means the value of LPOSH2, which is the lower 16 bits of POSH2. Position counter is captured into POSH2 on the rising edge of ICAP[2].
- Parameters:
base – EQDC peripheral base address.
- Returns:
Hold position counter2’s value.
-
static inline uint32_t EQDC_GetHoldPosition3(EQDC_Type *base)
Get the hold position counter3’s value.
The Upper Position Counter Hold Register 3(UPOSH3) shares the same address with UCOMP3. When read,this register means the value of UPOSH3, which is the upper 16 bits of POSH3. The Lower Position Counter Hold Register 3(LPOSH3) shares the same address with LCOMP3. When read, this register means the value of LPOSH3, which is the lower 16 bits of POSH3. Position counter is captured into POSH3 on the rising edge of ICAP[3].
- Parameters:
base – EQDC peripheral base address.
- Returns:
Hold position counter3’s value.
-
static inline uint16_t EQDC_GetPositionDifference(EQDC_Type *base)
Get the position difference counter’s value.
- Parameters:
base – EQDC peripheral base address.
- Returns:
The position difference counter’s value.
-
static inline uint16_t EQDC_GetHoldPositionDifference(EQDC_Type *base)
Get the hold position difference counter’s value.
The position difference (POSD) value is loaded to hold position difference (POSDH) when:
Position register (POS or UPOS, LPOS), or position difference register (POSD), or revolution register (REV) is read. When Period Measurement is enabled (CTRL3[PMEN] = 1), POSDH will only be udpated when reading POSD.
TRIGGER happens and TRIGGER is enabled to update the hold registers.
- Parameters:
base – EQDC peripheral base address.
- Returns:
Hold position difference counter’s value.
-
static inline uint16_t EQDC_GetRevolution(EQDC_Type *base)
Get the revolution counter’s value.
Get the revolution counter (REV) value.
- Parameters:
base – EQDC peripheral base address.
- Returns:
The revolution counter’s value.
-
static inline uint16_t EQDC_GetHoldRevolution(EQDC_Type *base)
Get the hold revolution counter’s value.
The revolution counter (REV) value is loaded to hold revolution (REVH) when:
Position register (POS or UPOS, LPOS), or position difference register (POSD), or revolution register (REV) is read.
TRIGGER happens and TRIGGER is enabled to update the hold registers.
- Parameters:
base – EQDC peripheral base address.
- Returns:
Hold position revolution counter’s value.
-
static inline uint16_t EQDC_GetLastEdgeTime(EQDC_Type *base)
Get the last edge time.
Last edge time (LASTEDGE) is the time since the last edge occurred on PHASEA or PHASEB. The last edge time register counts up using the peripheral clock after prescaler. Any edge on PHASEA or PHASEB will reset this register to 0 and start counting. If the last edge timer count reaches 0xffff, the counting will stop in order to prevent an overflow.Counting will continue when an edge occurs on PHASEA or PHASEB.
- Parameters:
base – EQDC peripheral base address.
- Returns:
The last edge time.
-
static inline uint16_t EQDC_GetHoldLastEdgeTime(EQDC_Type *base)
Get the hold last edge time.
The hold of last edge time(LASTEDGEH) is update to last edge time(LASTEDGE) when the position difference register register (POSD) is read.
- Parameters:
base – EQDC peripheral base address.
- Returns:
Hold of last edge time.
-
static inline uint16_t EQDC_GetPositionDifferencePeriod(EQDC_Type *base)
Get the Position Difference Period counter value.
The Position Difference Period counter (POSDPER) counts up using the prescaled peripheral clock. When reading the position difference register(POSD), the last edge time (LASTEDGE) will be loaded to position difference period counter(POSDPER). If the POSDPER count reaches 0xffff, the counting will stop in order to prevent an overflow. Counting will continue when an edge occurs on PHASEA or PHASEB.
- Parameters:
base – EQDC peripheral base address.
- Returns:
The position difference period counter value.
-
static inline uint16_t EQDC_GetBufferedPositionDifferencePeriod(EQDC_Type *base)
Get buffered Position Difference Period counter value.
The Bufferd Position Difference Period (POSDPERBFR) value is updated with the position difference period counter(POSDPER) when any edge occurs on PHASEA or PHASEB.
- Parameters:
base – EQDC peripheral base address.
- Returns:
The buffered position difference period counter value.
-
static inline uint16_t EQDC_GetHoldPositionDifferencePeriod(EQDC_Type *base)
Get Hold Position Difference Period counter value.
The hold position difference period(POSDPERH) is updated with the value of buffered position difference period(POSDPERBFR) when the position difference(POSD) register is read.
- Parameters:
base – EQDC peripheral base address.
- Returns:
The hold position difference period counter value.
-
enum _eqdc_status_flags
EQDC status flags, these flags indicate the counter’s events. .
Values:
-
enumerator kEQDC_HomeEnableTransitionFlag
HOME/ENABLE signal transition occured.
-
enumerator kEQDC_IndexPresetPulseFlag
INDEX/PRESET pulse occured.
-
enumerator kEQDC_WatchdogTimeoutFlag
Watchdog timeout occured.
-
enumerator kEQDC_SimultPhaseChangeFlag
Simultaneous change of PHASEA and PHASEB occured.
-
enumerator kEQDC_CountDirectionChangeFlag
Count direction change interrupt enable.
-
enumerator kEQDC_PositionRollOverFlag
Position counter rolls over from 0xFFFFFFFF to 0, or from MOD value to INIT value.
-
enumerator kEQDC_PositionRollUnderFlag
Position register roll under from 0 to 0xFFFFFFFF, or from INIT value to MOD value.
-
enumerator kEQDC_PositionCompare0Flag
Position counter match the COMP0 value.
-
enumerator kEQDC_PositionCompare1Flag
Position counter match the COMP1 value.
-
enumerator kEQDC_PositionCompare2Flag
Position counter match the COMP2 value.
-
enumerator kEQDC_PositionCompare3Flag
Position counter match the COMP3 value.
-
enumerator kEQDC_StatusAllFlags
-
enumerator kEQDC_HomeEnableTransitionFlag
-
enum _eqdc_signal_status
Signal status, these flags indicate the raw and filtered input signal status. .
Values:
-
enumerator kEQDC_SignalStatusRawHomeEnable
Raw HOME/ENABLE input.
-
enumerator kEQDC_SignalStatusRawIndexPreset
Raw INDEX/PRESET input.
-
enumerator kEQDC_SignalStatusRawPhaseB
Raw PHASEB input.
-
enumerator kEQDC_SignalStatusRawPhaseA
Raw PHASEA input.
-
enumerator kEQDC_SignalStatusFilteredHomeEnable
The filtered HOME/ENABLE input.
-
enumerator kEQDC_SignalStatusFilteredIndexPreset
The filtered INDEX/PRESET input.
-
enumerator kEQDC_SignalStatusFilteredPhaseB
The filtered PHASEB input.
-
enumerator kEQDC_SignalStatusFilteredPhaseA
The filtered PHASEA input.
-
enumerator kEQDC_SignalStatusPositionCompare0Flag
Position Compare 0 Flag Output.
-
enumerator kEQDC_SignalStatusPositionCompare1Flag
Position Compare 1 Flag Output.
-
enumerator kEQDC_SignalStatusPositionCompare2Flag
Position Compare 2 Flag Output.
-
enumerator kEQDC_SignalStatusPositionCompare3Flag
Position Compare 3 Flag Output.
-
enumerator kEQDC_SignalStatusCountDirectionFlagHold
Count Direction Flag Hold.
-
enumerator kEQDC_SignalStatusCountDirectionFlag
Count Direction Flag Output.
-
enumerator kEQDC_SignalStatusAllFlags
-
enumerator kEQDC_SignalStatusRawHomeEnable
-
enum _eqdc_interrupt_enable
Interrupt enable/disable mask. .
Values:
-
enumerator kEQDC_HomeEnableTransitionInterruptEnable
HOME/ENABLE signal transition interrupt enable.
-
enumerator kEQDC_IndexPresetPulseInterruptEnable
INDEX/PRESET pulse interrupt enable.
-
enumerator kEQDC_WatchdogTimeoutInterruptEnable
Watchdog timeout interrupt enable.
-
enumerator kEQDC_SimultPhaseChangeInterruptEnable
Simultaneous PHASEA and PHASEB change interrupt enable.
-
enumerator kEQDC_CountDirectionChangeInterruptEnable
Count direction change interrupt enable.
-
enumerator kEQDC_PositionRollOverInterruptEnable
Roll-over interrupt enable.
-
enumerator kEQDC_PositionRollUnderInterruptEnable
Roll-under interrupt enable.
-
enumerator kEQDC_PositionCompare0InterruptEnable
Position compare 0 interrupt enable.
-
enumerator kEQDC_PositionCompare1InterruptEnable
Position compare 1 interrupt enable.
-
enumerator kEQDC_PositionCompare2InterruptEnable
Position compare 2 interrupt enable.
-
enumerator kEQDC_PositionCompare3InterruptEnable
Position compare 3 interrupt enable.
-
enumerator kEQDC_AllInterruptEnable
-
enumerator kEQDC_HomeEnableTransitionInterruptEnable
-
enum _eqdc_home_enable_init_pos_counter_mode
Define HOME/ENABLE signal’s trigger mode.
Values:
-
enumerator kEQDC_HomeInitPosCounterDisabled
Don’t use HOME/ENABLE signal to initialize the position counter.
-
enumerator kEQDC_HomeInitPosCounterOnRisingEdge
Use positive going edge to trigger initialization of position counters.
-
enumerator kEQDC_HomeInitPosCounterOnFallingEdge
Use negative going edge to trigger initialization of position counters.
-
enumerator kEQDC_HomeInitPosCounterDisabled
-
enum _eqdc_index_preset_init_pos_counter_mode
Define INDEX/PRESET signal’s trigger mode.
Values:
-
enumerator kEQDC_IndexInitPosCounterDisabled
INDEX/PRESET pulse does not initialize the position counter.
-
enumerator kEQDC_IndexInitPosCounterOnRisingEdge
Use INDEX/PRESET pulse rising edge to initialize position counter.
-
enumerator kEQDC_IndexInitPosCounterOnFallingEdge
Use INDEX/PRESET pulse falling edge to initialize position counter.
-
enumerator kEQDC_IndexInitPosCounterDisabled
-
enum _eqdc_operate_mode
Define type for decoder opertion mode.
The Quadrature Decoder operates in following 4 operation modes: 1.Quadrature Decode(QDC) Operation Mode (CTRL[PH1] = 0,CTRL2[OPMODE] = 0) In QDC operation mode, Module uses PHASEA, PHASEB, INDEX, HOME, TRIGGER and ICAP[3:1] to decode the PHASEA and PHASEB signals from Speed/Position sensor. 2.Quadrature Count(QCT) Operation Mode (CTRL[PH1] = 0,CTRL2[OPMODE] = 1) In QCT operation mode, Module uses PHASEA, PHASEB, PRESET, ENABLE, TRIGGER and ICAP[3:1] to count the PHASEA and PHASEB signals from Speed/Position sensor. 3.Single Phase Decode(PH1DC) Operation Mode (CTRL[PH1] = 1,CTRL2[OPMODE] = 0) In PH1DC operation mode, the module uses PHASEA, PHASEB, INDEX, HOME, TRIGGER and ICAP[3:1] to decode the PHASEA and PHASEB signals from Speed/Position sensor. 4.Single Phase Count(PH1CT) Operation Mode (CTRL[PH1] = 1,CTRL2[OPMODE] = 1) In PH1CT operation mode, the module uses PHASEA, PHASEB, PRESET, ENABLE, TRIGGER and ICAP[3:1] to count the PHASEA and PHASEB signals from Speed/Position sensor.
Values:
-
enumerator kEQDC_QuadratureDecodeOperationMode
Use standard quadrature decoder with PHASEA/PHASEB, INDEX/HOME.
-
enumerator kEQDC_QuadratureCountOperationMode
Use quadrature count operation mode with PHASEA/PHASEB, PRESET/ENABLE.
-
enumerator kEQDC_SinglePhaseDecodeOperationMode
Use single phase quadrature decoder with PHASEA/PHASEB, INDEX/HOME.
-
enumerator kEQDC_SinglePhaseCountOperationMode
Use single phase count decoder with PHASEA/PHASEB, PRESET/ENABLE.
-
enumerator kEQDC_QuadratureDecodeOperationMode
-
enum _eqdc_count_mode
Define type for decoder count mode.
In decode mode, it uses the standard quadrature decoder with PHASEA and PHASEB, PHASEA = 0 and PHASEB = 0 mean reverse direction.
If PHASEA leads PHASEB, then motion is in the positive direction.
If PHASEA trails PHASEB,then motion is in the negative direction. In single phase mode, there are three count modes:
In Signed Count mode (Single Edge). Both position counter (POS) and position difference counter (POSD) count on the input PHASEA rising edge while the input PHASEB provides the selected position counter direction (up/down). If CTRL[REV] is 1, then the position counter will count in the opposite direction.
In Signed Count mode (double edge), both position counter (POS) and position difference counter (POSD) count the input PHASEA on both rising edge and falling edge while the input PHASEB provides the selected position counter direction (up/down).
In UP/DOWN Pulse Count mode. Both position counter (POS) and position difference counter (POSD) count in the up direction when input PHASEA rising edge occurs. Both counters count in the down direction when input PHASEB rising edge occurs. If CTRL[REV] is 1, then the position counter will count in the opposite direction.
Values:
-
enumerator kEQDC_QuadratureX4
Active on kEQDC_QuadratureDecodeOperationMode/kEQDC_QuadratureCountOperationMode.
-
enumerator kEQDC_QuadratureX2
Active on kEQDC_QuadratureDecodeOperationMode/kEQDC_QuadratureCountOperationMode.
-
enumerator kEQDC_QuadratureX1
Active on kEQDC_QuadratureDecodeOperationMode/kEQDC_QuadratureCountOperationMode.
-
enumerator kEQDC_UpDownPulseCount
Active on kEQDC_SinglePhaseDecodeOperationMode/kEQDC_SinglePhaseCountOperationMode.
-
enumerator kEQDC_SignedCountDoubleEdge
Active on kEQDC_SinglePhaseDecodeOperationMode/kEQDC_SinglePhaseCountOperationMode.
-
enumerator kEQDC_SignedCountSingleEdge
Active on kEQDC_SinglePhaseDecodeOperationMode/kEQDC_SinglePhaseCountOperationMode.
-
enum _eqdc_output_pulse_mode
Define type for the condition of POSMATCH pulses.
Values:
-
enumerator kEQDC_OutputPulseOnCounterEqualCompare
POSMATCH pulses when a match occurs between the position counters (POS) and the compare value (UCOMPx/LCOMPx)(x range is 0-3).
-
enumerator kEQDC_OutputPulseOnReadingPositionCounter
POSMATCH pulses when reading position counter(POS and LPOS), revolution counter(REV), position difference counter(POSD).
-
enumerator kEQDC_OutputPulseOnCounterEqualCompare
-
enum _eqdc_revolution_count_condition
Define type for determining how the revolution counter (REV) is incremented/decremented.
Values:
-
enumerator kEQDC_RevolutionCountOnIndexPulse
Use INDEX pulse to increment/decrement revolution counter.
-
enumerator kEQDC_RevolutionCountOnRollOverModulus
Use modulus counting roll-over/under to increment/decrement revolution counter.
-
enumerator kEQDC_RevolutionCountOnIndexPulse
-
enum _eqdc_filter_sample_count
Input Filter Sample Count.
The Input Filter Sample Count represents the number of consecutive samples that must agree, before the input filter accepts an input transition
Values:
-
enumerator kEQDC_Filter3Samples
3 samples.
-
enumerator kEQDC_Filter4Samples
4 samples.
-
enumerator kEQDC_Filter5Samples
5 samples.
-
enumerator kEQDC_Filter6Samples
6 samples.
-
enumerator kEQDC_Filter7Samples
7 samples.
-
enumerator kEQDC_Filter8Samples
8 samples.
-
enumerator kEQDC_Filter9Samples
9 samples.
-
enumerator kEQDC_Filter10Samples
10 samples.
-
enumerator kEQDC_Filter3Samples
-
enum _eqdc_count_direction_flag
Count direction.
Values:
-
enumerator kEQDC_CountDirectionDown
Last count was in down direction.
-
enumerator kEQDC_CountDirectionUp
Last count was in up direction.
-
enumerator kEQDC_CountDirectionDown
-
enum _eqdc_prescaler
Prescaler used by Last Edge Time (LASTEDGE) and Position Difference Period Counter (POSDPER).
Values:
-
enumerator kEQDC_Prescaler1
Prescaler value 1.
-
enumerator kEQDC_Prescaler2
Prescaler value 2.
-
enumerator kEQDC_Prescaler4
Prescaler value 4.
-
enumerator kEQDC_Prescaler8
Prescaler value 8.
-
enumerator kEQDC_Prescaler16
Prescaler value 16.
-
enumerator kEQDC_Prescaler32
Prescaler value 32.
-
enumerator kEQDC_Prescaler64
Prescaler value 64.
-
enumerator kEQDC_Prescaler128
Prescaler value 128.
-
enumerator kEQDC_Prescaler256
Prescaler value 256.
-
enumerator kEQDC_Prescaler512
Prescaler value 512.
-
enumerator kEQDC_Prescaler1024
Prescaler value 1024.
-
enumerator kEQDC_Prescaler2048
Prescaler value 2048.
-
enumerator kEQDC_Prescaler4096
Prescaler value 4096.
-
enumerator kEQDC_Prescaler8192
Prescaler value 8192.
-
enumerator kEQDC_Prescaler16384
Prescaler value 16384.
-
enumerator kEQDC_Prescaler32768
Prescaler value 32768.
-
enumerator kEQDC_Prescaler1
-
typedef enum _eqdc_home_enable_init_pos_counter_mode eqdc_home_enable_init_pos_counter_mode_t
Define HOME/ENABLE signal’s trigger mode.
-
typedef enum _eqdc_index_preset_init_pos_counter_mode eqdc_index_preset_init_pos_counter_mode_t
Define INDEX/PRESET signal’s trigger mode.
-
typedef enum _eqdc_operate_mode eqdc_operate_mode_t
Define type for decoder opertion mode.
The Quadrature Decoder operates in following 4 operation modes: 1.Quadrature Decode(QDC) Operation Mode (CTRL[PH1] = 0,CTRL2[OPMODE] = 0) In QDC operation mode, Module uses PHASEA, PHASEB, INDEX, HOME, TRIGGER and ICAP[3:1] to decode the PHASEA and PHASEB signals from Speed/Position sensor. 2.Quadrature Count(QCT) Operation Mode (CTRL[PH1] = 0,CTRL2[OPMODE] = 1) In QCT operation mode, Module uses PHASEA, PHASEB, PRESET, ENABLE, TRIGGER and ICAP[3:1] to count the PHASEA and PHASEB signals from Speed/Position sensor. 3.Single Phase Decode(PH1DC) Operation Mode (CTRL[PH1] = 1,CTRL2[OPMODE] = 0) In PH1DC operation mode, the module uses PHASEA, PHASEB, INDEX, HOME, TRIGGER and ICAP[3:1] to decode the PHASEA and PHASEB signals from Speed/Position sensor. 4.Single Phase Count(PH1CT) Operation Mode (CTRL[PH1] = 1,CTRL2[OPMODE] = 1) In PH1CT operation mode, the module uses PHASEA, PHASEB, PRESET, ENABLE, TRIGGER and ICAP[3:1] to count the PHASEA and PHASEB signals from Speed/Position sensor.
-
typedef enum _eqdc_count_mode eqdc_count_mode_t
Define type for decoder count mode.
In decode mode, it uses the standard quadrature decoder with PHASEA and PHASEB, PHASEA = 0 and PHASEB = 0 mean reverse direction.
If PHASEA leads PHASEB, then motion is in the positive direction.
If PHASEA trails PHASEB,then motion is in the negative direction. In single phase mode, there are three count modes:
In Signed Count mode (Single Edge). Both position counter (POS) and position difference counter (POSD) count on the input PHASEA rising edge while the input PHASEB provides the selected position counter direction (up/down). If CTRL[REV] is 1, then the position counter will count in the opposite direction.
In Signed Count mode (double edge), both position counter (POS) and position difference counter (POSD) count the input PHASEA on both rising edge and falling edge while the input PHASEB provides the selected position counter direction (up/down).
In UP/DOWN Pulse Count mode. Both position counter (POS) and position difference counter (POSD) count in the up direction when input PHASEA rising edge occurs. Both counters count in the down direction when input PHASEB rising edge occurs. If CTRL[REV] is 1, then the position counter will count in the opposite direction.
-
typedef enum _eqdc_output_pulse_mode eqdc_output_pulse_mode_t
Define type for the condition of POSMATCH pulses.
-
typedef enum _eqdc_revolution_count_condition eqdc_revolution_count_condition_t
Define type for determining how the revolution counter (REV) is incremented/decremented.
-
typedef enum _eqdc_filter_sample_count eqdc_filter_sample_count_t
Input Filter Sample Count.
The Input Filter Sample Count represents the number of consecutive samples that must agree, before the input filter accepts an input transition
-
typedef enum _eqdc_count_direction_flag eqdc_count_direction_flag_t
Count direction.
-
typedef enum _eqdc_prescaler eqdc_prescaler_t
Prescaler used by Last Edge Time (LASTEDGE) and Position Difference Period Counter (POSDPER).
-
typedef struct _eqdc_config eqdc_config_t
Define user configuration structure for EQDC module.
-
FSL_EQDC_DRIVER_VERSION
-
EQDC_CTRL_W1C_FLAGS
W1C bits in EQDC CTRL registers.
-
EQDC_INTCTRL_W1C_FLAGS
W1C bits in EQDC INTCTRL registers.
-
EQDC_CTRL_INT_EN
Interrupt enable bits in EQDC CTRL registers.
-
EQDC_INTCTRL_INT_EN
Interrupt enable bits in EQDC INTCTRL registers.
-
EQDC_CTRL_INT_FLAGS
Interrupt flag bits in EQDC CTRL registers.
-
EQDC_INTCTRL_INT_FLAGS
Interrupt flag bits in EQDC INTCTRL registers.
-
kEQDC_PositionCompare0InerruptEnable
-
kEQDC_PositionCompare1InerruptEnable
-
kEQDC_PositionCompare2InerruptEnable
-
kEQDC_PositionCompare3InerruptEnable
-
struct _eqdc_config
- #include <fsl_eqdc.h>
Define user configuration structure for EQDC module.
Public Members
-
bool enableReverseDirection
Enable reverse direction counting.
-
bool countOnce
Selects modulo loop or one shot counting mode.
-
bool enableDma
Enable DMA for new written buffer values of COMPx/INIT/MOD(x range is 0-3)
-
bool bufferedRegisterLoadMode
selects the loading time point of the buffered compare registers UCOMPx/LCOMPx, x=0~3, initial register (UINIT/LINIT), and modulus register (UMOD/LMOD).
-
bool enableTriggerInitPositionCounter
Initialize position counter with initial register(UINIT, LINIT) value on TRIGGER’s rising edge.
-
bool enableIndexInitPositionCounter
Enables the feature that the position counter to be initialized by Index Event Edge Mark.
This option works together with _eqdc_index_preset_init_pos_counter_mode and enableReverseDirection; If enabled, the behavior is like this:
When PHA leads PHB (Clockwise): If _eqdc_index_preset_init_pos_counter_mode is kEQDC_IndexInitPosCounterOnRisingEdge, then INDEX rising edge reset position counter. If _eqdc_index_preset_init_pos_counter_mode is kEQDC_IndexInitPosCounterOnFallingEdge, then INDEX falling edge reset position counter. If enableReverseDirection is false, then Reset position counter to initial value. If enableReverseDirection is true, then reset position counter to modulus value.
When PHA lags PHB (Counter Clockwise): If _eqdc_index_preset_init_pos_counter_mode is kEQDC_IndexInitPosCounterOnRisingEdge, then INDEX falling edge reset position counter. If _eqdc_index_preset_init_pos_counter_mode is kEQDC_IndexInitPosCounterOnFallingEdge, then INDEX rising edge reset position counter. If enableReverseDirection is false, then Reset position counter to modulus value. If enableReverseDirection is true, then reset position counter to initial value.
-
bool enableTriggerClearPositionRegisters
Clear position counter(POS), revolution counter(REV), position difference counter (POSD) on TRIGGER’s rising edge.
-
bool enableTriggerHoldPositionRegisters
Load position counter(POS), revolution counter(REV), position difference counter (POSD) values to hold registers on TRIGGER’s rising edge.
-
bool filterPhaseA
Filter operation on PHASEA input, when write 1, it means filter for PHASEA input is bypassed.
-
bool filterPhaseB
Filter operation on PHASEB input, when write 1, it means filter for PHASEB input is bypassed.
-
bool filterIndPre
Filter operation on INDEX/PRESET input, when write 1, it means filter for INDEX/PRESET input is bypassed.
-
bool filterHomEna
Filter operation on HOME/ENABLE input, when write 1, it means filter for HOME/ENABLE input is bypassed.
-
bool enableWatchdog
Enable the watchdog to detect if the target is moving or not.
-
uint16_t watchdogTimeoutValue
Watchdog timeout count value. It stores the timeout count for the quadrature decoder module watchdog timer.
-
eqdc_prescaler_t prescaler
Prescaler.
-
bool filterClockSourceselection
Filter Clock Source selection.
-
eqdc_filter_sample_count_t filterSampleCount
Input Filter Sample Count. This value should be chosen to reduce the probability of noisy samples causing an incorrect transition to be recognized. The value represent the number of consecutive samples that must agree prior to the input filter accepting an input transition.
-
uint8_t filterSamplePeriod
Input Filter Sample Period. This value should be set such that the sampling period is larger than the period of the expected noise. This value represents the sampling period (in IPBus clock cycles) of the decoder input signals. The available range is 0 - 255.
-
eqdc_operate_mode_t operateMode
Selects operation mode.
-
eqdc_count_mode_t countMode
Selects count mode.
-
eqdc_home_enable_init_pos_counter_mode_t homeEnableInitPosCounterMode
Select how HOME/Enable signal used to initialize position counters.
-
eqdc_index_preset_init_pos_counter_mode_t indexPresetInitPosCounterMode
Select how INDEX/Preset signal used to initialize position counters.
-
eqdc_output_pulse_mode_t outputPulseMode
The condition of POSMATCH pulses.
-
uint32_t positionCompareValue[4]
Position compare 0 ~ 3 value. The available value is a 32-bit number.
-
eqdc_revolution_count_condition_t revolutionCountCondition
Revolution Counter Modulus Enable.
-
uint32_t positionModulusValue
Position modulus value. The available value is a 32-bit number.
-
uint32_t positionInitialValue
Position initial value. The available value is a 32-bit number.
-
uint32_t positionCounterValue
Position counter value. When Modulo mode enabled, the positionCounterValue should be in the range of positionInitialValue and positionModulusValue.
-
bool enablePeriodMeasurement
Enable period measurement. When enabled, the position difference hold register (POSDH) is only updated when position difference register (POSD) is read.
-
uint16_t enabledInterruptsMask
Mask of interrupts to be enabled, should be OR’ed value of _eqdc_interrupt_enable.
-
bool enableReverseDirection
ERM: error recording module
-
void ERM_Init(ERM_Type *base)
ERM module initialization function.
- Parameters:
base – ERM base address.
-
void ERM_Deinit(ERM_Type *base)
De-initializes the ERM.
-
static inline void ERM_EnableInterrupts(ERM_Type *base, erm_memory_channel_t channel, uint32_t mask)
ERM enable interrupts.
- Parameters:
base – ERM peripheral base address.
channel – memory channel.
mask – single correction interrupt or non-correction interrupt enable to disable for one specific memory region. Refer to “_erm_interrupt_enable” enumeration.
-
static inline void ERM_DisableInterrupts(ERM_Type *base, erm_memory_channel_t channel, uint32_t mask)
ERM module disable interrupts.
- Parameters:
base – ERM base address.
channel – memory channel.
mask – single correction interrupt or non-correction interrupt enable to disable for one specific memory region. Refer to “_erm_interrupt_enable” enumeration.
-
static inline uint32_t ERM_GetInterruptStatus(ERM_Type *base, erm_memory_channel_t channel)
Gets ERM interrupt flags.
- Parameters:
base – ERM peripheral base address.
- Returns:
ERM event flags.
-
static inline void ERM_ClearInterruptStatus(ERM_Type *base, erm_memory_channel_t channel, uint32_t mask)
ERM module clear interrupt status flag.
- Parameters:
base – ERM base address.
mask – event flag to clear. Refer to “_erm_interrupt_flag” enumeration.
-
uint32_t ERM_GetMemoryErrorAddr(ERM_Type *base, erm_memory_channel_t channel)
ERM get memory error absolute address, which capturing the address of the last ECC event in Memory n.
- Parameters:
base – ERM base address.
channel – memory channel.
- Return values:
memory – error absolute address.
-
uint32_t ERM_GetSyndrome(ERM_Type *base, erm_memory_channel_t channel)
ERM get syndrome, which identifies the pertinent bit position on a correctable, single-bit data inversion or a non-correctable, single-bit address inversion. The syndrome value does not provide any additional diagnostic information on non-correctable, multi-bit inversions.
- Parameters:
base – ERM base address.
channel – memory channel.
- Return values:
syndrome – value.
-
uint32_t ERM_GetErrorCount(ERM_Type *base, erm_memory_channel_t channel)
ERM get error count, which records the count value of the number of correctable ECC error events for Memory n. Non-correctable errors are considered a serious fault, so the ERM does not provide any mechanism to count non-correctable errors. Only correctable errors are counted.
- Parameters:
base – ERM base address.
channel – memory channel.
- Return values:
error – count.
-
void ERM_ResetErrorCount(ERM_Type *base, erm_memory_channel_t channel)
ERM reset error count.
- Parameters:
base – ERM base address.
channel – memory channel.
-
FSL_ERM_DRIVER_VERSION
Driver version.
ERM interrupt configuration structure, default settings all disabled, _erm_interrupt_enable.
This structure contains the settings for all of the ERM interrupt configurations.
Values:
-
enumerator kERM_SingleCorrectionIntEnable
Single Correction Interrupt Notification enable.
-
enumerator kERM_NonCorrectableIntEnable
Non-Correction Interrupt Notification enable.
-
enumerator kERM_AllInterruptsEnable
All Interrupts enable
-
enumerator kERM_SingleCorrectionIntEnable
ERM interrupt status, _erm_interrupt_flag.
This provides constants for the ERM event status for use in the ERM functions.
Values:
-
enumerator kERM_SingleBitCorrectionIntFlag
Single-Bit Correction Event.
-
enumerator kERM_NonCorrectableErrorIntFlag
Non-Correctable Error Event.
-
enumerator kERM_AllIntsFlag
All Events.
-
enumerator kERM_SingleBitCorrectionIntFlag
FGPIO Driver
FlexCAN: Flex Controller Area Network Driver
FlexCAN Driver
-
bool FLEXCAN_IsInstanceHasFDMode(CAN_Type *base)
Determine whether the FlexCAN instance support CAN FD mode at run time.
Note
Use this API only if different soc parts share the SOC part name macro define. Otherwise, a different SOC part name can be used to determine at compile time whether the FlexCAN instance supports CAN FD mode or not. If need use this API to determine if CAN FD mode is supported, the FLEXCAN_Init function needs to be executed first, and then call this API and use the return to value determines whether to supports CAN FD mode, if return true, continue calling FLEXCAN_FDInit to enable CAN FD mode.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
return TRUE if instance support CAN FD mode, FALSE if instance only support classic CAN (2.0) mode.
-
void FLEXCAN_EnterFreezeMode(CAN_Type *base)
Enter FlexCAN Freeze Mode.
This function makes the FlexCAN work under Freeze Mode.
- Parameters:
base – FlexCAN peripheral base address.
-
void FLEXCAN_ExitFreezeMode(CAN_Type *base)
Exit FlexCAN Freeze Mode.
This function makes the FlexCAN leave Freeze Mode.
- Parameters:
base – FlexCAN peripheral base address.
-
uint32_t FLEXCAN_GetInstance(CAN_Type *base)
Get the FlexCAN instance from peripheral base address.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
FlexCAN instance.
-
bool FLEXCAN_CalculateImprovedTimingValues(CAN_Type *base, uint32_t bitRate, uint32_t sourceClock_Hz, flexcan_timing_config_t *pTimingConfig)
Calculates the improved timing values by specific bit Rates for classical CAN.
This function use to calculates the Classical CAN timing values according to the given bit rate. The Calculated timing values will be set in CTRL1/CBT/ENCBT register. The calculation is based on the recommendation of the CiA 301 v4.2.0 and previous version document.
- Parameters:
base – FlexCAN peripheral base address.
bitRate – The classical CAN speed in bps defined by user, should be less than or equal to 1Mbps.
sourceClock_Hz – The Source clock frequency in Hz.
pTimingConfig – Pointer to the FlexCAN timing configuration structure.
- Returns:
TRUE if timing configuration found, FALSE if failed to find configuration.
-
void FLEXCAN_Init(CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz)
Initializes a FlexCAN instance.
This function initializes the FlexCAN module with user-defined settings. This example shows how to set up the flexcan_config_t parameters and how to call the FLEXCAN_Init function by passing in these parameters.
flexcan_config_t flexcanConfig; flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0; flexcanConfig.bitRate = 1000000U; flexcanConfig.maxMbNum = 16; flexcanConfig.enableLoopBack = false; flexcanConfig.enableSelfWakeup = false; flexcanConfig.enableIndividMask = false; flexcanConfig.enableDoze = false; flexcanConfig.disableSelfReception = false; flexcanConfig.enableListenOnlyMode = false; flexcanConfig.timingConfig = timingConfig; FLEXCAN_Init(CAN0, &flexcanConfig, 40000000UL);
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the user-defined configuration structure.
sourceClock_Hz – FlexCAN Protocol Engine clock source frequency in Hz.
-
bool FLEXCAN_FDCalculateImprovedTimingValues(CAN_Type *base, uint32_t bitRate, uint32_t bitRateFD, uint32_t sourceClock_Hz, flexcan_timing_config_t *pTimingConfig)
Calculates the improved timing values by specific bit rates for CANFD.
This function use to calculates the CANFD timing values according to the given nominal phase bit rate and data phase bit rate. The Calculated timing values will be set in CBT/ENCBT and FDCBT/EDCBT registers. The calculation is based on the recommendation of the CiA 1301 v1.0.0 document.
- Parameters:
base – FlexCAN peripheral base address.
bitRate – The CANFD bus control speed in bps defined by user.
bitRateFD – The CAN FD data phase speed in bps defined by user. Equal to bitRate means disable bit rate switching.
sourceClock_Hz – The Source clock frequency in Hz.
pTimingConfig – Pointer to the FlexCAN timing configuration structure.
- Returns:
TRUE if timing configuration found, FALSE if failed to find configuration
-
void FLEXCAN_FDInit(CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz, flexcan_mb_size_t dataSize, bool brs)
Initializes a FlexCAN instance.
This function initializes the FlexCAN module with user-defined settings. This example shows how to set up the flexcan_config_t parameters and how to call the FLEXCAN_FDInit function by passing in these parameters.
flexcan_config_t flexcanConfig; flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0; flexcanConfig.bitRate = 1000000U; flexcanConfig.bitRateFD = 2000000U; flexcanConfig.maxMbNum = 16; flexcanConfig.enableLoopBack = false; flexcanConfig.enableSelfWakeup = false; flexcanConfig.enableIndividMask = false; flexcanConfig.disableSelfReception = false; flexcanConfig.enableListenOnlyMode = false; flexcanConfig.enableDoze = false; flexcanConfig.timingConfig = timingConfig; FLEXCAN_FDInit(CAN0, &flexcanConfig, 80000000UL, kFLEXCAN_16BperMB, true);
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the user-defined configuration structure.
sourceClock_Hz – FlexCAN Protocol Engine clock source frequency in Hz.
dataSize – FlexCAN Message Buffer payload size. The actual transmitted or received CAN FD frame data size needs to be less than or equal to this value.
brs – True if bit rate switch is enabled in FD mode.
-
void FLEXCAN_Deinit(CAN_Type *base)
De-initializes a FlexCAN instance.
This function disables the FlexCAN module clock and sets all register values to the reset value.
- Parameters:
base – FlexCAN peripheral base address.
-
void FLEXCAN_GetDefaultConfig(flexcan_config_t *pConfig)
Gets the default configuration structure.
This function initializes the FlexCAN configuration structure to default values. The default values are as follows. flexcanConfig->clkSrc = kFLEXCAN_ClkSrc0; flexcanConfig->bitRate = 1000000U; flexcanConfig->bitRateFD = 2000000U; flexcanConfig->maxMbNum = 16; flexcanConfig->enableLoopBack = false; flexcanConfig->enableSelfWakeup = false; flexcanConfig->enableIndividMask = false; flexcanConfig->disableSelfReception = false; flexcanConfig->enableListenOnlyMode = false; flexcanConfig->enableDoze = false; flexcanConfig->enablePretendedeNetworking = false; flexcanConfig->enableMemoryErrorControl = true; flexcanConfig->enableNonCorrectableErrorEnterFreeze = true; flexcanConfig->enableTransceiverDelayMeasure = true; flexcanConfig->enableRemoteRequestFrameStored = true; flexcanConfig->payloadEndianness = kFLEXCAN_bigEndian; flexcanConfig.timingConfig = timingConfig;
- Parameters:
pConfig – Pointer to the FlexCAN configuration structure.
-
void FLEXCAN_SetTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
Sets the FlexCAN classical CAN protocol timing characteristic.
This function gives user settings to classical CAN or CAN FD nominal phase timing characteristic. The function is for an experienced user. For less experienced users, call the FLEXCAN_SetBitRate() instead.
Note
Calling FLEXCAN_SetTimingConfig() overrides the bit rate set in FLEXCAN_Init() or FLEXCAN_SetBitRate().
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the timing configuration structure.
-
status_t FLEXCAN_SetBitRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t bitRate_Bps)
Set bit rate of FlexCAN classical CAN frame or CAN FD frame nominal phase.
This function set the bit rate of classical CAN frame or CAN FD frame nominal phase base on FLEXCAN_CalculateImprovedTimingValues() API calculated timing values.
Note
Calling FLEXCAN_SetBitRate() overrides the bit rate set in FLEXCAN_Init().
- Parameters:
base – FlexCAN peripheral base address.
sourceClock_Hz – Source Clock in Hz.
bitRate_Bps – Bit rate in Bps.
- Returns:
kStatus_Success - Set CAN baud rate (only Nominal phase) successfully.
-
void FLEXCAN_SetFDTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
Sets the FlexCAN CANFD data phase timing characteristic.
This function gives user settings to CANFD data phase timing characteristic. The function is for an experienced user. For less experienced users, call the FLEXCAN_SetFDBitRate() to set both Nominal/Data bit Rate instead.
Note
Calling FLEXCAN_SetFDTimingConfig() overrides the data phase bit rate set in FLEXCAN_FDInit()/FLEXCAN_SetFDBitRate().
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the timing configuration structure.
-
status_t FLEXCAN_SetFDBitRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t bitRateN_Bps, uint32_t bitRateD_Bps)
Set bit rate of FlexCAN FD frame.
This function set the baud rate of FLEXCAN FD base on FLEXCAN_FDCalculateImprovedTimingValues() API calculated timing values.
- Parameters:
base – FlexCAN peripheral base address.
sourceClock_Hz – Source Clock in Hz.
bitRateN_Bps – Nominal bit Rate in Bps.
bitRateD_Bps – Data bit Rate in Bps.
- Returns:
kStatus_Success - Set CAN FD bit rate (include Nominal and Data phase) successfully.
-
void FLEXCAN_SetRxMbGlobalMask(CAN_Type *base, uint32_t mask)
Sets the FlexCAN receive message buffer global mask.
This function sets the global mask for the FlexCAN message buffer in a matching process. The configuration is only effective when the Rx individual mask is disabled in the FLEXCAN_Init().
- Parameters:
base – FlexCAN peripheral base address.
mask – Rx Message Buffer Global Mask value.
-
void FLEXCAN_SetRxFifoGlobalMask(CAN_Type *base, uint32_t mask)
Sets the FlexCAN receive FIFO global mask.
This function sets the global mask for FlexCAN FIFO in a matching process.
- Parameters:
base – FlexCAN peripheral base address.
mask – Rx Fifo Global Mask value.
-
void FLEXCAN_SetRxIndividualMask(CAN_Type *base, uint8_t maskIdx, uint32_t mask)
Sets the FlexCAN receive individual mask.
This function sets the individual mask for the FlexCAN matching process. The configuration is only effective when the Rx individual mask is enabled in the FLEXCAN_Init(). If the Rx FIFO is disabled, the individual mask is applied to the corresponding Message Buffer. If the Rx FIFO is enabled, the individual mask for Rx FIFO occupied Message Buffer is applied to the Rx Filter with the same index. Note that only the first 32 individual masks can be used as the Rx FIFO filter mask.
- Parameters:
base – FlexCAN peripheral base address.
maskIdx – The Index of individual Mask.
mask – Rx Individual Mask value.
-
void FLEXCAN_SetTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
Configures a FlexCAN transmit message buffer.
This function aborts the previous transmission, cleans the Message Buffer, and configures it as a Transmit Message Buffer.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
enable – Enable/disable Tx Message Buffer.
true: Enable Tx Message Buffer.
false: Disable Tx Message Buffer.
-
void FLEXCAN_SetRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable)
Configures a FlexCAN Receive Message Buffer.
This function cleans a FlexCAN build-in Message Buffer and configures it as a Receive Message Buffer. User should invoke this API when CTRL2[RRS]=1. When CTRL2[RRS]=1, frame’s ID is compared to the IDs of the receive mailboxes with the CODE field configured as kFLEXCAN_RxMbEmpty, kFLEXCAN_RxMbFull or kFLEXCAN_RxMbOverrun. Message buffer will store the remote frame in the same fashion of a data frame. No automatic remote response frame will be generated. User need to setup another message buffer to respond remote request.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
pRxMbConfig – Pointer to the FlexCAN Message Buffer configuration structure.
enable – Enable/disable Rx Message Buffer.
true: Enable Rx Message Buffer.
false: Disable Rx Message Buffer.
-
void FLEXCAN_SetFDTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
Configures a FlexCAN transmit message buffer.
This function aborts the previous transmission, cleans the Message Buffer, and configures it as a Transmit Message Buffer.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
enable – Enable/disable Tx Message Buffer.
true: Enable Tx Message Buffer.
false: Disable Tx Message Buffer.
-
void FLEXCAN_SetFDRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable)
Configures a FlexCAN Receive Message Buffer.
This function cleans a FlexCAN build-in Message Buffer and configures it as a Receive Message Buffer.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
pRxMbConfig – Pointer to the FlexCAN Message Buffer configuration structure.
enable – Enable/disable Rx Message Buffer.
true: Enable Rx Message Buffer.
false: Disable Rx Message Buffer.
-
void FLEXCAN_SetRemoteResponseMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t *pFrame)
Configures a FlexCAN Remote Response Message Buffer.
User should invoke this API when CTRL2[RRS]=0. When CTRL2[RRS]=0, frame’s ID is compared to the IDs of the receive mailboxes with the CODE field configured as kFLEXCAN_RxMbRanswer. If there is a matching ID, then this mailbox content will be transmitted as response. The received remote request frame is not stored in receive buffer. It is only used to trigger a transmission of a frame in response.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The Message Buffer index.
pFrame – Pointer to CAN message frame structure for response.
-
void FLEXCAN_SetRxFifoConfig(CAN_Type *base, const flexcan_rx_fifo_config_t *pRxFifoConfig, bool enable)
Configures the FlexCAN Legacy Rx FIFO.
This function configures the FlexCAN Rx FIFO with given configuration.
Note
Legacy Rx FIFO only can receive classic CAN message.
- Parameters:
base – FlexCAN peripheral base address.
pRxFifoConfig – Pointer to the FlexCAN Legacy Rx FIFO configuration structure. Can be NULL when enable parameter is false.
enable – Enable/disable Legacy Rx FIFO.
true: Enable Legacy Rx FIFO.
false: Disable Legacy Rx FIFO.
-
void FLEXCAN_SetEnhancedRxFifoConfig(CAN_Type *base, const flexcan_enhanced_rx_fifo_config_t *pConfig, bool enable)
Configures the FlexCAN Enhanced Rx FIFO.
This function configures the Enhanced Rx FIFO with given configuration.
Note
Enhanced Rx FIFO support receive classic CAN or CAN FD messages, Legacy Rx FIFO and Enhanced Rx FIFO cannot be enabled at the same time.
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the FlexCAN Enhanced Rx FIFO configuration structure. Can be NULL when enable parameter is false.
enable – Enable/disable Enhanced Rx FIFO.
true: Enable Enhanced Rx FIFO.
false: Disable Enhanced Rx FIFO.
-
void FLEXCAN_SetPNConfig(CAN_Type *base, const flexcan_pn_config_t *pConfig)
Configures the FlexCAN Pretended Networking mode.
This function configures the FlexCAN Pretended Networking mode with given configuration.
- Parameters:
base – FlexCAN peripheral base address.
pConfig – Pointer to the FlexCAN Rx FIFO configuration structure.
-
static inline uint64_t FLEXCAN_GetStatusFlags(CAN_Type *base)
Gets the FlexCAN module interrupt flags.
This function gets all FlexCAN status flags. The flags are returned as the logical OR value of the enumerators _flexcan_flags. To check the specific status, compare the return value with enumerators in _flexcan_flags.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
FlexCAN status flags which are ORed by the enumerators in the _flexcan_flags.
-
static inline void FLEXCAN_ClearStatusFlags(CAN_Type *base, uint64_t mask)
Clears status flags with the provided mask.
This function clears the FlexCAN status flags with a provided mask. An automatically cleared flag can’t be cleared by this function.
- Parameters:
base – FlexCAN peripheral base address.
mask – The status flags to be cleared, it is logical OR value of _flexcan_flags.
-
static inline void FLEXCAN_GetBusErrCount(CAN_Type *base, uint8_t *txErrBuf, uint8_t *rxErrBuf)
Gets the FlexCAN Bus Error Counter value.
This function gets the FlexCAN Bus Error Counter value for both Tx and Rx direction. These values may be needed in the upper layer error handling.
- Parameters:
base – FlexCAN peripheral base address.
txErrBuf – Buffer to store Tx Error Counter value.
rxErrBuf – Buffer to store Rx Error Counter value.
-
static inline uint64_t FLEXCAN_GetMbStatusFlags(CAN_Type *base, uint64_t mask)
Gets the FlexCAN Message Buffer interrupt flags.
This function gets the interrupt flags of a given Message Buffers.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
- Returns:
The status of given Message Buffers.
-
static inline uint64_t FLEXCAN_GetHigh64MbStatusFlags(CAN_Type *base, uint64_t mask)
Gets the FlexCAN High 64 Message Buffer interrupt flags.
Valid only if the number of available MBs exceeds 64.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
- Returns:
The status of given Message Buffers.
-
static inline void FLEXCAN_ClearMbStatusFlags(CAN_Type *base, uint64_t mask)
Clears the FlexCAN Message Buffer interrupt flags.
This function clears the interrupt flags of a given Message Buffers.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
static inline void FLEXCAN_ClearHigh64MbStatusFlags(CAN_Type *base, uint64_t mask)
Clears the FlexCAN High 64 Message Buffer interrupt flags.
Valid only if the number of available MBs exceeds 64.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
void FLEXCAN_GetMemoryErrorReportStatus(CAN_Type *base, flexcan_memory_error_report_status_t *errorStatus)
Gets the FlexCAN Memory Error Report registers status.
This function gets the FlexCAN Memory Error Report registers status.
- Parameters:
base – FlexCAN peripheral base address.
errorStatus – Pointer to FlexCAN Memory Error Report registers status structure.
-
static inline uint8_t FLEXCAN_GetPNMatchCount(CAN_Type *base)
Gets the FlexCAN Number of Matches when in Pretended Networking.
This function gets the number of times a given message has matched the predefined filtering criteria for ID and/or PL before a wakeup event.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
The number of received wake up msessages.
-
static inline uint32_t FLEXCAN_GetEnhancedFifoDataCount(CAN_Type *base)
Gets the number of FlexCAN Enhanced Rx FIFO available frames.
This function gets the number of CAN messages stored in the Enhanced Rx FIFO.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
The number of available CAN messages stored in the Enhanced Rx FIFO.
-
static inline void FLEXCAN_EnableInterrupts(CAN_Type *base, uint64_t mask)
Enables FlexCAN interrupts according to the provided mask.
This function enables the FlexCAN interrupts according to the provided mask. The mask is a logical OR of enumeration members, see _flexcan_interrupt_enable.
- Parameters:
base – FlexCAN peripheral base address.
mask – The interrupts to enable. Logical OR of _flexcan_interrupt_enable.
-
static inline void FLEXCAN_DisableInterrupts(CAN_Type *base, uint64_t mask)
Disables FlexCAN interrupts according to the provided mask.
This function disables the FlexCAN interrupts according to the provided mask. The mask is a logical OR of enumeration members, see _flexcan_interrupt_enable.
- Parameters:
base – FlexCAN peripheral base address.
mask – The interrupts to disable. Logical OR of _flexcan_interrupt_enable.
-
static inline void FLEXCAN_EnableMbInterrupts(CAN_Type *base, uint64_t mask)
Enables FlexCAN Message Buffer interrupts.
This function enables the interrupts of given Message Buffers.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
static inline void FLEXCAN_EnableHigh64MbInterrupts(CAN_Type *base, uint64_t mask)
Enables FlexCAN high 64 Message Buffer interrupts.
Valid only if the number of available MBs exceeds 64.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
static inline void FLEXCAN_DisableMbInterrupts(CAN_Type *base, uint64_t mask)
Disables FlexCAN Message Buffer interrupts.
This function disables the interrupts of given Message Buffers.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
static inline void FLEXCAN_DisableHigh64MbInterrupts(CAN_Type *base, uint64_t mask)
Disables FlexCAN high 64 Message Buffer interrupts.
Valid only if the number of available MBs exceeds 64.
- Parameters:
base – FlexCAN peripheral base address.
mask – The ORed FlexCAN Message Buffer mask.
-
void FLEXCAN_EnableRxFifoDMA(CAN_Type *base, bool enable)
Enables or disables the FlexCAN Rx FIFO DMA request.
This function enables or disables the DMA feature of FlexCAN build-in Rx FIFO.
- Parameters:
base – FlexCAN peripheral base address.
enable – true to enable, false to disable.
-
static inline uintptr_t FLEXCAN_GetRxFifoHeadAddr(CAN_Type *base)
Gets the Rx FIFO Head address.
This function returns the FlexCAN Rx FIFO Head address, which is mainly used for the DMA/eDMA use case.
- Parameters:
base – FlexCAN peripheral base address.
- Returns:
FlexCAN Rx FIFO Head address.
-
static inline void FLEXCAN_Enable(CAN_Type *base, bool enable)
Enables or disables the FlexCAN module operation.
This function enables or disables the FlexCAN module.
- Parameters:
base – FlexCAN base pointer.
enable – true to enable, false to disable.
-
status_t FLEXCAN_WriteTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t *pTxFrame)
Writes a FlexCAN Message to the Transmit Message Buffer.
This function writes a CAN Message to the specified Transmit Message Buffer and changes the Message Buffer state to start CAN Message transmit. After that the function returns immediately.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The FlexCAN Message Buffer index.
pTxFrame – Pointer to CAN message frame to be sent.
- Return values:
kStatus_Success – - Write Tx Message Buffer Successfully.
kStatus_Fail – - Tx Message Buffer is currently in use.
-
status_t FLEXCAN_ReadRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
Reads a FlexCAN Message from Receive Message Buffer.
This function reads a CAN message from a specified Receive Message Buffer. The function fills a receive CAN message frame structure with just received data and activates the Message Buffer again. The function returns immediately.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The FlexCAN Message Buffer index.
pRxFrame – Pointer to CAN message frame structure for reception.
- Return values:
kStatus_Success – - Rx Message Buffer is full and has been read successfully.
kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already overflowed and has been read successfully.
kStatus_Fail – - Rx Message Buffer is empty.
-
status_t FLEXCAN_WriteFDTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_fd_frame_t *pTxFrame)
Writes a FlexCAN FD Message to the Transmit Message Buffer.
This function writes a CAN FD Message to the specified Transmit Message Buffer and changes the Message Buffer state to start CAN FD Message transmit. After that the function returns immediately.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The FlexCAN FD Message Buffer index.
pTxFrame – Pointer to CAN FD message frame to be sent.
- Return values:
kStatus_Success – - Write Tx Message Buffer Successfully.
kStatus_Fail – - Tx Message Buffer is currently in use.
-
status_t FLEXCAN_ReadFDRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame)
Reads a FlexCAN FD Message from Receive Message Buffer.
This function reads a CAN FD message from a specified Receive Message Buffer. The function fills a receive CAN FD message frame structure with just received data and activates the Message Buffer again. The function returns immediately.
- Parameters:
base – FlexCAN peripheral base address.
mbIdx – The FlexCAN FD Message Buffer index.
pRxFrame – Pointer to CAN FD message frame structure for reception.
- Return values:
kStatus_Success – - Rx Message Buffer is full and has been read successfully.
kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already overflowed and has been read successfully.
kStatus_Fail – - Rx Message Buffer is empty.
-
status_t FLEXCAN_ReadRxFifo(CAN_Type *base, flexcan_frame_t *pRxFrame)
Reads a FlexCAN Message from Legacy Rx FIFO.
This function reads a CAN message from the FlexCAN Legacy Rx FIFO.
- Parameters:
base – FlexCAN peripheral base address.
pRxFrame – Pointer to CAN message frame structure for reception.
- Return values:
kStatus_Success – - Read Message from Rx FIFO successfully.
kStatus_Fail – - Rx FIFO is not enabled.
-
status_t FLEXCAN_ReadEnhancedRxFifo(CAN_Type *base, flexcan_fd_frame_t *pRxFrame)
Reads a FlexCAN Message from Enhanced Rx FIFO.
This function reads a CAN or CAN FD message from the FlexCAN Enhanced Rx FIFO.
- Parameters:
base – FlexCAN peripheral base address.
pRxFrame – Pointer to CAN FD message frame structure for reception.
- Return values:
kStatus_Success – - Read Message from Rx FIFO successfully.
kStatus_Fail – - Rx FIFO is not enabled.
-
status_t FLEXCAN_ReadPNWakeUpMB(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
Reads a FlexCAN Message from Wake Up MB.
This function reads a CAN message from the FlexCAN Wake up Message Buffers. There are four Wake up Message Buffers (WMBs) used to store incoming messages in Pretended Networking mode. The WMB index indicates the arrival order. The last message is stored in WMB3.
- Parameters:
base – FlexCAN peripheral base address.
pRxFrame – Pointer to CAN message frame structure for reception.
mbIdx – The FlexCAN Wake up Message Buffer index. Range in 0x0 ~ 0x3.
- Return values:
kStatus_Success – - Read Message from Wake up Message Buffer successfully.
kStatus_Fail – - Wake up Message Buffer has no valid content.
-
status_t FLEXCAN_TransferFDSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pTxFrame)
Performs a polling send transaction on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
mbIdx – The FlexCAN FD Message Buffer index.
pTxFrame – Pointer to CAN FD message frame to be sent.
- Return values:
kStatus_Success – - Write Tx Message Buffer Successfully.
kStatus_Fail – - Tx Message Buffer is currently in use.
-
status_t FLEXCAN_TransferFDReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame)
Performs a polling receive transaction on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
mbIdx – The FlexCAN FD Message Buffer index.
pRxFrame – Pointer to CAN FD message frame structure for reception.
- Return values:
kStatus_Success – - Rx Message Buffer is full and has been read successfully.
kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already overflowed and has been read successfully.
kStatus_Fail – - Rx Message Buffer is empty.
-
status_t FLEXCAN_TransferFDSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
Sends a message using IRQ.
This function sends a message using IRQ. This is a non-blocking function, which returns right away. When messages have been sent out, the send callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pMbXfer – FlexCAN FD Message Buffer transfer structure. See the flexcan_mb_transfer_t.
- Return values:
kStatus_Success – Start Tx Message Buffer sending process successfully.
kStatus_Fail – Write Tx Message Buffer failed.
kStatus_FLEXCAN_TxBusy – Tx Message Buffer is in use.
-
status_t FLEXCAN_TransferFDReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
Receives a message using IRQ.
This function receives a message using IRQ. This is non-blocking function, which returns right away. When the message has been received, the receive callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pMbXfer – FlexCAN FD Message Buffer transfer structure. See the flexcan_mb_transfer_t.
- Return values:
kStatus_Success – - Start Rx Message Buffer receiving process successfully.
kStatus_FLEXCAN_RxBusy – - Rx Message Buffer is in use.
-
void FLEXCAN_TransferFDAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
Aborts the interrupt driven message send process.
This function aborts the interrupt driven message send process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
mbIdx – The FlexCAN FD Message Buffer index.
-
void FLEXCAN_TransferFDAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
Aborts the interrupt driven message receive process.
This function aborts the interrupt driven message receive process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
mbIdx – The FlexCAN FD Message Buffer index.
-
status_t FLEXCAN_TransferSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pTxFrame)
Performs a polling send transaction on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
mbIdx – The FlexCAN Message Buffer index.
pTxFrame – Pointer to CAN message frame to be sent.
- Return values:
kStatus_Success – - Write Tx Message Buffer Successfully.
kStatus_Fail – - Tx Message Buffer is currently in use.
-
status_t FLEXCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
Performs a polling receive transaction on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
mbIdx – The FlexCAN Message Buffer index.
pRxFrame – Pointer to CAN message frame structure for reception.
- Return values:
kStatus_Success – - Rx Message Buffer is full and has been read successfully.
kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already overflowed and has been read successfully.
kStatus_Fail – - Rx Message Buffer is empty.
-
status_t FLEXCAN_TransferReceiveFifoBlocking(CAN_Type *base, flexcan_frame_t *pRxFrame)
Performs a polling receive transaction from Legacy Rx FIFO on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
pRxFrame – Pointer to CAN message frame structure for reception.
- Return values:
kStatus_Success – - Read Message from Rx FIFO successfully.
kStatus_Fail – - Rx FIFO is not enabled.
-
status_t FLEXCAN_TransferReceiveEnhancedFifoBlocking(CAN_Type *base, flexcan_fd_frame_t *pRxFrame)
Performs a polling receive transaction from Enhanced Rx FIFO on the CAN bus.
Note
A transfer handle does not need to be created before calling this API.
- Parameters:
base – FlexCAN peripheral base pointer.
pRxFrame – Pointer to CAN FD message frame structure for reception.
- Return values:
kStatus_Success – - Read Message from Rx FIFO successfully.
kStatus_Fail – - Rx FIFO is not enabled.
-
void FLEXCAN_TransferCreateHandle(CAN_Type *base, flexcan_handle_t *handle, flexcan_transfer_callback_t callback, void *userData)
Initializes the FlexCAN handle.
This function initializes the FlexCAN handle, which can be used for other FlexCAN transactional APIs. Usually, for a specified FlexCAN instance, call this API once to get the initialized handle.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
callback – The callback function.
userData – The parameter of the callback function.
-
status_t FLEXCAN_TransferSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
Sends a message using IRQ.
This function sends a message using IRQ. This is a non-blocking function, which returns right away. When messages have been sent out, the send callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pMbXfer – FlexCAN Message Buffer transfer structure. See the flexcan_mb_transfer_t.
- Return values:
kStatus_Success – Start Tx Message Buffer sending process successfully.
kStatus_Fail – Write Tx Message Buffer failed.
kStatus_FLEXCAN_TxBusy – Tx Message Buffer is in use.
-
status_t FLEXCAN_TransferReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
Receives a message using IRQ.
This function receives a message using IRQ. This is non-blocking function, which returns right away. When the message has been received, the receive callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pMbXfer – FlexCAN Message Buffer transfer structure. See the flexcan_mb_transfer_t.
- Return values:
kStatus_Success – - Start Rx Message Buffer receiving process successfully.
kStatus_FLEXCAN_RxBusy – - Rx Message Buffer is in use.
-
status_t FLEXCAN_TransferReceiveFifoNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_fifo_transfer_t *pFifoXfer)
Receives a message from Rx FIFO using IRQ.
This function receives a message using IRQ. This is a non-blocking function, which returns right away. When all messages have been received, the receive callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pFifoXfer – FlexCAN Rx FIFO transfer structure. See the flexcan_fifo_transfer_t.
- Return values:
kStatus_Success – - Start Rx FIFO receiving process successfully.
kStatus_FLEXCAN_RxFifoBusy – - Rx FIFO is currently in use.
-
status_t FLEXCAN_TransferGetReceiveFifoCount(CAN_Type *base, flexcan_handle_t *handle, size_t *count)
Gets the Legacy Rx Fifo transfer status during a interrupt non-blocking receive.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
count – Number of CAN messages receive so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
status_t FLEXCAN_TransferReceiveEnhancedFifoNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_fifo_transfer_t *pFifoXfer)
Receives a message from Enhanced Rx FIFO using IRQ.
This function receives a message using IRQ. This is a non-blocking function, which returns right away. When all messages have been received, the receive callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
pFifoXfer – FlexCAN Rx FIFO transfer structure. See the ref flexcan_fifo_transfer_t.@
- Return values:
kStatus_Success – - Start Rx FIFO receiving process successfully.
kStatus_FLEXCAN_RxFifoBusy – - Rx FIFO is currently in use.
-
static inline status_t FLEXCAN_TransferGetReceiveEnhancedFifoCount(CAN_Type *base, flexcan_handle_t *handle, size_t *count)
Gets the Enhanced Rx Fifo transfer status during a interrupt non-blocking receive.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
count – Number of CAN messages receive so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
uint32_t FLEXCAN_GetTimeStamp(flexcan_handle_t *handle, uint8_t mbIdx)
Gets the detail index of Mailbox’s Timestamp by handle.
Then function can only be used when calling non-blocking Data transfer (TX/RX) API, After TX/RX data transfer done (User can get the status by handler’s callback function), we can get the detail index of Mailbox’s timestamp by handle, Detail non-blocking data transfer API (TX/RX) contain. -FLEXCAN_TransferSendNonBlocking -FLEXCAN_TransferFDSendNonBlocking -FLEXCAN_TransferReceiveNonBlocking -FLEXCAN_TransferFDReceiveNonBlocking -FLEXCAN_TransferReceiveFifoNonBlocking
- Parameters:
handle – FlexCAN handle pointer.
mbIdx – The FlexCAN Message Buffer index.
- Return values:
the – index of mailbox ‘s timestamp stored in the handle.
-
void FLEXCAN_TransferAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
Aborts the interrupt driven message send process.
This function aborts the interrupt driven message send process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
mbIdx – The FlexCAN Message Buffer index.
-
void FLEXCAN_TransferAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
Aborts the interrupt driven message receive process.
This function aborts the interrupt driven message receive process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
mbIdx – The FlexCAN Message Buffer index.
-
void FLEXCAN_TransferAbortReceiveFifo(CAN_Type *base, flexcan_handle_t *handle)
Aborts the interrupt driven message receive from Rx FIFO process.
This function aborts the interrupt driven message receive from Rx FIFO process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
-
void FLEXCAN_TransferAbortReceiveEnhancedFifo(CAN_Type *base, flexcan_handle_t *handle)
Aborts the interrupt driven message receive from Enhanced Rx FIFO process.
This function aborts the interrupt driven message receive from Enhanced Rx FIFO process.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
-
void FLEXCAN_TransferHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
FlexCAN IRQ handle function.
This function handles the FlexCAN Error, the Message Buffer, and the Rx FIFO IRQ request.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
-
FSL_FLEXCAN_DRIVER_VERSION
FlexCAN driver version.
FlexCAN transfer status.
Values:
-
enumerator kStatus_FLEXCAN_TxBusy
Tx Message Buffer is Busy.
-
enumerator kStatus_FLEXCAN_TxIdle
Tx Message Buffer is Idle.
-
enumerator kStatus_FLEXCAN_TxSwitchToRx
Remote Message is send out and Message buffer changed to Receive one.
-
enumerator kStatus_FLEXCAN_RxBusy
Rx Message Buffer is Busy.
-
enumerator kStatus_FLEXCAN_RxIdle
Rx Message Buffer is Idle.
-
enumerator kStatus_FLEXCAN_RxOverflow
Rx Message Buffer is Overflowed.
-
enumerator kStatus_FLEXCAN_RxFifoBusy
Rx Message FIFO is Busy.
-
enumerator kStatus_FLEXCAN_RxFifoIdle
Rx Message FIFO is Idle.
-
enumerator kStatus_FLEXCAN_RxFifoOverflow
Rx Message FIFO is overflowed.
-
enumerator kStatus_FLEXCAN_RxFifoWarning
Rx Message FIFO is almost overflowed.
-
enumerator kStatus_FLEXCAN_RxFifoDisabled
Rx Message FIFO is disabled during reading.
-
enumerator kStatus_FLEXCAN_ErrorStatus
FlexCAN Module Error and Status.
-
enumerator kStatus_FLEXCAN_WakeUp
FlexCAN is waken up from STOP mode.
-
enumerator kStatus_FLEXCAN_UnHandled
UnHadled Interrupt asserted.
-
enumerator kStatus_FLEXCAN_RxRemote
Rx Remote Message Received in Mail box.
-
enumerator kStatus_FLEXCAN_RxFifoUnderflow
Enhanced Rx Message FIFO is underflow.
-
enumerator kStatus_FLEXCAN_TxBusy
-
enum _flexcan_frame_format
FlexCAN frame format.
Values:
-
enumerator kFLEXCAN_FrameFormatStandard
Standard frame format attribute.
-
enumerator kFLEXCAN_FrameFormatExtend
Extend frame format attribute.
-
enumerator kFLEXCAN_FrameFormatStandard
-
enum _flexcan_frame_type
FlexCAN frame type.
Values:
-
enumerator kFLEXCAN_FrameTypeData
Data frame type attribute.
-
enumerator kFLEXCAN_FrameTypeRemote
Remote frame type attribute.
-
enumerator kFLEXCAN_FrameTypeData
-
enum _flexcan_clock_source
FlexCAN clock source.
- Deprecated:
Do not use the kFLEXCAN_ClkSrcOs. It has been superceded kFLEXCAN_ClkSrc0
Do not use the kFLEXCAN_ClkSrcPeri. It has been superceded kFLEXCAN_ClkSrc1
Values:
-
enumerator kFLEXCAN_ClkSrcOsc
FlexCAN Protocol Engine clock from Oscillator.
-
enumerator kFLEXCAN_ClkSrcPeri
FlexCAN Protocol Engine clock from Peripheral Clock.
-
enumerator kFLEXCAN_ClkSrc0
FlexCAN Protocol Engine clock selected by user as SRC == 0.
-
enumerator kFLEXCAN_ClkSrc1
FlexCAN Protocol Engine clock selected by user as SRC == 1.
-
enum _flexcan_wake_up_source
FlexCAN wake up source.
Values:
-
enumerator kFLEXCAN_WakeupSrcUnfiltered
FlexCAN uses unfiltered Rx input to detect edge.
-
enumerator kFLEXCAN_WakeupSrcFiltered
FlexCAN uses filtered Rx input to detect edge.
-
enumerator kFLEXCAN_WakeupSrcUnfiltered
-
enum _flexcan_endianness
FlexCAN payload endianness.
Values:
-
enumerator kFLEXCAN_bigEndian
Transmit frame with MSB first, receive frame with big-endian format.
-
enumerator kFLEXCAN_littleEndian
Transmit frame with LSB first, receive frame with little-endian format.
-
enumerator kFLEXCAN_bigEndian
-
enum _flexcan_rx_fifo_filter_type
FlexCAN Rx Fifo Filter type.
Values:
-
enumerator kFLEXCAN_RxFifoFilterTypeA
One full ID (standard and extended) per ID Filter element.
-
enumerator kFLEXCAN_RxFifoFilterTypeB
Two full standard IDs or two partial 14-bit ID slices per ID Filter Table element.
-
enumerator kFLEXCAN_RxFifoFilterTypeC
Four partial 8-bit Standard or extended ID slices per ID Filter Table element.
-
enumerator kFLEXCAN_RxFifoFilterTypeD
All frames rejected.
-
enumerator kFLEXCAN_RxFifoFilterTypeA
-
enum _flexcan_mb_size
FlexCAN Message Buffer Payload size.
Values:
-
enumerator kFLEXCAN_8BperMB
Selects 8 bytes per Message Buffer.
-
enumerator kFLEXCAN_16BperMB
Selects 16 bytes per Message Buffer.
-
enumerator kFLEXCAN_32BperMB
Selects 32 bytes per Message Buffer.
-
enumerator kFLEXCAN_64BperMB
Selects 64 bytes per Message Buffer.
-
enumerator kFLEXCAN_8BperMB
-
enum _flexcan_fd_frame_length
FlexCAN CAN FD frame supporting data length (available DLC values).
For Tx, when the Data size corresponding to DLC value stored in the MB selected for transmission is larger than the MB Payload size, FlexCAN adds the necessary number of bytes with constant 0xCC pattern to complete the expected DLC. For Rx, when the Data size corresponding to DLC value received from the CAN bus is larger than the MB Payload size, the high order bytes that do not fit the Payload size will lose.
Values:
-
enumerator kFLEXCAN_0BperFrame
Frame contains 0 valid data bytes.
-
enumerator kFLEXCAN_1BperFrame
Frame contains 1 valid data bytes.
-
enumerator kFLEXCAN_2BperFrame
Frame contains 2 valid data bytes.
-
enumerator kFLEXCAN_3BperFrame
Frame contains 3 valid data bytes.
-
enumerator kFLEXCAN_4BperFrame
Frame contains 4 valid data bytes.
-
enumerator kFLEXCAN_5BperFrame
Frame contains 5 valid data bytes.
-
enumerator kFLEXCAN_6BperFrame
Frame contains 6 valid data bytes.
-
enumerator kFLEXCAN_7BperFrame
Frame contains 7 valid data bytes.
-
enumerator kFLEXCAN_8BperFrame
Frame contains 8 valid data bytes.
-
enumerator kFLEXCAN_12BperFrame
Frame contains 12 valid data bytes.
-
enumerator kFLEXCAN_16BperFrame
Frame contains 16 valid data bytes.
-
enumerator kFLEXCAN_20BperFrame
Frame contains 20 valid data bytes.
-
enumerator kFLEXCAN_24BperFrame
Frame contains 24 valid data bytes.
-
enumerator kFLEXCAN_32BperFrame
Frame contains 32 valid data bytes.
-
enumerator kFLEXCAN_48BperFrame
Frame contains 48 valid data bytes.
-
enumerator kFLEXCAN_64BperFrame
Frame contains 64 valid data bytes.
-
enumerator kFLEXCAN_0BperFrame
-
enum _flexcan_efifo_dma_per_read_length
FlexCAN Enhanced Rx Fifo DMA transfer per read length enumerations.
Values:
-
enumerator kFLEXCAN_1WordPerRead
Transfer 1 32-bit words (CS).
-
enumerator kFLEXCAN_2WordPerRead
Transfer 2 32-bit words (CS + ID).
-
enumerator kFLEXCAN_3WordPerRead
Transfer 3 32-bit words (CS + ID + 1~4 bytes data).
-
enumerator kFLEXCAN_4WordPerRead
Transfer 4 32-bit words (CS + ID + 5~8 bytes data).
-
enumerator kFLEXCAN_5WordPerRead
Transfer 5 32-bit words (CS + ID + 9~12 bytes data).
-
enumerator kFLEXCAN_6WordPerRead
Transfer 6 32-bit words (CS + ID + 13~16 bytes data).
-
enumerator kFLEXCAN_7WordPerRead
Transfer 7 32-bit words (CS + ID + 17~20 bytes data).
-
enumerator kFLEXCAN_8WordPerRead
Transfer 8 32-bit words (CS + ID + 21~24 bytes data).
-
enumerator kFLEXCAN_9WordPerRead
Transfer 9 32-bit words (CS + ID + 25~28 bytes data).
-
enumerator kFLEXCAN_10WordPerRead
Transfer 10 32-bit words (CS + ID + 29~32 bytes data).
-
enumerator kFLEXCAN_11WordPerRead
Transfer 11 32-bit words (CS + ID + 33~36 bytes data).
-
enumerator kFLEXCAN_12WordPerRead
Transfer 12 32-bit words (CS + ID + 37~40 bytes data).
-
enumerator kFLEXCAN_13WordPerRead
Transfer 13 32-bit words (CS + ID + 41~44 bytes data).
-
enumerator kFLEXCAN_14WordPerRead
Transfer 14 32-bit words (CS + ID + 45~48 bytes data).
-
enumerator kFLEXCAN_15WordPerRead
Transfer 15 32-bit words (CS + ID + 49~52 bytes data).
-
enumerator kFLEXCAN_16WordPerRead
Transfer 16 32-bit words (CS + ID + 53~56 bytes data).
-
enumerator kFLEXCAN_17WordPerRead
Transfer 17 32-bit words (CS + ID + 57~60 bytes data).
-
enumerator kFLEXCAN_18WordPerRead
Transfer 18 32-bit words (CS + ID + 61~64 bytes data).
-
enumerator kFLEXCAN_19WordPerRead
Transfer 19 32-bit words (CS + ID + 64 bytes data + ID HIT).
-
enumerator kFLEXCAN_1WordPerRead
-
enum _flexcan_rx_fifo_priority
FlexCAN Enhanced/Legacy Rx FIFO priority.
The matching process starts from the Rx MB(or Enhanced/Legacy Rx FIFO) with higher priority. If no MB(or Enhanced/Legacy Rx FIFO filter) is satisfied, the matching process goes on with the Enhanced/Legacy Rx FIFO(or Rx MB) with lower priority.
Values:
-
enumerator kFLEXCAN_RxFifoPrioLow
Matching process start from Rx Message Buffer first.
-
enumerator kFLEXCAN_RxFifoPrioHigh
Matching process start from Enhanced/Legacy Rx FIFO first.
-
enumerator kFLEXCAN_RxFifoPrioLow
-
enum _flexcan_interrupt_enable
FlexCAN interrupt enable enumerations.
This provides constants for the FlexCAN interrupt enable enumerations for use in the FlexCAN functions.
Note
FlexCAN Message Buffers and Legacy Rx FIFO interrupts not included in.
Values:
-
enumerator kFLEXCAN_BusOffInterruptEnable
Bus Off interrupt, use bit 15.
-
enumerator kFLEXCAN_ErrorInterruptEnable
CAN Error interrupt, use bit 14.
-
enumerator kFLEXCAN_TxWarningInterruptEnable
Tx Warning interrupt, use bit 11.
-
enumerator kFLEXCAN_RxWarningInterruptEnable
Rx Warning interrupt, use bit 10.
-
enumerator kFLEXCAN_WakeUpInterruptEnable
Self Wake Up interrupt, use bit 26.
-
enumerator kFLEXCAN_FDErrorInterruptEnable
CAN FD Error interrupt, use bit 31.
-
enumerator kFLEXCAN_PNMatchWakeUpInterruptEnable
PN Match Wake Up interrupt, use high word bit 17.
-
enumerator kFLEXCAN_PNTimeoutWakeUpInterruptEnable
PN Timeout Wake Up interrupt, use high word bit 16. Enhanced Rx FIFO Underflow interrupt, use high word bit 31.
-
enumerator kFLEXCAN_ERxFifoUnderflowInterruptEnable
Enhanced Rx FIFO Overflow interrupt, use high word bit 30.
-
enumerator kFLEXCAN_ERxFifoOverflowInterruptEnable
Enhanced Rx FIFO Watermark interrupt, use high word bit 29.
-
enumerator kFLEXCAN_ERxFifoWatermarkInterruptEnable
Enhanced Rx FIFO Data Avilable interrupt, use high word bit 28.
-
enumerator kFLEXCAN_ERxFifoDataAvlInterruptEnable
-
enumerator kFLEXCAN_HostAccessNCErrorInterruptEnable
Host Access With Non-Correctable Errors interrupt, use high word bit 0.
-
enumerator kFLEXCAN_FlexCanAccessNCErrorInterruptEnable
FlexCAN Access With Non-Correctable Errors interrupt, use high word bit 2.
-
enumerator kFLEXCAN_HostOrFlexCanCErrorInterruptEnable
Host or FlexCAN Access With Correctable Errors interrupt, use high word bit 3.
-
enumerator kFLEXCAN_BusOffInterruptEnable
-
enum _flexcan_flags
FlexCAN status flags.
This provides constants for the FlexCAN status flags for use in the FlexCAN functions.
Note
The CPU read action clears the bits corresponding to the FlEXCAN_ErrorFlag macro, therefore user need to read status flags and distinguish which error is occur using _flexcan_error_flags enumerations.
Values:
-
enumerator kFLEXCAN_ErrorOverrunFlag
Error Overrun Status.
-
enumerator kFLEXCAN_FDErrorIntFlag
CAN FD Error Interrupt Flag.
-
enumerator kFLEXCAN_BusoffDoneIntFlag
Bus Off process completed Interrupt Flag.
-
enumerator kFLEXCAN_SynchFlag
CAN Synchronization Status.
-
enumerator kFLEXCAN_TxWarningIntFlag
Tx Warning Interrupt Flag.
-
enumerator kFLEXCAN_RxWarningIntFlag
Rx Warning Interrupt Flag.
-
enumerator kFLEXCAN_IdleFlag
FlexCAN In IDLE Status.
-
enumerator kFLEXCAN_FaultConfinementFlag
FlexCAN Fault Confinement State.
-
enumerator kFLEXCAN_TransmittingFlag
FlexCAN In Transmission Status.
-
enumerator kFLEXCAN_ReceivingFlag
FlexCAN In Reception Status.
-
enumerator kFLEXCAN_BusOffIntFlag
Bus Off Interrupt Flag.
-
enumerator kFLEXCAN_ErrorIntFlag
CAN Error Interrupt Flag.
-
enumerator kFLEXCAN_WakeUpIntFlag
Self Wake-Up Interrupt Flag.
-
enumerator kFLEXCAN_ErrorFlag
-
enumerator kFLEXCAN_PNMatchIntFlag
PN Matching Event Interrupt Flag.
-
enumerator kFLEXCAN_PNTimeoutIntFlag
PN Timeout Event Interrupt Flag.
-
enumerator kFLEXCAN_ERxFifoUnderflowIntFlag
Enhanced Rx FIFO underflow Interrupt Flag.
-
enumerator kFLEXCAN_ERxFifoOverflowIntFlag
Enhanced Rx FIFO overflow Interrupt Flag.
-
enumerator kFLEXCAN_ERxFifoWatermarkIntFlag
Enhanced Rx FIFO watermark Interrupt Flag.
-
enumerator kFLEXCAN_ERxFifoDataAvlIntFlag
Enhanced Rx FIFO data available Interrupt Flag.
-
enumerator kFLEXCAN_ERxFifoEmptyFlag
Enhanced Rx FIFO empty status.
-
enumerator kFLEXCAN_ERxFifoFullFlag
Enhanced Rx FIFO full status.
-
enumerator kFLEXCAN_HostAccessNonCorrectableErrorIntFlag
Host Access With Non-Correctable Error Interrupt Flag.
-
enumerator kFLEXCAN_FlexCanAccessNonCorrectableErrorIntFlag
FlexCAN Access With Non-Correctable Error Interrupt Flag.
-
enumerator kFLEXCAN_CorrectableErrorIntFlag
Correctable Error Interrupt Flag.
-
enumerator kFLEXCAN_HostAccessNonCorrectableErrorOverrunFlag
Host Access With Non-Correctable Error Interrupt Overrun Flag.
-
enumerator kFLEXCAN_FlexCanAccessNonCorrectableErrorOverrunFlag
FlexCAN Access With Non-Correctable Error Interrupt Overrun Flag.
-
enumerator kFLEXCAN_CorrectableErrorOverrunFlag
Correctable Error Interrupt Overrun Flag.
-
enumerator kFLEXCAN_AllMemoryErrorFlag
All Memory Error Flags.
-
enumerator kFLEXCAN_ErrorOverrunFlag
-
enum _flexcan_error_flags
FlexCAN error status flags.
The FlexCAN Error Status enumerations is used to report current error of the FlexCAN bus. This enumerations should be used with KFLEXCAN_ErrorFlag in _flexcan_flags enumerations to ditermine which error is generated.
Values:
-
enumerator kFLEXCAN_FDStuffingError
Stuffing Error.
-
enumerator kFLEXCAN_FDFormError
Form Error.
-
enumerator kFLEXCAN_FDCrcError
Cyclic Redundancy Check Error.
-
enumerator kFLEXCAN_FDBit0Error
Unable to send dominant bit.
-
enumerator kFLEXCAN_FDBit1Error
Unable to send recessive bit.
-
enumerator kFLEXCAN_TxErrorWarningFlag
Tx Error Warning Status.
-
enumerator kFLEXCAN_RxErrorWarningFlag
Rx Error Warning Status.
-
enumerator kFLEXCAN_StuffingError
Stuffing Error.
-
enumerator kFLEXCAN_FormError
Form Error.
-
enumerator kFLEXCAN_CrcError
Cyclic Redundancy Check Error.
-
enumerator kFLEXCAN_AckError
Received no ACK on transmission.
-
enumerator kFLEXCAN_Bit0Error
Unable to send dominant bit.
-
enumerator kFLEXCAN_Bit1Error
Unable to send recessive bit.
-
enumerator kFLEXCAN_FDStuffingError
FlexCAN Legacy Rx FIFO status flags.
The FlexCAN Legacy Rx FIFO Status enumerations are used to determine the status of the Rx FIFO. Because Rx FIFO occupy the MB0 ~ MB7 (Rx Fifo filter also occupies more Message Buffer space), Rx FIFO status flags are mapped to the corresponding Message Buffer status flags.
Values:
-
enumerator kFLEXCAN_RxFifoOverflowFlag
Rx FIFO overflow flag.
-
enumerator kFLEXCAN_RxFifoWarningFlag
Rx FIFO almost full flag.
-
enumerator kFLEXCAN_RxFifoFrameAvlFlag
Frames available in Rx FIFO flag.
-
enumerator kFLEXCAN_RxFifoOverflowFlag
-
enum _flexcan_memory_error_type
FlexCAN Memory Error Type.
Values:
-
enumerator kFLEXCAN_CorrectableError
The memory error is correctable which means on bit error.
-
enumerator kFLEXCAN_NonCorrectableError
The memory error is non-correctable which means two bit errors.
-
enumerator kFLEXCAN_CorrectableError
-
enum _flexcan_memory_access_type
FlexCAN Memory Access Type.
Values:
-
enumerator kFLEXCAN_MoveOutFlexCanAccess
The memory error was detected during move-out FlexCAN access.
-
enumerator kFLEXCAN_MoveInAccess
The memory error was detected during move-in FlexCAN access.
-
enumerator kFLEXCAN_TxArbitrationAccess
The memory error was detected during Tx Arbitration FlexCAN access.
-
enumerator kFLEXCAN_RxMatchingAccess
The memory error was detected during Rx Matching FlexCAN access.
-
enumerator kFLEXCAN_MoveOutHostAccess
The memory error was detected during Rx Matching Host (CPU) access.
-
enumerator kFLEXCAN_MoveOutFlexCanAccess
-
enum _flexcan_byte_error_syndrome
FlexCAN Memory Error Byte Syndrome.
Values:
-
enumerator kFLEXCAN_NoError
No bit error in this byte.
-
enumerator kFLEXCAN_ParityBits0Error
Parity bit 0 error in this byte.
-
enumerator kFLEXCAN_ParityBits1Error
Parity bit 1 error in this byte.
-
enumerator kFLEXCAN_ParityBits2Error
Parity bit 2 error in this byte.
-
enumerator kFLEXCAN_ParityBits3Error
Parity bit 3 error in this byte.
-
enumerator kFLEXCAN_ParityBits4Error
Parity bit 4 error in this byte.
-
enumerator kFLEXCAN_DataBits0Error
Data bit 0 error in this byte.
-
enumerator kFLEXCAN_DataBits1Error
Data bit 1 error in this byte.
-
enumerator kFLEXCAN_DataBits2Error
Data bit 2 error in this byte.
-
enumerator kFLEXCAN_DataBits3Error
Data bit 3 error in this byte.
-
enumerator kFLEXCAN_DataBits4Error
Data bit 4 error in this byte.
-
enumerator kFLEXCAN_DataBits5Error
Data bit 5 error in this byte.
-
enumerator kFLEXCAN_DataBits6Error
Data bit 6 error in this byte.
-
enumerator kFLEXCAN_DataBits7Error
Data bit 7 error in this byte.
-
enumerator kFLEXCAN_AllZeroError
All-zeros non-correctable error in this byte.
-
enumerator kFLEXCAN_AllOneError
All-ones non-correctable error in this byte.
-
enumerator kFLEXCAN_NonCorrectableErrors
Non-correctable error in this byte.
-
enumerator kFLEXCAN_NoError
-
enum _flexcan_pn_match_source
FlexCAN Pretended Networking match source selection.
Values:
-
enumerator kFLEXCAN_PNMatSrcID
Message match with ID filtering.
-
enumerator kFLEXCAN_PNMatSrcIDAndData
Message match with ID filtering and payload filtering.
-
enumerator kFLEXCAN_PNMatSrcID
-
enum _flexcan_pn_match_mode
FlexCAN Pretended Networking mode match type.
Values:
-
enumerator kFLEXCAN_PNMatModeEqual
Match upon ID/Payload contents against an exact target value.
-
enumerator kFLEXCAN_PNMatModeGreater
Match upon an ID/Payload value greater than or equal to a specified target value.
-
enumerator kFLEXCAN_PNMatModeSmaller
Match upon an ID/Payload value smaller than or equal to a specified target value.
-
enumerator kFLEXCAN_PNMatModeRange
Match upon an ID/Payload value inside a range, greater than or equal to a specified lower limit, and smaller than or equal to a specified upper limit
-
enumerator kFLEXCAN_PNMatModeEqual
-
typedef enum _flexcan_frame_format flexcan_frame_format_t
FlexCAN frame format.
-
typedef enum _flexcan_frame_type flexcan_frame_type_t
FlexCAN frame type.
-
typedef enum _flexcan_clock_source flexcan_clock_source_t
FlexCAN clock source.
- Deprecated:
Do not use the kFLEXCAN_ClkSrcOs. It has been superceded kFLEXCAN_ClkSrc0
Do not use the kFLEXCAN_ClkSrcPeri. It has been superceded kFLEXCAN_ClkSrc1
-
typedef enum _flexcan_wake_up_source flexcan_wake_up_source_t
FlexCAN wake up source.
-
typedef enum _flexcan_endianness flexcan_endianness_t
FlexCAN payload endianness.
-
typedef enum _flexcan_rx_fifo_filter_type flexcan_rx_fifo_filter_type_t
FlexCAN Rx Fifo Filter type.
-
typedef enum _flexcan_mb_size flexcan_mb_size_t
FlexCAN Message Buffer Payload size.
-
typedef enum _flexcan_efifo_dma_per_read_length flexcan_efifo_dma_per_read_length_t
FlexCAN Enhanced Rx Fifo DMA transfer per read length enumerations.
-
typedef enum _flexcan_rx_fifo_priority flexcan_rx_fifo_priority_t
FlexCAN Enhanced/Legacy Rx FIFO priority.
The matching process starts from the Rx MB(or Enhanced/Legacy Rx FIFO) with higher priority. If no MB(or Enhanced/Legacy Rx FIFO filter) is satisfied, the matching process goes on with the Enhanced/Legacy Rx FIFO(or Rx MB) with lower priority.
-
typedef enum _flexcan_memory_error_type flexcan_memory_error_type_t
FlexCAN Memory Error Type.
-
typedef enum _flexcan_memory_access_type flexcan_memory_access_type_t
FlexCAN Memory Access Type.
-
typedef enum _flexcan_byte_error_syndrome flexcan_byte_error_syndrome_t
FlexCAN Memory Error Byte Syndrome.
-
typedef struct _flexcan_memory_error_report_status flexcan_memory_error_report_status_t
FlexCAN memory error register status structure.
This structure contains the memory access properties that caused a memory error access. It is used as the parameter of FLEXCAN_GetMemoryErrorReportStatus() function. And user can use FLEXCAN_GetMemoryErrorReportStatus to get the status of the last memory error access.
-
typedef struct _flexcan_frame flexcan_frame_t
FlexCAN message frame structure.
-
typedef struct _flexcan_fd_frame flexcan_fd_frame_t
CAN FD message frame structure.
The CAN FD message supporting up to sixty four bytes can be used for a data frame, depending on the length selected for the message buffers. The length should be a enumeration member, see _flexcan_fd_frame_length.
-
typedef struct _flexcan_timing_config flexcan_timing_config_t
FlexCAN protocol timing characteristic configuration structure.
-
typedef struct _flexcan_config flexcan_config_t
FlexCAN module configuration structure.
- Deprecated:
Do not use the baudRate. It has been superceded bitRate
Do not use the baudRateFD. It has been superceded bitRateFD
-
typedef struct _flexcan_rx_mb_config flexcan_rx_mb_config_t
FlexCAN Receive Message Buffer configuration structure.
This structure is used as the parameter of FLEXCAN_SetRxMbConfig() function. The FLEXCAN_SetRxMbConfig() function is used to configure FlexCAN Receive Message Buffer. The function abort previous receiving process, clean the Message Buffer and activate the Rx Message Buffer using given Message Buffer setting.
-
typedef enum _flexcan_pn_match_source flexcan_pn_match_source_t
FlexCAN Pretended Networking match source selection.
-
typedef enum _flexcan_pn_match_mode flexcan_pn_match_mode_t
FlexCAN Pretended Networking mode match type.
-
typedef struct _flexcan_pn_config flexcan_pn_config_t
FlexCAN Pretended Networking configuration structure.
This structure is used as the parameter of FLEXCAN_SetPNConfig() function. The FLEXCAN_SetPNConfig() function is used to configure FlexCAN Networking work mode.
-
typedef struct _flexcan_rx_fifo_config flexcan_rx_fifo_config_t
FlexCAN Legacy Rx FIFO configuration structure.
-
typedef struct _flexcan_enhanced_rx_fifo_std_id_filter flexcan_enhanced_rx_fifo_std_id_filter_t
FlexCAN Enhanced Rx FIFO Standard ID filter element structure.
-
typedef struct _flexcan_enhanced_rx_fifo_ext_id_filter flexcan_enhanced_rx_fifo_ext_id_filter_t
FlexCAN Enhanced Rx FIFO Extended ID filter element structure.
-
typedef struct _flexcan_enhanced_rx_fifo_config flexcan_enhanced_rx_fifo_config_t
FlexCAN Enhanced Rx FIFO configuration structure.
-
typedef struct _flexcan_mb_transfer flexcan_mb_transfer_t
FlexCAN Message Buffer transfer.
-
typedef struct _flexcan_fifo_transfer flexcan_fifo_transfer_t
FlexCAN Rx FIFO transfer.
-
typedef struct _flexcan_handle flexcan_handle_t
FlexCAN handle structure definition.
-
typedef void (*flexcan_transfer_callback_t)(CAN_Type *base, flexcan_handle_t *handle, status_t status, uint64_t result, void *userData)
-
FLEXCAN_WAIT_TIMEOUT
-
DLC_LENGTH_DECODE(dlc)
FlexCAN frame length helper macro.
-
FLEXCAN_ID_STD(id)
FlexCAN Frame ID helper macro.
Standard Frame ID helper macro.
-
FLEXCAN_ID_EXT(id)
Extend Frame ID helper macro.
-
FLEXCAN_RX_MB_STD_MASK(id, rtr, ide)
FlexCAN Rx Message Buffer Mask helper macro.
Standard Rx Message Buffer Mask helper macro.
-
FLEXCAN_RX_MB_EXT_MASK(id, rtr, ide)
Extend Rx Message Buffer Mask helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_A(id, rtr, ide)
FlexCAN Legacy Rx FIFO Mask helper macro.
Standard Rx FIFO Mask helper macro Type A helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_B_HIGH(id, rtr, ide)
Standard Rx FIFO Mask helper macro Type B upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_B_LOW(id, rtr, ide)
Standard Rx FIFO Mask helper macro Type B lower part helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_HIGH(id)
Standard Rx FIFO Mask helper macro Type C upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_MID_HIGH(id)
Standard Rx FIFO Mask helper macro Type C mid-upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_MID_LOW(id)
Standard Rx FIFO Mask helper macro Type C mid-lower part helper macro.
-
FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_LOW(id)
Standard Rx FIFO Mask helper macro Type C lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_A(id, rtr, ide)
Extend Rx FIFO Mask helper macro Type A helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_B_HIGH(id, rtr, ide)
Extend Rx FIFO Mask helper macro Type B upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_B_LOW(id, rtr, ide)
Extend Rx FIFO Mask helper macro Type B lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_HIGH(id)
Extend Rx FIFO Mask helper macro Type C upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_MID_HIGH(id)
Extend Rx FIFO Mask helper macro Type C mid-upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_MID_LOW(id)
Extend Rx FIFO Mask helper macro Type C mid-lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_LOW(id)
Extend Rx FIFO Mask helper macro Type C lower part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_A(id, rtr, ide)
FlexCAN Rx FIFO Filter helper macro.
Standard Rx FIFO Filter helper macro Type A helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_B_HIGH(id, rtr, ide)
Standard Rx FIFO Filter helper macro Type B upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_B_LOW(id, rtr, ide)
Standard Rx FIFO Filter helper macro Type B lower part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_HIGH(id)
Standard Rx FIFO Filter helper macro Type C upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_MID_HIGH(id)
Standard Rx FIFO Filter helper macro Type C mid-upper part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_MID_LOW(id)
Standard Rx FIFO Filter helper macro Type C mid-lower part helper macro.
-
FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_LOW(id)
Standard Rx FIFO Filter helper macro Type C lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_A(id, rtr, ide)
Extend Rx FIFO Filter helper macro Type A helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_B_HIGH(id, rtr, ide)
Extend Rx FIFO Filter helper macro Type B upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_B_LOW(id, rtr, ide)
Extend Rx FIFO Filter helper macro Type B lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_HIGH(id)
Extend Rx FIFO Filter helper macro Type C upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_MID_HIGH(id)
Extend Rx FIFO Filter helper macro Type C mid-upper part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_MID_LOW(id)
Extend Rx FIFO Filter helper macro Type C mid-lower part helper macro.
-
FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_LOW(id)
Extend Rx FIFO Filter helper macro Type C lower part helper macro.
-
ENHANCED_RX_FIFO_FSCH(x)
FlexCAN Enhanced Rx FIFO Filter and Mask helper macro.
-
RTR_STD_HIGH(x)
-
RTR_STD_LOW(x)
-
RTR_EXT(x)
-
ID_STD_LOW(id)
-
ID_STD_HIGH(id)
-
ID_EXT(id)
-
FLEXCAN_ENHANCED_RX_FIFO_STD_MASK_AND_FILTER(id, rtr, id_mask, rtr_mask)
Standard ID filter element with filter + mask scheme.
-
FLEXCAN_ENHANCED_RX_FIFO_STD_FILTER_WITH_RANGE(id_upper, rtr, id_lower, rtr_mask)
Standard ID filter element with filter range.
-
FLEXCAN_ENHANCED_RX_FIFO_STD_TWO_FILTERS(id1, rtr1, id2, rtr2)
Standard ID filter element with two filters without masks.
-
FLEXCAN_ENHANCED_RX_FIFO_EXT_MASK_AND_FILTER_LOW(id, rtr)
Extended ID filter element with filter + mask scheme low word.
-
FLEXCAN_ENHANCED_RX_FIFO_EXT_MASK_AND_FILTER_HIGH(id_mask, rtr_mask)
Extended ID filter element with filter + mask scheme high word.
-
FLEXCAN_ENHANCED_RX_FIFO_EXT_FILTER_WITH_RANGE_LOW(id_upper, rtr)
Extended ID filter element with range scheme low word.
-
FLEXCAN_ENHANCED_RX_FIFO_EXT_FILTER_WITH_RANGE_HIGH(id_lower, rtr_mask)
Extended ID filter element with range scheme high word.
-
FLEXCAN_ENHANCED_RX_FIFO_EXT_TWO_FILTERS_LOW(id2, rtr2)
Extended ID filter element with two filters without masks low word.
-
FLEXCAN_ENHANCED_RX_FIFO_EXT_TWO_FILTERS_HIGH(id1, rtr1)
Extended ID filter element with two filters without masks high word.
-
FLEXCAN_PN_STD_MASK(id, rtr)
FlexCAN Pretended Networking ID Mask helper macro.
Standard Rx Message Buffer Mask helper macro.
-
FLEXCAN_PN_EXT_MASK(id, rtr)
Extend Rx Message Buffer Mask helper macro.
-
FLEXCAN_PN_INT_MASK(x)
FlexCAN interrupt/status flag helper macro.
-
FLEXCAN_PN_INT_UNMASK(x)
-
FLEXCAN_PN_STATUS_MASK(x)
-
FLEXCAN_PN_STATUS_UNMASK(x)
-
FLEXCAN_EFIFO_INT_MASK(x)
-
FLEXCAN_EFIFO_INT_UNMASK(x)
-
FLEXCAN_EFIFO_STATUS_MASK(x)
-
FLEXCAN_EFIFO_STATUS_UNMASK(x)
-
FLEXCAN_MECR_INT_MASK(x)
-
FLEXCAN_MECR_INT_UNMASK(x)
-
FLEXCAN_MECR_STATUS_MASK(x)
-
FLEXCAN_MECR_STATUS_UNMASK(x)
-
FLEXCAN_ERROR_AND_STATUS_INIT_FLAG
-
FLEXCAN_WAKE_UP_FLAG
-
FLEXCAN_MEMORY_ERROR_INIT_FLAG
-
FLEXCAN_MEMORY_ENHANCED_RX_FIFO_INIT_FLAG
-
E_RX_FIFO(base)
FlexCAN Enhanced Rx FIFO base address helper macro.
-
FLEXCAN_CALLBACK(x)
FlexCAN transfer callback function.
The FlexCAN transfer callback returns a value from the underlying layer. If the status equals to kStatus_FLEXCAN_ErrorStatus, the result parameter is the Content of FlexCAN status register which can be used to get the working status(or error status) of FlexCAN module. If the status equals to other FlexCAN Message Buffer transfer status, the result is the index of Message Buffer that generate transfer event. If the status equals to other FlexCAN Message Buffer transfer status, the result is meaningless and should be Ignored.
-
struct _flexcan_memory_error_report_status
- #include <fsl_flexcan.h>
FlexCAN memory error register status structure.
This structure contains the memory access properties that caused a memory error access. It is used as the parameter of FLEXCAN_GetMemoryErrorReportStatus() function. And user can use FLEXCAN_GetMemoryErrorReportStatus to get the status of the last memory error access.
Public Members
-
flexcan_memory_error_type_t errorType
The type of memory error that giving rise to the report.
-
flexcan_memory_access_type_t accessType
The type of memory access that giving rise to the memory error.
-
uint16_t accessAddress
The address where memory error detected.
-
uint32_t errorData
The raw data word read from memory with error.
-
flexcan_memory_error_type_t errorType
-
struct _flexcan_frame
- #include <fsl_flexcan.h>
FlexCAN message frame structure.
-
struct _flexcan_fd_frame
- #include <fsl_flexcan.h>
CAN FD message frame structure.
The CAN FD message supporting up to sixty four bytes can be used for a data frame, depending on the length selected for the message buffers. The length should be a enumeration member, see _flexcan_fd_frame_length.
Public Members
-
uint32_t idhit
Note
ID HIT offset is changed dynamically according to data length code (DLC), when DLC is 15, they will be located below. Using FLEXCAN_FixEnhancedRxFifoFrameIdHit API is recommended to ensure this idhit value is correct. CAN Enhanced Rx FIFO filter hit id (This value is only used in Enhanced Rx FIFO receive mode).
-
uint32_t idhit
-
struct _flexcan_timing_config
- #include <fsl_flexcan.h>
FlexCAN protocol timing characteristic configuration structure.
Public Members
-
uint16_t preDivider
Classic CAN or CAN FD nominal phase bit rate prescaler.
-
uint8_t rJumpwidth
Classic CAN or CAN FD nominal phase Re-sync Jump Width.
-
uint8_t phaseSeg1
Classic CAN or CAN FD nominal phase Segment 1.
-
uint8_t phaseSeg2
Classic CAN or CAN FD nominal phase Segment 2.
-
uint8_t propSeg
Classic CAN or CAN FD nominal phase Propagation Segment.
-
uint16_t fpreDivider
CAN FD data phase bit rate prescaler.
-
uint8_t frJumpwidth
CAN FD data phase Re-sync Jump Width.
-
uint8_t fphaseSeg1
CAN FD data phase Phase Segment 1.
-
uint8_t fphaseSeg2
CAN FD data phase Phase Segment 2.
-
uint8_t fpropSeg
CAN FD data phase Propagation Segment.
-
uint16_t preDivider
-
struct _flexcan_config
- #include <fsl_flexcan.h>
FlexCAN module configuration structure.
- Deprecated:
Do not use the baudRate. It has been superceded bitRate
Do not use the baudRateFD. It has been superceded bitRateFD
Public Members
-
flexcan_clock_source_t clkSrc
Clock source for FlexCAN Protocol Engine.
-
flexcan_wake_up_source_t wakeupSrc
Wake up source selection.
-
uint8_t maxMbNum
The maximum number of Message Buffers used by user.
-
bool enableLoopBack
Enable or Disable Loop Back Self Test Mode.
-
bool enableTimerSync
Enable or Disable Timer Synchronization.
-
bool enableSelfWakeup
Enable or Disable Self Wakeup Mode.
-
bool enableIndividMask
Enable or Disable Rx Individual Mask and Queue feature.
-
bool disableSelfReception
Enable or Disable Self Reflection.
-
bool enableListenOnlyMode
Enable or Disable Listen Only Mode.
-
bool enableDoze
Enable or Disable Doze Mode.
-
bool enablePretendedeNetworking
Enable or Disable the Pretended Networking mode.
-
bool enableMemoryErrorControl
Enable or Disable the memory errors detection and correction mechanism.
-
bool enableNonCorrectableErrorEnterFreeze
Enable or Disable Non-Correctable Errors In FlexCAN Access Put Device In Freeze Mode.
-
bool enableTransceiverDelayMeasure
Enable or Disable the transceiver delay measurement, when it is enabled, then the secondary sample point position is determined by the sum of the transceiver delay measurement plus the enhanced TDC offset.
-
bool enableRemoteRequestFrameStored
true: Store Remote Request Frame in the same fashion of data frame. false: Generate an automatic Remote Response Frame.
-
flexcan_endianness_t payloadEndianness
Selects the byte order for the payload of transmit and receive frames, see flexcan_endianness_t.
-
struct _flexcan_rx_mb_config
- #include <fsl_flexcan.h>
FlexCAN Receive Message Buffer configuration structure.
This structure is used as the parameter of FLEXCAN_SetRxMbConfig() function. The FLEXCAN_SetRxMbConfig() function is used to configure FlexCAN Receive Message Buffer. The function abort previous receiving process, clean the Message Buffer and activate the Rx Message Buffer using given Message Buffer setting.
Public Members
-
uint32_t id
CAN Message Buffer Frame Identifier, should be set using FLEXCAN_ID_EXT() or FLEXCAN_ID_STD() macro.
-
flexcan_frame_format_t format
CAN Frame Identifier format(Standard of Extend).
-
flexcan_frame_type_t type
CAN Frame Type(Data or Remote).
-
uint32_t id
-
struct _flexcan_pn_config
- #include <fsl_flexcan.h>
FlexCAN Pretended Networking configuration structure.
This structure is used as the parameter of FLEXCAN_SetPNConfig() function. The FLEXCAN_SetPNConfig() function is used to configure FlexCAN Networking work mode.
Public Members
-
bool enableTimeout
Enable or Disable timeout event trigger wakeup.
-
uint16_t timeoutValue
The timeout value that generates a wakeup event, the counter timer is incremented based on 64 times the CAN Bit Time unit.
-
bool enableMatch
Enable or Disable match event trigger wakeup.
-
flexcan_pn_match_source_t matchSrc
Selects the match source (ID and/or data match) to trigger wakeup.
-
uint8_t matchNum
The number of times a given message must match the predefined ID and/or data before generating a wakeup event, range in 0x1 ~ 0xFF.
-
flexcan_pn_match_mode_t idMatchMode
The ID match type.
-
flexcan_pn_match_mode_t dataMatchMode
The data match type.
-
uint32_t idLower
The ID target values 1 which used either for ID match “equal to”, “smaller than”, “greater than” comparisons, or as the lower limit value in ID match “range detection”.
-
uint32_t idUpper
The ID target values 2 which used only as the upper limit value in ID match “range
detection” or used to store the ID mask in “equal to”.
-
uint8_t lengthLower
The lower limit for length of data bytes which used only in data match “range
detection”. Range in 0x0 ~ 0x8.
-
uint8_t lengthUpper
The upper limit for length of data bytes which used only in data match “range
detection”. Range in 0x0 ~ 0x8.
-
bool enableTimeout
-
struct _flexcan_rx_fifo_config
- #include <fsl_flexcan.h>
FlexCAN Legacy Rx FIFO configuration structure.
Public Members
-
uint32_t *idFilterTable
Pointer to the FlexCAN Legacy Rx FIFO identifier filter table.
-
uint8_t idFilterNum
The FlexCAN Legacy Rx FIFO Filter elements quantity.
-
flexcan_rx_fifo_filter_type_t idFilterType
The FlexCAN Legacy Rx FIFO Filter type.
-
flexcan_rx_fifo_priority_t priority
The FlexCAN Legacy Rx FIFO receive priority.
-
uint32_t *idFilterTable
-
struct _flexcan_enhanced_rx_fifo_std_id_filter
- #include <fsl_flexcan.h>
FlexCAN Enhanced Rx FIFO Standard ID filter element structure.
Public Members
-
uint32_t filterType
FlexCAN internal Free-Running Counter Time Stamp.
-
uint32_t rtr1
CAN FD frame data length code (DLC), range see _flexcan_fd_frame_length, When the length <= 8, it equal to the data length, otherwise the number of valid frame data is not equal to the length value. user can use DLC_LENGTH_DECODE(length) macro to get the number of valid data bytes.
-
uint32_t std1
CAN Frame Type(DATA or REMOTE).
-
uint32_t rtr2
CAN Frame Identifier(STD or EXT format).
-
uint32_t std2
Substitute Remote request.
-
uint32_t filterType
-
struct _flexcan_enhanced_rx_fifo_ext_id_filter
- #include <fsl_flexcan.h>
FlexCAN Enhanced Rx FIFO Extended ID filter element structure.
Public Members
-
uint32_t filterType
FlexCAN internal Free-Running Counter Time Stamp.
-
uint32_t rtr1
CAN FD frame data length code (DLC), range see _flexcan_fd_frame_length, When the length <= 8, it equal to the data length, otherwise the number of valid frame data is not equal to the length value. user can use DLC_LENGTH_DECODE(length) macro to get the number of valid data bytes.
-
uint32_t std1
CAN Frame Type(DATA or REMOTE).
-
uint32_t rtr2
CAN Frame Identifier(STD or EXT format).
-
uint32_t std2
Substitute Remote request.
-
uint32_t filterType
-
struct _flexcan_enhanced_rx_fifo_config
- #include <fsl_flexcan.h>
FlexCAN Enhanced Rx FIFO configuration structure.
Public Members
-
uint32_t *idFilterTable
Pointer to the FlexCAN Enhanced Rx FIFO identifier filter table, each table member occupies 32 bit word, table size should be equal to idFilterNum. There are two types of Enhanced Rx FIFO filter elements that can be stored in table : extended-ID filter element (1 word, occupie 1 table members) and standard-ID filter element (2 words, occupies 2 table members), the extended-ID filter element needs to be placed in front of the table.
-
uint8_t idFilterPairNum
idFilterPairNum is the Enhanced Rx FIFO identifier filter element pair numbers, each pair of filter elements occupies 2 words and can consist of one extended ID filter element or two standard ID filter elements.
-
uint8_t extendIdFilterNum
The number of extended ID filter element items in the FlexCAN enhanced Rx FIFO identifier filter table, each extended-ID filter element occupies 2 words, extendIdFilterNum need less than or equal to idFilterPairNum.
-
uint8_t fifoWatermark
(fifoWatermark + 1) is the minimum number of CAN messages stored in the Enhanced RX FIFO which can trigger FIFO watermark interrupt or a DMA request.
-
flexcan_efifo_dma_per_read_length_t dmaPerReadLength
Define the length of each read of the Enhanced RX FIFO element by the DAM, see _flexcan_fd_frame_length.
-
flexcan_rx_fifo_priority_t priority
The FlexCAN Enhanced Rx FIFO receive priority.
-
uint32_t *idFilterTable
-
struct _flexcan_mb_transfer
- #include <fsl_flexcan.h>
FlexCAN Message Buffer transfer.
Public Members
-
flexcan_frame_t *frame
The buffer of CAN Message to be transfer.
-
uint8_t mbIdx
The index of Message buffer used to transfer Message.
-
flexcan_frame_t *frame
-
struct _flexcan_fifo_transfer
- #include <fsl_flexcan.h>
FlexCAN Rx FIFO transfer.
Public Members
-
flexcan_fd_frame_t *framefd
The buffer of CAN Message to be received from Enhanced Rx FIFO.
-
flexcan_frame_t *frame
The buffer of CAN Message to be received from Legacy Rx FIFO.
-
size_t frameNum
Number of CAN Message need to be received from Legacy or Ehanced Rx FIFO.
-
flexcan_fd_frame_t *framefd
-
struct _flexcan_handle
- #include <fsl_flexcan.h>
FlexCAN handle structure.
Public Members
-
flexcan_transfer_callback_t callback
Callback function.
-
void *userData
FlexCAN callback function parameter.
-
flexcan_frame_t *volatile mbFrameBuf[CAN_WORD1_COUNT]
The buffer for received CAN data from Message Buffers.
-
flexcan_fd_frame_t *volatile mbFDFrameBuf[CAN_WORD1_COUNT]
The buffer for received CAN FD data from Message Buffers.
-
flexcan_frame_t *volatile rxFifoFrameBuf
The buffer for received CAN data from Legacy Rx FIFO.
-
flexcan_fd_frame_t *volatile rxFifoFDFrameBuf
The buffer for received CAN FD data from Ehanced Rx FIFO.
-
size_t rxFifoFrameNum
The number of CAN messages remaining to be received from Legacy or Ehanced Rx FIFO.
-
size_t rxFifoTransferTotalNum
Total CAN Message number need to be received from Legacy or Ehanced Rx FIFO.
-
volatile uint8_t mbState[CAN_WORD1_COUNT]
Message Buffer transfer state.
-
volatile uint8_t rxFifoState
Rx FIFO transfer state.
-
volatile uint32_t timestamp[CAN_WORD1_COUNT]
Mailbox transfer timestamp.
-
flexcan_transfer_callback_t callback
-
struct byteStatus
Public Members
-
bool byteIsRead
The byte n (0~3) was read or not. The type of error and which bit in byte (n) is affected by the error.
-
bool byteIsRead
-
struct __unnamed22__
Public Members
-
uint32_t timestamp
FlexCAN internal Free-Running Counter Time Stamp.
-
uint32_t length
CAN frame data length in bytes (Range: 0~8).
-
uint32_t type
CAN Frame Type(DATA or REMOTE).
-
uint32_t format
CAN Frame Identifier(STD or EXT format).
-
uint32_t __pad0__
Reserved.
-
uint32_t idhit
CAN Rx FIFO filter hit id(This value is only used in Rx FIFO receive mode).
-
uint32_t timestamp
-
struct __unnamed24__
Public Members
-
uint32_t id
CAN Frame Identifier, should be set using FLEXCAN_ID_EXT() or FLEXCAN_ID_STD() macro.
-
uint32_t __pad0__
Reserved.
-
uint32_t id
-
union __unnamed26__
Public Members
- struct _flexcan_frame
- struct _flexcan_frame
-
struct __unnamed28__
Public Members
-
uint32_t dataWord0
CAN Frame payload word0.
-
uint32_t dataWord1
CAN Frame payload word1.
-
uint32_t dataWord0
-
struct __unnamed30__
Public Members
-
uint8_t dataByte3
CAN Frame payload byte3.
-
uint8_t dataByte2
CAN Frame payload byte2.
-
uint8_t dataByte1
CAN Frame payload byte1.
-
uint8_t dataByte0
CAN Frame payload byte0.
-
uint8_t dataByte7
CAN Frame payload byte7.
-
uint8_t dataByte6
CAN Frame payload byte6.
-
uint8_t dataByte5
CAN Frame payload byte5.
-
uint8_t dataByte4
CAN Frame payload byte4.
-
uint8_t dataByte3
-
struct __unnamed32__
Public Members
-
uint32_t timestamp
FlexCAN internal Free-Running Counter Time Stamp.
-
uint32_t length
CAN FD frame data length code (DLC), range see _flexcan_fd_frame_length, When the length <= 8, it equal to the data length, otherwise the number of valid frame data is not equal to the length value. user can use DLC_LENGTH_DECODE(length) macro to get the number of valid data bytes.
-
uint32_t type
CAN Frame Type(DATA or REMOTE).
-
uint32_t format
CAN Frame Identifier(STD or EXT format).
-
uint32_t srr
Substitute Remote request.
-
uint32_t esi
Error State Indicator.
-
uint32_t brs
Bit Rate Switch.
-
uint32_t edl
Extended Data Length.
-
uint32_t timestamp
-
struct __unnamed34__
Public Members
-
uint32_t id
CAN Frame Identifier, should be set using FLEXCAN_ID_EXT() or FLEXCAN_ID_STD() macro.
-
uint32_t __pad0__
Reserved.
-
uint32_t id
-
union __unnamed36__
Public Members
- struct _flexcan_fd_frame
- struct _flexcan_fd_frame
-
struct __unnamed38__
Public Members
-
uint32_t dataWord[16]
CAN FD Frame payload, 16 double word maximum.
-
uint32_t dataWord[16]
-
struct __unnamed40__
Public Members
-
uint8_t dataByte3
CAN Frame payload byte3.
-
uint8_t dataByte2
CAN Frame payload byte2.
-
uint8_t dataByte1
CAN Frame payload byte1.
-
uint8_t dataByte0
CAN Frame payload byte0.
-
uint8_t dataByte7
CAN Frame payload byte7.
-
uint8_t dataByte6
CAN Frame payload byte6.
-
uint8_t dataByte5
CAN Frame payload byte5.
-
uint8_t dataByte4
CAN Frame payload byte4.
-
uint8_t dataByte3
-
union __unnamed42__
Public Members
- struct _flexcan_config
- struct _flexcan_config
-
struct __unnamed44__
Public Members
-
uint32_t baudRate
FlexCAN bit rate in bps, for classical CAN or CANFD nominal phase.
-
uint32_t baudRateFD
FlexCAN FD bit rate in bps, for CANFD data phase.
-
uint32_t baudRate
-
struct __unnamed46__
Public Members
-
uint32_t bitRate
FlexCAN bit rate in bps, for classical CAN or CANFD nominal phase.
-
uint32_t bitRateFD
FlexCAN FD bit rate in bps, for CANFD data phase.
-
uint32_t bitRate
-
union __unnamed48__
Public Members
- struct _flexcan_pn_config
< The data target values 1 which used either for data match “equal to”, “smaller than”, “greater than” comparisons, or as the lower limit value in data match “range
detection”.
- struct _flexcan_pn_config
-
struct __unnamed52__
< The data target values 1 which used either for data match “equal to”, “smaller than”, “greater than” comparisons, or as the lower limit value in data match “range
detection”.
Public Members
-
uint32_t lowerWord0
CAN Frame payload word0.
-
uint32_t lowerWord1
CAN Frame payload word1.
-
uint32_t lowerWord0
-
struct __unnamed54__
Public Members
-
uint8_t lowerByte3
CAN Frame payload byte3.
-
uint8_t lowerByte2
CAN Frame payload byte2.
-
uint8_t lowerByte1
CAN Frame payload byte1.
-
uint8_t lowerByte0
CAN Frame payload byte0.
-
uint8_t lowerByte7
CAN Frame payload byte7.
-
uint8_t lowerByte6
CAN Frame payload byte6.
-
uint8_t lowerByte5
CAN Frame payload byte5.
-
uint8_t lowerByte4
CAN Frame payload byte4.
-
uint8_t lowerByte3
-
union __unnamed50__
Public Members
- struct _flexcan_pn_config
< The data target values 2 which used only as the upper limit value in data match “range
detection” or used to store the data mask in “equal to”.
- struct _flexcan_pn_config
-
struct __unnamed56__
< The data target values 2 which used only as the upper limit value in data match “range
detection” or used to store the data mask in “equal to”.
Public Members
-
uint32_t upperWord0
CAN Frame payload word0.
-
uint32_t upperWord1
CAN Frame payload word1.
-
uint32_t upperWord0
-
struct __unnamed58__
Public Members
-
uint8_t upperByte3
CAN Frame payload byte3.
-
uint8_t upperByte2
CAN Frame payload byte2.
-
uint8_t upperByte1
CAN Frame payload byte1.
-
uint8_t upperByte0
CAN Frame payload byte0.
-
uint8_t upperByte7
CAN Frame payload byte7.
-
uint8_t upperByte6
CAN Frame payload byte6.
-
uint8_t upperByte5
CAN Frame payload byte5.
-
uint8_t upperByte4
CAN Frame payload byte4.
-
uint8_t upperByte3
FlexCAN eDMA Driver
-
void FLEXCAN_TransferCreateHandleEDMA(CAN_Type *base, flexcan_edma_handle_t *handle, flexcan_edma_transfer_callback_t callback, void *userData, edma_handle_t *rxFifoEdmaHandle)
Initializes the FlexCAN handle, which is used in transactional functions.
- Parameters:
base – FlexCAN peripheral base address.
handle – Pointer to flexcan_edma_handle_t structure.
callback – The callback function.
userData – The parameter of the callback function.
rxFifoEdmaHandle – User-requested DMA handle for Rx FIFO DMA transfer.
-
void FLEXCAN_PrepareTransfConfiguration(CAN_Type *base, flexcan_fifo_transfer_t *pFifoXfer, edma_transfer_config_t *pEdmaConfig)
Prepares the eDMA transfer configuration for FLEXCAN Legacy RX FIFO.
This function prepares the eDMA transfer configuration structure according to FLEXCAN Legacy RX FIFO.
- Parameters:
base – FlexCAN peripheral base address.
pFifoXfer – FlexCAN Rx FIFO EDMA transfer structure, see flexcan_fifo_transfer_t.
pEdmaConfig – The user configuration structure of type edma_transfer_t.
-
status_t FLEXCAN_StartTransferDatafromRxFIFO(CAN_Type *base, flexcan_edma_handle_t *handle, edma_transfer_config_t *pEdmaConfig)
Start Transfer Data from the FLEXCAN Legacy Rx FIFO using eDMA.
This function to Update edma transfer confiugration and Start eDMA transfer
- Parameters:
base – FlexCAN peripheral base address.
handle – Pointer to flexcan_edma_handle_t structure.
pEdmaConfig – The user configuration structure of type edma_transfer_t.
- Return values:
kStatus_Success – if succeed, others failed.
kStatus_FLEXCAN_RxFifoBusy – Previous transfer ongoing.
-
status_t FLEXCAN_TransferReceiveFifoEDMA(CAN_Type *base, flexcan_edma_handle_t *handle, flexcan_fifo_transfer_t *pFifoXfer)
Receives the CAN Message from the Legacy Rx FIFO using eDMA.
This function receives the CAN Message using eDMA. This is a non-blocking function, which returns right away. After the CAN Message is received, the receive callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – Pointer to flexcan_edma_handle_t structure.
pFifoXfer – FlexCAN Rx FIFO EDMA transfer structure, see flexcan_fifo_transfer_t.
- Return values:
kStatus_Success – if succeed, others failed.
kStatus_FLEXCAN_RxFifoBusy – Previous transfer ongoing.
-
status_t FLEXCAN_TransferGetReceiveFifoCountEMDA(CAN_Type *base, flexcan_edma_handle_t *handle, size_t *count)
Gets the Legacy Rx Fifo transfer status during a interrupt non-blocking receive.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
count – Number of CAN messages receive so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
void FLEXCAN_TransferAbortReceiveFifoEDMA(CAN_Type *base, flexcan_edma_handle_t *handle)
Aborts the receive Legacy/Enhanced Rx FIFO process which used eDMA.
This function aborts the receive Legacy/Enhanced Rx FIFO process which used eDMA.
- Parameters:
base – FlexCAN peripheral base address.
handle – Pointer to flexcan_edma_handle_t structure.
-
status_t FLEXCAN_TransferReceiveEnhancedFifoEDMA(CAN_Type *base, flexcan_edma_handle_t *handle, flexcan_fifo_transfer_t *pFifoXfer)
Receives the CAN FD Message from the Enhanced Rx FIFO using eDMA.
This function receives the CAN FD Message using eDMA. This is a non-blocking function, which returns right away. After the CAN Message is received, the receive callback function is called.
- Parameters:
base – FlexCAN peripheral base address.
handle – Pointer to flexcan_edma_handle_t structure.
pFifoXfer – FlexCAN Rx FIFO EDMA transfer structure, see flexcan_fifo_transfer_t.
- Return values:
kStatus_Success – if succeed, others failed.
kStatus_FLEXCAN_RxFifoBusy – Previous transfer ongoing.
-
static inline status_t FLEXCAN_TransferGetReceiveEnhancedFifoCountEMDA(CAN_Type *base, flexcan_edma_handle_t *handle, size_t *count)
Gets the Enhanced Rx Fifo transfer status during a interrupt non-blocking receive.
- Parameters:
base – FlexCAN peripheral base address.
handle – FlexCAN handle pointer.
count – Number of CAN messages receive so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
FSL_FLEXCAN_EDMA_DRIVER_VERSION
FlexCAN EDMA driver version.
-
typedef struct _flexcan_edma_handle flexcan_edma_handle_t
-
typedef void (*flexcan_edma_transfer_callback_t)(CAN_Type *base, flexcan_edma_handle_t *handle, status_t status, void *userData)
FlexCAN transfer callback function.
-
struct _flexcan_edma_handle
- #include <fsl_flexcan_edma.h>
FlexCAN eDMA handle.
Public Members
-
flexcan_edma_transfer_callback_t callback
Callback function.
-
void *userData
FlexCAN callback function parameter.
-
edma_handle_t *rxFifoEdmaHandle
The EDMA handler for Rx FIFO.
-
volatile uint8_t rxFifoState
Rx FIFO transfer state.
-
size_t frameNum
The number of messages that need to be received.
-
flexcan_fd_frame_t *framefd
Point to the buffer of CAN Message to be received from Enhanced Rx FIFO.
-
flexcan_edma_transfer_callback_t callback
FlexIO: FlexIO Driver
FlexIO Driver
-
void FLEXIO_GetDefaultConfig(flexio_config_t *userConfig)
Gets the default configuration to configure the FlexIO module. The configuration can used directly to call the FLEXIO_Configure().
Example:
flexio_config_t config; FLEXIO_GetDefaultConfig(&config);
- Parameters:
userConfig – pointer to flexio_config_t structure
-
void FLEXIO_Init(FLEXIO_Type *base, const flexio_config_t *userConfig)
Configures the FlexIO with a FlexIO configuration. The configuration structure can be filled by the user or be set with default values by FLEXIO_GetDefaultConfig().
Example
flexio_config_t config = { .enableFlexio = true, .enableInDoze = false, .enableInDebug = true, .enableFastAccess = false }; FLEXIO_Configure(base, &config);
- Parameters:
base – FlexIO peripheral base address
userConfig – pointer to flexio_config_t structure
-
void FLEXIO_Deinit(FLEXIO_Type *base)
Gates the FlexIO clock. Call this API to stop the FlexIO clock.
Note
After calling this API, call the FLEXO_Init to use the FlexIO module.
- Parameters:
base – FlexIO peripheral base address
-
uint32_t FLEXIO_GetInstance(FLEXIO_Type *base)
Get instance number for FLEXIO module.
- Parameters:
base – FLEXIO peripheral base address.
-
void FLEXIO_Reset(FLEXIO_Type *base)
Resets the FlexIO module.
- Parameters:
base – FlexIO peripheral base address
-
static inline void FLEXIO_Enable(FLEXIO_Type *base, bool enable)
Enables the FlexIO module operation.
- Parameters:
base – FlexIO peripheral base address
enable – true to enable, false to disable.
-
static inline uint32_t FLEXIO_ReadPinInput(FLEXIO_Type *base)
Reads the input data on each of the FlexIO pins.
- Parameters:
base – FlexIO peripheral base address
- Returns:
FlexIO pin input data
-
static inline uint8_t FLEXIO_GetShifterState(FLEXIO_Type *base)
Gets the current state pointer for state mode use.
- Parameters:
base – FlexIO peripheral base address
- Returns:
current State pointer
-
void FLEXIO_SetShifterConfig(FLEXIO_Type *base, uint8_t index, const flexio_shifter_config_t *shifterConfig)
Configures the shifter with the shifter configuration. The configuration structure covers both the SHIFTCTL and SHIFTCFG registers. To configure the shifter to the proper mode, select which timer controls the shifter to shift, whether to generate start bit/stop bit, and the polarity of start bit and stop bit.
Example
flexio_shifter_config_t config = { .timerSelect = 0, .timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive, .pinConfig = kFLEXIO_PinConfigOpenDrainOrBidirection, .pinPolarity = kFLEXIO_PinActiveLow, .shifterMode = kFLEXIO_ShifterModeTransmit, .inputSource = kFLEXIO_ShifterInputFromPin, .shifterStop = kFLEXIO_ShifterStopBitHigh, .shifterStart = kFLEXIO_ShifterStartBitLow }; FLEXIO_SetShifterConfig(base, &config);
- Parameters:
base – FlexIO peripheral base address
index – Shifter index
shifterConfig – Pointer to flexio_shifter_config_t structure
-
void FLEXIO_SetTimerConfig(FLEXIO_Type *base, uint8_t index, const flexio_timer_config_t *timerConfig)
Configures the timer with the timer configuration. The configuration structure covers both the TIMCTL and TIMCFG registers. To configure the timer to the proper mode, select trigger source for timer and the timer pin output and the timing for timer.
Example
flexio_timer_config_t config = { .triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(0), .triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow, .triggerSource = kFLEXIO_TimerTriggerSourceInternal, .pinConfig = kFLEXIO_PinConfigOpenDrainOrBidirection, .pinSelect = 0, .pinPolarity = kFLEXIO_PinActiveHigh, .timerMode = kFLEXIO_TimerModeDual8BitBaudBit, .timerOutput = kFLEXIO_TimerOutputZeroNotAffectedByReset, .timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput, .timerReset = kFLEXIO_TimerResetOnTimerPinEqualToTimerOutput, .timerDisable = kFLEXIO_TimerDisableOnTimerCompare, .timerEnable = kFLEXIO_TimerEnableOnTriggerHigh, .timerStop = kFLEXIO_TimerStopBitEnableOnTimerDisable, .timerStart = kFLEXIO_TimerStartBitEnabled }; FLEXIO_SetTimerConfig(base, &config);
- Parameters:
base – FlexIO peripheral base address
index – Timer index
timerConfig – Pointer to the flexio_timer_config_t structure
-
static inline void FLEXIO_SetClockMode(FLEXIO_Type *base, uint8_t index, flexio_timer_decrement_source_t clocksource)
This function set the value of the prescaler on flexio channels.
- Parameters:
base – Pointer to the FlexIO simulated peripheral type.
index – Timer index
clocksource – Set clock value
-
static inline void FLEXIO_EnableShifterStatusInterrupts(FLEXIO_Type *base, uint32_t mask)
Enables the shifter status interrupt. The interrupt generates when the corresponding SSF is set.
Note
For multiple shifter status interrupt enable, for example, two shifter status enable, can calculate the mask by using ((1 << shifter index0) | (1 << shifter index1))
- Parameters:
base – FlexIO peripheral base address
mask – The shifter status mask which can be calculated by (1 << shifter index)
-
static inline void FLEXIO_DisableShifterStatusInterrupts(FLEXIO_Type *base, uint32_t mask)
Disables the shifter status interrupt. The interrupt won’t generate when the corresponding SSF is set.
Note
For multiple shifter status interrupt enable, for example, two shifter status enable, can calculate the mask by using ((1 << shifter index0) | (1 << shifter index1))
- Parameters:
base – FlexIO peripheral base address
mask – The shifter status mask which can be calculated by (1 << shifter index)
-
static inline void FLEXIO_EnableShifterErrorInterrupts(FLEXIO_Type *base, uint32_t mask)
Enables the shifter error interrupt. The interrupt generates when the corresponding SEF is set.
Note
For multiple shifter error interrupt enable, for example, two shifter error enable, can calculate the mask by using ((1 << shifter index0) | (1 << shifter index1))
- Parameters:
base – FlexIO peripheral base address
mask – The shifter error mask which can be calculated by (1 << shifter index)
-
static inline void FLEXIO_DisableShifterErrorInterrupts(FLEXIO_Type *base, uint32_t mask)
Disables the shifter error interrupt. The interrupt won’t generate when the corresponding SEF is set.
Note
For multiple shifter error interrupt enable, for example, two shifter error enable, can calculate the mask by using ((1 << shifter index0) | (1 << shifter index1))
- Parameters:
base – FlexIO peripheral base address
mask – The shifter error mask which can be calculated by (1 << shifter index)
-
static inline void FLEXIO_EnableTimerStatusInterrupts(FLEXIO_Type *base, uint32_t mask)
Enables the timer status interrupt. The interrupt generates when the corresponding SSF is set.
Note
For multiple timer status interrupt enable, for example, two timer status enable, can calculate the mask by using ((1 << timer index0) | (1 << timer index1))
- Parameters:
base – FlexIO peripheral base address
mask – The timer status mask which can be calculated by (1 << timer index)
-
static inline void FLEXIO_DisableTimerStatusInterrupts(FLEXIO_Type *base, uint32_t mask)
Disables the timer status interrupt. The interrupt won’t generate when the corresponding SSF is set.
Note
For multiple timer status interrupt enable, for example, two timer status enable, can calculate the mask by using ((1 << timer index0) | (1 << timer index1))
- Parameters:
base – FlexIO peripheral base address
mask – The timer status mask which can be calculated by (1 << timer index)
-
static inline uint32_t FLEXIO_GetShifterStatusFlags(FLEXIO_Type *base)
Gets the shifter status flags.
- Parameters:
base – FlexIO peripheral base address
- Returns:
Shifter status flags
-
static inline void FLEXIO_ClearShifterStatusFlags(FLEXIO_Type *base, uint32_t mask)
Clears the shifter status flags.
Note
For clearing multiple shifter status flags, for example, two shifter status flags, can calculate the mask by using ((1 << shifter index0) | (1 << shifter index1))
- Parameters:
base – FlexIO peripheral base address
mask – The shifter status mask which can be calculated by (1 << shifter index)
-
static inline uint32_t FLEXIO_GetShifterErrorFlags(FLEXIO_Type *base)
Gets the shifter error flags.
- Parameters:
base – FlexIO peripheral base address
- Returns:
Shifter error flags
-
static inline void FLEXIO_ClearShifterErrorFlags(FLEXIO_Type *base, uint32_t mask)
Clears the shifter error flags.
Note
For clearing multiple shifter error flags, for example, two shifter error flags, can calculate the mask by using ((1 << shifter index0) | (1 << shifter index1))
- Parameters:
base – FlexIO peripheral base address
mask – The shifter error mask which can be calculated by (1 << shifter index)
-
static inline uint32_t FLEXIO_GetTimerStatusFlags(FLEXIO_Type *base)
Gets the timer status flags.
- Parameters:
base – FlexIO peripheral base address
- Returns:
Timer status flags
-
static inline void FLEXIO_ClearTimerStatusFlags(FLEXIO_Type *base, uint32_t mask)
Clears the timer status flags.
Note
For clearing multiple timer status flags, for example, two timer status flags, can calculate the mask by using ((1 << timer index0) | (1 << timer index1))
- Parameters:
base – FlexIO peripheral base address
mask – The timer status mask which can be calculated by (1 << timer index)
-
static inline void FLEXIO_EnableShifterStatusDMA(FLEXIO_Type *base, uint32_t mask, bool enable)
Enables/disables the shifter status DMA. The DMA request generates when the corresponding SSF is set.
Note
For multiple shifter status DMA enables, for example, calculate the mask by using ((1 << shifter index0) | (1 << shifter index1))
- Parameters:
base – FlexIO peripheral base address
mask – The shifter status mask which can be calculated by (1 << shifter index)
enable – True to enable, false to disable.
-
uint32_t FLEXIO_GetShifterBufferAddress(FLEXIO_Type *base, flexio_shifter_buffer_type_t type, uint8_t index)
Gets the shifter buffer address for the DMA transfer usage.
- Parameters:
base – FlexIO peripheral base address
type – Shifter type of flexio_shifter_buffer_type_t
index – Shifter index
- Returns:
Corresponding shifter buffer index
-
status_t FLEXIO_RegisterHandleIRQ(void *base, void *handle, flexio_isr_t isr)
Registers the handle and the interrupt handler for the FlexIO-simulated peripheral.
- Parameters:
base – Pointer to the FlexIO simulated peripheral type.
handle – Pointer to the handler for FlexIO simulated peripheral.
isr – FlexIO simulated peripheral interrupt handler.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_OutOfRange – The FlexIO type/handle/ISR table out of range.
-
status_t FLEXIO_UnregisterHandleIRQ(void *base)
Unregisters the handle and the interrupt handler for the FlexIO-simulated peripheral.
- Parameters:
base – Pointer to the FlexIO simulated peripheral type.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_OutOfRange – The FlexIO type/handle/ISR table out of range.
-
static inline void FLEXIO_ClearPortOutput(FLEXIO_Type *base, uint32_t mask)
Sets the output level of the multiple FLEXIO pins to the logic 0.
- Parameters:
base – FlexIO peripheral base address
mask – FLEXIO pin number mask
-
static inline void FLEXIO_SetPortOutput(FLEXIO_Type *base, uint32_t mask)
Sets the output level of the multiple FLEXIO pins to the logic 1.
- Parameters:
base – FlexIO peripheral base address
mask – FLEXIO pin number mask
-
static inline void FLEXIO_TogglePortOutput(FLEXIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple FLEXIO pins.
- Parameters:
base – FlexIO peripheral base address
mask – FLEXIO pin number mask
-
static inline void FLEXIO_PinWrite(FLEXIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the FLEXIO pins to the logic 1 or 0.
- Parameters:
base – FlexIO peripheral base address
pin – FLEXIO pin number.
output – FLEXIO pin output logic level.
0: corresponding pin output low-logic level.
1: corresponding pin output high-logic level.
-
static inline void FLEXIO_EnablePinOutput(FLEXIO_Type *base, uint32_t pin)
Enables the FLEXIO output pin function.
- Parameters:
base – FlexIO peripheral base address
pin – FLEXIO pin number.
-
static inline uint32_t FLEXIO_PinRead(FLEXIO_Type *base, uint32_t pin)
Reads the current input value of the FLEXIO pin.
- Parameters:
base – FlexIO peripheral base address
pin – FLEXIO pin number.
- Return values:
FLEXIO – port input value
0: corresponding pin input low-logic level.
1: corresponding pin input high-logic level.
-
static inline uint32_t FLEXIO_GetPinStatus(FLEXIO_Type *base, uint32_t pin)
Gets the FLEXIO input pin status.
- Parameters:
base – FlexIO peripheral base address
pin – FLEXIO pin number.
- Return values:
FLEXIO – port input status
0: corresponding pin input capture no status.
1: corresponding pin input capture rising or falling edge.
-
static inline void FLEXIO_ClearPortStatus(FLEXIO_Type *base, uint32_t mask)
Clears the multiple FLEXIO input pins status.
- Parameters:
base – FlexIO peripheral base address
mask – FLEXIO pin number mask
-
FSL_FLEXIO_DRIVER_VERSION
FlexIO driver version.
-
enum _flexio_timer_trigger_polarity
Define time of timer trigger polarity.
Values:
-
enumerator kFLEXIO_TimerTriggerPolarityActiveHigh
Active high.
-
enumerator kFLEXIO_TimerTriggerPolarityActiveLow
Active low.
-
enumerator kFLEXIO_TimerTriggerPolarityActiveHigh
-
enum _flexio_timer_trigger_source
Define type of timer trigger source.
Values:
-
enumerator kFLEXIO_TimerTriggerSourceExternal
External trigger selected.
-
enumerator kFLEXIO_TimerTriggerSourceInternal
Internal trigger selected.
-
enumerator kFLEXIO_TimerTriggerSourceExternal
-
enum _flexio_pin_config
Define type of timer/shifter pin configuration.
Values:
-
enumerator kFLEXIO_PinConfigOutputDisabled
Pin output disabled.
-
enumerator kFLEXIO_PinConfigOpenDrainOrBidirection
Pin open drain or bidirectional output enable.
-
enumerator kFLEXIO_PinConfigBidirectionOutputData
Pin bidirectional output data.
-
enumerator kFLEXIO_PinConfigOutput
Pin output.
-
enumerator kFLEXIO_PinConfigOutputDisabled
-
enum _flexio_pin_polarity
Definition of pin polarity.
Values:
-
enumerator kFLEXIO_PinActiveHigh
Active high.
-
enumerator kFLEXIO_PinActiveLow
Active low.
-
enumerator kFLEXIO_PinActiveHigh
-
enum _flexio_timer_mode
Define type of timer work mode.
Values:
-
enumerator kFLEXIO_TimerModeDisabled
Timer Disabled.
-
enumerator kFLEXIO_TimerModeDual8BitBaudBit
Dual 8-bit counters baud/bit mode.
-
enumerator kFLEXIO_TimerModeDual8BitPWM
Dual 8-bit counters PWM mode.
-
enumerator kFLEXIO_TimerModeSingle16Bit
Single 16-bit counter mode.
-
enumerator kFLEXIO_TimerModeDisabled
-
enum _flexio_timer_output
Define type of timer initial output or timer reset condition.
Values:
-
enumerator kFLEXIO_TimerOutputOneNotAffectedByReset
Logic one when enabled and is not affected by timer reset.
-
enumerator kFLEXIO_TimerOutputZeroNotAffectedByReset
Logic zero when enabled and is not affected by timer reset.
-
enumerator kFLEXIO_TimerOutputOneAffectedByReset
Logic one when enabled and on timer reset.
-
enumerator kFLEXIO_TimerOutputZeroAffectedByReset
Logic zero when enabled and on timer reset.
-
enumerator kFLEXIO_TimerOutputOneNotAffectedByReset
-
enum _flexio_timer_decrement_source
Define type of timer decrement.
Values:
-
enumerator kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput
Decrement counter on FlexIO clock, Shift clock equals Timer output.
-
enumerator kFLEXIO_TimerDecSrcOnTriggerInputShiftTimerOutput
Decrement counter on Trigger input (both edges), Shift clock equals Timer output.
-
enumerator kFLEXIO_TimerDecSrcOnPinInputShiftPinInput
Decrement counter on Pin input (both edges), Shift clock equals Pin input.
-
enumerator kFLEXIO_TimerDecSrcOnTriggerInputShiftTriggerInput
Decrement counter on Trigger input (both edges), Shift clock equals Trigger input.
-
enumerator kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput
-
enum _flexio_timer_reset_condition
Define type of timer reset condition.
Values:
-
enumerator kFLEXIO_TimerResetNever
Timer never reset.
-
enumerator kFLEXIO_TimerResetOnTimerPinEqualToTimerOutput
Timer reset on Timer Pin equal to Timer Output.
-
enumerator kFLEXIO_TimerResetOnTimerTriggerEqualToTimerOutput
Timer reset on Timer Trigger equal to Timer Output.
-
enumerator kFLEXIO_TimerResetOnTimerPinRisingEdge
Timer reset on Timer Pin rising edge.
-
enumerator kFLEXIO_TimerResetOnTimerTriggerRisingEdge
Timer reset on Trigger rising edge.
-
enumerator kFLEXIO_TimerResetOnTimerTriggerBothEdge
Timer reset on Trigger rising or falling edge.
-
enumerator kFLEXIO_TimerResetNever
-
enum _flexio_timer_disable_condition
Define type of timer disable condition.
Values:
-
enumerator kFLEXIO_TimerDisableNever
Timer never disabled.
-
enumerator kFLEXIO_TimerDisableOnPreTimerDisable
Timer disabled on Timer N-1 disable.
-
enumerator kFLEXIO_TimerDisableOnTimerCompare
Timer disabled on Timer compare.
-
enumerator kFLEXIO_TimerDisableOnTimerCompareTriggerLow
Timer disabled on Timer compare and Trigger Low.
-
enumerator kFLEXIO_TimerDisableOnPinBothEdge
Timer disabled on Pin rising or falling edge.
-
enumerator kFLEXIO_TimerDisableOnPinBothEdgeTriggerHigh
Timer disabled on Pin rising or falling edge provided Trigger is high.
-
enumerator kFLEXIO_TimerDisableOnTriggerFallingEdge
Timer disabled on Trigger falling edge.
-
enumerator kFLEXIO_TimerDisableNever
-
enum _flexio_timer_enable_condition
Define type of timer enable condition.
Values:
-
enumerator kFLEXIO_TimerEnabledAlways
Timer always enabled.
-
enumerator kFLEXIO_TimerEnableOnPrevTimerEnable
Timer enabled on Timer N-1 enable.
-
enumerator kFLEXIO_TimerEnableOnTriggerHigh
Timer enabled on Trigger high.
-
enumerator kFLEXIO_TimerEnableOnTriggerHighPinHigh
Timer enabled on Trigger high and Pin high.
-
enumerator kFLEXIO_TimerEnableOnPinRisingEdge
Timer enabled on Pin rising edge.
-
enumerator kFLEXIO_TimerEnableOnPinRisingEdgeTriggerHigh
Timer enabled on Pin rising edge and Trigger high.
-
enumerator kFLEXIO_TimerEnableOnTriggerRisingEdge
Timer enabled on Trigger rising edge.
-
enumerator kFLEXIO_TimerEnableOnTriggerBothEdge
Timer enabled on Trigger rising or falling edge.
-
enumerator kFLEXIO_TimerEnabledAlways
-
enum _flexio_timer_stop_bit_condition
Define type of timer stop bit generate condition.
Values:
-
enumerator kFLEXIO_TimerStopBitDisabled
Stop bit disabled.
-
enumerator kFLEXIO_TimerStopBitEnableOnTimerCompare
Stop bit is enabled on timer compare.
-
enumerator kFLEXIO_TimerStopBitEnableOnTimerDisable
Stop bit is enabled on timer disable.
-
enumerator kFLEXIO_TimerStopBitEnableOnTimerCompareDisable
Stop bit is enabled on timer compare and timer disable.
-
enumerator kFLEXIO_TimerStopBitDisabled
-
enum _flexio_timer_start_bit_condition
Define type of timer start bit generate condition.
Values:
-
enumerator kFLEXIO_TimerStartBitDisabled
Start bit disabled.
-
enumerator kFLEXIO_TimerStartBitEnabled
Start bit enabled.
-
enumerator kFLEXIO_TimerStartBitDisabled
-
enum _flexio_timer_output_state
FlexIO as PWM channel output state.
Values:
-
enumerator kFLEXIO_PwmLow
The output state of PWM channel is low
-
enumerator kFLEXIO_PwmHigh
The output state of PWM channel is high
-
enumerator kFLEXIO_PwmLow
-
enum _flexio_shifter_timer_polarity
Define type of timer polarity for shifter control.
Values:
-
enumerator kFLEXIO_ShifterTimerPolarityOnPositive
Shift on positive edge of shift clock.
-
enumerator kFLEXIO_ShifterTimerPolarityOnNegitive
Shift on negative edge of shift clock.
-
enumerator kFLEXIO_ShifterTimerPolarityOnPositive
-
enum _flexio_shifter_mode
Define type of shifter working mode.
Values:
-
enumerator kFLEXIO_ShifterDisabled
Shifter is disabled.
-
enumerator kFLEXIO_ShifterModeReceive
Receive mode.
-
enumerator kFLEXIO_ShifterModeTransmit
Transmit mode.
-
enumerator kFLEXIO_ShifterModeMatchStore
Match store mode.
-
enumerator kFLEXIO_ShifterModeMatchContinuous
Match continuous mode.
-
enumerator kFLEXIO_ShifterModeState
SHIFTBUF contents are used for storing programmable state attributes.
-
enumerator kFLEXIO_ShifterModeLogic
SHIFTBUF contents are used for implementing programmable logic look up table.
-
enumerator kFLEXIO_ShifterDisabled
-
enum _flexio_shifter_input_source
Define type of shifter input source.
Values:
-
enumerator kFLEXIO_ShifterInputFromPin
Shifter input from pin.
-
enumerator kFLEXIO_ShifterInputFromNextShifterOutput
Shifter input from Shifter N+1.
-
enumerator kFLEXIO_ShifterInputFromPin
-
enum _flexio_shifter_stop_bit
Define of STOP bit configuration.
Values:
-
enumerator kFLEXIO_ShifterStopBitDisable
Disable shifter stop bit.
-
enumerator kFLEXIO_ShifterStopBitLow
Set shifter stop bit to logic low level.
-
enumerator kFLEXIO_ShifterStopBitHigh
Set shifter stop bit to logic high level.
-
enumerator kFLEXIO_ShifterStopBitDisable
-
enum _flexio_shifter_start_bit
Define type of START bit configuration.
Values:
-
enumerator kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable
Disable shifter start bit, transmitter loads data on enable.
-
enumerator kFLEXIO_ShifterStartBitDisabledLoadDataOnShift
Disable shifter start bit, transmitter loads data on first shift.
-
enumerator kFLEXIO_ShifterStartBitLow
Set shifter start bit to logic low level.
-
enumerator kFLEXIO_ShifterStartBitHigh
Set shifter start bit to logic high level.
-
enumerator kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable
-
enum _flexio_shifter_buffer_type
Define FlexIO shifter buffer type.
Values:
-
enumerator kFLEXIO_ShifterBuffer
Shifter Buffer N Register.
-
enumerator kFLEXIO_ShifterBufferBitSwapped
Shifter Buffer N Bit Byte Swapped Register.
-
enumerator kFLEXIO_ShifterBufferByteSwapped
Shifter Buffer N Byte Swapped Register.
-
enumerator kFLEXIO_ShifterBufferBitByteSwapped
Shifter Buffer N Bit Swapped Register.
-
enumerator kFLEXIO_ShifterBufferNibbleByteSwapped
Shifter Buffer N Nibble Byte Swapped Register.
-
enumerator kFLEXIO_ShifterBufferHalfWordSwapped
Shifter Buffer N Half Word Swapped Register.
-
enumerator kFLEXIO_ShifterBufferNibbleSwapped
Shifter Buffer N Nibble Swapped Register.
-
enumerator kFLEXIO_ShifterBuffer
-
enum _flexio_gpio_direction
FLEXIO gpio direction definition.
Values:
-
enumerator kFLEXIO_DigitalInput
Set current pin as digital input
-
enumerator kFLEXIO_DigitalOutput
Set current pin as digital output
-
enumerator kFLEXIO_DigitalInput
-
enum _flexio_pin_input_config
FLEXIO gpio input config.
Values:
-
enumerator kFLEXIO_InputInterruptDisabled
Interrupt request is disabled.
-
enumerator kFLEXIO_InputInterruptEnable
Interrupt request is enable.
-
enumerator kFLEXIO_FlagRisingEdgeEnable
Input pin flag on rising edge.
-
enumerator kFLEXIO_FlagFallingEdgeEnable
Input pin flag on falling edge.
-
enumerator kFLEXIO_InputInterruptDisabled
-
typedef enum _flexio_timer_trigger_polarity flexio_timer_trigger_polarity_t
Define time of timer trigger polarity.
-
typedef enum _flexio_timer_trigger_source flexio_timer_trigger_source_t
Define type of timer trigger source.
-
typedef enum _flexio_pin_config flexio_pin_config_t
Define type of timer/shifter pin configuration.
-
typedef enum _flexio_pin_polarity flexio_pin_polarity_t
Definition of pin polarity.
-
typedef enum _flexio_timer_mode flexio_timer_mode_t
Define type of timer work mode.
-
typedef enum _flexio_timer_output flexio_timer_output_t
Define type of timer initial output or timer reset condition.
-
typedef enum _flexio_timer_decrement_source flexio_timer_decrement_source_t
Define type of timer decrement.
-
typedef enum _flexio_timer_reset_condition flexio_timer_reset_condition_t
Define type of timer reset condition.
-
typedef enum _flexio_timer_disable_condition flexio_timer_disable_condition_t
Define type of timer disable condition.
-
typedef enum _flexio_timer_enable_condition flexio_timer_enable_condition_t
Define type of timer enable condition.
-
typedef enum _flexio_timer_stop_bit_condition flexio_timer_stop_bit_condition_t
Define type of timer stop bit generate condition.
-
typedef enum _flexio_timer_start_bit_condition flexio_timer_start_bit_condition_t
Define type of timer start bit generate condition.
-
typedef enum _flexio_timer_output_state flexio_timer_output_state_t
FlexIO as PWM channel output state.
-
typedef enum _flexio_shifter_timer_polarity flexio_shifter_timer_polarity_t
Define type of timer polarity for shifter control.
-
typedef enum _flexio_shifter_mode flexio_shifter_mode_t
Define type of shifter working mode.
-
typedef enum _flexio_shifter_input_source flexio_shifter_input_source_t
Define type of shifter input source.
-
typedef enum _flexio_shifter_stop_bit flexio_shifter_stop_bit_t
Define of STOP bit configuration.
-
typedef enum _flexio_shifter_start_bit flexio_shifter_start_bit_t
Define type of START bit configuration.
-
typedef enum _flexio_shifter_buffer_type flexio_shifter_buffer_type_t
Define FlexIO shifter buffer type.
-
typedef struct _flexio_config_ flexio_config_t
Define FlexIO user configuration structure.
-
typedef struct _flexio_timer_config flexio_timer_config_t
Define FlexIO timer configuration structure.
-
typedef struct _flexio_shifter_config flexio_shifter_config_t
Define FlexIO shifter configuration structure.
-
typedef enum _flexio_gpio_direction flexio_gpio_direction_t
FLEXIO gpio direction definition.
-
typedef enum _flexio_pin_input_config flexio_pin_input_config_t
FLEXIO gpio input config.
-
typedef struct _flexio_gpio_config flexio_gpio_config_t
The FLEXIO pin configuration structure.
Each pin can only be configured as either an output pin or an input pin at a time. If configured as an input pin, use inputConfig param. If configured as an output pin, use outputLogic.
-
typedef void (*flexio_isr_t)(void *base, void *handle)
typedef for FlexIO simulated driver interrupt handler.
-
FLEXIO_Type *const s_flexioBases[]
Pointers to flexio bases for each instance.
-
const clock_ip_name_t s_flexioClocks[]
Pointers to flexio clocks for each instance.
-
void FLEXIO_SetPinConfig(FLEXIO_Type *base, uint32_t pin, flexio_gpio_config_t *config)
Configure a FLEXIO pin used by the board.
To Config the FLEXIO PIN, define a pin configuration, as either input or output, in the user file. Then, call the FLEXIO_SetPinConfig() function.
This is an example to define an input pin or an output pin configuration.
Define a digital input pin configuration, flexio_gpio_config_t config = { kFLEXIO_DigitalInput, 0U, kFLEXIO_FlagRisingEdgeEnable | kFLEXIO_InputInterruptEnable, } Define a digital output pin configuration, flexio_gpio_config_t config = { kFLEXIO_DigitalOutput, 0U, 0U }
- Parameters:
base – FlexIO peripheral base address
pin – FLEXIO pin number.
config – FLEXIO pin configuration pointer.
-
FLEXIO_TIMER_TRIGGER_SEL_PININPUT(x)
Calculate FlexIO timer trigger.
-
FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(x)
-
FLEXIO_TIMER_TRIGGER_SEL_TIMn(x)
-
struct _flexio_config_
- #include <fsl_flexio.h>
Define FlexIO user configuration structure.
Public Members
-
bool enableFlexio
Enable/disable FlexIO module
-
bool enableInDoze
Enable/disable FlexIO operation in doze mode
-
bool enableInDebug
Enable/disable FlexIO operation in debug mode
-
bool enableFastAccess
Enable/disable fast access to FlexIO registers, fast access requires the FlexIO clock to be at least twice the frequency of the bus clock.
-
bool enableFlexio
-
struct _flexio_timer_config
- #include <fsl_flexio.h>
Define FlexIO timer configuration structure.
Public Members
-
uint32_t triggerSelect
The internal trigger selection number using MACROs.
-
flexio_timer_trigger_polarity_t triggerPolarity
Trigger Polarity.
-
flexio_timer_trigger_source_t triggerSource
Trigger Source, internal (see ‘trgsel’) or external.
-
flexio_pin_config_t pinConfig
Timer Pin Configuration.
-
uint32_t pinSelect
Timer Pin number Select.
-
flexio_pin_polarity_t pinPolarity
Timer Pin Polarity.
-
flexio_timer_mode_t timerMode
Timer work Mode.
-
flexio_timer_output_t timerOutput
Configures the initial state of the Timer Output and whether it is affected by the Timer reset.
-
flexio_timer_decrement_source_t timerDecrement
Configures the source of the Timer decrement and the source of the Shift clock.
-
flexio_timer_reset_condition_t timerReset
Configures the condition that causes the timer counter (and optionally the timer output) to be reset.
-
flexio_timer_disable_condition_t timerDisable
Configures the condition that causes the Timer to be disabled and stop decrementing.
-
flexio_timer_enable_condition_t timerEnable
Configures the condition that causes the Timer to be enabled and start decrementing.
-
flexio_timer_stop_bit_condition_t timerStop
Timer STOP Bit generation.
-
flexio_timer_start_bit_condition_t timerStart
Timer STRAT Bit generation.
-
uint32_t timerCompare
Value for Timer Compare N Register.
-
uint32_t triggerSelect
-
struct _flexio_shifter_config
- #include <fsl_flexio.h>
Define FlexIO shifter configuration structure.
Public Members
-
uint32_t timerSelect
Selects which Timer is used for controlling the logic/shift register and generating the Shift clock.
-
flexio_shifter_timer_polarity_t timerPolarity
Timer Polarity.
-
flexio_pin_config_t pinConfig
Shifter Pin Configuration.
-
uint32_t pinSelect
Shifter Pin number Select.
-
flexio_pin_polarity_t pinPolarity
Shifter Pin Polarity.
-
flexio_shifter_mode_t shifterMode
Configures the mode of the Shifter.
-
uint32_t parallelWidth
Configures the parallel width when using parallel mode.
-
flexio_shifter_input_source_t inputSource
Selects the input source for the shifter.
-
flexio_shifter_stop_bit_t shifterStop
Shifter STOP bit.
-
flexio_shifter_start_bit_t shifterStart
Shifter START bit.
-
uint32_t timerSelect
-
struct _flexio_gpio_config
- #include <fsl_flexio.h>
The FLEXIO pin configuration structure.
Each pin can only be configured as either an output pin or an input pin at a time. If configured as an input pin, use inputConfig param. If configured as an output pin, use outputLogic.
Public Members
-
flexio_gpio_direction_t pinDirection
FLEXIO pin direction, input or output
-
uint8_t outputLogic
Set a default output logic, which has no use in input
-
uint8_t inputConfig
Set an input config
-
flexio_gpio_direction_t pinDirection
FlexIO eDMA I2S Driver
-
void FLEXIO_I2S_TransferTxCreateHandleEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t *handle, flexio_i2s_edma_callback_t callback, void *userData, edma_handle_t *dmaHandle)
Initializes the FlexIO I2S eDMA handle.
This function initializes the FlexIO I2S master DMA handle which can be used for other FlexIO I2S master transactional APIs. Usually, for a specified FlexIO I2S instance, call this API once to get the initialized handle.
- Parameters:
base – FlexIO I2S peripheral base address.
handle – FlexIO I2S eDMA handle pointer.
callback – FlexIO I2S eDMA callback function called while finished a block.
userData – User parameter for callback.
dmaHandle – eDMA handle for FlexIO I2S. This handle is a static value allocated by users.
-
void FLEXIO_I2S_TransferRxCreateHandleEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t *handle, flexio_i2s_edma_callback_t callback, void *userData, edma_handle_t *dmaHandle)
Initializes the FlexIO I2S Rx eDMA handle.
This function initializes the FlexIO I2S slave DMA handle which can be used for other FlexIO I2S master transactional APIs. Usually, for a specified FlexIO I2S instance, call this API once to get the initialized handle.
- Parameters:
base – FlexIO I2S peripheral base address.
handle – FlexIO I2S eDMA handle pointer.
callback – FlexIO I2S eDMA callback function called while finished a block.
userData – User parameter for callback.
dmaHandle – eDMA handle for FlexIO I2S. This handle is a static value allocated by users.
-
void FLEXIO_I2S_TransferSetFormatEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t *handle, flexio_i2s_format_t *format, uint32_t srcClock_Hz)
Configures the FlexIO I2S Tx audio format.
Audio format can be changed in run-time of FlexIO I2S. This function configures the sample rate and audio data format to be transferred. This function also sets the eDMA parameter according to format.
- Parameters:
base – FlexIO I2S peripheral base address.
handle – FlexIO I2S eDMA handle pointer
format – Pointer to FlexIO I2S audio data format structure.
srcClock_Hz – FlexIO I2S clock source frequency in Hz, it should be 0 while in slave mode.
-
status_t FLEXIO_I2S_TransferSendEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t *handle, flexio_i2s_transfer_t *xfer)
Performs a non-blocking FlexIO I2S transfer using DMA.
Note
This interface returned immediately after transfer initiates. Users should call FLEXIO_I2S_GetTransferStatus to poll the transfer status and check whether the FlexIO I2S transfer is finished.
- Parameters:
base – FlexIO I2S peripheral base address.
handle – FlexIO I2S DMA handle pointer.
xfer – Pointer to DMA transfer structure.
- Return values:
kStatus_Success – Start a FlexIO I2S eDMA send successfully.
kStatus_InvalidArgument – The input arguments is invalid.
kStatus_TxBusy – FlexIO I2S is busy sending data.
-
status_t FLEXIO_I2S_TransferReceiveEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t *handle, flexio_i2s_transfer_t *xfer)
Performs a non-blocking FlexIO I2S receive using eDMA.
Note
This interface returned immediately after transfer initiates. Users should call FLEXIO_I2S_GetReceiveRemainingBytes to poll the transfer status and check whether the FlexIO I2S transfer is finished.
- Parameters:
base – FlexIO I2S peripheral base address.
handle – FlexIO I2S DMA handle pointer.
xfer – Pointer to DMA transfer structure.
- Return values:
kStatus_Success – Start a FlexIO I2S eDMA receive successfully.
kStatus_InvalidArgument – The input arguments is invalid.
kStatus_RxBusy – FlexIO I2S is busy receiving data.
-
void FLEXIO_I2S_TransferAbortSendEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t *handle)
Aborts a FlexIO I2S transfer using eDMA.
- Parameters:
base – FlexIO I2S peripheral base address.
handle – FlexIO I2S DMA handle pointer.
-
void FLEXIO_I2S_TransferAbortReceiveEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t *handle)
Aborts a FlexIO I2S receive using eDMA.
- Parameters:
base – FlexIO I2S peripheral base address.
handle – FlexIO I2S DMA handle pointer.
-
status_t FLEXIO_I2S_TransferGetSendCountEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t *handle, size_t *count)
Gets the remaining bytes to be sent.
- Parameters:
base – FlexIO I2S peripheral base address.
handle – FlexIO I2S DMA handle pointer.
count – Bytes sent.
- Return values:
kStatus_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
status_t FLEXIO_I2S_TransferGetReceiveCountEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t *handle, size_t *count)
Get the remaining bytes to be received.
- Parameters:
base – FlexIO I2S peripheral base address.
handle – FlexIO I2S DMA handle pointer.
count – Bytes received.
- Return values:
kStatus_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
FSL_FLEXIO_I2S_EDMA_DRIVER_VERSION
FlexIO I2S EDMA driver version 2.1.8.
-
typedef struct _flexio_i2s_edma_handle flexio_i2s_edma_handle_t
-
typedef void (*flexio_i2s_edma_callback_t)(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t *handle, status_t status, void *userData)
FlexIO I2S eDMA transfer callback function for finish and error.
-
struct _flexio_i2s_edma_handle
- #include <fsl_flexio_i2s_edma.h>
FlexIO I2S DMA transfer handle, users should not touch the content of the handle.
Public Members
-
edma_handle_t *dmaHandle
DMA handler for FlexIO I2S send
-
uint8_t bytesPerFrame
Bytes in a frame
-
uint8_t nbytes
eDMA minor byte transfer count initially configured.
-
uint32_t state
Internal state for FlexIO I2S eDMA transfer
-
flexio_i2s_edma_callback_t callback
Callback for users while transfer finish or error occurred
-
void *userData
User callback parameter
-
edma_tcd_t tcd[(4U) + 1U]
TCD pool for eDMA transfer.
-
flexio_i2s_transfer_t queue[(4U)]
Transfer queue storing queued transfer.
-
size_t transferSize[(4U)]
Data bytes need to transfer
-
volatile uint8_t queueUser
Index for user to queue transfer.
-
volatile uint8_t queueDriver
Index for driver to get the transfer data and size
-
edma_handle_t *dmaHandle
FlexIO eDMA SPI Driver
-
status_t FLEXIO_SPI_MasterTransferCreateHandleEDMA(FLEXIO_SPI_Type *base, flexio_spi_master_edma_handle_t *handle, flexio_spi_master_edma_transfer_callback_t callback, void *userData, edma_handle_t *txHandle, edma_handle_t *rxHandle)
Initializes the FlexIO SPI master eDMA handle.
This function initializes the FlexIO SPI master eDMA handle which can be used for other FlexIO SPI master transactional APIs. For a specified FlexIO SPI instance, call this API once to get the initialized handle.
- Parameters:
base – Pointer to FLEXIO_SPI_Type structure.
handle – Pointer to flexio_spi_master_edma_handle_t structure to store the transfer state.
callback – SPI callback, NULL means no callback.
userData – callback function parameter.
txHandle – User requested eDMA handle for FlexIO SPI RX eDMA transfer.
rxHandle – User requested eDMA handle for FlexIO SPI TX eDMA transfer.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_OutOfRange – The FlexIO SPI eDMA type/handle table out of range.
-
status_t FLEXIO_SPI_MasterTransferEDMA(FLEXIO_SPI_Type *base, flexio_spi_master_edma_handle_t *handle, flexio_spi_transfer_t *xfer)
Performs a non-blocking FlexIO SPI transfer using eDMA.
Note
This interface returns immediately after transfer initiates. Call FLEXIO_SPI_MasterGetTransferCountEDMA to poll the transfer status and check whether the FlexIO SPI transfer is finished.
- Parameters:
base – Pointer to FLEXIO_SPI_Type structure.
handle – Pointer to flexio_spi_master_edma_handle_t structure to store the transfer state.
xfer – Pointer to FlexIO SPI transfer structure.
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_FLEXIO_SPI_Busy – FlexIO SPI is not idle, is running another transfer.
-
void FLEXIO_SPI_MasterTransferAbortEDMA(FLEXIO_SPI_Type *base, flexio_spi_master_edma_handle_t *handle)
Aborts a FlexIO SPI transfer using eDMA.
- Parameters:
base – Pointer to FLEXIO_SPI_Type structure.
handle – FlexIO SPI eDMA handle pointer.
-
status_t FLEXIO_SPI_MasterTransferGetCountEDMA(FLEXIO_SPI_Type *base, flexio_spi_master_edma_handle_t *handle, size_t *count)
Gets the number of bytes transferred so far using FlexIO SPI master eDMA.
- Parameters:
base – Pointer to FLEXIO_SPI_Type structure.
handle – FlexIO SPI eDMA handle pointer.
count – Number of bytes transferred so far by the non-blocking transaction.
-
static inline void FLEXIO_SPI_SlaveTransferCreateHandleEDMA(FLEXIO_SPI_Type *base, flexio_spi_slave_edma_handle_t *handle, flexio_spi_slave_edma_transfer_callback_t callback, void *userData, edma_handle_t *txHandle, edma_handle_t *rxHandle)
Initializes the FlexIO SPI slave eDMA handle.
This function initializes the FlexIO SPI slave eDMA handle.
- Parameters:
base – Pointer to FLEXIO_SPI_Type structure.
handle – Pointer to flexio_spi_slave_edma_handle_t structure to store the transfer state.
callback – SPI callback, NULL means no callback.
userData – callback function parameter.
txHandle – User requested eDMA handle for FlexIO SPI TX eDMA transfer.
rxHandle – User requested eDMA handle for FlexIO SPI RX eDMA transfer.
-
status_t FLEXIO_SPI_SlaveTransferEDMA(FLEXIO_SPI_Type *base, flexio_spi_slave_edma_handle_t *handle, flexio_spi_transfer_t *xfer)
Performs a non-blocking FlexIO SPI transfer using eDMA.
Note
This interface returns immediately after transfer initiates. Call FLEXIO_SPI_SlaveGetTransferCountEDMA to poll the transfer status and check whether the FlexIO SPI transfer is finished.
- Parameters:
base – Pointer to FLEXIO_SPI_Type structure.
handle – Pointer to flexio_spi_slave_edma_handle_t structure to store the transfer state.
xfer – Pointer to FlexIO SPI transfer structure.
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_FLEXIO_SPI_Busy – FlexIO SPI is not idle, is running another transfer.
-
static inline void FLEXIO_SPI_SlaveTransferAbortEDMA(FLEXIO_SPI_Type *base, flexio_spi_slave_edma_handle_t *handle)
Aborts a FlexIO SPI transfer using eDMA.
- Parameters:
base – Pointer to FLEXIO_SPI_Type structure.
handle – Pointer to flexio_spi_slave_edma_handle_t structure to store the transfer state.
-
static inline status_t FLEXIO_SPI_SlaveTransferGetCountEDMA(FLEXIO_SPI_Type *base, flexio_spi_slave_edma_handle_t *handle, size_t *count)
Gets the number of bytes transferred so far using FlexIO SPI slave eDMA.
- Parameters:
base – Pointer to FLEXIO_SPI_Type structure.
handle – FlexIO SPI eDMA handle pointer.
count – Number of bytes transferred so far by the non-blocking transaction.
-
FSL_FLEXIO_SPI_EDMA_DRIVER_VERSION
FlexIO SPI EDMA driver version.
-
typedef struct _flexio_spi_master_edma_handle flexio_spi_master_edma_handle_t
typedef for flexio_spi_master_edma_handle_t in advance.
-
typedef flexio_spi_master_edma_handle_t flexio_spi_slave_edma_handle_t
Slave handle is the same with master handle.
-
typedef void (*flexio_spi_master_edma_transfer_callback_t)(FLEXIO_SPI_Type *base, flexio_spi_master_edma_handle_t *handle, status_t status, void *userData)
FlexIO SPI master callback for finished transmit.
-
typedef void (*flexio_spi_slave_edma_transfer_callback_t)(FLEXIO_SPI_Type *base, flexio_spi_slave_edma_handle_t *handle, status_t status, void *userData)
FlexIO SPI slave callback for finished transmit.
-
struct _flexio_spi_master_edma_handle
- #include <fsl_flexio_spi_edma.h>
FlexIO SPI eDMA transfer handle, users should not touch the content of the handle.
Public Members
-
size_t transferSize
Total bytes to be transferred.
-
uint8_t nbytes
eDMA minor byte transfer count initially configured.
-
bool txInProgress
Send transfer in progress
-
bool rxInProgress
Receive transfer in progress
-
edma_handle_t *txHandle
DMA handler for SPI send
-
edma_handle_t *rxHandle
DMA handler for SPI receive
-
flexio_spi_master_edma_transfer_callback_t callback
Callback for SPI DMA transfer
-
void *userData
User Data for SPI DMA callback
-
size_t transferSize
FlexIO eDMA UART Driver
-
status_t FLEXIO_UART_TransferCreateHandleEDMA(FLEXIO_UART_Type *base, flexio_uart_edma_handle_t *handle, flexio_uart_edma_transfer_callback_t callback, void *userData, edma_handle_t *txEdmaHandle, edma_handle_t *rxEdmaHandle)
Initializes the UART handle which is used in transactional functions.
- Parameters:
base – Pointer to FLEXIO_UART_Type.
handle – Pointer to flexio_uart_edma_handle_t structure.
callback – The callback function.
userData – The parameter of the callback function.
rxEdmaHandle – User requested DMA handle for RX DMA transfer.
txEdmaHandle – User requested DMA handle for TX DMA transfer.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_OutOfRange – The FlexIO SPI eDMA type/handle table out of range.
-
status_t FLEXIO_UART_TransferSendEDMA(FLEXIO_UART_Type *base, flexio_uart_edma_handle_t *handle, flexio_uart_transfer_t *xfer)
Sends data using eDMA.
This function sends data using eDMA. This is a non-blocking function, which returns right away. When all data is sent out, the send callback function is called.
- Parameters:
base – Pointer to FLEXIO_UART_Type
handle – UART handle pointer.
xfer – UART eDMA transfer structure, see flexio_uart_transfer_t.
- Return values:
kStatus_Success – if succeed, others failed.
kStatus_FLEXIO_UART_TxBusy – Previous transfer on going.
-
status_t FLEXIO_UART_TransferReceiveEDMA(FLEXIO_UART_Type *base, flexio_uart_edma_handle_t *handle, flexio_uart_transfer_t *xfer)
Receives data using eDMA.
This function receives data using eDMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.
- Parameters:
base – Pointer to FLEXIO_UART_Type
handle – Pointer to flexio_uart_edma_handle_t structure
xfer – UART eDMA transfer structure, see flexio_uart_transfer_t.
- Return values:
kStatus_Success – if succeed, others failed.
kStatus_UART_RxBusy – Previous transfer on going.
-
void FLEXIO_UART_TransferAbortSendEDMA(FLEXIO_UART_Type *base, flexio_uart_edma_handle_t *handle)
Aborts the sent data which using eDMA.
This function aborts sent data which using eDMA.
- Parameters:
base – Pointer to FLEXIO_UART_Type
handle – Pointer to flexio_uart_edma_handle_t structure
-
void FLEXIO_UART_TransferAbortReceiveEDMA(FLEXIO_UART_Type *base, flexio_uart_edma_handle_t *handle)
Aborts the receive data which using eDMA.
This function aborts the receive data which using eDMA.
- Parameters:
base – Pointer to FLEXIO_UART_Type
handle – Pointer to flexio_uart_edma_handle_t structure
-
status_t FLEXIO_UART_TransferGetSendCountEDMA(FLEXIO_UART_Type *base, flexio_uart_edma_handle_t *handle, size_t *count)
Gets the number of bytes sent out.
This function gets the number of bytes sent out.
- Parameters:
base – Pointer to FLEXIO_UART_Type
handle – Pointer to flexio_uart_edma_handle_t structure
count – Number of bytes sent so far by the non-blocking transaction.
- Return values:
kStatus_NoTransferInProgress – transfer has finished or no transfer in progress.
kStatus_Success – Successfully return the count.
-
status_t FLEXIO_UART_TransferGetReceiveCountEDMA(FLEXIO_UART_Type *base, flexio_uart_edma_handle_t *handle, size_t *count)
Gets the number of bytes received.
This function gets the number of bytes received.
- Parameters:
base – Pointer to FLEXIO_UART_Type
handle – Pointer to flexio_uart_edma_handle_t structure
count – Number of bytes received so far by the non-blocking transaction.
- Return values:
kStatus_NoTransferInProgress – transfer has finished or no transfer in progress.
kStatus_Success – Successfully return the count.
-
FSL_FLEXIO_UART_EDMA_DRIVER_VERSION
FlexIO UART EDMA driver version.
-
typedef struct _flexio_uart_edma_handle flexio_uart_edma_handle_t
-
typedef void (*flexio_uart_edma_transfer_callback_t)(FLEXIO_UART_Type *base, flexio_uart_edma_handle_t *handle, status_t status, void *userData)
UART transfer callback function.
-
struct _flexio_uart_edma_handle
- #include <fsl_flexio_uart_edma.h>
UART eDMA handle.
Public Members
-
flexio_uart_edma_transfer_callback_t callback
Callback function.
-
void *userData
UART callback function parameter.
-
size_t txDataSizeAll
Total bytes to be sent.
-
size_t rxDataSizeAll
Total bytes to be received.
-
edma_handle_t *txEdmaHandle
The eDMA TX channel used.
-
edma_handle_t *rxEdmaHandle
The eDMA RX channel used.
-
uint8_t nbytes
eDMA minor byte transfer count initially configured.
-
volatile uint8_t txState
TX transfer state.
-
volatile uint8_t rxState
RX transfer state
-
flexio_uart_edma_transfer_callback_t callback
FlexIO I2C Master Driver
-
status_t FLEXIO_I2C_CheckForBusyBus(FLEXIO_I2C_Type *base)
Make sure the bus isn’t already pulled down.
Check the FLEXIO pin status to see whether either of SDA and SCL pin is pulled down.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure..
- Return values:
kStatus_Success –
kStatus_FLEXIO_I2C_Busy –
-
status_t FLEXIO_I2C_MasterInit(FLEXIO_I2C_Type *base, flexio_i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)
Ungates the FlexIO clock, resets the FlexIO module, and configures the FlexIO I2C hardware configuration.
Example
FLEXIO_I2C_Type base = { .flexioBase = FLEXIO, .SDAPinIndex = 0, .SCLPinIndex = 1, .shifterIndex = {0,1}, .timerIndex = {0,1} }; flexio_i2c_master_config_t config = { .enableInDoze = false, .enableInDebug = true, .enableFastAccess = false, .baudRate_Bps = 100000 }; FLEXIO_I2C_MasterInit(base, &config, srcClock_Hz);
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
masterConfig – Pointer to flexio_i2c_master_config_t structure.
srcClock_Hz – FlexIO source clock in Hz.
- Return values:
kStatus_Success – Initialization successful
kStatus_InvalidArgument – The source clock exceed upper range limitation
-
void FLEXIO_I2C_MasterDeinit(FLEXIO_I2C_Type *base)
De-initializes the FlexIO I2C master peripheral. Calling this API Resets the FlexIO I2C master shifer and timer config, module can’t work unless the FLEXIO_I2C_MasterInit is called.
- Parameters:
base – pointer to FLEXIO_I2C_Type structure.
-
void FLEXIO_I2C_MasterGetDefaultConfig(flexio_i2c_master_config_t *masterConfig)
Gets the default configuration to configure the FlexIO module. The configuration can be used directly for calling the FLEXIO_I2C_MasterInit().
Example:
flexio_i2c_master_config_t config; FLEXIO_I2C_MasterGetDefaultConfig(&config);
- Parameters:
masterConfig – Pointer to flexio_i2c_master_config_t structure.
-
static inline void FLEXIO_I2C_MasterEnable(FLEXIO_I2C_Type *base, bool enable)
Enables/disables the FlexIO module operation.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
enable – Pass true to enable module, false does not have any effect.
-
uint32_t FLEXIO_I2C_MasterGetStatusFlags(FLEXIO_I2C_Type *base)
Gets the FlexIO I2C master status flags.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure
- Returns:
Status flag, use status flag to AND _flexio_i2c_master_status_flags can get the related status.
-
void FLEXIO_I2C_MasterClearStatusFlags(FLEXIO_I2C_Type *base, uint32_t mask)
Clears the FlexIO I2C master status flags.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
mask – Status flag. The parameter can be any combination of the following values:
kFLEXIO_I2C_RxFullFlag
kFLEXIO_I2C_ReceiveNakFlag
-
void FLEXIO_I2C_MasterEnableInterrupts(FLEXIO_I2C_Type *base, uint32_t mask)
Enables the FlexIO i2c master interrupt requests.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
mask – Interrupt source. Currently only one interrupt request source:
kFLEXIO_I2C_TransferCompleteInterruptEnable
-
void FLEXIO_I2C_MasterDisableInterrupts(FLEXIO_I2C_Type *base, uint32_t mask)
Disables the FlexIO I2C master interrupt requests.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
mask – Interrupt source.
-
void FLEXIO_I2C_MasterSetBaudRate(FLEXIO_I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the FlexIO I2C master transfer baudrate.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure
baudRate_Bps – the baud rate value in HZ
srcClock_Hz – source clock in HZ
-
void FLEXIO_I2C_MasterStart(FLEXIO_I2C_Type *base, uint8_t address, flexio_i2c_direction_t direction)
Sends START + 7-bit address to the bus.
Note
This API should be called when the transfer configuration is ready to send a START signal and 7-bit address to the bus. This is a non-blocking API, which returns directly after the address is put into the data register but the address transfer is not finished on the bus. Ensure that the kFLEXIO_I2C_RxFullFlag status is asserted before calling this API.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
address – 7-bit address.
direction – transfer direction. This parameter is one of the values in flexio_i2c_direction_t:
kFLEXIO_I2C_Write: Transmit
kFLEXIO_I2C_Read: Receive
-
void FLEXIO_I2C_MasterStop(FLEXIO_I2C_Type *base)
Sends the stop signal on the bus.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
-
void FLEXIO_I2C_MasterRepeatedStart(FLEXIO_I2C_Type *base)
Sends the repeated start signal on the bus.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
-
void FLEXIO_I2C_MasterAbortStop(FLEXIO_I2C_Type *base)
Sends the stop signal when transfer is still on-going.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
-
void FLEXIO_I2C_MasterEnableAck(FLEXIO_I2C_Type *base, bool enable)
Configures the sent ACK/NAK for the following byte.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
enable – True to configure send ACK, false configure to send NAK.
-
status_t FLEXIO_I2C_MasterSetTransferCount(FLEXIO_I2C_Type *base, uint16_t count)
Sets the number of bytes to be transferred from a start signal to a stop signal.
Note
Call this API before a transfer begins because the timer generates a number of clocks according to the number of bytes that need to be transferred.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
count – Number of bytes need to be transferred from a start signal to a re-start/stop signal
- Return values:
kStatus_Success – Successfully configured the count.
kStatus_InvalidArgument – Input argument is invalid.
-
static inline void FLEXIO_I2C_MasterWriteByte(FLEXIO_I2C_Type *base, uint32_t data)
Writes one byte of data to the I2C bus.
Note
This is a non-blocking API, which returns directly after the data is put into the data register but the data transfer is not finished on the bus. Ensure that the TxEmptyFlag is asserted before calling this API.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
data – a byte of data.
-
static inline uint8_t FLEXIO_I2C_MasterReadByte(FLEXIO_I2C_Type *base)
Reads one byte of data from the I2C bus.
Note
This is a non-blocking API, which returns directly after the data is read from the data register. Ensure that the data is ready in the register.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
- Returns:
data byte read.
-
status_t FLEXIO_I2C_MasterWriteBlocking(FLEXIO_I2C_Type *base, const uint8_t *txBuff, uint8_t txSize)
Sends a buffer of data in bytes.
Note
This function blocks via polling until all bytes have been sent.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
txBuff – The data bytes to send.
txSize – The number of data bytes to send.
- Return values:
kStatus_Success – Successfully write data.
kStatus_FLEXIO_I2C_Nak – Receive NAK during writing data.
kStatus_FLEXIO_I2C_Timeout – Timeout polling status flags.
-
status_t FLEXIO_I2C_MasterReadBlocking(FLEXIO_I2C_Type *base, uint8_t *rxBuff, uint8_t rxSize)
Receives a buffer of bytes.
Note
This function blocks via polling until all bytes have been received.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
rxBuff – The buffer to store the received bytes.
rxSize – The number of data bytes to be received.
- Return values:
kStatus_Success – Successfully read data.
kStatus_FLEXIO_I2C_Timeout – Timeout polling status flags.
-
status_t FLEXIO_I2C_MasterTransferBlocking(FLEXIO_I2C_Type *base, flexio_i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.
Note
The API does not return until the transfer succeeds or fails due to receiving NAK.
- Parameters:
base – pointer to FLEXIO_I2C_Type structure.
xfer – pointer to flexio_i2c_master_transfer_t structure.
- Returns:
status of status_t.
-
status_t FLEXIO_I2C_MasterTransferCreateHandle(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle, flexio_i2c_master_transfer_callback_t callback, void *userData)
Initializes the I2C handle which is used in transactional functions.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
handle – Pointer to flexio_i2c_master_handle_t structure to store the transfer state.
callback – Pointer to user callback function.
userData – User param passed to the callback function.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_OutOfRange – The FlexIO type/handle/isr table out of range.
-
status_t FLEXIO_I2C_MasterTransferNonBlocking(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle, flexio_i2c_master_transfer_t *xfer)
Performs a master interrupt non-blocking transfer on the I2C bus.
Note
The API returns immediately after the transfer initiates. Call FLEXIO_I2C_MasterTransferGetCount to poll the transfer status to check whether the transfer is finished. If the return status is not kStatus_FLEXIO_I2C_Busy, the transfer is finished.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure
handle – Pointer to flexio_i2c_master_handle_t structure which stores the transfer state
xfer – pointer to flexio_i2c_master_transfer_t structure
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_FLEXIO_I2C_Busy – FlexIO I2C is not idle, is running another transfer.
-
status_t FLEXIO_I2C_MasterTransferGetCount(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle, size_t *count)
Gets the master transfer status during a interrupt non-blocking transfer.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure.
handle – Pointer to flexio_i2c_master_handle_t structure which stores the transfer state.
count – Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
kStatus_Success – Successfully return the count.
-
void FLEXIO_I2C_MasterTransferAbort(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle)
Aborts an interrupt non-blocking transfer early.
Note
This API can be called at any time when an interrupt non-blocking transfer initiates to abort the transfer early.
- Parameters:
base – Pointer to FLEXIO_I2C_Type structure
handle – Pointer to flexio_i2c_master_handle_t structure which stores the transfer state
-
void FLEXIO_I2C_MasterTransferHandleIRQ(void *i2cType, void *i2cHandle)
Master interrupt handler.
- Parameters:
i2cType – Pointer to FLEXIO_I2C_Type structure
i2cHandle – Pointer to flexio_i2c_master_transfer_t structure
-
FSL_FLEXIO_I2C_MASTER_DRIVER_VERSION
FlexIO I2C transfer status.
Values:
-
enumerator kStatus_FLEXIO_I2C_Busy
I2C is busy doing transfer.
-
enumerator kStatus_FLEXIO_I2C_Idle
I2C is busy doing transfer.
-
enumerator kStatus_FLEXIO_I2C_Nak
NAK received during transfer.
-
enumerator kStatus_FLEXIO_I2C_Timeout
Timeout polling status flags.
-
enumerator kStatus_FLEXIO_I2C_Busy
-
enum _flexio_i2c_master_interrupt
Define FlexIO I2C master interrupt mask.
Values:
-
enumerator kFLEXIO_I2C_TxEmptyInterruptEnable
Tx buffer empty interrupt enable.
-
enumerator kFLEXIO_I2C_RxFullInterruptEnable
Rx buffer full interrupt enable.
-
enumerator kFLEXIO_I2C_TxEmptyInterruptEnable
-
enum _flexio_i2c_master_status_flags
Define FlexIO I2C master status mask.
Values:
-
enumerator kFLEXIO_I2C_TxEmptyFlag
Tx shifter empty flag.
-
enumerator kFLEXIO_I2C_RxFullFlag
Rx shifter full/Transfer complete flag.
-
enumerator kFLEXIO_I2C_ReceiveNakFlag
Receive NAK flag.
-
enumerator kFLEXIO_I2C_TxEmptyFlag
-
enum _flexio_i2c_direction
Direction of master transfer.
Values:
-
enumerator kFLEXIO_I2C_Write
Master send to slave.
-
enumerator kFLEXIO_I2C_Read
Master receive from slave.
-
enumerator kFLEXIO_I2C_Write
-
typedef enum _flexio_i2c_direction flexio_i2c_direction_t
Direction of master transfer.
-
typedef struct _flexio_i2c_type FLEXIO_I2C_Type
Define FlexIO I2C master access structure typedef.
-
typedef struct _flexio_i2c_master_config flexio_i2c_master_config_t
Define FlexIO I2C master user configuration structure.
-
typedef struct _flexio_i2c_master_transfer flexio_i2c_master_transfer_t
Define FlexIO I2C master transfer structure.
-
typedef struct _flexio_i2c_master_handle flexio_i2c_master_handle_t
FlexIO I2C master handle typedef.
-
typedef void (*flexio_i2c_master_transfer_callback_t)(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle, status_t status, void *userData)
FlexIO I2C master transfer callback typedef.
-
I2C_RETRY_TIMES
Retry times for waiting flag.
-
struct _flexio_i2c_type
- #include <fsl_flexio_i2c_master.h>
Define FlexIO I2C master access structure typedef.
Public Members
-
FLEXIO_Type *flexioBase
FlexIO base pointer.
-
uint8_t SDAPinIndex
Pin select for I2C SDA.
-
uint8_t SCLPinIndex
Pin select for I2C SCL.
-
uint8_t shifterIndex[2]
Shifter index used in FlexIO I2C.
-
uint8_t timerIndex[3]
Timer index used in FlexIO I2C.
-
uint32_t baudrate
Master transfer baudrate, used to calculate delay time.
-
FLEXIO_Type *flexioBase
-
struct _flexio_i2c_master_config
- #include <fsl_flexio_i2c_master.h>
Define FlexIO I2C master user configuration structure.
Public Members
-
bool enableMaster
Enables the FlexIO I2C peripheral at initialization time.
-
bool enableInDoze
Enable/disable FlexIO operation in doze mode.
-
bool enableInDebug
Enable/disable FlexIO operation in debug mode.
-
bool enableFastAccess
Enable/disable fast access to FlexIO registers, fast access requires the FlexIO clock to be at least twice the frequency of the bus clock.
-
uint32_t baudRate_Bps
Baud rate in Bps.
-
bool enableMaster
-
struct _flexio_i2c_master_transfer
- #include <fsl_flexio_i2c_master.h>
Define FlexIO I2C master transfer structure.
Public Members
-
uint32_t flags
Transfer flag which controls the transfer, reserved for FlexIO I2C.
-
uint8_t slaveAddress
7-bit slave address.
-
flexio_i2c_direction_t direction
Transfer direction, read or write.
-
uint32_t subaddress
Sub address. Transferred MSB first.
-
uint8_t subaddressSize
Size of command buffer.
-
uint8_t volatile *data
Transfer buffer.
-
volatile size_t dataSize
Transfer size.
-
uint32_t flags
-
struct _flexio_i2c_master_handle
- #include <fsl_flexio_i2c_master.h>
Define FlexIO I2C master handle structure.
Public Members
-
flexio_i2c_master_transfer_t transfer
FlexIO I2C master transfer copy.
-
size_t transferSize
Total bytes to be transferred.
-
uint8_t state
Transfer state maintained during transfer.
-
flexio_i2c_master_transfer_callback_t completionCallback
Callback function called at transfer event. Callback function called at transfer event.
-
void *userData
Callback parameter passed to callback function.
-
bool needRestart
Whether master needs to send re-start signal.
-
flexio_i2c_master_transfer_t transfer
FlexIO I2S Driver
-
void FLEXIO_I2S_Init(FLEXIO_I2S_Type *base, const flexio_i2s_config_t *config)
Initializes the FlexIO I2S.
This API configures FlexIO pins and shifter to I2S and configures the FlexIO I2S with a configuration structure. The configuration structure can be filled by the user, or be set with default values by FLEXIO_I2S_GetDefaultConfig().
Note
This API should be called at the beginning of the application to use the FlexIO I2S driver. Otherwise, any access to the FlexIO I2S module can cause hard fault because the clock is not enabled.
- Parameters:
base – FlexIO I2S base pointer
config – FlexIO I2S configure structure.
-
void FLEXIO_I2S_GetDefaultConfig(flexio_i2s_config_t *config)
Sets the FlexIO I2S configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in FLEXIO_I2S_Init(). Users may use the initialized structure unchanged in FLEXIO_I2S_Init() or modify some fields of the structure before calling FLEXIO_I2S_Init().
- Parameters:
config – pointer to master configuration structure
-
void FLEXIO_I2S_Deinit(FLEXIO_I2S_Type *base)
De-initializes the FlexIO I2S.
Calling this API resets the FlexIO I2S shifter and timer config. After calling this API, call the FLEXO_I2S_Init to use the FlexIO I2S module.
- Parameters:
base – FlexIO I2S base pointer
-
static inline void FLEXIO_I2S_Enable(FLEXIO_I2S_Type *base, bool enable)
Enables/disables the FlexIO I2S module operation.
- Parameters:
base – Pointer to FLEXIO_I2S_Type
enable – True to enable, false dose not have any effect.
-
uint32_t FLEXIO_I2S_GetStatusFlags(FLEXIO_I2S_Type *base)
Gets the FlexIO I2S status flags.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure
- Returns:
Status flag, which are ORed by the enumerators in the _flexio_i2s_status_flags.
-
void FLEXIO_I2S_EnableInterrupts(FLEXIO_I2S_Type *base, uint32_t mask)
Enables the FlexIO I2S interrupt.
This function enables the FlexIO UART interrupt.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure
mask – interrupt source
-
void FLEXIO_I2S_DisableInterrupts(FLEXIO_I2S_Type *base, uint32_t mask)
Disables the FlexIO I2S interrupt.
This function enables the FlexIO UART interrupt.
- Parameters:
base – pointer to FLEXIO_I2S_Type structure
mask – interrupt source
-
static inline void FLEXIO_I2S_TxEnableDMA(FLEXIO_I2S_Type *base, bool enable)
Enables/disables the FlexIO I2S Tx DMA requests.
- Parameters:
base – FlexIO I2S base pointer
enable – True means enable DMA, false means disable DMA.
-
static inline void FLEXIO_I2S_RxEnableDMA(FLEXIO_I2S_Type *base, bool enable)
Enables/disables the FlexIO I2S Rx DMA requests.
- Parameters:
base – FlexIO I2S base pointer
enable – True means enable DMA, false means disable DMA.
-
static inline uint32_t FLEXIO_I2S_TxGetDataRegisterAddress(FLEXIO_I2S_Type *base)
Gets the FlexIO I2S send data register address.
This function returns the I2S data register address, mainly used by DMA/eDMA.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure
- Returns:
FlexIO i2s send data register address.
-
static inline uint32_t FLEXIO_I2S_RxGetDataRegisterAddress(FLEXIO_I2S_Type *base)
Gets the FlexIO I2S receive data register address.
This function returns the I2S data register address, mainly used by DMA/eDMA.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure
- Returns:
FlexIO i2s receive data register address.
-
void FLEXIO_I2S_MasterSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_format_t *format, uint32_t srcClock_Hz)
Configures the FlexIO I2S audio format in master mode.
Audio format can be changed in run-time of FlexIO I2S. This function configures the sample rate and audio data format to be transferred.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure
format – Pointer to FlexIO I2S audio data format structure.
srcClock_Hz – I2S master clock source frequency in Hz.
-
void FLEXIO_I2S_SlaveSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_format_t *format)
Configures the FlexIO I2S audio format in slave mode.
Audio format can be changed in run-time of FlexIO I2S. This function configures the sample rate and audio data format to be transferred.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure
format – Pointer to FlexIO I2S audio data format structure.
-
status_t FLEXIO_I2S_WriteBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *txData, size_t size)
Sends data using a blocking method.
Note
This function blocks via polling until data is ready to be sent.
- Parameters:
base – FlexIO I2S base pointer.
bitWidth – How many bits in a audio word, usually 8/16/24/32 bits.
txData – Pointer to the data to be written.
size – Bytes to be written.
- Return values:
kStatus_Success – Successfully write data.
kStatus_FLEXIO_I2C_Timeout – Timeout polling status flags.
-
static inline void FLEXIO_I2S_WriteData(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint32_t data)
Writes data into a data register.
- Parameters:
base – FlexIO I2S base pointer.
bitWidth – How many bits in a audio word, usually 8/16/24/32 bits.
data – Data to be written.
-
status_t FLEXIO_I2S_ReadBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *rxData, size_t size)
Receives a piece of data using a blocking method.
Note
This function blocks via polling until data is ready to be sent.
- Parameters:
base – FlexIO I2S base pointer
bitWidth – How many bits in a audio word, usually 8/16/24/32 bits.
rxData – Pointer to the data to be read.
size – Bytes to be read.
- Return values:
kStatus_Success – Successfully read data.
kStatus_FLEXIO_I2C_Timeout – Timeout polling status flags.
-
static inline uint32_t FLEXIO_I2S_ReadData(FLEXIO_I2S_Type *base)
Reads a data from the data register.
- Parameters:
base – FlexIO I2S base pointer
- Returns:
Data read from data register.
-
void FLEXIO_I2S_TransferTxCreateHandle(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_callback_t callback, void *userData)
Initializes the FlexIO I2S handle.
This function initializes the FlexIO I2S handle which can be used for other FlexIO I2S transactional APIs. Call this API once to get the initialized handle.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure
handle – Pointer to flexio_i2s_handle_t structure to store the transfer state.
callback – FlexIO I2S callback function, which is called while finished a block.
userData – User parameter for the FlexIO I2S callback.
-
void FLEXIO_I2S_TransferSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_format_t *format, uint32_t srcClock_Hz)
Configures the FlexIO I2S audio format.
Audio format can be changed at run-time of FlexIO I2S. This function configures the sample rate and audio data format to be transferred.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure.
handle – FlexIO I2S handle pointer.
format – Pointer to audio data format structure.
srcClock_Hz – FlexIO I2S bit clock source frequency in Hz. This parameter should be 0 while in slave mode.
-
void FLEXIO_I2S_TransferRxCreateHandle(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_callback_t callback, void *userData)
Initializes the FlexIO I2S receive handle.
This function initializes the FlexIO I2S handle which can be used for other FlexIO I2S transactional APIs. Call this API once to get the initialized handle.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure.
handle – Pointer to flexio_i2s_handle_t structure to store the transfer state.
callback – FlexIO I2S callback function, which is called while finished a block.
userData – User parameter for the FlexIO I2S callback.
-
status_t FLEXIO_I2S_TransferSendNonBlocking(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_transfer_t *xfer)
Performs an interrupt non-blocking send transfer on FlexIO I2S.
Note
The API returns immediately after transfer initiates. Call FLEXIO_I2S_GetRemainingBytes to poll the transfer status and check whether the transfer is finished. If the return status is 0, the transfer is finished.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure.
handle – Pointer to flexio_i2s_handle_t structure which stores the transfer state
xfer – Pointer to flexio_i2s_transfer_t structure
- Return values:
kStatus_Success – Successfully start the data transmission.
kStatus_FLEXIO_I2S_TxBusy – Previous transmission still not finished, data not all written to TX register yet.
kStatus_InvalidArgument – The input parameter is invalid.
-
status_t FLEXIO_I2S_TransferReceiveNonBlocking(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_transfer_t *xfer)
Performs an interrupt non-blocking receive transfer on FlexIO I2S.
Note
The API returns immediately after transfer initiates. Call FLEXIO_I2S_GetRemainingBytes to poll the transfer status to check whether the transfer is finished. If the return status is 0, the transfer is finished.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure.
handle – Pointer to flexio_i2s_handle_t structure which stores the transfer state
xfer – Pointer to flexio_i2s_transfer_t structure
- Return values:
kStatus_Success – Successfully start the data receive.
kStatus_FLEXIO_I2S_RxBusy – Previous receive still not finished.
kStatus_InvalidArgument – The input parameter is invalid.
-
void FLEXIO_I2S_TransferAbortSend(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle)
Aborts the current send.
Note
This API can be called at any time when interrupt non-blocking transfer initiates to abort the transfer in a early time.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure.
handle – Pointer to flexio_i2s_handle_t structure which stores the transfer state
-
void FLEXIO_I2S_TransferAbortReceive(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle)
Aborts the current receive.
Note
This API can be called at any time when interrupt non-blocking transfer initiates to abort the transfer in a early time.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure.
handle – Pointer to flexio_i2s_handle_t structure which stores the transfer state
-
status_t FLEXIO_I2S_TransferGetSendCount(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, size_t *count)
Gets the remaining bytes to be sent.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure.
handle – Pointer to flexio_i2s_handle_t structure which stores the transfer state
count – Bytes sent.
- Return values:
kStatus_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
status_t FLEXIO_I2S_TransferGetReceiveCount(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, size_t *count)
Gets the remaining bytes to be received.
- Parameters:
base – Pointer to FLEXIO_I2S_Type structure.
handle – Pointer to flexio_i2s_handle_t structure which stores the transfer state
count – Bytes recieved.
- Return values:
kStatus_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
- Returns:
count Bytes received.
-
void FLEXIO_I2S_TransferTxHandleIRQ(void *i2sBase, void *i2sHandle)
Tx interrupt handler.
- Parameters:
i2sBase – Pointer to FLEXIO_I2S_Type structure.
i2sHandle – Pointer to flexio_i2s_handle_t structure
-
void FLEXIO_I2S_TransferRxHandleIRQ(void *i2sBase, void *i2sHandle)
Rx interrupt handler.
- Parameters:
i2sBase – Pointer to FLEXIO_I2S_Type structure.
i2sHandle – Pointer to flexio_i2s_handle_t structure.
-
FSL_FLEXIO_I2S_DRIVER_VERSION
FlexIO I2S driver version 2.2.0.
FlexIO I2S transfer status.
Values:
-
enumerator kStatus_FLEXIO_I2S_Idle
FlexIO I2S is in idle state
-
enumerator kStatus_FLEXIO_I2S_TxBusy
FlexIO I2S Tx is busy
-
enumerator kStatus_FLEXIO_I2S_RxBusy
FlexIO I2S Tx is busy
-
enumerator kStatus_FLEXIO_I2S_Error
FlexIO I2S error occurred
-
enumerator kStatus_FLEXIO_I2S_QueueFull
FlexIO I2S transfer queue is full.
-
enumerator kStatus_FLEXIO_I2S_Timeout
FlexIO I2S timeout polling status flags.
-
enumerator kStatus_FLEXIO_I2S_Idle
-
enum _flexio_i2s_master_slave
Master or slave mode.
Values:
-
enumerator kFLEXIO_I2S_Master
Master mode
-
enumerator kFLEXIO_I2S_Slave
Slave mode
-
enumerator kFLEXIO_I2S_Master
_flexio_i2s_interrupt_enable Define FlexIO FlexIO I2S interrupt mask.
Values:
-
enumerator kFLEXIO_I2S_TxDataRegEmptyInterruptEnable
Transmit buffer empty interrupt enable.
-
enumerator kFLEXIO_I2S_RxDataRegFullInterruptEnable
Receive buffer full interrupt enable.
-
enumerator kFLEXIO_I2S_TxDataRegEmptyInterruptEnable
_flexio_i2s_status_flags Define FlexIO FlexIO I2S status mask.
Values:
-
enumerator kFLEXIO_I2S_TxDataRegEmptyFlag
Transmit buffer empty flag.
-
enumerator kFLEXIO_I2S_RxDataRegFullFlag
Receive buffer full flag.
-
enumerator kFLEXIO_I2S_TxDataRegEmptyFlag
-
enum _flexio_i2s_sample_rate
Audio sample rate.
Values:
-
enumerator kFLEXIO_I2S_SampleRate8KHz
Sample rate 8000Hz
-
enumerator kFLEXIO_I2S_SampleRate11025Hz
Sample rate 11025Hz
-
enumerator kFLEXIO_I2S_SampleRate12KHz
Sample rate 12000Hz
-
enumerator kFLEXIO_I2S_SampleRate16KHz
Sample rate 16000Hz
-
enumerator kFLEXIO_I2S_SampleRate22050Hz
Sample rate 22050Hz
-
enumerator kFLEXIO_I2S_SampleRate24KHz
Sample rate 24000Hz
-
enumerator kFLEXIO_I2S_SampleRate32KHz
Sample rate 32000Hz
-
enumerator kFLEXIO_I2S_SampleRate44100Hz
Sample rate 44100Hz
-
enumerator kFLEXIO_I2S_SampleRate48KHz
Sample rate 48000Hz
-
enumerator kFLEXIO_I2S_SampleRate96KHz
Sample rate 96000Hz
-
enumerator kFLEXIO_I2S_SampleRate8KHz
-
enum _flexio_i2s_word_width
Audio word width.
Values:
-
enumerator kFLEXIO_I2S_WordWidth8bits
Audio data width 8 bits
-
enumerator kFLEXIO_I2S_WordWidth16bits
Audio data width 16 bits
-
enumerator kFLEXIO_I2S_WordWidth24bits
Audio data width 24 bits
-
enumerator kFLEXIO_I2S_WordWidth32bits
Audio data width 32 bits
-
enumerator kFLEXIO_I2S_WordWidth8bits
-
typedef struct _flexio_i2s_type FLEXIO_I2S_Type
Define FlexIO I2S access structure typedef.
-
typedef enum _flexio_i2s_master_slave flexio_i2s_master_slave_t
Master or slave mode.
-
typedef struct _flexio_i2s_config flexio_i2s_config_t
FlexIO I2S configure structure.
-
typedef struct _flexio_i2s_format flexio_i2s_format_t
FlexIO I2S audio format, FlexIO I2S only support the same format in Tx and Rx.
-
typedef enum _flexio_i2s_sample_rate flexio_i2s_sample_rate_t
Audio sample rate.
-
typedef enum _flexio_i2s_word_width flexio_i2s_word_width_t
Audio word width.
-
typedef struct _flexio_i2s_transfer flexio_i2s_transfer_t
Define FlexIO I2S transfer structure.
-
typedef struct _flexio_i2s_handle flexio_i2s_handle_t
-
typedef void (*flexio_i2s_callback_t)(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, status_t status, void *userData)
FlexIO I2S xfer callback prototype.
-
I2S_RETRY_TIMES
Retry times for waiting flag.
-
FLEXIO_I2S_XFER_QUEUE_SIZE
FlexIO I2S transfer queue size, user can refine it according to use case.
-
struct _flexio_i2s_type
- #include <fsl_flexio_i2s.h>
Define FlexIO I2S access structure typedef.
Public Members
-
FLEXIO_Type *flexioBase
FlexIO base pointer
-
uint8_t txPinIndex
Tx data pin index in FlexIO pins
-
uint8_t rxPinIndex
Rx data pin index
-
uint8_t bclkPinIndex
Bit clock pin index
-
uint8_t fsPinIndex
Frame sync pin index
-
uint8_t txShifterIndex
Tx data shifter index
-
uint8_t rxShifterIndex
Rx data shifter index
-
uint8_t bclkTimerIndex
Bit clock timer index
-
uint8_t fsTimerIndex
Frame sync timer index
-
FLEXIO_Type *flexioBase
-
struct _flexio_i2s_config
- #include <fsl_flexio_i2s.h>
FlexIO I2S configure structure.
Public Members
-
bool enableI2S
Enable FlexIO I2S
-
flexio_i2s_master_slave_t masterSlave
Master or slave
-
flexio_pin_polarity_t txPinPolarity
Tx data pin polarity, active high or low
-
flexio_pin_polarity_t rxPinPolarity
Rx data pin polarity
-
flexio_pin_polarity_t bclkPinPolarity
Bit clock pin polarity
-
flexio_pin_polarity_t fsPinPolarity
Frame sync pin polarity
-
flexio_shifter_timer_polarity_t txTimerPolarity
Tx data valid on bclk rising or falling edge
-
flexio_shifter_timer_polarity_t rxTimerPolarity
Rx data valid on bclk rising or falling edge
-
bool enableI2S
-
struct _flexio_i2s_format
- #include <fsl_flexio_i2s.h>
FlexIO I2S audio format, FlexIO I2S only support the same format in Tx and Rx.
Public Members
-
uint8_t bitWidth
Bit width of audio data, always 8/16/24/32 bits
-
uint32_t sampleRate_Hz
Sample rate of the audio data
-
uint8_t bitWidth
-
struct _flexio_i2s_transfer
- #include <fsl_flexio_i2s.h>
Define FlexIO I2S transfer structure.
Public Members
-
uint8_t *data
Data buffer start pointer
-
size_t dataSize
Bytes to be transferred.
-
uint8_t *data
-
struct _flexio_i2s_handle
- #include <fsl_flexio_i2s.h>
Define FlexIO I2S handle structure.
Public Members
-
uint32_t state
Internal state
-
flexio_i2s_callback_t callback
Callback function called at transfer event
-
void *userData
Callback parameter passed to callback function
-
uint8_t bitWidth
Bit width for transfer, 8/16/24/32bits
-
flexio_i2s_transfer_t queue[(4U)]
Transfer queue storing queued transfer
-
size_t transferSize[(4U)]
Data bytes need to transfer
-
volatile uint8_t queueUser
Index for user to queue transfer
-
volatile uint8_t queueDriver
Index for driver to get the transfer data and size
-
uint32_t state
FlexIO SPI Driver
-
void FLEXIO_SPI_MasterInit(FLEXIO_SPI_Type *base, flexio_spi_master_config_t *masterConfig, uint32_t srcClock_Hz)
Ungates the FlexIO clock, resets the FlexIO module, configures the FlexIO SPI master hardware, and configures the FlexIO SPI with FlexIO SPI master configuration. The configuration structure can be filled by the user, or be set with default values by the FLEXIO_SPI_MasterGetDefaultConfig().
Example
FLEXIO_SPI_Type spiDev = { .flexioBase = FLEXIO, .SDOPinIndex = 0, .SDIPinIndex = 1, .SCKPinIndex = 2, .CSnPinIndex = 3, .shifterIndex = {0,1}, .timerIndex = {0,1} }; flexio_spi_master_config_t config = { .enableMaster = true, .enableInDoze = false, .enableInDebug = true, .enableFastAccess = false, .baudRate_Bps = 500000, .phase = kFLEXIO_SPI_ClockPhaseFirstEdge, .direction = kFLEXIO_SPI_MsbFirst, .dataMode = kFLEXIO_SPI_8BitMode }; FLEXIO_SPI_MasterInit(&spiDev, &config, srcClock_Hz);
Note
1.FlexIO SPI master only support CPOL = 0, which means clock inactive low. 2.For FlexIO SPI master, the input valid time is 1.5 clock cycles, for slave the output valid time is 2.5 clock cycles. So if FlexIO SPI master communicates with other spi IPs, the maximum baud rate is FlexIO clock frequency divided by 2*2=4. If FlexIO SPI master communicates with FlexIO SPI slave, the maximum baud rate is FlexIO clock frequency divided by (1.5+2.5)*2=8.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
masterConfig – Pointer to the flexio_spi_master_config_t structure.
srcClock_Hz – FlexIO source clock in Hz.
-
void FLEXIO_SPI_MasterDeinit(FLEXIO_SPI_Type *base)
Resets the FlexIO SPI timer and shifter config.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type.
-
void FLEXIO_SPI_MasterGetDefaultConfig(flexio_spi_master_config_t *masterConfig)
Gets the default configuration to configure the FlexIO SPI master. The configuration can be used directly by calling the FLEXIO_SPI_MasterConfigure(). Example:
flexio_spi_master_config_t masterConfig; FLEXIO_SPI_MasterGetDefaultConfig(&masterConfig);
- Parameters:
masterConfig – Pointer to the flexio_spi_master_config_t structure.
-
void FLEXIO_SPI_SlaveInit(FLEXIO_SPI_Type *base, flexio_spi_slave_config_t *slaveConfig)
Ungates the FlexIO clock, resets the FlexIO module, configures the FlexIO SPI slave hardware configuration, and configures the FlexIO SPI with FlexIO SPI slave configuration. The configuration structure can be filled by the user, or be set with default values by the FLEXIO_SPI_SlaveGetDefaultConfig().
Note
1.Only one timer is needed in the FlexIO SPI slave. As a result, the second timer index is ignored. 2.FlexIO SPI slave only support CPOL = 0, which means clock inactive low. 3.For FlexIO SPI master, the input valid time is 1.5 clock cycles, for slave the output valid time is 2.5 clock cycles. So if FlexIO SPI slave communicates with other spi IPs, the maximum baud rate is FlexIO clock frequency divided by 3*2=6. If FlexIO SPI slave communicates with FlexIO SPI master, the maximum baud rate is FlexIO clock frequency divided by (1.5+2.5)*2=8. Example
FLEXIO_SPI_Type spiDev = { .flexioBase = FLEXIO, .SDOPinIndex = 0, .SDIPinIndex = 1, .SCKPinIndex = 2, .CSnPinIndex = 3, .shifterIndex = {0,1}, .timerIndex = {0} }; flexio_spi_slave_config_t config = { .enableSlave = true, .enableInDoze = false, .enableInDebug = true, .enableFastAccess = false, .phase = kFLEXIO_SPI_ClockPhaseFirstEdge, .direction = kFLEXIO_SPI_MsbFirst, .dataMode = kFLEXIO_SPI_8BitMode }; FLEXIO_SPI_SlaveInit(&spiDev, &config);
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
slaveConfig – Pointer to the flexio_spi_slave_config_t structure.
-
void FLEXIO_SPI_SlaveDeinit(FLEXIO_SPI_Type *base)
Gates the FlexIO clock.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type.
-
void FLEXIO_SPI_SlaveGetDefaultConfig(flexio_spi_slave_config_t *slaveConfig)
Gets the default configuration to configure the FlexIO SPI slave. The configuration can be used directly for calling the FLEXIO_SPI_SlaveConfigure(). Example:
flexio_spi_slave_config_t slaveConfig; FLEXIO_SPI_SlaveGetDefaultConfig(&slaveConfig);
- Parameters:
slaveConfig – Pointer to the flexio_spi_slave_config_t structure.
-
uint32_t FLEXIO_SPI_GetStatusFlags(FLEXIO_SPI_Type *base)
Gets FlexIO SPI status flags.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
- Returns:
status flag; Use the status flag to AND the following flag mask and get the status.
kFLEXIO_SPI_TxEmptyFlag
kFLEXIO_SPI_RxEmptyFlag
-
void FLEXIO_SPI_ClearStatusFlags(FLEXIO_SPI_Type *base, uint32_t mask)
Clears FlexIO SPI status flags.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
mask – status flag The parameter can be any combination of the following values:
kFLEXIO_SPI_TxEmptyFlag
kFLEXIO_SPI_RxEmptyFlag
-
void FLEXIO_SPI_EnableInterrupts(FLEXIO_SPI_Type *base, uint32_t mask)
Enables the FlexIO SPI interrupt.
This function enables the FlexIO SPI interrupt.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
mask – interrupt source. The parameter can be any combination of the following values:
kFLEXIO_SPI_RxFullInterruptEnable
kFLEXIO_SPI_TxEmptyInterruptEnable
-
void FLEXIO_SPI_DisableInterrupts(FLEXIO_SPI_Type *base, uint32_t mask)
Disables the FlexIO SPI interrupt.
This function disables the FlexIO SPI interrupt.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
mask – interrupt source The parameter can be any combination of the following values:
kFLEXIO_SPI_RxFullInterruptEnable
kFLEXIO_SPI_TxEmptyInterruptEnable
-
void FLEXIO_SPI_EnableDMA(FLEXIO_SPI_Type *base, uint32_t mask, bool enable)
Enables/disables the FlexIO SPI transmit DMA. This function enables/disables the FlexIO SPI Tx DMA, which means that asserting the kFLEXIO_SPI_TxEmptyFlag does/doesn’t trigger the DMA request.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
mask – SPI DMA source.
enable – True means enable DMA, false means disable DMA.
-
static inline uint32_t FLEXIO_SPI_GetTxDataRegisterAddress(FLEXIO_SPI_Type *base, flexio_spi_shift_direction_t direction)
Gets the FlexIO SPI transmit data register address for MSB first transfer.
This function returns the SPI data register address, which is mainly used by DMA/eDMA.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
direction – Shift direction of MSB first or LSB first.
- Returns:
FlexIO SPI transmit data register address.
-
static inline uint32_t FLEXIO_SPI_GetRxDataRegisterAddress(FLEXIO_SPI_Type *base, flexio_spi_shift_direction_t direction)
Gets the FlexIO SPI receive data register address for the MSB first transfer.
This function returns the SPI data register address, which is mainly used by DMA/eDMA.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
direction – Shift direction of MSB first or LSB first.
- Returns:
FlexIO SPI receive data register address.
-
static inline void FLEXIO_SPI_Enable(FLEXIO_SPI_Type *base, bool enable)
Enables/disables the FlexIO SPI module operation.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type.
enable – True to enable, false does not have any effect.
-
void FLEXIO_SPI_MasterSetBaudRate(FLEXIO_SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClockHz)
Sets baud rate for the FlexIO SPI transfer, which is only used for the master.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
baudRate_Bps – Baud Rate needed in Hz.
srcClockHz – SPI source clock frequency in Hz.
-
static inline void FLEXIO_SPI_WriteData(FLEXIO_SPI_Type *base, flexio_spi_shift_direction_t direction, uint32_t data)
Writes one byte of data, which is sent using the MSB method.
Note
This is a non-blocking API, which returns directly after the data is put into the data register but the data transfer is not finished on the bus. Ensure that the TxEmptyFlag is asserted before calling this API.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
direction – Shift direction of MSB first or LSB first.
data – 8/16/32 bit data.
-
static inline uint32_t FLEXIO_SPI_ReadData(FLEXIO_SPI_Type *base, flexio_spi_shift_direction_t direction)
Reads 8 bit/16 bit data.
Note
This is a non-blocking API, which returns directly after the data is read from the data register. Ensure that the RxFullFlag is asserted before calling this API.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
direction – Shift direction of MSB first or LSB first.
- Returns:
8 bit/16 bit data received.
-
status_t FLEXIO_SPI_WriteBlocking(FLEXIO_SPI_Type *base, flexio_spi_shift_direction_t direction, const uint8_t *buffer, size_t size)
Sends a buffer of data bytes.
Note
This function blocks using the polling method until all bytes have been sent.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
direction – Shift direction of MSB first or LSB first.
buffer – The data bytes to send.
size – The number of data bytes to send.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_FLEXIO_SPI_Timeout – The transfer timed out and was aborted.
-
status_t FLEXIO_SPI_ReadBlocking(FLEXIO_SPI_Type *base, flexio_spi_shift_direction_t direction, uint8_t *buffer, size_t size)
Receives a buffer of bytes.
Note
This function blocks using the polling method until all bytes have been received.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
direction – Shift direction of MSB first or LSB first.
buffer – The buffer to store the received bytes.
size – The number of data bytes to be received.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_FLEXIO_SPI_Timeout – The transfer timed out and was aborted.
-
status_t FLEXIO_SPI_MasterTransferBlocking(FLEXIO_SPI_Type *base, flexio_spi_transfer_t *xfer)
Receives a buffer of bytes.
Note
This function blocks via polling until all bytes have been received.
- Parameters:
base – pointer to FLEXIO_SPI_Type structure
xfer – FlexIO SPI transfer structure, see flexio_spi_transfer_t.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_FLEXIO_SPI_Timeout – The transfer timed out and was aborted.
-
void FLEXIO_SPI_FlushShifters(FLEXIO_SPI_Type *base)
Flush tx/rx shifters.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
-
status_t FLEXIO_SPI_MasterTransferCreateHandle(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle, flexio_spi_master_transfer_callback_t callback, void *userData)
Initializes the FlexIO SPI Master handle, which is used in transactional functions.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
handle – Pointer to the flexio_spi_master_handle_t structure to store the transfer state.
callback – The callback function.
userData – The parameter of the callback function.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_OutOfRange – The FlexIO type/handle/ISR table out of range.
-
status_t FLEXIO_SPI_MasterTransferNonBlocking(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle, flexio_spi_transfer_t *xfer)
Master transfer data using IRQ.
This function sends data using IRQ. This is a non-blocking function, which returns right away. When all data is sent out/received, the callback function is called.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
handle – Pointer to the flexio_spi_master_handle_t structure to store the transfer state.
xfer – FlexIO SPI transfer structure. See flexio_spi_transfer_t.
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_FLEXIO_SPI_Busy – SPI is not idle, is running another transfer.
-
void FLEXIO_SPI_MasterTransferAbort(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle)
Aborts the master data transfer, which used IRQ.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
handle – Pointer to the flexio_spi_master_handle_t structure to store the transfer state.
-
status_t FLEXIO_SPI_MasterTransferGetCount(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle, size_t *count)
Gets the data transfer status which used IRQ.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
handle – Pointer to the flexio_spi_master_handle_t structure to store the transfer state.
count – Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
void FLEXIO_SPI_MasterTransferHandleIRQ(void *spiType, void *spiHandle)
FlexIO SPI master IRQ handler function.
- Parameters:
spiType – Pointer to the FLEXIO_SPI_Type structure.
spiHandle – Pointer to the flexio_spi_master_handle_t structure to store the transfer state.
-
status_t FLEXIO_SPI_SlaveTransferCreateHandle(FLEXIO_SPI_Type *base, flexio_spi_slave_handle_t *handle, flexio_spi_slave_transfer_callback_t callback, void *userData)
Initializes the FlexIO SPI Slave handle, which is used in transactional functions.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
handle – Pointer to the flexio_spi_slave_handle_t structure to store the transfer state.
callback – The callback function.
userData – The parameter of the callback function.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_OutOfRange – The FlexIO type/handle/ISR table out of range.
-
status_t FLEXIO_SPI_SlaveTransferNonBlocking(FLEXIO_SPI_Type *base, flexio_spi_slave_handle_t *handle, flexio_spi_transfer_t *xfer)
Slave transfer data using IRQ.
This function sends data using IRQ. This is a non-blocking function, which returns right away. When all data is sent out/received, the callback function is called.
- Parameters:
handle – Pointer to the flexio_spi_slave_handle_t structure to store the transfer state.
base – Pointer to the FLEXIO_SPI_Type structure.
xfer – FlexIO SPI transfer structure. See flexio_spi_transfer_t.
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_FLEXIO_SPI_Busy – SPI is not idle; it is running another transfer.
-
static inline void FLEXIO_SPI_SlaveTransferAbort(FLEXIO_SPI_Type *base, flexio_spi_slave_handle_t *handle)
Aborts the slave data transfer which used IRQ, share same API with master.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
handle – Pointer to the flexio_spi_slave_handle_t structure to store the transfer state.
-
static inline status_t FLEXIO_SPI_SlaveTransferGetCount(FLEXIO_SPI_Type *base, flexio_spi_slave_handle_t *handle, size_t *count)
Gets the data transfer status which used IRQ, share same API with master.
- Parameters:
base – Pointer to the FLEXIO_SPI_Type structure.
handle – Pointer to the flexio_spi_slave_handle_t structure to store the transfer state.
count – Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
void FLEXIO_SPI_SlaveTransferHandleIRQ(void *spiType, void *spiHandle)
FlexIO SPI slave IRQ handler function.
- Parameters:
spiType – Pointer to the FLEXIO_SPI_Type structure.
spiHandle – Pointer to the flexio_spi_slave_handle_t structure to store the transfer state.
-
FSL_FLEXIO_SPI_DRIVER_VERSION
FlexIO SPI driver version.
Error codes for the FlexIO SPI driver.
Values:
-
enumerator kStatus_FLEXIO_SPI_Busy
FlexIO SPI is busy.
-
enumerator kStatus_FLEXIO_SPI_Idle
SPI is idle
-
enumerator kStatus_FLEXIO_SPI_Error
FlexIO SPI error.
-
enumerator kStatus_FLEXIO_SPI_Timeout
FlexIO SPI timeout polling status flags.
-
enumerator kStatus_FLEXIO_SPI_Busy
-
enum _flexio_spi_clock_phase
FlexIO SPI clock phase configuration.
Values:
-
enumerator kFLEXIO_SPI_ClockPhaseFirstEdge
First edge on SPSCK occurs at the middle of the first cycle of a data transfer.
-
enumerator kFLEXIO_SPI_ClockPhaseSecondEdge
First edge on SPSCK occurs at the start of the first cycle of a data transfer.
-
enumerator kFLEXIO_SPI_ClockPhaseFirstEdge
-
enum _flexio_spi_shift_direction
FlexIO SPI data shifter direction options.
Values:
-
enumerator kFLEXIO_SPI_MsbFirst
Data transfers start with most significant bit.
-
enumerator kFLEXIO_SPI_LsbFirst
Data transfers start with least significant bit.
-
enumerator kFLEXIO_SPI_MsbFirst
-
enum _flexio_spi_data_bitcount_mode
FlexIO SPI data length mode options.
Values:
-
enumerator kFLEXIO_SPI_8BitMode
8-bit data transmission mode.
-
enumerator kFLEXIO_SPI_16BitMode
16-bit data transmission mode.
-
enumerator kFLEXIO_SPI_32BitMode
32-bit data transmission mode.
-
enumerator kFLEXIO_SPI_8BitMode
-
enum _flexio_spi_interrupt_enable
Define FlexIO SPI interrupt mask.
Values:
-
enumerator kFLEXIO_SPI_TxEmptyInterruptEnable
Transmit buffer empty interrupt enable.
-
enumerator kFLEXIO_SPI_RxFullInterruptEnable
Receive buffer full interrupt enable.
-
enumerator kFLEXIO_SPI_TxEmptyInterruptEnable
-
enum _flexio_spi_status_flags
Define FlexIO SPI status mask.
Values:
-
enumerator kFLEXIO_SPI_TxBufferEmptyFlag
Transmit buffer empty flag.
-
enumerator kFLEXIO_SPI_RxBufferFullFlag
Receive buffer full flag.
-
enumerator kFLEXIO_SPI_TxBufferEmptyFlag
-
enum _flexio_spi_dma_enable
Define FlexIO SPI DMA mask.
Values:
-
enumerator kFLEXIO_SPI_TxDmaEnable
Tx DMA request source
-
enumerator kFLEXIO_SPI_RxDmaEnable
Rx DMA request source
-
enumerator kFLEXIO_SPI_DmaAllEnable
All DMA request source
-
enumerator kFLEXIO_SPI_TxDmaEnable
-
enum _flexio_spi_transfer_flags
Define FlexIO SPI transfer flags.
Note
Use kFLEXIO_SPI_csContinuous and one of the other flags to OR together to form the transfer flag.
Values:
-
enumerator kFLEXIO_SPI_8bitMsb
FlexIO SPI 8-bit MSB first
-
enumerator kFLEXIO_SPI_8bitLsb
FlexIO SPI 8-bit LSB first
-
enumerator kFLEXIO_SPI_16bitMsb
FlexIO SPI 16-bit MSB first
-
enumerator kFLEXIO_SPI_16bitLsb
FlexIO SPI 16-bit LSB first
-
enumerator kFLEXIO_SPI_32bitMsb
FlexIO SPI 32-bit MSB first
-
enumerator kFLEXIO_SPI_32bitLsb
FlexIO SPI 32-bit LSB first
-
enumerator kFLEXIO_SPI_csContinuous
Enable the CS signal continuous mode
-
enumerator kFLEXIO_SPI_8bitMsb
-
typedef enum _flexio_spi_clock_phase flexio_spi_clock_phase_t
FlexIO SPI clock phase configuration.
-
typedef enum _flexio_spi_shift_direction flexio_spi_shift_direction_t
FlexIO SPI data shifter direction options.
-
typedef enum _flexio_spi_data_bitcount_mode flexio_spi_data_bitcount_mode_t
FlexIO SPI data length mode options.
-
typedef struct _flexio_spi_type FLEXIO_SPI_Type
Define FlexIO SPI access structure typedef.
-
typedef struct _flexio_spi_master_config flexio_spi_master_config_t
Define FlexIO SPI master configuration structure.
-
typedef struct _flexio_spi_slave_config flexio_spi_slave_config_t
Define FlexIO SPI slave configuration structure.
-
typedef struct _flexio_spi_transfer flexio_spi_transfer_t
Define FlexIO SPI transfer structure.
-
typedef struct _flexio_spi_master_handle flexio_spi_master_handle_t
typedef for flexio_spi_master_handle_t in advance.
-
typedef flexio_spi_master_handle_t flexio_spi_slave_handle_t
Slave handle is the same with master handle.
-
typedef void (*flexio_spi_master_transfer_callback_t)(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle, status_t status, void *userData)
FlexIO SPI master callback for finished transmit.
-
typedef void (*flexio_spi_slave_transfer_callback_t)(FLEXIO_SPI_Type *base, flexio_spi_slave_handle_t *handle, status_t status, void *userData)
FlexIO SPI slave callback for finished transmit.
-
FLEXIO_SPI_DUMMYDATA
FlexIO SPI dummy transfer data, the data is sent while txData is NULL.
-
SPI_RETRY_TIMES
Retry times for waiting flag.
-
FLEXIO_SPI_XFER_DATA_FORMAT(flag)
Get the transfer data format of width and bit order.
-
struct _flexio_spi_type
- #include <fsl_flexio_spi.h>
Define FlexIO SPI access structure typedef.
Public Members
-
FLEXIO_Type *flexioBase
FlexIO base pointer.
-
uint8_t SDOPinIndex
Pin select for data output. To set SDO pin in Hi-Z state, user needs to mux the pin as GPIO input and disable all pull up/down in application.
-
uint8_t SDIPinIndex
Pin select for data input.
-
uint8_t SCKPinIndex
Pin select for clock.
-
uint8_t CSnPinIndex
Pin select for enable.
-
uint8_t shifterIndex[2]
Shifter index used in FlexIO SPI.
-
uint8_t timerIndex[2]
Timer index used in FlexIO SPI.
-
FLEXIO_Type *flexioBase
-
struct _flexio_spi_master_config
- #include <fsl_flexio_spi.h>
Define FlexIO SPI master configuration structure.
Public Members
-
bool enableMaster
Enable/disable FlexIO SPI master after configuration.
-
bool enableInDoze
Enable/disable FlexIO operation in doze mode.
-
bool enableInDebug
Enable/disable FlexIO operation in debug mode.
-
bool enableFastAccess
Enable/disable fast access to FlexIO registers, fast access requires the FlexIO clock to be at least twice the frequency of the bus clock.
-
uint32_t baudRate_Bps
Baud rate in Bps.
-
flexio_spi_clock_phase_t phase
Clock phase.
-
flexio_spi_data_bitcount_mode_t dataMode
8bit or 16bit mode.
-
bool enableMaster
-
struct _flexio_spi_slave_config
- #include <fsl_flexio_spi.h>
Define FlexIO SPI slave configuration structure.
Public Members
-
bool enableSlave
Enable/disable FlexIO SPI slave after configuration.
-
bool enableInDoze
Enable/disable FlexIO operation in doze mode.
-
bool enableInDebug
Enable/disable FlexIO operation in debug mode.
-
bool enableFastAccess
Enable/disable fast access to FlexIO registers, fast access requires the FlexIO clock to be at least twice the frequency of the bus clock.
-
flexio_spi_clock_phase_t phase
Clock phase.
-
flexio_spi_data_bitcount_mode_t dataMode
8bit or 16bit mode.
-
bool enableSlave
-
struct _flexio_spi_transfer
- #include <fsl_flexio_spi.h>
Define FlexIO SPI transfer structure.
Public Members
-
const uint8_t *txData
Send buffer.
-
uint8_t *rxData
Receive buffer.
-
size_t dataSize
Transfer bytes.
-
uint8_t flags
FlexIO SPI control flag, MSB first or LSB first.
-
const uint8_t *txData
-
struct _flexio_spi_master_handle
- #include <fsl_flexio_spi.h>
Define FlexIO SPI handle structure.
Public Members
-
const uint8_t *txData
Transfer buffer.
-
uint8_t *rxData
Receive buffer.
-
size_t transferSize
Total bytes to be transferred.
-
volatile size_t txRemainingBytes
Send data remaining in bytes.
-
volatile size_t rxRemainingBytes
Receive data remaining in bytes.
-
volatile uint32_t state
FlexIO SPI internal state.
-
uint8_t bytePerFrame
SPI mode, 2bytes or 1byte in a frame
-
flexio_spi_shift_direction_t direction
Shift direction.
-
flexio_spi_master_transfer_callback_t callback
FlexIO SPI callback.
-
void *userData
Callback parameter.
-
const uint8_t *txData
FlexIO UART Driver
-
status_t FLEXIO_UART_Init(FLEXIO_UART_Type *base, const flexio_uart_config_t *userConfig, uint32_t srcClock_Hz)
Ungates the FlexIO clock, resets the FlexIO module, configures FlexIO UART hardware, and configures the FlexIO UART with FlexIO UART configuration. The configuration structure can be filled by the user or be set with default values by FLEXIO_UART_GetDefaultConfig().
Example
FLEXIO_UART_Type base = { .flexioBase = FLEXIO, .TxPinIndex = 0, .RxPinIndex = 1, .shifterIndex = {0,1}, .timerIndex = {0,1} }; flexio_uart_config_t config = { .enableInDoze = false, .enableInDebug = true, .enableFastAccess = false, .baudRate_Bps = 115200U, .bitCountPerChar = 8 }; FLEXIO_UART_Init(base, &config, srcClock_Hz);
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
userConfig – Pointer to the flexio_uart_config_t structure.
srcClock_Hz – FlexIO source clock in Hz.
- Return values:
kStatus_Success – Configuration success.
kStatus_FLEXIO_UART_BaudrateNotSupport – Baudrate is not supported for current clock source frequency.
-
void FLEXIO_UART_Deinit(FLEXIO_UART_Type *base)
Resets the FlexIO UART shifter and timer config.
Note
After calling this API, call the FLEXO_UART_Init to use the FlexIO UART module.
- Parameters:
base – Pointer to FLEXIO_UART_Type structure
-
void FLEXIO_UART_GetDefaultConfig(flexio_uart_config_t *userConfig)
Gets the default configuration to configure the FlexIO UART. The configuration can be used directly for calling the FLEXIO_UART_Init(). Example:
flexio_uart_config_t config; FLEXIO_UART_GetDefaultConfig(&userConfig);
- Parameters:
userConfig – Pointer to the flexio_uart_config_t structure.
-
uint32_t FLEXIO_UART_GetStatusFlags(FLEXIO_UART_Type *base)
Gets the FlexIO UART status flags.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
- Returns:
FlexIO UART status flags.
-
void FLEXIO_UART_ClearStatusFlags(FLEXIO_UART_Type *base, uint32_t mask)
Gets the FlexIO UART status flags.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
mask – Status flag. The parameter can be any combination of the following values:
kFLEXIO_UART_TxDataRegEmptyFlag
kFLEXIO_UART_RxEmptyFlag
kFLEXIO_UART_RxOverRunFlag
-
void FLEXIO_UART_EnableInterrupts(FLEXIO_UART_Type *base, uint32_t mask)
Enables the FlexIO UART interrupt.
This function enables the FlexIO UART interrupt.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
mask – Interrupt source.
-
void FLEXIO_UART_DisableInterrupts(FLEXIO_UART_Type *base, uint32_t mask)
Disables the FlexIO UART interrupt.
This function disables the FlexIO UART interrupt.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
mask – Interrupt source.
-
static inline uint32_t FLEXIO_UART_GetTxDataRegisterAddress(FLEXIO_UART_Type *base)
Gets the FlexIO UARt transmit data register address.
This function returns the UART data register address, which is mainly used by DMA/eDMA.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
- Returns:
FlexIO UART transmit data register address.
-
static inline uint32_t FLEXIO_UART_GetRxDataRegisterAddress(FLEXIO_UART_Type *base)
Gets the FlexIO UART receive data register address.
This function returns the UART data register address, which is mainly used by DMA/eDMA.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
- Returns:
FlexIO UART receive data register address.
-
static inline void FLEXIO_UART_EnableTxDMA(FLEXIO_UART_Type *base, bool enable)
Enables/disables the FlexIO UART transmit DMA. This function enables/disables the FlexIO UART Tx DMA, which means asserting the kFLEXIO_UART_TxDataRegEmptyFlag does/doesn’t trigger the DMA request.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
enable – True to enable, false to disable.
-
static inline void FLEXIO_UART_EnableRxDMA(FLEXIO_UART_Type *base, bool enable)
Enables/disables the FlexIO UART receive DMA. This function enables/disables the FlexIO UART Rx DMA, which means asserting kFLEXIO_UART_RxDataRegFullFlag does/doesn’t trigger the DMA request.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
enable – True to enable, false to disable.
-
static inline void FLEXIO_UART_Enable(FLEXIO_UART_Type *base, bool enable)
Enables/disables the FlexIO UART module operation.
- Parameters:
base – Pointer to the FLEXIO_UART_Type.
enable – True to enable, false does not have any effect.
-
static inline void FLEXIO_UART_WriteByte(FLEXIO_UART_Type *base, const uint8_t *buffer)
Writes one byte of data.
Note
This is a non-blocking API, which returns directly after the data is put into the data register. Ensure that the TxEmptyFlag is asserted before calling this API.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
buffer – The data bytes to send.
-
static inline void FLEXIO_UART_ReadByte(FLEXIO_UART_Type *base, uint8_t *buffer)
Reads one byte of data.
Note
This is a non-blocking API, which returns directly after the data is read from the data register. Ensure that the RxFullFlag is asserted before calling this API.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
buffer – The buffer to store the received bytes.
-
status_t FLEXIO_UART_WriteBlocking(FLEXIO_UART_Type *base, const uint8_t *txData, size_t txSize)
Sends a buffer of data bytes.
Note
This function blocks using the polling method until all bytes have been sent.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
txData – The data bytes to send.
txSize – The number of data bytes to send.
- Return values:
kStatus_FLEXIO_UART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully wrote all data.
-
status_t FLEXIO_UART_ReadBlocking(FLEXIO_UART_Type *base, uint8_t *rxData, size_t rxSize)
Receives a buffer of bytes.
Note
This function blocks using the polling method until all bytes have been received.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
rxData – The buffer to store the received bytes.
rxSize – The number of data bytes to be received.
- Return values:
kStatus_FLEXIO_UART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully received all data.
-
status_t FLEXIO_UART_TransferCreateHandle(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle, flexio_uart_transfer_callback_t callback, void *userData)
Initializes the UART handle.
This function initializes the FlexIO UART handle, which can be used for other FlexIO UART transactional APIs. Call this API once to get the initialized handle.
The UART driver supports the “background” receiving, which means that users can set up a RX ring buffer optionally. Data received is stored into the ring buffer even when the user doesn’t call the FLEXIO_UART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, users can get the received data from the ring buffer directly. The ring buffer is disabled if passing NULL as
ringBuffer
.- Parameters:
base – to FLEXIO_UART_Type structure.
handle – Pointer to the flexio_uart_handle_t structure to store the transfer state.
callback – The callback function.
userData – The parameter of the callback function.
- Return values:
kStatus_Success – Successfully create the handle.
kStatus_OutOfRange – The FlexIO type/handle/ISR table out of range.
-
void FLEXIO_UART_TransferStartRingBuffer(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)
Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific UART handle.
When the RX ring buffer is used, data received is stored into the ring buffer even when the user doesn’t call the UART_ReceiveNonBlocking() API. If there is already data received in the ring buffer, users can get the received data from the ring buffer directly.
Note
When using the RX ring buffer, one byte is reserved for internal use. In other words, if
ringBufferSize
is 32, only 31 bytes are used for saving data.- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
handle – Pointer to the flexio_uart_handle_t structure to store the transfer state.
ringBuffer – Start address of ring buffer for background receiving. Pass NULL to disable the ring buffer.
ringBufferSize – Size of the ring buffer.
-
void FLEXIO_UART_TransferStopRingBuffer(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.
This function aborts the background transfer and uninstalls the ring buffer.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
handle – Pointer to the flexio_uart_handle_t structure to store the transfer state.
-
status_t FLEXIO_UART_TransferSendNonBlocking(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle, flexio_uart_transfer_t *xfer)
Transmits a buffer of data using the interrupt method.
This function sends data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data to be written to the TX register. When all data is written to the TX register in ISR, the FlexIO UART driver calls the callback function and passes the kStatus_FLEXIO_UART_TxIdle as status parameter.
Note
The kStatus_FLEXIO_UART_TxIdle is passed to the upper layer when all data is written to the TX register. However, it does not ensure that all data is sent out.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
handle – Pointer to the flexio_uart_handle_t structure to store the transfer state.
xfer – FlexIO UART transfer structure. See flexio_uart_transfer_t.
- Return values:
kStatus_Success – Successfully starts the data transmission.
kStatus_UART_TxBusy – Previous transmission still not finished, data not written to the TX register.
-
void FLEXIO_UART_TransferAbortSend(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle)
Aborts the interrupt-driven data transmit.
This function aborts the interrupt-driven data sending. Get the remainBytes to find out how many bytes are still not sent out.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
handle – Pointer to the flexio_uart_handle_t structure to store the transfer state.
-
status_t FLEXIO_UART_TransferGetSendCount(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle, size_t *count)
Gets the number of bytes sent.
This function gets the number of bytes sent driven by interrupt.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
handle – Pointer to the flexio_uart_handle_t structure to store the transfer state.
count – Number of bytes sent so far by the non-blocking transaction.
- Return values:
kStatus_NoTransferInProgress – transfer has finished or no transfer in progress.
kStatus_Success – Successfully return the count.
-
status_t FLEXIO_UART_TransferReceiveNonBlocking(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle, flexio_uart_transfer_t *xfer, size_t *receivedBytes)
Receives a buffer of data using the interrupt method.
This function receives data using the interrupt method. This is a non-blocking function, which returns without waiting for all data to be received. If the RX ring buffer is used and not empty, the data in ring buffer is copied and the parameter
receivedBytes
shows how many bytes are copied from the ring buffer. After copying, if the data in ring buffer is not enough to read, the receive request is saved by the UART driver. When new data arrives, the receive request is serviced first. When all data is received, the UART driver notifies the upper layer through a callback function and passes the status parameter kStatus_UART_RxIdle. For example, if the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer, the 5 bytes are copied to xfer->data. This function returns with the parameterreceivedBytes
set to 5. For the last 5 bytes, newly arrived data is saved from the xfer->data[5]. When 5 bytes are received, the UART driver notifies upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to xfer->data. When all data is received, the upper layer is notified.- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
handle – Pointer to the flexio_uart_handle_t structure to store the transfer state.
xfer – UART transfer structure. See flexio_uart_transfer_t.
receivedBytes – Bytes received from the ring buffer directly.
- Return values:
kStatus_Success – Successfully queue the transfer into the transmit queue.
kStatus_FLEXIO_UART_RxBusy – Previous receive request is not finished.
-
void FLEXIO_UART_TransferAbortReceive(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle)
Aborts the receive data which was using IRQ.
This function aborts the receive data which was using IRQ.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
handle – Pointer to the flexio_uart_handle_t structure to store the transfer state.
-
status_t FLEXIO_UART_TransferGetReceiveCount(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle, size_t *count)
Gets the number of bytes received.
This function gets the number of bytes received driven by interrupt.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
handle – Pointer to the flexio_uart_handle_t structure to store the transfer state.
count – Number of bytes received so far by the non-blocking transaction.
- Return values:
kStatus_NoTransferInProgress – transfer has finished or no transfer in progress.
kStatus_Success – Successfully return the count.
-
void FLEXIO_UART_TransferHandleIRQ(void *uartType, void *uartHandle)
FlexIO UART IRQ handler function.
This function processes the FlexIO UART transmit and receives the IRQ request.
- Parameters:
uartType – Pointer to the FLEXIO_UART_Type structure.
uartHandle – Pointer to the flexio_uart_handle_t structure to store the transfer state.
-
void FLEXIO_UART_FlushShifters(FLEXIO_UART_Type *base)
Flush tx/rx shifters.
- Parameters:
base – Pointer to the FLEXIO_UART_Type structure.
-
FSL_FLEXIO_UART_DRIVER_VERSION
FlexIO UART driver version.
Error codes for the UART driver.
Values:
-
enumerator kStatus_FLEXIO_UART_TxBusy
Transmitter is busy.
-
enumerator kStatus_FLEXIO_UART_RxBusy
Receiver is busy.
-
enumerator kStatus_FLEXIO_UART_TxIdle
UART transmitter is idle.
-
enumerator kStatus_FLEXIO_UART_RxIdle
UART receiver is idle.
-
enumerator kStatus_FLEXIO_UART_ERROR
ERROR happens on UART.
-
enumerator kStatus_FLEXIO_UART_RxRingBufferOverrun
UART RX software ring buffer overrun.
-
enumerator kStatus_FLEXIO_UART_RxHardwareOverrun
UART RX receiver overrun.
-
enumerator kStatus_FLEXIO_UART_Timeout
UART times out.
-
enumerator kStatus_FLEXIO_UART_BaudrateNotSupport
Baudrate is not supported in current clock source
-
enumerator kStatus_FLEXIO_UART_TxBusy
-
enum _flexio_uart_bit_count_per_char
FlexIO UART bit count per char.
Values:
-
enumerator kFLEXIO_UART_7BitsPerChar
7-bit data characters
-
enumerator kFLEXIO_UART_8BitsPerChar
8-bit data characters
-
enumerator kFLEXIO_UART_9BitsPerChar
9-bit data characters
-
enumerator kFLEXIO_UART_7BitsPerChar
-
enum _flexio_uart_interrupt_enable
Define FlexIO UART interrupt mask.
Values:
-
enumerator kFLEXIO_UART_TxDataRegEmptyInterruptEnable
Transmit buffer empty interrupt enable.
-
enumerator kFLEXIO_UART_RxDataRegFullInterruptEnable
Receive buffer full interrupt enable.
-
enumerator kFLEXIO_UART_TxDataRegEmptyInterruptEnable
-
enum _flexio_uart_status_flags
Define FlexIO UART status mask.
Values:
-
enumerator kFLEXIO_UART_TxDataRegEmptyFlag
Transmit buffer empty flag.
-
enumerator kFLEXIO_UART_RxDataRegFullFlag
Receive buffer full flag.
-
enumerator kFLEXIO_UART_RxOverRunFlag
Receive buffer over run flag.
-
enumerator kFLEXIO_UART_TxDataRegEmptyFlag
-
typedef enum _flexio_uart_bit_count_per_char flexio_uart_bit_count_per_char_t
FlexIO UART bit count per char.
-
typedef struct _flexio_uart_type FLEXIO_UART_Type
Define FlexIO UART access structure typedef.
-
typedef struct _flexio_uart_config flexio_uart_config_t
Define FlexIO UART user configuration structure.
-
typedef struct _flexio_uart_transfer flexio_uart_transfer_t
Define FlexIO UART transfer structure.
-
typedef struct _flexio_uart_handle flexio_uart_handle_t
-
typedef void (*flexio_uart_transfer_callback_t)(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle, status_t status, void *userData)
FlexIO UART transfer callback function.
-
UART_RETRY_TIMES
Retry times for waiting flag.
-
struct _flexio_uart_type
- #include <fsl_flexio_uart.h>
Define FlexIO UART access structure typedef.
Public Members
-
FLEXIO_Type *flexioBase
FlexIO base pointer.
-
uint8_t TxPinIndex
Pin select for UART_Tx.
-
uint8_t RxPinIndex
Pin select for UART_Rx.
-
uint8_t shifterIndex[2]
Shifter index used in FlexIO UART.
-
uint8_t timerIndex[2]
Timer index used in FlexIO UART.
-
FLEXIO_Type *flexioBase
-
struct _flexio_uart_config
- #include <fsl_flexio_uart.h>
Define FlexIO UART user configuration structure.
Public Members
-
bool enableUart
Enable/disable FlexIO UART TX & RX.
-
bool enableInDoze
Enable/disable FlexIO operation in doze mode
-
bool enableInDebug
Enable/disable FlexIO operation in debug mode
-
bool enableFastAccess
Enable/disable fast access to FlexIO registers, fast access requires the FlexIO clock to be at least twice the frequency of the bus clock.
-
uint32_t baudRate_Bps
Baud rate in Bps.
-
flexio_uart_bit_count_per_char_t bitCountPerChar
number of bits, 7/8/9 -bit
-
bool enableUart
-
struct _flexio_uart_transfer
- #include <fsl_flexio_uart.h>
Define FlexIO UART transfer structure.
Public Members
-
size_t dataSize
Transfer size
-
size_t dataSize
-
struct _flexio_uart_handle
- #include <fsl_flexio_uart.h>
Define FLEXIO UART handle structure.
Public Members
-
const uint8_t *volatile txData
Address of remaining data to send.
-
volatile size_t txDataSize
Size of the remaining data to send.
-
uint8_t *volatile rxData
Address of remaining data to receive.
-
volatile size_t rxDataSize
Size of the remaining data to receive.
-
size_t txDataSizeAll
Total bytes to be sent.
-
size_t rxDataSizeAll
Total bytes to be received.
-
uint8_t *rxRingBuffer
Start address of the receiver ring buffer.
-
size_t rxRingBufferSize
Size of the ring buffer.
-
volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.
-
volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.
-
flexio_uart_transfer_callback_t callback
Callback function.
-
void *userData
UART callback function parameter.
-
volatile uint8_t txState
TX transfer state.
-
volatile uint8_t rxState
RX transfer state
-
const uint8_t *volatile txData
-
union __unnamed89__
Public Members
-
uint8_t *data
The buffer of data to be transfer.
-
uint8_t *rxData
The buffer to receive data.
-
const uint8_t *txData
The buffer of data to be sent.
-
uint8_t *data
FREQME: Frequency Measurement
GLIKEY
GLIKEY
Values:
-
enumerator kStatus_GLIKEY_LockedError
GLIKEY status for locked SFR registers (unexpected) .
-
enumerator kStatus_GLIKEY_NotLocked
GLIKEY status for unlocked SFR registers.
-
enumerator kStatus_GLIKEY_Locked
GLIKEY status for locked SFR registers.
-
enumerator kStatus_GLIKEY_DisabledError
GLIKEY status for disabled error.
-
enumerator kStatus_GLIKEY_LockedError
-
FSL_GLIKEY_DRIVER_VERSION
Defines GLIKEY driver version 2.0.1.
Change log:
Version 2.0.1
Implement INIT state recovery from the LOCKED state after a reset when the previous index was locked.
Version 2.0.0
Initial version
-
GLIKEY_CODEWORD_STEP1
-
GLIKEY_CODEWORD_STEP2
-
GLIKEY_CODEWORD_STEP3
-
GLIKEY_CODEWORD_STEP4
-
GLIKEY_CODEWORD_STEP5
-
GLIKEY_CODEWORD_STEP6
-
GLIKEY_CODEWORD_STEP7
-
GLIKEY_CODEWORD_STEP_EN
-
GLIKEY_FSM_WR_DIS
-
GLIKEY_FSM_INIT
-
GLIKEY_FSM_STEP1
-
GLIKEY_FSM_STEP2
-
GLIKEY_FSM_STEP3
-
GLIKEY_FSM_STEP4
-
GLIKEY_FSM_LOCKED
-
GLIKEY_FSM_WR_EN
-
GLIKEY_FSM_SSR_RESET
-
uint32_t GLIKEY_GetStatus(GLIKEY_Type *base)
Retreives the current status of Glikey.
- Parameters:
base – [in] The base address of the Glikey instance
- Returns:
Glikey status information
-
status_t GLIKEY_IsLocked(GLIKEY_Type *base)
Get if Glikey is locked.
This operation returns the locking status of Glikey.
- Return values:
kStatus_GLIKEY_Locked – if locked
kStatus_GLIKEY_NotLocked – if unlocked
- Returns:
Status
-
status_t GLIKEY_CheckLock(GLIKEY_Type *base)
Check if Glikey is locked.
This operation returns the locking status of Glikey.
- Return values:
kStatus_GLIKEY_LockedError – if locked
kStatus_GLIKEY_NotLocked – if unlocked
- Returns:
Status kStatus_Success if success
-
status_t GLIKEY_SyncReset(GLIKEY_Type *base)
Perform a synchronous reset of Glikey.
This function performs a synchrounous reset of the Glikey. This results in:
Glikey will return to the INIT state, unless it is in the LOCK state
- Parameters:
base – [in] The base address of the Glikey instance
- Returns:
Status kStatus_Success if success Possible errors: kStatus_GLIKEY_LockedError
-
status_t GLIKEY_SetIntEnable(GLIKEY_Type *base, uint32_t value)
Set interrupt enable flag of Glikey.
- Parameters:
base – [in] The base address of the Glikey instance
value – [in] Value to set the interrupt enable flag to, see #[TODO: add reference to constants]
- Returns:
Status kStatus_Success if success Possible errors: kStatus_GLIKEY_LockedError
-
status_t GLIKEY_GetIntEnable(GLIKEY_Type *base, uint32_t *value)
Get interrupt enable flag of Glikey.
- Parameters:
base – [in] The base address of the Glikey instance
value – [out] Pointer which will be filled with the interrupt enable status, see #[TODO: add reference to constants]
- Returns:
Status kStatus_Success if success
-
status_t GLIKEY_ClearIntStatus(GLIKEY_Type *base)
Clear the interrupt status flag of Glikey.
- Parameters:
base – [in] The base address of the Glikey instance
- Returns:
Status kStatus_Success if success Possible errors: kStatus_GLIKEY_LockedError
-
status_t GLIKEY_SetIntStatus(GLIKEY_Type *base)
Set the interrupt status flag of Glikey.
- Parameters:
base – [in] The base address of the Glikey instance
- Returns:
Status kStatus_Success if success Possible errors: kStatus_GLIKEY_LockedError
-
status_t GLIKEY_Lock(GLIKEY_Type *base)
Lock Glikey SFR (Special Function Registers) interface.
This operation locks the Glikey SFR interface if it is not locked yet.
- Parameters:
base – [in] The base address of the Glikey instance
- Returns:
Status kStatus_Success if success
-
status_t GLIKEY_LockIndex(GLIKEY_Type *base)
Lock Glikey index.
This operation is used to lock a Glikey index. It can only be executed from the WR_EN state, executing it from any other state will result in Glikey entering WR_DIS state. When this happens Glikey requires a reset (synchrous or asynchronous) to go back to INIT state. If the Glikey SFR lock is active this operation will return an error.
- Parameters:
base – [in] The base address of the Glikey instance
- Returns:
Status kStatus_Success if success Possible errors: kStatus_GLIKEY_LockedError, kStatus_GLIKEY_DisabledError
-
status_t GLIKEY_IsIndexLocked(GLIKEY_Type *base, uint32_t index)
Check if Glikey index is locked.
This operation returns the locking status of Glikey index.
- Parameters:
base – [in] The base address of the Glikey instance
index – [in] The index of the Glikey instance
- Returns:
kStatus_GLIKEY_Locked if locked, kStatus_GLIKEY_NotLocked if unlocked Possible errors: kStatus_Fail
-
status_t GLIKEY_StartEnable(GLIKEY_Type *base, uint32_t index)
Start Glikey enable.
This operation is used to set a new index and start a the sequence to enable it. It needs to be started from the INIT state. If the new index is already locked Glikey will go to LOCKED state, otherwise it will go to STEP1 state. If this operation is used when Glikey is in any state other than INIT Glikey will go to WR_DIS state. It can only recover from this state through a reset (synchrounous or asyncrhonous). If the Glikey SFR lock is active this operation will return an error.
- Parameters:
base – [in] The base address of the Glikey instance
index – [in] The index of the Glikey instance
- Returns:
Status kStatus_Success if success Possible errors: kStatus_GLIKEY_LockedError, kStatus_Fail
-
status_t GLIKEY_ContinueEnable(GLIKEY_Type *base, uint32_t codeword)
Continue Glikey enable.
This operation is used to progress through the different states of the state machine, starting from STEP1 until the state WR_EN is reached. Each next state of the state machine can only be reached by providing the right codeword to this function. If anything goes wrong the state machine will go to WR_DIS state and can only recover from it through a reset (synchrous or asynchronous). If the Glikey SFR lock is active this operation will return an error.
- Parameters:
base – [in] The base address of the Glikey instance
codeword – [in] Encoded word for progressing to next FSM state (see GLIKEY_CODEWORD_STEPx/EN)
- Returns:
Status kStatus_Success if success Possible errors: kStatus_GLIKEY_LockedError, kStatus_Fail, kStatus_GLIKEY_DisabledError
-
status_t GLIKEY_EndOperation(GLIKEY_Type *base)
End Glikey operation.
This operation is used to end a Glikey operation. It can only be executed from the WR_EN, LOCKED and RESET states. Executing it from any other state will result in Glikey entering WR_DIS state. When this happens Glikey requires a reset (synchrous or asynchronous) to go back to INIT state. After this operation Glikey will go to INIT state or stay in LOCKED state when the index was locked. If the Glikey SFR lock is active this operation will return an error.
- Parameters:
base – [in] The base address of the Glikey instance
- Returns:
A code-flow protected error code (see nxpCsslFlowProtection)
- Returns:
Status kStatus_Success if success, kStatus_GLIKEY_Locked if index is still locked Possible errors: kStatus_GLIKEY_LockedError, kStatus_GLIKEY_DisabledError
-
status_t GLIKEY_ResetIndex(GLIKEY_Type *base, uint32_t index)
Reset Glikey index.
This operation is used to reset a Glikey index. It can only be executed from the INIT state, executing it from any other state will result in Glikey entering WR_DIS state. When this happens Glikey requires a reset (synchrous or asynchronous) to go back to INIT state. If the Glikey SFR lock is active or the index is locked this operation will return an error.
- Returns:
A code-flow protected error code (see nxpCsslFlowProtection)
- Returns:
Status kStatus_Success if success, kStatus_GLIKEY_Locked if index is still locked Possible errors: kStatus_GLIKEY_LockedError, kStatus_GLIKEY_DisabledError
GPIO: General-Purpose Input/Output Driver
-
FSL_GPIO_DRIVER_VERSION
GPIO driver version.
-
enum _gpio_pin_direction
GPIO direction definition.
Values:
-
enumerator kGPIO_DigitalInput
Set current pin as digital input
-
enumerator kGPIO_DigitalOutput
Set current pin as digital output
-
enumerator kGPIO_DigitalInput
-
enum _gpio_checker_attribute
GPIO checker attribute.
Values:
-
enumerator kGPIO_UsernonsecureRWUsersecureRWPrivilegedsecureRW
User nonsecure:Read+Write; User Secure:Read+Write; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureRUsersecureRWPrivilegedsecureRW
User nonsecure:Read; User Secure:Read+Write; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureNUsersecureRWPrivilegedsecureRW
User nonsecure:None; User Secure:Read+Write; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureRUsersecureRPrivilegedsecureRW
User nonsecure:Read; User Secure:Read; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureNUsersecureRPrivilegedsecureRW
User nonsecure:None; User Secure:Read; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureRW
User nonsecure:None; User Secure:None; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureR
User nonsecure:None; User Secure:None; Privileged Secure:Read
-
enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureN
User nonsecure:None; User Secure:None; Privileged Secure:None
-
enumerator kGPIO_IgnoreAttributeCheck
Ignores the attribute check
-
enumerator kGPIO_UsernonsecureRWUsersecureRWPrivilegedsecureRW
-
enum _gpio_interrupt_config
Configures the interrupt generation condition.
Values:
-
enumerator kGPIO_InterruptStatusFlagDisabled
Interrupt status flag is disabled.
-
enumerator kGPIO_DMARisingEdge
ISF flag and DMA request on rising edge.
-
enumerator kGPIO_DMAFallingEdge
ISF flag and DMA request on falling edge.
-
enumerator kGPIO_DMAEitherEdge
ISF flag and DMA request on either edge.
-
enumerator kGPIO_FlagRisingEdge
Flag sets on rising edge.
-
enumerator kGPIO_FlagFallingEdge
Flag sets on falling edge.
-
enumerator kGPIO_FlagEitherEdge
Flag sets on either edge.
-
enumerator kGPIO_InterruptLogicZero
Interrupt when logic zero.
-
enumerator kGPIO_InterruptRisingEdge
Interrupt on rising edge.
-
enumerator kGPIO_InterruptFallingEdge
Interrupt on falling edge.
-
enumerator kGPIO_InterruptEitherEdge
Interrupt on either edge.
-
enumerator kGPIO_InterruptLogicOne
Interrupt when logic one.
-
enumerator kGPIO_ActiveHighTriggerOutputEnable
Enable active high-trigger output.
-
enumerator kGPIO_ActiveLowTriggerOutputEnable
Enable active low-trigger output.
-
enumerator kGPIO_InterruptStatusFlagDisabled
-
enum _gpio_interrupt_selection
Configures the selection of interrupt/DMA request/trigger output.
Values:
-
enumerator kGPIO_InterruptOutput0
Interrupt/DMA request/trigger output 0.
-
enumerator kGPIO_InterruptOutput1
Interrupt/DMA request/trigger output 1.
-
enumerator kGPIO_InterruptOutput0
-
enum gpio_pin_interrupt_control_t
GPIO pin and interrupt control.
Values:
-
enumerator kGPIO_PinControlNonSecure
Pin Control Non-Secure.
-
enumerator kGPIO_InterruptControlNonSecure
Interrupt Control Non-Secure.
-
enumerator kGPIO_PinControlNonPrivilege
Pin Control Non-Privilege.
-
enumerator kGPIO_InterruptControlNonPrivilege
Interrupt Control Non-Privilege.
-
enumerator kGPIO_PinControlNonSecure
-
typedef enum _gpio_pin_direction gpio_pin_direction_t
GPIO direction definition.
-
typedef enum _gpio_checker_attribute gpio_checker_attribute_t
GPIO checker attribute.
-
typedef struct _gpio_pin_config gpio_pin_config_t
The GPIO pin configuration structure.
Each pin can only be configured as either an output pin or an input pin at a time. If configured as an input pin, leave the outputConfig unused. Note that in some use cases, the corresponding port property should be configured in advance with the PORT_SetPinConfig().
-
typedef enum _gpio_interrupt_config gpio_interrupt_config_t
Configures the interrupt generation condition.
-
typedef enum _gpio_interrupt_selection gpio_interrupt_selection_t
Configures the selection of interrupt/DMA request/trigger output.
-
typedef struct _gpio_version_info gpio_version_info_t
GPIO version information.
-
GPIO_FIT_REG(value)
-
struct _gpio_pin_config
- #include <fsl_gpio.h>
The GPIO pin configuration structure.
Each pin can only be configured as either an output pin or an input pin at a time. If configured as an input pin, leave the outputConfig unused. Note that in some use cases, the corresponding port property should be configured in advance with the PORT_SetPinConfig().
Public Members
-
gpio_pin_direction_t pinDirection
GPIO direction, input or output
-
uint8_t outputLogic
Set a default output logic, which has no use in input
-
gpio_pin_direction_t pinDirection
-
struct _gpio_version_info
- #include <fsl_gpio.h>
GPIO version information.
Public Members
-
uint16_t feature
Feature Specification Number.
-
uint8_t minor
Minor Version Number.
-
uint8_t major
Major Version Number.
-
uint16_t feature
GPIO Driver
-
void GPIO_PortInit(GPIO_Type *base)
Initializes the GPIO peripheral.
This function ungates the GPIO clock.
- Parameters:
base – GPIO peripheral base pointer.
-
void GPIO_PortDenit(GPIO_Type *base)
Denitializes the GPIO peripheral.
- Parameters:
base – GPIO peripheral base pointer.
-
void GPIO_PinInit(GPIO_Type *base, uint32_t pin, const gpio_pin_config_t *config)
Initializes a GPIO pin used by the board.
To initialize the GPIO, define a pin configuration, as either input or output, in the user file. Then, call the GPIO_PinInit() function.
This is an example to define an input pin or an output pin configuration.
Define a digital input pin configuration, gpio_pin_config_t config = { kGPIO_DigitalInput, 0, } Define a digital output pin configuration, gpio_pin_config_t config = { kGPIO_DigitalOutput, 0, }
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
pin – GPIO port pin number
config – GPIO pin configuration pointer
-
void GPIO_GetVersionInfo(GPIO_Type *base, gpio_version_info_t *info)
Get GPIO version information.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
info – GPIO version information
-
static inline void GPIO_SecurePrivilegeLock(GPIO_Type *base, gpio_pin_interrupt_control_t mask)
lock or unlock secure privilege.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – pin or interrupt macro
-
static inline void GPIO_EnablePinControlNonSecure(GPIO_Type *base, uint32_t mask)
Enable Pin Control Non-Secure.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_DisablePinControlNonSecure(GPIO_Type *base, uint32_t mask)
Disable Pin Control Non-Secure.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_EnablePinControlNonPrivilege(GPIO_Type *base, uint32_t mask)
Enable Pin Control Non-Privilege.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_DisablePinControlNonPrivilege(GPIO_Type *base, uint32_t mask)
Disable Pin Control Non-Privilege.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_EnableInterruptControlNonSecure(GPIO_Type *base, uint32_t mask)
Enable Interrupt Control Non-Secure.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_DisableInterruptControlNonSecure(GPIO_Type *base, uint32_t mask)
Disable Interrupt Control Non-Secure.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_EnableInterruptControlNonPrivilege(GPIO_Type *base, uint32_t mask)
Enable Interrupt Control Non-Privilege.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_DisableInterruptControlNonPrivilege(GPIO_Type *base, uint32_t mask)
Disable Interrupt Control Non-Privilege.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_PortInputEnable(GPIO_Type *base, uint32_t mask)
Enable port input.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_PortInputDisable(GPIO_Type *base, uint32_t mask)
Disable port input.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the multiple GPIO pins to the logic 1 or 0.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
pin – GPIO pin number
output – GPIO pin output logic level.
0: corresponding pin output low-logic level.
1: corresponding pin output high-logic level.
-
static inline void GPIO_PortSet(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_PortClear(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple GPIO pins.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
pin – GPIO pin number
- Return values:
GPIO – port input value
0: corresponding pin input low-logic level.
1: corresponding pin input high-logic level.
-
static inline void GPIO_SetPinInterruptConfig(GPIO_Type *base, uint32_t pin, gpio_interrupt_config_t config)
Configures the gpio pin interrupt/DMA request.
- Parameters:
base – GPIO peripheral base pointer.
pin – GPIO pin number.
config – GPIO pin interrupt configuration.
kGPIO_InterruptStatusFlagDisabled: Interrupt/DMA request disabled.
kGPIO_DMARisingEdge : DMA request on rising edge(if the DMA requests exit).
kGPIO_DMAFallingEdge: DMA request on falling edge(if the DMA requests exit).
kGPIO_DMAEitherEdge : DMA request on either edge(if the DMA requests exit).
kGPIO_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).
kGPIO_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).
kGPIO_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).
kGPIO_InterruptLogicZero : Interrupt when logic zero.
kGPIO_InterruptRisingEdge : Interrupt on rising edge.
kGPIO_InterruptFallingEdge: Interrupt on falling edge.
kGPIO_InterruptEitherEdge : Interrupt on either edge.
kGPIO_InterruptLogicOne : Interrupt when logic one.
kGPIO_ActiveHighTriggerOutputEnable : Enable active high-trigger output (if the trigger states exit).
kGPIO_ActiveLowTriggerOutputEnable : Enable active low-trigger output (if the trigger states exit).
-
static inline void GPIO_SetPinInterruptChannel(GPIO_Type *base, uint32_t pin, gpio_interrupt_selection_t selection)
Configures the gpio pin interrupt/DMA request/trigger output channel selection.
- Parameters:
base – GPIO peripheral base pointer.
pin – GPIO pin number.
selection – GPIO pin interrupt output selection.
kGPIO_InterruptOutput0: Interrupt/DMA request/trigger output 0.
kGPIO_InterruptOutput1 : Interrupt/DMA request/trigger output 1.
-
uint32_t GPIO_GpioGetInterruptFlags(GPIO_Type *base)
Read the GPIO interrupt status flags.
- Parameters:
base – GPIO peripheral base pointer. (GPIOA, GPIOB, GPIOC, and so on.)
- Returns:
The current GPIO’s interrupt status flag. ‘1’ means the related pin’s flag is set, ‘0’ means the related pin’s flag not set. For example, the return value 0x00010001 means the pin 0 and 17 have the interrupt pending.
-
uint32_t GPIO_GpioGetInterruptChannelFlags(GPIO_Type *base, uint32_t channel)
Read the GPIO interrupt status flags based on selected interrupt channel(IRQS).
- Parameters:
base – GPIO peripheral base pointer. (GPIOA, GPIOB, GPIOC, and so on.)
channel – ‘0’ means selete interrupt channel 0, ‘1’ means selete interrupt channel 1.
- Returns:
The current GPIO’s interrupt status flag based on the selected interrupt channel. ‘1’ means the related pin’s flag is set, ‘0’ means the related pin’s flag not set. For example, the return value 0x00010001 means the pin 0 and 17 have the interrupt pending.
-
uint8_t GPIO_PinGetInterruptFlag(GPIO_Type *base, uint32_t pin)
Read individual pin’s interrupt status flag.
- Parameters:
base – GPIO peripheral base pointer. (GPIOA, GPIOB, GPIOC, and so on)
pin – GPIO specific pin number.
- Returns:
The current selected pin’s interrupt status flag.
-
void GPIO_GpioClearInterruptFlags(GPIO_Type *base, uint32_t mask)
Clears GPIO pin interrupt status flags.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
void GPIO_GpioClearInterruptChannelFlags(GPIO_Type *base, uint32_t mask, uint32_t channel)
Clears GPIO pin interrupt status flags based on selected interrupt channel(IRQS).
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
channel – ‘0’ means selete interrupt channel 0, ‘1’ means selete interrupt channel 1.
-
void GPIO_PinClearInterruptFlag(GPIO_Type *base, uint32_t pin)
Clear GPIO individual pin’s interrupt status flag.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on).
pin – GPIO specific pin number.
-
static inline void GPIO_SetMultipleInterruptPinsConfig(GPIO_Type *base, uint32_t mask, gpio_interrupt_config_t config)
Sets the GPIO interrupt configuration in PCR register for multiple pins.
- Parameters:
base – GPIO peripheral base pointer.
mask – GPIO pin number macro.
config – GPIO pin interrupt configuration.
kGPIO_InterruptStatusFlagDisabled: Interrupt disabled.
kGPIO_DMARisingEdge : DMA request on rising edge(if the DMA requests exit).
kGPIO_DMAFallingEdge: DMA request on falling edge(if the DMA requests exit).
kGPIO_DMAEitherEdge : DMA request on either edge(if the DMA requests exit).
kGPIO_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).
kGPIO_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).
kGPIO_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).
kGPIO_InterruptLogicZero : Interrupt when logic zero.
kGPIO_InterruptRisingEdge : Interrupt on rising edge.
kGPIO_InterruptFallingEdge: Interrupt on falling edge.
kGPIO_InterruptEitherEdge : Interrupt on either edge.
kGPIO_InterruptLogicOne : Interrupt when logic one.
kGPIO_ActiveHighTriggerOutputEnable : Enable active high-trigger output (if the trigger states exit).
kGPIO_ActiveLowTriggerOutputEnable : Enable active low-trigger output (if the trigger states exit)..
-
void GPIO_CheckAttributeBytes(GPIO_Type *base, gpio_checker_attribute_t attribute)
brief The GPIO module supports a device-specific number of data ports, organized as 32-bit words/8-bit Bytes. Each 32-bit/8-bit data port includes a GACR register, which defines the byte-level attributes required for a successful access to the GPIO programming model. If the GPIO module’s GACR register organized as 32-bit words, the attribute controls for the 4 data bytes in the GACR follow a standard little endian data convention.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
attribute – GPIO checker attribute
I3C: I3C Driver
-
FSL_I3C_DRIVER_VERSION
I3C driver version.
I3C status return codes.
Values:
-
enumerator kStatus_I3C_Busy
The master is already performing a transfer.
-
enumerator kStatus_I3C_Idle
The slave driver is idle.
-
enumerator kStatus_I3C_Nak
The slave device sent a NAK in response to an address.
-
enumerator kStatus_I3C_WriteAbort
The slave device sent a NAK in response to a write.
-
enumerator kStatus_I3C_Term
The master terminates slave read.
-
enumerator kStatus_I3C_HdrParityError
Parity error from DDR read.
-
enumerator kStatus_I3C_CrcError
CRC error from DDR read.
-
enumerator kStatus_I3C_ReadFifoError
Read from M/SRDATAB register when FIFO empty.
-
enumerator kStatus_I3C_WriteFifoError
Write to M/SWDATAB register when FIFO full.
-
enumerator kStatus_I3C_MsgError
Message SDR/DDR mismatch or read/write message in wrong state
-
enumerator kStatus_I3C_InvalidReq
Invalid use of request.
-
enumerator kStatus_I3C_Timeout
The module has stalled too long in a frame.
-
enumerator kStatus_I3C_SlaveCountExceed
The I3C slave count has exceed the definition in I3C_MAX_DEVCNT.
-
enumerator kStatus_I3C_IBIWon
The I3C slave event IBI or MR or HJ won the arbitration on a header address.
-
enumerator kStatus_I3C_OverrunError
Slave internal from-bus buffer/FIFO overrun.
-
enumerator kStatus_I3C_UnderrunError
Slave internal to-bus buffer/FIFO underrun
-
enumerator kStatus_I3C_UnderrunNak
Slave internal from-bus buffer/FIFO underrun and NACK error
-
enumerator kStatus_I3C_InvalidStart
Slave invalid start flag
-
enumerator kStatus_I3C_SdrParityError
SDR parity error
-
enumerator kStatus_I3C_S0S1Error
S0 or S1 error
-
enumerator kStatus_I3C_Busy
-
enum _i3c_hdr_mode
I3C HDR modes.
Values:
-
enumerator kI3C_HDRModeNone
-
enumerator kI3C_HDRModeDDR
-
enumerator kI3C_HDRModeTSP
-
enumerator kI3C_HDRModeTSL
-
enumerator kI3C_HDRModeNone
-
typedef enum _i3c_hdr_mode i3c_hdr_mode_t
I3C HDR modes.
-
typedef struct _i3c_device_info i3c_device_info_t
I3C device information.
-
I3C_RETRY_TIMES
Timeout times for waiting flag.
-
I3C_MAX_DEVCNT
-
I3C_IBI_BUFF_SIZE
-
struct _i3c_device_info
- #include <fsl_i3c.h>
I3C device information.
Public Members
-
uint8_t dynamicAddr
Device dynamic address.
-
uint8_t staticAddr
Static address.
-
uint8_t dcr
Device characteristics register information.
-
uint8_t bcr
Bus characteristics register information.
-
uint16_t vendorID
Device vendor ID(manufacture ID).
-
uint32_t partNumber
Device part number info
-
uint16_t maxReadLength
Maximum read length.
-
uint16_t maxWriteLength
Maximum write length.
-
uint8_t hdrMode
Support hdr mode, could be OR logic in i3c_hdr_mode.
-
uint8_t dynamicAddr
I3C Common Driver
-
typedef struct _i3c_config i3c_config_t
Structure with settings to initialize the I3C module, could both initialize master and slave functionality.
This structure holds configuration settings for the I3C peripheral. To initialize this structure to reasonable defaults, call the I3C_GetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
-
uint32_t I3C_GetInstance(I3C_Type *base)
Get which instance current I3C is used.
- Parameters:
base – The I3C peripheral base address.
-
void I3C_GetDefaultConfig(i3c_config_t *config)
Provides a default configuration for the I3C peripheral, the configuration covers both master functionality and slave functionality.
This function provides the following default configuration for I3C:
config->enableMaster = kI3C_MasterCapable; config->disableTimeout = false; config->hKeep = kI3C_MasterHighKeeperNone; config->enableOpenDrainStop = true; config->enableOpenDrainHigh = true; config->baudRate_Hz.i2cBaud = 400000U; config->baudRate_Hz.i3cPushPullBaud = 12500000U; config->baudRate_Hz.i3cOpenDrainBaud = 2500000U; config->masterDynamicAddress = 0x0AU; config->slowClock_Hz = 1000000U; config->enableSlave = true; config->vendorID = 0x11BU; config->enableRandomPart = false; config->partNumber = 0; config->dcr = 0; config->bcr = 0; config->hdrMode = (uint8_t)kI3C_HDRModeDDR; config->nakAllRequest = false; config->ignoreS0S1Error = false; config->offline = false; config->matchSlaveStartStop = false;
After calling this function, you can override any settings in order to customize the configuration, prior to initializing the common I3C driver with I3C_Init().
- Parameters:
config – [out] User provided configuration structure for default values. Refer to i3c_config_t.
-
void I3C_Init(I3C_Type *base, const i3c_config_t *config, uint32_t sourceClock_Hz)
Initializes the I3C peripheral. This function enables the peripheral clock and initializes the I3C peripheral as described by the user provided configuration. This will initialize both the master peripheral and slave peripheral so that I3C module could work as pure master, pure slave or secondary master, etc. A software reset is performed prior to configuration.
- Parameters:
base – The I3C peripheral base address.
config – User provided peripheral configuration. Use I3C_GetDefaultConfig() to get a set of defaults that you can override.
sourceClock_Hz – Frequency in Hertz of the I3C functional clock. Used to calculate the baud rate divisors, filter widths, and timeout periods.
-
struct _i3c_config
- #include <fsl_i3c.h>
Structure with settings to initialize the I3C module, could both initialize master and slave functionality.
This structure holds configuration settings for the I3C peripheral. To initialize this structure to reasonable defaults, call the I3C_GetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
Public Members
-
i3c_master_enable_t enableMaster
Enable master mode.
-
bool disableTimeout
Whether to disable timeout to prevent the ERRWARN.
-
i3c_master_hkeep_t hKeep
High keeper mode setting.
-
bool enableOpenDrainStop
Whether to emit open-drain speed STOP.
-
bool enableOpenDrainHigh
Enable Open-Drain High to be 1 PPBAUD count for i3c messages, or 1 ODBAUD.
-
i3c_baudrate_hz_t baudRate_Hz
Desired baud rate settings.
-
i3c_start_scl_delay_t startSclDelay
I3C SCL delay after START.
-
i3c_start_scl_delay_t restartSclDelay
I3C SCL delay after Repeated START.
-
uint8_t masterDynamicAddress
Main master dynamic address configuration.
-
uint32_t maxWriteLength
Maximum write length.
-
uint32_t maxReadLength
Maximum read length.
-
bool enableSlave
Whether to enable slave.
-
uint8_t staticAddr
Static address.
-
uint16_t vendorID
Device vendor ID(manufacture ID).
-
uint32_t partNumber
Device part number info
-
uint8_t dcr
Device characteristics register information.
-
uint8_t bcr
Bus characteristics register information.
-
uint8_t hdrMode
Support hdr mode, could be OR logic in enumeration:i3c_hdr_mode_t.
-
bool nakAllRequest
Whether to reply NAK to all requests except broadcast CCC.
-
bool ignoreS0S1Error
Whether to ignore S0/S1 error in SDR mode.
-
bool offline
Whether to wait 60 us of bus quiet or HDR request to ensure slave track SDR mode safely.
-
bool matchSlaveStartStop
Whether to assert start/stop status only the time slave is addressed.
-
i3c_master_enable_t enableMaster
I3C Master Driver
-
void I3C_MasterGetDefaultConfig(i3c_master_config_t *masterConfig)
Provides a default configuration for the I3C master peripheral.
This function provides the following default configuration for the I3C master peripheral:
masterConfig->enableMaster = kI3C_MasterOn; masterConfig->disableTimeout = false; masterConfig->hKeep = kI3C_MasterHighKeeperNone; masterConfig->enableOpenDrainStop = true; masterConfig->enableOpenDrainHigh = true; masterConfig->baudRate_Hz = 100000U; masterConfig->busType = kI3C_TypeI2C;
After calling this function, you can override any settings in order to customize the configuration, prior to initializing the master driver with I3C_MasterInit().
- Parameters:
masterConfig – [out] User provided configuration structure for default values. Refer to i3c_master_config_t.
-
void I3C_MasterInit(I3C_Type *base, const i3c_master_config_t *masterConfig, uint32_t sourceClock_Hz)
Initializes the I3C master peripheral.
This function enables the peripheral clock and initializes the I3C master peripheral as described by the user provided configuration. A software reset is performed prior to configuration.
- Parameters:
base – The I3C peripheral base address.
masterConfig – User provided peripheral configuration. Use I3C_MasterGetDefaultConfig() to get a set of defaults that you can override.
sourceClock_Hz – Frequency in Hertz of the I3C functional clock. Used to calculate the baud rate divisors, filter widths, and timeout periods.
-
void I3C_MasterDeinit(I3C_Type *base)
Deinitializes the I3C master peripheral.
This function disables the I3C master peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.
- Parameters:
base – The I3C peripheral base address.
-
status_t I3C_MasterCheckAndClearError(I3C_Type *base, uint32_t status)
-
status_t I3C_MasterWaitForCtrlDone(I3C_Type *base, bool waitIdle)
-
status_t I3C_CheckForBusyBus(I3C_Type *base)
-
static inline void I3C_MasterEnable(I3C_Type *base, i3c_master_enable_t enable)
Set I3C module master mode.
- Parameters:
base – The I3C peripheral base address.
enable – Enable master mode.
-
void I3C_SlaveGetDefaultConfig(i3c_slave_config_t *slaveConfig)
Provides a default configuration for the I3C slave peripheral.
This function provides the following default configuration for the I3C slave peripheral:
slaveConfig->enableslave = true;
After calling this function, you can override any settings in order to customize the configuration, prior to initializing the slave driver with I3C_SlaveInit().
- Parameters:
slaveConfig – [out] User provided configuration structure for default values. Refer to i3c_slave_config_t.
-
void I3C_SlaveInit(I3C_Type *base, const i3c_slave_config_t *slaveConfig, uint32_t slowClock_Hz)
Initializes the I3C slave peripheral.
This function enables the peripheral clock and initializes the I3C slave peripheral as described by the user provided configuration.
- Parameters:
base – The I3C peripheral base address.
slaveConfig – User provided peripheral configuration. Use I3C_SlaveGetDefaultConfig() to get a set of defaults that you can override.
slowClock_Hz – Frequency in Hertz of the I3C slow clock. Used to calculate the bus match condition values. If FSL_FEATURE_I3C_HAS_NO_SCONFIG_BAMATCH defines as 1, this parameter is useless.
-
void I3C_SlaveDeinit(I3C_Type *base)
Deinitializes the I3C slave peripheral.
This function disables the I3C slave peripheral and gates the clock.
- Parameters:
base – The I3C peripheral base address.
-
static inline void I3C_SlaveEnable(I3C_Type *base, bool isEnable)
Enable/Disable Slave.
- Parameters:
base – The I3C peripheral base address.
isEnable – Enable or disable.
-
static inline uint32_t I3C_MasterGetStatusFlags(I3C_Type *base)
Gets the I3C master status flags.
A bit mask with the state of all I3C master status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.
See also
_i3c_master_flags
- Parameters:
base – The I3C peripheral base address.
- Returns:
State of the status flags:
1: related status flag is set.
0: related status flag is not set.
-
static inline void I3C_MasterClearStatusFlags(I3C_Type *base, uint32_t statusMask)
Clears the I3C master status flag state.
The following status register flags can be cleared:
kI3C_MasterSlaveStartFlag
kI3C_MasterControlDoneFlag
kI3C_MasterCompleteFlag
kI3C_MasterArbitrationWonFlag
kI3C_MasterSlave2MasterFlag
Attempts to clear other flags has no effect.
See also
_i3c_master_flags.
- Parameters:
base – The I3C peripheral base address.
statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i3c_master_flags enumerators OR’d together. You may pass the result of a previous call to I3C_MasterGetStatusFlags().
-
static inline uint32_t I3C_MasterGetErrorStatusFlags(I3C_Type *base)
Gets the I3C master error status flags.
A bit mask with the state of all I3C master error status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.
See also
_i3c_master_error_flags
- Parameters:
base – The I3C peripheral base address.
- Returns:
State of the error status flags:
1: related status flag is set.
0: related status flag is not set.
-
static inline void I3C_MasterClearErrorStatusFlags(I3C_Type *base, uint32_t statusMask)
Clears the I3C master error status flag state.
See also
_i3c_master_error_flags.
- Parameters:
base – The I3C peripheral base address.
statusMask – A bitmask of error status flags that are to be cleared. The mask is composed of _i3c_master_error_flags enumerators OR’d together. You may pass the result of a previous call to I3C_MasterGetStatusFlags().
-
i3c_master_state_t I3C_MasterGetState(I3C_Type *base)
Gets the I3C master state.
- Parameters:
base – The I3C peripheral base address.
- Returns:
I3C master state.
-
static inline uint32_t I3C_SlaveGetStatusFlags(I3C_Type *base)
Gets the I3C slave status flags.
A bit mask with the state of all I3C slave status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.
See also
_i3c_slave_flags
- Parameters:
base – The I3C peripheral base address.
- Returns:
State of the status flags:
1: related status flag is set.
0: related status flag is not set.
-
static inline void I3C_SlaveClearStatusFlags(I3C_Type *base, uint32_t statusMask)
Clears the I3C slave status flag state.
The following status register flags can be cleared:
kI3C_SlaveBusStartFlag
kI3C_SlaveMatchedFlag
kI3C_SlaveBusStopFlag
Attempts to clear other flags has no effect.
See also
_i3c_slave_flags.
- Parameters:
base – The I3C peripheral base address.
statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i3c_slave_flags enumerators OR’d together. You may pass the result of a previous call to I3C_SlaveGetStatusFlags().
-
static inline uint32_t I3C_SlaveGetErrorStatusFlags(I3C_Type *base)
Gets the I3C slave error status flags.
A bit mask with the state of all I3C slave error status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.
See also
_i3c_slave_error_flags
- Parameters:
base – The I3C peripheral base address.
- Returns:
State of the error status flags:
1: related status flag is set.
0: related status flag is not set.
-
static inline void I3C_SlaveClearErrorStatusFlags(I3C_Type *base, uint32_t statusMask)
Clears the I3C slave error status flag state.
See also
_i3c_slave_error_flags.
- Parameters:
base – The I3C peripheral base address.
statusMask – A bitmask of error status flags that are to be cleared. The mask is composed of _i3c_slave_error_flags enumerators OR’d together. You may pass the result of a previous call to I3C_SlaveGetErrorStatusFlags().
-
i3c_slave_activity_state_t I3C_SlaveGetActivityState(I3C_Type *base)
Gets the I3C slave state.
- Parameters:
base – The I3C peripheral base address.
- Returns:
I3C slave activity state, refer i3c_slave_activity_state_t.
-
status_t I3C_SlaveCheckAndClearError(I3C_Type *base, uint32_t status)
-
static inline void I3C_MasterEnableInterrupts(I3C_Type *base, uint32_t interruptMask)
Enables the I3C master interrupt requests.
All flags except kI3C_MasterBetweenFlag and kI3C_MasterNackDetectFlag can be enabled as interrupts.
- Parameters:
base – The I3C peripheral base address.
interruptMask – Bit mask of interrupts to enable. See _i3c_master_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline void I3C_MasterDisableInterrupts(I3C_Type *base, uint32_t interruptMask)
Disables the I3C master interrupt requests.
All flags except kI3C_MasterBetweenFlag and kI3C_MasterNackDetectFlag can be enabled as interrupts.
- Parameters:
base – The I3C peripheral base address.
interruptMask – Bit mask of interrupts to disable. See _i3c_master_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline uint32_t I3C_MasterGetEnabledInterrupts(I3C_Type *base)
Returns the set of currently enabled I3C master interrupt requests.
- Parameters:
base – The I3C peripheral base address.
- Returns:
A bitmask composed of _i3c_master_flags enumerators OR’d together to indicate the set of enabled interrupts.
-
static inline uint32_t I3C_MasterGetPendingInterrupts(I3C_Type *base)
Returns the set of pending I3C master interrupt requests.
- Parameters:
base – The I3C peripheral base address.
- Returns:
A bitmask composed of _i3c_master_flags enumerators OR’d together to indicate the set of pending interrupts.
-
static inline void I3C_SlaveEnableInterrupts(I3C_Type *base, uint32_t interruptMask)
Enables the I3C slave interrupt requests.
Only below flags can be enabled as interrupts.
kI3C_SlaveBusStartFlag
kI3C_SlaveMatchedFlag
kI3C_SlaveBusStopFlag
kI3C_SlaveRxReadyFlag
kI3C_SlaveTxReadyFlag
kI3C_SlaveDynamicAddrChangedFlag
kI3C_SlaveReceivedCCCFlag
kI3C_SlaveErrorFlag
kI3C_SlaveHDRCommandMatchFlag
kI3C_SlaveCCCHandledFlag
kI3C_SlaveEventSentFlag
- Parameters:
base – The I3C peripheral base address.
interruptMask – Bit mask of interrupts to enable. See _i3c_slave_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline void I3C_SlaveDisableInterrupts(I3C_Type *base, uint32_t interruptMask)
Disables the I3C slave interrupt requests.
Only below flags can be disabled as interrupts.
kI3C_SlaveBusStartFlag
kI3C_SlaveMatchedFlag
kI3C_SlaveBusStopFlag
kI3C_SlaveRxReadyFlag
kI3C_SlaveTxReadyFlag
kI3C_SlaveDynamicAddrChangedFlag
kI3C_SlaveReceivedCCCFlag
kI3C_SlaveErrorFlag
kI3C_SlaveHDRCommandMatchFlag
kI3C_SlaveCCCHandledFlag
kI3C_SlaveEventSentFlag
- Parameters:
base – The I3C peripheral base address.
interruptMask – Bit mask of interrupts to disable. See _i3c_slave_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline uint32_t I3C_SlaveGetEnabledInterrupts(I3C_Type *base)
Returns the set of currently enabled I3C slave interrupt requests.
- Parameters:
base – The I3C peripheral base address.
- Returns:
A bitmask composed of _i3c_slave_flags enumerators OR’d together to indicate the set of enabled interrupts.
-
static inline uint32_t I3C_SlaveGetPendingInterrupts(I3C_Type *base)
Returns the set of pending I3C slave interrupt requests.
- Parameters:
base – The I3C peripheral base address.
- Returns:
A bitmask composed of _i3c_slave_flags enumerators OR’d together to indicate the set of pending interrupts.
-
static inline void I3C_MasterEnableDMA(I3C_Type *base, bool enableTx, bool enableRx, uint32_t width)
Enables or disables I3C master DMA requests.
- Parameters:
base – The I3C peripheral base address.
enableTx – Enable flag for transmit DMA request. Pass true for enable, false for disable.
enableRx – Enable flag for receive DMA request. Pass true for enable, false for disable.
width – DMA read/write unit in bytes.
-
static inline uint32_t I3C_MasterGetTxFifoAddress(I3C_Type *base, uint32_t width)
Gets I3C master transmit data register address for DMA transfer.
- Parameters:
base – The I3C peripheral base address.
width – DMA read/write unit in bytes.
- Returns:
The I3C Master Transmit Data Register address.
-
static inline uint32_t I3C_MasterGetRxFifoAddress(I3C_Type *base, uint32_t width)
Gets I3C master receive data register address for DMA transfer.
- Parameters:
base – The I3C peripheral base address.
width – DMA read/write unit in bytes.
- Returns:
The I3C Master Receive Data Register address.
-
static inline void I3C_SlaveEnableDMA(I3C_Type *base, bool enableTx, bool enableRx, uint32_t width)
Enables or disables I3C slave DMA requests.
- Parameters:
base – The I3C peripheral base address.
enableTx – Enable flag for transmit DMA request. Pass true for enable, false for disable.
enableRx – Enable flag for receive DMA request. Pass true for enable, false for disable.
width – DMA read/write unit in bytes.
-
static inline uint32_t I3C_SlaveGetTxFifoAddress(I3C_Type *base, uint32_t width)
Gets I3C slave transmit data register address for DMA transfer.
- Parameters:
base – The I3C peripheral base address.
width – DMA read/write unit in bytes.
- Returns:
The I3C Slave Transmit Data Register address.
-
static inline uint32_t I3C_SlaveGetRxFifoAddress(I3C_Type *base, uint32_t width)
Gets I3C slave receive data register address for DMA transfer.
- Parameters:
base – The I3C peripheral base address.
width – DMA read/write unit in bytes.
- Returns:
The I3C Slave Receive Data Register address.
-
static inline void I3C_MasterSetWatermarks(I3C_Type *base, i3c_tx_trigger_level_t txLvl, i3c_rx_trigger_level_t rxLvl, bool flushTx, bool flushRx)
Sets the watermarks for I3C master FIFOs.
- Parameters:
base – The I3C peripheral base address.
txLvl – Transmit FIFO watermark level. The kI3C_MasterTxReadyFlag flag is set whenever the number of words in the transmit FIFO reaches txLvl.
rxLvl – Receive FIFO watermark level. The kI3C_MasterRxReadyFlag flag is set whenever the number of words in the receive FIFO reaches rxLvl.
flushTx – true if TX FIFO is to be cleared, otherwise TX FIFO remains unchanged.
flushRx – true if RX FIFO is to be cleared, otherwise RX FIFO remains unchanged.
-
static inline void I3C_MasterGetFifoCounts(I3C_Type *base, size_t *rxCount, size_t *txCount)
Gets the current number of bytes in the I3C master FIFOs.
- Parameters:
base – The I3C peripheral base address.
txCount – [out] Pointer through which the current number of bytes in the transmit FIFO is returned. Pass NULL if this value is not required.
rxCount – [out] Pointer through which the current number of bytes in the receive FIFO is returned. Pass NULL if this value is not required.
-
static inline void I3C_SlaveSetWatermarks(I3C_Type *base, i3c_tx_trigger_level_t txLvl, i3c_rx_trigger_level_t rxLvl, bool flushTx, bool flushRx)
Sets the watermarks for I3C slave FIFOs.
- Parameters:
base – The I3C peripheral base address.
txLvl – Transmit FIFO watermark level. The kI3C_SlaveTxReadyFlag flag is set whenever the number of words in the transmit FIFO reaches txLvl.
rxLvl – Receive FIFO watermark level. The kI3C_SlaveRxReadyFlag flag is set whenever the number of words in the receive FIFO reaches rxLvl.
flushTx – true if TX FIFO is to be cleared, otherwise TX FIFO remains unchanged.
flushRx – true if RX FIFO is to be cleared, otherwise RX FIFO remains unchanged.
-
static inline void I3C_SlaveGetFifoCounts(I3C_Type *base, size_t *rxCount, size_t *txCount)
Gets the current number of bytes in the I3C slave FIFOs.
- Parameters:
base – The I3C peripheral base address.
txCount – [out] Pointer through which the current number of bytes in the transmit FIFO is returned. Pass NULL if this value is not required.
rxCount – [out] Pointer through which the current number of bytes in the receive FIFO is returned. Pass NULL if this value is not required.
-
void I3C_MasterSetBaudRate(I3C_Type *base, const i3c_baudrate_hz_t *baudRate_Hz, uint32_t sourceClock_Hz)
Sets the I3C bus frequency for master transactions.
The I3C master is automatically disabled and re-enabled as necessary to configure the baud rate. Do not call this function during a transfer, or the transfer is aborted.
- Parameters:
base – The I3C peripheral base address.
baudRate_Hz – Pointer to structure of requested bus frequency in Hertz.
sourceClock_Hz – I3C functional clock frequency in Hertz.
-
static inline bool I3C_MasterGetBusIdleState(I3C_Type *base)
Returns whether the bus is idle.
Requires the master mode to be enabled.
- Parameters:
base – The I3C peripheral base address.
- Return values:
true – Bus is busy.
false – Bus is idle.
-
status_t I3C_MasterStartWithRxSize(I3C_Type *base, i3c_bus_type_t type, uint8_t address, i3c_direction_t dir, uint8_t rxSize)
Sends a START signal and slave address on the I2C/I3C bus, receive size is also specified in the call.
This function is used to initiate a new master mode transfer. First, the bus state is checked to ensure that another master is not occupying the bus. Then a START signal is transmitted, followed by the 7-bit address specified in the a address parameter. Note that this function does not actually wait until the START and address are successfully sent on the bus before returning.
- Parameters:
base – The I3C peripheral base address.
type – The bus type to use in this transaction.
address – 7-bit slave device address, in bits [6:0].
dir – Master transfer direction, either kI3C_Read or kI3C_Write. This parameter is used to set the R/w bit (bit 0) in the transmitted slave address.
rxSize – Read terminate size for the followed read transfer, limit to 255 bytes.
- Return values:
kStatus_Success – START signal and address were successfully enqueued in the transmit FIFO.
kStatus_I3C_Busy – Another master is currently utilizing the bus.
-
status_t I3C_MasterStart(I3C_Type *base, i3c_bus_type_t type, uint8_t address, i3c_direction_t dir)
Sends a START signal and slave address on the I2C/I3C bus.
This function is used to initiate a new master mode transfer. First, the bus state is checked to ensure that another master is not occupying the bus. Then a START signal is transmitted, followed by the 7-bit address specified in the address parameter. Note that this function does not actually wait until the START and address are successfully sent on the bus before returning.
- Parameters:
base – The I3C peripheral base address.
type – The bus type to use in this transaction.
address – 7-bit slave device address, in bits [6:0].
dir – Master transfer direction, either kI3C_Read or kI3C_Write. This parameter is used to set the R/w bit (bit 0) in the transmitted slave address.
- Return values:
kStatus_Success – START signal and address were successfully enqueued in the transmit FIFO.
kStatus_I3C_Busy – Another master is currently utilizing the bus.
-
status_t I3C_MasterRepeatedStartWithRxSize(I3C_Type *base, i3c_bus_type_t type, uint8_t address, i3c_direction_t dir, uint8_t rxSize)
Sends a repeated START signal and slave address on the I2C/I3C bus, receive size is also specified in the call.
This function is used to send a Repeated START signal when a transfer is already in progress. Like I3C_MasterStart(), it also sends the specified 7-bit address. Call this API also configures the read terminate size for the following read transfer. For example, set the rxSize = 2, the following read transfer will be terminated after two bytes of data received. Write transfer will not be affected by the rxSize configuration.
Note
This function exists primarily to maintain compatible APIs between I3C and I2C drivers, as well as to better document the intent of code that uses these APIs.
- Parameters:
base – The I3C peripheral base address.
type – The bus type to use in this transaction.
address – 7-bit slave device address, in bits [6:0].
dir – Master transfer direction, either kI3C_Read or kI3C_Write. This parameter is used to set the R/w bit (bit 0) in the transmitted slave address.
rxSize – Read terminate size for the followed read transfer, limit to 255 bytes.
- Return values:
kStatus_Success – Repeated START signal and address were successfully enqueued in the transmit FIFO.
-
static inline status_t I3C_MasterRepeatedStart(I3C_Type *base, i3c_bus_type_t type, uint8_t address, i3c_direction_t dir)
Sends a repeated START signal and slave address on the I2C/I3C bus.
This function is used to send a Repeated START signal when a transfer is already in progress. Like I3C_MasterStart(), it also sends the specified 7-bit address.
Note
This function exists primarily to maintain compatible APIs between I3C and I2C drivers, as well as to better document the intent of code that uses these APIs.
- Parameters:
base – The I3C peripheral base address.
type – The bus type to use in this transaction.
address – 7-bit slave device address, in bits [6:0].
dir – Master transfer direction, either kI3C_Read or kI3C_Write. This parameter is used to set the R/w bit (bit 0) in the transmitted slave address.
- Return values:
kStatus_Success – Repeated START signal and address were successfully enqueued in the transmit FIFO.
-
status_t I3C_MasterSend(I3C_Type *base, const void *txBuff, size_t txSize, uint32_t flags)
Performs a polling send transfer on the I2C/I3C bus.
Sends up to txSize number of bytes to the previously addressed slave device. The slave may reply with a NAK to any byte in order to terminate the transfer early. If this happens, this function returns kStatus_I3C_Nak.
- Parameters:
base – The I3C peripheral base address.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
flags – Bit mask of options for the transfer. See enumeration _i3c_master_transfer_flags for available options.
- Return values:
kStatus_Success – Data was sent successfully.
kStatus_I3C_Busy – Another master is currently utilizing the bus.
kStatus_I3C_Timeout – The module has stalled too long in a frame.
kStatus_I3C_Nak – The slave device sent a NAK in response to an address.
kStatus_I3C_WriteAbort – The slave device sent a NAK in response to a write.
kStatus_I3C_MsgError – Message SDR/DDR mismatch or read/write message in wrong state.
kStatus_I3C_WriteFifoError – Write to M/SWDATAB register when FIFO full.
kStatus_I3C_InvalidReq – Invalid use of request.
-
status_t I3C_MasterReceive(I3C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transfer on the I2C/I3C bus.
- Parameters:
base – The I3C peripheral base address.
rxBuff – The pointer to the data to be transferred.
rxSize – The length in bytes of the data to be transferred.
flags – Bit mask of options for the transfer. See enumeration _i3c_master_transfer_flags for available options.
- Return values:
kStatus_Success – Data was received successfully.
kStatus_I3C_Busy – Another master is currently utilizing the bus.
kStatus_I3C_Timeout – The module has stalled too long in a frame.
kStatus_I3C_Term – The master terminates slave read.
kStatus_I3C_HdrParityError – Parity error from DDR read.
kStatus_I3C_CrcError – CRC error from DDR read.
kStatus_I3C_MsgError – Message SDR/DDR mismatch or read/write message in wrong state.
kStatus_I3C_ReadFifoError – Read from M/SRDATAB register when FIFO empty.
kStatus_I3C_InvalidReq – Invalid use of request.
-
status_t I3C_MasterStop(I3C_Type *base)
Sends a STOP signal on the I2C/I3C bus.
This function does not return until the STOP signal is seen on the bus, or an error occurs.
- Parameters:
base – The I3C peripheral base address.
- Return values:
kStatus_Success – The STOP signal was successfully sent on the bus and the transaction terminated.
kStatus_I3C_Busy – Another master is currently utilizing the bus.
kStatus_I3C_Timeout – The module has stalled too long in a frame.
kStatus_I3C_InvalidReq – Invalid use of request.
-
void I3C_MasterEmitRequest(I3C_Type *base, i3c_bus_request_t masterReq)
I3C master emit request.
- Parameters:
base – The I3C peripheral base address.
masterReq – I3C master request of type i3c_bus_request_t
-
static inline void I3C_MasterEmitIBIResponse(I3C_Type *base, i3c_ibi_response_t ibiResponse)
I3C master emit request.
- Parameters:
base – The I3C peripheral base address.
ibiResponse – I3C master emit IBI response of type i3c_ibi_response_t
-
void I3C_MasterRegisterIBI(I3C_Type *base, i3c_register_ibi_addr_t *ibiRule)
I3C master register IBI rule.
- Parameters:
base – The I3C peripheral base address.
ibiRule – Pointer to ibi rule description of type i3c_register_ibi_addr_t
-
void I3C_MasterGetIBIRules(I3C_Type *base, i3c_register_ibi_addr_t *ibiRule)
I3C master get IBI rule.
- Parameters:
base – The I3C peripheral base address.
ibiRule – Pointer to store the read out ibi rule description.
-
i3c_ibi_type_t I3C_GetIBIType(I3C_Type *base)
I3C master get IBI Type.
- Parameters:
base – The I3C peripheral base address.
- Return values:
i3c_ibi_type_t – Type of i3c_ibi_type_t.
-
static inline uint8_t I3C_GetIBIAddress(I3C_Type *base)
I3C master get IBI Address.
- Parameters:
base – The I3C peripheral base address.
- Return values:
The – 8-bit IBI address.
-
status_t I3C_MasterProcessDAASpecifiedBaudrate(I3C_Type *base, uint8_t *addressList, uint32_t count, i3c_master_daa_baudrate_t *daaBaudRate)
Performs a DAA in the i3c bus with specified temporary baud rate.
- Parameters:
base – The I3C peripheral base address.
addressList – The pointer for address list which is used to do DAA.
count – The address count in the address list.
daaBaudRate – The temporary baud rate in DAA process, NULL for using initial setting. The initial setting is set back between the completion of the DAA and the return of this function.
- Return values:
kStatus_Success – The transaction was started successfully.
kStatus_I3C_Busy – Either another master is currently utilizing the bus, or a non-blocking transaction is already in progress.
kStatus_I3C_SlaveCountExceed – The I3C slave count has exceed the definition in I3C_MAX_DEVCNT.
-
static inline status_t I3C_MasterProcessDAA(I3C_Type *base, uint8_t *addressList, uint32_t count)
Performs a DAA in the i3c bus.
- Parameters:
base – The I3C peripheral base address.
addressList – The pointer for address list which is used to do DAA.
count – The address count in the address list. The initial setting is set back between the completion of the DAA and the return of this function.
- Return values:
kStatus_Success – The transaction was started successfully.
kStatus_I3C_Busy – Either another master is currently utilizing the bus, or a non-blocking transaction is already in progress.
kStatus_I3C_SlaveCountExceed – The I3C slave count has exceed the definition in I3C_MAX_DEVCNT.
-
i3c_device_info_t *I3C_MasterGetDeviceListAfterDAA(I3C_Type *base, uint8_t *count)
Get device information list after DAA process is done.
- Parameters:
base – The I3C peripheral base address.
count – [out] The pointer to store the available device count.
- Returns:
Pointer to the i3c_device_info_t array.
-
void I3C_MasterClearDeviceCount(I3C_Type *base)
Clear the global device count which represents current devices number on the bus. When user resets all dynamic addresses on the bus, should call this API.
- Parameters:
base – The I3C peripheral base address.
-
status_t I3C_MasterTransferBlocking(I3C_Type *base, i3c_master_transfer_t *transfer)
Performs a master polling transfer on the I2C/I3C bus.
Note
The API does not return until the transfer succeeds or fails due to error happens during transfer.
- Parameters:
base – The I3C peripheral base address.
transfer – Pointer to the transfer structure.
- Return values:
kStatus_Success – Data was received successfully.
kStatus_I3C_Busy – Another master is currently utilizing the bus.
kStatus_I3C_IBIWon – The I3C slave event IBI or MR or HJ won the arbitration on a header address.
kStatus_I3C_Timeout – The module has stalled too long in a frame.
kStatus_I3C_Nak – The slave device sent a NAK in response to an address.
kStatus_I3C_WriteAbort – The slave device sent a NAK in response to a write.
kStatus_I3C_Term – The master terminates slave read.
kStatus_I3C_HdrParityError – Parity error from DDR read.
kStatus_I3C_CrcError – CRC error from DDR read.
kStatus_I3C_MsgError – Message SDR/DDR mismatch or read/write message in wrong state.
kStatus_I3C_ReadFifoError – Read from M/SRDATAB register when FIFO empty.
kStatus_I3C_WriteFifoError – Write to M/SWDATAB register when FIFO full.
kStatus_I3C_InvalidReq – Invalid use of request.
-
status_t I3C_SlaveSend(I3C_Type *base, const void *txBuff, size_t txSize)
Performs a polling send transfer on the I3C bus.
- Parameters:
base – The I3C peripheral base address.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
- Returns:
Error or success status returned by API.
-
status_t I3C_SlaveReceive(I3C_Type *base, void *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I3C bus.
- Parameters:
base – The I3C peripheral base address.
rxBuff – The pointer to the data to be transferred.
rxSize – The length in bytes of the data to be transferred.
- Returns:
Error or success status returned by API.
-
void I3C_MasterTransferCreateHandle(I3C_Type *base, i3c_master_handle_t *handle, const i3c_master_transfer_callback_t *callback, void *userData)
Creates a new handle for the I3C master non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I3C_MasterTransferAbort() API shall be called.
Note
The function also enables the NVIC IRQ for the input I3C. Need to notice that on some SoCs the I3C IRQ is connected to INTMUX, in this case user needs to enable the associated INTMUX IRQ in application.
- Parameters:
base – The I3C peripheral base address.
handle – [out] Pointer to the I3C master driver handle.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
-
status_t I3C_MasterTransferNonBlocking(I3C_Type *base, i3c_master_handle_t *handle, i3c_master_transfer_t *transfer)
Performs a non-blocking transaction on the I2C/I3C bus.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to the I3C master driver handle.
transfer – The pointer to the transfer descriptor.
- Return values:
kStatus_Success – The transaction was started successfully.
kStatus_I3C_Busy – Either another master is currently utilizing the bus, or a non-blocking transaction is already in progress.
-
status_t I3C_MasterTransferGetCount(I3C_Type *base, i3c_master_handle_t *handle, size_t *count)
Returns number of bytes transferred so far.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to the I3C master driver handle.
count – [out] Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_Success –
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
void I3C_MasterTransferAbort(I3C_Type *base, i3c_master_handle_t *handle)
Terminates a non-blocking I3C master transmission early.
Note
It is not safe to call this function from an IRQ handler that has a higher priority than the I3C peripheral’s IRQ priority.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to the I3C master driver handle.
- Return values:
kStatus_Success – A transaction was successfully aborted.
kStatus_I3C_Idle – There is not a non-blocking transaction currently in progress.
-
void I3C_MasterTransferHandleIRQ(I3C_Type *base, void *intHandle)
Reusable routine to handle master interrupts.
Note
This function does not need to be called unless you are reimplementing the nonblocking API’s interrupt handler routines to add special functionality.
- Parameters:
base – The I3C peripheral base address.
intHandle – Pointer to the I3C master driver handle.
-
enum _i3c_master_flags
I3C master peripheral flags.
The following status register flags can be cleared:
kI3C_MasterSlaveStartFlag
kI3C_MasterControlDoneFlag
kI3C_MasterCompleteFlag
kI3C_MasterArbitrationWonFlag
kI3C_MasterSlave2MasterFlag
All flags except kI3C_MasterBetweenFlag and kI3C_MasterNackDetectFlag can be enabled as interrupts.
Note
These enums are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI3C_MasterBetweenFlag
Between messages/DAAs flag
-
enumerator kI3C_MasterNackDetectFlag
NACK detected flag
-
enumerator kI3C_MasterSlaveStartFlag
Slave request start flag
-
enumerator kI3C_MasterControlDoneFlag
Master request complete flag
-
enumerator kI3C_MasterCompleteFlag
Transfer complete flag
-
enumerator kI3C_MasterRxReadyFlag
Rx data ready in Rx buffer flag
-
enumerator kI3C_MasterTxReadyFlag
Tx buffer ready for Tx data flag
-
enumerator kI3C_MasterArbitrationWonFlag
Header address won arbitration flag
-
enumerator kI3C_MasterErrorFlag
Error occurred flag
-
enumerator kI3C_MasterSlave2MasterFlag
Switch from slave to master flag
-
enumerator kI3C_MasterClearFlags
-
enum _i3c_master_error_flags
I3C master error flags to indicate the causes.
Note
These enums are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI3C_MasterErrorNackFlag
Slave NACKed the last address
-
enumerator kI3C_MasterErrorWriteAbortFlag
Slave NACKed the write data
-
enumerator kI3C_MasterErrorParityFlag
Parity error from DDR read
-
enumerator kI3C_MasterErrorCrcFlag
CRC error from DDR read
-
enumerator kI3C_MasterErrorReadFlag
Read from MRDATAB register when FIFO empty
-
enumerator kI3C_MasterErrorWriteFlag
Write to MWDATAB register when FIFO full
-
enumerator kI3C_MasterErrorMsgFlag
Message SDR/DDR mismatch or read/write message in wrong state
-
enumerator kI3C_MasterErrorInvalidReqFlag
Invalid use of request
-
enumerator kI3C_MasterErrorTimeoutFlag
The module has stalled too long in a frame
-
enumerator kI3C_MasterAllErrorFlags
All error flags
-
enumerator kI3C_MasterErrorNackFlag
-
enum _i3c_master_state
I3C working master state.
Values:
-
enumerator kI3C_MasterStateIdle
Bus stopped.
-
enumerator kI3C_MasterStateSlvReq
Bus stopped but slave holding SDA low.
-
enumerator kI3C_MasterStateMsgSdr
In SDR Message mode from using MWMSG_SDR.
-
enumerator kI3C_MasterStateNormAct
In normal active SDR mode.
-
enumerator kI3C_MasterStateDdr
In DDR Message mode.
-
enumerator kI3C_MasterStateDaa
In ENTDAA mode.
-
enumerator kI3C_MasterStateIbiAck
Waiting on IBI ACK/NACK decision.
-
enumerator kI3C_MasterStateIbiRcv
Receiving IBI.
-
enumerator kI3C_MasterStateIdle
-
enum _i3c_master_enable
I3C master enable configuration.
Values:
-
enumerator kI3C_MasterOff
Master off.
-
enumerator kI3C_MasterOn
Master on.
-
enumerator kI3C_MasterCapable
Master capable.
-
enumerator kI3C_MasterOff
-
enum _i3c_master_hkeep
I3C high keeper configuration.
Values:
-
enumerator kI3C_MasterHighKeeperNone
Use PUR to hold SCL high.
-
enumerator kI3C_MasterHighKeeperWiredIn
Use pin_HK controls.
-
enumerator kI3C_MasterPassiveSDA
Hi-Z for Bus Free and hold SDA.
-
enumerator kI3C_MasterPassiveSDASCL
Hi-Z both for Bus Free, and can Hi-Z SDA for hold.
-
enumerator kI3C_MasterHighKeeperNone
-
enum _i3c_bus_request
Emits the requested operation when doing in pieces vs. by message.
Values:
-
enumerator kI3C_RequestNone
No request.
-
enumerator kI3C_RequestEmitStartAddr
Request to emit start and address on bus.
-
enumerator kI3C_RequestEmitStop
Request to emit stop on bus.
-
enumerator kI3C_RequestIbiAckNack
Manual IBI ACK or NACK.
-
enumerator kI3C_RequestProcessDAA
Process DAA.
-
enumerator kI3C_RequestForceExit
Request to force exit.
-
enumerator kI3C_RequestAutoIbi
Hold in stopped state, but Auto-emit START,7E.
-
enumerator kI3C_RequestNone
-
enum _i3c_bus_type
Bus type with EmitStartAddr.
Values:
-
enumerator kI3C_TypeI3CSdr
SDR mode of I3C.
-
enumerator kI3C_TypeI2C
Standard i2c protocol.
-
enumerator kI3C_TypeI3CDdr
HDR-DDR mode of I3C.
-
enumerator kI3C_TypeI3CSdr
-
enum _i3c_ibi_response
IBI response.
Values:
-
enumerator kI3C_IbiRespAck
ACK with no mandatory byte.
-
enumerator kI3C_IbiRespNack
NACK.
-
enumerator kI3C_IbiRespAckMandatory
ACK with mandatory byte.
-
enumerator kI3C_IbiRespManual
Reserved.
-
enumerator kI3C_IbiRespAck
-
enum _i3c_ibi_type
IBI type.
Values:
-
enumerator kI3C_IbiNormal
In-band interrupt.
-
enumerator kI3C_IbiHotJoin
slave hot join.
-
enumerator kI3C_IbiMasterRequest
slave master ship request.
-
enumerator kI3C_IbiNormal
-
enum _i3c_ibi_state
IBI state.
Values:
-
enumerator kI3C_IbiReady
In-band interrupt ready state, ready for user to handle.
-
enumerator kI3C_IbiDataBuffNeed
In-band interrupt need data buffer for data receive.
-
enumerator kI3C_IbiAckNackPending
In-band interrupt Ack/Nack pending for decision.
-
enumerator kI3C_IbiReady
-
enum _i3c_direction
Direction of master and slave transfers.
Values:
-
enumerator kI3C_Write
Master transmit.
-
enumerator kI3C_Read
Master receive.
-
enumerator kI3C_Write
-
enum _i3c_tx_trigger_level
Watermark of TX int/dma trigger level.
Values:
-
enumerator kI3C_TxTriggerOnEmpty
Trigger on empty.
-
enumerator kI3C_TxTriggerUntilOneQuarterOrLess
Trigger on 1/4 full or less.
-
enumerator kI3C_TxTriggerUntilOneHalfOrLess
Trigger on 1/2 full or less.
-
enumerator kI3C_TxTriggerUntilOneLessThanFull
Trigger on 1 less than full or less.
-
enumerator kI3C_TxTriggerOnEmpty
-
enum _i3c_rx_trigger_level
Watermark of RX int/dma trigger level.
Values:
-
enumerator kI3C_RxTriggerOnNotEmpty
Trigger on not empty.
-
enumerator kI3C_RxTriggerUntilOneQuarterOrMore
Trigger on 1/4 full or more.
-
enumerator kI3C_RxTriggerUntilOneHalfOrMore
Trigger on 1/2 full or more.
-
enumerator kI3C_RxTriggerUntilThreeQuarterOrMore
Trigger on 3/4 full or more.
-
enumerator kI3C_RxTriggerOnNotEmpty
-
enum _i3c_rx_term_ops
I3C master read termination operations.
Values:
-
enumerator kI3C_RxTermDisable
Master doesn’t terminate read, used for CCC transfer.
-
enumerator kI3C_RxAutoTerm
Master auto terminate read after receiving specified bytes(<=255).
-
enumerator kI3C_RxTermLastByte
Master terminates read at any time after START, no length limitation.
-
enumerator kI3C_RxTermDisable
-
enum _i3c_start_scl_delay
I3C start SCL delay options.
Values:
-
enumerator kI3C_NoDelay
No delay.
-
enumerator kI3C_IncreaseSclHalfPeriod
Increases SCL clock period by 1/2.
-
enumerator kI3C_IncreaseSclOnePeriod
Increases SCL clock period by 1.
-
enumerator kI3C_IncreaseSclOneAndHalfPeriod
Increases SCL clock period by 1 1/2
-
enumerator kI3C_NoDelay
-
enum _i3c_master_transfer_flags
Transfer option flags.
Note
These enumerations are intended to be OR’d together to form a bit mask of options for the _i3c_master_transfer::flags field.
Values:
-
enumerator kI3C_TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.
-
enumerator kI3C_TransferNoStartFlag
Don’t send a start condition, address, and sub address
-
enumerator kI3C_TransferRepeatedStartFlag
Send a repeated start condition
-
enumerator kI3C_TransferNoStopFlag
Don’t send a stop condition.
-
enumerator kI3C_TransferWordsFlag
Transfer in words, else transfer in bytes.
-
enumerator kI3C_TransferDisableRxTermFlag
Disable Rx termination. Note: It’s for I3C CCC transfer.
-
enumerator kI3C_TransferRxAutoTermFlag
Set Rx auto-termination. Note: It’s adaptive based on Rx size(<=255 bytes) except in I3C_MasterReceive.
-
enumerator kI3C_TransferStartWithBroadcastAddr
Start transfer with 0x7E, then read/write data with device address.
-
enumerator kI3C_TransferDefaultFlag
-
typedef enum _i3c_master_state i3c_master_state_t
I3C working master state.
-
typedef enum _i3c_master_enable i3c_master_enable_t
I3C master enable configuration.
-
typedef enum _i3c_master_hkeep i3c_master_hkeep_t
I3C high keeper configuration.
-
typedef enum _i3c_bus_request i3c_bus_request_t
Emits the requested operation when doing in pieces vs. by message.
-
typedef enum _i3c_bus_type i3c_bus_type_t
Bus type with EmitStartAddr.
-
typedef enum _i3c_ibi_response i3c_ibi_response_t
IBI response.
-
typedef enum _i3c_ibi_type i3c_ibi_type_t
IBI type.
-
typedef enum _i3c_ibi_state i3c_ibi_state_t
IBI state.
-
typedef enum _i3c_direction i3c_direction_t
Direction of master and slave transfers.
-
typedef enum _i3c_tx_trigger_level i3c_tx_trigger_level_t
Watermark of TX int/dma trigger level.
-
typedef enum _i3c_rx_trigger_level i3c_rx_trigger_level_t
Watermark of RX int/dma trigger level.
-
typedef enum _i3c_rx_term_ops i3c_rx_term_ops_t
I3C master read termination operations.
-
typedef enum _i3c_start_scl_delay i3c_start_scl_delay_t
I3C start SCL delay options.
-
typedef struct _i3c_register_ibi_addr i3c_register_ibi_addr_t
Structure with setting master IBI rules and slave registry.
-
typedef struct _i3c_baudrate i3c_baudrate_hz_t
Structure with I3C baudrate settings.
-
typedef struct _i3c_master_daa_baudrate i3c_master_daa_baudrate_t
I3C DAA baud rate configuration.
-
typedef struct _i3c_master_config i3c_master_config_t
Structure with settings to initialize the I3C master module.
This structure holds configuration settings for the I3C peripheral. To initialize this structure to reasonable defaults, call the I3C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
-
typedef struct _i3c_master_transfer i3c_master_transfer_t
-
typedef struct _i3c_master_handle i3c_master_handle_t
-
typedef struct _i3c_master_transfer_callback i3c_master_transfer_callback_t
i3c master callback functions.
-
typedef void (*i3c_master_isr_t)(I3C_Type *base, void *handle)
Typedef for master interrupt handler.
-
struct _i3c_register_ibi_addr
- #include <fsl_i3c.h>
Structure with setting master IBI rules and slave registry.
Public Members
-
uint8_t address[5]
Address array for registry.
-
bool ibiHasPayload
Whether the address array has mandatory IBI byte.
-
uint8_t address[5]
-
struct _i3c_baudrate
- #include <fsl_i3c.h>
Structure with I3C baudrate settings.
Public Members
-
uint32_t i2cBaud
Desired I2C baud rate in Hertz.
-
uint32_t i3cPushPullBaud
Desired I3C push-pull baud rate in Hertz.
-
uint32_t i3cOpenDrainBaud
Desired I3C open-drain baud rate in Hertz.
-
uint32_t i2cBaud
-
struct _i3c_master_daa_baudrate
- #include <fsl_i3c.h>
I3C DAA baud rate configuration.
Public Members
-
uint32_t sourceClock_Hz
FCLK, function clock in Hertz.
-
uint32_t i3cPushPullBaud
Desired I3C push-pull baud rate in Hertz.
-
uint32_t i3cOpenDrainBaud
Desired I3C open-drain baud rate in Hertz.
-
uint32_t sourceClock_Hz
-
struct _i3c_master_config
- #include <fsl_i3c.h>
Structure with settings to initialize the I3C master module.
This structure holds configuration settings for the I3C peripheral. To initialize this structure to reasonable defaults, call the I3C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
Public Members
-
i3c_master_enable_t enableMaster
Enable master mode.
-
bool disableTimeout
Whether to disable timeout to prevent the ERRWARN.
-
i3c_master_hkeep_t hKeep
High keeper mode setting.
-
bool enableOpenDrainStop
Whether to emit open-drain speed STOP.
-
bool enableOpenDrainHigh
Enable Open-Drain High to be 1 PPBAUD count for i3c messages, or 1 ODBAUD.
-
i3c_baudrate_hz_t baudRate_Hz
Desired baud rate settings.
-
i3c_start_scl_delay_t startSclDelay
I3C SCL delay after START.
-
i3c_start_scl_delay_t restartSclDelay
I3C SCL delay after Repeated START.
-
i3c_master_enable_t enableMaster
-
struct _i3c_master_transfer_callback
- #include <fsl_i3c.h>
i3c master callback functions.
Public Members
-
void (*slave2Master)(I3C_Type *base, void *userData)
Transfer complete callback
-
void (*ibiCallback)(I3C_Type *base, i3c_master_handle_t *handle, i3c_ibi_type_t ibiType, i3c_ibi_state_t ibiState)
IBI event callback
-
void (*transferComplete)(I3C_Type *base, i3c_master_handle_t *handle, status_t completionStatus, void *userData)
Transfer complete callback
-
void (*slave2Master)(I3C_Type *base, void *userData)
-
struct _i3c_master_transfer
- #include <fsl_i3c.h>
Non-blocking transfer descriptor structure.
This structure is used to pass transaction parameters to the I3C_MasterTransferNonBlocking() API.
Public Members
-
uint32_t flags
Bit mask of options for the transfer. See enumeration _i3c_master_transfer_flags for available options. Set to 0 or kI3C_TransferDefaultFlag for normal transfers.
-
uint8_t slaveAddress
The 7-bit slave address.
-
i3c_direction_t direction
Either kI3C_Read or kI3C_Write.
-
uint32_t subaddress
Sub address. Transferred MSB first.
-
size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.
-
void *data
Pointer to data to transfer.
-
size_t dataSize
Number of bytes to transfer.
-
i3c_bus_type_t busType
bus type.
-
i3c_ibi_response_t ibiResponse
ibi response during transfer.
-
uint32_t flags
-
struct _i3c_master_handle
- #include <fsl_i3c.h>
Driver handle for master non-blocking APIs.
Note
The contents of this structure are private and subject to change.
Public Members
-
uint8_t state
Transfer state machine current state.
-
uint32_t remainingBytes
Remaining byte count in current state.
-
i3c_rx_term_ops_t rxTermOps
Read termination operation.
-
i3c_master_transfer_t transfer
Copy of the current transfer info.
-
uint8_t ibiAddress
Slave address which request IBI.
-
uint8_t *ibiBuff
Pointer to IBI buffer to keep ibi bytes.
-
size_t ibiPayloadSize
IBI payload size.
-
i3c_ibi_type_t ibiType
IBI type.
-
i3c_master_transfer_callback_t callback
Callback functions pointer.
-
void *userData
Application data passed to callback.
-
uint8_t state
I3C Master DMA Driver
-
void I3C_MasterTransferCreateHandleEDMA(I3C_Type *base, i3c_master_edma_handle_t *handle, const i3c_master_edma_callback_t *callback, void *userData, edma_handle_t *rxDmaHandle, edma_handle_t *txDmaHandle)
Create a new handle for the I3C master DMA APIs.
The creation of a handle is for use with the DMA APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I3C_MasterTransferAbortDMA() API shall be called.
For devices where the I3C send and receive DMA requests are OR’d together, the txDmaHandle parameter is ignored and may be set to NULL.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to the I3C master driver handle.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
rxDmaHandle – Handle for the DMA receive channel. Created by the user prior to calling this function.
txDmaHandle – Handle for the DMA transmit channel. Created by the user prior to calling this function.
-
status_t I3C_MasterTransferEDMA(I3C_Type *base, i3c_master_edma_handle_t *handle, i3c_master_transfer_t *transfer)
Performs a non-blocking DMA-based transaction on the I3C bus.
The callback specified when the handle was created is invoked when the transaction has completed.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to the I3C master driver handle.
transfer – The pointer to the transfer descriptor.
- Return values:
kStatus_Success – The transaction was started successfully.
kStatus_I3C_Busy – Either another master is currently utilizing the bus, or another DMA transaction is already in progress.
-
status_t I3C_MasterTransferGetCountEDMA(I3C_Type *base, i3c_master_edma_handle_t *handle, size_t *count)
Returns number of bytes transferred so far.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to the I3C master driver handle.
count – [out] Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_Success –
kStatus_NoTransferInProgress – There is not a DMA transaction currently in progress.
-
void I3C_MasterTransferAbortEDMA(I3C_Type *base, i3c_master_edma_handle_t *handle)
Terminates a non-blocking I3C master transmission early.
Note
It is not safe to call this function from an IRQ handler that has a higher priority than the DMA peripheral’s IRQ priority.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to the I3C master driver handle.
-
void I3C_MasterTransferEDMAHandleIRQ(I3C_Type *base, void *i3cHandle)
Reusable routine to handle master interrupts.
Note
This function does not need to be called unless you are reimplementing the nonblocking API’s interrupt handler routines to add special functionality.
- Parameters:
base – The I3C peripheral base address.
i3cHandle – Pointer to the I3C master DMA driver handle.
-
typedef struct _i3c_master_edma_handle i3c_master_edma_handle_t
-
typedef struct _i3c_master_edma_callback i3c_master_edma_callback_t
i3c master callback functions.
-
struct _i3c_master_edma_callback
- #include <fsl_i3c_edma.h>
i3c master callback functions.
Public Members
-
void (*slave2Master)(I3C_Type *base, void *userData)
Transfer complete callback
-
void (*ibiCallback)(I3C_Type *base, i3c_master_edma_handle_t *handle, i3c_ibi_type_t ibiType, i3c_ibi_state_t ibiState)
IBI event callback
-
void (*transferComplete)(I3C_Type *base, i3c_master_edma_handle_t *handle, status_t status, void *userData)
Transfer complete callback
-
void (*slave2Master)(I3C_Type *base, void *userData)
-
struct _i3c_master_edma_handle
- #include <fsl_i3c_edma.h>
Driver handle for master EDMA APIs.
Note
The contents of this structure are private and subject to change.
Public Members
-
I3C_Type *base
I3C base pointer.
-
uint8_t state
Transfer state machine current state.
-
uint32_t transferCount
Indicates progress of the transfer
-
uint8_t subaddressBuffer[4]
Saving subaddress command.
-
uint8_t subaddressCount
Saving command count.
-
i3c_master_transfer_t transfer
Copy of the current transfer info.
-
i3c_master_edma_callback_t callback
Callback function pointer.
-
void *userData
Application data passed to callback.
-
edma_handle_t *rxDmaHandle
Handle for receive DMA channel.
-
edma_handle_t *txDmaHandle
Handle for transmit DMA channel.
-
uint8_t ibiAddress
Slave address which request IBI.
-
uint8_t *ibiBuff
Pointer to IBI buffer to keep ibi bytes.
-
size_t ibiPayloadSize
IBI payload size.
-
i3c_ibi_type_t ibiType
IBI type.
-
I3C_Type *base
I3C Slave Driver
-
void I3C_SlaveGetDefaultConfig(i3c_slave_config_t *slaveConfig)
Provides a default configuration for the I3C slave peripheral.
This function provides the following default configuration for the I3C slave peripheral:
slaveConfig->enableslave = true;
After calling this function, you can override any settings in order to customize the configuration, prior to initializing the slave driver with I3C_SlaveInit().
- Parameters:
slaveConfig – [out] User provided configuration structure for default values. Refer to i3c_slave_config_t.
-
void I3C_SlaveInit(I3C_Type *base, const i3c_slave_config_t *slaveConfig, uint32_t slowClock_Hz)
Initializes the I3C slave peripheral.
This function enables the peripheral clock and initializes the I3C slave peripheral as described by the user provided configuration.
- Parameters:
base – The I3C peripheral base address.
slaveConfig – User provided peripheral configuration. Use I3C_SlaveGetDefaultConfig() to get a set of defaults that you can override.
slowClock_Hz – Frequency in Hertz of the I3C slow clock. Used to calculate the bus match condition values. If FSL_FEATURE_I3C_HAS_NO_SCONFIG_BAMATCH defines as 1, this parameter is useless.
-
void I3C_SlaveDeinit(I3C_Type *base)
Deinitializes the I3C slave peripheral.
This function disables the I3C slave peripheral and gates the clock.
- Parameters:
base – The I3C peripheral base address.
-
static inline void I3C_SlaveEnable(I3C_Type *base, bool isEnable)
Enable/Disable Slave.
- Parameters:
base – The I3C peripheral base address.
isEnable – Enable or disable.
-
static inline uint32_t I3C_SlaveGetStatusFlags(I3C_Type *base)
Gets the I3C slave status flags.
A bit mask with the state of all I3C slave status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.
See also
_i3c_slave_flags
- Parameters:
base – The I3C peripheral base address.
- Returns:
State of the status flags:
1: related status flag is set.
0: related status flag is not set.
-
static inline void I3C_SlaveClearStatusFlags(I3C_Type *base, uint32_t statusMask)
Clears the I3C slave status flag state.
The following status register flags can be cleared:
kI3C_SlaveBusStartFlag
kI3C_SlaveMatchedFlag
kI3C_SlaveBusStopFlag
Attempts to clear other flags has no effect.
See also
_i3c_slave_flags.
- Parameters:
base – The I3C peripheral base address.
statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i3c_slave_flags enumerators OR’d together. You may pass the result of a previous call to I3C_SlaveGetStatusFlags().
-
static inline uint32_t I3C_SlaveGetErrorStatusFlags(I3C_Type *base)
Gets the I3C slave error status flags.
A bit mask with the state of all I3C slave error status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.
See also
_i3c_slave_error_flags
- Parameters:
base – The I3C peripheral base address.
- Returns:
State of the error status flags:
1: related status flag is set.
0: related status flag is not set.
-
static inline void I3C_SlaveClearErrorStatusFlags(I3C_Type *base, uint32_t statusMask)
Clears the I3C slave error status flag state.
See also
_i3c_slave_error_flags.
- Parameters:
base – The I3C peripheral base address.
statusMask – A bitmask of error status flags that are to be cleared. The mask is composed of _i3c_slave_error_flags enumerators OR’d together. You may pass the result of a previous call to I3C_SlaveGetErrorStatusFlags().
-
i3c_slave_activity_state_t I3C_SlaveGetActivityState(I3C_Type *base)
Gets the I3C slave state.
- Parameters:
base – The I3C peripheral base address.
- Returns:
I3C slave activity state, refer i3c_slave_activity_state_t.
-
status_t I3C_SlaveCheckAndClearError(I3C_Type *base, uint32_t status)
-
static inline void I3C_SlaveEnableInterrupts(I3C_Type *base, uint32_t interruptMask)
Enables the I3C slave interrupt requests.
Only below flags can be enabled as interrupts.
kI3C_SlaveBusStartFlag
kI3C_SlaveMatchedFlag
kI3C_SlaveBusStopFlag
kI3C_SlaveRxReadyFlag
kI3C_SlaveTxReadyFlag
kI3C_SlaveDynamicAddrChangedFlag
kI3C_SlaveReceivedCCCFlag
kI3C_SlaveErrorFlag
kI3C_SlaveHDRCommandMatchFlag
kI3C_SlaveCCCHandledFlag
kI3C_SlaveEventSentFlag
- Parameters:
base – The I3C peripheral base address.
interruptMask – Bit mask of interrupts to enable. See _i3c_slave_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline void I3C_SlaveDisableInterrupts(I3C_Type *base, uint32_t interruptMask)
Disables the I3C slave interrupt requests.
Only below flags can be disabled as interrupts.
kI3C_SlaveBusStartFlag
kI3C_SlaveMatchedFlag
kI3C_SlaveBusStopFlag
kI3C_SlaveRxReadyFlag
kI3C_SlaveTxReadyFlag
kI3C_SlaveDynamicAddrChangedFlag
kI3C_SlaveReceivedCCCFlag
kI3C_SlaveErrorFlag
kI3C_SlaveHDRCommandMatchFlag
kI3C_SlaveCCCHandledFlag
kI3C_SlaveEventSentFlag
- Parameters:
base – The I3C peripheral base address.
interruptMask – Bit mask of interrupts to disable. See _i3c_slave_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline uint32_t I3C_SlaveGetEnabledInterrupts(I3C_Type *base)
Returns the set of currently enabled I3C slave interrupt requests.
- Parameters:
base – The I3C peripheral base address.
- Returns:
A bitmask composed of _i3c_slave_flags enumerators OR’d together to indicate the set of enabled interrupts.
-
static inline uint32_t I3C_SlaveGetPendingInterrupts(I3C_Type *base)
Returns the set of pending I3C slave interrupt requests.
- Parameters:
base – The I3C peripheral base address.
- Returns:
A bitmask composed of _i3c_slave_flags enumerators OR’d together to indicate the set of pending interrupts.
-
static inline void I3C_SlaveEnableDMA(I3C_Type *base, bool enableTx, bool enableRx, uint32_t width)
Enables or disables I3C slave DMA requests.
- Parameters:
base – The I3C peripheral base address.
enableTx – Enable flag for transmit DMA request. Pass true for enable, false for disable.
enableRx – Enable flag for receive DMA request. Pass true for enable, false for disable.
width – DMA read/write unit in bytes.
-
static inline uint32_t I3C_SlaveGetTxFifoAddress(I3C_Type *base, uint32_t width)
Gets I3C slave transmit data register address for DMA transfer.
- Parameters:
base – The I3C peripheral base address.
width – DMA read/write unit in bytes.
- Returns:
The I3C Slave Transmit Data Register address.
-
static inline uint32_t I3C_SlaveGetRxFifoAddress(I3C_Type *base, uint32_t width)
Gets I3C slave receive data register address for DMA transfer.
- Parameters:
base – The I3C peripheral base address.
width – DMA read/write unit in bytes.
- Returns:
The I3C Slave Receive Data Register address.
-
static inline void I3C_SlaveSetWatermarks(I3C_Type *base, i3c_tx_trigger_level_t txLvl, i3c_rx_trigger_level_t rxLvl, bool flushTx, bool flushRx)
Sets the watermarks for I3C slave FIFOs.
- Parameters:
base – The I3C peripheral base address.
txLvl – Transmit FIFO watermark level. The kI3C_SlaveTxReadyFlag flag is set whenever the number of words in the transmit FIFO reaches txLvl.
rxLvl – Receive FIFO watermark level. The kI3C_SlaveRxReadyFlag flag is set whenever the number of words in the receive FIFO reaches rxLvl.
flushTx – true if TX FIFO is to be cleared, otherwise TX FIFO remains unchanged.
flushRx – true if RX FIFO is to be cleared, otherwise RX FIFO remains unchanged.
-
static inline void I3C_SlaveGetFifoCounts(I3C_Type *base, size_t *rxCount, size_t *txCount)
Gets the current number of bytes in the I3C slave FIFOs.
- Parameters:
base – The I3C peripheral base address.
txCount – [out] Pointer through which the current number of bytes in the transmit FIFO is returned. Pass NULL if this value is not required.
rxCount – [out] Pointer through which the current number of bytes in the receive FIFO is returned. Pass NULL if this value is not required.
-
status_t I3C_SlaveSend(I3C_Type *base, const void *txBuff, size_t txSize)
Performs a polling send transfer on the I3C bus.
- Parameters:
base – The I3C peripheral base address.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
- Returns:
Error or success status returned by API.
-
status_t I3C_SlaveReceive(I3C_Type *base, void *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I3C bus.
- Parameters:
base – The I3C peripheral base address.
rxBuff – The pointer to the data to be transferred.
rxSize – The length in bytes of the data to be transferred.
- Returns:
Error or success status returned by API.
-
void I3C_SlaveTransferCreateHandle(I3C_Type *base, i3c_slave_handle_t *handle, i3c_slave_transfer_callback_t callback, void *userData)
Creates a new handle for the I3C slave non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I3C_SlaveTransferAbort() API shall be called.
Note
The function also enables the NVIC IRQ for the input I3C. Need to notice that on some SoCs the I3C IRQ is connected to INTMUX, in this case user needs to enable the associated INTMUX IRQ in application.
- Parameters:
base – The I3C peripheral base address.
handle – [out] Pointer to the I3C slave driver handle.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
-
status_t I3C_SlaveTransferNonBlocking(I3C_Type *base, i3c_slave_handle_t *handle, uint32_t eventMask)
Starts accepting slave transfers.
Call this API after calling I2C_SlaveInit() and I3C_SlaveTransferCreateHandle() to start processing transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the callback that was passed into the call to I3C_SlaveTransferCreateHandle(). The callback is always invoked from the interrupt context.
The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i3c_slave_transfer_event_t enumerators for the events you wish to receive. The kI3C_SlaveTransmitEvent and kI3C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI3C_SlaveAllEvents constant is provided as a convenient way to enable all events.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to struct: _i3c_slave_handle structure which stores the transfer state.
eventMask – Bit mask formed by OR’ing together i3c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI3C_SlaveAllEvents to enable all events.
- Return values:
kStatus_Success – Slave transfers were successfully started.
kStatus_I3C_Busy – Slave transfers have already been started on this handle.
-
status_t I3C_SlaveTransferGetCount(I3C_Type *base, i3c_slave_handle_t *handle, size_t *count)
Gets the slave transfer status during a non-blocking transfer.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to i2c_slave_handle_t structure.
count – [out] Pointer to a value to hold the number of bytes transferred. May be NULL if the count is not required.
- Return values:
kStatus_Success –
kStatus_NoTransferInProgress –
-
void I3C_SlaveTransferAbort(I3C_Type *base, i3c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.
Note
This API could be called at any time to stop slave for handling the bus events.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to struct: _i3c_slave_handle structure which stores the transfer state.
- Return values:
kStatus_Success –
kStatus_I3C_Idle –
-
void I3C_SlaveTransferHandleIRQ(I3C_Type *base, void *intHandle)
Reusable routine to handle slave interrupts.
Note
This function does not need to be called unless you are reimplementing the non blocking API’s interrupt handler routines to add special functionality.
- Parameters:
base – The I3C peripheral base address.
intHandle – Pointer to struct: _i3c_slave_handle structure which stores the transfer state.
-
enum _i3c_slave_flags
I3C slave peripheral flags.
The following status register flags can be cleared:
kI3C_SlaveBusStartFlag
kI3C_SlaveMatchedFlag
kI3C_SlaveBusStopFlag
Only below flags can be enabled as interrupts.
kI3C_SlaveBusStartFlag
kI3C_SlaveMatchedFlag
kI3C_SlaveBusStopFlag
kI3C_SlaveRxReadyFlag
kI3C_SlaveTxReadyFlag
kI3C_SlaveDynamicAddrChangedFlag
kI3C_SlaveReceivedCCCFlag
kI3C_SlaveErrorFlag
kI3C_SlaveHDRCommandMatchFlag
kI3C_SlaveCCCHandledFlag
kI3C_SlaveEventSentFlag
Note
These enums are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI3C_SlaveNotStopFlag
Slave status not stop flag
-
enumerator kI3C_SlaveMessageFlag
Slave status message, indicating slave is listening to the bus traffic or responding
-
enumerator kI3C_SlaveRequiredReadFlag
Slave status required, either is master doing SDR read from slave, or is IBI pushing out.
-
enumerator kI3C_SlaveRequiredWriteFlag
Slave status request write, master is doing SDR write to slave, except slave in ENTDAA mode
-
enumerator kI3C_SlaveBusDAAFlag
I3C bus is in ENTDAA mode
-
enumerator kI3C_SlaveBusHDRModeFlag
I3C bus is in HDR mode
-
enumerator kI3C_SlaveBusStartFlag
Start/Re-start event is seen since the bus was last cleared
-
enumerator kI3C_SlaveMatchedFlag
Slave address(dynamic/static) matched since last cleared
-
enumerator kI3C_SlaveBusStopFlag
Stop event is seen since the bus was last cleared
-
enumerator kI3C_SlaveRxReadyFlag
Rx data ready in rx buffer flag
-
enumerator kI3C_SlaveTxReadyFlag
Tx buffer ready for Tx data flag
-
enumerator kI3C_SlaveDynamicAddrChangedFlag
Slave dynamic address has been assigned, re-assigned, or lost
-
enumerator kI3C_SlaveReceivedCCCFlag
Slave received Common command code
-
enumerator kI3C_SlaveErrorFlag
Error occurred flag
-
enumerator kI3C_SlaveHDRCommandMatchFlag
High data rate command match
-
enumerator kI3C_SlaveCCCHandledFlag
Slave received Common command code is handled by I3C module
-
enumerator kI3C_SlaveEventSentFlag
Slave IBI/P2P/MR/HJ event has been sent
-
enumerator kI3C_SlaveIbiDisableFlag
Slave in band interrupt is disabled.
-
enumerator kI3C_SlaveMasterRequestDisabledFlag
Slave master request is disabled.
-
enumerator kI3C_SlaveHotJoinDisabledFlag
Slave Hot-Join is disabled.
-
enumerator kI3C_SlaveClearFlags
All flags which are cleared by the driver upon starting a transfer.
-
enumerator kI3C_SlaveAllIrqFlags
-
enum _i3c_slave_error_flags
I3C slave error flags to indicate the causes.
Note
These enums are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI3C_SlaveErrorOverrunFlag
Slave internal from-bus buffer/FIFO overrun.
-
enumerator kI3C_SlaveErrorUnderrunFlag
Slave internal to-bus buffer/FIFO underrun
-
enumerator kI3C_SlaveErrorUnderrunNakFlag
Slave internal from-bus buffer/FIFO underrun and NACK error
-
enumerator kI3C_SlaveErrorTermFlag
Terminate error from master
-
enumerator kI3C_SlaveErrorInvalidStartFlag
Slave invalid start flag
-
enumerator kI3C_SlaveErrorSdrParityFlag
SDR parity error
-
enumerator kI3C_SlaveErrorHdrParityFlag
HDR parity error
-
enumerator kI3C_SlaveErrorHdrCRCFlag
HDR-DDR CRC error
-
enumerator kI3C_SlaveErrorS0S1Flag
S0 or S1 error
-
enumerator kI3C_SlaveErrorOverreadFlag
Over-read error
-
enumerator kI3C_SlaveErrorOverwriteFlag
Over-write error
-
enumerator kI3C_SlaveErrorOverrunFlag
-
enum _i3c_slave_event
I3C slave.event.
Values:
-
enumerator kI3C_SlaveEventNormal
Normal mode.
-
enumerator kI3C_SlaveEventIBI
In band interrupt event.
-
enumerator kI3C_SlaveEventMasterReq
Master request event.
-
enumerator kI3C_SlaveEventHotJoinReq
Hot-join event.
-
enumerator kI3C_SlaveEventNormal
-
enum _i3c_slave_activity_state
I3C slave.activity state.
Values:
-
enumerator kI3C_SlaveNoLatency
Normal bus operation
-
enumerator kI3C_SlaveLatency1Ms
1ms of latency.
-
enumerator kI3C_SlaveLatency100Ms
100ms of latency.
-
enumerator kI3C_SlaveLatency10S
10s latency.
-
enumerator kI3C_SlaveNoLatency
-
enum _i3c_slave_transfer_event
Set of events sent to the callback for non blocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I3C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
Values:
-
enumerator kI3C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.
-
enumerator kI3C_SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).
-
enumerator kI3C_SlaveReceiveEvent
Callback is requested to provide a buffer in which to place received data (slave-receiver role).
-
enumerator kI3C_SlaveRequiredTransmitEvent
Callback is requested to provide a buffer in which to place received data (slave-receiver role).
-
enumerator kI3C_SlaveStartEvent
A start/repeated start was detected.
-
enumerator kI3C_SlaveHDRCommandMatchEvent
Slave Match HDR Command.
-
enumerator kI3C_SlaveCompletionEvent
A stop was detected, completing the transfer.
-
enumerator kI3C_SlaveRequestSentEvent
Slave request event sent.
-
enumerator kI3C_SlaveReceivedCCCEvent
Slave received CCC event, need to handle by application.
-
enumerator kI3C_SlaveAllEvents
Bit mask of all available events.
-
enumerator kI3C_SlaveAddressMatchEvent
-
typedef enum _i3c_slave_event i3c_slave_event_t
I3C slave.event.
-
typedef enum _i3c_slave_activity_state i3c_slave_activity_state_t
I3C slave.activity state.
-
typedef struct _i3c_slave_config i3c_slave_config_t
Structure with settings to initialize the I3C slave module.
This structure holds configuration settings for the I3C peripheral. To initialize this structure to reasonable defaults, call the I3C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
-
typedef enum _i3c_slave_transfer_event i3c_slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I3C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
-
typedef struct _i3c_slave_transfer i3c_slave_transfer_t
I3C slave transfer structure.
-
typedef struct _i3c_slave_handle i3c_slave_handle_t
-
typedef void (*i3c_slave_transfer_callback_t)(I3C_Type *base, i3c_slave_transfer_t *transfer, void *userData)
Slave event callback function pointer type.
This callback is used only for the slave non-blocking transfer API. To install a callback, use the I3C_SlaveSetCallback() function after you have created a handle.
- Param base:
Base address for the I3C instance on which the event occurred.
- Param transfer:
Pointer to transfer descriptor containing values passed to and/or from the callback.
- Param userData:
Arbitrary pointer-sized value passed from the application.
-
typedef void (*i3c_slave_isr_t)(I3C_Type *base, void *handle)
Typedef for slave interrupt handler.
-
struct _i3c_slave_config
- #include <fsl_i3c.h>
Structure with settings to initialize the I3C slave module.
This structure holds configuration settings for the I3C peripheral. To initialize this structure to reasonable defaults, call the I3C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
Public Members
-
bool enableSlave
Whether to enable slave.
-
uint8_t staticAddr
Static address.
-
uint16_t vendorID
Device vendor ID(manufacture ID).
-
uint32_t partNumber
Device part number info
-
uint8_t dcr
Device characteristics register information.
-
uint8_t bcr
Bus characteristics register information.
-
uint8_t hdrMode
Support hdr mode, could be OR logic in enumeration:i3c_hdr_mode_t.
-
bool nakAllRequest
Whether to reply NAK to all requests except broadcast CCC.
-
bool ignoreS0S1Error
Whether to ignore S0/S1 error in SDR mode.
-
bool offline
Whether to wait 60 us of bus quiet or HDR request to ensure slave track SDR mode safely.
-
bool matchSlaveStartStop
Whether to assert start/stop status only the time slave is addressed.
-
uint32_t maxWriteLength
Maximum write length.
-
uint32_t maxReadLength
Maximum read length.
-
bool enableSlave
-
struct _i3c_slave_transfer
- #include <fsl_i3c.h>
I3C slave transfer structure.
Public Members
-
uint32_t event
Reason the callback is being invoked.
-
uint8_t *txData
Transfer buffer
-
size_t txDataSize
Transfer size
-
uint8_t *rxData
Transfer buffer
-
size_t rxDataSize
Transfer size
-
status_t completionStatus
Success or error code describing how the transfer completed. Only applies for kI3C_SlaveCompletionEvent.
-
size_t transferredCount
Number of bytes actually transferred since start or last repeated start.
-
uint32_t event
-
struct _i3c_slave_handle
- #include <fsl_i3c.h>
I3C slave handle structure.
Note
The contents of this structure are private and subject to change.
Public Members
-
i3c_slave_transfer_t transfer
I3C slave transfer copy.
-
bool isBusy
Whether transfer is busy.
-
bool wasTransmit
Whether the last transfer was a transmit.
-
uint32_t eventMask
Mask of enabled events.
-
uint32_t transferredCount
Count of bytes transferred.
-
i3c_slave_transfer_callback_t callback
Callback function called at transfer event.
-
void *userData
Callback parameter passed to callback.
-
uint8_t txFifoSize
Tx Fifo size
-
i3c_slave_transfer_t transfer
I3C Slave DMA Driver
-
void I3C_SlaveTransferCreateHandleEDMA(I3C_Type *base, i3c_slave_edma_handle_t *handle, i3c_slave_edma_callback_t callback, void *userData, edma_handle_t *rxDmaHandle, edma_handle_t *txDmaHandle)
Create a new handle for the I3C slave DMA APIs.
The creation of a handle is for use with the DMA APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I3C_SlaveTransferAbortDMA() API shall be called.
For devices where the I3C send and receive DMA requests are OR’d together, the txDmaHandle parameter is ignored and may be set to NULL.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to the I3C slave driver handle.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
rxDmaHandle – Handle for the DMA receive channel. Created by the user prior to calling this function.
txDmaHandle – Handle for the DMA transmit channel. Created by the user prior to calling this function.
-
status_t I3C_SlaveTransferEDMA(I3C_Type *base, i3c_slave_edma_handle_t *handle, i3c_slave_edma_transfer_t *transfer, uint32_t eventMask)
Prepares for a non-blocking DMA-based transaction on the I3C bus.
The API will do DMA configuration according to the input transfer descriptor, and the data will be transferred when there’s bus master requesting transfer from/to this slave. So the timing of call to this API need be aligned with master application to ensure the transfer is executed as expected. Callback specified when the handle was created is invoked when the transaction has completed.
- Parameters:
base – The I3C peripheral base address.
handle – Pointer to the I3C slave driver handle.
transfer – The pointer to the transfer descriptor.
eventMask – Bit mask formed by OR’ing together i3c_slave_transfer_event_t enumerators to specify which events to send to the callback. The transmit and receive events is not allowed to be enabled.
- Return values:
kStatus_Success – The transaction was started successfully.
kStatus_I3C_Busy – Either another master is currently utilizing the bus, or another DMA transaction is already in progress.
kStatus_Fail – The transaction can’t be set.
-
void I3C_SlaveTransferAbortEDMA(I3C_Type *base, i3c_slave_edma_handle_t *handle)
Abort a slave edma non-blocking transfer in a early time.
- Parameters:
base – I3C peripheral base address
handle – pointer to i3c_slave_edma_handle_t structure
-
void I3C_SlaveTransferEDMAHandleIRQ(I3C_Type *base, void *i3cHandle)
Reusable routine to handle slave interrupts.
Note
This function does not need to be called unless you are reimplementing the nonblocking API’s interrupt handler routines to add special functionality.
- Parameters:
base – The I3C peripheral base address.
i3cHandle – Pointer to the I3C slave DMA driver handle.
-
typedef struct _i3c_slave_edma_handle i3c_slave_edma_handle_t
-
typedef struct _i3c_slave_edma_transfer i3c_slave_edma_transfer_t
I3C slave transfer structure.
-
typedef void (*i3c_slave_edma_callback_t)(I3C_Type *base, i3c_slave_edma_transfer_t *transfer, void *userData)
Slave event callback function pointer type.
This callback is used only for the slave DMA transfer API.
- Param base:
Base address for the I3C instance on which the event occurred.
- Param handle:
Pointer to slave DMA transfer handle.
- Param transfer:
Pointer to transfer descriptor containing values passed to and/or from the callback.
- Param userData:
Arbitrary pointer-sized value passed from the application.
-
struct _i3c_slave_edma_transfer
- #include <fsl_i3c_edma.h>
I3C slave transfer structure.
Public Members
-
uint32_t event
Reason the callback is being invoked.
-
uint8_t *txData
Transfer buffer
-
size_t txDataSize
Transfer size
-
uint8_t *rxData
Transfer buffer
-
size_t rxDataSize
Transfer size
-
status_t completionStatus
Success or error code describing how the transfer completed. Only applies for kI3C_SlaveCompletionEvent.
-
uint32_t event
-
struct _i3c_slave_edma_handle
- #include <fsl_i3c_edma.h>
I3C slave edma handle structure.
Note
The contents of this structure are private and subject to change.
Public Members
-
I3C_Type *base
I3C base pointer.
-
i3c_slave_edma_transfer_t transfer
I3C slave transfer copy.
-
bool isBusy
Whether transfer is busy.
-
bool wasTransmit
Whether the last transfer was a transmit.
-
uint32_t eventMask
Mask of enabled events.
-
i3c_slave_edma_callback_t callback
Callback function called at transfer event.
-
edma_handle_t *rxDmaHandle
Handle for receive DMA channel.
-
edma_handle_t *txDmaHandle
Handle for transmit DMA channel.
-
void *userData
Callback parameter passed to callback.
-
I3C_Type *base
INPUTMUX: Input Multiplexing Driver
-
enum _inputmux_index_t
Values:
-
enumerator kINPUTMUX_INDEX_CTIMER0CAPTSEL0
-
enumerator kINPUTMUX_INDEX_CTIMER0CAPTSEL1
-
enumerator kINPUTMUX_INDEX_CTIMER0CAPTSEL2
-
enumerator kINPUTMUX_INDEX_CTIMER0CAPTSEL3
-
enumerator kINPUTMUX_INDEX_CTIMER1CAPTSEL0
-
enumerator kINPUTMUX_INDEX_CTIMER1CAPTSEL1
-
enumerator kINPUTMUX_INDEX_CTIMER1CAPTSEL2
-
enumerator kINPUTMUX_INDEX_CTIMER1CAPTSEL3
-
enumerator kINPUTMUX_INDEX_CTIMER2CAPTSEL0
-
enumerator kINPUTMUX_INDEX_CTIMER2CAPTSEL1
-
enumerator kINPUTMUX_INDEX_CTIMER2CAPTSEL2
-
enumerator kINPUTMUX_INDEX_CTIMER2CAPTSEL3
-
enumerator kINPUTMUX_INDEX_ADC0_TRIGSEL0
-
enumerator kINPUTMUX_INDEX_ADC0_TRIGSEL1
-
enumerator kINPUTMUX_INDEX_ADC0_TRIGSEL2
-
enumerator kINPUTMUX_INDEX_ADC0_TRIGSEL3
-
enumerator kINPUTMUX_INDEX_QDC0_ICAPSEL1
-
enumerator kINPUTMUX_INDEX_QDC0_ICAPSEL2
-
enumerator kINPUTMUX_INDEX_QDC0_ICAPSEL3
-
enumerator kINPUTMUX_INDEX_QDC1_ICAPSEL1
-
enumerator kINPUTMUX_INDEX_QDC1_ICAPSEL2
-
enumerator kINPUTMUX_INDEX_QDC1_ICAPSEL3
-
enumerator kINPUTMUX_INDEX_FLEXPWM0_FAULTSEL0
-
enumerator kINPUTMUX_INDEX_FLEXPWM0_FAULTSEL1
-
enumerator kINPUTMUX_INDEX_FLEXPWM0_FAULTSEL2
-
enumerator kINPUTMUX_INDEX_FLEXPWM0_FAULTSEL3
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL0
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL1
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL2
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL3
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL4
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL5
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL6
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL7
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL8
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL9
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL10
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL11
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL12
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL13
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL14
-
enumerator kINPUTMUX_INDEX_AOI0_TRIGSEL15
-
enumerator kINPUTMUX_INDEX_EXT_TRIGSEL0
-
enumerator kINPUTMUX_INDEX_EXT_TRIGSEL1
-
enumerator kINPUTMUX_INDEX_EXT_TRIGSEL2
-
enumerator kINPUTMUX_INDEX_EXT_TRIGSEL3
-
enumerator kINPUTMUX_INDEX_EXT_TRIGSEL4
-
enumerator kINPUTMUX_INDEX_EXT_TRIGSEL6
-
enumerator kINPUTMUX_INDEX_EXT_TRIGSEL7
-
enumerator kINPUTMUX_INDEX_CTIMER0CAPTSEL0
-
enum _inputmux_connection_t
INPUTMUX connections type.
Values:
-
enumerator kINPUTMUX_CtimerInp0ToTimer0Captsel
TIMER0 CAPTSEL.
-
enumerator kINPUTMUX_CtimerInp1ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp2ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp3ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp4ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp5ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp6ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp7ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp8ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp9ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp10ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp11ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp12ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp13ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp14ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp15ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp16ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp17ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp18ToTimer0Captsel
-
enumerator kINPUTMUX_CtimerInp19ToTimer0Captsel
-
enumerator kINPUTMUX_Usb0StartOfFrameToTimer0Captsel
-
enumerator kINPUTMUX_Aoi0Out0ToTimer0Captsel
-
enumerator kINPUTMUX_Aoi0Out1ToTimer0Captsel
-
enumerator kINPUTMUX_Aoi0Out2ToTimer0Captsel
-
enumerator kINPUTMUX_Aoi0Out3ToTimer0Captsel
-
enumerator kINPUTMUX_Adc0Tcomp0ToTimer0Captsel
-
enumerator kINPUTMUX_Adc0Tcomp1ToTimer0Captsel
-
enumerator kINPUTMUX_Adc0Tcomp2ToTimer0Captsel
-
enumerator kINPUTMUX_Adc0Tcomp3ToTimer0Captsel
-
enumerator kINPUTMUX_Cmp0OutToTimer0Captsel
-
enumerator kINPUTMUX_Cmp1OutToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer1M1ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer1M2ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer1M3ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer2M1ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer2M2ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer2M3ToTimer0Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToTimer0Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToTimer0Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToTimer0Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToTimer0Captsel
-
enumerator kINPUTMUX_Qdc0PosMatch0ToTimer0Captsel
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToTimer0Captsel
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToTimer0Captsel
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToTimer0Captsel
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToTimer0Captsel
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToTimer0Captsel
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToTimer0Captsel
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToTimer0Captsel
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToTimer0Captsel
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToTimer0Captsel
-
enumerator kINPUTMUX_Aoi1Out0ToTimer0Captsel
-
enumerator kINPUTMUX_Aoi1Out1ToTimer0Captsel
-
enumerator kINPUTMUX_Aoi1Out2ToTimer0Captsel
-
enumerator kINPUTMUX_Aoi1Out3ToTimer0Captsel
-
enumerator kINPUTMUX_Adc1Tcomp0ToTimer0Captsel
-
enumerator kINPUTMUX_Adc1Tcomp1ToTimer0Captsel
-
enumerator kINPUTMUX_Adc1Tcomp2ToTimer0Captsel
-
enumerator kINPUTMUX_Adc1Tcomp3ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer3M1ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer3M2ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer3M3ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer4M1ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer4M2ToTimer0Captsel
-
enumerator kINPUTMUX_Ctimer4M3ToTimer0Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToTimer0Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToTimer0Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToTimer0Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToTimer0Captsel
-
enumerator kINPUTMUX_Qdc1PosMatch0ToTimer0Captsel
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToTimer0Captsel
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToTimer0Captsel
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToTimer0Captsel
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToTimer0Captsel
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToTimer0Captsel
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToTimer0Captsel
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToTimer0Captsel
Timer1 CAPTSEL.
-
enumerator kINPUTMUX_CtimerInp0ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp1ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp2ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp3ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp4ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp5ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp6ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp7ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp8ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp9ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp10ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp11ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp12ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp13ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp14ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp15ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp16ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp17ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp18ToTimer1Captsel
-
enumerator kINPUTMUX_CtimerInp19ToTimer1Captsel
-
enumerator kINPUTMUX_Usb0StartOfFrameToTimer1Captsel
-
enumerator kINPUTMUX_Aoi0Out0ToTimer1Captsel
-
enumerator kINPUTMUX_Aoi0Out1ToTimer1Captsel
-
enumerator kINPUTMUX_Aoi0Out2ToTimer1Captsel
-
enumerator kINPUTMUX_Aoi0Out3ToTimer1Captsel
-
enumerator kINPUTMUX_Adc0Tcomp0ToTimer1Captsel
-
enumerator kINPUTMUX_Adc0Tcomp1ToTimer1Captsel
-
enumerator kINPUTMUX_Adc0Tcomp2ToTimer1Captsel
-
enumerator kINPUTMUX_Adc0Tcomp3ToTimer1Captsel
-
enumerator kINPUTMUX_Cmp0OutToTimer1Captsel
-
enumerator kINPUTMUX_Cmp1OutToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer0M1ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer0M2ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer0M3ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer2M1ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer2M2ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer2M3ToTimer1Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToTimer1Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToTimer1Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToTimer1Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToTimer1Captsel
-
enumerator kINPUTMUX_Qdc0PosMatch0ToTimer1Captsel
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToTimer1Captsel
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToTimer1Captsel
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToTimer1Captsel
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToTimer1Captsel
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToTimer1Captsel
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToTimer1Captsel
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToTimer1Captsel
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToTimer1Captsel
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToTimer1Captsel
-
enumerator kINPUTMUX_Aoi1Out0ToTimer1Captsel
-
enumerator kINPUTMUX_Aoi1Out1ToTimer1Captsel
-
enumerator kINPUTMUX_Aoi1Out2ToTimer1Captsel
-
enumerator kINPUTMUX_Aoi1Out3ToTimer1Captsel
-
enumerator kINPUTMUX_Adc1Tcomp0ToTimer1Captsel
-
enumerator kINPUTMUX_Adc1Tcomp1ToTimer1Captsel
-
enumerator kINPUTMUX_Adc1Tcomp2ToTimer1Captsel
-
enumerator kINPUTMUX_Adc1Tcomp3ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer3M1ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer3M2ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer3M3ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer4M1ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer4M2ToTimer1Captsel
-
enumerator kINPUTMUX_Ctimer4M3ToTimer1Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToTimer1Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToTimer1Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToTimer1Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToTimer1Captsel
-
enumerator kINPUTMUX_Qdc1PosMatch0ToTimer1Captsel
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToTimer1Captsel
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToTimer1Captsel
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToTimer1Captsel
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToTimer1Captsel
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToTimer1Captsel
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToTimer1Captsel
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToTimer1Captsel
Timer2 CAPTSEL.
-
enumerator kINPUTMUX_CtimerInp0ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp1ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp2ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp3ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp4ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp5ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp6ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp7ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp8ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp9ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp10ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp11ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp12ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp13ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp14ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp15ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp16ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp17ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp18ToTimer2Captsel
-
enumerator kINPUTMUX_CtimerInp19ToTimer2Captsel
-
enumerator kINPUTMUX_Usb0StartOfFrameToTimer2Captsel
-
enumerator kINPUTMUX_Aoi0Out0ToTimer2Captsel
-
enumerator kINPUTMUX_Aoi0Out1ToTimer2Captsel
-
enumerator kINPUTMUX_Aoi0Out2ToTimer2Captsel
-
enumerator kINPUTMUX_Aoi0Out3ToTimer2Captsel
-
enumerator kINPUTMUX_Adc0Tcomp0ToTimer2Captsel
-
enumerator kINPUTMUX_Adc0Tcomp1ToTimer2Captsel
-
enumerator kINPUTMUX_Adc0Tcomp2ToTimer2Captsel
-
enumerator kINPUTMUX_Adc0Tcomp3ToTimer2Captsel
-
enumerator kINPUTMUX_Cmp0OutToTimer2Captsel
-
enumerator kINPUTMUX_Cmp1OutToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer0M1ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer0M2ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer0M3ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer1M1ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer1M2ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer1M3ToTimer2Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToTimer2Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToTimer2Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToTimer2Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToTimer2Captsel
-
enumerator kINPUTMUX_Qdc0PosMatch0ToTimer2Captsel
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToTimer2Captsel
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToTimer2Captsel
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToTimer2Captsel
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToTimer2Captsel
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToTimer2Captsel
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToTimer2Captsel
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToTimer2Captsel
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToTimer2Captsel
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToTimer2Captsel
-
enumerator kINPUTMUX_Aoi1Out0ToTimer2Captsel
-
enumerator kINPUTMUX_Aoi1Out1ToTimer2Captsel
-
enumerator kINPUTMUX_Aoi1Out2ToTimer2Captsel
-
enumerator kINPUTMUX_Aoi1Out3ToTimer2Captsel
-
enumerator kINPUTMUX_Adc1Tcomp0ToTimer2Captsel
-
enumerator kINPUTMUX_Adc1Tcomp1ToTimer2Captsel
-
enumerator kINPUTMUX_Adc1Tcomp2ToTimer2Captsel
-
enumerator kINPUTMUX_Adc1Tcomp3ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer3M1ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer3M2ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer3M3ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer4M1ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer4M2ToTimer2Captsel
-
enumerator kINPUTMUX_Ctimer4M3ToTimer2Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToTimer2Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToTimer2Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToTimer2Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToTimer2Captsel
-
enumerator kINPUTMUX_Qdc1PosMatch0ToTimer2Captsel
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToTimer2Captsel
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToTimer2Captsel
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToTimer2Captsel
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToTimer2Captsel
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToTimer2Captsel
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToTimer2Captsel
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToTimer2Captsel
Timer3 CAPTSEL.
-
enumerator kINPUTMUX_CtimerInp0ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp1ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp2ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp3ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp4ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp5ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp6ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp7ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp8ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp9ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp10ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp11ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp12ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp13ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp14ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp15ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp16ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp17ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp18ToTimer3Captsel
-
enumerator kINPUTMUX_CtimerInp19ToTimer3Captsel
-
enumerator kINPUTMUX_Usb0StartOfFrameToTimer3Captsel
-
enumerator kINPUTMUX_Aoi0Out0ToTimer3Captsel
-
enumerator kINPUTMUX_Aoi0Out1ToTimer3Captsel
-
enumerator kINPUTMUX_Aoi0Out2ToTimer3Captsel
-
enumerator kINPUTMUX_Aoi0Out3ToTimer3Captsel
-
enumerator kINPUTMUX_Adc0Tcomp0ToTimer3Captsel
-
enumerator kINPUTMUX_Adc0Tcomp1ToTimer3Captsel
-
enumerator kINPUTMUX_Adc0Tcomp2ToTimer3Captsel
-
enumerator kINPUTMUX_Adc0Tcomp3ToTimer3Captsel
-
enumerator kINPUTMUX_Cmp0OutToTimer3Captsel
-
enumerator kINPUTMUX_Cmp1OutToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer0M1ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer0M2ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer0M3ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer1M1ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer1M2ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer1M3ToTimer3Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToTimer3Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToTimer3Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToTimer3Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToTimer3Captsel
-
enumerator kINPUTMUX_Qdc0PosMatch0ToTimer3Captsel
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToTimer3Captsel
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToTimer3Captsel
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToTimer3Captsel
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToTimer3Captsel
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToTimer3Captsel
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToTimer3Captsel
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToTimer3Captsel
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToTimer3Captsel
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToTimer3Captsel
-
enumerator kINPUTMUX_Aoi1Out0ToTimer3Captsel
-
enumerator kINPUTMUX_Aoi1Out1ToTimer3Captsel
-
enumerator kINPUTMUX_Aoi1Out2ToTimer3Captsel
-
enumerator kINPUTMUX_Aoi1Out3ToTimer3Captsel
-
enumerator kINPUTMUX_Adc1Tcomp0ToTimer3Captsel
-
enumerator kINPUTMUX_Adc1Tcomp1ToTimer3Captsel
-
enumerator kINPUTMUX_Adc1Tcomp2ToTimer3Captsel
-
enumerator kINPUTMUX_Adc1Tcomp3ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer2M1ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer2M2ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer2M3ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer4M1ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer4M2ToTimer3Captsel
-
enumerator kINPUTMUX_Ctimer4M3ToTimer3Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToTimer3Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToTimer3Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToTimer3Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToTimer3Captsel
-
enumerator kINPUTMUX_Qdc1PosMatch0ToTimer3Captsel
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToTimer3Captsel
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToTimer3Captsel
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToTimer3Captsel
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToTimer3Captsel
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToTimer3Captsel
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToTimer3Captsel
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToTimer3Captsel
Timer4 CAPTSEL.
-
enumerator kINPUTMUX_CtimerInp0ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp1ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp2ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp3ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp4ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp5ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp6ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp7ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp8ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp9ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp10ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp11ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp12ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp13ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp14ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp15ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp16ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp17ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp18ToTimer4Captsel
-
enumerator kINPUTMUX_CtimerInp19ToTimer4Captsel
-
enumerator kINPUTMUX_Usb0StartOfFrameToTimer4Captsel
-
enumerator kINPUTMUX_Aoi0Out0ToTimer4Captsel
-
enumerator kINPUTMUX_Aoi0Out1ToTimer4Captsel
-
enumerator kINPUTMUX_Aoi0Out2ToTimer4Captsel
-
enumerator kINPUTMUX_Aoi0Out3ToTimer4Captsel
-
enumerator kINPUTMUX_Adc0Tcomp0ToTimer4Captsel
-
enumerator kINPUTMUX_Adc0Tcomp1ToTimer4Captsel
-
enumerator kINPUTMUX_Adc0Tcomp2ToTimer4Captsel
-
enumerator kINPUTMUX_Adc0Tcomp3ToTimer4Captsel
-
enumerator kINPUTMUX_Cmp0OutToTimer4Captsel
-
enumerator kINPUTMUX_Cmp1OutToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer0M1ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer0M2ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer0M3ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer1M1ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer1M2ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer1M3ToTimer4Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToTimer4Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToTimer4Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToTimer4Captsel
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToTimer4Captsel
-
enumerator kINPUTMUX_Qdc0PosMatch0ToTimer4Captsel
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToTimer4Captsel
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToTimer4Captsel
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToTimer4Captsel
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToTimer4Captsel
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToTimer4Captsel
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToTimer4Captsel
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToTimer4Captsel
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToTimer4Captsel
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToTimer4Captsel
-
enumerator kINPUTMUX_Aoi1Out0ToTimer4Captsel
-
enumerator kINPUTMUX_Aoi1Out1ToTimer4Captsel
-
enumerator kINPUTMUX_Aoi1Out2ToTimer4Captsel
-
enumerator kINPUTMUX_Aoi1Out3ToTimer4Captsel
-
enumerator kINPUTMUX_Adc1Tcomp0ToTimer4Captsel
-
enumerator kINPUTMUX_Adc1Tcomp1ToTimer4Captsel
-
enumerator kINPUTMUX_Adc1Tcomp2ToTimer4Captsel
-
enumerator kINPUTMUX_Adc1Tcomp3ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer2M1ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer2M2ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer2M3ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer3M1ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer3M2ToTimer4Captsel
-
enumerator kINPUTMUX_Ctimer3M3ToTimer4Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToTimer4Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToTimer4Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToTimer4Captsel
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToTimer4Captsel
-
enumerator kINPUTMUX_Qdc1PosMatch0ToTimer4Captsel
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToTimer4Captsel
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToTimer4Captsel
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToTimer4Captsel
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToTimer4Captsel
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToTimer4Captsel
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToTimer4Captsel
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToTimer4Captsel
TIMER0 Trigger.
-
enumerator kINPUTMUX_CtimerInp0ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp1ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp2ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp3ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp4ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp5ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp6ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp7ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp8ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp9ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp10ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp11ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp12ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp13ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp14ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp15ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp16ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp17ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp18ToTimer0Trigger
-
enumerator kINPUTMUX_CtimerInp19ToTimer0Trigger
-
enumerator kINPUTMUX_Usb0StartOfFrameToTimer0Trigger
-
enumerator kINPUTMUX_Aoi0Out0ToTimer0Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToTimer0Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToTimer0Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToTimer0Trigger
-
enumerator kINPUTMUX_Adc0Tcomp0ToTimer0Trigger
-
enumerator kINPUTMUX_Adc0Tcomp1ToTimer0Trigger
-
enumerator kINPUTMUX_Adc0Tcomp2ToTimer0Trigger
-
enumerator kINPUTMUX_Adc0Tcomp3ToTimer0Trigger
-
enumerator kINPUTMUX_Cmp0OutToTimer0Trigger
-
enumerator kINPUTMUX_Cmp1OutToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToTimer0Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToTimer0Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToTimer0Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToTimer0Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToTimer0Trigger
-
enumerator kINPUTMUX_Qdc0PosMatch0ToTimer0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToTimer0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToTimer0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToTimer0Trigger
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToTimer0Trigger
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToTimer0Trigger
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToTimer0Trigger
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToTimer0Trigger
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToTimer0Trigger
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToTimer0Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToTimer0Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToTimer0Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToTimer0Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToTimer0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp0ToTimer0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp1ToTimer0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp2ToTimer0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp3ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer3M1ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer4M1ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToTimer0Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToTimer0Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToTimer0Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToTimer0Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToTimer0Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToTimer0Trigger
-
enumerator kINPUTMUX_Qdc1PosMatch0ToTimer0Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToTimer0Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToTimer0Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToTimer0Trigger
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToTimer0Trigger
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToTimer0Trigger
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToTimer0Trigger
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToTimer0Trigger
Timer1 Trigger.
-
enumerator kINPUTMUX_CtimerInp0ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp1ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp2ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp3ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp4ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp5ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp6ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp7ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp8ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp9ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp10ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp11ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp12ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp13ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp14ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp15ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp16ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp17ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp18ToTimer1Trigger
-
enumerator kINPUTMUX_CtimerInp19ToTimer1Trigger
-
enumerator kINPUTMUX_Usb0StartOfFrameToTimer1Trigger
-
enumerator kINPUTMUX_Aoi0Out0ToTimer1Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToTimer1Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToTimer1Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToTimer1Trigger
-
enumerator kINPUTMUX_Adc0Tcomp0ToTimer1Trigger
-
enumerator kINPUTMUX_Adc0Tcomp1ToTimer1Trigger
-
enumerator kINPUTMUX_Adc0Tcomp2ToTimer1Trigger
-
enumerator kINPUTMUX_Adc0Tcomp3ToTimer1Trigger
-
enumerator kINPUTMUX_Cmp0OutToTimer1Trigger
-
enumerator kINPUTMUX_Cmp1OutToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToTimer1Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToTimer1Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToTimer1Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToTimer1Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToTimer1Trigger
-
enumerator kINPUTMUX_Qdc0PosMatch0ToTimer1Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToTimer1Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToTimer1Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToTimer1Trigger
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToTimer1Trigger
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToTimer1Trigger
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToTimer1Trigger
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToTimer1Trigger
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToTimer1Trigger
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToTimer1Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToTimer1Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToTimer1Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToTimer1Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToTimer1Trigger
-
enumerator kINPUTMUX_Adc1Tcomp0ToTimer1Trigger
-
enumerator kINPUTMUX_Adc1Tcomp1ToTimer1Trigger
-
enumerator kINPUTMUX_Adc1Tcomp2ToTimer1Trigger
-
enumerator kINPUTMUX_Adc1Tcomp3ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer3M1ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer4M1ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToTimer1Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToTimer1Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToTimer1Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToTimer1Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToTimer1Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToTimer1Trigger
-
enumerator kINPUTMUX_Qdc1PosMatch0ToTimer1Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToTimer1Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToTimer1Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToTimer1Trigger
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToTimer1Trigger
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToTimer1Trigger
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToTimer1Trigger
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToTimer1Trigger
Timer2 Trigger.
-
enumerator kINPUTMUX_CtimerInp0ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp1ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp2ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp3ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp4ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp5ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp6ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp7ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp8ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp9ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp10ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp11ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp12ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp13ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp14ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp15ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp16ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp17ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp18ToTimer2Trigger
-
enumerator kINPUTMUX_CtimerInp19ToTimer2Trigger
-
enumerator kINPUTMUX_Usb0StartOfFrameToTimer2Trigger
-
enumerator kINPUTMUX_Aoi0Out0ToTimer2Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToTimer2Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToTimer2Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToTimer2Trigger
-
enumerator kINPUTMUX_Adc0Tcomp0ToTimer2Trigger
-
enumerator kINPUTMUX_Adc0Tcomp1ToTimer2Trigger
-
enumerator kINPUTMUX_Adc0Tcomp2ToTimer2Trigger
-
enumerator kINPUTMUX_Adc0Tcomp3ToTimer2Trigger
-
enumerator kINPUTMUX_Cmp0OutToTimer2Trigger
-
enumerator kINPUTMUX_Cmp1OutToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToTimer2Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToTimer2Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToTimer2Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToTimer2Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToTimer2Trigger
-
enumerator kINPUTMUX_Qdc0PosMatch0ToTimer2Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToTimer2Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToTimer2Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToTimer2Trigger
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToTimer2Trigger
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToTimer2Trigger
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToTimer2Trigger
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToTimer2Trigger
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToTimer2Trigger
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToTimer2Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToTimer2Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToTimer2Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToTimer2Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToTimer2Trigger
-
enumerator kINPUTMUX_Adc1Tcomp0ToTimer2Trigger
-
enumerator kINPUTMUX_Adc1Tcomp1ToTimer2Trigger
-
enumerator kINPUTMUX_Adc1Tcomp2ToTimer2Trigger
-
enumerator kINPUTMUX_Adc1Tcomp3ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer3M1ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer4M1ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToTimer2Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToTimer2Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToTimer2Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToTimer2Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToTimer2Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToTimer2Trigger
-
enumerator kINPUTMUX_Qdc1PosMatch0ToTimer2Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToTimer2Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToTimer2Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToTimer2Trigger
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToTimer2Trigger
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToTimer2Trigger
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToTimer2Trigger
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToTimer2Trigger
Timer3 Trigger.
-
enumerator kINPUTMUX_CtimerInp0ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp1ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp2ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp3ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp4ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp5ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp6ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp7ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp8ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp9ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp10ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp11ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp12ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp13ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp14ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp15ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp16ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp17ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp18ToTimer3Trigger
-
enumerator kINPUTMUX_CtimerInp19ToTimer3Trigger
-
enumerator kINPUTMUX_Usb0StartOfFrameToTimer3Trigger
-
enumerator kINPUTMUX_Aoi0Out0ToTimer3Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToTimer3Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToTimer3Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToTimer3Trigger
-
enumerator kINPUTMUX_Adc0Tcomp0ToTimer3Trigger
-
enumerator kINPUTMUX_Adc0Tcomp1ToTimer3Trigger
-
enumerator kINPUTMUX_Adc0Tcomp2ToTimer3Trigger
-
enumerator kINPUTMUX_Adc0Tcomp3ToTimer3Trigger
-
enumerator kINPUTMUX_Cmp0OutToTimer3Trigger
-
enumerator kINPUTMUX_Cmp1OutToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToTimer3Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToTimer3Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToTimer3Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToTimer3Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToTimer3Trigger
-
enumerator kINPUTMUX_Qdc0PosMatch0ToTimer3Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToTimer3Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToTimer3Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToTimer3Trigger
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToTimer3Trigger
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToTimer3Trigger
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToTimer3Trigger
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToTimer3Trigger
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToTimer3Trigger
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToTimer3Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToTimer3Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToTimer3Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToTimer3Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToTimer3Trigger
-
enumerator kINPUTMUX_Adc1Tcomp0ToTimer3Trigger
-
enumerator kINPUTMUX_Adc1Tcomp1ToTimer3Trigger
-
enumerator kINPUTMUX_Adc1Tcomp2ToTimer3Trigger
-
enumerator kINPUTMUX_Adc1Tcomp3ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer4M1ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToTimer3Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToTimer3Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToTimer3Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToTimer3Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToTimer3Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToTimer3Trigger
-
enumerator kINPUTMUX_Qdc1PosMatch0ToTimer3Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToTimer3Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToTimer3Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToTimer3Trigger
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToTimer3Trigger
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToTimer3Trigger
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToTimer3Trigger
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToTimer3Trigger
Timer4 Trigger.
-
enumerator kINPUTMUX_CtimerInp0ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp1ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp2ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp3ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp4ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp5ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp6ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp7ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp8ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp9ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp10ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp11ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp12ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp13ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp14ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp15ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp16ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp17ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp18ToTimer4Trigger
-
enumerator kINPUTMUX_CtimerInp19ToTimer4Trigger
-
enumerator kINPUTMUX_Usb0StartOfFrameToTimer4Trigger
-
enumerator kINPUTMUX_Aoi0Out0ToTimer4Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToTimer4Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToTimer4Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToTimer4Trigger
-
enumerator kINPUTMUX_Adc0Tcomp0ToTimer4Trigger
-
enumerator kINPUTMUX_Adc0Tcomp1ToTimer4Trigger
-
enumerator kINPUTMUX_Adc0Tcomp2ToTimer4Trigger
-
enumerator kINPUTMUX_Adc0Tcomp3ToTimer4Trigger
-
enumerator kINPUTMUX_Cmp0OutToTimer4Trigger
-
enumerator kINPUTMUX_Cmp1OutToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToTimer4Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToTimer4Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToTimer4Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToTimer4Trigger
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToTimer4Trigger
-
enumerator kINPUTMUX_Qdc0PosMatch0ToTimer4Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToTimer4Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToTimer4Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToTimer4Trigger
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToTimer4Trigger
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToTimer4Trigger
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToTimer4Trigger
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToTimer4Trigger
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToTimer4Trigger
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToTimer4Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToTimer4Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToTimer4Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToTimer4Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToTimer4Trigger
-
enumerator kINPUTMUX_Adc1Tcomp0ToTimer4Trigger
-
enumerator kINPUTMUX_Adc1Tcomp1ToTimer4Trigger
-
enumerator kINPUTMUX_Adc1Tcomp2ToTimer4Trigger
-
enumerator kINPUTMUX_Adc1Tcomp3ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer3M1ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToTimer4Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToTimer4Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToTimer4Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToTimer4Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToTimer4Trigger
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToTimer4Trigger
-
enumerator kINPUTMUX_Qdc1PosMatch0ToTimer4Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToTimer4Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToTimer4Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToTimer4Trigger
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToTimer4Trigger
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToTimer4Trigger
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToTimer4Trigger
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToTimer4Trigger
Selection for frequency measurement reference clock.
-
enumerator kINPUTMUX_ClkInToFreqmeasRef
-
enumerator kINPUTMUX_FroOsc12MToFreqmeasRef
-
enumerator kINPUTMUX_FroHfDivToFreqmeasRef
-
enumerator kINPUTMUX_Clk16K1ToFreqmeasRef
-
enumerator kINPUTMUX_SlowClkToFreqmeasRef
-
enumerator kINPUTMUX_FreqmeClkIn0ToFreqmeasRef
-
enumerator kINPUTMUX_FreqmeClkIn1ToFreqmeasRef
-
enumerator kINPUTMUX_Aoi0Out0ToFreqmeasRef
-
enumerator kINPUTMUX_Aoi0Out1ToFreqmeasRef
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFreqmeasRef
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToFreqmeasRef
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFreqmeasRef
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToFreqmeasRef
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFreqmeasRef
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToFreqmeasRef
Selection for frequency measurement target clock.
-
enumerator kINPUTMUX_ClkInToFreqmeasTar
-
enumerator kINPUTMUX_FroOsc12MToFreqmeasTar
-
enumerator kINPUTMUX_FroHfDivToFreqmeasTar
-
enumerator kINPUTMUX_Clk16K1ToFreqmeasTar
-
enumerator kINPUTMUX_SlowClkToFreqmeasTar
-
enumerator kINPUTMUX_FreqmeClkIn0ToFreqmeasTar
-
enumerator kINPUTMUX_FreqmeClkIn1ToFreqmeasTar
-
enumerator kINPUTMUX_Aoi0Out0ToFreqmeasTar
-
enumerator kINPUTMUX_Aoi0Out1ToFreqmeasTar
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFreqmeasTar
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToFreqmeasTar
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFreqmeasTar
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToFreqmeasTar
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFreqmeasTar
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToFreqmeasTar
Cmp0 Trigger.
-
enumerator kINPUTMUX_Aoi0Out0ToCmp0Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToCmp0Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToCmp0Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToCmp0Trigger
-
enumerator kINPUTMUX_Cmp1OutToCmp0Trigger
-
enumerator kINPUTMUX_Ctimer0M0ToCmp0Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToCmp0Trigger
-
enumerator kINPUTMUX_Ctimer1M0ToCmp0Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToCmp0Trigger
-
enumerator kINPUTMUX_Ctimer2M0ToCmp0Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToCmp0Trigger
-
enumerator kINPUTMUX_Lptmr0ToCmp0Trigger
-
enumerator kINPUTMUX_Qdc0PosMatch0ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToCmp0Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_WuuToCmp0Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToCmp0Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToCmp0Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToCmp0Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToCmp0Trigger
-
enumerator kINPUTMUX_Ctimer3M0ToCmp0Trigger
-
enumerator kINPUTMUX_Ctimer3M1ToCmp0Trigger
-
enumerator kINPUTMUX_Ctimer4M0ToCmp0Trigger
-
enumerator kINPUTMUX_Ctimer4M1ToCmp0Trigger
-
enumerator kINPUTMUX_Qdc1PosMatch0ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToCmp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToCmp0Trigger
Cmp1 Trigger.
-
enumerator kINPUTMUX_Aoi0Out0ToCmp1Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToCmp1Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToCmp1Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToCmp1Trigger
-
enumerator kINPUTMUX_Cmp0OutToCmp1Trigger
-
enumerator kINPUTMUX_Ctimer0M0ToCmp1Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToCmp1Trigger
-
enumerator kINPUTMUX_Ctimer1M0ToCmp1Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToCmp1Trigger
-
enumerator kINPUTMUX_Ctimer2M0ToCmp1Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToCmp1Trigger
-
enumerator kINPUTMUX_Lptmr0ToCmp1Trigger
-
enumerator kINPUTMUX_Qdc0PosMatch0ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToCmp1Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_WuuToCmp1Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToCmp1Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToCmp1Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToCmp1Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToCmp1Trigger
-
enumerator kINPUTMUX_Ctimer3M0ToCmp1Trigger
-
enumerator kINPUTMUX_Ctimer3M1ToCmp1Trigger
-
enumerator kINPUTMUX_Ctimer4M0ToCmp1Trigger
-
enumerator kINPUTMUX_Ctimer4M1ToCmp1Trigger
-
enumerator kINPUTMUX_Qdc1PosMatch0ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToCmp1Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToCmp1Trigger
Adc0 Trigger.
-
enumerator kINPUTMUX_ArmTxevToAdc0Trigger
-
enumerator kINPUTMUX_Aoi0Out0ToAdc0Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToAdc0Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToAdc0Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToAdc0Trigger
-
enumerator kINPUTMUX_Cmp0OutToAdc0Trigger
-
enumerator kINPUTMUX_Cmp1OutToAdc0Trigger
-
enumerator kINPUTMUX_Ctimer0M0ToAdc0Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToAdc0Trigger
-
enumerator kINPUTMUX_Ctimer1M0ToAdc0Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToAdc0Trigger
-
enumerator kINPUTMUX_Ctimer2M0ToAdc0Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToAdc0Trigger
-
enumerator kINPUTMUX_Lptmr0ToAdc0Trigger
-
enumerator kINPUTMUX_Qdc0PosMatch0ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToAdc0Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_WuuToAdc0Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToAdc0Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToAdc0Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToAdc0Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToAdc0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp0ToAdc0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp1ToAdc0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp2ToAdc0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp3ToAdc0Trigger
-
enumerator kINPUTMUX_Ctimer3M0ToAdc0Trigger
-
enumerator kINPUTMUX_Ctimer3M1ToAdc0Trigger
-
enumerator kINPUTMUX_Ctimer4M0ToAdc0Trigger
-
enumerator kINPUTMUX_Ctimer4M1ToAdc0Trigger
-
enumerator kINPUTMUX_FlexioCh0ToAdc0Trigger
-
enumerator kINPUTMUX_FlexioCh1ToAdc0Trigger
-
enumerator kINPUTMUX_FlexioCh2ToAdc0Trigger
-
enumerator kINPUTMUX_FlexioCh3ToAdc0Trigger
-
enumerator kINPUTMUX_Qdc1PosMatch0ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToAdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToAdc0Trigger
Adc1 Trigger.
-
enumerator kINPUTMUX_ArmTxevToAdc1Trigger
-
enumerator kINPUTMUX_Aoi0Out0ToAdc1Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToAdc1Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToAdc1Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToAdc1Trigger
-
enumerator kINPUTMUX_Cmp0OutToAdc1Trigger
-
enumerator kINPUTMUX_Cmp1OutToAdc1Trigger
-
enumerator kINPUTMUX_Ctimer0M0ToAdc1Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToAdc1Trigger
-
enumerator kINPUTMUX_Ctimer1M0ToAdc1Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToAdc1Trigger
-
enumerator kINPUTMUX_Ctimer2M0ToAdc1Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToAdc1Trigger
-
enumerator kINPUTMUX_Lptmr0ToAdc1Trigger
-
enumerator kINPUTMUX_Qdc0PosMatch0ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToAdc1Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_WuuToAdc1Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToAdc1Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToAdc1Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToAdc1Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToAdc1Trigger
-
enumerator kINPUTMUX_Adc0Tcomp0ToAdc1Trigger
-
enumerator kINPUTMUX_Adc0Tcomp1ToAdc1Trigger
-
enumerator kINPUTMUX_Adc0Tcomp2ToAdc1Trigger
-
enumerator kINPUTMUX_Adc0Tcomp3ToAdc1Trigger
-
enumerator kINPUTMUX_Ctimer3M0ToAdc1Trigger
-
enumerator kINPUTMUX_Ctimer3M1ToAdc1Trigger
-
enumerator kINPUTMUX_Ctimer4M0ToAdc1Trigger
-
enumerator kINPUTMUX_Ctimer4M1ToAdc1Trigger
-
enumerator kINPUTMUX_FlexioCh0ToAdc1Trigger
-
enumerator kINPUTMUX_FlexioCh1ToAdc1Trigger
-
enumerator kINPUTMUX_FlexioCh2ToAdc1Trigger
-
enumerator kINPUTMUX_FlexioCh3ToAdc1Trigger
-
enumerator kINPUTMUX_Qdc1PosMatch0ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToAdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToAdc1Trigger
Dac0 Trigger.
-
enumerator kINPUTMUX_ArmTxevToDac0Trigger
-
enumerator kINPUTMUX_Aoi0Out0ToDac0Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToDac0Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToDac0Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToDac0Trigger
-
enumerator kINPUTMUX_Cmp0OutToDac0Trigger
-
enumerator kINPUTMUX_Cmp1OutToDac0Trigger
-
enumerator kINPUTMUX_Ctimer0M0ToDac0Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToDac0Trigger
-
enumerator kINPUTMUX_Ctimer1M0ToDac0Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToDac0Trigger
-
enumerator kINPUTMUX_Ctimer2M0ToDac0Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToDac0Trigger
-
enumerator kINPUTMUX_Lptmr0ToDac0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToDac0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToDac0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToDac0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToDac0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToDac0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToDac0Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToDac0Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToDac0Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToDac0Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToDac0Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToDac0Trigger
-
enumerator kINPUTMUX_WuuToDac0Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToDac0Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToDac0Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToDac0Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToDac0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp0ToDac0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp1ToDac0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp2ToDac0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp3ToDac0Trigger
-
enumerator kINPUTMUX_Ctimer3M0ToDac0Trigger
-
enumerator kINPUTMUX_Ctimer3M1ToDac0Trigger
-
enumerator kINPUTMUX_Ctimer4M0ToDac0Trigger
-
enumerator kINPUTMUX_Ctimer4M1ToDac0Trigger
Qdc0 Trigger.
-
enumerator kINPUTMUX_ArmTxevToQdc0Trigger
-
enumerator kINPUTMUX_Aoi0Out0ToQdc0Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToQdc0Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToQdc0Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToQdc0Trigger
-
enumerator kINPUTMUX_Cmp0OutToQdc0Trigger
-
enumerator kINPUTMUX_Cmp1OutToQdc0Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToQdc0Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToQdc0Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToQdc0Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToQdc0Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToQdc0Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn0ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn1ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn2ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn3ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn4ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn5ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn6ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn7ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn8ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn9ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn10ToQdc0Trigger
-
enumerator kINPUTMUX_TrigIn11ToQdc0Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToQdc0Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToQdc0Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToQdc0Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToQdc0Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToQdc0Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToQdc0Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToQdc0Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc0Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc0Trigger
Qdc0 Home.
-
enumerator kINPUTMUX_ArmTxevToQdc0Home
-
enumerator kINPUTMUX_Aoi0Out0ToQdc0Home
-
enumerator kINPUTMUX_Aoi0Out1ToQdc0Home
-
enumerator kINPUTMUX_Aoi0Out2ToQdc0Home
-
enumerator kINPUTMUX_Aoi0Out3ToQdc0Home
-
enumerator kINPUTMUX_Cmp0OutToQdc0Home
-
enumerator kINPUTMUX_Cmp1OutToQdc0Home
-
enumerator kINPUTMUX_Ctimer0M2ToQdc0Home
-
enumerator kINPUTMUX_Ctimer0M3ToQdc0Home
-
enumerator kINPUTMUX_Ctimer1M2ToQdc0Home
-
enumerator kINPUTMUX_Ctimer1M3ToQdc0Home
-
enumerator kINPUTMUX_Ctimer2M2ToQdc0Home
-
enumerator kINPUTMUX_Ctimer2M3ToQdc0Home
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc0Home
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc0Home
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc0Home
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc0Home
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc0Home
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc0Home
-
enumerator kINPUTMUX_TrigIn0ToQdc0Home
-
enumerator kINPUTMUX_TrigIn1ToQdc0Home
-
enumerator kINPUTMUX_TrigIn2ToQdc0Home
-
enumerator kINPUTMUX_TrigIn3ToQdc0Home
-
enumerator kINPUTMUX_TrigIn4ToQdc0Home
-
enumerator kINPUTMUX_TrigIn5ToQdc0Home
-
enumerator kINPUTMUX_TrigIn6ToQdc0Home
-
enumerator kINPUTMUX_TrigIn7ToQdc0Home
-
enumerator kINPUTMUX_TrigIn8ToQdc0Home
-
enumerator kINPUTMUX_TrigIn9ToQdc0Home
-
enumerator kINPUTMUX_TrigIn10ToQdc0Home
-
enumerator kINPUTMUX_TrigIn11ToQdc0Home
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc0Home
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc0Home
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc0Home
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc0Home
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc0Home
-
enumerator kINPUTMUX_Aoi1Out0ToQdc0Home
-
enumerator kINPUTMUX_Aoi1Out1ToQdc0Home
-
enumerator kINPUTMUX_Aoi1Out2ToQdc0Home
-
enumerator kINPUTMUX_Aoi1Out3ToQdc0Home
-
enumerator kINPUTMUX_Ctimer3M2ToQdc0Home
-
enumerator kINPUTMUX_Ctimer3M3ToQdc0Home
-
enumerator kINPUTMUX_Ctimer4M2ToQdc0Home
-
enumerator kINPUTMUX_Ctimer4M3ToQdc0Home
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc0Home
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc0Home
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc0Home
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc0Home
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc0Home
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc0Home
Qdc0 Index.
-
enumerator kINPUTMUX_ArmTxevToQdc0Index
-
enumerator kINPUTMUX_Aoi0Out0ToQdc0Index
-
enumerator kINPUTMUX_Aoi0Out1ToQdc0Index
-
enumerator kINPUTMUX_Aoi0Out2ToQdc0Index
-
enumerator kINPUTMUX_Aoi0Out3ToQdc0Index
-
enumerator kINPUTMUX_Cmp0OutToQdc0Index
-
enumerator kINPUTMUX_Cmp1OutToQdc0Index
-
enumerator kINPUTMUX_Ctimer0M2ToQdc0Index
-
enumerator kINPUTMUX_Ctimer0M3ToQdc0Index
-
enumerator kINPUTMUX_Ctimer1M2ToQdc0Index
-
enumerator kINPUTMUX_Ctimer1M3ToQdc0Index
-
enumerator kINPUTMUX_Ctimer2M2ToQdc0Index
-
enumerator kINPUTMUX_Ctimer2M3ToQdc0Index
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc0Index
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc0Index
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc0Index
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc0Index
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc0Index
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc0Index
-
enumerator kINPUTMUX_TrigIn0ToQdc0Index
-
enumerator kINPUTMUX_TrigIn1ToQdc0Index
-
enumerator kINPUTMUX_TrigIn2ToQdc0Index
-
enumerator kINPUTMUX_TrigIn3ToQdc0Index
-
enumerator kINPUTMUX_TrigIn4ToQdc0Index
-
enumerator kINPUTMUX_TrigIn5ToQdc0Index
-
enumerator kINPUTMUX_TrigIn6ToQdc0Index
-
enumerator kINPUTMUX_TrigIn7ToQdc0Index
-
enumerator kINPUTMUX_TrigIn8ToQdc0Index
-
enumerator kINPUTMUX_TrigIn9ToQdc0Index
-
enumerator kINPUTMUX_TrigIn10ToQdc0Index
-
enumerator kINPUTMUX_TrigIn11ToQdc0Index
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc0Index
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc0Index
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc0Index
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc0Index
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc0Index
-
enumerator kINPUTMUX_Aoi1Out0ToQdc0Index
-
enumerator kINPUTMUX_Aoi1Out1ToQdc0Index
-
enumerator kINPUTMUX_Aoi1Out2ToQdc0Index
-
enumerator kINPUTMUX_Aoi1Out3ToQdc0Index
-
enumerator kINPUTMUX_Ctimer3M2ToQdc0Index
-
enumerator kINPUTMUX_Ctimer3M3ToQdc0Index
-
enumerator kINPUTMUX_Ctimer4M2ToQdc0Index
-
enumerator kINPUTMUX_Ctimer4M3ToQdc0Index
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc0Index
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc0Index
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc0Index
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc0Index
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc0Index
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc0Index
Qdc0 Phaseb.
-
enumerator kINPUTMUX_ArmTxevToQdc0Phaseb
-
enumerator kINPUTMUX_Aoi0Out0ToQdc0Phaseb
-
enumerator kINPUTMUX_Aoi0Out1ToQdc0Phaseb
-
enumerator kINPUTMUX_Aoi0Out2ToQdc0Phaseb
-
enumerator kINPUTMUX_Aoi0Out3ToQdc0Phaseb
-
enumerator kINPUTMUX_Cmp0OutToQdc0Phaseb
-
enumerator kINPUTMUX_Cmp1OutToQdc0Phaseb
-
enumerator kINPUTMUX_Ctimer0M2ToQdc0Phaseb
-
enumerator kINPUTMUX_Ctimer0M3ToQdc0Phaseb
-
enumerator kINPUTMUX_Ctimer1M2ToQdc0Phaseb
-
enumerator kINPUTMUX_Ctimer1M3ToQdc0Phaseb
-
enumerator kINPUTMUX_Ctimer2M2ToQdc0Phaseb
-
enumerator kINPUTMUX_Ctimer2M3ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn0ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn1ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn2ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn3ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn4ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn5ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn6ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn7ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn8ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn9ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn10ToQdc0Phaseb
-
enumerator kINPUTMUX_TrigIn11ToQdc0Phaseb
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Aoi1Out0ToQdc0Phaseb
-
enumerator kINPUTMUX_Aoi1Out1ToQdc0Phaseb
-
enumerator kINPUTMUX_Aoi1Out2ToQdc0Phaseb
-
enumerator kINPUTMUX_Aoi1Out3ToQdc0Phaseb
-
enumerator kINPUTMUX_Ctimer3M2ToQdc0Phaseb
-
enumerator kINPUTMUX_Ctimer3M3ToQdc0Phaseb
-
enumerator kINPUTMUX_Ctimer4M2ToQdc0Phaseb
-
enumerator kINPUTMUX_Ctimer4M3ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc0Phaseb
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc0Phaseb
Qdc0 Phasea.
-
enumerator kINPUTMUX_ArmTxevToQdc0Phasea
-
enumerator kINPUTMUX_Aoi0Out0ToQdc0Phasea
-
enumerator kINPUTMUX_Aoi0Out1ToQdc0Phasea
-
enumerator kINPUTMUX_Aoi0Out2ToQdc0Phasea
-
enumerator kINPUTMUX_Aoi0Out3ToQdc0Phasea
-
enumerator kINPUTMUX_Cmp0OutToQdc0Phasea
-
enumerator kINPUTMUX_Cmp1OutToQdc0Phasea
-
enumerator kINPUTMUX_Ctimer0M2ToQdc0Phasea
-
enumerator kINPUTMUX_Ctimer0M3ToQdc0Phasea
-
enumerator kINPUTMUX_Ctimer1M2ToQdc0Phasea
-
enumerator kINPUTMUX_Ctimer1M3ToQdc0Phasea
-
enumerator kINPUTMUX_Ctimer2M2ToQdc0Phasea
-
enumerator kINPUTMUX_Ctimer2M3ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn0ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn1ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn2ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn3ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn4ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn5ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn6ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn7ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn8ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn9ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn10ToQdc0Phasea
-
enumerator kINPUTMUX_TrigIn11ToQdc0Phasea
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Aoi1Out0ToQdc0Phasea
-
enumerator kINPUTMUX_Aoi1Out1ToQdc0Phasea
-
enumerator kINPUTMUX_Aoi1Out2ToQdc0Phasea
-
enumerator kINPUTMUX_Aoi1Out3ToQdc0Phasea
-
enumerator kINPUTMUX_Ctimer3M2ToQdc0Phasea
-
enumerator kINPUTMUX_Ctimer3M3ToQdc0Phasea
-
enumerator kINPUTMUX_Ctimer4M2ToQdc0Phasea
-
enumerator kINPUTMUX_Ctimer4M3ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc0Phasea
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc0Phasea
Qdc0 Icap1.
-
enumerator kINPUTMUX_ArmTxevToQdc0Icap1
-
enumerator kINPUTMUX_Aoi0Out0ToQdc0Icap1
-
enumerator kINPUTMUX_Aoi0Out1ToQdc0Icap1
-
enumerator kINPUTMUX_Aoi0Out2ToQdc0Icap1
-
enumerator kINPUTMUX_Aoi0Out3ToQdc0Icap1
-
enumerator kINPUTMUX_Cmp0OutToQdc0Icap1
-
enumerator kINPUTMUX_Cmp1OutToQdc0Icap1
-
enumerator kINPUTMUX_Ctimer0M2ToQdc0Icap1
-
enumerator kINPUTMUX_Ctimer0M3ToQdc0Icap1
-
enumerator kINPUTMUX_Ctimer1M2ToQdc0Icap1
-
enumerator kINPUTMUX_Ctimer1M3ToQdc0Icap1
-
enumerator kINPUTMUX_Ctimer2M2ToQdc0Icap1
-
enumerator kINPUTMUX_Ctimer2M3ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn0ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn1ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn2ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn3ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn4ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn5ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn6ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn7ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn8ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn9ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn10ToQdc0Icap1
-
enumerator kINPUTMUX_TrigIn11ToQdc0Icap1
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Aoi1Out0ToQdc0Icap1
-
enumerator kINPUTMUX_Aoi1Out1ToQdc0Icap1
-
enumerator kINPUTMUX_Aoi1Out2ToQdc0Icap1
-
enumerator kINPUTMUX_Aoi1Out3ToQdc0Icap1
-
enumerator kINPUTMUX_Ctimer3M2ToQdc0Icap1
-
enumerator kINPUTMUX_Ctimer3M3ToQdc0Icap1
-
enumerator kINPUTMUX_Ctimer4M2ToQdc0Icap1
-
enumerator kINPUTMUX_Ctimer4M3ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc0Icap1
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc0Icap1
Qdc1 Trigger.
-
enumerator kINPUTMUX_ArmTxevToQdc1Trigger
-
enumerator kINPUTMUX_Aoi0Out0ToQdc1Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToQdc1Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToQdc1Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToQdc1Trigger
-
enumerator kINPUTMUX_Cmp0OutToQdc1Trigger
-
enumerator kINPUTMUX_Cmp1OutToQdc1Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToQdc1Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToQdc1Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToQdc1Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToQdc1Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToQdc1Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn0ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn1ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn2ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn3ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn4ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn5ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn6ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn7ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn8ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn9ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn10ToQdc1Trigger
-
enumerator kINPUTMUX_TrigIn11ToQdc1Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToQdc1Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToQdc1Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToQdc1Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToQdc1Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToQdc1Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToQdc1Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToQdc1Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc1Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc1Trigger
Qdc1 Home.
-
enumerator kINPUTMUX_ArmTxevToQdc1Home
-
enumerator kINPUTMUX_Aoi0Out0ToQdc1Home
-
enumerator kINPUTMUX_Aoi0Out1ToQdc1Home
-
enumerator kINPUTMUX_Aoi0Out2ToQdc1Home
-
enumerator kINPUTMUX_Aoi0Out3ToQdc1Home
-
enumerator kINPUTMUX_Cmp0OutToQdc1Home
-
enumerator kINPUTMUX_Cmp1OutToQdc1Home
-
enumerator kINPUTMUX_Ctimer0M2ToQdc1Home
-
enumerator kINPUTMUX_Ctimer0M3ToQdc1Home
-
enumerator kINPUTMUX_Ctimer1M2ToQdc1Home
-
enumerator kINPUTMUX_Ctimer1M3ToQdc1Home
-
enumerator kINPUTMUX_Ctimer2M2ToQdc1Home
-
enumerator kINPUTMUX_Ctimer2M3ToQdc1Home
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc1Home
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc1Home
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc1Home
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc1Home
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc1Home
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc1Home
-
enumerator kINPUTMUX_TrigIn0ToQdc1Home
-
enumerator kINPUTMUX_TrigIn1ToQdc1Home
-
enumerator kINPUTMUX_TrigIn2ToQdc1Home
-
enumerator kINPUTMUX_TrigIn3ToQdc1Home
-
enumerator kINPUTMUX_TrigIn4ToQdc1Home
-
enumerator kINPUTMUX_TrigIn5ToQdc1Home
-
enumerator kINPUTMUX_TrigIn6ToQdc1Home
-
enumerator kINPUTMUX_TrigIn7ToQdc1Home
-
enumerator kINPUTMUX_TrigIn8ToQdc1Home
-
enumerator kINPUTMUX_TrigIn9ToQdc1Home
-
enumerator kINPUTMUX_TrigIn10ToQdc1Home
-
enumerator kINPUTMUX_TrigIn11ToQdc1Home
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc1Home
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc1Home
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc1Home
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc1Home
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc1Home
-
enumerator kINPUTMUX_Aoi1Out0ToQdc1Home
-
enumerator kINPUTMUX_Aoi1Out1ToQdc1Home
-
enumerator kINPUTMUX_Aoi1Out2ToQdc1Home
-
enumerator kINPUTMUX_Aoi1Out3ToQdc1Home
-
enumerator kINPUTMUX_Ctimer3M2ToQdc1Home
-
enumerator kINPUTMUX_Ctimer3M3ToQdc1Home
-
enumerator kINPUTMUX_Ctimer4M2ToQdc1Home
-
enumerator kINPUTMUX_Ctimer4M3ToQdc1Home
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc1Home
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc1Home
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc1Home
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc1Home
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc1Home
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc1Home
Qdc1 Index.
-
enumerator kINPUTMUX_ArmTxevToQdc1Index
-
enumerator kINPUTMUX_Aoi0Out0ToQdc1Index
-
enumerator kINPUTMUX_Aoi0Out1ToQdc1Index
-
enumerator kINPUTMUX_Aoi0Out2ToQdc1Index
-
enumerator kINPUTMUX_Aoi0Out3ToQdc1Index
-
enumerator kINPUTMUX_Cmp0OutToQdc1Index
-
enumerator kINPUTMUX_Cmp1OutToQdc1Index
-
enumerator kINPUTMUX_Ctimer0M2ToQdc1Index
-
enumerator kINPUTMUX_Ctimer0M3ToQdc1Index
-
enumerator kINPUTMUX_Ctimer1M2ToQdc1Index
-
enumerator kINPUTMUX_Ctimer1M3ToQdc1Index
-
enumerator kINPUTMUX_Ctimer2M2ToQdc1Index
-
enumerator kINPUTMUX_Ctimer2M3ToQdc1Index
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc1Index
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc1Index
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc1Index
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc1Index
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc1Index
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc1Index
-
enumerator kINPUTMUX_TrigIn0ToQdc1Index
-
enumerator kINPUTMUX_TrigIn1ToQdc1Index
-
enumerator kINPUTMUX_TrigIn2ToQdc1Index
-
enumerator kINPUTMUX_TrigIn3ToQdc1Index
-
enumerator kINPUTMUX_TrigIn4ToQdc1Index
-
enumerator kINPUTMUX_TrigIn5ToQdc1Index
-
enumerator kINPUTMUX_TrigIn6ToQdc1Index
-
enumerator kINPUTMUX_TrigIn7ToQdc1Index
-
enumerator kINPUTMUX_TrigIn8ToQdc1Index
-
enumerator kINPUTMUX_TrigIn9ToQdc1Index
-
enumerator kINPUTMUX_TrigIn10ToQdc1Index
-
enumerator kINPUTMUX_TrigIn11ToQdc1Index
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc1Index
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc1Index
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc1Index
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc1Index
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc1Index
-
enumerator kINPUTMUX_Aoi1Out0ToQdc1Index
-
enumerator kINPUTMUX_Aoi1Out1ToQdc1Index
-
enumerator kINPUTMUX_Aoi1Out2ToQdc1Index
-
enumerator kINPUTMUX_Aoi1Out3ToQdc1Index
-
enumerator kINPUTMUX_Ctimer3M2ToQdc1Index
-
enumerator kINPUTMUX_Ctimer3M3ToQdc1Index
-
enumerator kINPUTMUX_Ctimer4M2ToQdc1Index
-
enumerator kINPUTMUX_Ctimer4M3ToQdc1Index
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc1Index
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc1Index
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc1Index
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc1Index
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc1Index
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc1Index
Qdc1 Phaseb.
-
enumerator kINPUTMUX_ArmTxevToQdc1Phaseb
-
enumerator kINPUTMUX_Aoi0Out0ToQdc1Phaseb
-
enumerator kINPUTMUX_Aoi0Out1ToQdc1Phaseb
-
enumerator kINPUTMUX_Aoi0Out2ToQdc1Phaseb
-
enumerator kINPUTMUX_Aoi0Out3ToQdc1Phaseb
-
enumerator kINPUTMUX_Cmp0OutToQdc1Phaseb
-
enumerator kINPUTMUX_Cmp1OutToQdc1Phaseb
-
enumerator kINPUTMUX_Ctimer0M2ToQdc1Phaseb
-
enumerator kINPUTMUX_Ctimer0M3ToQdc1Phaseb
-
enumerator kINPUTMUX_Ctimer1M2ToQdc1Phaseb
-
enumerator kINPUTMUX_Ctimer1M3ToQdc1Phaseb
-
enumerator kINPUTMUX_Ctimer2M2ToQdc1Phaseb
-
enumerator kINPUTMUX_Ctimer2M3ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn0ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn1ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn2ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn3ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn4ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn5ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn6ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn7ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn8ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn9ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn10ToQdc1Phaseb
-
enumerator kINPUTMUX_TrigIn11ToQdc1Phaseb
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Aoi1Out0ToQdc1Phaseb
-
enumerator kINPUTMUX_Aoi1Out1ToQdc1Phaseb
-
enumerator kINPUTMUX_Aoi1Out2ToQdc1Phaseb
-
enumerator kINPUTMUX_Aoi1Out3ToQdc1Phaseb
-
enumerator kINPUTMUX_Ctimer3M2ToQdc1Phaseb
-
enumerator kINPUTMUX_Ctimer3M3ToQdc1Phaseb
-
enumerator kINPUTMUX_Ctimer4M2ToQdc1Phaseb
-
enumerator kINPUTMUX_Ctimer4M3ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc1Phaseb
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc1Phaseb
Qdc1 Phasea.
-
enumerator kINPUTMUX_ArmTxevToQdc1Phasea
-
enumerator kINPUTMUX_Aoi0Out0ToQdc1Phasea
-
enumerator kINPUTMUX_Aoi0Out1ToQdc1Phasea
-
enumerator kINPUTMUX_Aoi0Out2ToQdc1Phasea
-
enumerator kINPUTMUX_Aoi0Out3ToQdc1Phasea
-
enumerator kINPUTMUX_Cmp0OutToQdc1Phasea
-
enumerator kINPUTMUX_Cmp1OutToQdc1Phasea
-
enumerator kINPUTMUX_Ctimer0M2ToQdc1Phasea
-
enumerator kINPUTMUX_Ctimer0M3ToQdc1Phasea
-
enumerator kINPUTMUX_Ctimer1M2ToQdc1Phasea
-
enumerator kINPUTMUX_Ctimer1M3ToQdc1Phasea
-
enumerator kINPUTMUX_Ctimer2M2ToQdc1Phasea
-
enumerator kINPUTMUX_Ctimer2M3ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn0ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn1ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn2ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn3ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn4ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn5ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn6ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn7ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn8ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn9ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn10ToQdc1Phasea
-
enumerator kINPUTMUX_TrigIn11ToQdc1Phasea
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Aoi1Out0ToQdc1Phasea
-
enumerator kINPUTMUX_Aoi1Out1ToQdc1Phasea
-
enumerator kINPUTMUX_Aoi1Out2ToQdc1Phasea
-
enumerator kINPUTMUX_Aoi1Out3ToQdc1Phasea
-
enumerator kINPUTMUX_Ctimer3M2ToQdc1Phasea
-
enumerator kINPUTMUX_Ctimer3M3ToQdc1Phasea
-
enumerator kINPUTMUX_Ctimer4M2ToQdc1Phasea
-
enumerator kINPUTMUX_Ctimer4M3ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc1Phasea
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc1Phasea
Qdc1 Icap1.
-
enumerator kINPUTMUX_ArmTxevToQdc1Icap1
-
enumerator kINPUTMUX_Aoi0Out0ToQdc1Icap1
-
enumerator kINPUTMUX_Aoi0Out1ToQdc1Icap1
-
enumerator kINPUTMUX_Aoi0Out2ToQdc1Icap1
-
enumerator kINPUTMUX_Aoi0Out3ToQdc1Icap1
-
enumerator kINPUTMUX_Cmp0OutToQdc1Icap1
-
enumerator kINPUTMUX_Cmp1OutToQdc1Icap1
-
enumerator kINPUTMUX_Ctimer0M2ToQdc1Icap1
-
enumerator kINPUTMUX_Ctimer0M3ToQdc1Icap1
-
enumerator kINPUTMUX_Ctimer1M2ToQdc1Icap1
-
enumerator kINPUTMUX_Ctimer1M3ToQdc1Icap1
-
enumerator kINPUTMUX_Ctimer2M2ToQdc1Icap1
-
enumerator kINPUTMUX_Ctimer2M3ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn0ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn1ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn2ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn3ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn4ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn5ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn6ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn7ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn8ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn9ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn10ToQdc1Icap1
-
enumerator kINPUTMUX_TrigIn11ToQdc1Icap1
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Aoi1Out0ToQdc1Icap1
-
enumerator kINPUTMUX_Aoi1Out1ToQdc1Icap1
-
enumerator kINPUTMUX_Aoi1Out2ToQdc1Icap1
-
enumerator kINPUTMUX_Aoi1Out3ToQdc1Icap1
-
enumerator kINPUTMUX_Ctimer3M2ToQdc1Icap1
-
enumerator kINPUTMUX_Ctimer3M3ToQdc1Icap1
-
enumerator kINPUTMUX_Ctimer4M2ToQdc1Icap1
-
enumerator kINPUTMUX_Ctimer4M3ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToQdc1Icap1
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToQdc1Icap1
FlexPWM0_SM0_EXTA0 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToFlexPwm0Sm0Exta0
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToFlexPwm0Sm0Exta0
FlexPWM0_SM1_EXTA1 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToFlexPwm0Sm1Exta1
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToFlexPwm0Sm1Exta1
FlexPWM0_SM2_EXTA2 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToFlexPwm0Sm2Exta2
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToFlexPwm0Sm2Exta2
FlexPWM0_SM0_EXTSYNC0 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToFlexPwm0Sm0Extsync0
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToFlexPwm0Sm0Extsync0
FlexPWM0_SM1_EXTSYNC1 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToFlexPwm0Sm1Extsync1
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToFlexPwm0Sm1Extsync1
FlexPWM0_SM2_EXTSYNC2 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToFlexPwm0Sm2Extsync2
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToFlexPwm0Sm2Extsync2
FlexPWM0_FAULT input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm0Fault
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm0Fault
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm0Fault
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm0Fault
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm0Fault
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm0Fault
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm0Fault
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm0Fault
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm0Fault
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm0Fault
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm0Fault
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm0Fault
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm0Fault
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm0Fault
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm0Fault
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm0Fault
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm0Fault
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm0Fault
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm0Fault
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm0Fault
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm0Fault
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm0Fault
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm0Fault
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm0Fault
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm0Fault
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm0Fault
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm0Fault
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToFlexPwm0Fault
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToFlexPwm0Fault
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToFlexPwm0Fault
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToFlexPwm0Fault
FlexPWM0_FORCE input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm0Force
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm0Force
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm0Force
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm0Force
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm0Force
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm0Force
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm0Force
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm0Force
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm0Force
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm0Force
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm0Force
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm0Force
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm0Force
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm0Force
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm0Force
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm0Force
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm0Force
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm0Force
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm0Force
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm0Force
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm0Force
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm0Force
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm0Force
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm0Force
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm0Force
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm0Force
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm0Force
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm0Force
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm0Force
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm0Force
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm0Force
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm0Force
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm0Force
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm0Force
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm0Force
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm0Force
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm0Force
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToFlexPwm0Force
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToFlexPwm0Force
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToFlexPwm0Force
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToFlexPwm0Force
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToFlexPwm0Force
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToFlexPwm0Force
FlexPWM1_SM0_EXTA0 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFlexPwm1Sm0Exta0
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToFlexPwm1Sm0Exta0
FlexPWM1_SM1_EXTA1 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFlexPwm1Sm1Exta1
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToFlexPwm1Sm1Exta1
FlexPWM1_SM2_EXTA2 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFlexPwm1Sm2Exta2
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToFlexPwm1Sm2Exta2
FlexPWM1_SM0_EXTSYNC0 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFlexPwm1Sm0Extsync0
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToFlexPwm1Sm0Extsync0
FlexPWM1_SM1_EXTSYNC1 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFlexPwm1Sm1Extsync1
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToFlexPwm1Sm1Extsync1
FlexPWM1_SM2_EXTSYNC2 input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFlexPwm1Sm2Extsync2
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToFlexPwm1Sm2Extsync2
FlexPWM1_FAULT input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm1Fault
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm1Fault
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm1Fault
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm1Fault
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm1Fault
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm1Fault
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm1Fault
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm1Fault
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm1Fault
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm1Fault
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm1Fault
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm1Fault
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm1Fault
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm1Fault
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm1Fault
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm1Fault
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm1Fault
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm1Fault
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm1Fault
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm1Fault
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm1Fault
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm1Fault
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm1Fault
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm1Fault
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm1Fault
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm1Fault
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm1Fault
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToFlexPwm1Fault
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToFlexPwm1Fault
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFlexPwm1Fault
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToFlexPwm1Fault
FlexPWM1_FORCE input trigger connections.
-
enumerator kINPUTMUX_ArmTxevToFlexPwm1Force
-
enumerator kINPUTMUX_Aoi0Out0ToFlexPwm1Force
-
enumerator kINPUTMUX_Aoi0Out1ToFlexPwm1Force
-
enumerator kINPUTMUX_Aoi0Out2ToFlexPwm1Force
-
enumerator kINPUTMUX_Aoi0Out3ToFlexPwm1Force
-
enumerator kINPUTMUX_Cmp0OutToFlexPwm1Force
-
enumerator kINPUTMUX_Cmp1OutToFlexPwm1Force
-
enumerator kINPUTMUX_Ctimer0M2ToFlexPwm1Force
-
enumerator kINPUTMUX_Ctimer0M3ToFlexPwm1Force
-
enumerator kINPUTMUX_Ctimer1M2ToFlexPwm1Force
-
enumerator kINPUTMUX_Ctimer1M3ToFlexPwm1Force
-
enumerator kINPUTMUX_Ctimer2M2ToFlexPwm1Force
-
enumerator kINPUTMUX_Ctimer2M3ToFlexPwm1Force
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToFlexPwm1Force
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToFlexPwm1Force
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToFlexPwm1Force
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToFlexPwm1Force
-
enumerator kINPUTMUX_Qdc0PosMatch0ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn0ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn1ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn2ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn3ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn4ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn5ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn6ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn7ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn8ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn9ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn10ToFlexPwm1Force
-
enumerator kINPUTMUX_TrigIn11ToFlexPwm1Force
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexPwm1Force
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToFlexPwm1Force
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexPwm1Force
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexPwm1Force
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexPwm1Force
-
enumerator kINPUTMUX_Aoi1Out0ToFlexPwm1Force
-
enumerator kINPUTMUX_Aoi1Out1ToFlexPwm1Force
-
enumerator kINPUTMUX_Aoi1Out2ToFlexPwm1Force
-
enumerator kINPUTMUX_Aoi1Out3ToFlexPwm1Force
-
enumerator kINPUTMUX_Ctimer3M2ToFlexPwm1Force
-
enumerator kINPUTMUX_Ctimer3M3ToFlexPwm1Force
-
enumerator kINPUTMUX_Ctimer4M2ToFlexPwm1Force
-
enumerator kINPUTMUX_Ctimer4M3ToFlexPwm1Force
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToFlexPwm1Force
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToFlexPwm1Force
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToFlexPwm1Force
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToFlexPwm1Force
-
enumerator kINPUTMUX_Qdc1PosMatch0ToFlexPwm1Force
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFlexPwm1Force
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToFlexPwm1Force
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFlexPwm1Force
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToFlexPwm1Force
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFlexPwm1Force
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToFlexPwm1Force
PWM0 external clock trigger.
-
enumerator kINPUTMUX_Clk16K1ToPwm0ExtClk
-
enumerator kINPUTMUX_ClkInToPwm0ExtClk
-
enumerator kINPUTMUX_Aoi0Out0ToPwm0ExtClk
-
enumerator kINPUTMUX_Aoi0Out1ToPwm0ExtClk
-
enumerator kINPUTMUX_ExttrigIn0ToPwm0ExtClk
-
enumerator kINPUTMUX_ExttrigIn7ToPwm0ExtClk
-
enumerator kINPUTMUX_Aoi1Out0ToPwm0ExtClk
-
enumerator kINPUTMUX_Aoi1Out1ToPwm0ExtClk
PWM1 external clock trigger.
-
enumerator kINPUTMUX_Clk16K1ToPwm1ExtClk
-
enumerator kINPUTMUX_ClkInToPwm1ExtClk
-
enumerator kINPUTMUX_Aoi0Out0ToPwm1ExtClk
-
enumerator kINPUTMUX_Aoi0Out1ToPwm1ExtClk
-
enumerator kINPUTMUX_ExttrigIn0ToPwm1ExtClk
-
enumerator kINPUTMUX_ExttrigIn7ToPwm1ExtClk
-
enumerator kINPUTMUX_Aoi1Out0ToPwm1ExtClk
-
enumerator kINPUTMUX_Aoi1Out1ToPwm1ExtClk
AOI0 trigger input connections.
-
enumerator kINPUTMUX_Adc0Tcomp0ToAoi0Mux
-
enumerator kINPUTMUX_Adc0Tcomp1ToAoi0Mux
-
enumerator kINPUTMUX_Adc0Tcomp2ToAoi0Mux
-
enumerator kINPUTMUX_Adc0Tcomp3ToAoi0Mux
-
enumerator kINPUTMUX_Cmp0OutToAoi0Mux
-
enumerator kINPUTMUX_Cmp1OutToAoi0Mux
-
enumerator kINPUTMUX_Ctimer0M0ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer0M1ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer0M2ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer0M3ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer1M0ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer1M1ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer1M2ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer1M3ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer2M0ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer2M1ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer2M2ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer2M3ToAoi0Mux
-
enumerator kINPUTMUX_Lptmr0ToAoi0Mux
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToAoi0Mux
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToAoi0Mux
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToAoi0Mux
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToAoi0Mux
-
enumerator kINPUTMUX_Qdc0PosMatchToAoi0Mux
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToAoi0Mux
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToAoi0Mux
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn0ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn1ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn2ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn3ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn4ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn5ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn6ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn7ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn8ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn9ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn10ToAoi0Mux
-
enumerator kINPUTMUX_TrigIn11ToAoi0Mux
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Adc1Tcomp0ToAoi0Mux
-
enumerator kINPUTMUX_Adc1Tcomp1ToAoi0Mux
-
enumerator kINPUTMUX_Adc1Tcomp2ToAoi0Mux
-
enumerator kINPUTMUX_Adc1Tcomp3ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer3M0ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer3M1ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer3M2ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer3M3ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer4M0ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer4M1ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer4M2ToAoi0Mux
-
enumerator kINPUTMUX_Ctimer4M3ToAoi0Mux
-
enumerator kINPUTMUX_FlexioCh0ToAoi0Mux
-
enumerator kINPUTMUX_FlexioCh1ToAoi0Mux
-
enumerator kINPUTMUX_FlexioCh2ToAoi0Mux
-
enumerator kINPUTMUX_FlexioCh3ToAoi0Mux
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToAoi0Mux
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToAoi0Mux
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToAoi0Mux
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToAoi0Mux
-
enumerator kINPUTMUX_Qdc1PosMatchToAoi0Mux
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToAoi0Mux
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToAoi0Mux
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToAoi0Mux
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToAoi0Mux
AOI1 trigger input connections.
-
enumerator kINPUTMUX_Adc0Tcomp0ToAoi1Mux
-
enumerator kINPUTMUX_Adc0Tcomp1ToAoi1Mux
-
enumerator kINPUTMUX_Adc0Tcomp2ToAoi1Mux
-
enumerator kINPUTMUX_Adc0Tcomp3ToAoi1Mux
-
enumerator kINPUTMUX_Cmp0OutToAoi1Mux
-
enumerator kINPUTMUX_Cmp1OutToAoi1Mux
-
enumerator kINPUTMUX_Ctimer0M0ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer0M1ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer0M2ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer0M3ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer1M0ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer1M1ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer1M2ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer1M3ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer2M0ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer2M1ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer2M2ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer2M3ToAoi1Mux
-
enumerator kINPUTMUX_Lptmr0ToAoi1Mux
-
enumerator kINPUTMUX_Qdc0CmpFlag0ToAoi1Mux
-
enumerator kINPUTMUX_Qdc0CmpFlag1ToAoi1Mux
-
enumerator kINPUTMUX_Qdc0CmpFlag2ToAoi1Mux
-
enumerator kINPUTMUX_Qdc0CmpFlag3ToAoi1Mux
-
enumerator kINPUTMUX_Qdc0PosMatchToAoi1Mux
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToAoi1Mux
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToAoi1Mux
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn0ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn1ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn2ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn3ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn4ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn5ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn6ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn7ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn8ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn9ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn10ToAoi1Mux
-
enumerator kINPUTMUX_TrigIn11ToAoi1Mux
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Adc1Tcomp0ToAoi1Mux
-
enumerator kINPUTMUX_Adc1Tcomp1ToAoi1Mux
-
enumerator kINPUTMUX_Adc1Tcomp2ToAoi1Mux
-
enumerator kINPUTMUX_Adc1Tcomp3ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer3M0ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer3M1ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer3M2ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer3M3ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer4M0ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer4M1ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer4M2ToAoi1Mux
-
enumerator kINPUTMUX_Ctimer4M3ToAoi1Mux
-
enumerator kINPUTMUX_FlexioCh0ToAoi1Mux
-
enumerator kINPUTMUX_FlexioCh1ToAoi1Mux
-
enumerator kINPUTMUX_FlexioCh2ToAoi1Mux
-
enumerator kINPUTMUX_FlexioCh3ToAoi1Mux
-
enumerator kINPUTMUX_Qdc1CmpFlag0ToAoi1Mux
-
enumerator kINPUTMUX_Qdc1CmpFlag1ToAoi1Mux
-
enumerator kINPUTMUX_Qdc1CmpFlag2ToAoi1Mux
-
enumerator kINPUTMUX_Qdc1CmpFlag3ToAoi1Mux
-
enumerator kINPUTMUX_Qdc1PosMatchToAoi1Mux
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToAoi1Mux
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToAoi1Mux
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToAoi1Mux
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToAoi1Mux
USB-FS trigger input connections.
-
enumerator kINPUTMUX_Lpuart0TrgTxdataToUsbfsTrigger
-
enumerator kINPUTMUX_Lpuart1TrgTxdataToUsbfsTrigger
-
enumerator kINPUTMUX_Lpuart2TrgTxdataToUsbfsTrigger
-
enumerator kINPUTMUX_Lpuart3TrgTxdataToUsbfsTrigger
-
enumerator kINPUTMUX_Lpuart4TrgTxdataToUsbfsTrigger
EXT trigger connections.
-
enumerator kINPUTMUX_Aoi0Out0ToExtTrigger
-
enumerator kINPUTMUX_Aoi0Out1ToExtTrigger
-
enumerator kINPUTMUX_Aoi0Out2ToExtTrigger
-
enumerator kINPUTMUX_Aoi0Out3ToExtTrigger
-
enumerator kINPUTMUX_Cmp0OutToExtTrigger
-
enumerator kINPUTMUX_Cmp1OutToExtTrigger
-
enumerator kINPUTMUX_Lpuart0ToExtTrigger
-
enumerator kINPUTMUX_Lpuart1ToExtTrigger
-
enumerator kINPUTMUX_Lpuart2ToExtTrigger
-
enumerator kINPUTMUX_Lpuart3ToExtTrigger
-
enumerator kINPUTMUX_Lpuart4ToExtTrigger
-
enumerator kINPUTMUX_Aoi1Out0ToExtTrigger
-
enumerator kINPUTMUX_Aoi1Out1ToExtTrigger
-
enumerator kINPUTMUX_Aoi1Out2ToExtTrigger
-
enumerator kINPUTMUX_Aoi1Out3ToExtTrigger
LPI2C0 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToLpi2c0Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToLpi2c0Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToLpi2c0Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToLpi2c0Trigger
-
enumerator kINPUTMUX_Cmp0OutToLpi2c0Trigger
-
enumerator kINPUTMUX_Cmp1OutToLpi2c0Trigger
-
enumerator kINPUTMUX_Ctimer0M0ToLpi2c0Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToLpi2c0Trigger
-
enumerator kINPUTMUX_Ctimer1M0ToLpi2c0Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToLpi2c0Trigger
-
enumerator kINPUTMUX_Ctimer2M0ToLpi2c0Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToLpi2c0Trigger
-
enumerator kINPUTMUX_Lptmr0ToLpi2c0Trigger
-
enumerator kINPUTMUX_TrigIn0ToLpi2c0Trigger
-
enumerator kINPUTMUX_TrigIn1ToLpi2c0Trigger
-
enumerator kINPUTMUX_TrigIn2ToLpi2c0Trigger
-
enumerator kINPUTMUX_TrigIn3ToLpi2c0Trigger
-
enumerator kINPUTMUX_TrigIn4ToLpi2c0Trigger
-
enumerator kINPUTMUX_TrigIn5ToLpi2c0Trigger
-
enumerator kINPUTMUX_TrigIn6ToLpi2c0Trigger
-
enumerator kINPUTMUX_TrigIn7ToLpi2c0Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToLpi2c0Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToLpi2c0Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToLpi2c0Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToLpi2c0Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToLpi2c0Trigger
-
enumerator kINPUTMUX_WuuToLpi2c0Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToLpi2c0Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToLpi2c0Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToLpi2c0Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToLpi2c0Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToLpi2c0Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToLpi2c0Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToLpi2c0Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToLpi2c0Trigger
-
enumerator kINPUTMUX_FlexioCh0ToLpi2c0Trigger
-
enumerator kINPUTMUX_FlexioCh1ToLpi2c0Trigger
-
enumerator kINPUTMUX_FlexioCh2ToLpi2c0Trigger
-
enumerator kINPUTMUX_FlexioCh3ToLpi2c0Trigger
LPI2C1 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToLpi2c1Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToLpi2c1Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToLpi2c1Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToLpi2c1Trigger
-
enumerator kINPUTMUX_Cmp0OutToLpi2c1Trigger
-
enumerator kINPUTMUX_Cmp1OutToLpi2c1Trigger
-
enumerator kINPUTMUX_Ctimer0M0ToLpi2c1Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToLpi2c1Trigger
-
enumerator kINPUTMUX_Ctimer1M0ToLpi2c1Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToLpi2c1Trigger
-
enumerator kINPUTMUX_Ctimer2M0ToLpi2c1Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToLpi2c1Trigger
-
enumerator kINPUTMUX_Lptmr0ToLpi2c1Trigger
-
enumerator kINPUTMUX_TrigIn0ToLpi2c1Trigger
-
enumerator kINPUTMUX_TrigIn1ToLpi2c1Trigger
-
enumerator kINPUTMUX_TrigIn2ToLpi2c1Trigger
-
enumerator kINPUTMUX_TrigIn3ToLpi2c1Trigger
-
enumerator kINPUTMUX_TrigIn4ToLpi2c1Trigger
-
enumerator kINPUTMUX_TrigIn5ToLpi2c1Trigger
-
enumerator kINPUTMUX_TrigIn6ToLpi2c1Trigger
-
enumerator kINPUTMUX_TrigIn7ToLpi2c1Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToLpi2c1Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToLpi2c1Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToLpi2c1Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToLpi2c1Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToLpi2c1Trigger
-
enumerator kINPUTMUX_WuuToLpi2c1Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToLpi2c1Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToLpi2c1Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToLpi2c1Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToLpi2c1Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToLpi2c1Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToLpi2c1Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToLpi2c1Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToLpi2c1Trigger
-
enumerator kINPUTMUX_FlexioCh0ToLpi2c1Trigger
-
enumerator kINPUTMUX_FlexioCh1ToLpi2c1Trigger
-
enumerator kINPUTMUX_FlexioCh2ToLpi2c1Trigger
-
enumerator kINPUTMUX_FlexioCh3ToLpi2c1Trigger
LPI2C2 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToLpi2c2Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToLpi2c2Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToLpi2c2Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToLpi2c2Trigger
-
enumerator kINPUTMUX_Cmp0OutToLpi2c2Trigger
-
enumerator kINPUTMUX_Cmp1OutToLpi2c2Trigger
-
enumerator kINPUTMUX_Ctimer0M0ToLpi2c2Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToLpi2c2Trigger
-
enumerator kINPUTMUX_Ctimer1M0ToLpi2c2Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToLpi2c2Trigger
-
enumerator kINPUTMUX_Ctimer2M0ToLpi2c2Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToLpi2c2Trigger
-
enumerator kINPUTMUX_Lptmr0ToLpi2c2Trigger
-
enumerator kINPUTMUX_TrigIn0ToLpi2c2Trigger
-
enumerator kINPUTMUX_TrigIn1ToLpi2c2Trigger
-
enumerator kINPUTMUX_TrigIn2ToLpi2c2Trigger
-
enumerator kINPUTMUX_TrigIn3ToLpi2c2Trigger
-
enumerator kINPUTMUX_TrigIn4ToLpi2c2Trigger
-
enumerator kINPUTMUX_TrigIn5ToLpi2c2Trigger
-
enumerator kINPUTMUX_TrigIn6ToLpi2c2Trigger
-
enumerator kINPUTMUX_TrigIn7ToLpi2c2Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToLpi2c2Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToLpi2c2Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToLpi2c2Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToLpi2c2Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToLpi2c2Trigger
-
enumerator kINPUTMUX_WuuToLpi2c2Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToLpi2c2Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToLpi2c2Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToLpi2c2Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToLpi2c2Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToLpi2c2Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToLpi2c2Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToLpi2c2Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToLpi2c2Trigger
-
enumerator kINPUTMUX_FlexioCh0ToLpi2c2Trigger
-
enumerator kINPUTMUX_FlexioCh1ToLpi2c2Trigger
-
enumerator kINPUTMUX_FlexioCh2ToLpi2c2Trigger
-
enumerator kINPUTMUX_FlexioCh3ToLpi2c2Trigger
LPSPI0 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToLpspi0Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToLpspi0Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToLpspi0Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToLpspi0Trigger
-
enumerator kINPUTMUX_Cmp0OutToLpspi0Trigger
-
enumerator kINPUTMUX_Cmp1OutToLpspi0Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToLpspi0Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToLpspi0Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToLpspi0Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToLpspi0Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToLpspi0Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToLpspi0Trigger
-
enumerator kINPUTMUX_Lptmr0ToLpspi0Trigger
-
enumerator kINPUTMUX_TrigIn0ToLpspi0Trigger
-
enumerator kINPUTMUX_TrigIn1ToLpspi0Trigger
-
enumerator kINPUTMUX_TrigIn2ToLpspi0Trigger
-
enumerator kINPUTMUX_TrigIn3ToLpspi0Trigger
-
enumerator kINPUTMUX_TrigIn4ToLpspi0Trigger
-
enumerator kINPUTMUX_TrigIn5ToLpspi0Trigger
-
enumerator kINPUTMUX_TrigIn6ToLpspi0Trigger
-
enumerator kINPUTMUX_TrigIn7ToLpspi0Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToLpspi0Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToLpspi0Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToLpspi0Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToLpspi0Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToLpspi0Trigger
-
enumerator kINPUTMUX_WuuToLpspi0Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToLpspi0Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToLpspi0Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToLpspi0Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToLpspi0Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToLpspi0Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToLpspi0Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToLpspi0Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToLpspi0Trigger
-
enumerator kINPUTMUX_FlexioCh0ToLpspi0Trigger
-
enumerator kINPUTMUX_FlexioCh1ToLpspi0Trigger
-
enumerator kINPUTMUX_FlexioCh2ToLpspi0Trigger
-
enumerator kINPUTMUX_FlexioCh3ToLpspi0Trigger
LPSPI1 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToLpspi1Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToLpspi1Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToLpspi1Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToLpspi1Trigger
-
enumerator kINPUTMUX_Cmp0OutToLpspi1Trigger
-
enumerator kINPUTMUX_Cmp1OutToLpspi1Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToLpspi1Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToLpspi1Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToLpspi1Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToLpspi1Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToLpspi1Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToLpspi1Trigger
-
enumerator kINPUTMUX_Lptmr0ToLpspi1Trigger
-
enumerator kINPUTMUX_TrigIn0ToLpspi1Trigger
-
enumerator kINPUTMUX_TrigIn1ToLpspi1Trigger
-
enumerator kINPUTMUX_TrigIn2ToLpspi1Trigger
-
enumerator kINPUTMUX_TrigIn3ToLpspi1Trigger
-
enumerator kINPUTMUX_TrigIn4ToLpspi1Trigger
-
enumerator kINPUTMUX_TrigIn5ToLpspi1Trigger
-
enumerator kINPUTMUX_TrigIn6ToLpspi1Trigger
-
enumerator kINPUTMUX_TrigIn7ToLpspi1Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToLpspi1Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToLpspi1Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToLpspi1Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToLpspi1Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToLpspi1Trigger
-
enumerator kINPUTMUX_WuuToLpspi1Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToLpspi1Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToLpspi1Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToLpspi1Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToLpspi1Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToLpspi1Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToLpspi1Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToLpspi1Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToLpspi1Trigger
-
enumerator kINPUTMUX_FlexioCh0ToLpspi1Trigger
-
enumerator kINPUTMUX_FlexioCh1ToLpspi1Trigger
-
enumerator kINPUTMUX_FlexioCh2ToLpspi1Trigger
-
enumerator kINPUTMUX_FlexioCh3ToLpspi1Trigger
LPUART0 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToLpuart0Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToLpuart0Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToLpuart0Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToLpuart0Trigger
-
enumerator kINPUTMUX_Cmp0OutToLpuart0Trigger
-
enumerator kINPUTMUX_Cmp1OutToLpuart0Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToLpuart0Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToLpuart0Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToLpuart0Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToLpuart0Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToLpuart0Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToLpuart0Trigger
-
enumerator kINPUTMUX_Lptmr0ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn0ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn1ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn2ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn3ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn4ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn5ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn6ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn7ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn8ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn9ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn10ToLpuart0Trigger
-
enumerator kINPUTMUX_TrigIn11ToLpuart0Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToLpuart0Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToLpuart0Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToLpuart0Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToLpuart0Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToLpuart0Trigger
-
enumerator kINPUTMUX_WuuToLpuart0Trigger
-
enumerator kINPUTMUX_Usb0IppIndUartRxdUsbmuxToLpuart0Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToLpuart0Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToLpuart0Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToLpuart0Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToLpuart0Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToLpuart0Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToLpuart0Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToLpuart0Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToLpuart0Trigger
-
enumerator kINPUTMUX_FlexioCh0ToLpuart0Trigger
-
enumerator kINPUTMUX_FlexioCh1ToLpuart0Trigger
-
enumerator kINPUTMUX_FlexioCh2ToLpuart0Trigger
-
enumerator kINPUTMUX_FlexioCh3ToLpuart0Trigger
LPUART1 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToLpuart1Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToLpuart1Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToLpuart1Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToLpuart1Trigger
-
enumerator kINPUTMUX_Cmp0OutToLpuart1Trigger
-
enumerator kINPUTMUX_Cmp1OutToLpuart1Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToLpuart1Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToLpuart1Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToLpuart1Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToLpuart1Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToLpuart1Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToLpuart1Trigger
-
enumerator kINPUTMUX_Lptmr0ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn0ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn1ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn2ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn3ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn4ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn5ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn6ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn7ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn8ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn9ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn10ToLpuart1Trigger
-
enumerator kINPUTMUX_TrigIn11ToLpuart1Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToLpuart1Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToLpuart1Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToLpuart1Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToLpuart1Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToLpuart1Trigger
-
enumerator kINPUTMUX_WuuToLpuart1Trigger
-
enumerator kINPUTMUX_Usb0IppIndUartRxdUsbmuxToLpuart1Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToLpuart1Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToLpuart1Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToLpuart1Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToLpuart1Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToLpuart1Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToLpuart1Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToLpuart1Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToLpuart1Trigger
-
enumerator kINPUTMUX_FlexioCh0ToLpuart1Trigger
-
enumerator kINPUTMUX_FlexioCh1ToLpuart1Trigger
-
enumerator kINPUTMUX_FlexioCh2ToLpuart1Trigger
-
enumerator kINPUTMUX_FlexioCh3ToLpuart1Trigger
LPUART2 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToLpuart2Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToLpuart2Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToLpuart2Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToLpuart2Trigger
-
enumerator kINPUTMUX_Cmp0OutToLpuart2Trigger
-
enumerator kINPUTMUX_Cmp1OutToLpuart2Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToLpuart2Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToLpuart2Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToLpuart2Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToLpuart2Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToLpuart2Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToLpuart2Trigger
-
enumerator kINPUTMUX_Lptmr0ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn0ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn1ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn2ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn3ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn4ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn5ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn6ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn7ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn8ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn9ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn10ToLpuart2Trigger
-
enumerator kINPUTMUX_TrigIn11ToLpuart2Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToLpuart2Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToLpuart2Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToLpuart2Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToLpuart2Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToLpuart2Trigger
-
enumerator kINPUTMUX_WuuToLpuart2Trigger
-
enumerator kINPUTMUX_Usb0IppIndUartRxdUsbmuxToLpuart2Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToLpuart2Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToLpuart2Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToLpuart2Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToLpuart2Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToLpuart2Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToLpuart2Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToLpuart2Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToLpuart2Trigger
-
enumerator kINPUTMUX_FlexioCh0ToLpuart2Trigger
-
enumerator kINPUTMUX_FlexioCh1ToLpuart2Trigger
-
enumerator kINPUTMUX_FlexioCh2ToLpuart2Trigger
-
enumerator kINPUTMUX_FlexioCh3ToLpuart2Trigger
LPUART3 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToLpuart3Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToLpuart3Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToLpuart3Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToLpuart3Trigger
-
enumerator kINPUTMUX_Cmp0OutToLpuart3Trigger
-
enumerator kINPUTMUX_Cmp1OutToLpuart3Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToLpuart3Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToLpuart3Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToLpuart3Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToLpuart3Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToLpuart3Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToLpuart3Trigger
-
enumerator kINPUTMUX_Lptmr0ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn0ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn1ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn2ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn3ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn4ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn5ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn6ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn7ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn8ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn9ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn10ToLpuart3Trigger
-
enumerator kINPUTMUX_TrigIn11ToLpuart3Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToLpuart3Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToLpuart3Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToLpuart3Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToLpuart3Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToLpuart3Trigger
-
enumerator kINPUTMUX_WuuToLpuart3Trigger
-
enumerator kINPUTMUX_Usb0IppIndUartRxdUsbmuxToLpuart3Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToLpuart3Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToLpuart3Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToLpuart3Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToLpuart3Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToLpuart3Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToLpuart3Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToLpuart3Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToLpuart3Trigger
-
enumerator kINPUTMUX_FlexioCh0ToLpuart3Trigger
-
enumerator kINPUTMUX_FlexioCh1ToLpuart3Trigger
-
enumerator kINPUTMUX_FlexioCh2ToLpuart3Trigger
-
enumerator kINPUTMUX_FlexioCh3ToLpuart3Trigger
LPUART4 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToLpuart4Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToLpuart4Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToLpuart4Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToLpuart4Trigger
-
enumerator kINPUTMUX_Cmp0OutToLpuart4Trigger
-
enumerator kINPUTMUX_Cmp1OutToLpuart4Trigger
-
enumerator kINPUTMUX_Ctimer0M2ToLpuart4Trigger
-
enumerator kINPUTMUX_Ctimer0M3ToLpuart4Trigger
-
enumerator kINPUTMUX_Ctimer1M2ToLpuart4Trigger
-
enumerator kINPUTMUX_Ctimer1M3ToLpuart4Trigger
-
enumerator kINPUTMUX_Ctimer2M2ToLpuart4Trigger
-
enumerator kINPUTMUX_Ctimer2M3ToLpuart4Trigger
-
enumerator kINPUTMUX_Lptmr0ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn0ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn1ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn2ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn3ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn4ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn5ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn6ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn7ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn8ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn9ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn10ToLpuart4Trigger
-
enumerator kINPUTMUX_TrigIn11ToLpuart4Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToLpuart4Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToLpuart4Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToLpuart4Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToLpuart4Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToLpuart4Trigger
-
enumerator kINPUTMUX_WuuToLpuart4Trigger
-
enumerator kINPUTMUX_Usb0IppIndUartRxdUsbmuxToLpuart4Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToLpuart4Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToLpuart4Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToLpuart4Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToLpuart4Trigger
-
enumerator kINPUTMUX_Ctimer3M2ToLpuart4Trigger
-
enumerator kINPUTMUX_Ctimer3M3ToLpuart4Trigger
-
enumerator kINPUTMUX_Ctimer4M2ToLpuart4Trigger
-
enumerator kINPUTMUX_Ctimer4M3ToLpuart4Trigger
-
enumerator kINPUTMUX_FlexioCh0ToLpuart4Trigger
-
enumerator kINPUTMUX_FlexioCh1ToLpuart4Trigger
-
enumerator kINPUTMUX_FlexioCh2ToLpuart4Trigger
-
enumerator kINPUTMUX_FlexioCh3ToLpuart4Trigger
Flexio trigger0 input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToFlexioTrigger
-
enumerator kINPUTMUX_Aoi0Out1ToFlexioTrigger
-
enumerator kINPUTMUX_Aoi0Out2ToFlexioTrigger
-
enumerator kINPUTMUX_Aoi0Out3ToFlexioTrigger
-
enumerator kINPUTMUX_Adc0Tcomp0ToFlexioTrigger
-
enumerator kINPUTMUX_Adc0Tcomp1ToFlexioTrigger
-
enumerator kINPUTMUX_Adc0Tcomp2ToFlexioTrigger
-
enumerator kINPUTMUX_Adc0Tcomp3ToFlexioTrigger
-
enumerator kINPUTMUX_Cmp0OutToFlexioTrigger
-
enumerator kINPUTMUX_Cmp1OutToFlexioTrigger
-
enumerator kINPUTMUX_Ctimer0M1ToFlexioTrigger
-
enumerator kINPUTMUX_Ctimer0M2ToFlexioTrigger
-
enumerator kINPUTMUX_Ctimer1M1ToFlexioTrigger
-
enumerator kINPUTMUX_Ctimer1M2ToFlexioTrigger
-
enumerator kINPUTMUX_Ctimer2M1ToFlexioTrigger
-
enumerator kINPUTMUX_Ctimer2M2ToFlexioTrigger
-
enumerator kINPUTMUX_Lptmr0ToFlexioTrigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToFlexioTrigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToFlexioTrigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToFlexioTrigger
-
enumerator kINPUTMUX_TrigIn0ToFlexioTrigger
-
enumerator kINPUTMUX_TrigIn1ToFlexioTrigger
-
enumerator kINPUTMUX_TrigIn2ToFlexioTrigger
-
enumerator kINPUTMUX_TrigIn3ToFlexioTrigger
-
enumerator kINPUTMUX_TrigIn4ToFlexioTrigger
-
enumerator kINPUTMUX_TrigIn5ToFlexioTrigger
-
enumerator kINPUTMUX_TrigIn6ToFlexioTrigger
-
enumerator kINPUTMUX_TrigIn7ToFlexioTrigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToFlexioTrigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToFlexioTrigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToFlexioTrigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToFlexioTrigger
-
enumerator kINPUTMUX_WuuToFlexioTrigger
-
enumerator kINPUTMUX_Pwm1A0Trig0ToFlexioTrigger
-
enumerator kINPUTMUX_Lpi2c0MasterEndOfPacketToFlexioTrigger
-
enumerator kINPUTMUX_Lpi2c0SlaveEndOfPacketToFlexioTrigger
-
enumerator kINPUTMUX_Lpi2c1MasterEndOfPacketToFlexioTrigger
-
enumerator kINPUTMUX_Lpi2c1SlaveEndOfPacketToFlexioTrigger
-
enumerator kINPUTMUX_Lpspi0EndOfFrameToFlexioTrigger
-
enumerator kINPUTMUX_Lpspi0ReceivedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpspi1EndOfFrameToFlexioTrigger
-
enumerator kINPUTMUX_Lpspi1ReceivedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart0ReceivedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart0TransmittedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart0ReceiveLineIdleToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart1ReceivedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart1TransmittedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart1ReceiveLineIdleToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart2ReceivedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart2TransmittedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart2ReceiveLineIdleToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart3ReceivedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart3TransmittedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart3ReceiveLineIdleToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart4ReceivedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart4TransmittedDataWordToFlexioTrigger
-
enumerator kINPUTMUX_Lpuart4ReceiveLineIdleToFlexioTrigger
-
enumerator kINPUTMUX_Aoi1Out0ToFlexioTrigger
-
enumerator kINPUTMUX_Aoi1Out1ToFlexioTrigger
-
enumerator kINPUTMUX_Aoi1Out2ToFlexioTrigger
-
enumerator kINPUTMUX_Aoi1Out3ToFlexioTrigger
-
enumerator kINPUTMUX_Adc1Tcomp0ToFlexioTrigger
-
enumerator kINPUTMUX_Adc1Tcomp1ToFlexioTrigger
-
enumerator kINPUTMUX_Adc1Tcomp2ToFlexioTrigger
-
enumerator kINPUTMUX_Adc1Tcomp3ToFlexioTrigger
-
enumerator kINPUTMUX_Ctimer3M2ToFlexioTrigger
-
enumerator kINPUTMUX_Ctimer3M3ToFlexioTrigger
-
enumerator kINPUTMUX_Ctimer4M2ToFlexioTrigger
-
enumerator kINPUTMUX_Ctimer4M3ToFlexioTrigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToFlexioTrigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToFlexioTrigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToFlexioTrigger
-
enumerator kINPUTMUX_Lpi2c2MasterEndOfPacketToFlexioTrigger
-
enumerator kINPUTMUX_Lpi2c2SlaveEndOfPacketToFlexioTrigger
-
enumerator kINPUTMUX_Lpi2c3MasterEndOfPacketToFlexioTrigger
-
enumerator kINPUTMUX_Lpi2c3SlaveEndOfPacketToFlexioTrigger
Opamp0 trigger input connections.
-
enumerator kINPUTMUX_Aoi0Out0ToOpamp0Trigger
-
enumerator kINPUTMUX_Aoi0Out1ToOpamp0Trigger
-
enumerator kINPUTMUX_Aoi0Out2ToOpamp0Trigger
-
enumerator kINPUTMUX_Aoi0Out3ToOpamp0Trigger
-
enumerator kINPUTMUX_Cmp0OutToOpamp0Trigger
-
enumerator kINPUTMUX_Cmp1OutToOpamp0Trigger
-
enumerator kINPUTMUX_Ctimer0M0ToOpamp0Trigger
-
enumerator kINPUTMUX_Ctimer0M1ToOpamp0Trigger
-
enumerator kINPUTMUX_Ctimer1M0ToOpamp0Trigger
-
enumerator kINPUTMUX_Ctimer1M1ToOpamp0Trigger
-
enumerator kINPUTMUX_Ctimer2M0ToOpamp0Trigger
-
enumerator kINPUTMUX_Ctimer2M1ToOpamp0Trigger
-
enumerator kINPUTMUX_Lptmr0ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm0OutTrig1ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm1OutTrig1ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm0Sm2OutTrig1ToOpamp0Trigger
-
enumerator kINPUTMUX_Gpio0PinEventTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_Gpio1PinEventTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_Gpio2PinEventTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_Gpio3PinEventTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_Gpio4PinEventTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_WuuToOpamp0Trigger
-
enumerator kINPUTMUX_Aoi1Out0ToOpamp0Trigger
-
enumerator kINPUTMUX_Aoi1Out1ToOpamp0Trigger
-
enumerator kINPUTMUX_Aoi1Out2ToOpamp0Trigger
-
enumerator kINPUTMUX_Aoi1Out3ToOpamp0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp0ToOpamp0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp1ToOpamp0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp2ToOpamp0Trigger
-
enumerator kINPUTMUX_Adc1Tcomp3ToOpamp0Trigger
-
enumerator kINPUTMUX_Ctimer3M0ToOpamp0Trigger
-
enumerator kINPUTMUX_Ctimer3M1ToOpamp0Trigger
-
enumerator kINPUTMUX_Ctimer4M0ToOpamp0Trigger
-
enumerator kINPUTMUX_Ctimer4M1ToOpamp0Trigger
-
enumerator kINPUTMUX_FlexioCh0ToOpamp0Trigger
-
enumerator kINPUTMUX_FlexioCh1ToOpamp0Trigger
-
enumerator kINPUTMUX_FlexioCh2ToOpamp0Trigger
-
enumerator kINPUTMUX_FlexioCh3ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm0OutTrig1ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm1OutTrig1ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig0ToOpamp0Trigger
-
enumerator kINPUTMUX_Pwm1Sm2OutTrig1ToOpamp0Trigger
-
enumerator kINPUTMUX_CtimerInp0ToTimer0Captsel
-
typedef enum _inputmux_index_t inputmux_index_t
-
typedef enum _inputmux_connection_t inputmux_connection_t
INPUTMUX connections type.
-
TIMER0CAPTSEL0
Periphinmux IDs.
-
TIMER0TRIGIN
-
TIMER1CAPTSEL0
-
TIMER1TRIGIN
-
TIMER2CAPTSEL0
-
TIMER2TRIGIN
-
FREQMEAS_REF_REG
-
FREQMEAS_TAR_REG
-
TIMER3CAPTSEL0
-
TIMER3TRIGIN
-
TIMER4CAPTSEL0
-
TIMER4TRIGIN
-
AOI1_MUX_REG
-
CMP0_TRIG_REG
-
ADC0_TRIG0_REG
-
ADC1_TRIG0_REG
-
DAC0_TRIG0_REG
-
QDC0_TRIG_REG
-
QDC0_HOME_REG
-
QDC0_INDEX_REG
-
QDC0_PHASEB_REG
-
QDC0_PHASEA_REG
-
QDC0_ICAP0_REG
-
QDC1_TRIG_REG
-
QDC1_HOME_REG
-
QDC1_INDEX_REG
-
QDC1_PHASEB_REG
-
QDC1_PHASEA_REG
-
QDC1_ICAP0_REG
-
FlexPWM0_SM0_EXTA0_REG
-
FlexPWM0_SM0_EXTSYNC0_REG
-
FlexPWM0_SM1_EXTA1_REG
-
FlexPWM0_SM1_EXTSYNC1_REG
-
FlexPWM0_SM2_EXTA2_REG
-
FlexPWM0_SM2_EXTSYNC2_REG
-
FlexPWM0_FAULT_REG
-
FlexPWM0_FORCE_REG
-
FlexPWM1_SM0_EXTA0_REG
-
FlexPWM1_SM0_EXTSYNC0_REG
-
FlexPWM1_SM1_EXTA1_REG
-
FlexPWM1_SM1_EXTSYNC1_REG
-
FlexPWM1_SM2_EXTA2_REG
-
FlexPWM1_SM2_EXTSYNC2_REG
-
FlexPWM1_FAULT_REG
-
FlexPWM1_FORCE_REG
-
PWM0_EXT_CLK_REG
-
PWM1_EXT_CLK_REG
-
AOI0_MUX_REG
-
USBFS_TRIG_REG
-
EXT_TRIG0_REG
-
CMP1_TRIG_REG
-
LPI2C2_TRIG_REG
-
OPAMP0_TRIG_REG
-
LPI2C0_TRIG_REG
-
LPI2C1_TRIG_REG
-
LPSPI0_TRIG_REG
-
LPSPI1_TRIG_REG
-
LPUART0_TRIG_REG
-
LPUART1_TRIG_REG
-
LPUART2_TRIG_REG
-
LPUART3_TRIG_REG
-
LPUART4_TRIG_REG
-
FLEXIO_TRIG0_REG
-
PMUX_SHIFT
-
FSL_INPUTMUX_DRIVER_VERSION
Group interrupt driver version for SDK.
-
void INPUTMUX_Init(INPUTMUX_Type *base)
Initialize INPUTMUX peripheral.
This function enables the INPUTMUX clock.
- Parameters:
base – Base address of the INPUTMUX peripheral.
- Return values:
None. –
-
void INPUTMUX_AttachSignal(INPUTMUX_Type *base, uint16_t index, inputmux_connection_t connection)
Attaches a signal.
This function attaches multiplexed signals from INPUTMUX to target signals. For example, to attach GPIO PORT0 Pin 5 to PINT peripheral, do the following:
In this example, INTMUX has 8 registers for PINT, PINT_SEL0~PINT_SEL7. With parameterINPUTMUX_AttachSignal(INPUTMUX, 2, kINPUTMUX_GpioPort0Pin5ToPintsel);
index
specified as 2, this function configures register PINT_SEL2.- Parameters:
base – Base address of the INPUTMUX peripheral.
index – The serial number of destination register in the group of INPUTMUX registers with same name.
connection – Applies signal from source signals collection to target signal.
- Return values:
None. –
-
void INPUTMUX_Deinit(INPUTMUX_Type *base)
Deinitialize INPUTMUX peripheral.
This function disables the INPUTMUX clock.
- Parameters:
base – Base address of the INPUTMUX peripheral.
- Return values:
None. –
Common Driver
-
FSL_COMMON_DRIVER_VERSION
common driver version.
-
DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.
-
DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.
-
DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.
-
DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.
-
DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.
-
DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.
-
DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.
-
DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.
-
DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.
-
DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.
-
DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.
-
MIN(a, b)
Computes the minimum of a and b.
-
MAX(a, b)
Computes the maximum of a and b.
-
UINT16_MAX
Max value of uint16_t type.
-
UINT32_MAX
Max value of uint32_t type.
-
SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.
-
SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.
-
SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits specifiled by setBits.
-
SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value same as expected then update newValue to address and return true , else return false .
-
SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.
-
USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value
-
COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond
-
MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value
-
COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond
-
SDK_ISR_EXIT_BARRIER
-
SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment
Macro to define a variable with L2 cache line size alignment
Macro to change a value to a given size aligned value
-
AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.
-
AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.
-
AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.
-
AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.
-
enum _status_groups
Status group numbers.
Values:
-
enumerator kStatusGroup_Generic
Group number for generic status codes.
-
enumerator kStatusGroup_FLASH
Group number for FLASH status codes.
-
enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.
-
enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.
-
enumerator kStatusGroup_DSPI
Group number for DSPI status codes.
-
enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.
-
enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.
-
enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.
-
enumerator kStatusGroup_UART
Group number for UART status codes.
-
enumerator kStatusGroup_I2C
Group number for UART status codes.
-
enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.
-
enumerator kStatusGroup_LPUART
Group number for LPUART status codes.
-
enumerator kStatusGroup_SPI
Group number for SPI status code.
-
enumerator kStatusGroup_XRDC
Group number for XRDC status code.
-
enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.
-
enumerator kStatusGroup_SDHC
Group number for SDHC status code
-
enumerator kStatusGroup_SDMMC
Group number for SDMMC status code
-
enumerator kStatusGroup_SAI
Group number for SAI status code
-
enumerator kStatusGroup_MCG
Group number for MCG status codes.
-
enumerator kStatusGroup_SCG
Group number for SCG status codes.
-
enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.
-
enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes
-
enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes
-
enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes
-
enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes
-
enumerator kStatusGroup_I2S
Group number for I2S status codes
-
enumerator kStatusGroup_IUART
Group number for IUART status codes
-
enumerator kStatusGroup_CSI
Group number for CSI status codes
-
enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes
-
enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.
-
enumerator kStatusGroup_POWER
Group number for POWER status codes.
-
enumerator kStatusGroup_ENET
Group number for ENET status codes.
-
enumerator kStatusGroup_PHY
Group number for PHY status codes.
-
enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.
-
enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.
-
enumerator kStatusGroup_LMEM
Group number for LMEM status codes.
-
enumerator kStatusGroup_QSPI
Group number for QSPI status codes.
-
enumerator kStatusGroup_DMA
Group number for DMA status codes.
-
enumerator kStatusGroup_EDMA
Group number for EDMA status codes.
-
enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.
-
enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.
-
enumerator kStatusGroup_LTC
Group number for LTC status codes.
-
enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.
-
enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.
-
enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.
-
enumerator kStatusGroup_DMIC
Group number for DMIC status codes.
-
enumerator kStatusGroup_SDIF
Group number for SDIF status codes.
-
enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.
-
enumerator kStatusGroup_OTP
Group number for OTP status codes.
-
enumerator kStatusGroup_MCAN
Group number for MCAN status codes.
-
enumerator kStatusGroup_CAAM
Group number for CAAM status codes.
-
enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.
-
enumerator kStatusGroup_USDHC
Group number for USDHC status codes.
-
enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.
-
enumerator kStatusGroup_DCP
Group number for DCP status codes.
-
enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.
-
enumerator kStatusGroup_ESAI
Group number for ESAI status codes.
-
enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.
-
enumerator kStatusGroup_MMDC
Group number for MMDC status codes.
-
enumerator kStatusGroup_PDM
Group number for MIC status codes.
-
enumerator kStatusGroup_SDMA
Group number for SDMA status codes.
-
enumerator kStatusGroup_ICS
Group number for ICS status codes.
-
enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.
-
enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.
-
enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes
-
enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.
-
enumerator kStatusGroup_I3C
Group number for I3C status codes
-
enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.
-
enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.
-
enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.
-
enumerator kStatusGroup_SEMC
Group number for SEMC status codes.
-
enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.
-
enumerator kStatusGroup_IAP
Group number for IAP status codes
-
enumerator kStatusGroup_SFA
Group number for SFA status codes
-
enumerator kStatusGroup_SPC
Group number for SPC status codes.
-
enumerator kStatusGroup_PUF
Group number for PUF status codes.
-
enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes
-
enumerator kStatusGroup_VBAT
Group number for VBAT status codes
-
enumerator kStatusGroup_XSPI
Group number for XSPI status codes
-
enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes
-
enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes
-
enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.
-
enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.
-
enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.
-
enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.
-
enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.
-
enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.
-
enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.
-
enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.
-
enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.
-
enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.
-
enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.
-
enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.
-
enumerator kStatusGroup_LED
Group number for LED status codes.
-
enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.
-
enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.
-
enumerator kStatusGroup_SHELL
Group number for SHELL status codes.
-
enumerator kStatusGroup_MEM_MANAGER
Group number for MEM MANAGER status codes.
-
enumerator kStatusGroup_LIST
Group number for List status codes.
-
enumerator kStatusGroup_OSA
Group number for OSA status codes.
-
enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.
-
enumerator kStatusGroup_MSG
Group number for messaging status codes.
-
enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.
-
enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.
-
enumerator kStatusGroup_CODEC
Group number for codec status codes.
-
enumerator kStatusGroup_ASRC
Group number for codec status ASRC.
-
enumerator kStatusGroup_OTFAD
Group number for codec status codes.
-
enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.
-
enumerator kStatusGroup_MECC
Group number for MECC status codes.
-
enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.
-
enumerator kStatusGroup_LOG
Group number for LOG status codes.
-
enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.
-
enumerator kStatusGroup_QSCI
Group number for QSCI status codes.
-
enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.
-
enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.
-
enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.
-
enumerator kStatusGroup_IPED
Group number for IPED status codes.
-
enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.
-
enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.
-
enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.
-
enumerator kStatusGroup_CLIF
Group number for CLIF status codes.
-
enumerator kStatusGroup_BMA
Group number for BMA status codes.
-
enumerator kStatusGroup_NETC
Group number for NETC status codes.
-
enumerator kStatusGroup_ELE
Group number for ELE status codes.
-
enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.
-
enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.
-
enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.
-
enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.
-
enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.
-
enumerator kStatusGroup_Generic
Generic status return codes.
Values:
-
enumerator kStatus_Success
Generic status for Success.
-
enumerator kStatus_Fail
Generic status for Fail.
-
enumerator kStatus_ReadOnly
Generic status for read only failure.
-
enumerator kStatus_OutOfRange
Generic status for out of range access.
-
enumerator kStatus_InvalidArgument
Generic status for invalid argument check.
-
enumerator kStatus_Timeout
Generic status for timeout.
-
enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.
-
enumerator kStatus_Busy
Generic status for module is busy.
-
enumerator kStatus_NoData
Generic status for no data is found for the operation.
-
enumerator kStatus_Success
-
typedef int32_t status_t
Type used for all status and error return values.
-
void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.
This is provided to support the dynamically allocated memory used in cache-able region.
- Parameters:
size – The length required to malloc.
alignbytes – The alignment size.
- Return values:
The – allocated memory.
-
void SDK_Free(void *ptr)
Free memory.
- Parameters:
ptr – The memory to be release.
-
void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different run-time environments make the time not precise, if precise delay count was needed, please implement a new delay function with hardware timer.
- Parameters:
delayTime_us – Delay time in unit of microsecond.
coreClock_Hz – Core clock frequency with Hz.
-
static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.
Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ number.
- Return values:
kStatus_Success – Interrupt enabled successfully
kStatus_Fail – Failed to enable the interrupt
-
static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.
Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ number.
- Return values:
kStatus_Success – Interrupt disabled successfully
kStatus_Fail – Failed to disable the interrupt
-
static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ to Enable.
priNum – Priority number set to interrupt controller register.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ to set.
priNum – Priority number set to interrupt controller register.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The flag which IRQ to clear.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.
Disable the global interrupt and return the current primask register. User is required to provided the primask register for the EnableGlobalIRQ().
- Returns:
Current primask value.
-
static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.
Set the primask register with the provided primask value but not just enable the primask. The idea is for the convenience of integration of RTOS. some RTOS get its own management mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlobalIRQ() in pair.
- Parameters:
primask – value of primask register to be restored. The primask value is supposed to be provided by the DisableGlobalIRQ().
-
static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t newValue)
-
static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
-
FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.
-
MAKE_STATUS(group, code)
Construct a status code value from a group and code number.
-
MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.
The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit platforms(such as DSC).
| Unused || Major Version || Minor Version || Bug Fix | 31 25 24 17 16 9 8 0
-
ARRAY_SIZE(x)
Computes the number of elements in an array.
-
UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value
-
UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value
-
SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be added at the end of each case section which misses “break;”statement.
-
MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.
-
MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.
Lin_lpuart_driver
-
FSL_LIN_LPUART_DRIVER_VERSION
LIN LPUART driver version.
-
enum _lin_lpuart_stop_bit_count
Values:
-
enumerator kLPUART_OneStopBit
One stop bit
-
enumerator kLPUART_TwoStopBit
Two stop bits
-
enumerator kLPUART_OneStopBit
-
enum _lin_lpuart_flags
Values:
-
enumerator kLPUART_TxDataRegEmptyFlag
Transmit data register empty flag, sets when transmit buffer is empty
-
enumerator kLPUART_TransmissionCompleteFlag
Transmission complete flag, sets when transmission activity complete
-
enumerator kLPUART_RxDataRegFullFlag
Receive data register full flag, sets when the receive data buffer is full
-
enumerator kLPUART_IdleLineFlag
Idle line detect flag, sets when idle line detected
-
enumerator kLPUART_RxOverrunFlag
Receive Overrun, sets when new data is received before data is read from receive register
-
enumerator kLPUART_NoiseErrorFlag
Receive takes 3 samples of each received bit. If any of these samples differ, noise flag sets
-
enumerator kLPUART_FramingErrorFlag
Frame error flag, sets if logic 0 was detected where stop bit expected
-
enumerator kLPUART_ParityErrorFlag
If parity enabled, sets upon parity error detection
-
enumerator kLPUART_LinBreakFlag
LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit enabled
-
enumerator kLPUART_RxActiveEdgeFlag
Receive pin active edge interrupt flag, sets when active edge detected
-
enumerator kLPUART_RxActiveFlag
Receiver Active Flag (RAF), sets at beginning of valid start bit
-
enumerator kLPUART_DataMatch1Flag
The next character to be read from LPUART_DATA matches MA1
-
enumerator kLPUART_DataMatch2Flag
The next character to be read from LPUART_DATA matches MA2
-
enumerator kLPUART_NoiseErrorInRxDataRegFlag
NOISY bit, sets if noise detected in current data word
-
enumerator kLPUART_ParityErrorInRxDataRegFlag
PARITY bit, sets if noise detected in current data word
-
enumerator kLPUART_TxFifoEmptyFlag
TXEMPT bit, sets if transmit buffer is empty
-
enumerator kLPUART_RxFifoEmptyFlag
RXEMPT bit, sets if receive buffer is empty
-
enumerator kLPUART_TxFifoOverflowFlag
TXOF bit, sets if transmit buffer overflow occurred
-
enumerator kLPUART_RxFifoUnderflowFlag
RXUF bit, sets if receive buffer underflow occurred
-
enumerator kLPUART_TxDataRegEmptyFlag
-
enum _lin_lpuart_interrupt_enable
Values:
-
enumerator kLPUART_LinBreakInterruptEnable
LIN break detect.
-
enumerator kLPUART_RxActiveEdgeInterruptEnable
Receive Active Edge.
-
enumerator kLPUART_TxDataRegEmptyInterruptEnable
Transmit data register empty.
-
enumerator kLPUART_TransmissionCompleteInterruptEnable
Transmission complete.
-
enumerator kLPUART_RxDataRegFullInterruptEnable
Receiver data register full.
-
enumerator kLPUART_IdleLineInterruptEnable
Idle line.
-
enumerator kLPUART_RxOverrunInterruptEnable
Receiver Overrun.
-
enumerator kLPUART_NoiseErrorInterruptEnable
Noise error flag.
-
enumerator kLPUART_FramingErrorInterruptEnable
Framing error flag.
-
enumerator kLPUART_ParityErrorInterruptEnable
Parity error flag.
-
enumerator kLPUART_TxFifoOverflowInterruptEnable
Transmit FIFO Overflow.
-
enumerator kLPUART_RxFifoUnderflowInterruptEnable
Receive FIFO Underflow.
-
enumerator kLPUART_LinBreakInterruptEnable
-
enum _lin_lpuart_status
Values:
-
enumerator kStatus_LPUART_TxBusy
TX busy
-
enumerator kStatus_LPUART_RxBusy
RX busy
-
enumerator kStatus_LPUART_TxIdle
LPUART transmitter is idle.
-
enumerator kStatus_LPUART_RxIdle
LPUART receiver is idle.
-
enumerator kStatus_LPUART_TxWatermarkTooLarge
TX FIFO watermark too large
-
enumerator kStatus_LPUART_RxWatermarkTooLarge
RX FIFO watermark too large
-
enumerator kStatus_LPUART_FlagCannotClearManually
Some flag can’t manually clear
-
enumerator kStatus_LPUART_Error
Error happens on LPUART.
-
enumerator kStatus_LPUART_RxRingBufferOverrun
LPUART RX software ring buffer overrun.
-
enumerator kStatus_LPUART_RxHardwareOverrun
LPUART RX receiver overrun.
-
enumerator kStatus_LPUART_NoiseError
LPUART noise error.
-
enumerator kStatus_LPUART_FramingError
LPUART framing error.
-
enumerator kStatus_LPUART_ParityError
LPUART parity error.
-
enumerator kStatus_LPUART_TxBusy
-
enum lin_lpuart_bit_count_per_char_t
Values:
-
enumerator LPUART_8_BITS_PER_CHAR
8-bit data characters
-
enumerator LPUART_9_BITS_PER_CHAR
9-bit data characters
-
enumerator LPUART_10_BITS_PER_CHAR
10-bit data characters
-
enumerator LPUART_8_BITS_PER_CHAR
-
typedef enum _lin_lpuart_stop_bit_count lin_lpuart_stop_bit_count_t
-
static inline bool LIN_LPUART_GetRxDataPolarity(const LPUART_Type *base)
-
static inline void LIN_LPUART_SetRxDataPolarity(LPUART_Type *base, bool polarity)
-
static inline void LIN_LPUART_WriteByte(LPUART_Type *base, uint8_t data)
-
static inline void LIN_LPUART_ReadByte(const LPUART_Type *base, uint8_t *readData)
-
status_t LIN_LPUART_CalculateBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz, uint32_t *osr, uint16_t *sbr)
Calculates the best osr and sbr value for configured baudrate.
- Parameters:
base – LPUART peripheral base address
baudRate_Bps – user configuration structure of type #lin_user_config_t
srcClock_Hz – pointer to the LIN_LPUART driver state structure
osr – pointer to osr value
sbr – pointer to sbr value
- Returns:
An error code or lin_status_t
-
void LIN_LPUART_SetBaudRate(LPUART_Type *base, uint32_t *osr, uint16_t *sbr)
Configure baudrate according to osr and sbr value.
- Parameters:
base – LPUART peripheral base address
osr – pointer to osr value
sbr – pointer to sbr value
-
lin_status_t LIN_LPUART_Init(LPUART_Type *base, lin_user_config_t *linUserConfig, lin_state_t *linCurrentState, uint32_t linSourceClockFreq)
Initializes an LIN_LPUART instance for LIN Network.
The caller provides memory for the driver state structures during initialization. The user must select the LIN_LPUART clock source in the application to initialize the LIN_LPUART. This function initializes a LPUART instance for operation. This function will initialize the run-time state structure to keep track of the on-going transfers, initialize the module to user defined settings and default settings, set break field length to be 13 bit times minimum, enable the break detect interrupt, Rx complete interrupt, frame error detect interrupt, and enable the LPUART module transmitter and receiver
- Parameters:
base – LPUART peripheral base address
linUserConfig – user configuration structure of type #lin_user_config_t
linCurrentState – pointer to the LIN_LPUART driver state structure
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_Deinit(LPUART_Type *base)
Shuts down the LIN_LPUART by disabling interrupts and transmitter/receiver.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_SendFrameDataBlocking(LPUART_Type *base, const uint8_t *txBuff, uint8_t txSize, uint32_t timeoutMSec)
Sends Frame data out through the LIN_LPUART module using blocking method. This function will calculate the checksum byte and send it with the frame data. Blocking means that the function does not return until the transmission is complete.
- Parameters:
base – LPUART peripheral base address
txBuff – source buffer containing 8-bit data chars to send
txSize – the number of bytes to send
timeoutMSec – timeout value in milli seconds
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_SendFrameData(LPUART_Type *base, const uint8_t *txBuff, uint8_t txSize)
Sends frame data out through the LIN_LPUART module using non-blocking method. This enables an a-sync method for transmitting data. Non-blocking means that the function returns immediately. The application has to get the transmit status to know when the transmit is complete. This function will calculate the checksum byte and send it with the frame data.
- Parameters:
base – LPUART peripheral base address
txBuff – source buffer containing 8-bit data chars to send
txSize – the number of bytes to send
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_GetTransmitStatus(LPUART_Type *base, uint8_t *bytesRemaining)
Get status of an on-going non-blocking transmission While sending frame data using non-blocking method, users can use this function to get status of that transmission. This function return LIN_TX_BUSY while sending, or LIN_TIMEOUT if timeout has occurred, or return LIN_SUCCESS when the transmission is complete. The bytesRemaining shows number of bytes that still needed to transmit.
- Parameters:
base – LPUART peripheral base address
bytesRemaining – Number of bytes still needed to transmit
- Returns:
lin_status_t LIN_TX_BUSY, LIN_SUCCESS or LIN_TIMEOUT
-
lin_status_t LIN_LPUART_RecvFrmDataBlocking(LPUART_Type *base, uint8_t *rxBuff, uint8_t rxSize, uint32_t timeoutMSec)
Receives frame data through the LIN_LPUART module using blocking method. This function will check the checksum byte. If the checksum is correct, it will receive the frame data. Blocking means that the function does not return until the reception is complete.
- Parameters:
base – LPUART peripheral base address
rxBuff – buffer containing 8-bit received data
rxSize – the number of bytes to receive
timeoutMSec – timeout value in milli seconds
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_RecvFrmData(LPUART_Type *base, uint8_t *rxBuff, uint8_t rxSize)
Receives frame data through the LIN_LPUART module using non-blocking method. This function will check the checksum byte. If the checksum is correct, it will receive it with the frame data. Non-blocking means that the function returns immediately. The application has to get the receive status to know when the reception is complete.
- Parameters:
base – LPUART peripheral base address
rxBuff – buffer containing 8-bit received data
rxSize – the number of bytes to receive
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_AbortTransferData(LPUART_Type *base)
Aborts an on-going non-blocking transmission/reception. While performing a non-blocking transferring data, users can call this function to terminate immediately the transferring.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_GetReceiveStatus(LPUART_Type *base, uint8_t *bytesRemaining)
Get status of an on-going non-blocking reception While receiving frame data using non-blocking method, users can use this function to get status of that receiving. This function return the current event ID, LIN_RX_BUSY while receiving and return LIN_SUCCESS, or timeout (LIN_TIMEOUT) when the reception is complete. The bytesRemaining shows number of bytes that still needed to receive.
- Parameters:
base – LPUART peripheral base address
bytesRemaining – Number of bytes still needed to receive
- Returns:
lin_status_t LIN_RX_BUSY, LIN_TIMEOUT or LIN_SUCCESS
-
lin_status_t LIN_LPUART_GoToSleepMode(LPUART_Type *base)
This function puts current node to sleep mode This function changes current node state to LIN_NODE_STATE_SLEEP_MODE.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_GotoIdleState(LPUART_Type *base)
Puts current LIN node to Idle state This function changes current node state to LIN_NODE_STATE_IDLE.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_SendWakeupSignal(LPUART_Type *base)
Sends a wakeup signal through the LIN_LPUART interface.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_MasterSendHeader(LPUART_Type *base, uint8_t id)
Sends frame header out through the LIN_LPUART module using a non-blocking method. This function sends LIN Break field, sync field then the ID with correct parity.
- Parameters:
base – LPUART peripheral base address
id – Frame Identifier
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_EnableIRQ(LPUART_Type *base)
Enables LIN_LPUART hardware interrupts.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_DisableIRQ(LPUART_Type *base)
Disables LIN_LPUART hardware interrupts.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_AutoBaudCapture(uint32_t instance)
This function capture bits time to detect break char, calculate baudrate from sync bits and enable transceiver if autobaud successful. This function should only be used in Slave. The timer should be in mode input capture of both rising and falling edges. The timer input capture pin should be externally connected to RXD pin.
- Parameters:
instance – LPUART instance
- Returns:
lin_status_t
-
void LIN_LPUART_IRQHandler(LPUART_Type *base)
LIN_LPUART RX TX interrupt handler.
- Parameters:
base – LPUART peripheral base address
- Returns:
void
-
AUTOBAUD_BAUDRATE_TOLERANCE
-
BIT_RATE_TOLERANCE_UNSYNC
-
BIT_DURATION_MAX_19200
-
BIT_DURATION_MIN_19200
-
BIT_DURATION_MAX_14400
-
BIT_DURATION_MIN_14400
-
BIT_DURATION_MAX_9600
-
BIT_DURATION_MIN_9600
-
BIT_DURATION_MAX_4800
-
BIT_DURATION_MIN_4800
-
BIT_DURATION_MAX_2400
-
BIT_DURATION_MIN_2400
-
TWO_BIT_DURATION_MAX_19200
-
TWO_BIT_DURATION_MIN_19200
-
TWO_BIT_DURATION_MAX_14400
-
TWO_BIT_DURATION_MIN_14400
-
TWO_BIT_DURATION_MAX_9600
-
TWO_BIT_DURATION_MIN_9600
-
TWO_BIT_DURATION_MAX_4800
-
TWO_BIT_DURATION_MIN_4800
-
TWO_BIT_DURATION_MAX_2400
-
TWO_BIT_DURATION_MIN_2400
-
AUTOBAUD_BREAK_TIME_MIN
LPADC: 12-bit SAR Analog-to-Digital Converter Driver
-
void LPADC_Init(ADC_Type *base, const lpadc_config_t *config)
Initializes the LPADC module.
- Parameters:
base – LPADC peripheral base address.
config – Pointer to configuration structure. See “lpadc_config_t”.
-
void LPADC_GetDefaultConfig(lpadc_config_t *config)
Gets an available pre-defined settings for initial configuration.
This function initializes the converter configuration structure with an available settings. The default values are:
config->enableInDozeMode = true; config->enableAnalogPreliminary = false; config->powerUpDelay = 0x80; config->referenceVoltageSource = kLPADC_ReferenceVoltageAlt1; config->powerLevelMode = kLPADC_PowerLevelAlt1; config->triggerPriorityPolicy = kLPADC_TriggerPriorityPreemptImmediately; config->enableConvPause = false; config->convPauseDelay = 0U; config->FIFOWatermark = 0U;
- Parameters:
config – Pointer to configuration structure.
-
void LPADC_Deinit(ADC_Type *base)
De-initializes the LPADC module.
- Parameters:
base – LPADC peripheral base address.
-
static inline void LPADC_Enable(ADC_Type *base, bool enable)
Switch on/off the LPADC module.
- Parameters:
base – LPADC peripheral base address.
enable – switcher to the module.
-
static inline void LPADC_DoResetFIFO(ADC_Type *base)
Do reset the conversion FIFO.
- Parameters:
base – LPADC peripheral base address.
-
static inline void LPADC_DoResetConfig(ADC_Type *base)
Do reset the module’s configuration.
Reset all ADC internal logic and registers, except the Control Register (ADCx_CTRL).
- Parameters:
base – LPADC peripheral base address.
-
static inline uint32_t LPADC_GetStatusFlags(ADC_Type *base)
Get status flags.
- Parameters:
base – LPADC peripheral base address.
- Returns:
status flags’ mask. See to _lpadc_status_flags.
-
static inline void LPADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clear status flags.
Only the flags can be cleared by writing ADCx_STATUS register would be cleared by this API.
- Parameters:
base – LPADC peripheral base address.
mask – Mask value for flags to be cleared. See to _lpadc_status_flags.
-
static inline uint32_t LPADC_GetTriggerStatusFlags(ADC_Type *base)
Get trigger status flags to indicate which trigger sequences have been completed or interrupted by a high priority trigger exception.
- Parameters:
base – LPADC peripheral base address.
- Returns:
The OR’ed value of _lpadc_trigger_status_flags.
-
static inline void LPADC_ClearTriggerStatusFlags(ADC_Type *base, uint32_t mask)
Clear trigger status flags.
- Parameters:
base – LPADC peripheral base address.
mask – The mask of trigger status flags to be cleared, should be the OR’ed value of _lpadc_trigger_status_flags.
-
static inline void LPADC_EnableInterrupts(ADC_Type *base, uint32_t mask)
Enable interrupts.
- Parameters:
base – LPADC peripheral base address.
mask – Mask value for interrupt events. See to _lpadc_interrupt_enable.
-
static inline void LPADC_DisableInterrupts(ADC_Type *base, uint32_t mask)
Disable interrupts.
- Parameters:
base – LPADC peripheral base address.
mask – Mask value for interrupt events. See to _lpadc_interrupt_enable.
-
static inline void LPADC_EnableFIFOWatermarkDMA(ADC_Type *base, bool enable)
Switch on/off the DMA trigger for FIFO watermark event.
- Parameters:
base – LPADC peripheral base address.
enable – Switcher to the event.
-
static inline uint32_t LPADC_GetConvResultCount(ADC_Type *base)
Get the count of result kept in conversion FIFO.
- Parameters:
base – LPADC peripheral base address.
- Returns:
The count of result kept in conversion FIFO.
-
bool LPADC_GetConvResult(ADC_Type *base, lpadc_conv_result_t *result)
Get the result in conversion FIFO.
- Parameters:
base – LPADC peripheral base address.
result – Pointer to structure variable that keeps the conversion result in conversion FIFO.
- Returns:
Status whether FIFO entry is valid.
-
void LPADC_GetConvResultBlocking(ADC_Type *base, lpadc_conv_result_t *result)
Get the result in conversion FIFO using blocking method.
- Parameters:
base – LPADC peripheral base address.
result – Pointer to structure variable that keeps the conversion result in conversion FIFO.
-
void LPADC_SetConvTriggerConfig(ADC_Type *base, uint32_t triggerId, const lpadc_conv_trigger_config_t *config)
Configure the conversion trigger source.
Each programmable trigger can launch the conversion command in command buffer.
- Parameters:
base – LPADC peripheral base address.
triggerId – ID for each trigger. Typically, the available value range is from 0.
config – Pointer to configuration structure. See to lpadc_conv_trigger_config_t.
-
void LPADC_GetDefaultConvTriggerConfig(lpadc_conv_trigger_config_t *config)
Gets an available pre-defined settings for trigger’s configuration.
This function initializes the trigger’s configuration structure with an available settings. The default values are:
config->targetCommandId = 0U; config->delayPower = 0U; config->priority = 0U; config->channelAFIFOSelect = 0U; config->channelBFIFOSelect = 0U; config->enableHardwareTrigger = false;
- Parameters:
config – Pointer to configuration structure.
-
static inline void LPADC_DoSoftwareTrigger(ADC_Type *base, uint32_t triggerIdMask)
Do software trigger to conversion command.
- Parameters:
base – LPADC peripheral base address.
triggerIdMask – Mask value for software trigger indexes, which count from zero.
-
void LPADC_SetConvCommandConfig(ADC_Type *base, uint32_t commandId, const lpadc_conv_command_config_t *config)
Configure conversion command.
Note
The number of compare value register on different chips is different, that is mean in some chips, some command buffers do not have the compare functionality.
- Parameters:
base – LPADC peripheral base address.
commandId – ID for command in command buffer. Typically, the available value range is 1 - 15.
config – Pointer to configuration structure. See to lpadc_conv_command_config_t.
-
void LPADC_GetDefaultConvCommandConfig(lpadc_conv_command_config_t *config)
Gets an available pre-defined settings for conversion command’s configuration.
This function initializes the conversion command’s configuration structure with an available settings. The default values are:
config->sampleScaleMode = kLPADC_SampleFullScale; config->channelBScaleMode = kLPADC_SampleFullScale; config->sampleChannelMode = kLPADC_SampleChannelSingleEndSideA; config->channelNumber = 0U; config->channelBNumber = 0U; config->chainedNextCommandNumber = 0U; config->enableAutoChannelIncrement = false; config->loopCount = 0U; config->hardwareAverageMode = kLPADC_HardwareAverageCount1; config->sampleTimeMode = kLPADC_SampleTimeADCK3; config->hardwareCompareMode = kLPADC_HardwareCompareDisabled; config->hardwareCompareValueHigh = 0U; config->hardwareCompareValueLow = 0U; config->conversionResolutionMode = kLPADC_ConversionResolutionStandard; config->enableWaitTrigger = false; config->enableChannelB = false;
- Parameters:
config – Pointer to configuration structure.
-
void LPADC_EnableCalibration(ADC_Type *base, bool enable)
Enable the calibration function.
When CALOFS is set, the ADC is configured to perform a calibration function anytime the ADC executes a conversion. Any channel selected is ignored and the value returned in the RESFIFO is a signed value between -31 and 31. -32 is not a valid and is never a returned value. Software should copy the lower 6- bits of the conversion result stored in the RESFIFO after a completed calibration conversion to the OFSTRIM field. The OFSTRIM field is used in normal operation for offset correction.
- Parameters:
base – LPADC peripheral base address.
enable – switcher to the calibration function.
-
static inline void LPADC_SetOffsetValue(ADC_Type *base, uint32_t value)
Set proper offset value to trim ADC.
To minimize the offset during normal operation, software should read the conversion result from the RESFIFO calibration operation and write the lower 6 bits to the OFSTRIM register.
- Parameters:
base – LPADC peripheral base address.
value – Setting offset value.
-
void LPADC_DoAutoCalibration(ADC_Type *base)
Do auto calibration.
Calibration function should be executed before using converter in application. It used the software trigger and a dummy conversion, get the offset and write them into the OFSTRIM register. It called some of functional API including: -LPADC_EnableCalibration(…) -LPADC_LPADC_SetOffsetValue(…) -LPADC_SetConvCommandConfig(…) -LPADC_SetConvTriggerConfig(…)
- Parameters:
base – LPADC peripheral base address.
base – LPADC peripheral base address.
-
static inline void LPADC_SetOffsetValue(ADC_Type *base, int16_t value)
Set trim value for offset.
Note
For 16-bit conversions, each increment is 1/2 LSB resulting in a programmable offset range of -256 LSB to 255.5 LSB; For 12-bit conversions, each increment is 1/32 LSB resulting in a programmable offset range of -16 LSB to 15.96875 LSB.
- Parameters:
base – LPADC peripheral base address.
value – Offset trim value, is a 10-bit signed value between -512 and 511.
-
static inline void LPADC_GetOffsetValue(ADC_Type *base, int16_t *pValue)
Get trim value of offset.
- Parameters:
base – LPADC peripheral base address.
pValue – Pointer to the variable in type of int16_t to store offset value.
-
static inline void LPADC_EnableOffsetCalibration(ADC_Type *base, bool enable)
Enable the offset calibration function.
- Parameters:
base – LPADC peripheral base address.
enable – switcher to the calibration function.
-
static inline void LPADC_SetOffsetCalibrationMode(ADC_Type *base, lpadc_offset_calibration_mode_t mode)
Set offset calibration mode.
- Parameters:
base – LPADC peripheral base address.
mode – set offset calibration mode.see to lpadc_offset_calibration_mode_t .
-
void LPADC_DoOffsetCalibration(ADC_Type *base)
Do offset calibration.
- Parameters:
base – LPADC peripheral base address.
-
void LPADC_PrepareAutoCalibration(ADC_Type *base)
Prepare auto calibration, LPADC_FinishAutoCalibration has to be called before using the LPADC. LPADC_DoAutoCalibration has been split in two API to avoid to be stuck too long in the function.
- Parameters:
base – LPADC peripheral base address.
-
void LPADC_FinishAutoCalibration(ADC_Type *base)
Finish auto calibration start with LPADC_PrepareAutoCalibration.
Note
This feature is used for LPADC with CTRL[CALOFSMODE].
- Parameters:
base – LPADC peripheral base address.
-
void LPADC_GetCalibrationValue(ADC_Type *base, lpadc_calibration_value_t *ptrCalibrationValue)
Get calibration value into the memory which is defined by invoker.
Note
Please note the ADC will be disabled temporary.
Note
This function should be used after finish calibration.
- Parameters:
base – LPADC peripheral base address.
ptrCalibrationValue – Pointer to lpadc_calibration_value_t structure, this memory block should be always powered on even in low power modes.
-
void LPADC_SetCalibrationValue(ADC_Type *base, const lpadc_calibration_value_t *ptrCalibrationValue)
Set calibration value into ADC calibration registers.
Note
Please note the ADC will be disabled temporary.
- Parameters:
base – LPADC peripheral base address.
ptrCalibrationValue – Pointer to lpadc_calibration_value_t structure which contains ADC’s calibration value.
-
static inline void LPADC_RequestHighSpeedModeTrim(ADC_Type *base)
Request high speed mode trim calculation.
- Parameters:
base – LPADC peripheral base address.
-
static inline int8_t LPADC_GetHighSpeedTrimValue(ADC_Type *base)
Get high speed mode trim value, the result is a 5-bit signed value between -16 and 15.
Note
The high speed mode trim value is used to minimize offset for high speed conversion.
- Parameters:
base – LPADC peripheral base address.
- Returns:
The calculated high speed mode trim value.
-
static inline void LPADC_SetHighSpeedTrimValue(ADC_Type *base, int8_t trimValue)
Set high speed mode trim value.
Note
If is possible to set the trim value manually, but it is recommended to use the LPADC_RequestHighSpeedModeTrim.
- Parameters:
base – LPADC peripheral base address.
trimValue – The trim value to be set.
-
static inline void LPADC_EnableHighSpeedConversionMode(ADC_Type *base, bool enable)
Enable/disable high speed conversion mode, if enabled conversions complete 2 or 3 ADCK cycles sooner compared to conversion cycle counts when high speed mode is disabled.
- Parameters:
base – LPADC peripheral base address.
enable – Used to enable/disable high speed conversion mode:
true Enable high speed conversion mode;
false Disable high speed conversion mode.
-
static inline void LPADC_EnableExtraCycle(ADC_Type *base, bool enable)
Enable/disable an additional ADCK cycle to conversion.
- Parameters:
base – LPADC peripheral base address.
enable – Used to enable/disable an additional ADCK cycle to conversion:
true Enable an additional ADCK cycle to conversion;
false Disable an additional ADCK cycle to conversion.
-
static inline void LPADC_SetTuneValue(ADC_Type *base, lpadc_tune_value_t tuneValue)
Set tune value which provides some variability in how many cycles are needed to complete a conversion.
- Parameters:
base – LPADC peripheral base address.
tuneValue – The tune value to be set, please refer to lpadc_tune_value_t.
-
static inline lpadc_tune_value_t LPADC_GetTuneValue(ADC_Type *base)
Get tune value which provides some variability in how many cycles are needed to complete a conversion.
- Parameters:
base – LPADC peripheral base address.
- Returns:
The tune value, please refer to lpadc_tune_value_t.
-
FSL_LPADC_DRIVER_VERSION
LPADC driver version 2.9.1.
-
enum _lpadc_status_flags
Define hardware flags of the module.
Values:
-
enumerator kLPADC_ResultFIFO0OverflowFlag
Indicates that more data has been written to the Result FIFO 0 than it can hold.
-
enumerator kLPADC_ResultFIFO0ReadyFlag
Indicates when the number of valid datawords in the result FIFO 0 is greater than the setting watermark level.
-
enumerator kLPADC_TriggerExceptionFlag
Indicates that a trigger exception event has occurred.
-
enumerator kLPADC_TriggerCompletionFlag
Indicates that a trigger completion event has occurred.
-
enumerator kLPADC_CalibrationReadyFlag
Indicates that the calibration process is done.
-
enumerator kLPADC_ActiveFlag
Indicates that the ADC is in active state.
-
enumerator kLPADC_ResultFIFOOverflowFlag
To compilitable with old version, do not recommend using this, please use kLPADC_ResultFIFO0OverflowFlag as instead.
-
enumerator kLPADC_ResultFIFOReadyFlag
To compilitable with old version, do not recommend using this, please use kLPADC_ResultFIFO0ReadyFlag as instead.
-
enumerator kLPADC_ResultFIFO0OverflowFlag
-
enum _lpadc_interrupt_enable
Define interrupt switchers of the module.
Note: LPADC of different chips supports different number of trigger sources, please check the Reference Manual for details.
Values:
-
enumerator kLPADC_ResultFIFO0OverflowInterruptEnable
Configures ADC to generate overflow interrupt requests when FOF0 flag is asserted.
-
enumerator kLPADC_FIFO0WatermarkInterruptEnable
Configures ADC to generate watermark interrupt requests when RDY0 flag is asserted.
-
enumerator kLPADC_ResultFIFOOverflowInterruptEnable
To compilitable with old version, do not recommend using this, please use kLPADC_ResultFIFO0OverflowInterruptEnable as instead.
-
enumerator kLPADC_FIFOWatermarkInterruptEnable
To compilitable with old version, do not recommend using this, please use kLPADC_FIFO0WatermarkInterruptEnable as instead.
-
enumerator kLPADC_TriggerExceptionInterruptEnable
Configures ADC to generate trigger exception interrupt.
-
enumerator kLPADC_Trigger0CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 0 completion.
-
enumerator kLPADC_Trigger1CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 1 completion.
-
enumerator kLPADC_Trigger2CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 2 completion.
-
enumerator kLPADC_Trigger3CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 3 completion.
-
enumerator kLPADC_Trigger4CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 4 completion.
-
enumerator kLPADC_Trigger5CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 5 completion.
-
enumerator kLPADC_Trigger6CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 6 completion.
-
enumerator kLPADC_Trigger7CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 7 completion.
-
enumerator kLPADC_Trigger8CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 8 completion.
-
enumerator kLPADC_Trigger9CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 9 completion.
-
enumerator kLPADC_Trigger10CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 10 completion.
-
enumerator kLPADC_Trigger11CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 11 completion.
-
enumerator kLPADC_Trigger12CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 12 completion.
-
enumerator kLPADC_Trigger13CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 13 completion.
-
enumerator kLPADC_Trigger14CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 14 completion.
-
enumerator kLPADC_Trigger15CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 15 completion.
-
enumerator kLPADC_ResultFIFO0OverflowInterruptEnable
-
enum _lpadc_trigger_status_flags
The enumerator of lpadc trigger status flags, including interrupted flags and completed flags.
Note: LPADC of different chips supports different number of trigger sources, please check the Reference Manual for details.
Values:
-
enumerator kLPADC_Trigger0InterruptedFlag
Trigger 0 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger1InterruptedFlag
Trigger 1 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger2InterruptedFlag
Trigger 2 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger3InterruptedFlag
Trigger 3 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger4InterruptedFlag
Trigger 4 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger5InterruptedFlag
Trigger 5 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger6InterruptedFlag
Trigger 6 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger7InterruptedFlag
Trigger 7 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger8InterruptedFlag
Trigger 8 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger9InterruptedFlag
Trigger 9 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger10InterruptedFlag
Trigger 10 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger11InterruptedFlag
Trigger 11 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger12InterruptedFlag
Trigger 12 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger13InterruptedFlag
Trigger 13 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger14InterruptedFlag
Trigger 14 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger15InterruptedFlag
Trigger 15 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger0CompletedFlag
Trigger 0 is completed and trigger 0 has enabled completion interrupts.
-
enumerator kLPADC_Trigger1CompletedFlag
Trigger 1 is completed and trigger 1 has enabled completion interrupts.
-
enumerator kLPADC_Trigger2CompletedFlag
Trigger 2 is completed and trigger 2 has enabled completion interrupts.
-
enumerator kLPADC_Trigger3CompletedFlag
Trigger 3 is completed and trigger 3 has enabled completion interrupts.
-
enumerator kLPADC_Trigger4CompletedFlag
Trigger 4 is completed and trigger 4 has enabled completion interrupts.
-
enumerator kLPADC_Trigger5CompletedFlag
Trigger 5 is completed and trigger 5 has enabled completion interrupts.
-
enumerator kLPADC_Trigger6CompletedFlag
Trigger 6 is completed and trigger 6 has enabled completion interrupts.
-
enumerator kLPADC_Trigger7CompletedFlag
Trigger 7 is completed and trigger 7 has enabled completion interrupts.
-
enumerator kLPADC_Trigger8CompletedFlag
Trigger 8 is completed and trigger 8 has enabled completion interrupts.
-
enumerator kLPADC_Trigger9CompletedFlag
Trigger 9 is completed and trigger 9 has enabled completion interrupts.
-
enumerator kLPADC_Trigger10CompletedFlag
Trigger 10 is completed and trigger 10 has enabled completion interrupts.
-
enumerator kLPADC_Trigger11CompletedFlag
Trigger 11 is completed and trigger 11 has enabled completion interrupts.
-
enumerator kLPADC_Trigger12CompletedFlag
Trigger 12 is completed and trigger 12 has enabled completion interrupts.
-
enumerator kLPADC_Trigger13CompletedFlag
Trigger 13 is completed and trigger 13 has enabled completion interrupts.
-
enumerator kLPADC_Trigger14CompletedFlag
Trigger 14 is completed and trigger 14 has enabled completion interrupts.
-
enumerator kLPADC_Trigger15CompletedFlag
Trigger 15 is completed and trigger 15 has enabled completion interrupts.
-
enumerator kLPADC_Trigger0InterruptedFlag
-
enum _lpadc_sample_scale_mode
Define enumeration of sample scale mode.
The sample scale mode is used to reduce the selected ADC analog channel input voltage level by a factor. The maximum possible voltage on the ADC channel input should be considered when selecting a scale mode to ensure that the reducing factor always results voltage level at or below the VREFH reference. This reducing capability allows conversion of analog inputs higher than VREFH. A-side and B-side channel inputs are both scaled using the scale mode.
Values:
-
enumerator kLPADC_SamplePartScale
Use divided input voltage signal. (For scale select,please refer to the reference manual).
-
enumerator kLPADC_SampleFullScale
Full scale (Factor of 1).
-
enumerator kLPADC_SamplePartScale
-
enum _lpadc_sample_channel_mode
Define enumeration of channel sample mode.
The channel sample mode configures the channel with single-end/differential/dual-single-end, side A/B.
Values:
-
enumerator kLPADC_SampleChannelSingleEndSideA
Single-end mode, only A-side channel is converted.
-
enumerator kLPADC_SampleChannelSingleEndSideB
Single-end mode, only B-side channel is converted.
-
enumerator kLPADC_SampleChannelDiffBothSideAB
Differential mode, the ADC result is (CHnA-CHnB).
-
enumerator kLPADC_SampleChannelDiffBothSideBA
Differential mode, the ADC result is (CHnB-CHnA).
-
enumerator kLPADC_SampleChannelDiffBothSide
Differential mode, the ADC result is (CHnA-CHnB).
-
enumerator kLPADC_SampleChannelDualSingleEndBothSide
Dual-Single-Ended Mode. Both A side and B side channels are converted independently.
-
enumerator kLPADC_SampleChannelSingleEndSideA
-
enum _lpadc_hardware_average_mode
Define enumeration of hardware average selection.
It Selects how many ADC conversions are averaged to create the ADC result. An internal storage buffer is used to capture temporary results while the averaging iterations are executed.
Note
Some enumerator values are not available on some devices, mainly depends on the size of AVGS field in CMDH register.
Values:
-
enumerator kLPADC_HardwareAverageCount1
Single conversion.
-
enumerator kLPADC_HardwareAverageCount2
2 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount4
4 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount8
8 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount16
16 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount32
32 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount64
64 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount128
128 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount1
-
enum _lpadc_sample_time_mode
Define enumeration of sample time selection.
The shortest sample time maximizes conversion speed for lower impedance inputs. Extending sample time allows higher impedance inputs to be accurately sampled. Longer sample times can also be used to lower overall power consumption when command looping and sequencing is configured and high conversion rates are not required.
Values:
-
enumerator kLPADC_SampleTimeADCK3
3 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK5
5 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK7
7 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK11
11 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK19
19 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK35
35 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK67
69 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK131
131 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK3
-
enum _lpadc_hardware_compare_mode
Define enumeration of hardware compare mode.
After an ADC channel input is sampled and converted and any averaging iterations are performed, this mode setting guides operation of the automatic compare function to optionally only store when the compare operation is true. When compare is enabled, the conversion result is compared to the compare values.
Values:
-
enumerator kLPADC_HardwareCompareDisabled
Compare disabled.
-
enumerator kLPADC_HardwareCompareStoreOnTrue
Compare enabled. Store on true.
-
enumerator kLPADC_HardwareCompareRepeatUntilTrue
Compare enabled. Repeat channel acquisition until true.
-
enumerator kLPADC_HardwareCompareDisabled
-
enum _lpadc_conversion_resolution_mode
Define enumeration of conversion resolution mode.
Configure the resolution bit in specific conversion type. For detailed resolution accuracy, see to lpadc_sample_channel_mode_t
Values:
-
enumerator kLPADC_ConversionResolutionStandard
Standard resolution. Single-ended 12-bit conversion, Differential 13-bit conversion with 2’s complement output.
-
enumerator kLPADC_ConversionResolutionHigh
High resolution. Single-ended 16-bit conversion; Differential 16-bit conversion with 2’s complement output.
-
enumerator kLPADC_ConversionResolutionStandard
-
enum _lpadc_conversion_average_mode
Define enumeration of conversion averages mode.
Configure the converion average number for auto-calibration.
Note
Some enumerator values are not available on some devices, mainly depends on the size of CAL_AVGS field in CTRL register.
Values:
-
enumerator kLPADC_ConversionAverage1
Single conversion.
-
enumerator kLPADC_ConversionAverage2
2 conversions averaged.
-
enumerator kLPADC_ConversionAverage4
4 conversions averaged.
-
enumerator kLPADC_ConversionAverage8
8 conversions averaged.
-
enumerator kLPADC_ConversionAverage16
16 conversions averaged.
-
enumerator kLPADC_ConversionAverage32
32 conversions averaged.
-
enumerator kLPADC_ConversionAverage64
64 conversions averaged.
-
enumerator kLPADC_ConversionAverage128
128 conversions averaged.
-
enumerator kLPADC_ConversionAverage1
-
enum _lpadc_reference_voltage_mode
Define enumeration of reference voltage source.
For detail information, need to check the SoC’s specification.
Values:
-
enumerator kLPADC_ReferenceVoltageAlt1
Option 1 setting.
-
enumerator kLPADC_ReferenceVoltageAlt2
Option 2 setting.
-
enumerator kLPADC_ReferenceVoltageAlt3
Option 3 setting.
-
enumerator kLPADC_ReferenceVoltageAlt1
-
enum _lpadc_power_level_mode
Define enumeration of power configuration.
Configures the ADC for power and performance. In the highest power setting the highest conversion rates will be possible. Refer to the device data sheet for power and performance capabilities for each setting.
Values:
-
enumerator kLPADC_PowerLevelAlt1
Lowest power setting.
-
enumerator kLPADC_PowerLevelAlt2
Next lowest power setting.
-
enumerator kLPADC_PowerLevelAlt3
…
-
enumerator kLPADC_PowerLevelAlt4
Highest power setting.
-
enumerator kLPADC_PowerLevelAlt1
-
enum _lpadc_offset_calibration_mode
Define enumeration of offset calibration mode.
Values:
-
enumerator kLPADC_OffsetCalibration12bitMode
12 bit offset calibration mode.
-
enumerator kLPADC_OffsetCalibration16bitMode
16 bit offset calibration mode.
-
enumerator kLPADC_OffsetCalibration12bitMode
-
enum _lpadc_trigger_priority_policy
Define enumeration of trigger priority policy.
This selection controls how higher priority triggers are handled.
Note
kLPADC_TriggerPriorityPreemptSubsequently is not available on some devices, mainly depends on the size of TPRICTRL field in CFG register.
Values:
-
enumerator kLPADC_ConvPreemptImmediatelyNotAutoResumed
If a higher priority trigger is detected during command processing, the current conversion is aborted and the new command specified by the trigger is started, when higher priority conversion finishes, the preempted conversion is not automatically resumed or restarted.
-
enumerator kLPADC_ConvPreemptSoftlyNotAutoResumed
If a higher priority trigger is received during command processing, the current conversion is completed (including averaging iterations and compare function if enabled) and stored to the result FIFO before the higher priority trigger/command is initiated, when higher priority conversion finishes, the preempted conversion is not resumed or restarted.
-
enumerator kLPADC_ConvPreemptImmediatelyAutoRestarted
If a higher priority trigger is detected during command processing, the current conversion is aborted and the new command specified by the trigger is started, when higher priority conversion finishes, the preempted conversion will automatically be restarted.
-
enumerator kLPADC_ConvPreemptSoftlyAutoRestarted
If a higher priority trigger is received during command processing, the current conversion is completed (including averaging iterations and compare function if enabled) and stored to the result FIFO before the higher priority trigger/command is initiated, when higher priority conversion finishes, the preempted conversion will automatically be restarted.
-
enumerator kLPADC_ConvPreemptImmediatelyAutoResumed
If a higher priority trigger is detected during command processing, the current conversion is aborted and the new command specified by the trigger is started, when higher priority conversion finishes, the preempted conversion will automatically be resumed.
-
enumerator kLPADC_ConvPreemptSoftlyAutoResumed
If a higher priority trigger is received during command processing, the current conversion is completed (including averaging iterations and compare function if enabled) and stored to the result FIFO before the higher priority trigger/command is initiated, when higher priority conversion finishes, the preempted conversion will be automatically be resumed.
-
enumerator kLPADC_TriggerPriorityPreemptImmediately
Legacy support is not recommended as it only ensures compatibility with older versions.
-
enumerator kLPADC_TriggerPriorityPreemptSoftly
Legacy support is not recommended as it only ensures compatibility with older versions.
-
enumerator kLPADC_TriggerPriorityExceptionDisabled
High priority trigger exception disabled.
-
enumerator kLPADC_ConvPreemptImmediatelyNotAutoResumed
-
enum _lpadc_tune_value
Define enumeration of tune value.
Values:
-
enumerator kLPADC_TuneValue0
Tune value 0.
-
enumerator kLPADC_TuneValue1
Tune value 1.
-
enumerator kLPADC_TuneValue2
Tune value 2.
-
enumerator kLPADC_TuneValue3
Tune value 3.
-
enumerator kLPADC_TuneValue0
-
typedef enum _lpadc_sample_scale_mode lpadc_sample_scale_mode_t
Define enumeration of sample scale mode.
The sample scale mode is used to reduce the selected ADC analog channel input voltage level by a factor. The maximum possible voltage on the ADC channel input should be considered when selecting a scale mode to ensure that the reducing factor always results voltage level at or below the VREFH reference. This reducing capability allows conversion of analog inputs higher than VREFH. A-side and B-side channel inputs are both scaled using the scale mode.
-
typedef enum _lpadc_sample_channel_mode lpadc_sample_channel_mode_t
Define enumeration of channel sample mode.
The channel sample mode configures the channel with single-end/differential/dual-single-end, side A/B.
-
typedef enum _lpadc_hardware_average_mode lpadc_hardware_average_mode_t
Define enumeration of hardware average selection.
It Selects how many ADC conversions are averaged to create the ADC result. An internal storage buffer is used to capture temporary results while the averaging iterations are executed.
Note
Some enumerator values are not available on some devices, mainly depends on the size of AVGS field in CMDH register.
-
typedef enum _lpadc_sample_time_mode lpadc_sample_time_mode_t
Define enumeration of sample time selection.
The shortest sample time maximizes conversion speed for lower impedance inputs. Extending sample time allows higher impedance inputs to be accurately sampled. Longer sample times can also be used to lower overall power consumption when command looping and sequencing is configured and high conversion rates are not required.
-
typedef enum _lpadc_hardware_compare_mode lpadc_hardware_compare_mode_t
Define enumeration of hardware compare mode.
After an ADC channel input is sampled and converted and any averaging iterations are performed, this mode setting guides operation of the automatic compare function to optionally only store when the compare operation is true. When compare is enabled, the conversion result is compared to the compare values.
-
typedef enum _lpadc_conversion_resolution_mode lpadc_conversion_resolution_mode_t
Define enumeration of conversion resolution mode.
Configure the resolution bit in specific conversion type. For detailed resolution accuracy, see to lpadc_sample_channel_mode_t
-
typedef enum _lpadc_conversion_average_mode lpadc_conversion_average_mode_t
Define enumeration of conversion averages mode.
Configure the converion average number for auto-calibration.
Note
Some enumerator values are not available on some devices, mainly depends on the size of CAL_AVGS field in CTRL register.
-
typedef enum _lpadc_reference_voltage_mode lpadc_reference_voltage_source_t
Define enumeration of reference voltage source.
For detail information, need to check the SoC’s specification.
-
typedef enum _lpadc_power_level_mode lpadc_power_level_mode_t
Define enumeration of power configuration.
Configures the ADC for power and performance. In the highest power setting the highest conversion rates will be possible. Refer to the device data sheet for power and performance capabilities for each setting.
-
typedef enum _lpadc_offset_calibration_mode lpadc_offset_calibration_mode_t
Define enumeration of offset calibration mode.
-
typedef enum _lpadc_trigger_priority_policy lpadc_trigger_priority_policy_t
Define enumeration of trigger priority policy.
This selection controls how higher priority triggers are handled.
Note
kLPADC_TriggerPriorityPreemptSubsequently is not available on some devices, mainly depends on the size of TPRICTRL field in CFG register.
-
typedef enum _lpadc_tune_value lpadc_tune_value_t
Define enumeration of tune value.
-
typedef struct _lpadc_calibration_value lpadc_calibration_value_t
A structure of calibration value.
-
ADC_OFSTRIM_OFSTRIM_MAX
-
ADC_OFSTRIM_OFSTRIM_SIGN
-
LPADC_GET_ACTIVE_COMMAND_STATUS(statusVal)
Define the MACRO function to get command status from status value.
The statusVal is the return value from LPADC_GetStatusFlags().
-
LPADC_GET_ACTIVE_TRIGGER_STATUE(statusVal)
Define the MACRO function to get trigger status from status value.
The statusVal is the return value from LPADC_GetStatusFlags().
-
struct lpadc_config_t
- #include <fsl_lpadc.h>
LPADC global configuration.
This structure would used to keep the settings for initialization.
Public Members
-
bool enableInternalClock
Enables the internally generated clock source. The clock source is used in clock selection logic at the chip level and is optionally used for the ADC clock source.
-
bool enableVref1LowVoltage
If voltage reference option1 input is below 1.8V, it should be “true”. If voltage reference option1 input is above 1.8V, it should be “false”.
-
bool enableInDozeMode
Control system transition to Stop and Wait power modes while ADC is converting. When enabled in Doze mode, immediate entries to Wait or Stop are allowed. When disabled, the ADC will wait for the current averaging iteration/FIFO storage to complete before acknowledging stop or wait mode entry.
-
lpadc_conversion_average_mode_t conversionAverageMode
Auto-Calibration Averages.
-
bool enableAnalogPreliminary
ADC analog circuits are pre-enabled and ready to execute conversions without startup delays(at the cost of higher DC current consumption).
-
uint32_t powerUpDelay
When the analog circuits are not pre-enabled, the ADC analog circuits are only powered while the ADC is active and there is a counted delay defined by this field after an initial trigger transitions the ADC from its Idle state to allow time for the analog circuits to stabilize. The startup delay count of (powerUpDelay * 4) ADCK cycles must result in a longer delay than the analog startup time.
-
lpadc_reference_voltage_source_t referenceVoltageSource
Selects the voltage reference high used for conversions.
-
lpadc_power_level_mode_t powerLevelMode
Power Configuration Selection.
-
lpadc_trigger_priority_policy_t triggerPriorityPolicy
Control how higher priority triggers are handled, see to lpadc_trigger_priority_policy_t.
-
bool enableConvPause
Enables the ADC pausing function. When enabled, a programmable delay is inserted during command execution sequencing between LOOP iterations, between commands in a sequence, and between conversions when command is executing in “Compare Until True” configuration.
-
uint32_t convPauseDelay
Controls the duration of pausing during command execution sequencing. The pause delay is a count of (convPauseDelay*4) ADCK cycles. Only available when ADC pausing function is enabled. The available value range is in 9-bit.
-
uint32_t FIFOWatermark
FIFOWatermark is a programmable threshold setting. When the number of datawords stored in the ADC Result FIFO is greater than the value in this field, the ready flag would be asserted to indicate stored data has reached the programmable threshold.
-
bool enableInternalClock
-
struct lpadc_conv_command_config_t
- #include <fsl_lpadc.h>
Define structure to keep the configuration for conversion command.
Public Members
-
lpadc_sample_scale_mode_t sampleScaleMode
Sample scale mode.
-
lpadc_sample_scale_mode_t channelBScaleMode
Alternate channe B Scale mode.
-
lpadc_sample_channel_mode_t sampleChannelMode
Channel sample mode.
-
uint32_t channelNumber
Channel number, select the channel or channel pair.
-
uint32_t channelBNumber
Alternate Channel B number, select the channel.
-
uint32_t chainedNextCommandNumber
Selects the next command to be executed after this command completes. 1-15 is available, 0 is to terminate the chain after this command.
-
bool enableAutoChannelIncrement
Loop with increment: when disabled, the “loopCount” field selects the number of times the selected channel is converted consecutively; when enabled, the “loopCount” field defines how many consecutive channels are converted as part of the command execution.
-
uint32_t loopCount
Selects how many times this command executes before finish and transition to the next command or Idle state. Command executes LOOP+1 times. 0-15 is available.
-
lpadc_hardware_average_mode_t hardwareAverageMode
Hardware average selection.
-
lpadc_sample_time_mode_t sampleTimeMode
Sample time selection.
-
lpadc_hardware_compare_mode_t hardwareCompareMode
Hardware compare selection.
-
uint32_t hardwareCompareValueHigh
Compare Value High. The available value range is in 16-bit.
-
uint32_t hardwareCompareValueLow
Compare Value Low. The available value range is in 16-bit.
-
lpadc_conversion_resolution_mode_t conversionResolutionMode
Conversion resolution mode.
-
bool enableWaitTrigger
Wait for trigger assertion before execution: when disabled, this command will be automatically executed; when enabled, the active trigger must be asserted again before executing this command.
-
lpadc_sample_scale_mode_t sampleScaleMode
-
struct lpadc_conv_trigger_config_t
- #include <fsl_lpadc.h>
Define structure to keep the configuration for conversion trigger.
Public Members
-
uint32_t targetCommandId
Select the command from command buffer to execute upon detect of the associated trigger event.
-
uint32_t delayPower
Select the trigger delay duration to wait at the start of servicing a trigger event. When this field is clear, then no delay is incurred. When this field is set to a non-zero value, the duration for the delay is 2^delayPower ADCK cycles. The available value range is 4-bit.
-
uint32_t priority
Sets the priority of the associated trigger source. If two or more triggers have the same priority level setting, the lower order trigger event has the higher priority. The lower value for this field is for the higher priority, the available value range is 1-bit.
-
bool enableHardwareTrigger
Enable hardware trigger source to initiate conversion on the rising edge of the input trigger source or not. THe software trigger is always available.
-
uint32_t targetCommandId
-
struct lpadc_conv_result_t
- #include <fsl_lpadc.h>
Define the structure to keep the conversion result.
Public Members
-
uint32_t commandIdSource
Indicate the command buffer being executed that generated this result.
-
uint32_t loopCountIndex
Indicate the loop count value during command execution that generated this result.
-
uint32_t triggerIdSource
Indicate the trigger source that initiated a conversion and generated this result.
-
uint16_t convValue
Data result.
-
uint32_t commandIdSource
-
struct _lpadc_calibration_value
- #include <fsl_lpadc.h>
A structure of calibration value.
Lpc_freqme
-
void FREQME_Init(FREQME_Type *base, const freq_measure_config_t *config)
Initialize freqme module, set operate mode, operate mode attribute and initialize measurement cycle.
- Parameters:
base – FREQME peripheral base address.
config – The pointer to module basic configuration, please refer to freq_measure_config_t.
-
void FREQME_GetDefaultConfig(freq_measure_config_t *config)
Get default configuration.
config->operateMode = kFREQME_FreqMeasurementMode; config->operateModeAttribute.refClkScaleFactor = 0U; config->enableContinuousMode = false; config->startMeasurement = false;
- Parameters:
config – The pointer to module basic configuration, please refer to freq_measure_config_t.
-
static inline void FREQME_StartMeasurementCycle(FREQME_Type *base)
Start frequency or pulse width measurement process.
- Parameters:
base – FREQME peripheral base address.
-
static inline void FREQME_TerminateMeasurementCycle(FREQME_Type *base)
Force the termination of any measurement cycle currently in progress and resets RESULT or just reset RESULT if the module in idle state.
- Parameters:
base – FREQME peripheral base address.
-
static inline void FREQME_EnableContinuousMode(FREQME_Type *base, bool enable)
Enable/disable Continuous mode.
- Parameters:
base – FREQME peripheral base address.
enable – Used to enable/disable continuous mode,
true Enable Continuous mode.
false Disable Continuous mode.
-
static inline bool FREQME_CheckContinuousMode(FREQME_Type *base)
Check whether continuous mode is enabled.
- Parameters:
base – FREQME peripheral base address.
- Return values:
True – Continuous mode is enabled, the measurement is performed continuously.
False – Continuous mode is disabled.
-
static inline void FREQME_SetOperateMode(FREQME_Type *base, freqme_operate_mode_t operateMode)
Set operate mode of freqme module.
- Parameters:
base – FREQME peripheral base address.
operateMode – The operate mode to be set, please refer to freqme_operate_mode_t.
-
static inline bool FREQME_CheckOperateMode(FREQME_Type *base)
Check module’s operate mode.
- Parameters:
base – FREQME peripheral base address.
- Return values:
True – Pulse width measurement mode.
False – Frequency measurement mode.
-
static inline void FREQME_SetMinExpectedValue(FREQME_Type *base, uint32_t minValue)
Set the minimum expected value for the measurement result.
- Parameters:
base – FREQME peripheral base address.
minValue – The minimum value to set, please note that this value is 31 bits width.
-
static inline void FREQME_SetMaxExpectedValue(FREQME_Type *base, uint32_t maxValue)
Set the maximum expected value for the measurement result.
- Parameters:
base – FREQME peripheral base address.
maxValue – The maximum value to set, please note that this value is 31 bits width.
-
uint32_t FREQME_CalculateTargetClkFreq(FREQME_Type *base, uint32_t refClkFrequency)
Calculate the frequency of selected target clock。
Note
The formula: Ftarget = (RESULT - 2) * Freference / 2 ^ REF_SCALE.
Note
This function only useful when the operate mode is selected as frequency measurement mode.
- Parameters:
base – FREQME peripheral base address.
refClkFrequency – The frequency of reference clock.
- Returns:
The frequency of target clock the unit is Hz, if the output result is 0, please check the module’s operate mode.
-
static inline uint8_t FREQME_GetReferenceClkScaleValue(FREQME_Type *base)
Get reference clock scaling factor.
- Parameters:
base – FREQME peripheral base address.
- Returns:
Reference clock scaling factor, the reference count cycle is 2 ^ ref_scale.
-
static inline void FREQME_SetPulsePolarity(FREQME_Type *base, freqme_pulse_polarity_t pulsePolarity)
Set pulse polarity when operate mode is selected as Pulse Width Measurement mode.
- Parameters:
base – FREQME peripheral base address.
pulsePolarity – The pulse polarity to be set, please refer to freqme_pulse_polarity_t.
-
static inline bool FREQME_CheckPulsePolarity(FREQME_Type *base)
Check pulse polarity when the operate mode is selected as pulse width measurement mode.
- Parameters:
base – FREQME peripheral base address.
- Return values:
True – Low period.
False – High period.
-
static inline uint32_t FREQME_GetMeasurementResult(FREQME_Type *base)
Get measurement result, if operate mode is selected as pulse width measurement mode this function can be used to calculate pulse width.
Note
Pulse width = counter result / Frequency of target clock.
- Parameters:
base – FREQME peripheral base address.
- Returns:
Measurement result.
-
static inline uint32_t FREQME_GetInterruptStatusFlags(FREQME_Type *base)
Get interrupt status flags, such as overflow interrupt status flag, underflow interrupt status flag, and so on.
- Parameters:
base – FREQME peripheral base address.
- Returns:
Current interrupt status flags, should be the OR’ed value of _freqme_interrupt_status_flags.
-
static inline void FREQME_ClearInterruptStatusFlags(FREQME_Type *base, uint32_t statusFlags)
Clear interrupt status flags.
- Parameters:
base – FREQME peripheral base address.
statusFlags – The combination of interrupt status flags to clear, should be the OR’ed value of _freqme_interrupt_status_flags.
-
static inline void FREQME_EnableInterrupts(FREQME_Type *base, uint32_t masks)
Enable interrupts, such as result ready interrupt, overflow interrupt and so on.
- Parameters:
base – FREQME peripheral base address.
masks – The mask of interrupts to enable, should be the OR’ed value of _freqme_interrupt_enable.
-
static inline void FREQME_DisableInterrupts(FREQME_Type *base, uint32_t masks)
Disable interrupts, such as result ready interrupt, overflow interrupt and so on.
- Parameters:
base – FREQME peripheral base address.
masks – The mask of interrupts to disable, should be the OR’ed value of _freqme_interrupt_enable.
-
FSL_FREQME_DRIVER_VERSION
FREQME driver version 2.1.2.
-
enum _freqme_interrupt_status_flags
The enumeration of interrupt status flags. .
Values:
-
enumerator kFREQME_UnderflowInterruptStatusFlag
Indicate the measurement is just done and the result is less than minimun value.
-
enumerator kFREQME_OverflowInterruptStatusFlag
Indicate the measurement is just done and the result is greater than maximum value.
-
enumerator kFREQME_ReadyInterruptStatusFlag
Indicate the measurement is just done and the result is ready to read.
-
enumerator kFREQME_AllInterruptStatusFlags
All interrupt status flags.
-
enumerator kFREQME_UnderflowInterruptStatusFlag
-
enum _freqme_interrupt_enable
The enumeration of interrupts, including underflow interrupt, overflow interrupt, and result ready interrupt. .
Values:
-
enumerator kFREQME_UnderflowInterruptEnable
Enable interrupt when the result is less than minimum value.
-
enumerator kFREQME_OverflowInterruptEnable
Enable interrupt when the result is greater than maximum value.
-
enumerator kFREQME_ReadyInterruptEnable
Enable interrupt when a measurement completes and the result is ready.
-
enumerator kFREQME_UnderflowInterruptEnable
-
enum _freqme_operate_mode
FREQME module operate mode enumeration, including frequency measurement mode and pulse width measurement mode.
Values:
-
enumerator kFREQME_FreqMeasurementMode
The module works in the frequency measurement mode.
-
enumerator kFREOME_PulseWidthMeasurementMode
The module works in the pulse width measurement mode.
-
enumerator kFREQME_FreqMeasurementMode
-
enum _freqme_pulse_polarity
The enumeration of pulse polarity.
Values:
-
enumerator kFREQME_PulseHighPeriod
Select high period of the reference clock.
-
enumerator kFREQME_PulseLowPeriod
Select low period of the reference clock.
-
enumerator kFREQME_PulseHighPeriod
-
typedef enum _freqme_operate_mode freqme_operate_mode_t
FREQME module operate mode enumeration, including frequency measurement mode and pulse width measurement mode.
-
typedef enum _freqme_pulse_polarity freqme_pulse_polarity_t
The enumeration of pulse polarity.
-
typedef union _freqme_mode_attribute freqme_mode_attribute_t
The union of operate mode attribute.
Note
If the operate mode is selected as frequency measurement mode the member refClkScaleFactor should be used, if the operate mode is selected as pulse width measurement mode the member pulsePolarity should be used.
-
typedef struct _freq_measure_config freq_measure_config_t
The structure of freqme module basic configuration, including operate mode, operate mode attribute and so on.
-
union _freqme_mode_attribute
- #include <fsl_freqme.h>
The union of operate mode attribute.
Note
If the operate mode is selected as frequency measurement mode the member refClkScaleFactor should be used, if the operate mode is selected as pulse width measurement mode the member pulsePolarity should be used.
Public Members
-
uint8_t refClkScaleFactor
Only useful in frequency measurement operate mode, used to set the reference clock counter scaling factor.
-
freqme_pulse_polarity_t pulsePolarity
Only Useful in pulse width measurement operate mode, used to set period polarity.
-
uint8_t refClkScaleFactor
-
struct _freq_measure_config
- #include <fsl_freqme.h>
The structure of freqme module basic configuration, including operate mode, operate mode attribute and so on.
Public Members
-
freqme_operate_mode_t operateMode
Select operate mode, please refer to freqme_operate_mode_t.
-
freqme_mode_attribute_t operateModeAttribute
Used to set the attribute of the selected operate mode, if the operate mode is selected as kFREQME_FreqMeasurementMode set freqme_mode_attribute_t::refClkScaleFactor, if operate mode is selected as kFREOME_PulseWidthMeasurementMode, please set freqme_mode_attribute_t::pulsePolarity.
-
bool enableContinuousMode
Enable/disable continuous mode, if continuous mode is enable, the measurement is performed continuously and the result for the last completed measurement is available in the result register.
-
freqme_operate_mode_t operateMode
LPCMP: Low Power Analog Comparator Driver
-
void LPCMP_Init(LPCMP_Type *base, const lpcmp_config_t *config)
Initialize the LPCMP.
This function initializes the LPCMP module. The operations included are:
Enabling the clock for LPCMP module.
Configuring the comparator.
Enabling the LPCMP module. Note: For some devices, multiple LPCMP instance share the same clock gate. In this case, to enable the clock for any instance enables all the LPCMPs. Check the chip reference manual for the clock assignment of the LPCMP.
- Parameters:
base – LPCMP peripheral base address.
config – Pointer to “lpcmp_config_t” structure.
-
void LPCMP_Deinit(LPCMP_Type *base)
De-initializes the LPCMP module.
This function de-initializes the LPCMP module. The operations included are:
Disabling the LPCMP module.
Disabling the clock for LPCMP module.
This function disables the clock for the LPCMP. Note: For some devices, multiple LPCMP instance shares the same clock gate. In this case, before disabling the clock for the LPCMP, ensure that all the LPCMP instances are not used.
- Parameters:
base – LPCMP peripheral base address.
-
void LPCMP_GetDefaultConfig(lpcmp_config_t *config)
Gets an available pre-defined settings for the comparator’s configuration.
This function initializes the comparator configuration structure to these default values:
config->enableStopMode = false; config->enableOutputPin = false; config->enableCmpToDacLink = false; config->useUnfilteredOutput = false; config->enableInvertOutput = false; config->hysteresisMode = kLPCMP_HysteresisLevel0; config->powerMode = kLPCMP_LowSpeedPowerMode; config->functionalSourceClock = kLPCMP_FunctionalClockSource0; config->plusInputSrc = kLPCMP_PlusInputSrcMux; config->minusInputSrc = kLPCMP_MinusInputSrcMux;
- Parameters:
config – Pointer to “lpcmp_config_t” structure.
-
static inline void LPCMP_Enable(LPCMP_Type *base, bool enable)
Enable/Disable LPCMP module.
- Parameters:
base – LPCMP peripheral base address.
enable – “true” means enable the module, and “false” means disable the module.
-
void LPCMP_SetInputChannels(LPCMP_Type *base, uint32_t positiveChannel, uint32_t negativeChannel)
Select the input channels for LPCMP. This function determines which input is selected for the negative and positive mux.
- Parameters:
base – LPCMP peripheral base address.
positiveChannel – Positive side input channel number. Available range is 0-7.
negativeChannel – Negative side input channel number. Available range is 0-7.
-
static inline void LPCMP_EnableDMA(LPCMP_Type *base, bool enable)
Enables/disables the DMA request for rising/falling events. Normally, the LPCMP generates a CPU interrupt if there is a rising/falling event. When DMA support is enabled and the rising/falling interrupt is enabled , the rising/falling event forces a DMA transfer request rather than a CPU interrupt instead.
- Parameters:
base – LPCMP peripheral base address.
enable – “true” means enable DMA support, and “false” means disable DMA support.
-
void LPCMP_SetFilterConfig(LPCMP_Type *base, const lpcmp_filter_config_t *config)
Configures the filter.
- Parameters:
base – LPCMP peripheral base address.
config – Pointer to “lpcmp_filter_config_t” structure.
-
void LPCMP_SetDACConfig(LPCMP_Type *base, const lpcmp_dac_config_t *config)
Configure the internal DAC module.
- Parameters:
base – LPCMP peripheral base address.
config – Pointer to “lpcmp_dac_config_t” structure. If config is “NULL”, disable internal DAC.
-
static inline void LPCMP_EnableInterrupts(LPCMP_Type *base, uint32_t mask)
Enable the interrupts.
- Parameters:
base – LPCMP peripheral base address.
mask – Mask value for interrupts. See “_lpcmp_interrupt_enable”.
-
static inline void LPCMP_DisableInterrupts(LPCMP_Type *base, uint32_t mask)
Disable the interrupts.
- Parameters:
base – LPCMP peripheral base address.
mask – Mask value for interrupts. See “_lpcmp_interrupt_enable”.
-
static inline uint32_t LPCMP_GetStatusFlags(LPCMP_Type *base)
Get the LPCMP status flags.
- Parameters:
base – LPCMP peripheral base address.
- Returns:
Mask value for the asserted flags. See “_lpcmp_status_flags”.
-
static inline void LPCMP_ClearStatusFlags(LPCMP_Type *base, uint32_t mask)
Clear the LPCMP status flags.
- Parameters:
base – LPCMP peripheral base address.
mask – Mask value for the flags. See “_lpcmp_status_flags”.
-
static inline void LPCMP_EnableWindowMode(LPCMP_Type *base, bool enable)
Enable/Disable window mode.When any windowed mode is active, COUTA is clocked by the bus clock whenever WINDOW = 1. The last latched value is held when WINDOW = 0. The optionally inverted comparator output COUT_RAW is sampled on every bus clock when WINDOW=1 to generate COUTA.
- Parameters:
base – LPCMP peripheral base address.
enable – “true” means enable window mode, and “false” means disable window mode.
-
void LPCMP_SetWindowControl(LPCMP_Type *base, const lpcmp_window_control_config_t *config)
Configure the window control, users can use this API to implement operations on the window, such as inverting the window signal, setting the window closing event(only valid in windowing mode), and setting the COUTA signal after the window is closed(only valid in windowing mode).
- Parameters:
base – LPCMP peripheral base address.
config – Pointer “lpcmp_window_control_config_t” structure.
-
void LPCMP_SetRoundRobinConfig(LPCMP_Type *base, const lpcmp_roundrobin_config_t *config)
Configure the roundrobin mode.
- Parameters:
base – LPCMP peripheral base address.
config – Pointer “lpcmp_roundrobin_config_t” structure.
-
static inline void LPCMP_EnableRoundRobinMode(LPCMP_Type *base, bool enable)
Enable/Disable roundrobin mode.
- Parameters:
base – LPCMP peripheral base address.
enable – “true” means enable roundrobin mode, and “false” means disable roundrobin mode.
-
void LPCMP_SetRoundRobinInternalTimer(LPCMP_Type *base, uint32_t value)
brief Configure the roundrobin internal timer reload value.
param base LPCMP peripheral base address. param value RoundRobin internal timer reload value, allowed range:0x0UL-0xFFFFFFFUL.
-
static inline void LPCMP_EnableRoundRobinInternalTimer(LPCMP_Type *base, bool enable)
Enable/Disable roundrobin internal timer, note that this function is only valid when using the internal trigger source.
- Parameters:
base – LPCMP peripheral base address.
enable – “true” means enable roundrobin internal timer, and “false” means disable roundrobin internal timer.
-
static inline void LPCMP_SetPreSetValue(LPCMP_Type *base, uint8_t mask)
Set preset value for all channels, users can set all channels’ preset vaule through this API, for example, if the mask set to 0x03U means channel0 and channel2’s preset value set to 1U and other channels’ preset value set to 0U.
- Parameters:
base – LPCMP peripheral base address.
mask – Mask of channel index.
-
static inline uint8_t LPCMP_GetComparisonResult(LPCMP_Type *base)
Get comparison results for all channels, users can get all channels’ comparison results through this API.
- Parameters:
base – LPCMP peripheral base address.
- Returns:
return All channels’ comparison result.
-
static inline void LPCMP_ClearInputChangedFlags(LPCMP_Type *base, uint8_t mask)
Clear input changed flags for single channel or multiple channels, users can clear input changed flag of a single channel or multiple channels through this API, for example, if the mask set to 0x03U means clear channel0 and channel2’s input changed flags.
- Parameters:
base – LPCMP peripheral base address.
mask – Mask of channel index.
-
static inline uint8_t LPCMP_GetInputChangedFlags(LPCMP_Type *base)
Get input changed flags for all channels, Users can get all channels’ input changed flags through this API.
- Parameters:
base – LPCMP peripheral base address.
- Returns:
return All channels’ changed flag.
-
FSL_LPCMP_DRIVER_VERSION
LPCMP driver version 2.3.0.
-
enum _lpcmp_status_flags
LPCMP status falgs mask.
Values:
-
enumerator kLPCMP_OutputRisingEventFlag
Rising-edge on the comparison output has occurred.
-
enumerator kLPCMP_OutputFallingEventFlag
Falling-edge on the comparison output has occurred.
-
enumerator kLPCMP_OutputRoundRobinEventFlag
Detects when any channel’s last comparison result is different from the pre-set value in trigger mode.
-
enumerator kLPCMP_OutputAssertEventFlag
Return the current value of the analog comparator output. The flag does not support W1C.
-
enumerator kLPCMP_OutputRisingEventFlag
-
enum _lpcmp_interrupt_enable
LPCMP interrupt enable/disable mask.
Values:
-
enumerator kLPCMP_OutputRisingInterruptEnable
Comparator interrupt enable rising.
-
enumerator kLPCMP_OutputFallingInterruptEnable
Comparator interrupt enable falling.
-
enumerator kLPCMP_RoundRobinInterruptEnable
Comparator round robin mode interrupt occurred when the comparison result changes for a given channel.
-
enumerator kLPCMP_OutputRisingInterruptEnable
-
enum _lpcmp_hysteresis_mode
LPCMP hysteresis mode. See chip data sheet to get the actual hystersis value with each level.
Values:
-
enumerator kLPCMP_HysteresisLevel0
The hard block output has level 0 hysteresis internally.
-
enumerator kLPCMP_HysteresisLevel1
The hard block output has level 1 hysteresis internally.
-
enumerator kLPCMP_HysteresisLevel2
The hard block output has level 2 hysteresis internally.
-
enumerator kLPCMP_HysteresisLevel3
The hard block output has level 3 hysteresis internally.
-
enumerator kLPCMP_HysteresisLevel0
-
enum _lpcmp_power_mode
LPCMP nano mode.
Values:
-
enumerator kLPCMP_LowSpeedPowerMode
Low speed comparison mode is selected.
-
enumerator kLPCMP_HighSpeedPowerMode
High speed comparison mode is selected.
-
enumerator kLPCMP_NanoPowerMode
Nano power comparator is enabled.
-
enumerator kLPCMP_LowSpeedPowerMode
-
enum _lpcmp_dac_reference_voltage_source
Internal DAC reference voltage source.
Values:
-
enumerator kLPCMP_VrefSourceVin1
vrefh_int is selected as resistor ladder network supply reference Vin.
-
enumerator kLPCMP_VrefSourceVin2
vrefh_ext is selected as resistor ladder network supply reference Vin.
-
enumerator kLPCMP_VrefSourceVin1
-
enum _lpcmp_functional_source_clock
LPCMP functional mode clock source selection.
Note: In different devices, the functional mode clock source selection is different, please refer to specific device Reference Manual for details.
Values:
-
enumerator kLPCMP_FunctionalClockSource0
Select functional mode clock source0.
-
enumerator kLPCMP_FunctionalClockSource1
Select functional mode clock source1.
-
enumerator kLPCMP_FunctionalClockSource2
Select functional mode clock source2.
-
enumerator kLPCMP_FunctionalClockSource3
Select functional mode clock source3.
-
enumerator kLPCMP_FunctionalClockSource0
-
enum _lpcmp_couta_signal
Set the COUTA signal value when the window is closed.
Values:
-
enumerator kLPCMP_COUTASignalNoSet
NO set the COUTA signal value when the window is closed.
-
enumerator kLPCMP_COUTASignalLow
Set COUTA signal low(0) when the window is closed.
-
enumerator kLPCMP_COUTASignalHigh
Set COUTA signal high(1) when the window is closed.
-
enumerator kLPCMP_COUTASignalNoSet
-
enum _lpcmp_close_window_event
Set COUT event, which can close the active window in window mode.
Values:
-
enumerator kLPCMP_CLoseWindowEventNoSet
No Set COUT event, which can close the active window in window mode.
-
enumerator kLPCMP_CloseWindowEventRisingEdge
Set rising edge COUT signal as COUT event.
-
enumerator kLPCMP_CloseWindowEventFallingEdge
Set falling edge COUT signal as COUT event.
-
enumerator kLPCMP_CLoseWindowEventBothEdge
Set both rising and falling edge COUT signal as COUT event.
-
enumerator kLPCMP_CLoseWindowEventNoSet
-
enum _lpcmp_roundrobin_fixedmuxport
LPCMP round robin mode fixed mux port.
Values:
-
enumerator kLPCMP_FixedPlusMuxPort
Fixed plus mux port.
-
enumerator kLPCMP_FixedMinusMuxPort
Fixed minus mux port.
-
enumerator kLPCMP_FixedPlusMuxPort
-
enum _lpcmp_roundrobin_clock_source
LPCMP round robin mode clock source selection.
Note: In different devices,the round robin mode clock source selection is different, please refer to the specific device Reference Manual for details.
Values:
-
enumerator kLPCMP_RoundRobinClockSource0
Select roundrobin mode clock source0.
-
enumerator kLPCMP_RoundRobinClockSource1
Select roundrobin mode clock source1.
-
enumerator kLPCMP_RoundRobinClockSource2
Select roundrobin mode clock source2.
-
enumerator kLPCMP_RoundRobinClockSource3
Select roundrobin mode clock source3.
-
enumerator kLPCMP_RoundRobinClockSource0
-
enum _lpcmp_roundrobin_trigger_source
LPCMP round robin mode trigger source.
Values:
-
enumerator kLPCMP_TriggerSourceExternally
Select external trigger source.
-
enumerator kLPCMP_TriggerSourceInternally
Select internal trigger source.
-
enumerator kLPCMP_TriggerSourceExternally
-
typedef enum _lpcmp_hysteresis_mode lpcmp_hysteresis_mode_t
LPCMP hysteresis mode. See chip data sheet to get the actual hystersis value with each level.
-
typedef enum _lpcmp_power_mode lpcmp_power_mode_t
LPCMP nano mode.
-
typedef enum _lpcmp_dac_reference_voltage_source lpcmp_dac_reference_voltage_source_t
Internal DAC reference voltage source.
-
typedef enum _lpcmp_functional_source_clock lpcmp_functional_source_clock_t
LPCMP functional mode clock source selection.
Note: In different devices, the functional mode clock source selection is different, please refer to specific device Reference Manual for details.
-
typedef enum _lpcmp_couta_signal lpcmp_couta_signal_t
Set the COUTA signal value when the window is closed.
-
typedef enum _lpcmp_close_window_event lpcmp_close_window_event_t
Set COUT event, which can close the active window in window mode.
-
typedef enum _lpcmp_roundrobin_fixedmuxport lpcmp_roundrobin_fixedmuxport_t
LPCMP round robin mode fixed mux port.
-
typedef enum _lpcmp_roundrobin_clock_source lpcmp_roundrobin_clock_source_t
LPCMP round robin mode clock source selection.
Note: In different devices,the round robin mode clock source selection is different, please refer to the specific device Reference Manual for details.
-
typedef enum _lpcmp_roundrobin_trigger_source lpcmp_roundrobin_trigger_source_t
LPCMP round robin mode trigger source.
-
typedef struct _lpcmp_filter_config lpcmp_filter_config_t
Configure the filter.
-
typedef struct _lpcmp_dac_config lpcmp_dac_config_t
configure the internal DAC.
-
typedef struct _lpcmp_config lpcmp_config_t
Configures the comparator.
-
typedef struct _lpcmp_window_control_config lpcmp_window_control_config_t
Configure the window mode control.
-
typedef struct _lpcmp_roundrobin_config lpcmp_roundrobin_config_t
Configure the round robin mode.
-
LPCMP_CCR1_COUTA_CFG_MASK
-
LPCMP_CCR1_COUTA_CFG_SHIFT
-
LPCMP_CCR1_COUTA_CFG(x)
-
LPCMP_CCR1_EVT_SEL_CFG_MASK
-
LPCMP_CCR1_EVT_SEL_CFG_SHIFT
-
LPCMP_CCR1_EVT_SEL_CFG(x)
-
struct _lpcmp_filter_config
- #include <fsl_lpcmp.h>
Configure the filter.
Public Members
-
bool enableSample
Decide whether to use the external SAMPLE as a sampling clock input.
-
uint8_t filterSampleCount
Filter Sample Count. Available range is 1-7; 0 disables the filter.
-
uint8_t filterSamplePeriod
Filter Sample Period. The divider to the bus clock. Available range is 0-255. The sampling clock must be at least 4 times slower than the system clock to the comparator. So if enableSample is “false”, filterSamplePeriod should be set greater than 4.
-
bool enableSample
-
struct _lpcmp_dac_config
- #include <fsl_lpcmp.h>
configure the internal DAC.
Public Members
-
bool enableLowPowerMode
Decide whether to enable DAC low power mode.
-
lpcmp_dac_reference_voltage_source_t referenceVoltageSource
Internal DAC supply voltage reference source.
-
uint8_t DACValue
Value for the DAC Output Voltage. Different devices has different available range, for specific values, please refer to the reference manual.
-
bool enableLowPowerMode
-
struct _lpcmp_config
- #include <fsl_lpcmp.h>
Configures the comparator.
Public Members
-
bool enableStopMode
Decide whether to enable the comparator when in STOP modes.
-
bool enableOutputPin
Decide whether to enable the comparator is available in selected pin.
-
bool useUnfilteredOutput
Decide whether to use unfiltered output.
-
bool enableInvertOutput
Decide whether to inverts the comparator output.
-
lpcmp_hysteresis_mode_t hysteresisMode
LPCMP hysteresis mode.
-
lpcmp_power_mode_t powerMode
LPCMP power mode.
-
lpcmp_functional_source_clock_t functionalSourceClock
Select LPCMP functional mode clock source.
-
bool enableStopMode
-
struct _lpcmp_window_control_config
- #include <fsl_lpcmp.h>
Configure the window mode control.
Public Members
-
bool enableInvertWindowSignal
True: enable invert window signal, False: disable invert window signal.
-
lpcmp_couta_signal_t COUTASignal
Decide whether to define the COUTA signal value when the window is closed.
-
lpcmp_close_window_event_t closeWindowEvent
Decide whether to select COUT event signal edge defines a COUT event to close window.
-
bool enableInvertWindowSignal
-
struct _lpcmp_roundrobin_config
- #include <fsl_lpcmp.h>
Configure the round robin mode.
Public Members
-
uint8_t initDelayModules
Comparator and DAC initialization delay modulus, See Reference Manual and DataSheet for specific value.
-
uint8_t sampleClockNumbers
Specify the number of the round robin clock cycles(0~3) to wait after scanning the active channel before sampling the channel’s comparison result.
-
uint8_t channelSampleNumbers
Specify the number of samples for one channel, note that channelSampleNumbers must not smaller than sampleTimeThreshhold.
-
uint8_t sampleTimeThreshhold
Specify that for one channel, when (sampleTimeThreshhold + 1) sample results are “1”,the final result is “1”, otherwise the final result is “0”, note that the sampleTimeThreshhold must not be larger than channelSampleNumbers.
-
lpcmp_roundrobin_clock_source_t roundrobinClockSource
Decide which clock source to choose in round robin mode.
-
lpcmp_roundrobin_trigger_source_t roundrobinTriggerSource
Decide which trigger source to choose in round robin mode.
-
lpcmp_roundrobin_fixedmuxport_t fixedMuxPort
Decide which mux port to choose as fixed channel in round robin mode.
-
uint8_t fixedChannel
Indicate which channel of the fixed mux port is used in round robin mode.
-
uint8_t checkerChannelMask
Indicate which channel of the non-fixed mux port to check its voltage value in round robin mode, for example, if checkerChannelMask set to 0x11U means select channel 0 and channel 4 as checker channel.
-
uint8_t initDelayModules
LPI2C: Low Power Inter-Integrated Circuit Driver
-
FSL_LPI2C_DRIVER_VERSION
LPI2C driver version.
LPI2C status return codes.
Values:
-
enumerator kStatus_LPI2C_Busy
The master is already performing a transfer.
-
enumerator kStatus_LPI2C_Idle
The slave driver is idle.
-
enumerator kStatus_LPI2C_Nak
The slave device sent a NAK in response to a byte.
-
enumerator kStatus_LPI2C_FifoError
FIFO under run or overrun.
-
enumerator kStatus_LPI2C_BitError
Transferred bit was not seen on the bus.
-
enumerator kStatus_LPI2C_ArbitrationLost
Arbitration lost error.
-
enumerator kStatus_LPI2C_PinLowTimeout
SCL or SDA were held low longer than the timeout.
-
enumerator kStatus_LPI2C_NoTransferInProgress
Attempt to abort a transfer when one is not in progress.
-
enumerator kStatus_LPI2C_DmaRequestFail
DMA request failed.
-
enumerator kStatus_LPI2C_Timeout
Timeout polling status flags.
-
enumerator kStatus_LPI2C_Busy
-
IRQn_Type const kLpi2cIrqs[]
Array to map LPI2C instance number to IRQ number, used internally for LPI2C master interrupt and EDMA transactional APIs.
-
lpi2c_master_isr_t s_lpi2cMasterIsr
Pointer to master IRQ handler for each instance, used internally for LPI2C master interrupt and EDMA transactional APIs.
-
void *s_lpi2cMasterHandle[]
Pointers to master handles for each instance, used internally for LPI2C master interrupt and EDMA transactional APIs.
-
uint32_t LPI2C_GetInstance(LPI2C_Type *base)
Returns an instance number given a base address.
If an invalid base address is passed, debug builds will assert. Release builds will just return instance number 0.
- Parameters:
base – The LPI2C peripheral base address.
- Returns:
LPI2C instance number starting from 0.
-
I2C_RETRY_TIMES
Retry times for waiting flag.
LPI2C Master Driver
-
void LPI2C_MasterGetDefaultConfig(lpi2c_master_config_t *masterConfig)
Provides a default configuration for the LPI2C master peripheral.
This function provides the following default configuration for the LPI2C master peripheral:
masterConfig->enableMaster = true; masterConfig->debugEnable = false; masterConfig->ignoreAck = false; masterConfig->pinConfig = kLPI2C_2PinOpenDrain; masterConfig->baudRate_Hz = 100000U; masterConfig->busIdleTimeout_ns = 0; masterConfig->pinLowTimeout_ns = 0; masterConfig->sdaGlitchFilterWidth_ns = 0; masterConfig->sclGlitchFilterWidth_ns = 0; masterConfig->hostRequest.enable = false; masterConfig->hostRequest.source = kLPI2C_HostRequestExternalPin; masterConfig->hostRequest.polarity = kLPI2C_HostRequestPinActiveHigh;
After calling this function, you can override any settings in order to customize the configuration, prior to initializing the master driver with LPI2C_MasterInit().
- Parameters:
masterConfig – [out] User provided configuration structure for default values. Refer to lpi2c_master_config_t.
-
void LPI2C_MasterInit(LPI2C_Type *base, const lpi2c_master_config_t *masterConfig, uint32_t sourceClock_Hz)
Initializes the LPI2C master peripheral.
This function enables the peripheral clock and initializes the LPI2C master peripheral as described by the user provided configuration. A software reset is performed prior to configuration.
- Parameters:
base – The LPI2C peripheral base address.
masterConfig – User provided peripheral configuration. Use LPI2C_MasterGetDefaultConfig() to get a set of defaults that you can override.
sourceClock_Hz – Frequency in Hertz of the LPI2C functional clock. Used to calculate the baud rate divisors, filter widths, and timeout periods.
-
void LPI2C_MasterDeinit(LPI2C_Type *base)
Deinitializes the LPI2C master peripheral.
This function disables the LPI2C master peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.
- Parameters:
base – The LPI2C peripheral base address.
-
void LPI2C_MasterConfigureDataMatch(LPI2C_Type *base, const lpi2c_data_match_config_t *matchConfig)
Configures LPI2C master data match feature.
- Parameters:
base – The LPI2C peripheral base address.
matchConfig – Settings for the data match feature.
-
status_t LPI2C_MasterCheckAndClearError(LPI2C_Type *base, uint32_t status)
Convert provided flags to status code, and clear any errors if present.
- Parameters:
base – The LPI2C peripheral base address.
status – Current status flags value that will be checked.
- Return values:
kStatus_Success –
kStatus_LPI2C_PinLowTimeout –
kStatus_LPI2C_ArbitrationLost –
kStatus_LPI2C_Nak –
kStatus_LPI2C_FifoError –
-
status_t LPI2C_CheckForBusyBus(LPI2C_Type *base)
Make sure the bus isn’t already busy.
A busy bus is allowed if we are the one driving it.
- Parameters:
base – The LPI2C peripheral base address.
- Return values:
kStatus_Success –
kStatus_LPI2C_Busy –
-
static inline void LPI2C_MasterReset(LPI2C_Type *base)
Performs a software reset.
Restores the LPI2C master peripheral to reset conditions.
- Parameters:
base – The LPI2C peripheral base address.
-
static inline void LPI2C_MasterEnable(LPI2C_Type *base, bool enable)
Enables or disables the LPI2C module as master.
- Parameters:
base – The LPI2C peripheral base address.
enable – Pass true to enable or false to disable the specified LPI2C as master.
-
static inline uint32_t LPI2C_MasterGetStatusFlags(LPI2C_Type *base)
Gets the LPI2C master status flags.
A bit mask with the state of all LPI2C master status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.
See also
_lpi2c_master_flags
- Parameters:
base – The LPI2C peripheral base address.
- Returns:
State of the status flags:
1: related status flag is set.
0: related status flag is not set.
-
static inline void LPI2C_MasterClearStatusFlags(LPI2C_Type *base, uint32_t statusMask)
Clears the LPI2C master status flag state.
The following status register flags can be cleared:
kLPI2C_MasterEndOfPacketFlag
kLPI2C_MasterStopDetectFlag
kLPI2C_MasterNackDetectFlag
kLPI2C_MasterArbitrationLostFlag
kLPI2C_MasterFifoErrFlag
kLPI2C_MasterPinLowTimeoutFlag
kLPI2C_MasterDataMatchFlag
Attempts to clear other flags has no effect.
See also
_lpi2c_master_flags.
- Parameters:
base – The LPI2C peripheral base address.
statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _lpi2c_master_flags enumerators OR’d together. You may pass the result of a previous call to LPI2C_MasterGetStatusFlags().
-
static inline void LPI2C_MasterEnableInterrupts(LPI2C_Type *base, uint32_t interruptMask)
Enables the LPI2C master interrupt requests.
All flags except kLPI2C_MasterBusyFlag and kLPI2C_MasterBusBusyFlag can be enabled as interrupts.
- Parameters:
base – The LPI2C peripheral base address.
interruptMask – Bit mask of interrupts to enable. See _lpi2c_master_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline void LPI2C_MasterDisableInterrupts(LPI2C_Type *base, uint32_t interruptMask)
Disables the LPI2C master interrupt requests.
All flags except kLPI2C_MasterBusyFlag and kLPI2C_MasterBusBusyFlag can be enabled as interrupts.
- Parameters:
base – The LPI2C peripheral base address.
interruptMask – Bit mask of interrupts to disable. See _lpi2c_master_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline uint32_t LPI2C_MasterGetEnabledInterrupts(LPI2C_Type *base)
Returns the set of currently enabled LPI2C master interrupt requests.
- Parameters:
base – The LPI2C peripheral base address.
- Returns:
A bitmask composed of _lpi2c_master_flags enumerators OR’d together to indicate the set of enabled interrupts.
-
static inline void LPI2C_MasterEnableDMA(LPI2C_Type *base, bool enableTx, bool enableRx)
Enables or disables LPI2C master DMA requests.
- Parameters:
base – The LPI2C peripheral base address.
enableTx – Enable flag for transmit DMA request. Pass true for enable, false for disable.
enableRx – Enable flag for receive DMA request. Pass true for enable, false for disable.
-
static inline uint32_t LPI2C_MasterGetTxFifoAddress(LPI2C_Type *base)
Gets LPI2C master transmit data register address for DMA transfer.
- Parameters:
base – The LPI2C peripheral base address.
- Returns:
The LPI2C Master Transmit Data Register address.
-
static inline uint32_t LPI2C_MasterGetRxFifoAddress(LPI2C_Type *base)
Gets LPI2C master receive data register address for DMA transfer.
- Parameters:
base – The LPI2C peripheral base address.
- Returns:
The LPI2C Master Receive Data Register address.
-
static inline void LPI2C_MasterSetWatermarks(LPI2C_Type *base, size_t txWords, size_t rxWords)
Sets the watermarks for LPI2C master FIFOs.
- Parameters:
base – The LPI2C peripheral base address.
txWords – Transmit FIFO watermark value in words. The kLPI2C_MasterTxReadyFlag flag is set whenever the number of words in the transmit FIFO is equal or less than txWords. Writing a value equal or greater than the FIFO size is truncated.
rxWords – Receive FIFO watermark value in words. The kLPI2C_MasterRxReadyFlag flag is set whenever the number of words in the receive FIFO is greater than rxWords. Writing a value equal or greater than the FIFO size is truncated.
-
static inline void LPI2C_MasterGetFifoCounts(LPI2C_Type *base, size_t *rxCount, size_t *txCount)
Gets the current number of words in the LPI2C master FIFOs.
- Parameters:
base – The LPI2C peripheral base address.
txCount – [out] Pointer through which the current number of words in the transmit FIFO is returned. Pass NULL if this value is not required.
rxCount – [out] Pointer through which the current number of words in the receive FIFO is returned. Pass NULL if this value is not required.
-
void LPI2C_MasterSetBaudRate(LPI2C_Type *base, uint32_t sourceClock_Hz, uint32_t baudRate_Hz)
Sets the I2C bus frequency for master transactions.
The LPI2C master is automatically disabled and re-enabled as necessary to configure the baud rate. Do not call this function during a transfer, or the transfer is aborted.
Note
Please note that the second parameter is the clock frequency of LPI2C module, the third parameter means user configured bus baudrate, this implementation is different from other I2C drivers which use baudrate configuration as second parameter and source clock frequency as third parameter.
- Parameters:
base – The LPI2C peripheral base address.
sourceClock_Hz – LPI2C functional clock frequency in Hertz.
baudRate_Hz – Requested bus frequency in Hertz.
-
static inline bool LPI2C_MasterGetBusIdleState(LPI2C_Type *base)
Returns whether the bus is idle.
Requires the master mode to be enabled.
- Parameters:
base – The LPI2C peripheral base address.
- Return values:
true – Bus is busy.
false – Bus is idle.
-
status_t LPI2C_MasterStart(LPI2C_Type *base, uint8_t address, lpi2c_direction_t dir)
Sends a START signal and slave address on the I2C bus.
This function is used to initiate a new master mode transfer. First, the bus state is checked to ensure that another master is not occupying the bus. Then a START signal is transmitted, followed by the 7-bit address specified in the address parameter. Note that this function does not actually wait until the START and address are successfully sent on the bus before returning.
- Parameters:
base – The LPI2C peripheral base address.
address – 7-bit slave device address, in bits [6:0].
dir – Master transfer direction, either kLPI2C_Read or kLPI2C_Write. This parameter is used to set the R/w bit (bit 0) in the transmitted slave address.
- Return values:
kStatus_Success – START signal and address were successfully enqueued in the transmit FIFO.
kStatus_LPI2C_Busy – Another master is currently utilizing the bus.
-
static inline status_t LPI2C_MasterRepeatedStart(LPI2C_Type *base, uint8_t address, lpi2c_direction_t dir)
Sends a repeated START signal and slave address on the I2C bus.
This function is used to send a Repeated START signal when a transfer is already in progress. Like LPI2C_MasterStart(), it also sends the specified 7-bit address.
Note
This function exists primarily to maintain compatible APIs between LPI2C and I2C drivers, as well as to better document the intent of code that uses these APIs.
- Parameters:
base – The LPI2C peripheral base address.
address – 7-bit slave device address, in bits [6:0].
dir – Master transfer direction, either kLPI2C_Read or kLPI2C_Write. This parameter is used to set the R/w bit (bit 0) in the transmitted slave address.
- Return values:
kStatus_Success – Repeated START signal and address were successfully enqueued in the transmit FIFO.
kStatus_LPI2C_Busy – Another master is currently utilizing the bus.
-
status_t LPI2C_MasterSend(LPI2C_Type *base, void *txBuff, size_t txSize)
Performs a polling send transfer on the I2C bus.
Sends up to txSize number of bytes to the previously addressed slave device. The slave may reply with a NAK to any byte in order to terminate the transfer early. If this happens, this function returns kStatus_LPI2C_Nak.
- Parameters:
base – The LPI2C peripheral base address.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
- Return values:
kStatus_Success – Data was sent successfully.
kStatus_LPI2C_Busy – Another master is currently utilizing the bus.
kStatus_LPI2C_Nak – The slave device sent a NAK in response to a byte.
kStatus_LPI2C_FifoError – FIFO under run or over run.
kStatus_LPI2C_ArbitrationLost – Arbitration lost error.
kStatus_LPI2C_PinLowTimeout – SCL or SDA were held low longer than the timeout.
-
status_t LPI2C_MasterReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I2C bus.
- Parameters:
base – The LPI2C peripheral base address.
rxBuff – The pointer to the data to be transferred.
rxSize – The length in bytes of the data to be transferred.
- Return values:
kStatus_Success – Data was received successfully.
kStatus_LPI2C_Busy – Another master is currently utilizing the bus.
kStatus_LPI2C_Nak – The slave device sent a NAK in response to a byte.
kStatus_LPI2C_FifoError – FIFO under run or overrun.
kStatus_LPI2C_ArbitrationLost – Arbitration lost error.
kStatus_LPI2C_PinLowTimeout – SCL or SDA were held low longer than the timeout.
-
status_t LPI2C_MasterStop(LPI2C_Type *base)
Sends a STOP signal on the I2C bus.
This function does not return until the STOP signal is seen on the bus, or an error occurs.
- Parameters:
base – The LPI2C peripheral base address.
- Return values:
kStatus_Success – The STOP signal was successfully sent on the bus and the transaction terminated.
kStatus_LPI2C_Busy – Another master is currently utilizing the bus.
kStatus_LPI2C_Nak – The slave device sent a NAK in response to a byte.
kStatus_LPI2C_FifoError – FIFO under run or overrun.
kStatus_LPI2C_ArbitrationLost – Arbitration lost error.
kStatus_LPI2C_PinLowTimeout – SCL or SDA were held low longer than the timeout.
-
status_t LPI2C_MasterTransferBlocking(LPI2C_Type *base, lpi2c_master_transfer_t *transfer)
Performs a master polling transfer on the I2C bus.
Note
The API does not return until the transfer succeeds or fails due to error happens during transfer.
- Parameters:
base – The LPI2C peripheral base address.
transfer – Pointer to the transfer structure.
- Return values:
kStatus_Success – Data was received successfully.
kStatus_LPI2C_Busy – Another master is currently utilizing the bus.
kStatus_LPI2C_Nak – The slave device sent a NAK in response to a byte.
kStatus_LPI2C_FifoError – FIFO under run or overrun.
kStatus_LPI2C_ArbitrationLost – Arbitration lost error.
kStatus_LPI2C_PinLowTimeout – SCL or SDA were held low longer than the timeout.
-
void LPI2C_MasterTransferCreateHandle(LPI2C_Type *base, lpi2c_master_handle_t *handle, lpi2c_master_transfer_callback_t callback, void *userData)
Creates a new handle for the LPI2C master non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the LPI2C_MasterTransferAbort() API shall be called.
Note
The function also enables the NVIC IRQ for the input LPI2C. Need to notice that on some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to enable the associated INTMUX IRQ in application.
- Parameters:
base – The LPI2C peripheral base address.
handle – [out] Pointer to the LPI2C master driver handle.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
-
status_t LPI2C_MasterTransferNonBlocking(LPI2C_Type *base, lpi2c_master_handle_t *handle, lpi2c_master_transfer_t *transfer)
Performs a non-blocking transaction on the I2C bus.
- Parameters:
base – The LPI2C peripheral base address.
handle – Pointer to the LPI2C master driver handle.
transfer – The pointer to the transfer descriptor.
- Return values:
kStatus_Success – The transaction was started successfully.
kStatus_LPI2C_Busy – Either another master is currently utilizing the bus, or a non-blocking transaction is already in progress.
-
status_t LPI2C_MasterTransferGetCount(LPI2C_Type *base, lpi2c_master_handle_t *handle, size_t *count)
Returns number of bytes transferred so far.
- Parameters:
base – The LPI2C peripheral base address.
handle – Pointer to the LPI2C master driver handle.
count – [out] Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_Success –
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
void LPI2C_MasterTransferAbort(LPI2C_Type *base, lpi2c_master_handle_t *handle)
Terminates a non-blocking LPI2C master transmission early.
Note
It is not safe to call this function from an IRQ handler that has a higher priority than the LPI2C peripheral’s IRQ priority.
- Parameters:
base – The LPI2C peripheral base address.
handle – Pointer to the LPI2C master driver handle.
-
void LPI2C_MasterTransferHandleIRQ(LPI2C_Type *base, void *lpi2cMasterHandle)
Reusable routine to handle master interrupts.
Note
This function does not need to be called unless you are reimplementing the nonblocking API’s interrupt handler routines to add special functionality.
- Parameters:
base – The LPI2C peripheral base address.
lpi2cMasterHandle – Pointer to the LPI2C master driver handle.
-
enum _lpi2c_master_flags
LPI2C master peripheral flags.
The following status register flags can be cleared:
kLPI2C_MasterEndOfPacketFlag
kLPI2C_MasterStopDetectFlag
kLPI2C_MasterNackDetectFlag
kLPI2C_MasterArbitrationLostFlag
kLPI2C_MasterFifoErrFlag
kLPI2C_MasterPinLowTimeoutFlag
kLPI2C_MasterDataMatchFlag
All flags except kLPI2C_MasterBusyFlag and kLPI2C_MasterBusBusyFlag can be enabled as interrupts.
Note
These enums are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kLPI2C_MasterTxReadyFlag
Transmit data flag
-
enumerator kLPI2C_MasterRxReadyFlag
Receive data flag
-
enumerator kLPI2C_MasterEndOfPacketFlag
End Packet flag
-
enumerator kLPI2C_MasterStopDetectFlag
Stop detect flag
-
enumerator kLPI2C_MasterNackDetectFlag
NACK detect flag
-
enumerator kLPI2C_MasterArbitrationLostFlag
Arbitration lost flag
-
enumerator kLPI2C_MasterFifoErrFlag
FIFO error flag
-
enumerator kLPI2C_MasterPinLowTimeoutFlag
Pin low timeout flag
-
enumerator kLPI2C_MasterDataMatchFlag
Data match flag
-
enumerator kLPI2C_MasterBusyFlag
Master busy flag
-
enumerator kLPI2C_MasterBusBusyFlag
Bus busy flag
-
enumerator kLPI2C_MasterClearFlags
All flags which are cleared by the driver upon starting a transfer.
-
enumerator kLPI2C_MasterIrqFlags
IRQ sources enabled by the non-blocking transactional API.
-
enumerator kLPI2C_MasterErrorFlags
Errors to check for.
-
enum _lpi2c_direction
Direction of master and slave transfers.
Values:
-
enumerator kLPI2C_Write
Master transmit.
-
enumerator kLPI2C_Read
Master receive.
-
enumerator kLPI2C_Write
-
enum _lpi2c_master_pin_config
LPI2C pin configuration.
Values:
-
enumerator kLPI2C_2PinOpenDrain
LPI2C Configured for 2-pin open drain mode
-
enumerator kLPI2C_2PinOutputOnly
LPI2C Configured for 2-pin output only mode (ultra-fast mode)
-
enumerator kLPI2C_2PinPushPull
LPI2C Configured for 2-pin push-pull mode
-
enumerator kLPI2C_4PinPushPull
LPI2C Configured for 4-pin push-pull mode
-
enumerator kLPI2C_2PinOpenDrainWithSeparateSlave
LPI2C Configured for 2-pin open drain mode with separate LPI2C slave
-
enumerator kLPI2C_2PinOutputOnlyWithSeparateSlave
LPI2C Configured for 2-pin output only mode(ultra-fast mode) with separate LPI2C slave
-
enumerator kLPI2C_2PinPushPullWithSeparateSlave
LPI2C Configured for 2-pin push-pull mode with separate LPI2C slave
-
enumerator kLPI2C_4PinPushPullWithInvertedOutput
LPI2C Configured for 4-pin push-pull mode(inverted outputs)
-
enumerator kLPI2C_2PinOpenDrain
-
enum _lpi2c_host_request_source
LPI2C master host request selection.
Values:
-
enumerator kLPI2C_HostRequestExternalPin
Select the LPI2C_HREQ pin as the host request input
-
enumerator kLPI2C_HostRequestInputTrigger
Select the input trigger as the host request input
-
enumerator kLPI2C_HostRequestExternalPin
-
enum _lpi2c_host_request_polarity
LPI2C master host request pin polarity configuration.
Values:
-
enumerator kLPI2C_HostRequestPinActiveLow
Configure the LPI2C_HREQ pin active low
-
enumerator kLPI2C_HostRequestPinActiveHigh
Configure the LPI2C_HREQ pin active high
-
enumerator kLPI2C_HostRequestPinActiveLow
-
enum _lpi2c_data_match_config_mode
LPI2C master data match configuration modes.
Values:
-
enumerator kLPI2C_MatchDisabled
LPI2C Match Disabled
-
enumerator kLPI2C_1stWordEqualsM0OrM1
LPI2C Match Enabled and 1st data word equals MATCH0 OR MATCH1
-
enumerator kLPI2C_AnyWordEqualsM0OrM1
LPI2C Match Enabled and any data word equals MATCH0 OR MATCH1
-
enumerator kLPI2C_1stWordEqualsM0And2ndWordEqualsM1
LPI2C Match Enabled and 1st data word equals MATCH0, 2nd data equals MATCH1
-
enumerator kLPI2C_AnyWordEqualsM0AndNextWordEqualsM1
LPI2C Match Enabled and any data word equals MATCH0, next data equals MATCH1
-
enumerator kLPI2C_1stWordAndM1EqualsM0AndM1
LPI2C Match Enabled and 1st data word and MATCH0 equals MATCH0 and MATCH1
-
enumerator kLPI2C_AnyWordAndM1EqualsM0AndM1
LPI2C Match Enabled and any data word and MATCH0 equals MATCH0 and MATCH1
-
enumerator kLPI2C_MatchDisabled
-
enum _lpi2c_master_transfer_flags
Transfer option flags.
Note
These enumerations are intended to be OR’d together to form a bit mask of options for the _lpi2c_master_transfer::flags field.
Values:
-
enumerator kLPI2C_TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.
-
enumerator kLPI2C_TransferNoStartFlag
Don’t send a start condition, address, and sub address
-
enumerator kLPI2C_TransferRepeatedStartFlag
Send a repeated start condition
-
enumerator kLPI2C_TransferNoStopFlag
Don’t send a stop condition.
-
enumerator kLPI2C_TransferDefaultFlag
-
typedef enum _lpi2c_direction lpi2c_direction_t
Direction of master and slave transfers.
-
typedef enum _lpi2c_master_pin_config lpi2c_master_pin_config_t
LPI2C pin configuration.
-
typedef enum _lpi2c_host_request_source lpi2c_host_request_source_t
LPI2C master host request selection.
-
typedef enum _lpi2c_host_request_polarity lpi2c_host_request_polarity_t
LPI2C master host request pin polarity configuration.
-
typedef struct _lpi2c_master_config lpi2c_master_config_t
Structure with settings to initialize the LPI2C master module.
This structure holds configuration settings for the LPI2C peripheral. To initialize this structure to reasonable defaults, call the LPI2C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
-
typedef enum _lpi2c_data_match_config_mode lpi2c_data_match_config_mode_t
LPI2C master data match configuration modes.
-
typedef struct _lpi2c_match_config lpi2c_data_match_config_t
LPI2C master data match configuration structure.
-
typedef struct _lpi2c_master_transfer lpi2c_master_transfer_t
LPI2C master descriptor of the transfer.
-
typedef struct _lpi2c_master_handle lpi2c_master_handle_t
LPI2C master handle of the transfer.
-
typedef void (*lpi2c_master_transfer_callback_t)(LPI2C_Type *base, lpi2c_master_handle_t *handle, status_t completionStatus, void *userData)
Master completion callback function pointer type.
This callback is used only for the non-blocking master transfer API. Specify the callback you wish to use in the call to LPI2C_MasterTransferCreateHandle().
- Param base:
The LPI2C peripheral base address.
- Param handle:
Pointer to the LPI2C master driver handle.
- Param completionStatus:
Either kStatus_Success or an error code describing how the transfer completed.
- Param userData:
Arbitrary pointer-sized value passed from the application.
-
typedef void (*lpi2c_master_isr_t)(LPI2C_Type *base, void *handle)
Typedef for master interrupt handler, used internally for LPI2C master interrupt and EDMA transactional APIs.
-
struct _lpi2c_master_config
- #include <fsl_lpi2c.h>
Structure with settings to initialize the LPI2C master module.
This structure holds configuration settings for the LPI2C peripheral. To initialize this structure to reasonable defaults, call the LPI2C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
Public Members
-
bool enableMaster
Whether to enable master mode.
-
bool enableDoze
Whether master is enabled in doze mode.
-
bool debugEnable
Enable transfers to continue when halted in debug mode.
-
bool ignoreAck
Whether to ignore ACK/NACK.
-
lpi2c_master_pin_config_t pinConfig
The pin configuration option.
-
uint32_t baudRate_Hz
Desired baud rate in Hertz.
-
uint32_t busIdleTimeout_ns
Bus idle timeout in nanoseconds. Set to 0 to disable.
-
uint32_t pinLowTimeout_ns
Pin low timeout in nanoseconds. Set to 0 to disable.
-
uint8_t sdaGlitchFilterWidth_ns
Width in nanoseconds of glitch filter on SDA pin. Set to 0 to disable.
-
uint8_t sclGlitchFilterWidth_ns
Width in nanoseconds of glitch filter on SCL pin. Set to 0 to disable.
-
struct _lpi2c_master_config hostRequest
Host request options.
-
bool enableMaster
-
struct _lpi2c_match_config
- #include <fsl_lpi2c.h>
LPI2C master data match configuration structure.
Public Members
-
lpi2c_data_match_config_mode_t matchMode
Data match configuration setting.
-
bool rxDataMatchOnly
When set to true, received data is ignored until a successful match.
-
uint32_t match0
Match value 0.
-
uint32_t match1
Match value 1.
-
lpi2c_data_match_config_mode_t matchMode
-
struct _lpi2c_master_transfer
- #include <fsl_lpi2c.h>
Non-blocking transfer descriptor structure.
This structure is used to pass transaction parameters to the LPI2C_MasterTransferNonBlocking() API.
Public Members
-
uint32_t flags
Bit mask of options for the transfer. See enumeration _lpi2c_master_transfer_flags for available options. Set to 0 or kLPI2C_TransferDefaultFlag for normal transfers.
-
uint16_t slaveAddress
The 7-bit slave address.
-
lpi2c_direction_t direction
Either kLPI2C_Read or kLPI2C_Write.
-
uint32_t subaddress
Sub address. Transferred MSB first.
-
size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.
-
void *data
Pointer to data to transfer.
-
size_t dataSize
Number of bytes to transfer.
-
uint32_t flags
-
struct _lpi2c_master_handle
- #include <fsl_lpi2c.h>
Driver handle for master non-blocking APIs.
Note
The contents of this structure are private and subject to change.
Public Members
-
uint8_t state
Transfer state machine current state.
-
uint16_t remainingBytes
Remaining byte count in current state.
-
uint8_t *buf
Buffer pointer for current state.
-
uint16_t commandBuffer[6]
LPI2C command sequence. When all 6 command words are used: Start&addr&write[1 word] + subaddr[4 words] + restart&addr&read[1 word]
-
lpi2c_master_transfer_t transfer
Copy of the current transfer info.
-
lpi2c_master_transfer_callback_t completionCallback
Callback function pointer.
-
void *userData
Application data passed to callback.
-
uint8_t state
-
struct hostRequest
Public Members
-
bool enable
Enable host request.
-
lpi2c_host_request_source_t source
Host request source.
-
lpi2c_host_request_polarity_t polarity
Host request pin polarity.
-
bool enable
LPI2C Master DMA Driver
-
void LPI2C_MasterCreateEDMAHandle(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle, edma_handle_t *rxDmaHandle, edma_handle_t *txDmaHandle, lpi2c_master_edma_transfer_callback_t callback, void *userData)
Create a new handle for the LPI2C master DMA APIs.
The creation of a handle is for use with the DMA APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the LPI2C_MasterTransferAbortEDMA() API shall be called.
For devices where the LPI2C send and receive DMA requests are OR’d together, the txDmaHandle parameter is ignored and may be set to NULL.
- Parameters:
base – The LPI2C peripheral base address.
handle – [out] Pointer to the LPI2C master driver handle.
rxDmaHandle – Handle for the eDMA receive channel. Created by the user prior to calling this function.
txDmaHandle – Handle for the eDMA transmit channel. Created by the user prior to calling this function.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
-
status_t LPI2C_MasterTransferEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle, lpi2c_master_transfer_t *transfer)
Performs a non-blocking DMA-based transaction on the I2C bus.
The callback specified when the handle was created is invoked when the transaction has completed.
- Parameters:
base – The LPI2C peripheral base address.
handle – Pointer to the LPI2C master driver handle.
transfer – The pointer to the transfer descriptor.
- Return values:
kStatus_Success – The transaction was started successfully.
kStatus_LPI2C_Busy – Either another master is currently utilizing the bus, or another DMA transaction is already in progress.
-
status_t LPI2C_MasterTransferGetCountEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle, size_t *count)
Returns number of bytes transferred so far.
- Parameters:
base – The LPI2C peripheral base address.
handle – Pointer to the LPI2C master driver handle.
count – [out] Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_Success –
kStatus_NoTransferInProgress – There is not a DMA transaction currently in progress.
-
status_t LPI2C_MasterTransferAbortEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle)
Terminates a non-blocking LPI2C master transmission early.
Note
It is not safe to call this function from an IRQ handler that has a higher priority than the eDMA peripheral’s IRQ priority.
- Parameters:
base – The LPI2C peripheral base address.
handle – Pointer to the LPI2C master driver handle.
- Return values:
kStatus_Success – A transaction was successfully aborted.
kStatus_LPI2C_Idle – There is not a DMA transaction currently in progress.
-
typedef struct _lpi2c_master_edma_handle lpi2c_master_edma_handle_t
LPI2C master EDMA handle of the transfer.
-
typedef void (*lpi2c_master_edma_transfer_callback_t)(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle, status_t completionStatus, void *userData)
Master DMA completion callback function pointer type.
This callback is used only for the non-blocking master transfer API. Specify the callback you wish to use in the call to LPI2C_MasterCreateEDMAHandle().
- Param base:
The LPI2C peripheral base address.
- Param handle:
Handle associated with the completed transfer.
- Param completionStatus:
Either kStatus_Success or an error code describing how the transfer completed.
- Param userData:
Arbitrary pointer-sized value passed from the application.
-
struct _lpi2c_master_edma_handle
- #include <fsl_lpi2c_edma.h>
Driver handle for master DMA APIs.
Note
The contents of this structure are private and subject to change.
Public Members
-
LPI2C_Type *base
LPI2C base pointer.
-
bool isBusy
Transfer state machine current state.
-
uint8_t nbytes
eDMA minor byte transfer count initially configured.
-
uint16_t commandBuffer[10]
LPI2C command sequence. When all 10 command words are used: Start&addr&write[1 word] + subaddr[4 words] + restart&addr&read[1 word] + receive&Size[4 words]
-
lpi2c_master_transfer_t transfer
Copy of the current transfer info.
-
lpi2c_master_edma_transfer_callback_t completionCallback
Callback function pointer.
-
void *userData
Application data passed to callback.
-
edma_handle_t *rx
Handle for receive DMA channel.
-
edma_handle_t *tx
Handle for transmit DMA channel.
-
edma_tcd_t tcds[3]
Software TCD. Three are allocated to provide enough room to align to 32-bytes.
-
LPI2C_Type *base
LPI2C Slave Driver
-
void LPI2C_SlaveGetDefaultConfig(lpi2c_slave_config_t *slaveConfig)
Provides a default configuration for the LPI2C slave peripheral.
This function provides the following default configuration for the LPI2C slave peripheral:
slaveConfig->enableSlave = true; slaveConfig->address0 = 0U; slaveConfig->address1 = 0U; slaveConfig->addressMatchMode = kLPI2C_MatchAddress0; slaveConfig->filterDozeEnable = true; slaveConfig->filterEnable = true; slaveConfig->enableGeneralCall = false; slaveConfig->sclStall.enableAck = false; slaveConfig->sclStall.enableTx = true; slaveConfig->sclStall.enableRx = true; slaveConfig->sclStall.enableAddress = true; slaveConfig->ignoreAck = false; slaveConfig->enableReceivedAddressRead = false; slaveConfig->sdaGlitchFilterWidth_ns = 0; slaveConfig->sclGlitchFilterWidth_ns = 0; slaveConfig->dataValidDelay_ns = 0; slaveConfig->clockHoldTime_ns = 0;
After calling this function, override any settings to customize the configuration, prior to initializing the master driver with LPI2C_SlaveInit(). Be sure to override at least the address0 member of the configuration structure with the desired slave address.
- Parameters:
slaveConfig – [out] User provided configuration structure that is set to default values. Refer to lpi2c_slave_config_t.
-
void LPI2C_SlaveInit(LPI2C_Type *base, const lpi2c_slave_config_t *slaveConfig, uint32_t sourceClock_Hz)
Initializes the LPI2C slave peripheral.
This function enables the peripheral clock and initializes the LPI2C slave peripheral as described by the user provided configuration.
- Parameters:
base – The LPI2C peripheral base address.
slaveConfig – User provided peripheral configuration. Use LPI2C_SlaveGetDefaultConfig() to get a set of defaults that you can override.
sourceClock_Hz – Frequency in Hertz of the LPI2C functional clock. Used to calculate the filter widths, data valid delay, and clock hold time.
-
void LPI2C_SlaveDeinit(LPI2C_Type *base)
Deinitializes the LPI2C slave peripheral.
This function disables the LPI2C slave peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.
- Parameters:
base – The LPI2C peripheral base address.
-
static inline void LPI2C_SlaveReset(LPI2C_Type *base)
Performs a software reset of the LPI2C slave peripheral.
- Parameters:
base – The LPI2C peripheral base address.
-
static inline void LPI2C_SlaveEnable(LPI2C_Type *base, bool enable)
Enables or disables the LPI2C module as slave.
- Parameters:
base – The LPI2C peripheral base address.
enable – Pass true to enable or false to disable the specified LPI2C as slave.
-
static inline uint32_t LPI2C_SlaveGetStatusFlags(LPI2C_Type *base)
Gets the LPI2C slave status flags.
A bit mask with the state of all LPI2C slave status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.
See also
_lpi2c_slave_flags
- Parameters:
base – The LPI2C peripheral base address.
- Returns:
State of the status flags:
1: related status flag is set.
0: related status flag is not set.
-
static inline void LPI2C_SlaveClearStatusFlags(LPI2C_Type *base, uint32_t statusMask)
Clears the LPI2C status flag state.
The following status register flags can be cleared:
kLPI2C_SlaveRepeatedStartDetectFlag
kLPI2C_SlaveStopDetectFlag
kLPI2C_SlaveBitErrFlag
kLPI2C_SlaveFifoErrFlag
Attempts to clear other flags has no effect.
See also
_lpi2c_slave_flags.
- Parameters:
base – The LPI2C peripheral base address.
statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _lpi2c_slave_flags enumerators OR’d together. You may pass the result of a previous call to LPI2C_SlaveGetStatusFlags().
-
static inline void LPI2C_SlaveEnableInterrupts(LPI2C_Type *base, uint32_t interruptMask)
Enables the LPI2C slave interrupt requests.
All flags except kLPI2C_SlaveBusyFlag and kLPI2C_SlaveBusBusyFlag can be enabled as interrupts.
- Parameters:
base – The LPI2C peripheral base address.
interruptMask – Bit mask of interrupts to enable. See _lpi2c_slave_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline void LPI2C_SlaveDisableInterrupts(LPI2C_Type *base, uint32_t interruptMask)
Disables the LPI2C slave interrupt requests.
All flags except kLPI2C_SlaveBusyFlag and kLPI2C_SlaveBusBusyFlag can be enabled as interrupts.
- Parameters:
base – The LPI2C peripheral base address.
interruptMask – Bit mask of interrupts to disable. See _lpi2c_slave_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline uint32_t LPI2C_SlaveGetEnabledInterrupts(LPI2C_Type *base)
Returns the set of currently enabled LPI2C slave interrupt requests.
- Parameters:
base – The LPI2C peripheral base address.
- Returns:
A bitmask composed of _lpi2c_slave_flags enumerators OR’d together to indicate the set of enabled interrupts.
-
static inline void LPI2C_SlaveEnableDMA(LPI2C_Type *base, bool enableAddressValid, bool enableRx, bool enableTx)
Enables or disables the LPI2C slave peripheral DMA requests.
- Parameters:
base – The LPI2C peripheral base address.
enableAddressValid – Enable flag for the address valid DMA request. Pass true for enable, false for disable. The address valid DMA request is shared with the receive data DMA request.
enableRx – Enable flag for the receive data DMA request. Pass true for enable, false for disable.
enableTx – Enable flag for the transmit data DMA request. Pass true for enable, false for disable.
-
static inline bool LPI2C_SlaveGetBusIdleState(LPI2C_Type *base)
Returns whether the bus is idle.
Requires the slave mode to be enabled.
- Parameters:
base – The LPI2C peripheral base address.
- Return values:
true – Bus is busy.
false – Bus is idle.
-
static inline void LPI2C_SlaveTransmitAck(LPI2C_Type *base, bool ackOrNack)
Transmits either an ACK or NAK on the I2C bus in response to a byte from the master.
Use this function to send an ACK or NAK when the kLPI2C_SlaveTransmitAckFlag is asserted. This only happens if you enable the sclStall.enableAck field of the lpi2c_slave_config_t configuration structure used to initialize the slave peripheral.
- Parameters:
base – The LPI2C peripheral base address.
ackOrNack – Pass true for an ACK or false for a NAK.
-
static inline void LPI2C_SlaveEnableAckStall(LPI2C_Type *base, bool enable)
Enables or disables ACKSTALL.
When enables ACKSTALL, software can transmit either an ACK or NAK on the I2C bus in response to a byte from the master.
- Parameters:
base – The LPI2C peripheral base address.
enable – True will enable ACKSTALL,false will disable ACKSTALL.
-
static inline uint32_t LPI2C_SlaveGetReceivedAddress(LPI2C_Type *base)
Returns the slave address sent by the I2C master.
This function should only be called if the kLPI2C_SlaveAddressValidFlag is asserted.
- Parameters:
base – The LPI2C peripheral base address.
- Returns:
The 8-bit address matched by the LPI2C slave. Bit 0 contains the R/w direction bit, and the 7-bit slave address is in the upper 7 bits.
-
status_t LPI2C_SlaveSend(LPI2C_Type *base, void *txBuff, size_t txSize, size_t *actualTxSize)
Performs a polling send transfer on the I2C bus.
- Parameters:
base – The LPI2C peripheral base address.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
actualTxSize – [out]
- Returns:
Error or success status returned by API.
-
status_t LPI2C_SlaveReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize, size_t *actualRxSize)
Performs a polling receive transfer on the I2C bus.
- Parameters:
base – The LPI2C peripheral base address.
rxBuff – The pointer to the data to be transferred.
rxSize – The length in bytes of the data to be transferred.
actualRxSize – [out]
- Returns:
Error or success status returned by API.
-
void LPI2C_SlaveTransferCreateHandle(LPI2C_Type *base, lpi2c_slave_handle_t *handle, lpi2c_slave_transfer_callback_t callback, void *userData)
Creates a new handle for the LPI2C slave non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the LPI2C_SlaveTransferAbort() API shall be called.
Note
The function also enables the NVIC IRQ for the input LPI2C. Need to notice that on some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to enable the associated INTMUX IRQ in application.
- Parameters:
base – The LPI2C peripheral base address.
handle – [out] Pointer to the LPI2C slave driver handle.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
-
status_t LPI2C_SlaveTransferNonBlocking(LPI2C_Type *base, lpi2c_slave_handle_t *handle, uint32_t eventMask)
Starts accepting slave transfers.
Call this API after calling I2C_SlaveInit() and LPI2C_SlaveTransferCreateHandle() to start processing transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the callback that was passed into the call to LPI2C_SlaveTransferCreateHandle(). The callback is always invoked from the interrupt context.
The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of lpi2c_slave_transfer_event_t enumerators for the events you wish to receive. The kLPI2C_SlaveTransmitEvent and kLPI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kLPI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.
- Parameters:
base – The LPI2C peripheral base address.
handle – Pointer to lpi2c_slave_handle_t structure which stores the transfer state.
eventMask – Bit mask formed by OR’ing together lpi2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kLPI2C_SlaveAllEvents to enable all events.
- Return values:
kStatus_Success – Slave transfers were successfully started.
kStatus_LPI2C_Busy – Slave transfers have already been started on this handle.
-
status_t LPI2C_SlaveTransferGetCount(LPI2C_Type *base, lpi2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer status during a non-blocking transfer.
- Parameters:
base – The LPI2C peripheral base address.
handle – Pointer to i2c_slave_handle_t structure.
count – [out] Pointer to a value to hold the number of bytes transferred. May be NULL if the count is not required.
- Return values:
kStatus_Success –
kStatus_NoTransferInProgress –
-
void LPI2C_SlaveTransferAbort(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.
Note
This API could be called at any time to stop slave for handling the bus events.
- Parameters:
base – The LPI2C peripheral base address.
handle – Pointer to lpi2c_slave_handle_t structure which stores the transfer state.
-
void LPI2C_SlaveTransferHandleIRQ(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
Reusable routine to handle slave interrupts.
Note
This function does not need to be called unless you are reimplementing the non blocking API’s interrupt handler routines to add special functionality.
- Parameters:
base – The LPI2C peripheral base address.
handle – Pointer to lpi2c_slave_handle_t structure which stores the transfer state.
-
enum _lpi2c_slave_flags
LPI2C slave peripheral flags.
The following status register flags can be cleared:
kLPI2C_SlaveRepeatedStartDetectFlag
kLPI2C_SlaveStopDetectFlag
kLPI2C_SlaveBitErrFlag
kLPI2C_SlaveFifoErrFlag
All flags except kLPI2C_SlaveBusyFlag and kLPI2C_SlaveBusBusyFlag can be enabled as interrupts.
Note
These enumerations are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kLPI2C_SlaveTxReadyFlag
Transmit data flag
-
enumerator kLPI2C_SlaveRxReadyFlag
Receive data flag
-
enumerator kLPI2C_SlaveAddressValidFlag
Address valid flag
-
enumerator kLPI2C_SlaveTransmitAckFlag
Transmit ACK flag
-
enumerator kLPI2C_SlaveRepeatedStartDetectFlag
Repeated start detect flag
-
enumerator kLPI2C_SlaveStopDetectFlag
Stop detect flag
-
enumerator kLPI2C_SlaveBitErrFlag
Bit error flag
-
enumerator kLPI2C_SlaveFifoErrFlag
FIFO error flag
-
enumerator kLPI2C_SlaveAddressMatch0Flag
Address match 0 flag
-
enumerator kLPI2C_SlaveAddressMatch1Flag
Address match 1 flag
-
enumerator kLPI2C_SlaveGeneralCallFlag
General call flag
-
enumerator kLPI2C_SlaveBusyFlag
Master busy flag
-
enumerator kLPI2C_SlaveBusBusyFlag
Bus busy flag
-
enumerator kLPI2C_SlaveClearFlags
All flags which are cleared by the driver upon starting a transfer.
-
enumerator kLPI2C_SlaveIrqFlags
IRQ sources enabled by the non-blocking transactional API.
-
enumerator kLPI2C_SlaveErrorFlags
Errors to check for.
-
enum _lpi2c_slave_address_match
LPI2C slave address match options.
Values:
-
enumerator kLPI2C_MatchAddress0
Match only address 0.
-
enumerator kLPI2C_MatchAddress0OrAddress1
Match either address 0 or address 1.
-
enumerator kLPI2C_MatchAddress0ThroughAddress1
Match a range of slave addresses from address 0 through address 1.
-
enumerator kLPI2C_MatchAddress0
-
enum _lpi2c_slave_transfer_event
Set of events sent to the callback for non blocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to LPI2C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
Values:
-
enumerator kLPI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.
-
enumerator kLPI2C_SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).
-
enumerator kLPI2C_SlaveReceiveEvent
Callback is requested to provide a buffer in which to place received data (slave-receiver role).
-
enumerator kLPI2C_SlaveTransmitAckEvent
Callback needs to either transmit an ACK or NACK.
-
enumerator kLPI2C_SlaveRepeatedStartEvent
A repeated start was detected.
-
enumerator kLPI2C_SlaveCompletionEvent
A stop was detected, completing the transfer.
-
enumerator kLPI2C_SlaveAllEvents
Bit mask of all available events.
-
enumerator kLPI2C_SlaveAddressMatchEvent
-
typedef enum _lpi2c_slave_address_match lpi2c_slave_address_match_t
LPI2C slave address match options.
-
typedef struct _lpi2c_slave_config lpi2c_slave_config_t
Structure with settings to initialize the LPI2C slave module.
This structure holds configuration settings for the LPI2C slave peripheral. To initialize this structure to reasonable defaults, call the LPI2C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
-
typedef enum _lpi2c_slave_transfer_event lpi2c_slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to LPI2C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
-
typedef struct _lpi2c_slave_transfer lpi2c_slave_transfer_t
LPI2C slave transfer structure.
-
typedef struct _lpi2c_slave_handle lpi2c_slave_handle_t
LPI2C slave handle structure.
-
typedef void (*lpi2c_slave_transfer_callback_t)(LPI2C_Type *base, lpi2c_slave_transfer_t *transfer, void *userData)
Slave event callback function pointer type.
This callback is used only for the slave non-blocking transfer API. To install a callback, use the LPI2C_SlaveSetCallback() function after you have created a handle.
- Param base:
Base address for the LPI2C instance on which the event occurred.
- Param transfer:
Pointer to transfer descriptor containing values passed to and/or from the callback.
- Param userData:
Arbitrary pointer-sized value passed from the application.
-
struct _lpi2c_slave_config
- #include <fsl_lpi2c.h>
Structure with settings to initialize the LPI2C slave module.
This structure holds configuration settings for the LPI2C slave peripheral. To initialize this structure to reasonable defaults, call the LPI2C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
Public Members
-
bool enableSlave
Enable slave mode.
-
uint8_t address0
Slave’s 7-bit address.
-
uint8_t address1
Alternate slave 7-bit address.
-
lpi2c_slave_address_match_t addressMatchMode
Address matching options.
-
bool filterDozeEnable
Enable digital glitch filter in doze mode.
-
bool filterEnable
Enable digital glitch filter.
-
bool enableGeneralCall
Enable general call address matching.
-
struct _lpi2c_slave_config sclStall
SCL stall enable options.
-
bool ignoreAck
Continue transfers after a NACK is detected.
-
bool enableReceivedAddressRead
Enable reading the address received address as the first byte of data.
-
uint32_t sdaGlitchFilterWidth_ns
Width in nanoseconds of the digital filter on the SDA signal. Set to 0 to disable.
-
uint32_t sclGlitchFilterWidth_ns
Width in nanoseconds of the digital filter on the SCL signal. Set to 0 to disable.
-
uint32_t dataValidDelay_ns
Width in nanoseconds of the data valid delay.
-
uint32_t clockHoldTime_ns
Width in nanoseconds of the clock hold time.
-
bool enableSlave
-
struct _lpi2c_slave_transfer
- #include <fsl_lpi2c.h>
LPI2C slave transfer structure.
Public Members
-
lpi2c_slave_transfer_event_t event
Reason the callback is being invoked.
-
uint8_t receivedAddress
Matching address send by master.
-
uint8_t *data
Transfer buffer
-
size_t dataSize
Transfer size
-
status_t completionStatus
Success or error code describing how the transfer completed. Only applies for kLPI2C_SlaveCompletionEvent.
-
size_t transferredCount
Number of bytes actually transferred since start or last repeated start.
-
lpi2c_slave_transfer_event_t event
-
struct _lpi2c_slave_handle
- #include <fsl_lpi2c.h>
LPI2C slave handle structure.
Note
The contents of this structure are private and subject to change.
Public Members
-
lpi2c_slave_transfer_t transfer
LPI2C slave transfer copy.
-
bool isBusy
Whether transfer is busy.
-
bool wasTransmit
Whether the last transfer was a transmit.
-
uint32_t eventMask
Mask of enabled events.
-
uint32_t transferredCount
Count of bytes transferred.
-
lpi2c_slave_transfer_callback_t callback
Callback function called at transfer event.
-
void *userData
Callback parameter passed to callback.
-
lpi2c_slave_transfer_t transfer
-
struct sclStall
Public Members
-
bool enableAck
Enables SCL clock stretching during slave-transmit address byte(s) and slave-receiver address and data byte(s) to allow software to write the Transmit ACK Register before the ACK or NACK is transmitted. Clock stretching occurs when transmitting the 9th bit. When enableAckSCLStall is enabled, there is no need to set either enableRxDataSCLStall or enableAddressSCLStall.
-
bool enableTx
Enables SCL clock stretching when the transmit data flag is set during a slave-transmit transfer.
-
bool enableRx
Enables SCL clock stretching when receive data flag is set during a slave-receive transfer.
-
bool enableAddress
Enables SCL clock stretching when the address valid flag is asserted.
-
bool enableAck
LPSPI: Low Power Serial Peripheral Interface
LPSPI Peripheral driver
-
void LPSPI_MasterInit(LPSPI_Type *base, const lpspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
Initializes the LPSPI master.
- Parameters:
base – LPSPI peripheral address.
masterConfig – Pointer to structure lpspi_master_config_t.
srcClock_Hz – Module source input clock in Hertz
-
void LPSPI_MasterGetDefaultConfig(lpspi_master_config_t *masterConfig)
Sets the lpspi_master_config_t structure to default values.
This API initializes the configuration structure for LPSPI_MasterInit(). The initialized structure can remain unchanged in LPSPI_MasterInit(), or can be modified before calling the LPSPI_MasterInit(). Example:
lpspi_master_config_t masterConfig; LPSPI_MasterGetDefaultConfig(&masterConfig);
- Parameters:
masterConfig – pointer to lpspi_master_config_t structure
-
void LPSPI_SlaveInit(LPSPI_Type *base, const lpspi_slave_config_t *slaveConfig)
LPSPI slave configuration.
- Parameters:
base – LPSPI peripheral address.
slaveConfig – Pointer to a structure lpspi_slave_config_t.
-
void LPSPI_SlaveGetDefaultConfig(lpspi_slave_config_t *slaveConfig)
Sets the lpspi_slave_config_t structure to default values.
This API initializes the configuration structure for LPSPI_SlaveInit(). The initialized structure can remain unchanged in LPSPI_SlaveInit() or can be modified before calling the LPSPI_SlaveInit(). Example:
lpspi_slave_config_t slaveConfig; LPSPI_SlaveGetDefaultConfig(&slaveConfig);
- Parameters:
slaveConfig – pointer to lpspi_slave_config_t structure.
-
void LPSPI_Deinit(LPSPI_Type *base)
De-initializes the LPSPI peripheral. Call this API to disable the LPSPI clock.
- Parameters:
base – LPSPI peripheral address.
-
void LPSPI_Reset(LPSPI_Type *base)
Restores the LPSPI peripheral to reset state. Note that this function sets all registers to reset state. As a result, the LPSPI module can’t work after calling this API.
- Parameters:
base – LPSPI peripheral address.
-
uint32_t LPSPI_GetInstance(LPSPI_Type *base)
Get the LPSPI instance from peripheral base address.
- Parameters:
base – LPSPI peripheral base address.
- Returns:
LPSPI instance.
-
static inline void LPSPI_Enable(LPSPI_Type *base, bool enable)
Enables the LPSPI peripheral and sets the MCR MDIS to 0.
- Parameters:
base – LPSPI peripheral address.
enable – Pass true to enable module, false to disable module.
-
static inline uint32_t LPSPI_GetStatusFlags(LPSPI_Type *base)
Gets the LPSPI status flag state.
- Parameters:
base – LPSPI peripheral address.
- Returns:
The LPSPI status(in SR register).
-
static inline uint8_t LPSPI_GetTxFifoSize(LPSPI_Type *base)
Gets the LPSPI Tx FIFO size.
- Parameters:
base – LPSPI peripheral address.
- Returns:
The LPSPI Tx FIFO size.
-
static inline uint8_t LPSPI_GetRxFifoSize(LPSPI_Type *base)
Gets the LPSPI Rx FIFO size.
- Parameters:
base – LPSPI peripheral address.
- Returns:
The LPSPI Rx FIFO size.
-
static inline uint32_t LPSPI_GetTxFifoCount(LPSPI_Type *base)
Gets the LPSPI Tx FIFO count.
- Parameters:
base – LPSPI peripheral address.
- Returns:
The number of words in the transmit FIFO.
-
static inline uint32_t LPSPI_GetRxFifoCount(LPSPI_Type *base)
Gets the LPSPI Rx FIFO count.
- Parameters:
base – LPSPI peripheral address.
- Returns:
The number of words in the receive FIFO.
-
static inline void LPSPI_ClearStatusFlags(LPSPI_Type *base, uint32_t statusFlags)
Clears the LPSPI status flag.
This function clears the desired status bit by using a write-1-to-clear. The user passes in the base and the desired status flag bit to clear. The list of status flags is defined in the _lpspi_flags. Example usage:
LPSPI_ClearStatusFlags(base, kLPSPI_TxDataRequestFlag|kLPSPI_RxDataReadyFlag);
- Parameters:
base – LPSPI peripheral address.
statusFlags – The status flag used from type _lpspi_flags.
-
static inline uint32_t LPSPI_GetTcr(LPSPI_Type *base)
-
static inline void LPSPI_EnableInterrupts(LPSPI_Type *base, uint32_t mask)
Enables the LPSPI interrupts.
This function configures the various interrupt masks of the LPSPI. The parameters are base and an interrupt mask. Note that, for Tx fill and Rx FIFO drain requests, enabling the interrupt request disables the DMA request.
LPSPI_EnableInterrupts(base, kLPSPI_TxInterruptEnable | kLPSPI_RxInterruptEnable );
- Parameters:
base – LPSPI peripheral address.
mask – The interrupt mask; Use the enum _lpspi_interrupt_enable.
-
static inline void LPSPI_DisableInterrupts(LPSPI_Type *base, uint32_t mask)
Disables the LPSPI interrupts.
LPSPI_DisableInterrupts(base, kLPSPI_TxInterruptEnable | kLPSPI_RxInterruptEnable );
- Parameters:
base – LPSPI peripheral address.
mask – The interrupt mask; Use the enum _lpspi_interrupt_enable.
-
static inline void LPSPI_EnableDMA(LPSPI_Type *base, uint32_t mask)
Enables the LPSPI DMA request.
This function configures the Rx and Tx DMA mask of the LPSPI. The parameters are base and a DMA mask.
LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
- Parameters:
base – LPSPI peripheral address.
mask – The interrupt mask; Use the enum _lpspi_dma_enable.
-
static inline void LPSPI_DisableDMA(LPSPI_Type *base, uint32_t mask)
Disables the LPSPI DMA request.
This function configures the Rx and Tx DMA mask of the LPSPI. The parameters are base and a DMA mask.
SPI_DisableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
- Parameters:
base – LPSPI peripheral address.
mask – The interrupt mask; Use the enum _lpspi_dma_enable.
-
static inline uint32_t LPSPI_GetTxRegisterAddress(LPSPI_Type *base)
Gets the LPSPI Transmit Data Register address for a DMA operation.
This function gets the LPSPI Transmit Data Register address because this value is needed for the DMA operation. This function can be used for either master or slave mode.
- Parameters:
base – LPSPI peripheral address.
- Returns:
The LPSPI Transmit Data Register address.
-
static inline uint32_t LPSPI_GetRxRegisterAddress(LPSPI_Type *base)
Gets the LPSPI Receive Data Register address for a DMA operation.
This function gets the LPSPI Receive Data Register address because this value is needed for the DMA operation. This function can be used for either master or slave mode.
- Parameters:
base – LPSPI peripheral address.
- Returns:
The LPSPI Receive Data Register address.
-
bool LPSPI_CheckTransferArgument(LPSPI_Type *base, lpspi_transfer_t *transfer, bool isEdma)
Check the argument for transfer .
- Parameters:
base – LPSPI peripheral address.
transfer – the transfer struct to be used.
isEdma – True to check for EDMA transfer, false to check interrupt non-blocking transfer
- Returns:
Return true for right and false for wrong.
-
static inline void LPSPI_SetMasterSlaveMode(LPSPI_Type *base, lpspi_master_slave_mode_t mode)
Configures the LPSPI for either master or slave.
Note that the CFGR1 should only be written when the LPSPI is disabled (LPSPIx_CR_MEN = 0).
- Parameters:
base – LPSPI peripheral address.
mode – Mode setting (master or slave) of type lpspi_master_slave_mode_t.
-
static inline void LPSPI_SelectTransferPCS(LPSPI_Type *base, lpspi_which_pcs_t select)
Configures the peripheral chip select used for the transfer.
- Parameters:
base – LPSPI peripheral address.
select – LPSPI Peripheral Chip Select (PCS) configuration.
-
static inline void LPSPI_SetPCSContinous(LPSPI_Type *base, bool IsContinous)
Set the PCS signal to continuous or uncontinuous mode.
Note
In master mode, continuous transfer will keep the PCS asserted at the end of the frame size, until a command word is received that starts a new frame. So PCS must be set back to uncontinuous when transfer finishes. In slave mode, when continuous transfer is enabled, the LPSPI will only transmit the first frame size bits, after that the LPSPI will transmit received data back (assuming a 32-bit shift register).
- Parameters:
base – LPSPI peripheral address.
IsContinous – True to set the transfer PCS to continuous mode, false to set to uncontinuous mode.
-
static inline bool LPSPI_IsMaster(LPSPI_Type *base)
Returns whether the LPSPI module is in master mode.
- Parameters:
base – LPSPI peripheral address.
- Returns:
Returns true if the module is in master mode or false if the module is in slave mode.
-
static inline void LPSPI_FlushFifo(LPSPI_Type *base, bool flushTxFifo, bool flushRxFifo)
Flushes the LPSPI FIFOs.
- Parameters:
base – LPSPI peripheral address.
flushTxFifo – Flushes (true) the Tx FIFO, else do not flush (false) the Tx FIFO.
flushRxFifo – Flushes (true) the Rx FIFO, else do not flush (false) the Rx FIFO.
-
static inline void LPSPI_SetFifoWatermarks(LPSPI_Type *base, uint32_t txWater, uint32_t rxWater)
Sets the transmit and receive FIFO watermark values.
This function allows the user to set the receive and transmit FIFO watermarks. The function does not compare the watermark settings to the FIFO size. The FIFO watermark should not be equal to or greater than the FIFO size. It is up to the higher level driver to make this check.
- Parameters:
base – LPSPI peripheral address.
txWater – The TX FIFO watermark value. Writing a value equal or greater than the FIFO size is truncated.
rxWater – The RX FIFO watermark value. Writing a value equal or greater than the FIFO size is truncated.
-
static inline void LPSPI_SetAllPcsPolarity(LPSPI_Type *base, uint32_t mask)
Configures all LPSPI peripheral chip select polarities simultaneously.
Note that the CFGR1 should only be written when the LPSPI is disabled (LPSPIx_CR_MEN = 0).
This is an example: PCS0 and PCS1 set to active low and other PCSs set to active high. Note that the number of PCS is device-specific.
LPSPI_SetAllPcsPolarity(base, kLPSPI_Pcs0ActiveLow | kLPSPI_Pcs1ActiveLow);
- Parameters:
base – LPSPI peripheral address.
mask – The PCS polarity mask; Use the enum _lpspi_pcs_polarity.
-
static inline void LPSPI_SetFrameSize(LPSPI_Type *base, uint32_t frameSize)
Configures the frame size.
The minimum frame size is 8-bits and the maximum frame size is 4096-bits. If the frame size is less than or equal to 32-bits, the word size and frame size are identical. If the frame size is greater than 32-bits, the word size is 32-bits for each word except the last (the last word contains the remainder bits if the frame size is not divisible by 32). The minimum word size is 2-bits. A frame size of 33-bits (or similar) is not supported.
Note 1: The transmit command register should be initialized before enabling the LPSPI in slave mode, although the command register does not update until after the LPSPI is enabled. After it is enabled, the transmit command register should only be changed if the LPSPI is idle.
Note 2: The transmit and command FIFO is a combined FIFO that includes both transmit data and command words. That means the TCR register should be written to when the Tx FIFO is not full.
- Parameters:
base – LPSPI peripheral address.
frameSize – The frame size in number of bits.
-
uint32_t LPSPI_MasterSetBaudRate(LPSPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz, uint32_t *tcrPrescaleValue)
Sets the LPSPI baud rate in bits per second.
This function takes in the desired bitsPerSec (baud rate) and calculates the nearest possible baud rate without exceeding the desired baud rate and returns the calculated baud rate in bits-per-second. It requires the caller to provide the frequency of the module source clock (in Hertz). Note that the baud rate does not go into effect until the Transmit Control Register (TCR) is programmed with the prescale value. Hence, this function returns the prescale tcrPrescaleValue parameter for later programming in the TCR. The higher level peripheral driver should alert the user of an out of range baud rate input.
Note that the LPSPI module must first be disabled before configuring this. Note that the LPSPI module must be configured for master mode before configuring this.
- Parameters:
base – LPSPI peripheral address.
baudRate_Bps – The desired baud rate in bits per second.
srcClock_Hz – Module source input clock in Hertz.
tcrPrescaleValue – The TCR prescale value needed to program the TCR.
- Returns:
The actual calculated baud rate. This function may also return a “0” if the LPSPI is not configured for master mode or if the LPSPI module is not disabled.
-
void LPSPI_MasterSetDelayScaler(LPSPI_Type *base, uint32_t scaler, lpspi_delay_type_t whichDelay)
Manually configures a specific LPSPI delay parameter (module must be disabled to change the delay values).
This function configures the following: SCK to PCS delay, or PCS to SCK delay, or The configurations must occur between the transfer delay.
The delay names are available in type lpspi_delay_type_t.
The user passes the desired delay along with the delay value. This allows the user to directly set the delay values if they have pre-calculated them or if they simply wish to manually increment the value.
Note that the LPSPI module must first be disabled before configuring this. Note that the LPSPI module must be configured for master mode before configuring this.
- Parameters:
base – LPSPI peripheral address.
scaler – The 8-bit delay value 0x00 to 0xFF (255).
whichDelay – The desired delay to configure, must be of type lpspi_delay_type_t.
-
uint32_t LPSPI_MasterSetDelayTimes(LPSPI_Type *base, uint32_t delayTimeInNanoSec, lpspi_delay_type_t whichDelay, uint32_t srcClock_Hz)
Calculates the delay based on the desired delay input in nanoseconds (module must be disabled to change the delay values).
This function calculates the values for the following: SCK to PCS delay, or PCS to SCK delay, or The configurations must occur between the transfer delay.
The delay names are available in type lpspi_delay_type_t.
The user passes the desired delay and the desired delay value in nano-seconds. The function calculates the value needed for the desired delay parameter and returns the actual calculated delay because an exact delay match may not be possible. In this case, the closest match is calculated without going below the desired delay value input. It is possible to input a very large delay value that exceeds the capability of the part, in which case the maximum supported delay is returned. It is up to the higher level peripheral driver to alert the user of an out of range delay input.
Note that the LPSPI module must be configured for master mode before configuring this. And note that the delayTime = LPSPI_clockSource / (PRESCALE * Delay_scaler).
- Parameters:
base – LPSPI peripheral address.
delayTimeInNanoSec – The desired delay value in nano-seconds.
whichDelay – The desired delay to configuration, which must be of type lpspi_delay_type_t.
srcClock_Hz – Module source input clock in Hertz.
- Returns:
actual Calculated delay value in nano-seconds.
-
static inline void LPSPI_WriteData(LPSPI_Type *base, uint32_t data)
Writes data into the transmit data buffer.
This function writes data passed in by the user to the Transmit Data Register (TDR). The user can pass up to 32-bits of data to load into the TDR. If the frame size exceeds 32-bits, the user has to manage sending the data one 32-bit word at a time. Any writes to the TDR result in an immediate push to the transmit FIFO. This function can be used for either master or slave modes.
- Parameters:
base – LPSPI peripheral address.
data – The data word to be sent.
-
static inline uint32_t LPSPI_ReadData(LPSPI_Type *base)
Reads data from the data buffer.
This function reads the data from the Receive Data Register (RDR). This function can be used for either master or slave mode.
- Parameters:
base – LPSPI peripheral address.
- Returns:
The data read from the data buffer.
-
void LPSPI_SetDummyData(LPSPI_Type *base, uint8_t dummyData)
Set up the dummy data.
- Parameters:
base – LPSPI peripheral address.
dummyData – Data to be transferred when tx buffer is NULL. Note: This API has no effect when LPSPI in slave interrupt mode, because driver will set the TXMSK bit to 1 if txData is NULL, no data is loaded from transmit FIFO and output pin is tristated.
-
void LPSPI_MasterTransferCreateHandle(LPSPI_Type *base, lpspi_master_handle_t *handle, lpspi_master_transfer_callback_t callback, void *userData)
Initializes the LPSPI master handle.
This function initializes the LPSPI handle, which can be used for other LPSPI transactional APIs. Usually, for a specified LPSPI instance, call this API once to get the initialized handle.
- Parameters:
base – LPSPI peripheral address.
handle – LPSPI handle pointer to lpspi_master_handle_t.
callback – DSPI callback.
userData – callback function parameter.
-
status_t LPSPI_MasterTransferBlocking(LPSPI_Type *base, lpspi_transfer_t *transfer)
LPSPI master transfer data using a polling method.
This function transfers data using a polling method. This is a blocking function, which does not return until all transfers have been completed.
Note: The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4. Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
- Parameters:
base – LPSPI peripheral address.
transfer – pointer to lpspi_transfer_t structure.
- Returns:
status of status_t.
-
status_t LPSPI_MasterTransferNonBlocking(LPSPI_Type *base, lpspi_master_handle_t *handle, lpspi_transfer_t *transfer)
LPSPI master transfer data using an interrupt method.
This function transfers data using an interrupt method. This is a non-blocking function, which returns right away. When all data is transferred, the callback function is called.
Note: The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4. Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
- Parameters:
base – LPSPI peripheral address.
handle – pointer to lpspi_master_handle_t structure which stores the transfer state.
transfer – pointer to lpspi_transfer_t structure.
- Returns:
status of status_t.
-
status_t LPSPI_MasterTransferGetCount(LPSPI_Type *base, lpspi_master_handle_t *handle, size_t *count)
Gets the master transfer remaining bytes.
This function gets the master transfer remaining bytes.
- Parameters:
base – LPSPI peripheral address.
handle – pointer to lpspi_master_handle_t structure which stores the transfer state.
count – Number of bytes transferred so far by the non-blocking transaction.
- Returns:
status of status_t.
-
void LPSPI_MasterTransferAbort(LPSPI_Type *base, lpspi_master_handle_t *handle)
LPSPI master abort transfer which uses an interrupt method.
This function aborts a transfer which uses an interrupt method.
- Parameters:
base – LPSPI peripheral address.
handle – pointer to lpspi_master_handle_t structure which stores the transfer state.
-
void LPSPI_MasterTransferHandleIRQ(LPSPI_Type *base, lpspi_master_handle_t *handle)
LPSPI Master IRQ handler function.
This function processes the LPSPI transmit and receive IRQ.
- Parameters:
base – LPSPI peripheral address.
handle – pointer to lpspi_master_handle_t structure which stores the transfer state.
-
void LPSPI_SlaveTransferCreateHandle(LPSPI_Type *base, lpspi_slave_handle_t *handle, lpspi_slave_transfer_callback_t callback, void *userData)
Initializes the LPSPI slave handle.
This function initializes the LPSPI handle, which can be used for other LPSPI transactional APIs. Usually, for a specified LPSPI instance, call this API once to get the initialized handle.
- Parameters:
base – LPSPI peripheral address.
handle – LPSPI handle pointer to lpspi_slave_handle_t.
callback – DSPI callback.
userData – callback function parameter.
-
status_t LPSPI_SlaveTransferNonBlocking(LPSPI_Type *base, lpspi_slave_handle_t *handle, lpspi_transfer_t *transfer)
LPSPI slave transfer data using an interrupt method.
This function transfer data using an interrupt method. This is a non-blocking function, which returns right away. When all data is transferred, the callback function is called.
Note: The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not an integer multiple of 4. Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
- Parameters:
base – LPSPI peripheral address.
handle – pointer to lpspi_slave_handle_t structure which stores the transfer state.
transfer – pointer to lpspi_transfer_t structure.
- Returns:
status of status_t.
-
status_t LPSPI_SlaveTransferGetCount(LPSPI_Type *base, lpspi_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes.
This function gets the slave transfer remaining bytes.
- Parameters:
base – LPSPI peripheral address.
handle – pointer to lpspi_slave_handle_t structure which stores the transfer state.
count – Number of bytes transferred so far by the non-blocking transaction.
- Returns:
status of status_t.
-
void LPSPI_SlaveTransferAbort(LPSPI_Type *base, lpspi_slave_handle_t *handle)
LPSPI slave aborts a transfer which uses an interrupt method.
This function aborts a transfer which uses an interrupt method.
- Parameters:
base – LPSPI peripheral address.
handle – pointer to lpspi_slave_handle_t structure which stores the transfer state.
-
void LPSPI_SlaveTransferHandleIRQ(LPSPI_Type *base, lpspi_slave_handle_t *handle)
LPSPI Slave IRQ handler function.
This function processes the LPSPI transmit and receives an IRQ.
- Parameters:
base – LPSPI peripheral address.
handle – pointer to lpspi_slave_handle_t structure which stores the transfer state.
-
bool LPSPI_WaitTxFifoEmpty(LPSPI_Type *base)
Wait for tx FIFO to be empty.
This function wait the tx fifo empty
- Parameters:
base – LPSPI peripheral address.
- Returns:
true for the tx FIFO is ready, false is not.
-
FSL_LPSPI_DRIVER_VERSION
LPSPI driver version.
Status for the LPSPI driver.
Values:
-
enumerator kStatus_LPSPI_Busy
LPSPI transfer is busy.
-
enumerator kStatus_LPSPI_Error
LPSPI driver error.
-
enumerator kStatus_LPSPI_Idle
LPSPI is idle.
-
enumerator kStatus_LPSPI_OutOfRange
LPSPI transfer out Of range.
-
enumerator kStatus_LPSPI_Timeout
LPSPI timeout polling status flags.
-
enumerator kStatus_LPSPI_Busy
-
enum _lpspi_flags
LPSPI status flags in SPIx_SR register.
Values:
-
enumerator kLPSPI_TxDataRequestFlag
Transmit data flag
-
enumerator kLPSPI_RxDataReadyFlag
Receive data flag
-
enumerator kLPSPI_WordCompleteFlag
Word Complete flag
-
enumerator kLPSPI_FrameCompleteFlag
Frame Complete flag
-
enumerator kLPSPI_TransferCompleteFlag
Transfer Complete flag
-
enumerator kLPSPI_TransmitErrorFlag
Transmit Error flag (FIFO underrun)
-
enumerator kLPSPI_ReceiveErrorFlag
Receive Error flag (FIFO overrun)
-
enumerator kLPSPI_DataMatchFlag
Data Match flag
-
enumerator kLPSPI_ModuleBusyFlag
Module Busy flag
-
enumerator kLPSPI_AllStatusFlag
Used for clearing all w1c status flags
-
enumerator kLPSPI_TxDataRequestFlag
-
enum _lpspi_interrupt_enable
LPSPI interrupt source.
Values:
-
enumerator kLPSPI_TxInterruptEnable
Transmit data interrupt enable
-
enumerator kLPSPI_RxInterruptEnable
Receive data interrupt enable
-
enumerator kLPSPI_WordCompleteInterruptEnable
Word complete interrupt enable
-
enumerator kLPSPI_FrameCompleteInterruptEnable
Frame complete interrupt enable
-
enumerator kLPSPI_TransferCompleteInterruptEnable
Transfer complete interrupt enable
-
enumerator kLPSPI_TransmitErrorInterruptEnable
Transmit error interrupt enable(FIFO underrun)
-
enumerator kLPSPI_ReceiveErrorInterruptEnable
Receive Error interrupt enable (FIFO overrun)
-
enumerator kLPSPI_DataMatchInterruptEnable
Data Match interrupt enable
-
enumerator kLPSPI_AllInterruptEnable
All above interrupts enable.
-
enumerator kLPSPI_TxInterruptEnable
-
enum _lpspi_dma_enable
LPSPI DMA source.
Values:
-
enumerator kLPSPI_TxDmaEnable
Transmit data DMA enable
-
enumerator kLPSPI_RxDmaEnable
Receive data DMA enable
-
enumerator kLPSPI_TxDmaEnable
-
enum _lpspi_master_slave_mode
LPSPI master or slave mode configuration.
Values:
-
enumerator kLPSPI_Master
LPSPI peripheral operates in master mode.
-
enumerator kLPSPI_Slave
LPSPI peripheral operates in slave mode.
-
enumerator kLPSPI_Master
-
enum _lpspi_which_pcs_config
LPSPI Peripheral Chip Select (PCS) configuration (which PCS to configure).
Values:
-
enumerator kLPSPI_Pcs0
PCS[0]
-
enumerator kLPSPI_Pcs1
PCS[1]
-
enumerator kLPSPI_Pcs2
PCS[2]
-
enumerator kLPSPI_Pcs3
PCS[3]
-
enumerator kLPSPI_Pcs0
-
enum _lpspi_pcs_polarity_config
LPSPI Peripheral Chip Select (PCS) Polarity configuration.
Values:
-
enumerator kLPSPI_PcsActiveHigh
PCS Active High (idles low)
-
enumerator kLPSPI_PcsActiveLow
PCS Active Low (idles high)
-
enumerator kLPSPI_PcsActiveHigh
-
enum _lpspi_pcs_polarity
LPSPI Peripheral Chip Select (PCS) Polarity.
Values:
-
enumerator kLPSPI_Pcs0ActiveLow
Pcs0 Active Low (idles high).
-
enumerator kLPSPI_Pcs1ActiveLow
Pcs1 Active Low (idles high).
-
enumerator kLPSPI_Pcs2ActiveLow
Pcs2 Active Low (idles high).
-
enumerator kLPSPI_Pcs3ActiveLow
Pcs3 Active Low (idles high).
-
enumerator kLPSPI_PcsAllActiveLow
Pcs0 to Pcs5 Active Low (idles high).
-
enumerator kLPSPI_Pcs0ActiveLow
-
enum _lpspi_clock_polarity
LPSPI clock polarity configuration.
Values:
-
enumerator kLPSPI_ClockPolarityActiveHigh
CPOL=0. Active-high LPSPI clock (idles low)
-
enumerator kLPSPI_ClockPolarityActiveLow
CPOL=1. Active-low LPSPI clock (idles high)
-
enumerator kLPSPI_ClockPolarityActiveHigh
-
enum _lpspi_clock_phase
LPSPI clock phase configuration.
Values:
-
enumerator kLPSPI_ClockPhaseFirstEdge
CPHA=0. Data is captured on the leading edge of the SCK and changed on the following edge.
-
enumerator kLPSPI_ClockPhaseSecondEdge
CPHA=1. Data is changed on the leading edge of the SCK and captured on the following edge.
-
enumerator kLPSPI_ClockPhaseFirstEdge
-
enum _lpspi_shift_direction
LPSPI data shifter direction options.
Values:
-
enumerator kLPSPI_MsbFirst
Data transfers start with most significant bit.
-
enumerator kLPSPI_LsbFirst
Data transfers start with least significant bit.
-
enumerator kLPSPI_MsbFirst
-
enum _lpspi_host_request_select
LPSPI Host Request select configuration.
Values:
-
enumerator kLPSPI_HostReqExtPin
Host Request is an ext pin.
-
enumerator kLPSPI_HostReqInternalTrigger
Host Request is an internal trigger.
-
enumerator kLPSPI_HostReqExtPin
-
enum _lpspi_match_config
LPSPI Match configuration options.
Values:
-
enumerator kLPSI_MatchDisabled
LPSPI Match Disabled.
-
enumerator kLPSI_1stWordEqualsM0orM1
LPSPI Match Enabled.
-
enumerator kLPSI_AnyWordEqualsM0orM1
LPSPI Match Enabled.
-
enumerator kLPSI_1stWordEqualsM0and2ndWordEqualsM1
LPSPI Match Enabled.
-
enumerator kLPSI_AnyWordEqualsM0andNxtWordEqualsM1
LPSPI Match Enabled.
-
enumerator kLPSI_1stWordAndM1EqualsM0andM1
LPSPI Match Enabled.
-
enumerator kLPSI_AnyWordAndM1EqualsM0andM1
LPSPI Match Enabled.
-
enumerator kLPSI_MatchDisabled
-
enum _lpspi_pin_config
LPSPI pin (SDO and SDI) configuration.
Values:
-
enumerator kLPSPI_SdiInSdoOut
LPSPI SDI input, SDO output.
-
enumerator kLPSPI_SdiInSdiOut
LPSPI SDI input, SDI output.
-
enumerator kLPSPI_SdoInSdoOut
LPSPI SDO input, SDO output.
-
enumerator kLPSPI_SdoInSdiOut
LPSPI SDO input, SDI output.
-
enumerator kLPSPI_SdiInSdoOut
-
enum _lpspi_data_out_config
LPSPI data output configuration.
Values:
-
enumerator kLpspiDataOutRetained
Data out retains last value when chip select is de-asserted
-
enumerator kLpspiDataOutTristate
Data out is tristated when chip select is de-asserted
-
enumerator kLpspiDataOutRetained
-
enum _lpspi_transfer_width
LPSPI transfer width configuration.
Values:
-
enumerator kLPSPI_SingleBitXfer
1-bit shift at a time, data out on SDO, in on SDI (normal mode)
-
enumerator kLPSPI_TwoBitXfer
2-bits shift out on SDO/SDI and in on SDO/SDI
-
enumerator kLPSPI_FourBitXfer
4-bits shift out on SDO/SDI/PCS[3:2] and in on SDO/SDI/PCS[3:2]
-
enumerator kLPSPI_SingleBitXfer
-
enum _lpspi_delay_type
LPSPI delay type selection.
Values:
-
enumerator kLPSPI_PcsToSck
PCS-to-SCK delay.
-
enumerator kLPSPI_LastSckToPcs
Last SCK edge to PCS delay.
-
enumerator kLPSPI_BetweenTransfer
Delay between transfers.
-
enumerator kLPSPI_PcsToSck
-
enum _lpspi_transfer_config_flag_for_master
Use this enumeration for LPSPI master transfer configFlags.
Values:
-
enumerator kLPSPI_MasterPcs0
LPSPI master PCS shift macro , internal used. LPSPI master transfer use PCS0 signal
-
enumerator kLPSPI_MasterPcs1
LPSPI master PCS shift macro , internal used. LPSPI master transfer use PCS1 signal
-
enumerator kLPSPI_MasterPcs2
LPSPI master PCS shift macro , internal used. LPSPI master transfer use PCS2 signal
-
enumerator kLPSPI_MasterPcs3
LPSPI master PCS shift macro , internal used. LPSPI master transfer use PCS3 signal
-
enumerator kLPSPI_MasterPcsContinuous
Is PCS signal continuous
-
enumerator kLPSPI_MasterByteSwap
Is master swap the byte. For example, when want to send data 1 2 3 4 5 6 7 8 (suppose you set lpspi_shift_direction_t to MSB).
If you set bitPerFrame = 8 , no matter the kLPSPI_MasterByteSwapyou flag is used or not, the waveform is 1 2 3 4 5 6 7 8.
If you set bitPerFrame = 16 : (1) the waveform is 2 1 4 3 6 5 8 7 if you do not use the kLPSPI_MasterByteSwap flag. (2) the waveform is 1 2 3 4 5 6 7 8 if you use the kLPSPI_MasterByteSwap flag.
If you set bitPerFrame = 32 : (1) the waveform is 4 3 2 1 8 7 6 5 if you do not use the kLPSPI_MasterByteSwap flag. (2) the waveform is 1 2 3 4 5 6 7 8 if you use the kLPSPI_MasterByteSwap flag.
-
enumerator kLPSPI_MasterPcs0
-
enum _lpspi_transfer_config_flag_for_slave
Use this enumeration for LPSPI slave transfer configFlags.
Values:
-
enumerator kLPSPI_SlavePcs0
LPSPI slave PCS shift macro , internal used. LPSPI slave transfer use PCS0 signal
-
enumerator kLPSPI_SlavePcs1
LPSPI slave PCS shift macro , internal used. LPSPI slave transfer use PCS1 signal
-
enumerator kLPSPI_SlavePcs2
LPSPI slave PCS shift macro , internal used. LPSPI slave transfer use PCS2 signal
-
enumerator kLPSPI_SlavePcs3
LPSPI slave PCS shift macro , internal used. LPSPI slave transfer use PCS3 signal
-
enumerator kLPSPI_SlaveByteSwap
Is slave swap the byte. For example, when want to send data 1 2 3 4 5 6 7 8 (suppose you set lpspi_shift_direction_t to MSB).
If you set bitPerFrame = 8 , no matter the kLPSPI_SlaveByteSwap flag is used or not, the waveform is 1 2 3 4 5 6 7 8.
If you set bitPerFrame = 16 : (1) the waveform is 2 1 4 3 6 5 8 7 if you do not use the kLPSPI_SlaveByteSwap flag. (2) the waveform is 1 2 3 4 5 6 7 8 if you use the kLPSPI_SlaveByteSwap flag.
If you set bitPerFrame = 32 : (1) the waveform is 4 3 2 1 8 7 6 5 if you do not use the kLPSPI_SlaveByteSwap flag. (2) the waveform is 1 2 3 4 5 6 7 8 if you use the kLPSPI_SlaveByteSwap flag.
-
enumerator kLPSPI_SlavePcs0
-
enum _lpspi_transfer_state
LPSPI transfer state, which is used for LPSPI transactional API state machine.
Values:
-
enumerator kLPSPI_Idle
Nothing in the transmitter/receiver.
-
enumerator kLPSPI_Busy
Transfer queue is not finished.
-
enumerator kLPSPI_Error
Transfer error.
-
enumerator kLPSPI_Idle
-
typedef enum _lpspi_master_slave_mode lpspi_master_slave_mode_t
LPSPI master or slave mode configuration.
-
typedef enum _lpspi_which_pcs_config lpspi_which_pcs_t
LPSPI Peripheral Chip Select (PCS) configuration (which PCS to configure).
-
typedef enum _lpspi_pcs_polarity_config lpspi_pcs_polarity_config_t
LPSPI Peripheral Chip Select (PCS) Polarity configuration.
-
typedef enum _lpspi_clock_polarity lpspi_clock_polarity_t
LPSPI clock polarity configuration.
-
typedef enum _lpspi_clock_phase lpspi_clock_phase_t
LPSPI clock phase configuration.
-
typedef enum _lpspi_shift_direction lpspi_shift_direction_t
LPSPI data shifter direction options.
-
typedef enum _lpspi_host_request_select lpspi_host_request_select_t
LPSPI Host Request select configuration.
-
typedef enum _lpspi_match_config lpspi_match_config_t
LPSPI Match configuration options.
-
typedef enum _lpspi_pin_config lpspi_pin_config_t
LPSPI pin (SDO and SDI) configuration.
-
typedef enum _lpspi_data_out_config lpspi_data_out_config_t
LPSPI data output configuration.
-
typedef enum _lpspi_transfer_width lpspi_transfer_width_t
LPSPI transfer width configuration.
-
typedef enum _lpspi_delay_type lpspi_delay_type_t
LPSPI delay type selection.
-
typedef struct _lpspi_master_config lpspi_master_config_t
LPSPI master configuration structure.
-
typedef struct _lpspi_slave_config lpspi_slave_config_t
LPSPI slave configuration structure.
-
typedef struct _lpspi_master_handle lpspi_master_handle_t
Forward declaration of the _lpspi_master_handle typedefs.
-
typedef struct _lpspi_slave_handle lpspi_slave_handle_t
Forward declaration of the _lpspi_slave_handle typedefs.
-
typedef void (*lpspi_master_transfer_callback_t)(LPSPI_Type *base, lpspi_master_handle_t *handle, status_t status, void *userData)
Master completion callback function pointer type.
- Param base:
LPSPI peripheral address.
- Param handle:
Pointer to the handle for the LPSPI master.
- Param status:
Success or error code describing whether the transfer is completed.
- Param userData:
Arbitrary pointer-dataSized value passed from the application.
-
typedef void (*lpspi_slave_transfer_callback_t)(LPSPI_Type *base, lpspi_slave_handle_t *handle, status_t status, void *userData)
Slave completion callback function pointer type.
- Param base:
LPSPI peripheral address.
- Param handle:
Pointer to the handle for the LPSPI slave.
- Param status:
Success or error code describing whether the transfer is completed.
- Param userData:
Arbitrary pointer-dataSized value passed from the application.
-
typedef struct _lpspi_transfer lpspi_transfer_t
LPSPI master/slave transfer structure.
-
volatile uint8_t g_lpspiDummyData[]
Global variable for dummy data value setting.
-
LPSPI_DUMMY_DATA
LPSPI dummy data if no Tx data.
Dummy data used for tx if there is not txData.
-
SPI_RETRY_TIMES
Retry times for waiting flag.
-
LPSPI_MASTER_PCS_SHIFT
LPSPI master PCS shift macro , internal used.
-
LPSPI_MASTER_PCS_MASK
LPSPI master PCS shift macro , internal used.
-
LPSPI_SLAVE_PCS_SHIFT
LPSPI slave PCS shift macro , internal used.
-
LPSPI_SLAVE_PCS_MASK
LPSPI slave PCS shift macro , internal used.
-
struct _lpspi_master_config
- #include <fsl_lpspi.h>
LPSPI master configuration structure.
Public Members
-
uint32_t baudRate
Baud Rate for LPSPI.
-
uint32_t bitsPerFrame
Bits per frame, minimum 8, maximum 4096.
-
lpspi_clock_polarity_t cpol
Clock polarity.
-
lpspi_clock_phase_t cpha
Clock phase.
-
lpspi_shift_direction_t direction
MSB or LSB data shift direction.
-
uint32_t pcsToSckDelayInNanoSec
PCS to SCK delay time in nanoseconds, setting to 0 sets the minimum delay. It sets the boundary value if out of range.
-
uint32_t lastSckToPcsDelayInNanoSec
Last SCK to PCS delay time in nanoseconds, setting to 0 sets the minimum delay. It sets the boundary value if out of range.
-
uint32_t betweenTransferDelayInNanoSec
After the SCK delay time with nanoseconds, setting to 0 sets the minimum delay. It sets the boundary value if out of range.
-
lpspi_which_pcs_t whichPcs
Desired Peripheral Chip Select (PCS).
-
lpspi_pcs_polarity_config_t pcsActiveHighOrLow
Desired PCS active high or low
-
lpspi_pin_config_t pinCfg
Configures which pins are used for input and output data during single bit transfers.
-
lpspi_data_out_config_t dataOutConfig
Configures if the output data is tristated between accesses (LPSPI_PCS is negated).
-
bool enableInputDelay
Enable master to sample the input data on a delayed SCK. This can help improve slave setup time. Refer to device data sheet for specific time length.
-
uint32_t baudRate
-
struct _lpspi_slave_config
- #include <fsl_lpspi.h>
LPSPI slave configuration structure.
Public Members
-
uint32_t bitsPerFrame
Bits per frame, minimum 8, maximum 4096.
-
lpspi_clock_polarity_t cpol
Clock polarity.
-
lpspi_clock_phase_t cpha
Clock phase.
-
lpspi_shift_direction_t direction
MSB or LSB data shift direction.
-
lpspi_which_pcs_t whichPcs
Desired Peripheral Chip Select (pcs)
-
lpspi_pcs_polarity_config_t pcsActiveHighOrLow
Desired PCS active high or low
-
lpspi_pin_config_t pinCfg
Configures which pins are used for input and output data during single bit transfers.
-
lpspi_data_out_config_t dataOutConfig
Configures if the output data is tristated between accesses (LPSPI_PCS is negated).
-
uint32_t bitsPerFrame
-
struct _lpspi_transfer
- #include <fsl_lpspi.h>
LPSPI master/slave transfer structure.
Public Members
-
const uint8_t *txData
Send buffer.
-
uint8_t *rxData
Receive buffer.
-
volatile size_t dataSize
Transfer bytes.
-
uint32_t configFlags
Transfer transfer configuration flags. Set from _lpspi_transfer_config_flag_for_master if the transfer is used for master or _lpspi_transfer_config_flag_for_slave enumeration if the transfer is used for slave.
-
const uint8_t *txData
-
struct _lpspi_master_handle
- #include <fsl_lpspi.h>
LPSPI master transfer handle structure used for transactional API.
Public Members
-
volatile bool isPcsContinuous
Is PCS continuous in transfer.
-
volatile bool writeTcrInIsr
A flag that whether should write TCR in ISR.
-
volatile bool isByteSwap
A flag that whether should byte swap.
-
volatile bool isTxMask
A flag that whether TCR[TXMSK] is set.
-
volatile uint16_t bytesPerFrame
Number of bytes in each frame
-
volatile uint8_t fifoSize
FIFO dataSize.
-
volatile uint8_t rxWatermark
Rx watermark.
-
volatile uint8_t bytesEachWrite
Bytes for each write TDR.
-
volatile uint8_t bytesEachRead
Bytes for each read RDR.
-
const uint8_t *volatile txData
Send buffer.
-
uint8_t *volatile rxData
Receive buffer.
-
volatile size_t txRemainingByteCount
Number of bytes remaining to send.
-
volatile size_t rxRemainingByteCount
Number of bytes remaining to receive.
-
volatile uint32_t writeRegRemainingTimes
Write TDR register remaining times.
-
volatile uint32_t readRegRemainingTimes
Read RDR register remaining times.
-
uint32_t totalByteCount
Number of transfer bytes
-
uint32_t txBuffIfNull
Used if the txData is NULL.
-
volatile uint8_t state
LPSPI transfer state , _lpspi_transfer_state.
-
lpspi_master_transfer_callback_t callback
Completion callback.
-
void *userData
Callback user data.
-
volatile bool isPcsContinuous
-
struct _lpspi_slave_handle
- #include <fsl_lpspi.h>
LPSPI slave transfer handle structure used for transactional API.
Public Members
-
volatile bool isByteSwap
A flag that whether should byte swap.
-
volatile uint8_t fifoSize
FIFO dataSize.
-
volatile uint8_t rxWatermark
Rx watermark.
-
volatile uint8_t bytesEachWrite
Bytes for each write TDR.
-
volatile uint8_t bytesEachRead
Bytes for each read RDR.
-
const uint8_t *volatile txData
Send buffer.
-
uint8_t *volatile rxData
Receive buffer.
-
volatile size_t txRemainingByteCount
Number of bytes remaining to send.
-
volatile size_t rxRemainingByteCount
Number of bytes remaining to receive.
-
volatile uint32_t writeRegRemainingTimes
Write TDR register remaining times.
-
volatile uint32_t readRegRemainingTimes
Read RDR register remaining times.
-
uint32_t totalByteCount
Number of transfer bytes
-
volatile uint8_t state
LPSPI transfer state , _lpspi_transfer_state.
-
volatile uint32_t errorCount
Error count for slave transfer.
-
lpspi_slave_transfer_callback_t callback
Completion callback.
-
void *userData
Callback user data.
-
volatile bool isByteSwap
LPSPI eDMA Driver
-
FSL_LPSPI_EDMA_DRIVER_VERSION
LPSPI EDMA driver version.
-
DMA_MAX_TRANSFER_COUNT
DMA max transfer size.
-
typedef struct _lpspi_master_edma_handle lpspi_master_edma_handle_t
Forward declaration of the _lpspi_master_edma_handle typedefs.
-
typedef struct _lpspi_slave_edma_handle lpspi_slave_edma_handle_t
Forward declaration of the _lpspi_slave_edma_handle typedefs.
-
typedef void (*lpspi_master_edma_transfer_callback_t)(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, status_t status, void *userData)
Completion callback function pointer type.
- Param base:
LPSPI peripheral base address.
- Param handle:
Pointer to the handle for the LPSPI master.
- Param status:
Success or error code describing whether the transfer completed.
- Param userData:
Arbitrary pointer-dataSized value passed from the application.
-
typedef void (*lpspi_slave_edma_transfer_callback_t)(LPSPI_Type *base, lpspi_slave_edma_handle_t *handle, status_t status, void *userData)
Completion callback function pointer type.
- Param base:
LPSPI peripheral base address.
- Param handle:
Pointer to the handle for the LPSPI slave.
- Param status:
Success or error code describing whether the transfer completed.
- Param userData:
Arbitrary pointer-dataSized value passed from the application.
-
void LPSPI_MasterTransferCreateHandleEDMA(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, lpspi_master_edma_transfer_callback_t callback, void *userData, edma_handle_t *edmaRxRegToRxDataHandle, edma_handle_t *edmaTxDataToTxRegHandle)
Initializes the LPSPI master eDMA handle.
This function initializes the LPSPI eDMA handle which can be used for other LPSPI transactional APIs. Usually, for a specified LPSPI instance, call this API once to get the initialized handle.
Note that the LPSPI eDMA has a separated (Rx and Tx as two sources) or shared (Rx and Tx are the same source) DMA request source. (1) For a separated DMA request source, enable and set the Rx DMAMUX source for edmaRxRegToRxDataHandle and Tx DMAMUX source for edmaTxDataToTxRegHandle. (2) For a shared DMA request source, enable and set the Rx/Tx DMAMUX source for edmaRxRegToRxDataHandle.
- Parameters:
base – LPSPI peripheral base address.
handle – LPSPI handle pointer to lpspi_master_edma_handle_t.
callback – LPSPI callback.
userData – callback function parameter.
edmaRxRegToRxDataHandle – edmaRxRegToRxDataHandle pointer to edma_handle_t.
edmaTxDataToTxRegHandle – edmaTxDataToTxRegHandle pointer to edma_handle_t.
-
status_t LPSPI_MasterTransferEDMA(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, lpspi_transfer_t *transfer)
LPSPI master transfer data using eDMA.
This function transfers data using eDMA. This is a non-blocking function, which returns right away. When all data is transferred, the callback function is called.
Note: The transfer data size should be an integer multiple of bytesPerFrame if bytesPerFrame is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not an integer multiple of 4. Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
- Parameters:
base – LPSPI peripheral base address.
handle – pointer to lpspi_master_edma_handle_t structure which stores the transfer state.
transfer – pointer to lpspi_transfer_t structure.
- Returns:
status of status_t.
-
status_t LPSPI_MasterTransferPrepareEDMALite(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, uint32_t configFlags)
LPSPI master config transfer parameter while using eDMA.
This function is preparing to transfer data using eDMA, work with LPSPI_MasterTransferEDMALite.
- Parameters:
base – LPSPI peripheral base address.
handle – pointer to lpspi_master_edma_handle_t structure which stores the transfer state.
configFlags – transfer configuration flags. _lpspi_transfer_config_flag_for_master.
- Return values:
kStatus_Success – Execution successfully.
kStatus_LPSPI_Busy – The LPSPI device is busy.
- Returns:
Indicates whether LPSPI master transfer was successful or not.
-
status_t LPSPI_MasterTransferEDMALite(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, lpspi_transfer_t *transfer)
LPSPI master transfer data using eDMA without configs.
This function transfers data using eDMA. This is a non-blocking function, which returns right away. When all data is transferred, the callback function is called.
Note: This API is only for transfer through DMA without configuration. Before calling this API, you must call LPSPI_MasterTransferPrepareEDMALite to configure it once. The transfer data size should be an integer multiple of bytesPerFrame if bytesPerFrame is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not an integer multiple of 4. Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
- Parameters:
base – LPSPI peripheral base address.
handle – pointer to lpspi_master_edma_handle_t structure which stores the transfer state.
transfer – pointer to lpspi_transfer_t structure, config field is not uesed.
- Return values:
kStatus_Success – Execution successfully.
kStatus_LPSPI_Busy – The LPSPI device is busy.
kStatus_InvalidArgument – The transfer structure is invalid.
- Returns:
Indicates whether LPSPI master transfer was successful or not.
-
void LPSPI_MasterTransferAbortEDMA(LPSPI_Type *base, lpspi_master_edma_handle_t *handle)
LPSPI master aborts a transfer which is using eDMA.
This function aborts a transfer which is using eDMA.
- Parameters:
base – LPSPI peripheral base address.
handle – pointer to lpspi_master_edma_handle_t structure which stores the transfer state.
-
status_t LPSPI_MasterTransferGetCountEDMA(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, size_t *count)
Gets the master eDMA transfer remaining bytes.
This function gets the master eDMA transfer remaining bytes.
- Parameters:
base – LPSPI peripheral base address.
handle – pointer to lpspi_master_edma_handle_t structure which stores the transfer state.
count – Number of bytes transferred so far by the EDMA transaction.
- Returns:
status of status_t.
-
void LPSPI_SlaveTransferCreateHandleEDMA(LPSPI_Type *base, lpspi_slave_edma_handle_t *handle, lpspi_slave_edma_transfer_callback_t callback, void *userData, edma_handle_t *edmaRxRegToRxDataHandle, edma_handle_t *edmaTxDataToTxRegHandle)
Initializes the LPSPI slave eDMA handle.
This function initializes the LPSPI eDMA handle which can be used for other LPSPI transactional APIs. Usually, for a specified LPSPI instance, call this API once to get the initialized handle.
Note that LPSPI eDMA has a separated (Rx and Tx as two sources) or shared (Rx and Tx as the same source) DMA request source.
(1) For a separated DMA request source, enable and set the Rx DMAMUX source for edmaRxRegToRxDataHandle and Tx DMAMUX source for edmaTxDataToTxRegHandle. (2) For a shared DMA request source, enable and set the Rx/Rx DMAMUX source for edmaRxRegToRxDataHandle .
- Parameters:
base – LPSPI peripheral base address.
handle – LPSPI handle pointer to lpspi_slave_edma_handle_t.
callback – LPSPI callback.
userData – callback function parameter.
edmaRxRegToRxDataHandle – edmaRxRegToRxDataHandle pointer to edma_handle_t.
edmaTxDataToTxRegHandle – edmaTxDataToTxRegHandle pointer to edma_handle_t.
-
status_t LPSPI_SlaveTransferEDMA(LPSPI_Type *base, lpspi_slave_edma_handle_t *handle, lpspi_transfer_t *transfer)
LPSPI slave transfers data using eDMA.
This function transfers data using eDMA. This is a non-blocking function, which return right away. When all data is transferred, the callback function is called.
Note: The transfer data size should be an integer multiple of bytesPerFrame if bytesPerFrame is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not an integer multiple of 4. Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
- Parameters:
base – LPSPI peripheral base address.
handle – pointer to lpspi_slave_edma_handle_t structure which stores the transfer state.
transfer – pointer to lpspi_transfer_t structure.
- Returns:
status of status_t.
-
void LPSPI_SlaveTransferAbortEDMA(LPSPI_Type *base, lpspi_slave_edma_handle_t *handle)
LPSPI slave aborts a transfer which is using eDMA.
This function aborts a transfer which is using eDMA.
- Parameters:
base – LPSPI peripheral base address.
handle – pointer to lpspi_slave_edma_handle_t structure which stores the transfer state.
-
status_t LPSPI_SlaveTransferGetCountEDMA(LPSPI_Type *base, lpspi_slave_edma_handle_t *handle, size_t *count)
Gets the slave eDMA transfer remaining bytes.
This function gets the slave eDMA transfer remaining bytes.
- Parameters:
base – LPSPI peripheral base address.
handle – pointer to lpspi_slave_edma_handle_t structure which stores the transfer state.
count – Number of bytes transferred so far by the eDMA transaction.
- Returns:
status of status_t.
-
struct _lpspi_master_edma_handle
- #include <fsl_lpspi_edma.h>
LPSPI master eDMA transfer handle structure used for transactional API.
Public Members
-
volatile bool isPcsContinuous
Is PCS continuous in transfer.
-
volatile bool isByteSwap
A flag that whether should byte swap.
-
volatile uint8_t fifoSize
FIFO dataSize.
-
volatile uint8_t rxWatermark
Rx watermark.
-
volatile uint8_t bytesEachWrite
Bytes for each write TDR.
-
volatile uint8_t bytesEachRead
Bytes for each read RDR.
-
volatile uint8_t bytesLastRead
Bytes for last read RDR.
-
volatile bool isThereExtraRxBytes
Is there extra RX byte.
-
const uint8_t *volatile txData
Send buffer.
-
uint8_t *volatile rxData
Receive buffer.
-
volatile size_t txRemainingByteCount
Number of bytes remaining to send.
-
volatile size_t rxRemainingByteCount
Number of bytes remaining to receive.
-
volatile uint32_t writeRegRemainingTimes
Write TDR register remaining times.
-
volatile uint32_t readRegRemainingTimes
Read RDR register remaining times.
-
uint32_t totalByteCount
Number of transfer bytes
-
edma_tcd_t *lastTimeTCD
Pointer to the lastTime TCD
-
bool isMultiDMATransmit
Is there multi DMA transmit
-
volatile uint8_t dmaTransmitTime
DMA Transfer times.
-
uint32_t lastTimeDataBytes
DMA transmit last Time data Bytes
-
uint32_t dataBytesEveryTime
Bytes in a time for DMA transfer, default is DMA_MAX_TRANSFER_COUNT
-
edma_transfer_config_t transferConfigRx
Config of DMA rx channel.
-
edma_transfer_config_t transferConfigTx
Config of DMA tx channel.
-
uint32_t txBuffIfNull
Used if there is not txData for DMA purpose.
-
uint32_t rxBuffIfNull
Used if there is not rxData for DMA purpose.
-
uint32_t transmitCommand
Used to write TCR for DMA purpose.
-
volatile uint8_t state
LPSPI transfer state , _lpspi_transfer_state.
-
uint8_t nbytes
eDMA minor byte transfer count initially configured.
-
lpspi_master_edma_transfer_callback_t callback
Completion callback.
-
void *userData
Callback user data.
-
edma_handle_t *edmaRxRegToRxDataHandle
edma_handle_t handle point used for RxReg to RxData buff
-
edma_handle_t *edmaTxDataToTxRegHandle
edma_handle_t handle point used for TxData to TxReg buff
-
edma_tcd_t lpspiSoftwareTCD[3]
SoftwareTCD, internal used
-
volatile bool isPcsContinuous
-
struct _lpspi_slave_edma_handle
- #include <fsl_lpspi_edma.h>
LPSPI slave eDMA transfer handle structure used for transactional API.
Public Members
-
volatile bool isByteSwap
A flag that whether should byte swap.
-
volatile uint8_t fifoSize
FIFO dataSize.
-
volatile uint8_t rxWatermark
Rx watermark.
-
volatile uint8_t bytesEachWrite
Bytes for each write TDR.
-
volatile uint8_t bytesEachRead
Bytes for each read RDR.
-
volatile uint8_t bytesLastRead
Bytes for last read RDR.
-
volatile bool isThereExtraRxBytes
Is there extra RX byte.
-
uint8_t nbytes
eDMA minor byte transfer count initially configured.
-
const uint8_t *volatile txData
Send buffer.
-
uint8_t *volatile rxData
Receive buffer.
-
volatile size_t txRemainingByteCount
Number of bytes remaining to send.
-
volatile size_t rxRemainingByteCount
Number of bytes remaining to receive.
-
volatile uint32_t writeRegRemainingTimes
Write TDR register remaining times.
-
volatile uint32_t readRegRemainingTimes
Read RDR register remaining times.
-
uint32_t totalByteCount
Number of transfer bytes
-
uint32_t txBuffIfNull
Used if there is not txData for DMA purpose.
-
uint32_t rxBuffIfNull
Used if there is not rxData for DMA purpose.
-
volatile uint8_t state
LPSPI transfer state.
-
uint32_t errorCount
Error count for slave transfer.
-
lpspi_slave_edma_transfer_callback_t callback
Completion callback.
-
void *userData
Callback user data.
-
edma_handle_t *edmaRxRegToRxDataHandle
edma_handle_t handle point used for RxReg to RxData buff
-
edma_handle_t *edmaTxDataToTxRegHandle
edma_handle_t handle point used for TxData to TxReg
-
edma_tcd_t lpspiSoftwareTCD[2]
SoftwareTCD, internal used
-
volatile bool isByteSwap
LPTMR: Low-Power Timer
-
void LPTMR_Init(LPTMR_Type *base, const lptmr_config_t *config)
Ungates the LPTMR clock and configures the peripheral for a basic operation.
Note
This API should be called at the beginning of the application using the LPTMR driver.
- Parameters:
base – LPTMR peripheral base address
config – A pointer to the LPTMR configuration structure.
-
void LPTMR_Deinit(LPTMR_Type *base)
Gates the LPTMR clock.
- Parameters:
base – LPTMR peripheral base address
-
void LPTMR_GetDefaultConfig(lptmr_config_t *config)
Fills in the LPTMR configuration structure with default settings.
The default values are as follows.
config->timerMode = kLPTMR_TimerModeTimeCounter; config->pinSelect = kLPTMR_PinSelectInput_0; config->pinPolarity = kLPTMR_PinPolarityActiveHigh; config->enableFreeRunning = false; config->bypassPrescaler = true; config->prescalerClockSource = kLPTMR_PrescalerClock_1; config->value = kLPTMR_Prescale_Glitch_0;
- Parameters:
config – A pointer to the LPTMR configuration structure.
-
static inline void LPTMR_EnableInterrupts(LPTMR_Type *base, uint32_t mask)
Enables the selected LPTMR interrupts.
- Parameters:
base – LPTMR peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration lptmr_interrupt_enable_t
-
static inline void LPTMR_DisableInterrupts(LPTMR_Type *base, uint32_t mask)
Disables the selected LPTMR interrupts.
- Parameters:
base – LPTMR peripheral base address
mask – The interrupts to disable. This is a logical OR of members of the enumeration lptmr_interrupt_enable_t.
-
static inline uint32_t LPTMR_GetEnabledInterrupts(LPTMR_Type *base)
Gets the enabled LPTMR interrupts.
- Parameters:
base – LPTMR peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration lptmr_interrupt_enable_t
-
static inline uint32_t LPTMR_GetStatusFlags(LPTMR_Type *base)
Gets the LPTMR status flags.
- Parameters:
base – LPTMR peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration lptmr_status_flags_t
-
static inline void LPTMR_ClearStatusFlags(LPTMR_Type *base, uint32_t mask)
Clears the LPTMR status flags.
- Parameters:
base – LPTMR peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration lptmr_status_flags_t.
-
static inline void LPTMR_SetTimerPeriod(LPTMR_Type *base, uint32_t ticks)
Sets the timer period in units of count.
Timers counts from 0 until it equals the count value set here. The count value is written to the CMR register.
Note
The TCF flag is set with the CNR equals the count provided here and then increments.
Call the utility macros provided in the fsl_common.h to convert to ticks.
- Parameters:
base – LPTMR peripheral base address
ticks – A timer period in units of ticks, which should be equal or greater than 1.
-
static inline uint32_t LPTMR_GetCurrentTimerCount(LPTMR_Type *base)
Reads the current timer counting value.
This function returns the real-time timer counting value in a range from 0 to a timer period.
Note
Call the utility macros provided in the fsl_common.h to convert ticks to usec or msec.
- Parameters:
base – LPTMR peripheral base address
- Returns:
The current counter value in ticks
-
static inline void LPTMR_StartTimer(LPTMR_Type *base)
Starts the timer.
After calling this function, the timer counts up to the CMR register value. Each time the timer reaches the CMR value and then increments, it generates a trigger pulse and sets the timeout interrupt flag. An interrupt is also triggered if the timer interrupt is enabled.
- Parameters:
base – LPTMR peripheral base address
-
static inline void LPTMR_StopTimer(LPTMR_Type *base)
Stops the timer.
This function stops the timer and resets the timer’s counter register.
- Parameters:
base – LPTMR peripheral base address
-
FSL_LPTMR_DRIVER_VERSION
Driver Version
-
enum _lptmr_pin_select
LPTMR pin selection used in pulse counter mode.
Values:
-
enumerator kLPTMR_PinSelectInput_0
Pulse counter input 0 is selected
-
enumerator kLPTMR_PinSelectInput_1
Pulse counter input 1 is selected
-
enumerator kLPTMR_PinSelectInput_2
Pulse counter input 2 is selected
-
enumerator kLPTMR_PinSelectInput_3
Pulse counter input 3 is selected
-
enumerator kLPTMR_PinSelectInput_0
-
enum _lptmr_pin_polarity
LPTMR pin polarity used in pulse counter mode.
Values:
-
enumerator kLPTMR_PinPolarityActiveHigh
Pulse Counter input source is active-high
-
enumerator kLPTMR_PinPolarityActiveLow
Pulse Counter input source is active-low
-
enumerator kLPTMR_PinPolarityActiveHigh
-
enum _lptmr_timer_mode
LPTMR timer mode selection.
Values:
-
enumerator kLPTMR_TimerModeTimeCounter
Time Counter mode
-
enumerator kLPTMR_TimerModePulseCounter
Pulse Counter mode
-
enumerator kLPTMR_TimerModeTimeCounter
-
enum _lptmr_prescaler_glitch_value
LPTMR prescaler/glitch filter values.
Values:
-
enumerator kLPTMR_Prescale_Glitch_0
Prescaler divide 2, glitch filter does not support this setting
-
enumerator kLPTMR_Prescale_Glitch_1
Prescaler divide 4, glitch filter 2
-
enumerator kLPTMR_Prescale_Glitch_2
Prescaler divide 8, glitch filter 4
-
enumerator kLPTMR_Prescale_Glitch_3
Prescaler divide 16, glitch filter 8
-
enumerator kLPTMR_Prescale_Glitch_4
Prescaler divide 32, glitch filter 16
-
enumerator kLPTMR_Prescale_Glitch_5
Prescaler divide 64, glitch filter 32
-
enumerator kLPTMR_Prescale_Glitch_6
Prescaler divide 128, glitch filter 64
-
enumerator kLPTMR_Prescale_Glitch_7
Prescaler divide 256, glitch filter 128
-
enumerator kLPTMR_Prescale_Glitch_8
Prescaler divide 512, glitch filter 256
-
enumerator kLPTMR_Prescale_Glitch_9
Prescaler divide 1024, glitch filter 512
-
enumerator kLPTMR_Prescale_Glitch_10
Prescaler divide 2048 glitch filter 1024
-
enumerator kLPTMR_Prescale_Glitch_11
Prescaler divide 4096, glitch filter 2048
-
enumerator kLPTMR_Prescale_Glitch_12
Prescaler divide 8192, glitch filter 4096
-
enumerator kLPTMR_Prescale_Glitch_13
Prescaler divide 16384, glitch filter 8192
-
enumerator kLPTMR_Prescale_Glitch_14
Prescaler divide 32768, glitch filter 16384
-
enumerator kLPTMR_Prescale_Glitch_15
Prescaler divide 65536, glitch filter 32768
-
enumerator kLPTMR_Prescale_Glitch_0
-
enum _lptmr_prescaler_clock_select
LPTMR prescaler/glitch filter clock select.
Note
Clock connections are SoC-specific
Values:
-
enum _lptmr_interrupt_enable
List of the LPTMR interrupts.
Values:
-
enumerator kLPTMR_TimerInterruptEnable
Timer interrupt enable
-
enumerator kLPTMR_TimerInterruptEnable
-
enum _lptmr_status_flags
List of the LPTMR status flags.
Values:
-
enumerator kLPTMR_TimerCompareFlag
Timer compare flag
-
enumerator kLPTMR_TimerCompareFlag
-
typedef enum _lptmr_pin_select lptmr_pin_select_t
LPTMR pin selection used in pulse counter mode.
-
typedef enum _lptmr_pin_polarity lptmr_pin_polarity_t
LPTMR pin polarity used in pulse counter mode.
-
typedef enum _lptmr_timer_mode lptmr_timer_mode_t
LPTMR timer mode selection.
-
typedef enum _lptmr_prescaler_glitch_value lptmr_prescaler_glitch_value_t
LPTMR prescaler/glitch filter values.
-
typedef enum _lptmr_prescaler_clock_select lptmr_prescaler_clock_select_t
LPTMR prescaler/glitch filter clock select.
Note
Clock connections are SoC-specific
-
typedef enum _lptmr_interrupt_enable lptmr_interrupt_enable_t
List of the LPTMR interrupts.
-
typedef enum _lptmr_status_flags lptmr_status_flags_t
List of the LPTMR status flags.
-
typedef struct _lptmr_config lptmr_config_t
LPTMR config structure.
This structure holds the configuration settings for the LPTMR peripheral. To initialize this structure to reasonable defaults, call the LPTMR_GetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration struct can be made constant so it resides in flash.
-
static inline void LPTMR_EnableTimerDMA(LPTMR_Type *base, bool enable)
Enable or disable timer DMA request.
- Parameters:
base – base LPTMR peripheral base address
enable – Switcher of timer DMA feature. “true” means to enable, “false” means to disable.
-
struct _lptmr_config
- #include <fsl_lptmr.h>
LPTMR config structure.
This structure holds the configuration settings for the LPTMR peripheral. To initialize this structure to reasonable defaults, call the LPTMR_GetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration struct can be made constant so it resides in flash.
Public Members
-
lptmr_timer_mode_t timerMode
Time counter mode or pulse counter mode
-
lptmr_pin_select_t pinSelect
LPTMR pulse input pin select; used only in pulse counter mode
-
lptmr_pin_polarity_t pinPolarity
LPTMR pulse input pin polarity; used only in pulse counter mode
-
bool enableFreeRunning
True: enable free running, counter is reset on overflow False: counter is reset when the compare flag is set
-
bool bypassPrescaler
True: bypass prescaler; false: use clock from prescaler
-
lptmr_prescaler_clock_select_t prescalerClockSource
LPTMR clock source
-
lptmr_prescaler_glitch_value_t value
Prescaler or glitch filter value
-
lptmr_timer_mode_t timerMode
LPUART: Low Power Universal Asynchronous Receiver/Transmitter Driver
LPUART Driver
-
static inline void LPUART_SoftwareReset(LPUART_Type *base)
Resets the LPUART using software.
This function resets all internal logic and registers except the Global Register. Remains set until cleared by software.
- Parameters:
base – LPUART peripheral base address.
-
status_t LPUART_Init(LPUART_Type *base, const lpuart_config_t *config, uint32_t srcClock_Hz)
Initializes an LPUART instance with the user configuration structure and the peripheral clock.
This function configures the LPUART module with user-defined settings. Call the LPUART_GetDefaultConfig() function to configure the configuration structure and get the default configuration. The example below shows how to use this API to configure the LPUART.
lpuart_config_t lpuartConfig; lpuartConfig.baudRate_Bps = 115200U; lpuartConfig.parityMode = kLPUART_ParityDisabled; lpuartConfig.dataBitsCount = kLPUART_EightDataBits; lpuartConfig.isMsb = false; lpuartConfig.stopBitCount = kLPUART_OneStopBit; lpuartConfig.txFifoWatermark = 0; lpuartConfig.rxFifoWatermark = 1; LPUART_Init(LPUART1, &lpuartConfig, 20000000U);
- Parameters:
base – LPUART peripheral base address.
config – Pointer to a user-defined configuration structure.
srcClock_Hz – LPUART clock source frequency in HZ.
- Return values:
kStatus_LPUART_BaudrateNotSupport – Baudrate is not support in current clock source.
kStatus_Success – LPUART initialize succeed
-
void LPUART_Deinit(LPUART_Type *base)
Deinitializes a LPUART instance.
This function waits for transmit to complete, disables TX and RX, and disables the LPUART clock.
- Parameters:
base – LPUART peripheral base address.
-
void LPUART_GetDefaultConfig(lpuart_config_t *config)
Gets the default configuration structure.
This function initializes the LPUART configuration structure to a default value. The default values are: lpuartConfig->baudRate_Bps = 115200U; lpuartConfig->parityMode = kLPUART_ParityDisabled; lpuartConfig->dataBitsCount = kLPUART_EightDataBits; lpuartConfig->isMsb = false; lpuartConfig->stopBitCount = kLPUART_OneStopBit; lpuartConfig->txFifoWatermark = 0; lpuartConfig->rxFifoWatermark = 1; lpuartConfig->rxIdleType = kLPUART_IdleTypeStartBit; lpuartConfig->rxIdleConfig = kLPUART_IdleCharacter1; lpuartConfig->enableTx = false; lpuartConfig->enableRx = false;
- Parameters:
config – Pointer to a configuration structure.
-
status_t LPUART_SetBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the LPUART instance baudrate.
This function configures the LPUART module baudrate. This function is used to update the LPUART module baudrate after the LPUART module is initialized by the LPUART_Init.
LPUART_SetBaudRate(LPUART1, 115200U, 20000000U);
- Parameters:
base – LPUART peripheral base address.
baudRate_Bps – LPUART baudrate to be set.
srcClock_Hz – LPUART clock source frequency in HZ.
- Return values:
kStatus_LPUART_BaudrateNotSupport – Baudrate is not supported in the current clock source.
kStatus_Success – Set baudrate succeeded.
-
void LPUART_Enable9bitMode(LPUART_Type *base, bool enable)
Enable 9-bit data mode for LPUART.
This function set the 9-bit mode for LPUART module. The 9th bit is not used for parity thus can be modified by user.
- Parameters:
base – LPUART peripheral base address.
enable – true to enable, flase to disable.
-
static inline void LPUART_SetMatchAddress(LPUART_Type *base, uint16_t address1, uint16_t address2)
Set the LPUART address.
This function configures the address for LPUART module that works as slave in 9-bit data mode. One or two address fields can be configured. When the address field’s match enable bit is set, the frame it receices with MSB being 1 is considered as an address frame, otherwise it is considered as data frame. Once the address frame matches one of slave’s own addresses, this slave is addressed. This address frame and its following data frames are stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave, just send an address frame with unmatched address.
Note
Any LPUART instance joined in the multi-slave system can work as slave. The position of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit data formats.
- Parameters:
base – LPUART peripheral base address.
address1 – LPUART slave address1.
address2 – LPUART slave address2.
-
static inline void LPUART_EnableMatchAddress(LPUART_Type *base, bool match1, bool match2)
Enable the LPUART match address feature.
- Parameters:
base – LPUART peripheral base address.
match1 – true to enable match address1, false to disable.
match2 – true to enable match address2, false to disable.
-
static inline void LPUART_SetRxFifoWatermark(LPUART_Type *base, uint8_t water)
Sets the rx FIFO watermark.
- Parameters:
base – LPUART peripheral base address.
water – Rx FIFO watermark.
-
static inline void LPUART_SetTxFifoWatermark(LPUART_Type *base, uint8_t water)
Sets the tx FIFO watermark.
- Parameters:
base – LPUART peripheral base address.
water – Tx FIFO watermark.
-
static inline void LPUART_TransferEnable16Bit(lpuart_handle_t *handle, bool enable)
Sets the LPUART using 16bit transmit, only for 9bit or 10bit mode.
This function Enable 16bit Data transmit in lpuart_handle_t.
- Parameters:
handle – LPUART handle pointer.
enable – true to enable, false to disable.
-
uint32_t LPUART_GetStatusFlags(LPUART_Type *base)
Gets LPUART status flags.
This function gets all LPUART status flags. The flags are returned as the logical OR value of the enumerators _lpuart_flags. To check for a specific status, compare the return value with enumerators in the _lpuart_flags. For example, to check whether the TX is empty:
if (kLPUART_TxDataRegEmptyFlag & LPUART_GetStatusFlags(LPUART1)) { ... }
- Parameters:
base – LPUART peripheral base address.
- Returns:
LPUART status flags which are ORed by the enumerators in the _lpuart_flags.
-
status_t LPUART_ClearStatusFlags(LPUART_Type *base, uint32_t mask)
Clears status flags with a provided mask.
This function clears LPUART status flags with a provided mask. Automatically cleared flags can’t be cleared by this function. Flags that can only cleared or set by hardware are: kLPUART_TxDataRegEmptyFlag, kLPUART_TransmissionCompleteFlag, kLPUART_RxDataRegFullFlag, kLPUART_RxActiveFlag, kLPUART_NoiseErrorFlag, kLPUART_ParityErrorFlag, kLPUART_TxFifoEmptyFlag,kLPUART_RxFifoEmptyFlag Note: This API should be called when the Tx/Rx is idle, otherwise it takes no effects.
- Parameters:
base – LPUART peripheral base address.
mask – the status flags to be cleared. The user can use the enumerators in the _lpuart_status_flag_t to do the OR operation and get the mask.
- Return values:
kStatus_LPUART_FlagCannotClearManually – The flag can’t be cleared by this function but it is cleared automatically by hardware.
kStatus_Success – Status in the mask are cleared.
- Returns:
0 succeed, others failed.
-
void LPUART_EnableInterrupts(LPUART_Type *base, uint32_t mask)
Enables LPUART interrupts according to a provided mask.
This function enables the LPUART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See the _lpuart_interrupt_enable. This examples shows how to enable TX empty interrupt and RX full interrupt:
LPUART_EnableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);
- Parameters:
base – LPUART peripheral base address.
mask – The interrupts to enable. Logical OR of _lpuart_interrupt_enable.
-
void LPUART_DisableInterrupts(LPUART_Type *base, uint32_t mask)
Disables LPUART interrupts according to a provided mask.
This function disables the LPUART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See _lpuart_interrupt_enable. This example shows how to disable the TX empty interrupt and RX full interrupt:
LPUART_DisableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);
- Parameters:
base – LPUART peripheral base address.
mask – The interrupts to disable. Logical OR of _lpuart_interrupt_enable.
-
uint32_t LPUART_GetEnabledInterrupts(LPUART_Type *base)
Gets enabled LPUART interrupts.
This function gets the enabled LPUART interrupts. The enabled interrupts are returned as the logical OR value of the enumerators _lpuart_interrupt_enable. To check a specific interrupt enable status, compare the return value with enumerators in _lpuart_interrupt_enable. For example, to check whether the TX empty interrupt is enabled:
uint32_t enabledInterrupts = LPUART_GetEnabledInterrupts(LPUART1); if (kLPUART_TxDataRegEmptyInterruptEnable & enabledInterrupts) { ... }
- Parameters:
base – LPUART peripheral base address.
- Returns:
LPUART interrupt flags which are logical OR of the enumerators in _lpuart_interrupt_enable.
-
static inline uintptr_t LPUART_GetDataRegisterAddress(LPUART_Type *base)
Gets the LPUART data register address.
This function returns the LPUART data register address, which is mainly used by the DMA/eDMA.
- Parameters:
base – LPUART peripheral base address.
- Returns:
LPUART data register addresses which are used both by the transmitter and receiver.
-
static inline void LPUART_EnableTxDMA(LPUART_Type *base, bool enable)
Enables or disables the LPUART transmitter DMA request.
This function enables or disables the transmit data register empty flag, STAT[TDRE], to generate DMA requests.
- Parameters:
base – LPUART peripheral base address.
enable – True to enable, false to disable.
-
static inline void LPUART_EnableRxDMA(LPUART_Type *base, bool enable)
Enables or disables the LPUART receiver DMA.
This function enables or disables the receiver data register full flag, STAT[RDRF], to generate DMA requests.
- Parameters:
base – LPUART peripheral base address.
enable – True to enable, false to disable.
-
uint32_t LPUART_GetInstance(LPUART_Type *base)
Get the LPUART instance from peripheral base address.
- Parameters:
base – LPUART peripheral base address.
- Returns:
LPUART instance.
-
static inline void LPUART_EnableTx(LPUART_Type *base, bool enable)
Enables or disables the LPUART transmitter.
This function enables or disables the LPUART transmitter.
- Parameters:
base – LPUART peripheral base address.
enable – True to enable, false to disable.
-
static inline void LPUART_EnableRx(LPUART_Type *base, bool enable)
Enables or disables the LPUART receiver.
This function enables or disables the LPUART receiver.
- Parameters:
base – LPUART peripheral base address.
enable – True to enable, false to disable.
-
static inline void LPUART_WriteByte(LPUART_Type *base, uint8_t data)
Writes to the transmitter register.
This function writes data to the transmitter register directly. The upper layer must ensure that the TX register is empty or that the TX FIFO has room before calling this function.
- Parameters:
base – LPUART peripheral base address.
data – Data write to the TX register.
-
static inline uint8_t LPUART_ReadByte(LPUART_Type *base)
Reads the receiver register.
This function reads data from the receiver register directly. The upper layer must ensure that the receiver register is full or that the RX FIFO has data before calling this function.
- Parameters:
base – LPUART peripheral base address.
- Returns:
Data read from data register.
-
static inline uint8_t LPUART_GetRxFifoCount(LPUART_Type *base)
Gets the rx FIFO data count.
- Parameters:
base – LPUART peripheral base address.
- Returns:
rx FIFO data count.
-
static inline uint8_t LPUART_GetTxFifoCount(LPUART_Type *base)
Gets the tx FIFO data count.
- Parameters:
base – LPUART peripheral base address.
- Returns:
tx FIFO data count.
-
void LPUART_SendAddress(LPUART_Type *base, uint8_t address)
Transmit an address frame in 9-bit data mode.
- Parameters:
base – LPUART peripheral base address.
address – LPUART slave address.
-
status_t LPUART_WriteBlocking(LPUART_Type *base, const uint8_t *data, size_t length)
Writes to the transmitter register using a blocking method.
This function polls the transmitter register, first waits for the register to be empty or TX FIFO to have room, and writes data to the transmitter buffer, then waits for the dat to be sent out to the bus.
- Parameters:
base – LPUART peripheral base address.
data – Start address of the data to write.
length – Size of the data to write.
- Return values:
kStatus_LPUART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully wrote all data.
-
status_t LPUART_WriteBlocking16bit(LPUART_Type *base, const uint16_t *data, size_t length)
Writes to the transmitter register using a blocking method in 9bit or 10bit mode.
Note
This function only support 9bit or 10bit transfer. Please make sure only 10bit of data is valid and other bits are 0.
- Parameters:
base – LPUART peripheral base address.
data – Start address of the data to write.
length – Size of the data to write.
- Return values:
kStatus_LPUART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully wrote all data.
-
status_t LPUART_ReadBlocking(LPUART_Type *base, uint8_t *data, size_t length)
Reads the receiver data register using a blocking method.
This function polls the receiver register, waits for the receiver register full or receiver FIFO has data, and reads data from the TX register.
- Parameters:
base – LPUART peripheral base address.
data – Start address of the buffer to store the received data.
length – Size of the buffer.
- Return values:
kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened while receiving data.
kStatus_LPUART_NoiseError – Noise error happened while receiving data.
kStatus_LPUART_FramingError – Framing error happened while receiving data.
kStatus_LPUART_ParityError – Parity error happened while receiving data.
kStatus_LPUART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully received all data.
-
status_t LPUART_ReadBlocking16bit(LPUART_Type *base, uint16_t *data, size_t length)
Reads the receiver data register in 9bit or 10bit mode.
Note
This function only support 9bit or 10bit transfer.
- Parameters:
base – LPUART peripheral base address.
data – Start address of the buffer to store the received data by 16bit, only 10bit is valid.
length – Size of the buffer.
- Return values:
kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened while receiving data.
kStatus_LPUART_NoiseError – Noise error happened while receiving data.
kStatus_LPUART_FramingError – Framing error happened while receiving data.
kStatus_LPUART_ParityError – Parity error happened while receiving data.
kStatus_LPUART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully received all data.
-
void LPUART_TransferCreateHandle(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_callback_t callback, void *userData)
Initializes the LPUART handle.
This function initializes the LPUART handle, which can be used for other LPUART transactional APIs. Usually, for a specified LPUART instance, call this API once to get the initialized handle.
The LPUART driver supports the “background” receiving, which means that user can set up an RX ring buffer optionally. Data received is stored into the ring buffer even when the user doesn’t call the LPUART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly. The ring buffer is disabled if passing NULL as
ringBuffer
.- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
callback – Callback function.
userData – User data.
-
status_t LPUART_TransferSendNonBlocking(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_t *xfer)
Transmits a buffer of data using the interrupt method.
This function send data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data written to the transmitter register. When all data is written to the TX register in the ISR, the LPUART driver calls the callback function and passes the kStatus_LPUART_TxIdle as status parameter.
Note
The kStatus_LPUART_TxIdle is passed to the upper layer when all data are written to the TX register. However, there is no check to ensure that all the data sent out. Before disabling the TX, check the kLPUART_TransmissionCompleteFlag to ensure that the transmit is finished.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
xfer – LPUART transfer structure, see lpuart_transfer_t.
- Return values:
kStatus_Success – Successfully start the data transmission.
kStatus_LPUART_TxBusy – Previous transmission still not finished, data not all written to the TX register.
kStatus_InvalidArgument – Invalid argument.
-
void LPUART_TransferStartRingBuffer(LPUART_Type *base, lpuart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)
Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific UART handle.
When the RX ring buffer is used, data received is stored into the ring buffer even when the user doesn’t call the UART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly.
Note
When using RX ring buffer, one byte is reserved for internal use. In other words, if
ringBufferSize
is 32, then only 31 bytes are used for saving data.- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
ringBuffer – Start address of ring buffer for background receiving. Pass NULL to disable the ring buffer.
ringBufferSize – size of the ring buffer.
-
void LPUART_TransferStopRingBuffer(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.
This function aborts the background transfer and uninstalls the ring buffer.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
-
size_t LPUART_TransferGetRxRingBufferLength(LPUART_Type *base, lpuart_handle_t *handle)
Get the length of received data in RX ring buffer.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
- Returns:
Length of received data in RX ring buffer.
-
void LPUART_TransferAbortSend(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the interrupt-driven data transmit.
This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out how many bytes are not sent out.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
-
status_t LPUART_TransferGetSendCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)
Gets the number of bytes that have been sent out to bus.
This function gets the number of bytes that have been sent out to bus by an interrupt method.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
count – Send bytes count.
- Return values:
kStatus_NoTransferInProgress – No send in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
status_t LPUART_TransferReceiveNonBlocking(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_t *xfer, size_t *receivedBytes)
Receives a buffer of data using the interrupt method.
This function receives data using an interrupt method. This is a non-blocking function which returns without waiting to ensure that all data are received. If the RX ring buffer is used and not empty, the data in the ring buffer is copied and the parameter
receivedBytes
shows how many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is not enough for read, the receive request is saved by the LPUART driver. When the new data arrives, the receive request is serviced first. When all data is received, the LPUART driver notifies the upper layer through a callback function and passes a status parameter kStatus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in ring buffer. The 5 bytes are copied to xfer->data, which returns with the parameterreceivedBytes
set to 5. For the remaining 5 bytes, the newly arrived data is saved from xfer->data[5]. When 5 bytes are received, the LPUART driver notifies the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to xfer->data. When all data is received, the upper layer is notified.- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
xfer – LPUART transfer structure, see uart_transfer_t.
receivedBytes – Bytes received from the ring buffer directly.
- Return values:
kStatus_Success – Successfully queue the transfer into the transmit queue.
kStatus_LPUART_RxBusy – Previous receive request is not finished.
kStatus_InvalidArgument – Invalid argument.
-
void LPUART_TransferAbortReceive(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the interrupt-driven data receiving.
This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out how many bytes not received yet.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
-
status_t LPUART_TransferGetReceiveCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)
Gets the number of bytes that have been received.
This function gets the number of bytes that have been received.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
count – Receive bytes count.
- Return values:
kStatus_NoTransferInProgress – No receive in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
void LPUART_TransferHandleIRQ(LPUART_Type *base, void *irqHandle)
LPUART IRQ handle function.
This function handles the LPUART transmit and receive IRQ request.
- Parameters:
base – LPUART peripheral base address.
irqHandle – LPUART handle pointer.
-
void LPUART_TransferHandleErrorIRQ(LPUART_Type *base, void *irqHandle)
LPUART Error IRQ handle function.
This function handles the LPUART error IRQ request.
- Parameters:
base – LPUART peripheral base address.
irqHandle – LPUART handle pointer.
-
FSL_LPUART_DRIVER_VERSION
LPUART driver version.
Error codes for the LPUART driver.
Values:
-
enumerator kStatus_LPUART_TxBusy
TX busy
-
enumerator kStatus_LPUART_RxBusy
RX busy
-
enumerator kStatus_LPUART_TxIdle
LPUART transmitter is idle.
-
enumerator kStatus_LPUART_RxIdle
LPUART receiver is idle.
-
enumerator kStatus_LPUART_TxWatermarkTooLarge
TX FIFO watermark too large
-
enumerator kStatus_LPUART_RxWatermarkTooLarge
RX FIFO watermark too large
-
enumerator kStatus_LPUART_FlagCannotClearManually
Some flag can’t manually clear
-
enumerator kStatus_LPUART_Error
Error happens on LPUART.
-
enumerator kStatus_LPUART_RxRingBufferOverrun
LPUART RX software ring buffer overrun.
-
enumerator kStatus_LPUART_RxHardwareOverrun
LPUART RX receiver overrun.
-
enumerator kStatus_LPUART_NoiseError
LPUART noise error.
-
enumerator kStatus_LPUART_FramingError
LPUART framing error.
-
enumerator kStatus_LPUART_ParityError
LPUART parity error.
-
enumerator kStatus_LPUART_BaudrateNotSupport
Baudrate is not support in current clock source
-
enumerator kStatus_LPUART_IdleLineDetected
IDLE flag.
-
enumerator kStatus_LPUART_Timeout
LPUART times out.
-
enumerator kStatus_LPUART_TxBusy
-
enum _lpuart_parity_mode
LPUART parity mode.
Values:
-
enumerator kLPUART_ParityDisabled
Parity disabled
-
enumerator kLPUART_ParityEven
Parity enabled, type even, bit setting: PE|PT = 10
-
enumerator kLPUART_ParityOdd
Parity enabled, type odd, bit setting: PE|PT = 11
-
enumerator kLPUART_ParityDisabled
-
enum _lpuart_data_bits
LPUART data bits count.
Values:
-
enumerator kLPUART_EightDataBits
Eight data bit
-
enumerator kLPUART_SevenDataBits
Seven data bit
-
enumerator kLPUART_EightDataBits
-
enum _lpuart_stop_bit_count
LPUART stop bit count.
Values:
-
enumerator kLPUART_OneStopBit
One stop bit
-
enumerator kLPUART_TwoStopBit
Two stop bits
-
enumerator kLPUART_OneStopBit
-
enum _lpuart_transmit_cts_source
LPUART transmit CTS source.
Values:
-
enumerator kLPUART_CtsSourcePin
CTS resource is the LPUART_CTS pin.
-
enumerator kLPUART_CtsSourceMatchResult
CTS resource is the match result.
-
enumerator kLPUART_CtsSourcePin
-
enum _lpuart_transmit_cts_config
LPUART transmit CTS configure.
Values:
-
enumerator kLPUART_CtsSampleAtStart
CTS input is sampled at the start of each character.
-
enumerator kLPUART_CtsSampleAtIdle
CTS input is sampled when the transmitter is idle
-
enumerator kLPUART_CtsSampleAtStart
-
enum _lpuart_idle_type_select
LPUART idle flag type defines when the receiver starts counting.
Values:
-
enumerator kLPUART_IdleTypeStartBit
Start counting after a valid start bit.
-
enumerator kLPUART_IdleTypeStopBit
Start counting after a stop bit.
-
enumerator kLPUART_IdleTypeStartBit
-
enum _lpuart_idle_config
LPUART idle detected configuration. This structure defines the number of idle characters that must be received before the IDLE flag is set.
Values:
-
enumerator kLPUART_IdleCharacter1
the number of idle characters.
-
enumerator kLPUART_IdleCharacter2
the number of idle characters.
-
enumerator kLPUART_IdleCharacter4
the number of idle characters.
-
enumerator kLPUART_IdleCharacter8
the number of idle characters.
-
enumerator kLPUART_IdleCharacter16
the number of idle characters.
-
enumerator kLPUART_IdleCharacter32
the number of idle characters.
-
enumerator kLPUART_IdleCharacter64
the number of idle characters.
-
enumerator kLPUART_IdleCharacter128
the number of idle characters.
-
enumerator kLPUART_IdleCharacter1
-
enum _lpuart_interrupt_enable
LPUART interrupt configuration structure, default settings all disabled.
This structure contains the settings for all LPUART interrupt configurations.
Values:
-
enumerator kLPUART_LinBreakInterruptEnable
LIN break detect. bit 7
-
enumerator kLPUART_RxActiveEdgeInterruptEnable
Receive Active Edge. bit 6
-
enumerator kLPUART_TxDataRegEmptyInterruptEnable
Transmit data register empty. bit 23
-
enumerator kLPUART_TransmissionCompleteInterruptEnable
Transmission complete. bit 22
-
enumerator kLPUART_RxDataRegFullInterruptEnable
Receiver data register full. bit 21
-
enumerator kLPUART_IdleLineInterruptEnable
Idle line. bit 20
-
enumerator kLPUART_RxOverrunInterruptEnable
Receiver Overrun. bit 27
-
enumerator kLPUART_NoiseErrorInterruptEnable
Noise error flag. bit 26
-
enumerator kLPUART_FramingErrorInterruptEnable
Framing error flag. bit 25
-
enumerator kLPUART_ParityErrorInterruptEnable
Parity error flag. bit 24
-
enumerator kLPUART_Match1InterruptEnable
Parity error flag. bit 15
-
enumerator kLPUART_Match2InterruptEnable
Parity error flag. bit 14
-
enumerator kLPUART_TxFifoOverflowInterruptEnable
Transmit FIFO Overflow. bit 9
-
enumerator kLPUART_RxFifoUnderflowInterruptEnable
Receive FIFO Underflow. bit 8
-
enumerator kLPUART_AllInterruptEnable
-
enumerator kLPUART_LinBreakInterruptEnable
-
enum _lpuart_flags
LPUART status flags.
This provides constants for the LPUART status flags for use in the LPUART functions.
Values:
-
enumerator kLPUART_TxDataRegEmptyFlag
Transmit data register empty flag, sets when transmit buffer is empty. bit 23
-
enumerator kLPUART_TransmissionCompleteFlag
Transmission complete flag, sets when transmission activity complete. bit 22
-
enumerator kLPUART_RxDataRegFullFlag
Receive data register full flag, sets when the receive data buffer is full. bit 21
-
enumerator kLPUART_IdleLineFlag
Idle line detect flag, sets when idle line detected. bit 20
-
enumerator kLPUART_RxOverrunFlag
Receive Overrun, sets when new data is received before data is read from receive register. bit 19
-
enumerator kLPUART_NoiseErrorFlag
Receive takes 3 samples of each received bit. If any of these samples differ, noise flag sets. bit 18
-
enumerator kLPUART_FramingErrorFlag
Frame error flag, sets if logic 0 was detected where stop bit expected. bit 17
-
enumerator kLPUART_ParityErrorFlag
If parity enabled, sets upon parity error detection. bit 16
-
enumerator kLPUART_LinBreakFlag
LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit enabled. bit 31
-
enumerator kLPUART_RxActiveEdgeFlag
Receive pin active edge interrupt flag, sets when active edge detected. bit 30
-
enumerator kLPUART_RxActiveFlag
Receiver Active Flag (RAF), sets at beginning of valid start. bit 24
-
enumerator kLPUART_DataMatch1Flag
The next character to be read from LPUART_DATA matches MA1. bit 15
-
enumerator kLPUART_DataMatch2Flag
The next character to be read from LPUART_DATA matches MA2. bit 14
-
enumerator kLPUART_TxFifoEmptyFlag
TXEMPT bit, sets if transmit buffer is empty. bit 7
-
enumerator kLPUART_RxFifoEmptyFlag
RXEMPT bit, sets if receive buffer is empty. bit 6
-
enumerator kLPUART_TxFifoOverflowFlag
TXOF bit, sets if transmit buffer overflow occurred. bit 1
-
enumerator kLPUART_RxFifoUnderflowFlag
RXUF bit, sets if receive buffer underflow occurred. bit 0
-
enumerator kLPUART_AllClearFlags
-
enumerator kLPUART_AllFlags
-
enumerator kLPUART_TxDataRegEmptyFlag
-
typedef enum _lpuart_parity_mode lpuart_parity_mode_t
LPUART parity mode.
-
typedef enum _lpuart_data_bits lpuart_data_bits_t
LPUART data bits count.
-
typedef enum _lpuart_stop_bit_count lpuart_stop_bit_count_t
LPUART stop bit count.
-
typedef enum _lpuart_transmit_cts_source lpuart_transmit_cts_source_t
LPUART transmit CTS source.
-
typedef enum _lpuart_transmit_cts_config lpuart_transmit_cts_config_t
LPUART transmit CTS configure.
-
typedef enum _lpuart_idle_type_select lpuart_idle_type_select_t
LPUART idle flag type defines when the receiver starts counting.
-
typedef enum _lpuart_idle_config lpuart_idle_config_t
LPUART idle detected configuration. This structure defines the number of idle characters that must be received before the IDLE flag is set.
-
typedef struct _lpuart_config lpuart_config_t
LPUART configuration structure.
-
typedef struct _lpuart_transfer lpuart_transfer_t
LPUART transfer structure.
-
typedef struct _lpuart_handle lpuart_handle_t
-
typedef void (*lpuart_transfer_callback_t)(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *userData)
LPUART transfer callback function.
-
typedef void (*lpuart_isr_t)(LPUART_Type *base, void *handle)
-
void *s_lpuartHandle[]
-
const IRQn_Type s_lpuartTxIRQ[]
-
lpuart_isr_t s_lpuartIsr[]
-
UART_RETRY_TIMES
Retry times for waiting flag.
-
struct _lpuart_config
- #include <fsl_lpuart.h>
LPUART configuration structure.
Public Members
-
uint32_t baudRate_Bps
LPUART baud rate
-
lpuart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd
-
lpuart_data_bits_t dataBitsCount
Data bits count, eight (default), seven
-
bool isMsb
Data bits order, LSB (default), MSB
-
lpuart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits
-
uint8_t txFifoWatermark
TX FIFO watermark
-
uint8_t rxFifoWatermark
RX FIFO watermark
-
bool enableRxRTS
RX RTS enable
-
bool enableTxCTS
TX CTS enable
-
lpuart_transmit_cts_source_t txCtsSource
TX CTS source
-
lpuart_transmit_cts_config_t txCtsConfig
TX CTS configure
-
lpuart_idle_type_select_t rxIdleType
RX IDLE type.
-
lpuart_idle_config_t rxIdleConfig
RX IDLE configuration.
-
bool enableTx
Enable TX
-
bool enableRx
Enable RX
-
uint32_t baudRate_Bps
-
struct _lpuart_transfer
- #include <fsl_lpuart.h>
LPUART transfer structure.
Public Members
-
size_t dataSize
The byte count to be transfer.
-
size_t dataSize
-
struct _lpuart_handle
- #include <fsl_lpuart.h>
LPUART handle structure.
Public Members
-
volatile size_t txDataSize
Size of the remaining data to send.
-
size_t txDataSizeAll
Size of the data to send out.
-
volatile size_t rxDataSize
Size of the remaining data to receive.
-
size_t rxDataSizeAll
Size of the data to receive.
-
size_t rxRingBufferSize
Size of the ring buffer.
-
volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.
-
volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.
-
lpuart_transfer_callback_t callback
Callback function.
-
void *userData
LPUART callback function parameter.
-
volatile uint8_t txState
TX transfer state.
-
volatile uint8_t rxState
RX transfer state.
-
bool isSevenDataBits
Seven data bits flag.
-
bool is16bitData
16bit data bits flag, only used for 9bit or 10bit data
-
volatile size_t txDataSize
-
union __unnamed67__
Public Members
-
uint8_t *data
The buffer of data to be transfer.
-
uint8_t *rxData
The buffer to receive data.
-
uint16_t *rxData16
The buffer to receive data.
-
const uint8_t *txData
The buffer of data to be sent.
-
const uint16_t *txData16
The buffer of data to be sent.
-
uint8_t *data
-
union __unnamed69__
Public Members
-
const uint8_t *volatile txData
Address of remaining data to send.
-
const uint16_t *volatile txData16
Address of remaining data to send.
-
const uint8_t *volatile txData
-
union __unnamed71__
Public Members
-
uint8_t *volatile rxData
Address of remaining data to receive.
-
uint16_t *volatile rxData16
Address of remaining data to receive.
-
uint8_t *volatile rxData
-
union __unnamed73__
Public Members
-
uint8_t *rxRingBuffer
Start address of the receiver ring buffer.
-
uint16_t *rxRingBuffer16
Start address of the receiver ring buffer.
-
uint8_t *rxRingBuffer
LPUART eDMA Driver
-
void LPUART_TransferCreateHandleEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle, lpuart_edma_transfer_callback_t callback, void *userData, edma_handle_t *txEdmaHandle, edma_handle_t *rxEdmaHandle)
Initializes the LPUART handle which is used in transactional functions.
Note
This function disables all LPUART interrupts.
- Parameters:
base – LPUART peripheral base address.
handle – Pointer to lpuart_edma_handle_t structure.
callback – Callback function.
userData – User data.
txEdmaHandle – User requested DMA handle for TX DMA transfer.
rxEdmaHandle – User requested DMA handle for RX DMA transfer.
-
status_t LPUART_SendEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle, lpuart_transfer_t *xfer)
Sends data using eDMA.
This function sends data using eDMA. This is a non-blocking function, which returns right away. When all data is sent, the send callback function is called.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
xfer – LPUART eDMA transfer structure. See lpuart_transfer_t.
- Return values:
kStatus_Success – if succeed, others failed.
kStatus_LPUART_TxBusy – Previous transfer on going.
kStatus_InvalidArgument – Invalid argument.
-
status_t LPUART_ReceiveEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle, lpuart_transfer_t *xfer)
Receives data using eDMA.
This function receives data using eDMA. This is non-blocking function, which returns right away. When all data is received, the receive callback function is called.
- Parameters:
base – LPUART peripheral base address.
handle – Pointer to lpuart_edma_handle_t structure.
xfer – LPUART eDMA transfer structure, see lpuart_transfer_t.
- Return values:
kStatus_Success – if succeed, others fail.
kStatus_LPUART_RxBusy – Previous transfer ongoing.
kStatus_InvalidArgument – Invalid argument.
-
void LPUART_TransferAbortSendEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle)
Aborts the sent data using eDMA.
This function aborts the sent data using eDMA.
- Parameters:
base – LPUART peripheral base address.
handle – Pointer to lpuart_edma_handle_t structure.
-
void LPUART_TransferAbortReceiveEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle)
Aborts the received data using eDMA.
This function aborts the received data using eDMA.
- Parameters:
base – LPUART peripheral base address.
handle – Pointer to lpuart_edma_handle_t structure.
-
status_t LPUART_TransferGetSendCountEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle, uint32_t *count)
Gets the number of bytes written to the LPUART TX register.
This function gets the number of bytes written to the LPUART TX register by DMA.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
count – Send bytes count.
- Return values:
kStatus_NoTransferInProgress – No send in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
status_t LPUART_TransferGetReceiveCountEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle, uint32_t *count)
Gets the number of received bytes.
This function gets the number of received bytes.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
count – Receive bytes count.
- Return values:
kStatus_NoTransferInProgress – No receive in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
void LPUART_TransferEdmaHandleIRQ(LPUART_Type *base, void *lpuartEdmaHandle)
LPUART eDMA IRQ handle function.
This function handles the LPUART tx complete IRQ request and invoke user callback. It is not set to static so that it can be used in user application.
Note
This function is used as default IRQ handler by double weak mechanism. If user’s specific IRQ handler is implemented, make sure this function is invoked in the handler.
- Parameters:
base – LPUART peripheral base address.
lpuartEdmaHandle – LPUART handle pointer.
-
FSL_LPUART_EDMA_DRIVER_VERSION
LPUART EDMA driver version.
-
typedef struct _lpuart_edma_handle lpuart_edma_handle_t
-
typedef void (*lpuart_edma_transfer_callback_t)(LPUART_Type *base, lpuart_edma_handle_t *handle, status_t status, void *userData)
LPUART transfer callback function.
-
struct _lpuart_edma_handle
- #include <fsl_lpuart_edma.h>
LPUART eDMA handle.
Public Members
-
lpuart_edma_transfer_callback_t callback
Callback function.
-
void *userData
LPUART callback function parameter.
-
size_t rxDataSizeAll
Size of the data to receive.
-
size_t txDataSizeAll
Size of the data to send out.
-
edma_handle_t *txEdmaHandle
The eDMA TX channel used.
-
edma_handle_t *rxEdmaHandle
The eDMA RX channel used.
-
uint8_t nbytes
eDMA minor byte transfer count initially configured.
-
volatile uint8_t txState
TX transfer state.
-
volatile uint8_t rxState
RX transfer state
-
lpuart_edma_transfer_callback_t callback
MCX_CMC: Core Mode Controller Driver
-
enum _cmc_power_mode_protection
CMC power mode Protection enumeration.
Values:
-
enumerator kCMC_AllowDeepSleepMode
Allow Deep Sleep mode.
-
enumerator kCMC_AllowPowerDownMode
Allow Power Down mode.
-
enumerator kCMC_AllowDeepPowerDownMode
Allow Deep Power Down mode.
-
enumerator kCMC_AllowAllLowPowerModes
Allow Deep Sleep, Power Down, Deep Power Down modes.
-
enumerator kCMC_AllowDeepSleepMode
-
enum _cmc_wakeup_sources
Wake up sources from the previous low power mode entry.
Note
kCMC_WakeupFromUsbFs, kCMC_WakeupFromITRC, kCMC_WakeupFromCpu1 are not supported in MCXA family.
Values:
-
enumerator kCMC_WakeupFromResetInterruptOrPowerDown
Wakeup source is reset interrupt, or wake up from Deep Power Down.
-
enumerator kCMC_WakeupFromDebugReuqest
Wakeup source is debug request.
-
enumerator kCMC_WakeupFromInterrupt
Wakeup source is interrupt.
-
enumerator kCMC_WakeupFromDMAWakeup
Wakeup source is DMA Wakeup.
-
enumerator kCMC_WakeupFromWUURequest
Wakeup source is WUU request.
-
enumerator kCMC_WakeupFromUsbFs
Wakeup source is USBFS(USB0).
-
enumerator kCMC_WakeupFromITRC
Wakeup source is ITRC.
-
enumerator kCMC_WakeupFromCpu1
Wakeup source is CPU1.
-
enumerator kCMC_WakeupFromResetInterruptOrPowerDown
-
enum _cmc_system_reset_interrupt_enable
System Reset Interrupt enable enumeration.
Values:
-
enumerator kCMC_PinResetInterruptEnable
Pin Reset interrupt enable.
-
enumerator kCMC_DAPResetInterruptEnable
DAP Reset interrupt enable.
-
enumerator kCMC_LowPowerAcknowledgeTimeoutResetInterruptEnable
Low Power Acknowledge Timeout Reset interrupt enable.
-
enumerator kCMC_WindowedWatchdog0ResetInterruptEnable
Windowed Watchdog 0 reset interrupt enable.
-
enumerator kCMC_SoftwareResetInterruptEnable
Software Reset interrupt enable.
-
enumerator kCMC_LockupResetInterruptEnable
Lockup Reset interrupt enable.
-
enumerator kCMC_CodeWatchDog0ResetInterruptEnable
Code watchdog 0 reset interrupt enable.
-
enumerator kCMC_PinResetInterruptEnable
-
enum _cmc_system_reset_interrupt_flag
CMC System Reset Interrupt Status flag.
Values:
-
enumerator kCMC_PinResetInterruptFlag
Pin Reset interrupt flag.
-
enumerator kCMC_DAPResetInterruptFlag
DAP Reset interrupt flag.
-
enumerator kCMC_LowPowerAcknowledgeTimeoutResetFlag
Low Power Acknowledge Timeout Reset interrupt flag.
-
enumerator kCMC_WindowedWatchdog0ResetInterruptFlag
Windowned Watchdog 0 Reset interrupt flag.
-
enumerator kCMC_SoftwareResetInterruptFlag
Software Reset interrupt flag.
-
enumerator kCMC_LockupResetInterruptFlag
Lock up Reset interrupt flag.
-
enumerator kCMC_CodeWatchdog0ResetInterruptFlag
Code watchdog0 reset interrupt flag.
-
enumerator kCMC_PinResetInterruptFlag
-
enum _cmc_system_sram_arrays
CMC System SRAM arrays low power mode enable enumeration.
Values:
-
enumerator kCMC_RAMX0
Used to control RAMX0.
-
enumerator kCMC_RAMX1
Used to control RAMX1.
-
enumerator kCMC_RAMX2
Used to control RAMX2.
-
enumerator kCMC_RAMB
Used to control RAMB.
-
enumerator kCMC_RAMC0
Used to control RAMC0.
-
enumerator kCMC_RAMC1
Used to control RAMC1.
-
enumerator kCMC_RAMD0
Used to control RAMD0.
-
enumerator kCMC_RAMD1
Used to control RAMD1.
-
enumerator kCMC_RAME0
Used to control RAME0.
-
enumerator kCMC_RAME1
Used to control RAME1.
-
enumerator kCMC_RAMF0
Used to control RAMF0.
-
enumerator kCMC_RAMF1
Used to control RAMF1.
-
enumerator kCMC_RAMG0_RAMG1
Used to control RAMG0 and RAMG1.
-
enumerator kCMC_RAMG2_RAMG3
Used to control RAMG2 and RAMG3.
-
enumerator kCMC_RAMH0_RAMH1
Used to control RAMH0 and RAMH1.
-
enumerator kCMC_LPCAC
Used to control LPCAC.
-
enumerator kCMC_DMA0_DMA1_PKC
Used to control DMA0, DMA1 and PKC.
-
enumerator kCMC_USB0
Used to control USB0.
-
enumerator kCMC_PQ
Used to control PQ.
-
enumerator kCMC_CAN0_CAN1_ENET_USB1
Used to control CAN0, CAN1, ENET, USB1.
-
enumerator kCMC_FlexSPI
Used to control FlexSPI.
-
enumerator kCMC_AllSramArrays
Mask of all System SRAM arrays.
-
enumerator kCMC_RAMX0
-
enum _cmc_system_reset_sources
System reset sources enumeration.
Values:
-
enumerator kCMC_WakeUpReset
The reset caused by a wakeup from Power Down or Deep Power Down mode.
-
enumerator kCMC_PORReset
The reset caused by power on reset detection logic.
-
enumerator kCMC_VDReset
The reset caused by an LVD or HVD.
-
enumerator kCMC_WarmReset
The last reset source is a warm reset source.
-
enumerator kCMC_FatalReset
The last reset source is a fatal reset source.
-
enumerator kCMC_PinReset
The reset caused by the RESET_b pin.
-
enumerator kCMC_DAPReset
The reset caused by a reset request from the Debug Access port.
-
enumerator kCMC_ResetTimeout
The reset caused by a timeout or other error condition in the system reset generation.
-
enumerator kCMC_LowPowerAcknowledgeTimeoutReset
The reset caused by a timeout in low power mode entry logic.
-
enumerator kCMC_SCGReset
The reset caused by a loss of clock or loss of lock event in the SCG.
-
enumerator kCMC_WindowedWatchdog0Reset
The reset caused by the Windowed WatchDog 0 timeout.
-
enumerator kCMC_SoftwareReset
The reset caused by a software reset request.
-
enumerator kCMC_LockUoReset
The reset caused by the ARM core indication of a LOCKUP event.
-
enumerator kCMC_CodeWatchDog0Reset
The reset caused by the code watchdog0 fault.
-
enumerator kCMC_JTAGSystemReset
The reset caused by a JTAG system reset request.
-
enumerator kCMC_WakeUpReset
-
enum _cmc_core_clock_gate_status
Indicate the core clock was gated.
Values:
-
enumerator kCMC_CoreClockNotGated
Core clock not gated.
-
enumerator kCMC_CoreClockGated
Core clock was gated due to low power mode entry.
-
enumerator kCMC_CoreClockNotGated
-
enum _cmc_clock_mode
CMC clock mode enumeration.
Values:
-
enumerator kCMC_GateNoneClock
No clock gating.
-
enumerator kCMC_GateCoreClock
Gate Core clock.
-
enumerator kCMC_GateCorePlatformClock
Gate Core clock and platform clock.
-
enumerator kCMC_GateAllSystemClocks
Gate all System clocks, without getting core entering into low power mode.
-
enumerator kCMC_GateAllSystemClocksEnterLowPowerMode
Gate all System clocks, with core entering into low power mode.
-
enumerator kCMC_GateNoneClock
-
enum _cmc_low_power_mode
CMC power mode enumeration.
Values:
-
enumerator kCMC_ActiveOrSleepMode
Select Active/Sleep mode.
-
enumerator kCMC_DeepSleepMode
Select Deep Sleep mode when a core executes WFI or WFE instruction.
-
enumerator kCMC_PowerDownMode
Select Power Down mode when a core executes WFI or WFE instruction.
-
enumerator kCMC_DeepPowerDown
Select Deep Power Down mode when a core executes WFI or WFE instruction.
-
enumerator kCMC_ActiveOrSleepMode
-
typedef enum _cmc_core_clock_gate_status cmc_core_clock_gate_status_t
Indicate the core clock was gated.
-
typedef enum _cmc_clock_mode cmc_clock_mode_t
CMC clock mode enumeration.
-
typedef enum _cmc_low_power_mode cmc_low_power_mode_t
CMC power mode enumeration.
-
typedef struct _cmc_reset_pin_config cmc_reset_pin_config_t
CMC reset pin configuration.
-
typedef struct _cmc_power_domain_config cmc_power_domain_config_t
power mode configuration for each power domain.
-
FSL_CMC_DRIVER_VERSION
CMC driver version 2.2.3.
-
void CMC_SetClockMode(CMC_Type *base, cmc_clock_mode_t mode)
Sets clock mode.
This function configs the amount of clock gating when the core asserts Sleeping due to WFI, WFE or SLEEPONEXIT.
- Parameters:
base – CMC peripheral base address.
mode – System clock mode.
-
static inline void CMC_LockClockModeSetting(CMC_Type *base)
Locks the clock mode setting.
After invoking this function, any clock mode setting will be blocked.
- Parameters:
base – CMC peripheral base address.
-
static inline cmc_core_clock_gate_status_t CMC_GetCoreClockGatedStatus(CMC_Type *base)
Gets the core clock gated status.
This function get the status to indicate whether the core clock is gated. The core clock gated status can be cleared by software.
- Parameters:
base – CMC peripheral base address.
- Returns:
The status to indicate whether the core clock is gated.
-
static inline void CMC_ClearCoreClockGatedStatus(CMC_Type *base)
Clears the core clock gated status.
This function clear clock status flag by software.
- Parameters:
base – CMC peripheral base address.
-
static inline uint8_t CMC_GetWakeupSource(CMC_Type *base)
Gets the Wakeup Source.
This function gets the Wakeup sources from the previous low power mode entry.
- Parameters:
base – CMC peripheral base address.
- Returns:
The Wakeup sources from the previous low power mode entry. See _cmc_wakeup_sources for details.
-
static inline cmc_clock_mode_t CMC_GetClockMode(CMC_Type *base)
Gets the Clock mode.
This function gets the clock mode of the previous low power mode entry.
- Parameters:
base – CMC peripheral base address.
- Returns:
The Low Power status.
-
static inline uint32_t CMC_GetSystemResetStatus(CMC_Type *base)
Gets the System reset status.
This function returns the system reset status. Those status updates on every MAIN Warm Reset to indicate the type/source of the most recent reset.
- Parameters:
base – CMC peripheral base address.
- Returns:
The most recent system reset status. See _cmc_system_reset_sources for details.
-
static inline uint32_t CMC_GetStickySystemResetStatus(CMC_Type *base)
Gets the sticky system reset status since the last WAKE Cold Reset.
This function gets all source of system reset that have generated a system reset since the last WAKE Cold Reset, and that have not been cleared by software.
- Parameters:
base – CMC peripheral base address.
- Returns:
System reset status that have not been cleared by software. See _cmc_system_reset_sources for details.
-
static inline void CMC_ClearStickySystemResetStatus(CMC_Type *base, uint32_t mask)
Clears the sticky system reset status flags.
- Parameters:
base – CMC peripheral base address.
mask – Bitmap of the sticky system reset status to be cleared.
-
static inline uint8_t CMC_GetResetCount(CMC_Type *base)
Gets the number of reset sequences completed since the last Cold Reset.
- Parameters:
base – CMC peripheral base address.
- Returns:
The number of reset sequences.
-
void CMC_SetPowerModeProtection(CMC_Type *base, uint32_t allowedModes)
Configures all power mode protection settings.
This function configures the power mode protection settings for supported power modes. This should be done before set the lowPower mode for each power doamin.
The allowed lowpower modes are passed as bit map. For example, to allow Sleep and DeepSleep, use CMC_SetPowerModeProtection(CMC_base, kCMC_AllowSleepMode|kCMC_AllowDeepSleepMode). To allow all low power modes, use CMC_SetPowerModeProtection(CMC_base, kCMC_AllowAllLowPowerModes).
- Parameters:
base – CMC peripheral base address.
allowedModes – Bitmaps of the allowed power modes. See _cmc_power_mode_protection for details.
-
static inline void CMC_LockPowerModeProtectionSetting(CMC_Type *base)
Locks the power mode protection.
This function locks the power mode protection. After invoking this function, any power mode protection setting will be ignored.
- Parameters:
base – CMC peripheral base address.
-
static inline void CMC_SetGlobalPowerMode(CMC_Type *base, cmc_low_power_mode_t lowPowerMode)
Config the same lowPower mode for all power domain.
This function configures the same low power mode for MAIN power domian and WAKE power domain.
- Parameters:
base – CMC peripheral base address.
lowPowerMode – The desired lowPower mode. See cmc_low_power_mode_t for details.
-
static inline void CMC_SetMAINPowerMode(CMC_Type *base, cmc_low_power_mode_t lowPowerMode)
Configures entry into low power mode for the MAIN Power domain.
This function configures the low power mode for the MAIN power domian, when the core executes WFI/WFE instruction. The available lowPower modes are defined in the cmc_low_power_mode_t.
- Parameters:
base – CMC peripheral base address.
lowPowerMode – The desired lowPower mode. See cmc_low_power_mode_t for details.
-
static inline cmc_low_power_mode_t CMC_GetMAINPowerMode(CMC_Type *base)
Gets the power mode of the MAIN Power domain.
- Parameters:
base – CMC peripheral base address.
- Returns:
The power mode of MAIN Power domain. See cmc_low_power_mode_t for details.
-
void CMC_ConfigResetPin(CMC_Type *base, const cmc_reset_pin_config_t *config)
Configure reset pin.
This function configures reset pin. When enabled, the low power filter is enabled in both Active and Low power modes, the reset filter is only enabled in Active mode. When both filers are enabled, they operate in series.
- Parameters:
base – CMC peripheral base address.
config – Pointer to the reset pin config structure.
-
static inline void CMC_EnableSystemResetInterrupt(CMC_Type *base, uint32_t mask)
Enable system reset interrupts.
This function enables the system reset interrupts. The assertion of non-fatal warm reset can be delayed for 258 cycles of the 32K_CLK clock while an enabled interrupt is generated. Then Software can perform a graceful shutdown or abort the non-fatal warm reset provided the pending reset source is cleared by resetting the reset source and then clearing the pending flag.
- Parameters:
base – CMC peripheral base address.
mask – System reset interrupts. See _cmc_system_reset_interrupt_enable for details.
-
static inline void CMC_DisableSystemResetInterrupt(CMC_Type *base, uint32_t mask)
Disable system reset interrupts.
This function disables the system reset interrupts.
- Parameters:
base – CMC peripheral base address.
mask – System reset interrupts. See _cmc_system_reset_interrupt_enable for details.
-
static inline uint32_t CMC_GetSystemResetInterruptFlags(CMC_Type *base)
Gets System Reset interrupt flags.
This function returns the System reset interrupt flags.
- Parameters:
base – CMC peripheral base address.
- Returns:
System reset interrupt flags. See _cmc_system_reset_interrupt_flag for details.
-
static inline void CMC_ClearSystemResetInterruptFlags(CMC_Type *base, uint32_t mask)
Clears System Reset interrupt flags.
This function clears system reset interrupt flags. The pending reset source can be cleared by resetting the source of the reset and then clearing the pending flags.
- Parameters:
base – CMC peripheral base address.
mask – System Reset interrupt flags. See _cmc_system_reset_interrupt_flag for details.
-
static inline void CMC_EnableNonMaskablePinInterrupt(CMC_Type *base, bool enable)
Enable/Disable Non maskable Pin interrupt.
- Parameters:
base – CMC peripheral base address.
enable – Enable or disable Non maskable pin interrupt. true - enable Non-maskable pin interrupt. false - disable Non-maskable pin interupt.
-
static inline uint8_t CMC_GetISPMODEPinLogic(CMC_Type *base)
Gets the logic state of the ISPMODE_n pin.
This function returns the logic state of the ISPMODE_n pin on the last negation of RESET_b pin.
- Parameters:
base – CMC peripheral base address.
- Returns:
The logic state of the ISPMODE_n pin on the last negation of RESET_b pin.
-
static inline void CMC_ClearISPMODEPinLogic(CMC_Type *base)
Clears ISPMODE_n pin state.
- Parameters:
base – CMC peripheral base address.
-
static inline void CMC_ForceBootConfiguration(CMC_Type *base, bool assert)
Set the logic state of the BOOT_CONFIGn pin.
This function force the logic state of the Boot_Confign pin to assert on next system reset.
- Parameters:
base – CMC peripheral base address.
assert – Assert the corresponding pin or not. true - Assert corresponding pin on next system reset. false - No effect.
-
static inline uint32_t CMC_GetBootRomStatus(CMC_Type *base)
Gets the status information written by the BootROM.
- Parameters:
base – CMC peripheral base address.
- Returns:
The status information written by the BootROM.
-
static inline void CMC_SetBootRomStatus(CMC_Type *base, uint32_t statValue)
Sets the bootROM status value.
Note
This function is useful when result of CMC_CheckBootRomRegisterWrittable() is true.
- Parameters:
base – CMC peripheral base address.
stat – The state value to set.
-
static inline bool CMC_CheckBootRomRegisterWrittable(CMC_Type *base)
Check if BootROM status and lock registers is writtable.
- Parameters:
base – CMC peripheral base address.
- Returns:
The result of whether BootROM status and lock register is writtable.
true BootROM status and lock registers are writtable;
false BootROM status and lock registers are not writtable.
-
static inline void CMC_LockBootRomStatusWritten(CMC_Type *base)
After invoking this function, BootROM status and lock registers cannot be written.
- Parameters:
base – CMC peripheral base address.
-
static inline void CMC_UnlockBootRomStatusWritten(CMC_Type *base)
After invoking this function, BootROM status and lock register can be written.s.
- Parameters:
base –
-
void CMC_PowerOffSRAMAllMode(CMC_Type *base, uint32_t mask)
Power off the selected system SRAM always.
Note
This function power off the selected system SRAM always. The SRAM arrays should not be accessed while they are shut down. SRAM array contents are not retained if they are powered off.
Note
Once invoked, the previous settings will be overwritten.
- Parameters:
base – CMC peripheral base address.
mask – Bitmap of the SRAM arrays to be powered off all modes. See _cmc_system_sram_arrays for details. Check Reference Manual for the SRAM region and mask bit relationship.
-
static inline void CMC_PowerOnSRAMAllMode(CMC_Type *base, uint32_t mask)
Power on SRAM during all mode.
Note
Once invoked, the previous settings will be overwritten.
- Parameters:
base – CMC peripheral base address.
mask – Bitmap of the SRAM arrays to be powered on all modes. See _cmc_system_sram_arrays for details. Check Reference Manual for the SRAM region and mask bit relationship.
-
void CMC_PowerOffSRAMLowPowerOnly(CMC_Type *base, uint32_t mask)
Power off the selected system SRAM during low power modes only.
This function power off the selected system SRAM only during low power mode. SRAM array contents are not retained if they are power off.
- Parameters:
base – CMC peripheral base address.
mask – Bitmap of the SRAM arrays to be power off during low power mode only. See _cmc_system_sram_arrays for details. Check Reference Manual for the SRAM region and mask bit relationship.
-
static inline void CMC_PowerOnSRAMLowPowerOnly(CMC_Type *base, uint32_t mask)
Power on the selected system SRAM during low power modes only.
This function power on the selected system SRAM. The SRAM arrray contents are retained in low power modes.
- Parameters:
base – CMC peripheral base address.
mask – Bitmap of the SRAM arrays to be power on during low power mode only. See _cmc_system_sram_arrays for details. Check Reference Manual for the SRAM region and mask bit relationship.
-
void CMC_ConfigFlashMode(CMC_Type *base, bool wake, bool doze, bool disable)
Configs the low power mode of the on-chip flash memory.
This function configs the low power mode of the on-chip flash memory.
- Parameters:
base – CMC peripheral base address.
wake – true: Flash will exit low power state during the flash memory accesses. false: No effect.
doze – true: Flash is disabled while core is sleeping false: No effect.
disable – true: Flash memory is placed in low power state. false: No effect.
-
static inline void CMC_EnableDebugOperation(CMC_Type *base, bool enable)
Enables/Disables debug Operation when the core sleep.
This function configs what happens to debug when core sleeps.
- Parameters:
base – CMC peripheral base address.
enable – Enable or disable Debug when Core is sleeping. true - Debug remains enabled when the core is sleeping. false - Debug is disabled when the core is sleeping.
-
void CMC_PreEnterLowPowerMode(void)
Prepares to enter low power modes.
This function should be called before entering low power modes.
-
void CMC_PostExitLowPowerMode(void)
Recovers after wake up from low power modes.
This function should be called after wake up from low power modes. This function should be used with CMC_PreEnterLowPowerMode()
-
void CMC_GlobalEnterLowPowerMode(CMC_Type *base, cmc_low_power_mode_t lowPowerMode)
Configs the entry into the same low power mode for each power domains.
This function provides the feature to entry into the same low power mode for each power domains. Before invoking this function, please ensure the selected power mode have been allowed.
- Parameters:
base – CMC peripheral base address.
lowPowerMode – The low power mode to be entered. See cmc_low_power_mode_t for the details.
-
void CMC_EnterLowPowerMode(CMC_Type *base, const cmc_power_domain_config_t *config)
Configs the entry into different low power modes for each power domains.
This function provides the feature to entry into different low power modes for each power domains. Before invoking this function please ensure the selected modes are allowed.
- Parameters:
base – CMC peripheral base address.
config – Pointer to the cmc_power_domain_config_t structure.
-
bool lowpowerFilterEnable
Low Power Filter enable.
-
bool resetFilterEnable
Reset Filter enable.
-
uint8_t resetFilterWidth
Width of the Reset Filter.
-
cmc_clock_mode_t clock_mode
Clock mode for each power domain.
-
cmc_low_power_mode_t main_domain
The low power mode of the MAIN power domain.
-
struct _cmc_reset_pin_config
- #include <fsl_cmc.h>
CMC reset pin configuration.
-
struct _cmc_power_domain_config
- #include <fsl_cmc.h>
power mode configuration for each power domain.
MCX_SPC: System Power Control driver
-
uint8_t SPC_GetPeriphIOIsolationStatus(SPC_Type *base)
Gets Isolation status for each power domains.
This function gets the status which indicates whether certain peripheral and the IO pads are in a latched state as a result of having been in POWERDOWN mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
Current isolation status for each power domains. See _spc_power_domains for details.
-
static inline void SPC_ClearPeriphIOIsolationFlag(SPC_Type *base)
Clears peripherals and I/O pads isolation flags for each power domains.
This function clears peripherals and I/O pads isolation flags for each power domains. After recovering from the POWERDOWN mode, user must invoke this function to release the I/O pads and certain peripherals to their normal run mode state. Before invoking this function, user must restore chip configuration in particular pin configuration for enabled WUU wakeup pins.
- Parameters:
base – SPC peripheral base address.
-
static inline bool SPC_GetBusyStatusFlag(SPC_Type *base)
Gets SPC busy status flag.
This function gets SPC busy status flag. When SPC executing any type of power mode transition in ACTIVE mode or any of the SOC low power mode, the SPC busy status flag is set and this function returns true. When changing CORE LDO voltage level and DCDC voltage level in ACTIVE mode, the SPC busy status flag is set and this function return true.
- Parameters:
base – SPC peripheral base address.
- Returns:
Ack busy flag. true - SPC is busy. false - SPC is not busy.
-
static inline bool SPC_CheckLowPowerReqest(SPC_Type *base)
Checks system low power request.
Note
Only when all power domains request low power mode entry, the result of this function is true. That means when all power domains request low power mode entry, the SPC regulators will be controlled by LP_CFG register.
- Parameters:
base – SPC peripheral base address.
- Returns:
The system low power request check result.
true All power domains have requested low power mode and SPC has entered a low power state and power mode configuration are based on the LP_CFG configuration register.
false SPC in active mode and ACTIVE_CFG register control system power supply.
-
static inline void SPC_ClearLowPowerRequest(SPC_Type *base)
Clears system low power request, set SPC in active mode.
- Parameters:
base – SPC peripheral base address.
-
static inline spc_power_domain_low_power_mode_t SPC_GetRequestedLowPowerMode(SPC_Type *base)
Check the last low-power mode that the power domain requested.
- Parameters:
base – SPC peripheral base address.
- Returns:
The last low-power mode that the power domain requested.
-
static inline bool SPC_CheckSwitchState(SPC_Type *base)
Checks whether the power switch is on.
- Parameters:
base – SPC peripheral base address.
- Return values:
true – The power switch is on.
false – The power switch is off.
-
spc_power_domain_low_power_mode_t SPC_GetPowerDomainLowPowerMode(SPC_Type *base, spc_power_domain_id_t powerDomainId)
Gets selected power domain’s requested low power mode.
- Parameters:
base – SPC peripheral base address.
powerDomainId – Power Domain Id, please refer to spc_power_domain_id_t.
- Returns:
The selected power domain’s requested low power mode, please refer to spc_power_domain_low_power_mode_t.
-
static inline bool SPC_CheckPowerDomainLowPowerRequest(SPC_Type *base, spc_power_domain_id_t powerDomainId)
Checks power domain’s low power request.
- Parameters:
base – SPC peripheral base address.
powerDomainId – Power Domain Id, please refer to spc_power_domain_id_t.
- Returns:
The result of power domain’s low power request.
true The selected power domain requests low power mode entry.
false The selected power domain does not request low power mode entry.
-
static inline void SPC_ClearPowerDomainLowPowerRequestFlag(SPC_Type *base, spc_power_domain_id_t powerDomainId)
Clears selected power domain’s low power request flag.
- Parameters:
base – SPC peripheral base address.
powerDomainId – Power Domain Id, please refer to spc_power_domain_id_t.
-
static inline void SPC_TrimSRAMLdoRefVoltage(SPC_Type *base, uint8_t trimValue)
Trims SRAM retention regulator reference voltage, trim step is 12 mV, range is around 0.48V to 0.85V.
- Parameters:
base – SPC peripheral base address.
trimValue – Reference voltage trim value.
-
static inline void SPC_EnableSRAMLdo(SPC_Type *base, bool enable)
Enables/disables SRAM retention LDO.
- Parameters:
base – SPC peripheral base address.
enable – Used to enable/disable SRAM LDO :
true Enable SRAM LDO;
false Disable SRAM LDO.
-
static inline void SPC_RetainSRAMArray(SPC_Type *base, uint8_t mask)
- Parameters:
base – SPC peripheral base address.
mask – The OR’ed value of SRAM Array.
-
static inline void SPC_UnRetainSRAMArray(SPC_Type *base, uint8_t mask)
Unretain SRAM array.
- Parameters:
base – SPC peripheral base address.
mask – The OR’ed value of SRAM Array.
-
void SPC_SetLowPowerRequestConfig(SPC_Type *base, const spc_lowpower_request_config_t *config)
Configs Low power request output pin.
This function config the low power request output pin
- Parameters:
base – SPC peripheral base address.
config – Pointer the spc_lowpower_request_config_t structure.
-
static inline void SPC_EnableIntegratedPowerSwitchManually(SPC_Type *base, bool enable)
Enables/disables the integrated power switch manually.
- Parameters:
base – SPC peripheral base address.
enable – Used to enable/disable the integrated power switch:
true Enable the integrated power switch;
false Disable the integrated power switch.
-
static inline void SPC_EnableIntegratedPowerSwitchAutomatically(SPC_Type *base, bool sleepGate, bool wakeupUngate)
Enables/disables the integrated power switch automatically.
To gate the integrated power switch when chip enter low power modes, and ungate the switch after wake-up from low power modes:
SPC_EnableIntegratedPowerSwitchAutomatically(SPC, true, true);
- Parameters:
base – SPC peripheral base address.
sleepGate – Enable the integrated power switch when chip enter low power modes:
true SPC asserts an output pin at low-power entry to power-gate the switch;
false SPC does not assert an output pin at low-power entry to power-gate the switch.
wakeupUngate – Enables the switch after wake-up from low power modes:
true SPC asserts an output pin at low-power exit to power-ungate the switch;
false SPC does not assert an output pin at low-power exit to power-ungate the switch.
-
void SPC_SetSRAMOperateVoltage(SPC_Type *base, const spc_sram_voltage_config_t *config)
Set SRAM operate voltage.
- Parameters:
base – SPC peripheral base address.
config – The pointer to spc_sram_voltage_config_t, specifies the configuration of sram voltage.
-
static inline spc_bandgap_mode_t SPC_GetActiveModeBandgapMode(SPC_Type *base)
Gets the Bandgap mode in Active mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
Bandgap mode in the type of spc_bandgap_mode_t enumeration.
-
static inline uint32_t SPC_GetActiveModeVoltageDetectStatus(SPC_Type *base)
Gets all voltage detectors status in Active mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
All voltage detectors status in Active mode.
-
status_t SPC_SetActiveModeBandgapModeConfig(SPC_Type *base, spc_bandgap_mode_t mode)
Configs Bandgap mode in Active mode.
Note
To disable bandgap in Active mode:
Disable all LVD’s and HVD’s in active mode;
Disable Glitch detect;
Configrue LDO’s and DCDC to low drive strength in active mode;
Invoke this function to disable bandgap in active mode; otherwise the error status will be reported.
Note
Some other system resources(such as PLL, CMP) require bandgap to be enabled, to disable bandgap please take care of other system resources.
- Parameters:
base – SPC peripheral base address.
mode – The Bandgap mode be selected.
- Return values:
kStatus_SPC_BandgapModeWrong – The Bandgap can not be disabled in active mode.
kStatus_Success – Config Bandgap mode in Active power mode successful.
-
static inline void SPC_EnableActiveModeCMPBandgapBuffer(SPC_Type *base, bool enable)
Enables/Disable the CMP Bandgap Buffer in Active mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable CMP Bandgap buffer. true - Enable Buffer Stored Reference voltage to CMP. false - Disable Buffer Stored Reference voltage to CMP.
-
static inline void SPC_SetActiveModeVoltageTrimDelay(SPC_Type *base, uint16_t delay)
Sets the delay when the regulators change voltage level in Active mode.
- Parameters:
base – SPC peripheral base address.
delay – The number of SPC timer clock cycles.
-
status_t SPC_SetActiveModeRegulatorsConfig(SPC_Type *base, const spc_active_mode_regulators_config_t *config)
Configs all settings of regulators in Active mode at a time.
Note
This function is used to overwrite all settings of regulators(including bandgap mode, regulators’ drive strength and voltage level) in active mode at a time.
Note
Enable/disable LVDs/HVDs before invoking this function.
Note
This function will check input parameters based on hardware restrictions before setting registers, if input parameters do not satisfy hardware restrictions the specific error will be reported.
Note
Some hardware restrictions not covered, application should be aware of this and follow this hardware restrictions otherwise some unkown issue may occur:
If Core LDO’s drive strength are set to same value in both Active mode and low power mode, the voltage level should also set to same value.
When switching Core LDO’s drive strength from low to normal, ensure the LDO_CORE high voltage level is set to same level that was set prior to switching to the LDO_CORE drive strength. Otherwise, if the LVDs are enabled, an unexpected LVD can occur.
Note
If this function can not satisfy some tricky settings, please invoke other APIs in low-level function group.
- Parameters:
base – SPC peripheral base address.
config – Pointer to spc_active_mode_regulators_config_t structure.
- Return values:
kStatus_Success – Config regulators in Active power mode successful.
kStatus_SPC_BandgapModeWrong – Based on input setting, bandgap can not be disabled.
kStatus_SPC_Busy – The SPC instance is busy to execute any type of power mode transition.
kStatus_SPC_CORELDOLowDriveStrengthIgnore – Any of LVDs/HVDs kept enabled before invoking this function.
kStatus_SPC_SYSLDOOverDriveVoltageFail – Fail to regulator to Over Drive Voltage due to System VDD HVD is not disabled.
kStatus_SPC_SYSLDOLowDriveStrengthIgnore – Any of LVDs/HVDs kept enabled before invoking this function.
kStatus_SPC_CORELDOVoltageWrong – Core LDO and System LDO do not have same voltage level.
-
static inline void SPC_EnableActiveModeAnalogModules(SPC_Type *base, uint32_t maskValue)
Enables analog modules in active mode.
- Parameters:
base – SPC peripheral base address.
maskValue – The mask of analog modules to enable in active mode, should be the OR’ed value of spc_analog_module_control.
-
static inline void SPC_DisableActiveModeAnalogModules(SPC_Type *base, uint32_t maskValue)
Disables analog modules in active mode.
- Parameters:
base – SPC peripheral base address.
maskValue – The mask of analog modules to disable in active mode, should be the OR’ed value of spc_analog_module_control.
-
static inline uint32_t SPC_GetActiveModeEnabledAnalogModules(SPC_Type *base)
Gets enabled analog modules that enabled in active mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
The mask of enabled analog modules that enabled in active mode.
-
static inline spc_bandgap_mode_t SPC_GetLowPowerModeBandgapMode(SPC_Type *base)
Gets the Bandgap mode in Low Power mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
Bandgap mode in the type of spc_bandgap_mode_t enumeration.
-
static inline uint32_t SPC_GetLowPowerModeVoltageDetectStatus(SPC_Type *base)
Gets the status of all voltage detectors in Low Power mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
The status of all voltage detectors in low power mode.
-
static inline void SPC_EnableLowPowerModeLowPowerIREF(SPC_Type *base, bool enable)
Enables/Disables Low Power IREF in low power modes.
This function enables/disables Low Power IREF. Low Power IREF can only get disabled in Deep power down mode. In other low power modes, the Low Power IREF is always enabled.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable Low Power IREF. true - Enable Low Power IREF for Low Power modes. false - Disable Low Power IREF for Deep Power Down mode.
-
status_t SPC_SetLowPowerModeBandgapmodeConfig(SPC_Type *base, spc_bandgap_mode_t mode)
Configs Bandgap mode in Low Power mode.
Note
To disable Bandgap in Low-power mode:
Disable all LVD’s ad HVD’s in low power mode;
Disable Glitch detect in low power mode;
Configure LDO’s and DCDC to low drive strength in low power mode;
Disable bandgap in low power mode; Otherwise, the error status will be reported.
Note
Some other system resources(such as PLL, CMP) require bandgap to be enabled, to disable bandgap please take care of other system resources.
- Parameters:
base – SPC peripheral base address.
mode – The Bandgap mode be selected.
- Return values:
kStatus_SPC_BandgapModeWrong – The bandgap mode setting in Low Power mode is wrong.
kStatus_Success – Config Bandgap mode in Low Power power mode successful.
-
static inline void SPC_EnableSRAMLdOLowPowerModeIREF(SPC_Type *base, bool enable)
Enables/disables SRAM_LDO deep power low power IREF.
- Parameters:
base – SPC peripheral base address.
enable – Used to enable/disable low power IREF :
true: Low Power IREF is enabled ;
false: Low Power IREF is disabled for power saving.
-
static inline void SPC_EnableLowPowerModeCMPBandgapBufferMode(SPC_Type *base, bool enable)
Enables/Disables CMP Bandgap Buffer.
This function gates CMP bandgap buffer. CMP bandgap buffer is automatically disabled and turned off in Deep Power Down mode.
- Deprecated:
No longer used, please use SPC_EnableLowPowerModeCMPBandgapBuffer as instead.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable CMP Bandgap buffer. true - Enable Buffer Stored Reference Voltage to CMP. false - Disable Buffer Stored Reference Voltage to CMP.
-
static inline void SPC_EnableLowPowerModeCMPBandgapBuffer(SPC_Type *base, bool enable)
Enables/Disables CMP Bandgap Buffer.
This function gates CMP bandgap buffer. CMP bandgap buffer is automatically disabled and turned off in Deep Power Down mode.
- Deprecated:
No longer used.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable CMP Bandgap buffer. true - Enable Buffer Stored Reference Voltage to CMP. false - Disable Buffer Stored Reference Voltage to CMP.
-
static inline void SPC_EnableLowPowerModeCoreVDDInternalVoltageScaling(SPC_Type *base, bool enable)
Enables/Disables CORE VDD IVS(Internal Voltage Scaling) in power down modes.
This function gates CORE VDD IVS. When enabled, the IVS regulator will scale the external input CORE VDD to a lower voltage level to reduce internal leakage. IVS is invalid in Sleep or Deep power down mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable IVS. true - enable CORE VDD IVS in Power Down mode. false - disable CORE VDD IVS in Power Down mode.
-
static inline void SPC_SetLowPowerWakeUpDelay(SPC_Type *base, uint16_t delay)
Sets the delay when exit the low power modes.
- Parameters:
base – SPC peripheral base address.
delay – The number of SPC timer clock cycles that the SPC waits on exit from low power modes.
-
status_t SPC_SetLowPowerModeRegulatorsConfig(SPC_Type *base, const spc_lowpower_mode_regulators_config_t *config)
Configs all settings of regulators in Low power mode at a time.
Note
This function is used to overwrite all settings of regulators(including bandgap mode, regulators’ drive strength and voltage level) in low power mode at a time.
Note
Enable/disable LVDs/HVDs before invoking this function.
Note
This function will check input parameters based on hardware restrictions before setting registers, if input parameters do not satisfy hardware restrictions the specific error will be reported.
Note
Some hardware restrictions not covered, application should be aware of this and follow this hardware restrictions otherwise some unkown issue may occur:
If Core LDO’s drive strength are set to same value in both Active mode and low power mode, the voltage level should also set to same value.
When switching Core LDO’s drive strength from low to normal, ensure the LDO_CORE high voltage level is set to same level that was set prior to switching to the LDO_CORE drive strength. Otherwise, if the LVDs are enabled, an unexpected LVD can occur.
Note
If this function can not satisfy some tricky settings, please invoke other APIs in low-level function group.
- Parameters:
base – SPC peripheral base address.
config – Pointer to spc_lowpower_mode_regulators_config_t structure.
- Return values:
kStatus_Success – Config regulators in Low power mode successful.
kStatus_SPC_BandgapModeWrong – The bandgap should not be disabled based on input settings.
kStatus_SPC_CORELDOLowDriveStrengthIgnore – Set driver strength to low will be ignored.
kStatus_SPC_SYSLDOLowDriveStrengthIgnore – Set driver strength to low will be ignored.
kStatus_SPC_CORELDOVoltageWrong – Core LDO and System LDO do not have same voltage level.
-
static inline void SPC_EnableLowPowerModeAnalogModules(SPC_Type *base, uint32_t maskValue)
Enables analog modules in low power modes.
- Parameters:
base – SPC peripheral base address.
maskValue – The mask of analog modules to enable in low power modes, should be OR’ed value of spc_analog_module_control.
-
static inline void SPC_DisableLowPowerModeAnalogModules(SPC_Type *base, uint32_t maskValue)
Disables analog modules in low power modes.
- Parameters:
base – SPC peripheral base address.
maskValue – The mask of analog modules to disable in low power modes, should be OR’ed value of spc_analog_module_control.
-
static inline uint32_t SPC_GetLowPowerModeEnabledAnalogModules(SPC_Type *base)
Gets enabled analog modules that enabled in low power modes.
- Parameters:
base – SPC peripheral base address.
- Returns:
The mask of enabled analog modules that enabled in low power modes.
-
static inline uint8_t SPC_GetVoltageDetectStatusFlag(SPC_Type *base)
Get Voltage Detect Status Flags.
- Parameters:
base – SPC peripheral base address.
- Returns:
Voltage Detect Status Flags. See _spc_voltage_detect_flags for details.
-
static inline void SPC_ClearVoltageDetectStatusFlag(SPC_Type *base, uint8_t mask)
Clear Voltage Detect Status Flags.
- Parameters:
base – SPC peripheral base address.
mask – The mask of the voltage detect status flags. See _spc_voltage_detect_flags for details.
-
void SPC_SetCoreVoltageDetectConfig(SPC_Type *base, const spc_core_voltage_detect_config_t *config)
Configs CORE voltage detect options.
Note
: Setting both the voltage detect interrupt and reset enable will cause interrupt to be generated on exit from reset. If those conditioned is not desired, interrupt/reset so only one is enabled.
- Parameters:
base – SPC peripheral base address.
config – Pointer to spc_core_voltage_detect_config_t structure.
-
static inline void SPC_LockCoreVoltageDetectResetSetting(SPC_Type *base)
Locks Core voltage detect reset setting.
This function locks core voltage detect reset setting. After invoking this function any configuration of Core voltage detect reset will be ignored.
- Parameters:
base – SPC peripheral base address.
-
static inline void SPC_UnlockCoreVoltageDetectResetSetting(SPC_Type *base)
Unlocks Core voltage detect reset setting.
This function unlocks core voltage detect reset setting. If locks the Core voltage detect reset setting, invoking this function to unlock.
- Parameters:
base – SPC peripheral base address.
-
status_t SPC_EnableActiveModeCoreLowVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the Core Low Voltage Detector in Active mode.
Note
If the CORE_LDO low voltage detect is enabled in Active mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable Core LVD. true - Enable Core Low voltage detector in active mode. false - Disable Core Low voltage detector in active mode.
- Return values:
kStatus_Success – Enable/Disable Core Low Voltage Detect successfully.
-
status_t SPC_EnableLowPowerModeCoreLowVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the Core Low Voltage Detector in Low Power mode.
This function enables/disables the Core Low Voltage Detector. If enabled the Core Low Voltage detector. The Bandgap mode in low power mode must be programmed so that Bandgap is enabled.
Note
If the CORE_LDO low voltage detect is enabled in Low Power mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low in Low Power mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable Core HVD. true - Enable Core Low voltage detector in low power mode. false - Disable Core Low voltage detector in low power mode.
- Return values:
kStatus_Success – Enable/Disable Core Low Voltage Detect in low power mode successfully.
-
status_t SPC_EnableActiveModeCoreHighVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the Core High Voltage Detector in Active mode.
Note
If the CORE_LDO high voltage detect is enabled in Active mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable Core HVD. true - Enable Core High voltage detector in active mode. false - Disable Core High voltage detector in active mode.
- Return values:
kStatus_Success – Enable/Disable Core High Voltage Detect successfully.
-
status_t SPC_EnableLowPowerModeCoreHighVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the Core High Voltage Detector in Low Power mode.
This function enables/disables the Core High Voltage Detector. If enabled the Core High Voltage detector. The Bandgap mode in low power mode must be programmed so that Bandgap is enabled.
Note
If the CORE_LDO high voltage detect is enabled in Low Power mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low in low power mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable Core HVD. true - Enable Core High voltage detector in low power mode. false - Disable Core High voltage detector in low power mode.
- Return values:
kStatus_Success – Enable/Disable Core High Voltage Detect in low power mode successfully.
-
void SPC_SetSystemVDDLowVoltageLevel(SPC_Type *base, spc_low_voltage_level_select_t level)
Set system VDD Low-voltage level selection.
This function selects the system VDD low-voltage level. Changing system VDD low-voltage level must be done after disabling the System VDD low voltage reset and interrupt.
- Deprecated:
In latest RM, reserved for all devices, will removed in next release.
- Parameters:
base – SPC peripheral base address.
level – System VDD Low-Voltage level selection.
-
void SPC_SetSystemVoltageDetectConfig(SPC_Type *base, const spc_system_voltage_detect_config_t *config)
Configs SYS voltage detect options.
This function config SYS voltage detect options.
Note
: Setting both the voltage detect interrupt and reset enable will cause interrupt to be generated on exit from reset. If those conditioned is not desired, interrupt/reset so only one is enabled.
- Parameters:
base – SPC peripheral base address.
config – Pointer to spc_system_voltage_detect_config_t structure.
-
static inline void SPC_LockSystemVoltageDetectResetSetting(SPC_Type *base)
Lock System voltage detect reset setting.
This function locks system voltage detect reset setting. After invoking this function any configuration of System Voltage detect reset will be ignored.
- Parameters:
base – SPC peripheral base address.
-
static inline void SPC_UnlockSystemVoltageDetectResetSetting(SPC_Type *base)
Unlock System voltage detect reset setting.
This function unlocks system voltage detect reset setting. If locks the System voltage detect reset setting, invoking this function to unlock.
- Parameters:
base – SPC peripheral base address.
-
status_t SPC_EnableActiveModeSystemHighVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the System High Voltage Detector in Active mode.
Note
If the System_LDO high voltage detect is enabled in Active mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low in Active mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable System HVD. true - Enable System High voltage detector in active mode. false - Disable System High voltage detector in active mode.
- Return values:
kStatus_Success – Enable/Disable System High Voltage Detect successfully.
-
status_t SPC_EnableActiveModeSystemLowVoltageDetect(SPC_Type *base, bool enable)
Enables/Disable the System Low Voltage Detector in Active mode.
Note
If the System_LDO low voltage detect is enabled in Active mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low in Active mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable System LVD. true - Enable System Low voltage detector in active mode. false - Disable System Low voltage detector in active mode.
- Return values:
kStatus_Success – Enable/Disable the System Low Voltage Detect successfully.
-
status_t SPC_EnableLowPowerModeSystemHighVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the System High Voltage Detector in Low Power mode.
Note
If the System_LDO high voltage detect is enabled in Low Power mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low in Low Power mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable System HVD. true - Enable System High voltage detector in low power mode. false - Disable System High voltage detector in low power mode.
- Return values:
kStatus_Success – Enable/Disable System High Voltage Detect in low power mode successfully.
-
status_t SPC_EnableLowPowerModeSystemLowVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the System Low Voltage Detector in Low Power mode.
Note
If the System_LDO low voltage detect is enabled in Low Power mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low in Low Power mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable System HVD. true - Enable System Low voltage detector in low power mode. false - Disable System Low voltage detector in low power mode.
- Return values:
kStatus_Success – Enables System Low Voltage Detect in low power mode successfully.
-
void SPC_SetIOVDDLowVoltageLevel(SPC_Type *base, spc_low_voltage_level_select_t level)
Set IO VDD Low-Voltage level selection.
This function selects the IO VDD Low-voltage level. Changing IO VDD low-voltage level must be done after disabling the IO VDD low voltage reset and interrupt.
- Parameters:
base – SPC peripheral base address.
level – IO VDD Low-voltage level selection.
-
void SPC_SetIOVoltageDetectConfig(SPC_Type *base, const spc_io_voltage_detect_config_t *config)
Configs IO voltage detect options.
This function config IO voltage detect options.
Note
: Setting both the voltage detect interrupt and reset enable will cause interrupt to be generated on exit from reset. If those conditioned is not desired, interrupt/reset so only one is enabled.
- Parameters:
base – SPC peripheral base address.
config – Pointer to spc_voltage_detect_config_t structure.
-
static inline void SPC_LockIOVoltageDetectResetSetting(SPC_Type *base)
Lock IO Voltage detect reset setting.
This function locks IO voltage detect reset setting. After invoking this function any configuration of system voltage detect reset will be ignored.
- Parameters:
base – SPC peripheral base address.
-
static inline void SPC_UnlockIOVoltageDetectResetSetting(SPC_Type *base)
Unlock IO voltage detect reset setting.
This function unlocks IO voltage detect reset setting. If locks the IO voltage detect reset setting, invoking this function to unlock.
- Parameters:
base – SPC peripheral base address.
-
status_t SPC_EnableActiveModeIOHighVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the IO High Voltage Detector in Active mode.
Note
If the IO high voltage detect is enabled in Active mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low in Active mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable IO HVD. true - Enable IO High voltage detector in active mode. false - Disable IO High voltage detector in active mode.
- Return values:
kStatus_Success – Enable/Disable IO High Voltage Detect successfully.
-
status_t SPC_EnableActiveModeIOLowVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the IO Low Voltage Detector in Active mode.
Note
If the IO low voltage detect is enabled in Active mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low in Active mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable IO LVD. true - Enable IO Low voltage detector in active mode. false - Disable IO Low voltage detector in active mode.
- Return values:
kStatus_Success – Enable IO Low Voltage Detect successfully.
-
status_t SPC_EnableLowPowerModeIOHighVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the IO High Voltage Detector in Low Power mode.
Note
If the IO high voltage detect is enabled in Low Power mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low in Low Power mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable IO HVD. true - Enable IO High voltage detector in low power mode. false - Disable IO High voltage detector in low power mode.
- Return values:
kStatus_Success – Enable IO High Voltage Detect in low power mode successfully.
-
status_t SPC_EnableLowPowerModeIOLowVoltageDetect(SPC_Type *base, bool enable)
Enables/Disables the IO Low Voltage Detector in Low Power mode.
Note
If the IO low voltage detect is enabled in Low Power mode, please note that the bandgap must be enabled and the drive strength of each regulator must not set to low in Low Power mode.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable IO LVD. true - Enable IO Low voltage detector in low power mode. false - Disable IO Low voltage detector in low power mode.
- Return values:
kStatus_Success – Enable/Disable IO Low Voltage Detect in low power mode successfully.
-
void SPC_SetExternalVoltageDomainsConfig(SPC_Type *base, uint8_t lowPowerIsoMask, uint8_t IsoMask)
Configs external voltage domains.
This function configs external voltage domains isolation.
- Parameters:
base – SPC peripheral base address.
lowPowerIsoMask – The mask of external domains isolate enable during low power mode. Please read the Reference Manual for the Bitmap.
IsoMask – The mask of external domains isolate. Please read the Reference Manual for the Bitmap.
-
static inline uint8_t SPC_GetExternalDomainsStatus(SPC_Type *base)
Gets External Domains status.
- Parameters:
base – SPC peripheral base address.
- Returns:
The status of each external domain.
-
static inline void SPC_EnableCoreLDORegulator(SPC_Type *base, bool enable)
Enable/Disable Core LDO regulator.
Note
The CORE LDO enable bit is write-once.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable CORE LDO Regulator. true - Enable CORE LDO Regulator. false - Disable CORE LDO Regulator.
-
static inline void SPC_PullDownCoreLDORegulator(SPC_Type *base, bool pulldown)
Enable/Disable the CORE LDO Regulator pull down in Deep Power Down.
Note
This function only useful when enabled the CORE LDO Regulator.
- Parameters:
base – SPC peripheral base address.
pulldown – Enable/Disable CORE LDO pulldown in Deep Power Down mode. true - CORE LDO Regulator will discharge in Deep Power Down mode. false - CORE LDO Regulator will not discharge in Deep Power Down mode.
-
status_t SPC_SetActiveModeCoreLDORegulatorConfig(SPC_Type *base, const spc_active_mode_core_ldo_option_t *option)
Configs Core LDO Regulator in Active mode.
Note
The bandgap must be enabled before invoking this function.
Note
To set Core LDO as low drive strength, all HVDs/LVDs must be disabled previously.
- Parameters:
base – SPC peripheral base address.
option – Pointer to the spc_active_mode_core_ldo_option_t structure.
- Return values:
kStatus_Success – Config Core LDO regulator in Active power mode successful.
kStatus_SPC_Busy – The SPC instance is busy to execute any type of power mode transition.
kStatus_SPC_BandgapModeWrong – Bandgap should be enabled before invoking this function.
kStatus_SPC_CORELDOLowDriveStrengthIgnore – To set Core LDO as low drive strength, all LVDs/HVDs must be disabled before invoking this function.
-
status_t SPC_SetActiveModeCoreLDORegulatorVoltageLevel(SPC_Type *base, spc_core_ldo_voltage_level_t voltageLevel)
Set Core LDO Regulator Voltage level in Active mode.
Note
In active mode, the Core LDO voltage level should only be changed when the Core LDO is in normal drive strength.
Note
Update Core LDO voltage level will set Busy flag, this function return only when busy flag is cleared by hardware
- Parameters:
base – SPC peripheral base address.
voltageLevel – Specify the voltage level of CORE LDO Regulator in Active mode, please refer to spc_core_ldo_voltage_level_t.
- Return values:
kStatus_SPC_CORELDOVoltageSetFail – The drive strength of Core LDO is not normal.
kStatus_Success – Set Core LDO regulator voltage level in Active power mode successful.
-
static inline spc_core_ldo_voltage_level_t SPC_GetActiveModeCoreLDOVDDVoltageLevel(SPC_Type *base)
Gets CORE LDO Regulator Voltage level.
This function returns the voltage level of CORE LDO Regulator in Active mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
Voltage level of CORE LDO in type of spc_core_ldo_voltage_level_t enumeration.
-
status_t SPC_SetActiveModeCoreLDORegulatorDriveStrength(SPC_Type *base, spc_core_ldo_drive_strength_t driveStrength)
Set Core LDO VDD Regulator Drive Strength in Active mode.
- Parameters:
base – SPC peripheral base address.
driveStrength – Specify the drive strength of CORE LDO Regulator in Active mode, please refer to spc_core_ldo_drive_strength_t.
- Return values:
kStatus_Success – Set Core LDO regulator drive strength in Active power mode successful.
kStatus_SPC_CORELDOLowDriveStrengthIgnore – If any voltage detect enabled, core_ldo’s drive strength can not set to low.
kStatus_SPC_BandgapModeWrong – The selected bandgap mode is not allowed.
-
static inline spc_core_ldo_drive_strength_t SPC_GetActiveModeCoreLDODriveStrength(SPC_Type *base)
Gets CORE LDO VDD Regulator Drive Strength in Active mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
Drive Strength of CORE LDO regulator in Active mode, please refer to spc_core_ldo_drive_strength_t.
-
status_t SPC_SetLowPowerModeCoreLDORegulatorConfig(SPC_Type *base, const spc_lowpower_mode_core_ldo_option_t *option)
Configs CORE LDO Regulator in low power mode.
This function configs CORE LDO Regulator in Low Power mode. If CORE LDO VDD Drive Strength is set to Normal, the CORE LDO VDD regulator voltage level in Active mode must be equal to the voltage level in Low power mode. And the Bandgap must be programmed to select bandgap enabled. Core VDD voltage levels for the Core LDO low power regulator can only be changed when the CORE LDO Drive Strength set as Normal.
- Parameters:
base – SPC peripheral base address.
option – Pointer to the spc_lowpower_mode_core_ldo_option_t structure.
- Return values:
kStatus_Success – Config Core LDO regulator in power mode successfully.
kStatus_SPC_Busy – The SPC instance is busy to execute any type of power mode transition.
kStatus_SPC_CORELDOLowDriveStrengthIgnore – Set driver strength to low will be ignored.
#kStatus_SPC_CORELDOVoltageSetFail. – Fail to change Core LDO voltage level.
-
status_t SPC_SetLowPowerModeCoreLDORegulatorVoltageLevel(SPC_Type *base, spc_core_ldo_voltage_level_t voltageLevel)
Set Core LDO VDD Regulator Voltage level in Low power mode.
Note
If CORE LDO’s drive strength is set to Normal, the CORE LDO VDD regulator voltage in active mode and low power mode must be same.
Note
Voltage level for the CORE LDO in low power mode can only be changed when the CORE LDO Drive Strength set as Normal.
- Parameters:
base – SPC peripheral base address.
voltageLevel – Voltage level of CORE LDO Regulator in Low power mode, please refer to spc_core_ldo_voltage_level_t.
- Return values:
kStatus_SPC_CORELDOVoltageWrong – Voltage level in active mode and low power mode is not same.
kStatus_Success – Set Core LDO regulator voltage level in Low power mode successful.
kStatus_SPC_CORELDOVoltageSetFail – Fail to update voltage level because drive strength is incorrect.
-
static inline spc_core_ldo_voltage_level_t SPC_GetLowPowerCoreLDOVDDVoltageLevel(SPC_Type *base)
Gets the CORE LDO VDD Regulator Voltage Level for Low Power modes.
- Parameters:
base – SPC peripheral base address.
- Returns:
The CORE LDO VDD Regulator’s voltage level.
-
status_t SPC_SetLowPowerModeCoreLDORegulatorDriveStrength(SPC_Type *base, spc_core_ldo_drive_strength_t driveStrength)
Set Core LDO VDD Regulator Drive Strength in Low power mode.
- Parameters:
base – SPC peripheral base address.
driveStrength – Specify drive strength of CORE LDO in low power mode.
- Return values:
kStatus_SPC_CORELDOLowDriveStrengthIgnore – Some voltage detect enabled, CORE LDO’s drive strength can not set as low.
kStatus_Success – Set Core LDO regulator drive strength in Low power mode successful.
kStatus_SPC_BandgapModeWrong – Bandgap is disabled when attempt to set CORE LDO work as normal drive strength.
-
static inline spc_core_ldo_drive_strength_t SPC_GetLowPowerCoreLDOVDDDriveStrength(SPC_Type *base)
Gets CORE LDO VDD Drive Strength for Low Power modes.
- Parameters:
base – SPC peripheral base address.
- Returns:
The CORE LDO’s VDD Drive Strength.
-
static inline void SPC_EnableSystemLDORegulator(SPC_Type *base, bool enable)
Enable/Disable System LDO regulator.
Note
The SYSTEM LDO enable bit is write-once.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable System LDO Regulator. true - Enable System LDO Regulator. false - Disable System LDO Regulator.
-
static inline void SPC_EnableSystemLDOSinkFeature(SPC_Type *base, bool sink)
Enable/Disable current sink feature of System LDO Regulator.
- Parameters:
base – SPC peripheral base address.
sink – Enable/Disable current sink feature. true - Enable current sink feature of System LDO Regulator. false - Disable current sink feature of System LDO Regulator.
-
status_t SPC_SetActiveModeSystemLDORegulatorConfig(SPC_Type *base, const spc_active_mode_sys_ldo_option_t *option)
Configs System LDO VDD Regulator in Active mode.
Note
If System LDO VDD Drive Strength is set to Normal, the Bandgap mode in Active mode must be programmed to a value that enables the bandgap.
Note
If any voltage detects are kept enabled, configuration to set System LDO VDD drive strength to low will be ignored.
Note
If select System LDO VDD Regulator voltage level to Over Drive Voltage, the Drive Strength of System LDO VDD Regulator must be set to Normal otherwise the regulator Drive Strength will be forced to Normal.
Note
If select System LDO VDD Regulator voltage level to Over Drive Voltage, the High voltage detect must be disabled. Otherwise it will be fail to regulator to Over Drive Voltage.
- Parameters:
base – SPC peripheral base address.
option – Pointer to the spc_active_mode_sys_ldo_option_t structure.
- Return values:
kStatus_Success – Config System LDO regulator in Active power mode successful.
kStatus_SPC_Busy – The SPC instance is busy to execute any type of power mode transition.
kStatus_SPC_BandgapModeWrong – The bandgap is not enabled before invoking this function.
kStatus_SPC_SYSLDOOverDriveVoltageFail – HVD of System VDD is not disable before setting to Over Drive voltage.
kStatus_SPC_SYSLDOLowDriveStrengthIgnore – Set System LDO VDD regulator’s driver strength to Low will be ignored.
-
status_t SPC_SetActiveModeSystemLDORegulatorVoltageLevel(SPC_Type *base, spc_sys_ldo_voltage_level_t voltageLevel)
Set System LDO Regulator voltage level in Active mode.
Note
The system LDO regulator can only operate at the overdrive voltage level for a limited amount of time for the life of chip.
- Parameters:
base – SPC peripheral base address.
voltageLevel – Specify the voltage level of System LDO Regulator in Active mode.
- Return values:
kStatus_Success – Set System LDO Regulator voltage level in Active mode successfully.
kStatus_SPC_SYSLDOOverDriveVoltageFail – Must disable system LDO high voltage detector before specifing overdrive voltage.
-
static inline spc_sys_ldo_voltage_level_t SPC_GetActiveModeSystemLDORegulatorVoltageLevel(SPC_Type *base)
Get System LDO Regulator voltage level in Active mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
System LDO Regulator voltage level in Active mode, please refer to spc_sys_ldo_voltage_level_t.
-
status_t SPC_SetActiveModeSystemLDORegulatorDriveStrength(SPC_Type *base, spc_sys_ldo_drive_strength_t driveStrength)
Set System LDO Regulator Drive Strength in Active mode.
- Parameters:
base – SPC peripheral base address.
driveStrength – Specify the drive strength of System LDO Regulator in Active mode.
- Return values:
kStatus_Success – Set System LDO Regulator drive strength in Active mode successfully.
kStatus_SPC_SYSLDOLowDriveStrengthIgnore – Attempt to specify low drive strength is ignored due to any voltage detect feature is enabled in active mode.
kStatus_SPC_BandgapModeWrong – Bandgap mode in Active mode must be programmed to a value that enables the bandgap if attempt to specify normal drive strength.
-
static inline spc_sys_ldo_drive_strength_t SPC_GetActiveModeSystemLDORegulatorDriveStrength(SPC_Type *base)
Get System LDO Regulator Drive Strength in Active mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
System LDO regulator drive strength in Active mode, please refer to spc_sys_ldo_drive_strength_t.
-
status_t SPC_SetLowPowerModeSystemLDORegulatorConfig(SPC_Type *base, const spc_lowpower_mode_sys_ldo_option_t *option)
Configs System LDO regulator in low power modes.
This function configs System LDO regulator in low power modes. If System LDO VDD Regulator Drive strength is set to normal, bandgap mode in low power mode must be programmed to a value that enables the Bandgap. If any High voltage detectors or Low Voltage detectors are kept enabled, configuration to set System LDO Regulator drive strength as Low will be ignored.
- Parameters:
base – SPC peripheral base address.
option – Pointer to spc_lowpower_mode_sys_ldo_option_t structure.
- Return values:
kStatus_Success – Config System LDO regulator in Low Power Mode successfully.
kStatus_SPC_Busy – The SPC instance is busy to execute any type of power mode transition.
kStatus_SPC_SYSLDOLowDriveStrengthIgnore – Set driver strength to low will be ignored.
-
status_t SPC_SetLowPowerModeSystemLDORegulatorDriveStrength(SPC_Type *base, spc_sys_ldo_drive_strength_t driveStrength)
Set System LDO Regulator drive strength in Low Power Mode.
- Parameters:
base – SPC peripheral base address.
driveStrength – Specify the drive strength of System LDO Regulator in Low Power Mode.
- Return values:
kStatus_Success – Set System LDO Regulator drive strength in Low Power Mode successfully.
kStatus_SPC_SYSLDOLowDriveStrengthIgnore – Attempt to specify low drive strength is ignored due to any voltage detect feature is enabled in low power mode.
kStatus_SPC_BandgapModeWrong – Bandgap mode in low power mode must be programmed to a value that enables the bandgap if attempt to specify normal drive strength.
-
static inline spc_sys_ldo_drive_strength_t SPC_GetLowPowerModeSystemLDORegulatorDriveStrength(SPC_Type *base)
Get System LDO Regulator drive strength in Low Power Mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
System LDO regulator drive strength in Low Power Mode, please refer to spc_sys_ldo_drive_strength_t.
-
static inline void SPC_EnableDCDCRegulator(SPC_Type *base, bool enable)
Enable/Disable DCDC Regulator.
Note
The DCDC enable bit is write-once, settings only reset after a POR, LVD, or HVD event.
- Parameters:
base – SPC peripheral base address.
enable – Enable/Disable DCDC Regulator. true - Enable DCDC Regulator. false - Disable DCDC Regulator.
-
void SPC_SetDCDCBurstConfig(SPC_Type *base, spc_dcdc_burst_config_t *config)
Config DCDC Burst options.
- Parameters:
base – SPC peripheral base address.
config – Pointer to spc_dcdc_burst_config_t structure.
-
static inline void SPC_TriggerDCDCBurstRequest(SPC_Type *base)
Trigger a software burst request to DCDC.
- Parameters:
base – SPC peripheral base address.
-
static inline bool SPC_CheckDCDCBurstAck(SPC_Type *base)
Check if burst acknowlege flag is asserted.
- Parameters:
base – SPC peripheral base address.
- Return values:
false – DCDC burst not complete.
true – DCDC burst complete.
-
static inline void SPC_ClearDCDCBurstAckFlag(SPC_Type *base)
Clear DCDC busrt acknowledge flag.
- Parameters:
base – SPC periphral base address.
-
void SPC_SetDCDCRefreshCount(SPC_Type *base, uint16_t count)
Set the count value of the reference clock to configure the period of DCDC not active.
Note
This function is only useful when DCDC’s drive strength is set as pulse refresh.
Note
The pulse duration(time between on and off) is: reference clock period * (count + 2).
- Parameters:
base – SPC peripheral base address.
count – The count value, 16 bit width.
-
static inline void SPC_EnableDCDCBleedResistor(SPC_Type *base, bool enable)
Enable a bleed resistor to discharge DCDC output when DCDC is disabled.
- Parameters:
base – SPC peripheral base address.
enable – Used to enable/disable bleed resistor.
-
status_t SPC_SetActiveModeDCDCRegulatorConfig(SPC_Type *base, const spc_active_mode_dcdc_option_t *option)
Configs DCDC_CORE Regulator in Active mode.
Note
When changing the DCDC output voltage level, take care to change the CORE LDO voltage level.
- Parameters:
base – SPC peripheral base address.
option – Pointer to the spc_active_mode_dcdc_option_t structure.
- Return values:
kStatus_Success – Config DCDC regulator in Active power mode successful.
kStatus_SPC_Busy – The SPC instance is busy to execute any type of power mode transition.
kStatus_SPC_BandgapModeWrong – Set DCDC_CORE Regulator drive strength to Normal, the Bandgap must be enabled.
-
static inline void SPC_SetActiveModeDCDCRegulatorVoltageLevel(SPC_Type *base, spc_dcdc_voltage_level_t voltageLevel)
Set DCDC_CORE Regulator voltage level in Active mode.
Note
When changing the DCDC output voltage level, take care to change the CORE LDO voltage level.
- Parameters:
base – SPC peripheral base address.
voltageLevel – Specify the DCDC_CORE Regulator voltage level, please refer to spc_dcdc_voltage_level_t.
-
static inline spc_dcdc_voltage_level_t SPC_GetActiveModeDCDCRegulatorVoltageLevel(SPC_Type *base)
Get DCDC_CORE Regulator voltage level in Active mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
DCDC_CORE Regulator voltage level, please refer to spc_dcdc_voltage_level_t.
-
status_t SPC_SetActiveModeDCDCRegulatorDriveStrength(SPC_Type *base, spc_dcdc_drive_strength_t driveStrength)
Set DCDC_CORE Regulator drive strength in Active mode.
Note
To set DCDC drive strength as Normal, the bandgap must be enabled.
- Parameters:
base – SPC peripheral base address.
driveStrength – Specify the DCDC_CORE regulator drive strength, please refer to spc_dcdc_drive_strength_t.
- Return values:
kStatus_Success – Set DCDC_CORE Regulator drive strength in Active mode successfully.
kStatus_SPC_BandgapModeWrong – Set DCDC_CORE Regulator drive strength to Normal, the Bandgap must be enabled.
-
static inline spc_dcdc_drive_strength_t SPC_GetActiveModeDCDCRegulatorDriveStrength(SPC_Type *base)
Get DCDC_CORE Regulator drive strength in Active mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
DCDC_CORE Regulator drive strength, please refer to spc_dcdc_drive_strength_t.
-
status_t SPC_SetLowPowerModeDCDCRegulatorConfig(SPC_Type *base, const spc_lowpower_mode_dcdc_option_t *option)
Configs DCDC_CORE Regulator in Low power modes.
Note
If DCDC_CORE Drive Strength is set to Normal, the Bandgap mode in Low Power mode must be programmed to a value that enables the Bandgap.
Note
In Deep Power Down mode, DCDC regulator is always turned off.
- Parameters:
base – SPC peripheral base address.
option – Pointer to the spc_lowpower_mode_dcdc_option_t structure.
- Return values:
kStatus_Success – Config DCDC regulator in low power mode successfully.
kStatus_SPC_Busy – The SPC instance is busy to execute any type of power mode transition.
kStatus_SPC_BandgapModeWrong – The bandgap mode setting in Low Power mode is wrong.
-
status_t SPC_SetLowPowerModeDCDCRegulatorDriveStrength(SPC_Type *base, spc_dcdc_drive_strength_t driveStrength)
Set DCDC_CORE Regulator drive strength in Low power mode.
Note
To set drive strength as normal, the bandgap must be enabled.
- Parameters:
base – SPC peripheral base address.
driveStrength – Specify the DCDC_CORE Regulator drive strength, please refer to spc_dcdc_drive_strength_t.
- Return values:
kStatus_Success – Set DCDC_CORE Regulator drive strength in Low power mode successfully.
kStatus_SPC_BandgapModeWrong – Set DCDC_CORE Regulator drive strength to Normal, the Bandgap must be enabled.
-
static inline spc_dcdc_drive_strength_t SPC_GetLowPowerModeDCDCRegulatorDriveStrength(SPC_Type *base)
Get DCDC_CORE Regulator drive strength in Low power mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
DCDC_CORE Regulator drive strength, please refer to spc_dcdc_drive_strength_t.
-
static inline void SPC_SetLowPowerModeDCDCRegulatorVoltageLevel(SPC_Type *base, spc_dcdc_voltage_level_t voltageLevel)
Set DCDC_CORE Regulator voltage level in Low power mode.
Configure ACTIVE_CFG[DCDC_VDD_LVL] to same level programmed in #1.
Note
To change DCDC level in Low-Power mode:
Configure LP_CFG[DCDC_VDD_LVL] to desired level;
Configure LP_CFG[DCDC_VDD_DS] to low driver strength;
Note
After invoking this function, the voltage level in active mode(wakeup from low power modes) also changed, if it is necessary, please invoke SPC_SetActiveModeDCDCRegulatorVoltageLevel() to change to desried voltage level.
- Parameters:
base – SPC peripheral base address.
voltageLevel – Specify the DCDC_CORE Regulator voltage level, please refer to spc_dcdc_voltage_level_t.
-
static inline spc_dcdc_voltage_level_t SPC_GetLowPowerModeDCDCRegulatorVoltageLevel(SPC_Type *base)
Get DCDC_CORE Regulator voltage level in Low power mode.
- Parameters:
base – SPC peripheral base address.
- Returns:
DCDC_CORE Regulator voltage level, please refer to spc_dcdc_voltage_level_t.
-
FSL_SPC_DRIVER_VERSION
SPC driver version 2.7.0.
SPC status enumeration.
Note
Some device(such as MCXA family) do not equip DCDC or System LDO, please refer to the reference manual to check.
Values:
-
enumerator kStatus_SPC_Busy
The SPC instance is busy executing any type of power mode transition.
-
enumerator kStatus_SPC_DCDCLowDriveStrengthIgnore
DCDC Low drive strength setting be ignored for LVD/HVD enabled.
-
enumerator kStatus_SPC_DCDCPulseRefreshModeIgnore
DCDC Pulse Refresh Mode drive strength setting be ignored for LVD/HVD enabled.
-
enumerator kStatus_SPC_SYSLDOOverDriveVoltageFail
SYS LDO regulate to Over drive voltage failed for SYS LDO HVD must be disabled.
-
enumerator kStatus_SPC_SYSLDOLowDriveStrengthIgnore
SYS LDO Low driver strength setting be ignored for LDO LVD/HVD enabled.
-
enumerator kStatus_SPC_CORELDOLowDriveStrengthIgnore
CORE LDO Low driver strength setting be ignored for LDO LVD/HVD enabled.
-
enumerator kStatus_SPC_BandgapModeWrong
Selected Bandgap Mode wrong.
-
enumerator kStatus_SPC_CORELDOVoltageWrong
Core LDO voltage is wrong.
-
enumerator kStatus_SPC_CORELDOVoltageSetFail
Core LDO voltage set fail.
-
enumerator kStatus_SPC_CORELDOVoltageDetectWrong
Settings of CORE_LDO voltage detection is not allowed.
-
enumerator kStatus_SPC_DCDCCoreLdoVoltageMisMatch
Target voltage level of DCDC not equal to CORE_LDO.
-
enumerator kStatus_SPC_Busy
-
enum _spc_voltage_detect_flags
Voltage Detect Status Flags.
Values:
-
enumerator kSPC_IOVDDHighVoltageDetectFlag
IO VDD High-Voltage detect flag.
-
enumerator kSPC_IOVDDLowVoltageDetectFlag
IO VDD Low-Voltage detect flag.
-
enumerator kSPC_SystemVDDHighVoltageDetectFlag
System VDD High-Voltage detect flag.
-
enumerator kSPC_SystemVDDLowVoltageDetectFlag
System VDD Low-Voltage detect flag.
-
enumerator kSPC_CoreVDDHighVoltageDetectFlag
Core VDD High-Voltage detect flag.
-
enumerator kSPC_CoreVDDLowVoltageDetectFlag
Core VDD Low-Voltage detect flag.
-
enumerator kSPC_IOVDDHighVoltageDetectFlag
-
enum _spc_power_domains
SPC power domain isolation status.
Note
Some devices(such as MCXA family) do not contain WAKE Power Domain, please refer to the reference manual to check.
Values:
-
enumerator kSPC_MAINPowerDomainRetain
Peripherals and IO pads retain in MAIN Power Domain.
-
enumerator kSPC_WAKEPowerDomainRetain
Peripherals and IO pads retain in WAKE Power Domain.
-
enumerator kSPC_MAINPowerDomainRetain
-
enum _spc_analog_module_control
The enumeration of all analog module that can be controlled by SPC in active or low-power modes.
Note
Enumerations may not suitable for all devices, please check the specific device’s RM for supported analog modules.
Values:
-
enumerator kSPC_controlVref
Enable/disable VREF in active or low-power modes.
-
enumerator kSPC_controlUsb3vDet
Enable/disable USB3V_Det in active or low-power modes.
-
enumerator kSPC_controlDac0
Enable/disable DAC0 in active or low-power modes.
-
enumerator kSPC_controlDac1
Enable/disable DAC1 in active or low-power modes.
-
enumerator kSPC_controlDac2
Enable/disable DAC2 in active or low-power modes.
-
enumerator kSPC_controlOpamp0
Enable/disable OPAMP0 in active or low-power modes.
-
enumerator kSPC_controlOpamp1
Enable/disable OPAMP1 in active or low-power modes.
-
enumerator kSPC_controlOpamp2
Enable/disable OPAMP2 in active or low-power modes.
-
enumerator kSPC_controlOpamp3
Enable/disable OPAMP3 in active or low-power modes.
-
enumerator kSPC_controlCmp0
Enable/disable CMP0 in active or low-power modes.
-
enumerator kSPC_controlCmp1
Enable/disable CMP1 in active or low-power modes.
-
enumerator kSPC_controlCmp2
Enable/disable CMP2 in active or low-power modes.
-
enumerator kSPC_controlCmp0Dac
Enable/disable CMP0_DAC in active or low-power modes.
-
enumerator kSPC_controlCmp1Dac
Enable/disable CMP1_DAC in active or low-power modes.
-
enumerator kSPC_controlCmp2Dac
Enable/disable CMP2_DAC in active or low-power modes.
-
enumerator kSPC_controlAllModules
Enable/disable all modules in active or low-power modes.
-
enumerator kSPC_controlVref
-
enum _spc_power_domain_id
The enumeration of spc power domain, the connected power domain is chip specfic, please refer to chip’s RM for details.
Values:
-
enumerator kSPC_PowerDomain0
Power domain0, the connected power domain is chip specific.
-
enumerator kSPC_PowerDomain1
Power domain1, the connected power domain is chip specific.
-
enumerator kSPC_PowerDomain0
-
enum _spc_power_domain_low_power_mode
The enumeration of Power domain’s low power mode.
Values:
-
enumerator kSPC_SleepWithSYSClockRunning
Power domain request SLEEP mode with SYS clock running.
-
enumerator kSPC_DeepSleepWithSysClockOff
Power domain request deep sleep mode with system clock off.
-
enumerator kSPC_PowerDownWithSysClockOff
Power domain request power down mode with system clock off.
-
enumerator kSPC_DeepPowerDownWithSysClockOff
Power domain request deep power down mode with system clock off.
-
enumerator kSPC_SleepWithSYSClockRunning
-
enum _spc_lowPower_request_pin_polarity
SPC low power request output pin polarity.
Values:
-
enumerator kSPC_HighTruePolarity
Control the High Polarity of the Low Power Reqest Pin.
-
enumerator kSPC_LowTruePolarity
Control the Low Polarity of the Low Power Reqest Pin.
-
enumerator kSPC_HighTruePolarity
-
enum _spc_lowPower_request_output_override
SPC low power request output override.
Values:
-
enumerator kSPC_LowPowerRequestNotForced
Not Forced.
-
enumerator kSPC_LowPowerRequestReserved
Reserved.
-
enumerator kSPC_LowPowerRequestForcedLow
Forced Low (Ignore LowPower request output polarity setting.)
-
enumerator kSPC_LowPowerRequestForcedHigh
Forced High (Ignore LowPower request output polarity setting.)
-
enumerator kSPC_LowPowerRequestNotForced
-
enum _spc_bandgap_mode
SPC Bandgap mode enumeration in Active mode or Low Power mode.
Values:
-
enumerator kSPC_BandgapDisabled
Bandgap disabled.
-
enumerator kSPC_BandgapEnabledBufferDisabled
Bandgap enabled with Buffer disabled.
-
enumerator kSPC_BandgapEnabledBufferEnabled
Bandgap enabled with Buffer enabled.
-
enumerator kSPC_BandgapReserved
Reserved.
-
enumerator kSPC_BandgapDisabled
-
enum _spc_dcdc_voltage_level
DCDC regulator voltage level enumeration in Active mode or Low Power Mode.
Note
kSPC_DCDC_RetentionVoltage not supported for all power modes.
Values:
-
enumerator kSPC_DCDC_RetentionVoltage
DCDC_CORE Regulator regulate to retention Voltage(Only supportedin low power modes)
-
enumerator kSPC_DCDC_MidVoltage
DCDC_CORE Regulator regulate to Mid Voltage(1.0V).
-
enumerator kSPC_DCDC_NormalVoltage
DCDC_CORE Regulator regulate to Normal Voltage(1.1V).
-
enumerator kSPC_DCDC_OverdriveVoltage
DCDC_CORE Regulator regulate to Safe-Mode Voltage(1.2V).
-
enumerator kSPC_DCDC_RetentionVoltage
-
enum _spc_dcdc_drive_strength
DCDC regulator Drive Strength enumeration in Active mode or Low Power Mode.
Note
Different drive strength differ in these DCDC characterstics: Maximum load current Quiescent current Transient response.
Values:
-
enumerator kSPC_DCDC_PulseRefreshMode
DCDC_CORE Regulator Drive Strength set to Pulse Refresh Mode, This enum member is only useful for Low Power Mode config, please note that pluse refresh mode is invalid in SLEEP mode.
-
enumerator kSPC_DCDC_LowDriveStrength
DCDC_CORE regulator Drive Strength set to low.
-
enumerator kSPC_DCDC_NormalDriveStrength
DCDC_CORE regulator Drive Strength set to Normal.
-
enumerator kSPC_DCDC_PulseRefreshMode
-
enum _spc_sys_ldo_voltage_level
SYS LDO regulator voltage level enumeration in Active mode.
Values:
-
enumerator kSPC_SysLDO_NormalVoltage
SYS LDO VDD Regulator regulate to Normal Voltage(1.8V).
-
enumerator kSPC_SysLDO_OverDriveVoltage
SYS LDO VDD Regulator regulate to Over Drive Voltage(2.5V).
-
enumerator kSPC_SysLDO_NormalVoltage
-
enum _spc_sys_ldo_drive_strength
SYS LDO regulator Drive Strength enumeration in Active mode or Low Power mode.
Values:
-
enumerator kSPC_SysLDO_LowDriveStrength
SYS LDO VDD regulator Drive Strength set to low.
-
enumerator kSPC_SysLDO_NormalDriveStrength
SYS LDO VDD regulator Drive Strength set to Normal.
-
enumerator kSPC_SysLDO_LowDriveStrength
-
enum _spc_core_ldo_voltage_level
Core LDO regulator voltage level enumeration in Active mode or Low Power mode.
Values:
-
enumerator kSPC_CoreLDO_UnderDriveVoltage
- Deprecated:
, to align with description of latest RM, please use kSPC_Core_LDO_RetentionVoltage as instead.
-
enumerator kSPC_Core_LDO_RetentionVoltage
Core LDO VDD regulator regulate to retention voltage, please note that only useful in low power modes and not all devices support this options please refer to devices’ RM for details.
-
enumerator kSPC_CoreLDO_MidDriveVoltage
Core LDO VDD regulator regulate to Mid Drive Voltage.
-
enumerator kSPC_CoreLDO_NormalVoltage
Core LDO VDD regulator regulate to Normal Voltage.
-
enumerator kSPC_CoreLDO_OverDriveVoltage
Core LDO VDD regulator regulate to overdrive Voltage.
-
enumerator kSPC_CoreLDO_UnderDriveVoltage
-
enum _spc_core_ldo_drive_strength
CORE LDO VDD regulator Drive Strength enumeration in Low Power mode.
Values:
-
enumerator kSPC_CoreLDO_LowDriveStrength
Core LDO VDD regulator Drive Strength set to low.
-
enumerator kSPC_CoreLDO_NormalDriveStrength
Core LDO VDD regulator Drive Strength set to Normal.
-
enumerator kSPC_CoreLDO_LowDriveStrength
-
enum _spc_low_voltage_level_select
IO VDD Low-Voltage Level Select.
Values:
-
enumerator kSPC_LowVoltageNormalLevel
- Deprecated:
, please use kSPC_LowVoltageHighRange as instead.
-
enumerator kSPC_LowVoltageSafeLevel
- Deprecated:
, please use kSPC_LowVoltageLowRange as instead.
-
enumerator kSPC_LowVoltageHighRange
High range LVD threshold.
-
enumerator kSPC_LowVoltageLowRange
Low range LVD threshold.
-
enumerator kSPC_LowVoltageNormalLevel
-
enum _spc_sram_operate_voltage
The list of the operating voltage for the SRAM’s read/write timing margin.
Values:
-
enumerator kSPC_sramOperateAt1P0V
SRAM configured for 1.0V operation.
-
enumerator kSPC_sramOperateAt1P1V
SRAM configured for 1.1V operation.
-
enumerator kSPC_sramOperateAt1P2V
SRAM configured for 1.2V operation.
-
enumerator kSPC_sramOperateAt1P0V
-
typedef enum _spc_power_domain_id spc_power_domain_id_t
The enumeration of spc power domain, the connected power domain is chip specfic, please refer to chip’s RM for details.
-
typedef enum _spc_power_domain_low_power_mode spc_power_domain_low_power_mode_t
The enumeration of Power domain’s low power mode.
-
typedef enum _spc_lowPower_request_pin_polarity spc_lowpower_request_pin_polarity_t
SPC low power request output pin polarity.
-
typedef enum _spc_lowPower_request_output_override spc_lowpower_request_output_override_t
SPC low power request output override.
-
typedef enum _spc_bandgap_mode spc_bandgap_mode_t
SPC Bandgap mode enumeration in Active mode or Low Power mode.
-
typedef enum _spc_dcdc_voltage_level spc_dcdc_voltage_level_t
DCDC regulator voltage level enumeration in Active mode or Low Power Mode.
Note
kSPC_DCDC_RetentionVoltage not supported for all power modes.
-
typedef enum _spc_dcdc_drive_strength spc_dcdc_drive_strength_t
DCDC regulator Drive Strength enumeration in Active mode or Low Power Mode.
Note
Different drive strength differ in these DCDC characterstics: Maximum load current Quiescent current Transient response.
-
typedef enum _spc_sys_ldo_voltage_level spc_sys_ldo_voltage_level_t
SYS LDO regulator voltage level enumeration in Active mode.
-
typedef enum _spc_sys_ldo_drive_strength spc_sys_ldo_drive_strength_t
SYS LDO regulator Drive Strength enumeration in Active mode or Low Power mode.
-
typedef enum _spc_core_ldo_voltage_level spc_core_ldo_voltage_level_t
Core LDO regulator voltage level enumeration in Active mode or Low Power mode.
-
typedef enum _spc_core_ldo_drive_strength spc_core_ldo_drive_strength_t
CORE LDO VDD regulator Drive Strength enumeration in Low Power mode.
-
typedef enum _spc_low_voltage_level_select spc_low_voltage_level_select_t
IO VDD Low-Voltage Level Select.
-
typedef enum _spc_sram_operate_voltage spc_sram_operate_voltage_t
The list of the operating voltage for the SRAM’s read/write timing margin.
-
typedef struct _spc_sram_voltage_config spc_sram_voltage_config_t
-
typedef struct _spc_lowpower_request_config spc_lowpower_request_config_t
Low Power Request output pin configuration.
-
typedef struct _spc_active_mode_core_ldo_option spc_active_mode_core_ldo_option_t
Core LDO regulator options in Active mode.
-
typedef struct _spc_active_mode_sys_ldo_option spc_active_mode_sys_ldo_option_t
System LDO regulator options in Active mode.
-
typedef struct _spc_active_mode_dcdc_option spc_active_mode_dcdc_option_t
DCDC regulator options in Active mode.
-
typedef struct _spc_lowpower_mode_core_ldo_option spc_lowpower_mode_core_ldo_option_t
Core LDO regulator options in Low Power mode.
-
typedef struct _spc_lowpower_mode_sys_ldo_option spc_lowpower_mode_sys_ldo_option_t
System LDO regulator options in Low Power mode.
-
typedef struct _spc_lowpower_mode_dcdc_option spc_lowpower_mode_dcdc_option_t
DCDC regulator options in Low Power mode.
-
typedef struct _spc_dcdc_burst_config spc_dcdc_burst_config_t
DCDC Burst configuration.
- Deprecated:
Do not recommend to use this structure.
-
typedef struct _spc_voltage_detect_option spc_voltage_detect_option_t
CORE/SYS/IO VDD Voltage Detect options.
-
typedef struct _spc_core_voltage_detect_config spc_core_voltage_detect_config_t
Core Voltage Detect configuration.
-
typedef struct _spc_system_voltage_detect_config spc_system_voltage_detect_config_t
System Voltage Detect Configuration.
-
typedef struct _spc_io_voltage_detect_config spc_io_voltage_detect_config_t
IO Voltage Detect Configuration.
-
typedef struct _spc_active_mode_regulators_config spc_active_mode_regulators_config_t
Active mode configuration.
-
typedef struct _spc_lowpower_mode_regulators_config spc_lowpower_mode_regulators_config_t
Low Power Mode configuration.
-
SPC_EVD_CFG_REG_EVDISO_SHIFT
-
SPC_EVD_CFG_REG_EVDLPISO_SHIFT
-
SPC_EVD_CFG_REG_EVDSTAT_SHIFT
-
SPC_EVD_CFG_REG_EVDISO(x)
-
SPC_EVD_CFG_REG_EVDLPISO(x)
-
SPC_EVD_CFG_REG_EVDSTAT(x)
-
struct _spc_sram_voltage_config
- #include <fsl_spc.h>
Public Members
-
spc_sram_operate_voltage_t operateVoltage
Specifies the operating voltage for the SRAM’s read/write timing margin.
-
bool requestVoltageUpdate
Used to control whether request an SRAM trim value change.
-
spc_sram_operate_voltage_t operateVoltage
-
struct _spc_lowpower_request_config
- #include <fsl_spc.h>
Low Power Request output pin configuration.
Public Members
-
bool enable
Low Power Request Output enable.
-
spc_lowpower_request_pin_polarity_t polarity
Low Power Request Output pin polarity select.
-
spc_lowpower_request_output_override_t override
Low Power Request Output Override.
-
bool enable
-
struct _spc_active_mode_core_ldo_option
- #include <fsl_spc.h>
Core LDO regulator options in Active mode.
Public Members
-
spc_core_ldo_voltage_level_t CoreLDOVoltage
Core LDO Regulator Voltage Level selection in Active mode.
-
spc_core_ldo_drive_strength_t CoreLDODriveStrength
Core LDO Regulator Drive Strength selection in Active mode
-
spc_core_ldo_voltage_level_t CoreLDOVoltage
-
struct _spc_active_mode_sys_ldo_option
- #include <fsl_spc.h>
System LDO regulator options in Active mode.
Public Members
-
spc_sys_ldo_voltage_level_t SysLDOVoltage
System LDO Regulator Voltage Level selection in Active mode.
-
spc_sys_ldo_drive_strength_t SysLDODriveStrength
System LDO Regulator Drive Strength selection in Active mode.
-
spc_sys_ldo_voltage_level_t SysLDOVoltage
-
struct _spc_active_mode_dcdc_option
- #include <fsl_spc.h>
DCDC regulator options in Active mode.
Public Members
-
spc_dcdc_voltage_level_t DCDCVoltage
DCDC Regulator Voltage Level selection in Active mode.
-
spc_dcdc_drive_strength_t DCDCDriveStrength
DCDC_CORE Regulator Drive Strength selection in Active mode.
-
spc_dcdc_voltage_level_t DCDCVoltage
-
struct _spc_lowpower_mode_core_ldo_option
- #include <fsl_spc.h>
Core LDO regulator options in Low Power mode.
Public Members
-
spc_core_ldo_voltage_level_t CoreLDOVoltage
Core LDO Regulator Voltage Level selection in Low Power mode.
-
spc_core_ldo_drive_strength_t CoreLDODriveStrength
Core LDO Regulator Drive Strength selection in Low Power mode
-
spc_core_ldo_voltage_level_t CoreLDOVoltage
-
struct _spc_lowpower_mode_sys_ldo_option
- #include <fsl_spc.h>
System LDO regulator options in Low Power mode.
Public Members
-
spc_sys_ldo_drive_strength_t SysLDODriveStrength
System LDO Regulator Drive Strength selection in Low Power mode.
-
spc_sys_ldo_drive_strength_t SysLDODriveStrength
-
struct _spc_lowpower_mode_dcdc_option
- #include <fsl_spc.h>
DCDC regulator options in Low Power mode.
Public Members
-
spc_dcdc_voltage_level_t DCDCVoltage
DCDC Regulator Voltage Level selection in Low Power mode.
-
spc_dcdc_drive_strength_t DCDCDriveStrength
DCDC_CORE Regulator Drive Strength selection in Low Power mode.
-
spc_dcdc_voltage_level_t DCDCVoltage
-
struct _spc_dcdc_burst_config
- #include <fsl_spc.h>
DCDC Burst configuration.
- Deprecated:
Do not recommend to use this structure.
Public Members
-
bool sofwareBurstRequest
Enable/Disable DCDC Software Burst Request.
-
bool externalBurstRequest
Enable/Disable DCDC External Burst Request.
-
bool stabilizeBurstFreq
Enable/Disable DCDC frequency stabilization.
-
uint8_t freq
The frequency of the current burst.
-
struct _spc_voltage_detect_option
- #include <fsl_spc.h>
CORE/SYS/IO VDD Voltage Detect options.
Public Members
-
bool HVDInterruptEnable
CORE/SYS/IO VDD High Voltage Detect interrupt enable.
-
bool HVDResetEnable
CORE/SYS/IO VDD High Voltage Detect reset enable.
-
bool LVDInterruptEnable
CORE/SYS/IO VDD Low Voltage Detect interrupt enable.
-
bool LVDResetEnable
CORE/SYS/IO VDD Low Voltage Detect reset enable.
-
bool HVDInterruptEnable
-
struct _spc_core_voltage_detect_config
- #include <fsl_spc.h>
Core Voltage Detect configuration.
Public Members
-
spc_voltage_detect_option_t option
Core VDD Voltage Detect option.
-
spc_voltage_detect_option_t option
-
struct _spc_system_voltage_detect_config
- #include <fsl_spc.h>
System Voltage Detect Configuration.
Public Members
-
spc_voltage_detect_option_t option
System VDD Voltage Detect option.
-
spc_low_voltage_level_select_t level
- Deprecated:
, reserved for all devices, will removed in next release.
-
spc_voltage_detect_option_t option
-
struct _spc_io_voltage_detect_config
- #include <fsl_spc.h>
IO Voltage Detect Configuration.
Public Members
-
spc_voltage_detect_option_t option
IO VDD Voltage Detect option.
-
spc_low_voltage_level_select_t level
IO VDD Low-voltage level selection.
-
spc_voltage_detect_option_t option
-
struct _spc_active_mode_regulators_config
- #include <fsl_spc.h>
Active mode configuration.
Public Members
-
spc_bandgap_mode_t bandgapMode
Specify bandgap mode in active mode.
-
bool lpBuff
Enable/disable CMP bandgap buffer.
-
spc_active_mode_dcdc_option_t DCDCOption
Specify DCDC configurations in active mode.
-
spc_active_mode_sys_ldo_option_t SysLDOOption
Specify System LDO configurations in active mode.
-
spc_active_mode_core_ldo_option_t CoreLDOOption
Specify Core LDO configurations in active mode.
-
spc_bandgap_mode_t bandgapMode
-
struct _spc_lowpower_mode_regulators_config
- #include <fsl_spc.h>
Low Power Mode configuration.
Public Members
-
bool lpIREF
Enable/disable low power IREF in low power modes.
-
spc_bandgap_mode_t bandgapMode
Specify bandgap mode in low power modes.
-
bool lpBuff
Enable/disable CMP bandgap buffer in low power modes.
-
bool CoreIVS
Enable/disable CORE VDD internal voltage scaling.
-
spc_lowpower_mode_dcdc_option_t DCDCOption
Specify DCDC configurations in low power modes.
-
spc_lowpower_mode_sys_ldo_option_t SysLDOOption
Specify system LDO configurations in low power modes.
-
spc_lowpower_mode_core_ldo_option_t CoreLDOOption
Specify core LDO configurations in low power modes.
-
bool lpIREF
MCX_VBAT: Smart Power Switch
The enumeration of VBAT module status.
Values:
-
enumerator kStatus_VBAT_Fro16kNotEnabled
Internal 16kHz free running oscillator not enabled.
-
enumerator kStatus_VBAT_BandgapNotEnabled
Bandgap not enabled.
-
enumerator kStatus_VBAT_WrongCapacitanceValue
Wrong capacitance for selected oscillator mode.
-
enumerator kStatus_VBAT_ClockMonitorLocked
Clock monitor locked.
-
enumerator kStatus_VBAT_OSC32KNotReady
OSC32K not ready.
-
enumerator kStatus_VBAT_LDONotReady
LDO not ready.
-
enumerator kStatus_VBAT_TamperLocked
Tamper locked.
-
enumerator kStatus_VBAT_Fro16kNotEnabled
-
enum _vbat_status_flag
The enumeration of VBAT status flags.
Values:
-
enumerator kVBAT_StatusFlagPORDetect
VBAT domain has been reset
-
enumerator kVBAT_StatusFlagWakeupPin
A falling edge is detected on the wakeup pin.
-
enumerator kVBAT_StatusFlagBandgapTimer0
Bandgap Timer0 period reached.
-
enumerator kVBAT_StatusFlagBandgapTimer1
Bandgap Timer1 period reached.
-
enumerator kVBAT_StatusFlagLdoReady
LDO is enabled and ready.
-
enumerator kVBAT_StatusFlagOsc32kReady
OSC32k is enabled and clock is ready.
-
enumerator kVBAT_StatusFlagConfigDetect
Configuration error detected.
-
enumerator kVBAT_StatusFlagInterrupt0Detect
Interrupt 0 asserted.
-
enumerator kVBAT_StatusFlagInterrupt1Detect
Interrupt 1 asserted.
-
enumerator kVBAT_StatusFlagInterrupt2Detect
Interrupt 2 asserted.
-
enumerator kVBAT_StatusFlagInterrupt3Detect
Interrupt 2 asserted.
-
enumerator kVBAT_StatusFlagPORDetect
-
enum _vbat_interrupt_enable
The enumeration of VBAT interrupt enable.
Values:
-
enumerator kVBAT_InterruptEnablePORDetect
Enable POR detect interrupt.
-
enumerator kVBAT_InterruptEnableWakeupPin
Enable the interrupt when a falling edge is detected on the wakeup pin.
-
enumerator kVBAT_InterruptEnableBandgapTimer0
Enable the interrupt if Bandgap Timer0 period reached.
-
enumerator kVBAT_InterruptEnableBandgapTimer1
Enable the interrupt if Bandgap Timer1 period reached.
-
enumerator kVBAT_InterruptEnableLdoReady
Enable LDO ready interrupt.
-
enumerator kVBAT_InterruptEnableOsc32kReady
Enable OSC32K ready interrupt.
-
enumerator kVBAT_InterruptEnableConfigDetect
Enable configuration error detected interrupt.
-
enumerator kVBAT_InterruptEnableInterrupt0
Enable the interrupt0.
-
enumerator kVBAT_InterruptEnableInterrupt1
Enable the interrupt1.
-
enumerator kVBAT_InterruptEnableInterrupt2
Enable the interrupt2.
-
enumerator kVBAT_InterruptEnableInterrupt3
Enable the interrupt3.
-
enumerator kVBAT_AllInterruptsEnable
Enable all interrupts.
-
enumerator kVBAT_InterruptEnablePORDetect
-
enum _vbat_wakeup_enable
The enumeration of VBAT wakeup enable.
Values:
-
enumerator kVBAT_WakeupEnablePORDetect
Enable POR detect wakeup.
-
enumerator kVBAT_WakeupEnableWakeupPin
Enable wakeup feature when a falling edge is detected on the wakeup pin.
-
enumerator kVBAT_WakeupEnableBandgapTimer0
Enable wakeup feature when bandgap timer0 period reached.
-
enumerator kVBAT_WakeupEnableBandgapTimer1
Enable wakeup feature when bandgap timer1 period reached.
-
enumerator kVBAT_WakeupEnableLdoReady
Enable wakeup when LDO ready.
-
enumerator kVBAT_WakeupEnableOsc32kReady
Enable wakeup when OSC32k ready.
-
enumerator kVBAT_WakeupEnableConfigDetect
Enable wakeup when configuration error detected.
-
enumerator kVBAT_WakeupEnableInterrupt0
Enable wakeup when interrupt0 asserted.
-
enumerator kVBAT_WakeupEnableInterrupt1
Enable wakeup when interrupt1 asserted.
-
enumerator kVBAT_WakeupEnableInterrupt2
Enable wakeup when interrupt2 asserted.
-
enumerator kVBAT_WakeupEnableInterrupt3
Enable wakeup when interrupt3 asserted.
-
enumerator kVBAT_AllWakeupsEnable
Enable all wakeup.
-
enumerator kVBAT_WakeupEnablePORDetect
-
enum _vbat_tamper_enable
The enumeration of VBAT tamper enable.
Values:
-
enumerator kVBAT_TamperEnablePOR
Enable tamper if POR asserted in STATUS register.
-
enumerator kVBAT_TamperEnableClockDetect
Enable tamper if clock monitor detect an error.
-
enumerator kVBAT_TamperEnableConfigDetect
Enable tamper if configuration error detected.
-
enumerator kVBAT_TamperEnableVoltageDetect
Enable tamper if voltage monitor detect an error.
-
enumerator kVBAT_TamperEnableTemperatureDetect
Enable tamper if temperature monitor detect an error.
-
enumerator kVBAT_TamperEnableSec0Detect
Enable tamper if security input 0 detect an error.
-
enumerator kVBAT_TamperEnablePOR
-
enum _vbat_bandgap_timer_id
The enumeration of bandgap timer id, VBAT support two bandgap timers.
Values:
-
enumerator kVBAT_BandgapTimer0
Bandgap Timer0.
-
enumerator kVBAT_BandgapTimer1
Bandgap Timer1.
-
enumerator kVBAT_BandgapTimer0
-
enum _vbat_clock_enable
The enumeration of connections for OSC32K/FRO32K output clock to other modules.
Values:
-
enumerator kVBAT_EnableClockToDomain0
Enable clock to power domain0.
-
enumerator kVBAT_EnableClockToDomain1
Enable clock to power domain1.
-
enumerator kVBAT_EnableClockToDomain2
Enable clock to power domain2.
-
enumerator kVBAT_EnableClockToDomain3
Enable clock to power domain3.
-
enumerator kVBAT_EnableClockToDomain0
-
enum _vbat_ram_array
The enumeration of SRAM arrays that controlled by VBAT. .
Values:
-
enumerator kVBAT_SramArray0
Specify SRAM array0 that controlled by VBAT.
-
enumerator kVBAT_SramArray1
Specify SRAM array1 that controlled by VBAT.
-
enumerator kVBAT_SramArray2
Specify SRAM array2 that controlled by VBAT.
-
enumerator kVBAT_SramArray3
Specify SRAM array3 that controlled by VBAT.
-
enumerator kVBAT_SramArray0
-
enum _vbat_bandgap_refresh_period
The enumeration of bandgap refresh period.
Values:
-
enumerator kVBAT_BandgapRefresh7P8125ms
Bandgap refresh every 7.8125ms.
-
enumerator kVBAT_BandgapRefresh15P625ms
Bandgap refresh every 15.625ms.
-
enumerator kVBAT_BandgapRefresh31P25ms
Bandgap refresh every 31.25ms.
-
enumerator kVBAT_BandgapRefresh62P5ms
Bandgap refresh every 62.5ms.
-
enumerator kVBAT_BandgapRefresh7P8125ms
-
enum _vbat_bandgap_timer0_timeout_period
The enumeration of bandgap timer0 timeout period.
Values:
-
enumerator kVBAT_BangapTimer0Timeout1s
Bandgap timer0 timerout every 1s.
-
enumerator kVBAT_BangapTimer0Timeout500ms
Bandgap timer0 timerout every 500ms.
-
enumerator kVBAT_BangapTimer0Timeout250ms
Bandgap timer0 timerout every 250ms.
-
enumerator kVBAT_BangapTimer0Timeout125ms
Bandgap timer0 timerout every 125ms.
-
enumerator kVBAT_BangapTimer0Timeout62P5ms
Bandgap timer0 timerout every 62.5ms.
-
enumerator kVBAT_BangapTimer0Timeout31P25ms
Bandgap timer0 timerout every 31.25ms.
-
enumerator kVBAT_BangapTimer0Timeout1s
-
enum _vbat_osc32k_operate_mode
The enumeration of osc32k operate mode, including Bypass mode, low power switched mode and so on.
Values:
-
enumerator kVBAT_Osc32kEnabledToTransconductanceMode
Set to transconductance mode.
-
enumerator kVBAT_Osc32kEnabledToLowPowerBackupMode
Set to low power backup mode.
-
enumerator kVBAT_Osc32kEnabledToLowPowerSwitchedMode
Set to low power switched mode.
-
enumerator kVBAT_Osc32kEnabledToTransconductanceMode
-
enum _vbat_osc32k_load_capacitance_select
The enumeration of OSC32K load capacitance.
Values:
-
enumerator kVBAT_Osc32kCrystalLoadCap0pF
Internal capacitance bank is enabled, set the internal capacitance to 0 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap2pF
Internal capacitance bank is enabled, set the internal capacitance to 2 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap4pF
Internal capacitance bank is enabled, set the internal capacitance to 4 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap6pF
Internal capacitance bank is enabled, set the internal capacitance to 6 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap8pF
Internal capacitance bank is enabled, set the internal capacitance to 8 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap10pF
Internal capacitance bank is enabled, set the internal capacitance to 10 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap12pF
Internal capacitance bank is enabled, set the internal capacitance to 12 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap14pF
Internal capacitance bank is enabled, set the internal capacitance to 14 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap16pF
Internal capacitance bank is enabled, set the internal capacitance to 16 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap18pF
Internal capacitance bank is enabled, set the internal capacitance to 18 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap20pF
Internal capacitance bank is enabled, set the internal capacitance to 20 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap22pF
Internal capacitance bank is enabled, set the internal capacitance to 22 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap24pF
Internal capacitance bank is enabled, set the internal capacitance to 24 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap26pF
Internal capacitance bank is enabled, set the internal capacitance to 26 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap28pF
Internal capacitance bank is enabled, set the internal capacitance to 28 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCap30pF
Internal capacitance bank is enabled, set the internal capacitance to 30 pF.
-
enumerator kVBAT_Osc32kCrystalLoadCapBankDisabled
Internal capacitance bank is disabled.
-
enumerator kVBAT_Osc32kCrystalLoadCap0pF
-
enum _vbat_osc32k_start_up_time
The enumeration of start-up time of the oscillator.
Values:
-
enumerator kVBAT_Osc32kStartUpTime8Sec
Configure the start-up time as 8 seconds.
-
enumerator kVBAT_Osc32kStartUpTime4Sec
Configure the start-up time as 4 seconds.
-
enumerator kVBAT_Osc32kStartUpTime2Sec
Configure the start-up time as 2 seconds.
-
enumerator kVBAT_Osc32kStartUpTime1Sec
Configure the start-up time as 1 seconds.
-
enumerator kVBAT_Osc32kStartUpTime0P5Sec
Configure the start-up time as 0.5 seconds.
-
enumerator kVBAT_Osc32kStartUpTime0P25Sec
Configure the start-up time as 0.25 seconds.
-
enumerator kVBAT_Osc32kStartUpTime0P125Sec
Configure the start-up time as 0.125 seconds.
-
enumerator kVBAT_Osc32kStartUpTime0P5MSec
Configure the start-up time as 0.5 milliseconds.
-
enumerator kVBAT_Osc32kStartUpTime8Sec
-
enum _vbat_internal_module_supply
The enumeration of VBAT module supplies.
Values:
-
enumerator kVBAT_ModuleSuppliedByVddBat
VDD_BAT supplies VBAT modules.
-
enumerator kVBAT_ModuleSuppliedByVddSys
VDD_SYS supplies VBAT modules.
-
enumerator kVBAT_ModuleSuppliedByVddBat
-
enum _vbat_clock_monitor_divide_trim
The enumeration of VBAT clock monitor divide trim value.
Values:
-
enumerator kVBAT_ClockMonitorOperateAt1kHz
Clock monitor operates at 1 kHz.
-
enumerator kVBAT_ClockMonitorOperateAt64Hz
Clock monitor operates at 64 Hz.
-
enumerator kVBAT_ClockMonitorOperateAt1kHz
-
enum _vbat_clock_monitor_freq_trim
The enumeration of VBAT clock monitor frequency trim value used to adjust the clock monitor assert.
Values:
-
enumerator kVBAT_ClockMonitorAssert2Cycle
Clock monitor assert 2 cycles after expected edge.
-
enumerator kVBAT_ClockMonitorAssert4Cycle
Clock monitor assert 4 cycles after expected edge.
-
enumerator kVBAT_ClockMonitorAssert6Cycle
Clock monitor assert 8 cycles after expected edge.
-
enumerator kVBAT_ClockMonitorAssert8Cycle
Clock monitor assert 8 cycles after expected edge.
-
enumerator kVBAT_ClockMonitorAssert2Cycle
-
typedef enum _vbat_bandgap_refresh_period vbat_bandgap_refresh_period_t
The enumeration of bandgap refresh period.
-
typedef enum _vbat_bandgap_timer0_timeout_period vbat_bandgap_timer0_timeout_period_t
The enumeration of bandgap timer0 timeout period.
-
typedef enum _vbat_osc32k_operate_mode vbat_osc32k_operate_mode_t
The enumeration of osc32k operate mode, including Bypass mode, low power switched mode and so on.
-
typedef enum _vbat_osc32k_load_capacitance_select vbat_osc32k_load_capacitance_select_t
The enumeration of OSC32K load capacitance.
-
typedef enum _vbat_osc32k_start_up_time vbat_osc32k_start_up_time_t
The enumeration of start-up time of the oscillator.
-
typedef enum _vbat_internal_module_supply vbat_internal_module_supply_t
The enumeration of VBAT module supplies.
-
typedef enum _vbat_clock_monitor_divide_trim vbat_clock_monitor_divide_trim_t
The enumeration of VBAT clock monitor divide trim value.
-
typedef enum _vbat_clock_monitor_freq_trim vbat_clock_monitor_freq_trim_t
The enumeration of VBAT clock monitor frequency trim value used to adjust the clock monitor assert.
-
typedef struct _vbat_fro16k_config vbat_fro16k_config_t
The structure of internal 16kHz free running oscillator attributes.
-
typedef struct _vbat_clock_monitor_config vbat_clock_monitor_config_t
The structure of internal clock monitor, including divide trim and frequency trim.
-
typedef struct _vbat_tamper_config vbat_tamper_config_t
The structure of Tamper configuration.
-
FSL_VBAT_DRIVER_VERSION
VBAT driver version 2.3.1.
-
VBAT_LDORAMC_RET_MASK
-
VBAT_LDORAMC_RET_SHIFT
-
VBAT_LDORAMC_RET(x)
-
kVBAT_EnableClockToVddBat
-
kVBAT_EnableClockToVddSys
-
kVBAT_EnableClockToVddWake
-
kVBAT_EnableClockToVddMain
-
void VBAT_ConfigFRO16k(VBAT_Type *base, const vbat_fro16k_config_t *config)
Configure internal 16kHz free running oscillator, including enabel FRO16k, gate FRO16k output.
- Parameters:
base – VBAT peripheral base address.
config – Pointer to vbat_fro16k_config_t structure.
-
static inline void VBAT_EnableFRO16k(VBAT_Type *base, bool enable)
Enable/disable internal 16kHz free running oscillator.
- Parameters:
base – VBAT peripheral base address.
enable – Used to enable/disable 16kHz FRO.
true Enable internal 16kHz free running oscillator.
false Disable internal 16kHz free running oscillator.
-
static inline bool VBAT_CheckFRO16kEnabled(VBAT_Type *base)
Check if internal 16kHz free running oscillator is enabled.
- Parameters:
base – VBAT peripheral base address.
- Return values:
true – The internal 16kHz Free running oscillator is enabled.
false – The internal 16kHz Free running oscillator is enabled.
-
static inline void VBAT_UngateFRO16k(VBAT_Type *base, uint8_t connectionsMask)
Enable FRO16kHz output clock to selected modules.
- Parameters:
base – VBAT peripheral base address.
connectionsMask – The mask of modules that FRO16k is connected, should be the OR’ed value of vbat_clock_enable_t.
-
static inline void VBAT_GateFRO16k(VBAT_Type *base, uint8_t connectionsMask)
Disable FRO16kHz output clock to selected modules.
- Parameters:
base – VBAT peripheral base address.
connectionsMask – The OR’ed value of vbat_clock_enable_t.
-
static inline void VBAT_LockFRO16kSettings(VBAT_Type *base)
Lock settings of internal 16kHz free running oscillator, please note that if locked 16kHz FRO’s settings can not be updated until the next POR.
Note
Please note that the operation to ungate/gate FRO 16kHz output clock can not be locked by this function.
- Parameters:
base – VBAT peripheral base address.
-
static inline bool VBAT_CheckFRO16kSettingsLocked(VBAT_Type *base)
Check if FRO16K settings are locked.
- Parameters:
base – VBAT peripheral base address.
- Returns:
true
in case of FRO16k settings are locked,false
in case of FRO16k settings are not locked.
-
static inline void VBAT_EnableCrystalOsc32k(VBAT_Type *base, bool enable)
Enable/disable 32K Crystal Oscillator.
- Parameters:
base – VBAT peripheral base address.
enable – Used to enable/disable 32k Crystal Oscillator:
true Enable crystal oscillator and polling status register to check clock is ready.
false Disable crystal oscillator.
-
static inline void VBAT_BypassCrystalOsc32k(VBAT_Type *base, bool enableBypass)
Bypass 32k crystal oscillator, the clock is still output by oscillator but this clock is the same as clock provided on EXTAL pin.
Note
In bypass mode, oscillator must be enabled; To exit bypass mode, oscillator must be disabled.
- Parameters:
base – VBAT peripheral base address.
enableBypass – Used to enter/exit bypass mode:
true Enter into bypass mode;
false Exit bypass mode.
-
static inline void VBAT_AdjustCrystalOsc32kAmplifierGain(VBAT_Type *base, uint8_t coarse)
Adjust 32k crystal oscillator amplifier gain.
- Parameters:
base – VBAT peripheral base address.
coarse – Specify amplifier coarse trim value.
-
status_t VBAT_SetCrystalOsc32kModeAndLoadCapacitance(VBAT_Type *base, vbat_osc32k_operate_mode_t operateMode, vbat_osc32k_load_capacitance_select_t xtalCap, vbat_osc32k_load_capacitance_select_t extalCap)
Set 32k crystal oscillator mode and load capacitance for the XTAL/EXTAL pin.
- Parameters:
base – VBAT peripheral base address.
operateMode – Specify the crystal oscillator mode, please refer to vbat_osc32k_operate_mode_t.
xtalCap – Specify the internal capacitance for the XTAL pin from the capacitor bank.
extalCap – Specify the internal capacitance for the EXTAL pin from the capacitor bank.
- Return values:
kStatus_VBAT_WrongCapacitanceValue – The load capacitance value to set is not align with operate mode’s requirements.
kStatus_Success – Success to set operate mode and load capacitance.
-
static inline void VBAT_TrimCrystalOsc32kStartupTime(VBAT_Type *base, vbat_osc32k_start_up_time_t startupTime)
Trim 32k crystal oscillator startup time.
- Parameters:
base – VBAT peripheral base address.
startupTime – Specify the startup time of the oscillator.
-
static inline void VBAT_SetOsc32kSwitchModeComparatorTrimValue(VBAT_Type *base, uint8_t comparatorTrimValue)
Set crystal oscillator comparator trim value when oscillator is set as low power switch mode.
- Parameters:
base – VBAT peripheral base address.
comparatorTrimValue – Comparator trim value, ranges from 0 to 7.
-
static inline void VBAT_SetOsc32kSwitchModeDelayTrimValue(VBAT_Type *base, uint8_t delayTrimValue)
Set crystal oscillator delay trim value when oscillator is set as low power switch mode.
- Parameters:
base – VBAT peripheral base address.
delayTrimValue – Delay trim value, ranges from 0 to 15.
-
static inline void VBAT_SetOsc32kSwitchModeCapacitorTrimValue(VBAT_Type *base, uint8_t capacitorTrimValue)
Set crystal oscillator capacitor trim value when oscillator is set as low power switch mode.
- Parameters:
base – VBAT peripheral base address.
capacitorTrimValue – Capacitor value to trim, ranges from 0 to 3.
-
static inline void VBAT_LookOsc32kSettings(VBAT_Type *base)
Lock Osc32k settings, after locked all writes to the Oscillator registers are blocked.
- Parameters:
base – VBAT peripheral base address.
-
static inline void VBAT_UnlockOsc32kSettings(VBAT_Type *base)
Unlock Osc32k settings.
- Parameters:
base – VBAT peripheral base address.
-
static inline bool VBAT_CheckOsc32kSettingsLocked(VBAT_Type *base)
Check if osc32k settings are locked.
- Parameters:
base – VBAT peripheral base address.
- Returns:
true
in case of osc32k settings are locked,false
in case of osc32k settings are not locked.
-
static inline void VBAT_UngateOsc32k(VBAT_Type *base, uint8_t connectionsMask)
Enable OSC32k output clock to selected modules.
- Parameters:
base – VBAT peripheral base address.
connectionsMask – The OR’ed value of vbat_clock_enable_t.
-
static inline void VBAT_GateOsc32k(VBAT_Type *base, uint8_t connectionsMask)
Disable OSC32k output clock to selected modules.
- Parameters:
base – VBAT peripheral base address.
connectionsMask – The OR’ed value of vbat_clock_enable_t.
-
status_t VBAT_EnableBandgap(VBAT_Type *base, bool enable)
Enable/disable Bandgap.
Note
The FRO16K must be enabled before enabling the bandgap.
Note
This setting can be locked by VBAT_LockRamLdoSettings() function.
- Parameters:
base – VBAT peripheral base address.
enable – Used to enable/disable bandgap.
true Enable the bandgap.
false Disable the bandgap.
- Return values:
kStatus_Success – Success to enable/disable the bandgap.
kStatus_VBAT_Fro16kNotEnabled – Fail to enable the bandgap due to FRO16k is not enabled previously.
-
static inline bool VBAT_CheckBandgapEnabled(VBAT_Type *base)
Check if bandgap is enabled.
- Parameters:
base – VBAT peripheral base address.
- Return values:
true – The bandgap is enabled.
false – The bandgap is disabled.
-
static inline void VBAT_EnableBandgapRefreshMode(VBAT_Type *base, bool enableRefreshMode)
Enable/disable bandgap low power refresh mode.
Note
For lowest power consumption, refresh mode must be enabled.
Note
This setting can be locked by VBAT_LockRamLdoSettings() function.
- Parameters:
base – VBAT peripheral base address.
enableRefreshMode – Used to enable/disable bandgap low power refresh mode.
true Enable bandgap low power refresh mode.
false Disable bandgap low power refresh mode.
-
status_t VBAT_EnableBackupSRAMRegulator(VBAT_Type *base, bool enable)
Enable/disable Backup RAM Regulator(RAM_LDO).
Note
This setting can be locked by VBAT_LockRamLdoSettings() function.
- Parameters:
base – VBAT peripheral base address.
enable – Used to enable/disable RAM_LDO.
true Enable backup SRAM regulator.
false Disable backup SRAM regulator.
- Return values:
kStatusSuccess – Success to enable/disable backup SRAM regulator.
kStatus_VBAT_Fro16kNotEnabled – Fail to enable backup SRAM regulator due to FRO16k is not enabled previously.
kStatus_VBAT_BandgapNotEnabled – Fail to enable backup SRAM regulator due to the bandgap is not enabled previously.
-
static inline void VBAT_LockRamLdoSettings(VBAT_Type *base)
Lock settings of RAM_LDO, please note that if locked then RAM_LDO’s settings can not be updated until the next POR.
- Parameters:
base – VBAT peripheral base address.
-
static inline bool VBAT_CheckRamLdoSettingsLocked(VBAT_Type *base)
Check if RAM_LDO settings is locked.
- Parameters:
base – VBAT peripheral base address.
- Returns:
true
in case of RAM_LDO settings are locked,false
in case of RAM_LDO settings are unlocked.
-
status_t VBAT_SwitchSRAMPowerByLDOSRAM(VBAT_Type *base)
Switch the SRAM to be powered by LDO_RAM.
Note
This function can be used to switch the SRAM to the VBAT retention supply at any time, but please note that the SRAM must not be accessed during this time.
Note
Invoke this function to switch power supply before switching off external power.
Note
RAM_LDO must be enabled before invoking this function.
Note
To access the SRAM arrays retained by the LDO_RAM, please invoke VBAT_SwitchSRAMPowerBySocSupply(), after external power is switched back on.
- Parameters:
base – VBAT peripheral base address.
- Return values:
kStatusSuccess – Success to Switch SRAM powered by VBAT.
kStatus_VBAT_Fro16kNotEnabled – Fail to switch SRAM powered by VBAT due to FRO16K not enabled previously.
-
static inline void VBAT_SwitchSRAMPowerBySocSupply(VBAT_Type *base)
Switch the RAM to be powered by Soc Supply in software mode.
- Parameters:
base – VBAT peripheral base address.
-
static inline void VBAT_PowerOffSRAMsInLowPowerModes(VBAT_Type *base, uint8_t sramMask)
Power off selected SRAM array in low power modes.
- Parameters:
base – VBAT peripheral base address.
sramMask – The mask of SRAM array to power off, should be the OR’ed value of vbat_ram_array_t.
-
static inline void VBAT_RetainSRAMsInLowPowerModes(VBAT_Type *base, uint8_t sramMask)
Retain selected SRAM array in low power modes.
- Parameters:
base – VBAT peripheral base address.
sramMask – The mask of SRAM array to retain, should be the OR’ed value of vbat_ram_array_t.
-
static inline void VBAT_EnableSRAMIsolation(VBAT_Type *base, bool enable)
Enable/disable SRAM isolation.
- Parameters:
base – VBAT peripheral base address.
enable – Used to enable/disable SRAM violation.
true SRAM will be isolated.
false SRAM state follows the SoC power modes.
-
status_t VBAT_EnableBandgapTimer(VBAT_Type *base, bool enable, uint8_t timerIdMask)
Enable/disable Bandgap timer.
Note
The bandgap timer is available when the bandgap is enabled and are clocked by the FRO16k.
- Parameters:
base – VBAT peripheral base address.
enable – Used to enable/disable bandgap timer.
timerIdMask – The mask of bandgap timer Id, should be the OR’ed value of vbat_bandgap_timer_id_t.
- Return values:
kStatus_Success – Success to enable/disable selected bandgap timer.
kStatus_VBAT_Fro16kNotEnabled – Fail to enable/disable selected bandgap timer due to FRO16k not enabled previously.
kStatus_VBAT_BandgapNotEnabled – Fail to enable/disable selected bandgap timer due to bandgap not enabled previously.
-
void VBAT_SetBandgapTimer0TimeoutValue(VBAT_Type *base, vbat_bandgap_timer0_timeout_period_t timeoutPeriod)
Set bandgap timer0 timeout value.
Note
The timeout value can only be changed when the timer is disabled.
- Parameters:
base – VBAT peripheral base address.
timeoutPeriod – Bandgap timer timeout value, please refer to vbat_bandgap_timer0_timeout_period_t.
-
void VBAT_SetBandgapTimer1TimeoutValue(VBAT_Type *base, uint32_t timeoutPeriod)
Set bandgap timer1 timeout value.
Note
The timeout value can only be changed when the timer is disabled.
- Parameters:
base – VBAT peripheral base address.
timeoutPeriod – The bandgap timerout 1 period, in number of seconds, ranging from 0 to 65535s.
-
static inline void VBAT_SwitchVBATModuleSupplyActiveMode(VBAT_Type *base, vbat_internal_module_supply_t supply)
Control the VBAT internal switch in active mode, VBAT modules can be suppiled by VDD_BAT and VDD_SYS.
- Parameters:
base – VBAT peripheral base address.
supply – Used to control the VBAT internal switch.
-
static inline vbat_internal_module_supply_t VBAT_GetVBATModuleSupply(VBAT_Type *base)
Get VBAT module supply in active mode.
- Parameters:
base – VBAT peripheral base address.
- Returns:
VDD_SYS supplies VBAT modules or VDD_BAT supplies VBAT modules, in type of vbat_internal_module_supply_t.
-
static inline void VBAT_SwitchVBATModuleSupplyLowPowerMode(VBAT_Type *base, vbat_internal_module_supply_t supply)
Control the VBAT internal switch in low power modes.
Note
If VBAT modules are supplied by VDD_SYS in low power modes, VBAT module will also supplied by VDD_SYS in active mode.
- Parameters:
base – VBAT peripheral base address.
supply – Used to specify which voltage input supply VBAT modules in low power mode.
-
static inline void VBAT_LockSwitchControl(VBAT_Type *base)
Lock switch control, if locked all writes to the switch registers will be blocked.
- Parameters:
base – VBAT peripheral base address.
-
static inline void VBAT_UnlockSwitchControl(VBAT_Type *base)
Unlock switch control.
- Parameters:
base – VBAT peripheral base address.
-
static inline bool VBAT_CheckSwitchControlLocked(VBAT_Type *base)
Check if switch control is locked.
- Parameters:
base – VBAT peripheral base address.
- Return values:
false – switch control is not locked.
true – switch control is locked, any writes to related registers are blocked.
-
status_t VBAT_InitClockMonitor(VBAT_Type *base, const vbat_clock_monitor_config_t *config)
Initialize the VBAT clock monitor, enable clock monitor and set the clock monitor configuration.
Note
Both FRO16K and OSC32K should be enabled and stable before invoking this function.
- Parameters:
base – VBAT peripheral base address.
config – Pointer to vbat_clock_monitor_config_t structure.
- Return values:
kStatus_Success – Clock monitor is initialized successfully.
kStatus_VBAT_Fro16kNotEnabled – FRO16K is not enabled.
kStatus_VBAT_Osc32kNotReady – OSC32K is not ready.
kStatus_VBAT_ClockMonitorLocked – Clock monitor is locked.
-
status_t VBAT_DeinitMonitor(VBAT_Type *base)
Deinitialize the VBAT clock monitor.
- Parameters:
base – VBAT peripheral base address.
- Return values:
kStatus_Success – Clock monitor is de-initialized successfully.
kStatus_VBAT_ClockMonitorLocked – Control of Clock monitor is locked.
-
static inline void VBAT_EnableClockMonitor(VBAT_Type *base, bool enable)
Enable/disable clock monitor.
false: disable clock monitor.
- Parameters:
base – VBAT peripheral base address.
enable – Switcher to enable/disable clock monitor:
true: enable clock monitor;
-
static inline void VBAT_SetClockMonitorDivideTrim(VBAT_Type *base, vbat_clock_monitor_divide_trim_t divideTrim)
Set clock monitor’s divide trim, avaiable value is kVBAT_ClockMonitorOperateAt1kHz and kVBAT_ClockMonitorOperateAt64Hz.
- Parameters:
base – VBAT peripheral base address.
divideTrim – Specify divide trim value, please refer to vbat_clock_monitor_divide_trim_t.
-
static inline void VBAT_SetClockMonitorFrequencyTrim(VBAT_Type *base, vbat_clock_monitor_freq_trim_t freqTrim)
Set clock monitor’s frequency trim, avaiable value is kVBAT_ClockMonitorAssert2Cycle, kVBAT_ClockMonitorAssert4Cycle, kVBAT_ClockMonitorAssert6Cycle and kVBAT_ClockMonitorAssert8Cycle.
- Parameters:
base – VBAT peripheral base address.
freqTrim – Specify frequency trim value, please refer to vbat_clock_monitor_freq_trim_t.
-
static inline void VBAT_LockClockMonitorControl(VBAT_Type *base)
Lock clock monitor enable/disable control.
Note
If locked, it is not allowed to change clock monitor enable/disable control.
- Parameters:
base – VBAT peripheral base address.
-
static inline void VBAT_UnlockClockMonitorControl(VBAT_Type *base)
Unlock clock monitor enable/disable control.
- Parameters:
base – VBTA peripheral base address.
-
static inline bool VBAT_CheckClockMonitorControlLocked(VBAT_Type *base)
Check if clock monitor enable/disable control is locked.
Note
If locked, it is not allowed to change clock monitor enable/disable control.
- Parameters:
base – VBAT peripheral base address.
- Return values:
false – clock monitor enable/disable control is not locked.
true – clock monitor enable/disable control is locked, any writes to related registers are blocked.
-
status_t VBAT_InitTamper(VBAT_Type *base, const vbat_tamper_config_t *config)
Initialize tamper control.
Note
Both FRO16K and bandgap should be enabled before calling this function.
- Parameters:
base – VBAT peripheral base address.
config – Pointer to vbat_tamper_config_t structure.
- Return values:
kStatus_Success – Tamper is initialized successfully.
kStatus_VBAT_TamperLocked – Tamper control is locked.
kStatus_VBAT_BandgapNotEnabled – Bandgap is not enabled.
kStatus_VBAT_Fro16kNotEnabled – FRO 16K is not enabled.
-
status_t VBAT_DeinitTamper(VBAT_Type *base)
De-initialize tamper control.
- Parameters:
base – VBAT peripheral base address.
- Return values:
kStatus_Success – Tamper is de-initialized successfully.
kStatus_VBAT_TamperLocked – Tamper control is locked.
-
static inline void VBAT_EnableTamper(VBAT_Type *base, uint32_t tamperEnableMask)
Enable tampers for VBAT.
- Parameters:
base – VBAT peripheral base address.
tamperEnableMask – Mask of tamper to be enabled, should be the OR’ed value of _vbat_tamper_enable.
-
static inline void VBAT_DisableTamper(VBAT_Type *base, uint32_t tamperEnableMask)
Disable tampers for VBAT.
- Parameters:
base – VBAT peripheral base address.
tamperEnableMask – Mask of tamper to be disabled, should be the OR’ed value of _vbat_tamper_enable.
-
static inline uint32_t VBAT_GetTamperEnableInfo(VBAT_Type *base)
Get tamper enable information.
- Parameters:
base – VBAT peripheral base address.
- Returns:
Mask of tamper enable information, should be the OR’ed value of _vbat_tamper_enable.
-
static inline void VBAT_LockTamperControl(VBAT_Type *base)
Lock tamper control, if locked, it is not allowed to change tamper control.
- Parameters:
base – VBAT peripheral base address.
-
static inline void VBAT_UnlockTamperControl(VBAT_Type *base)
Unlock tamper control.
- Parameters:
base – VBAT peripheral base address.
-
static inline bool VBAT_CheckTamperControlLocked(VBAT_Type *base)
Check if tamper control is locked.
- Parameters:
base – VBAT peripheral base address.
- Return values:
false – Tamper control is not locked.
true – Tamper control is locked, any writes to related registers are blocked.
-
static inline uint32_t VBAT_GetStatusFlags(VBAT_Type *base)
Get VBAT status flags.
- Parameters:
base – VBAT peripheral base address.
- Returns:
The asserted status flags, should be the OR’ed value of vbat_status_flag_t.
-
static inline void VBAT_ClearStatusFlags(VBAT_Type *base, uint32_t mask)
Clear VBAT status flags.
- Parameters:
base – VBAT peripheral base address.
mask – The mask of status flags to be cleared, should be the OR’ed value of vbat_status_flag_t except kVBAT_StatusFlagLdoReady, kVBAT_StatusFlagOsc32kReady, kVBAT_StatusFlagInterrupt0Detect, kVBAT_StatusFlagInterrupt1Detect, kVBAT_StatusFlagInterrupt2Detect, kVBAT_StatusFlagInterrupt3Detect.
-
static inline void VBAT_EnableInterrupts(VBAT_Type *base, uint32_t mask)
Enable interrupts for the VBAT module, such as POR detect interrupt, Wakeup Pin interrupt and so on.
- Parameters:
base – VBAT peripheral base address.
mask – The mask of interrupts to be enabled, should be the OR’ed value of vbat_interrupt_enable_t.
-
static inline void VBAT_DisableInterrupts(VBAT_Type *base, uint32_t mask)
Disable interrupts for the VBAT module, such as POR detect interrupt, wakeup pin interrupt and so on.
- Parameters:
base – VBAT peripheral base address.
mask – The mask of interrupts to be disabled, should be the OR’ed value of vbat_interrupt_enable_t.
-
static inline void VBAT_EnableWakeup(VBAT_Type *base, uint32_t mask)
Enable wakeup for the VBAT module, such as POR detect wakeup, wakeup pin wakeup and so on.
- Parameters:
base – VBAT peripheral base address.
mask – The mask of enumerators in vbat_wakeup_enable_t.
-
static inline void VBAT_DisableWakeup(VBAT_Type *base, uint32_t mask)
Disable wakeup for VBAT module, such as POR detect wakeup, wakeup pin wakeup and so on.
- Parameters:
base – VBAT peripheral base address.
mask – The mask of enumerators in vbat_wakeup_enable_t.
-
static inline void VBAT_LockInterruptWakeupSettings(VBAT_Type *base)
Lock VBAT interrupt and wakeup settings, please note that if locked the interrupt and wakeup settings can not be updated until the next POR.
- Parameters:
base – VBAT peripheral base address.
-
static inline void VBAT_SetWakeupPinDefaultState(VBAT_Type *base, bool assert)
Set the default state of the WAKEUP_b pin output when no enabled wakeup source is asserted.
- Parameters:
base – VBAT peripheral base address.
assert – Used to set default state of the WAKEUP_b pin output:
true WAKEUP_b output state is logic one;
false WAKEUP_b output state is logic zero.
-
struct _vbat_fro16k_config
- #include <fsl_vbat.h>
The structure of internal 16kHz free running oscillator attributes.
Public Members
-
bool enableFRO16k
Enable/disable internal 16kHz free running oscillator.
-
uint8_t enabledConnectionsMask
The mask of connected modules to enable FRO16k clock output.
-
bool enableFRO16k
-
struct _vbat_clock_monitor_config
- #include <fsl_vbat.h>
The structure of internal clock monitor, including divide trim and frequency trim.
Public Members
-
vbat_clock_monitor_freq_trim_t freqTrim
Frequency trim value used to adjust the clock monitor assert, please refer to vbat_clock_monitor_freq_trim_t.
-
bool lock
Lock the clock monitor control after enabled.
-
vbat_clock_monitor_freq_trim_t freqTrim
-
struct _vbat_tamper_config
- #include <fsl_vbat.h>
The structure of Tamper configuration.
Public Members
-
bool enableVoltageDetect
Enable/disable voltage detection.
-
bool enableTemperatureDetect
Enable/disable temperature detection.
-
bool lock
Lock the tamper control after enabled.
-
bool enableVoltageDetect
OPAMP: Operational Amplifier
-
void OPAMP_Init(OPAMP_Type *base, const opamp_config_t *config)
Initialize OPAMP instance.
- Parameters:
base – OPAMP peripheral base address.
config – The pointer to opamp_config_t.
-
void OPAMP_Deinit(OPAMP_Type *base)
De-initialize OPAMP instance.
- Parameters:
base – OPAMP peripheral base address.
-
void OPAMP_GetDefaultConfig(opamp_config_t *config)
Get default configuration of OPAMP.
config->enable = false; config->mode = kOPAMP_LowNoiseMode; config->trimOption = kOPAMP_TrimOptionDefault; config->intRefVoltage = kOPAMP_IntRefVoltVddaDiv2; config->enablePosADCSw = false; config->posRefVoltage = kOPAMP_PosRefVoltVrefh3; config->posGain = kOPAMP_PosGainReserved; config->negGain = kOPAMP_NegGainBufferMode;
- Parameters:
config – The pointer to opamp_config_t.
-
static inline void OPAMP_DoPosGainConfig(OPAMP_Type *base, opamp_positive_gain_t option)
Configure OPAMP positive port gain.
- Parameters:
base – OPAMP peripheral base address.
option – OPAMP positive port gain.
-
static inline void OPAMP_DoNegGainConfig(OPAMP_Type *base, opamp_negative_gain_t option)
Configure OPAMP negative port gain.
- Parameters:
base – OPAMP peripheral base address.
option – OPAMP negative port gain.
-
static inline void OPAMP_EnableRefBuffer(OPAMP_Type *base, bool enable)
Enable reference buffer.
- Parameters:
base – OPAMP peripheral base address.
enable – true to enable and false to disable.
-
static inline void OPAMP_EnableTriggerMode(OPAMP_Type *base, bool enable)
Enable OPAMP trigger mode.
- Parameters:
base – OPAMP peripheral base address.
enable – true to enable and false to disable.
-
FSL_OPAMP_DRIVER_VERSION
OPAMP driver version.
-
enum _opamp_mode
The enumeration of OPAMP mode, including low noise mode and high speed mode.
Values:
-
enumerator kOPAMP_LowNoiseMode
Set opamp mode as low noise mode.
-
enumerator kOPAMP_HighSpeedMode
Set opamp mode as high speed mode.
-
enumerator kOPAMP_LowNoiseMode
-
enum _opamp_bias_current_trim_option
The enumeration of bias current trim option.
Values:
-
enumerator kOPAMP_TrimOptionDefault
Default Bias current trim option.
-
enumerator kOPAMP_TrimOptionIncreaseCurrent
Trim option selected as increase current.
-
enumerator kOPAMP_TrimOptionDecreaseCurrent
Trim option selected as decrease current.
-
enumerator kOPAMP_TrimOptionFurtherDecreaseCurrent
Trim option selected as further decrease current.
-
enumerator kOPAMP_TrimOptionDefault
-
enum _opamp_internal_ref_voltage
The enumeration of internal reference voltage.
Values:
-
enumerator kOPAMP_IntRefVoltVddaDiv2
Internal reference voltage selected as Vdda/2.
-
enumerator kOPAMP_IntRefVoltVdda3V
Internal reference voltage selected as Vdda_3V.
-
enumerator kOPAMP_IntRefVoltVssa3V
Internal reference voltage selected as Vssa_3V.
-
enumerator kOPAMP_IntRefVoltNotAllowed
Internal reference voltage not allowed.
-
enumerator kOPAMP_IntRefVoltVddaDiv2
-
enum _opamp_positive_ref_voltage
The enumeration of positive reference voltage(please refer to manual use).
Values:
-
enumerator kOPAMP_PosRefVoltVrefh3
Positive part reference voltage select Vrefh3, connected from DAC output.
-
enumerator kOPAMP_PosRefVoltVrefh0
Positive part reference voltage select Vrefh0, connected from VDDA supply.
-
enumerator kOPAMP_PosRefVoltVrefh1
Positive part reference voltage select Vrefh1, connected from Voltage reference output.
-
enumerator kOPAMP_PosRefVoltVrefh4
Positive part reference voltage select 520mv or reserved.
-
enumerator kOPAMP_PosRefVoltVrefh3
-
enum _opamp_positive_gain
The enumeration of positive programmable gain (please refer to manual use).
Values:
-
enumerator kOPAMP_PosGainReserved
Positive Gain reserved.
-
enumerator kOPAMP_PosGainNonInvert1X
Positive non-inverting gain application 1X.
-
enumerator kOPAMP_PosGainNonInvert2X
Positive non-inverting gain application 2X.
-
enumerator kOPAMP_PosGainNonInvert4X
Positive non-inverting gain application 4X.
-
enumerator kOPAMP_PosGainNonInvert8X
Positive non-inverting gain application 8X.
-
enumerator kOPAMP_PosGainNonInvert16X
Positive non-inverting gain application 16X.
-
enumerator kOPAMP_PosGainNonInvert33X
Positive non-inverting gain application 33X.
-
enumerator kOPAMP_PosGainNonInvert64X
Positive non-inverting gain application 64X.
-
enumerator kOPAMP_PosGainNonInvertDisableBuffer2X
Positive non-inverting gain application 2X.
-
enumerator kOPAMP_PosGainNonInvertDisableBuffer3X
Positive non-inverting gain application 3X.
-
enumerator kOPAMP_PosGainNonInvertDisableBuffer5X
Positive non-inverting gain application 5X.
-
enumerator kOPAMP_PosGainNonInvertDisableBuffer9X
Positive non-inverting gain application 9X.
-
enumerator kOPAMP_PosGainNonInvertDisableBuffer17X
Positive non-inverting gain application 17X.
-
enumerator kOPAMP_PosGainNonInvertDisableBuffer34X
Positive non-inverting gain application 34X.
-
enumerator kOPAMP_PosGainNonInvertDisableBuffer65X
Positive non-inverting gain application 65X.
-
enumerator kOPAMP_PosGainReserved
-
enum _opamp_negative_gain
The enumeration of negative programmable gain.
Values:
-
enumerator kOPAMP_NegGainBufferMode
Negative Buffer Mode.
-
enumerator kOPAMP_NegGainInvert1X
Negative inverting gain application -1X.
-
enumerator kOPAMP_NegGainInvert2X
Negative inverting gain application -2X.
-
enumerator kOPAMP_NegGainInvert4X
Negative inverting gain application -4X.
-
enumerator kOPAMP_NegGainInvert8X
Negative inverting gain application -8X.
-
enumerator kOPAMP_NegGainInvert16X
Negative inverting gain application -16X.
-
enumerator kOPAMP_NegGainInvert33X
Negative inverting gain application -33X.
-
enumerator kOPAMP_NegGainInvert64X
Negative inverting gain application -64X.
-
enumerator kOPAMP_NegGainBufferMode
-
enum _opamp_positive_input_channel_selection
The enumeration of positive input channel selection.
Values:
-
enumerator kOPAMP_PosInputChannel0
When OPAMP not in trigger mode, select positive input 0 (INP0).
-
enumerator kOPAMP_PosInputChannel1
When OPAMP not in trigger mode, select positive input 1 (INP1).
-
enumerator kOPAMP_PosInputChannel0
-
typedef enum _opamp_mode opamp_mode_t
The enumeration of OPAMP mode, including low noise mode and high speed mode.
-
typedef enum _opamp_bias_current_trim_option opamp_bias_current_trim_option_t
The enumeration of bias current trim option.
-
typedef enum _opamp_internal_ref_voltage opamp_internal_ref_voltage_t
The enumeration of internal reference voltage.
-
typedef enum _opamp_positive_ref_voltage opamp_positive_ref_voltage_t
The enumeration of positive reference voltage(please refer to manual use).
-
typedef enum _opamp_positive_gain opamp_positive_gain_t
The enumeration of positive programmable gain (please refer to manual use).
-
typedef enum _opamp_negative_gain opamp_negative_gain_t
The enumeration of negative programmable gain.
-
typedef enum _opamp_positive_input_channel_selection opamp_positive_input_channel_selection_t
The enumeration of positive input channel selection.
-
typedef struct _opamp_config opamp_config_t
OPAMP configuraion, including mode, internal reference voltage, positive gain, negative gain and so on.
-
struct _opamp_config
- #include <fsl_opamp.h>
OPAMP configuraion, including mode, internal reference voltage, positive gain, negative gain and so on.
Public Members
-
bool enable
Enable/disable OPAMP.
-
opamp_mode_t mode
Opamp mode, available values are kOPAMP_LowNoiseMode and kOPAMP_HighSpeedMode.
-
opamp_bias_current_trim_option_t trimOption
Bias current trim option, please refer to opamp_bias_current_trim_option_t.
-
opamp_internal_ref_voltage_t intRefVoltage
Internal reference voltage, please refer to opamp_internal_ref_voltage_t.
-
opamp_positive_ref_voltage_t posRefVoltage
Positive part reference voltage, please refer to opamp_positive_ref_voltage_t.
-
opamp_positive_gain_t posGain
Positive part programmable gain, please refer to opamp_positive_gain_t.
-
opamp_negative_gain_t negGain
Negative part programmable gain, please refer to opamp_negative_gain_t.
-
bool enableOutputSwitch
OPAMP out to negative gain resistor ladder switch.
-
bool enablePosADCSw1
Positive part reference voltage switch to ADC channel or not.
true Positive part reference voltage switch to ADC channel.
false Positive part reference voltage do not switch to ADC channel.
-
bool enablePosADCSw2
Positive part reference voltage switch to ADC channel or not.
true Positive part reference voltage switch to ADC channel.
false Positive part reference voltage do not switch to ADC channel.
-
bool enableRefBuffer
Reference buffer enable.
-
opamp_positive_input_channel_selection_t PosInputChannelSelection
Positive Input Channel Selection
-
bool enableTriggerMode
Trigger Mode Enable.
-
bool enable
OSTIMER: OS Event Timer Driver
-
void OSTIMER_Init(OSTIMER_Type *base)
Initializes an OSTIMER by turning its bus clock on.
-
void OSTIMER_Deinit(OSTIMER_Type *base)
Deinitializes a OSTIMER instance.
This function shuts down OSTIMER bus clock
- Parameters:
base – OSTIMER peripheral base address.
-
uint64_t OSTIMER_GrayToDecimal(uint64_t gray)
Translate the value from gray-code to decimal.
- Parameters:
gray – The gray value input.
- Returns:
The decimal value.
-
static inline uint64_t OSTIMER_DecimalToGray(uint64_t dec)
Translate the value from decimal to gray-code.
- Parameters:
dec – The decimal value.
- Returns:
The gray code of the input value.
-
uint32_t OSTIMER_GetStatusFlags(OSTIMER_Type *base)
Get OSTIMER status Flags.
This returns the status flag. Currently, only match interrupt flag can be got.
- Parameters:
base – OSTIMER peripheral base address.
- Returns:
status register value
-
void OSTIMER_ClearStatusFlags(OSTIMER_Type *base, uint32_t mask)
Clear Status Interrupt Flags.
This clears intrrupt status flag. Currently, only match interrupt flag can be cleared.
- Parameters:
base – OSTIMER peripheral base address.
mask – Clear bit mask.
- Returns:
none
-
status_t OSTIMER_SetMatchRawValue(OSTIMER_Type *base, uint64_t count, ostimer_callback_t cb)
Set the match raw value for OSTIMER.
This function will set a match value for OSTIMER with an optional callback. And this callback will be called while the data in dedicated pair match register is equals to the value of central EVTIMER. Please note that, the data format is gray-code, if decimal data was desired, please using OSTIMER_SetMatchValue().
- Parameters:
base – OSTIMER peripheral base address.
count – OSTIMER timer match value.(Value is gray-code format)
cb – OSTIMER callback (can be left as NULL if none, otherwise should be a void func(void)).
- Return values:
kStatus_Success – - Set match raw value and enable interrupt Successfully.
kStatus_Fail – - Set match raw value fail.
-
status_t OSTIMER_SetMatchValue(OSTIMER_Type *base, uint64_t count, ostimer_callback_t cb)
Set the match value for OSTIMER.
This function will set a match value for OSTIMER with an optional callback. And this callback will be called while the data in dedicated pair match register is equals to the value of central OS TIMER.
- Parameters:
base – OSTIMER peripheral base address.
count – OSTIMER timer match value.(Value is decimal format, and this value will be translate to Gray code internally.)
cb – OSTIMER callback (can be left as NULL if none, otherwise should be a void func(void)).
- Return values:
kStatus_Success – - Set match value and enable interrupt Successfully.
kStatus_Fail – - Set match value fail.
-
static inline void OSTIMER_SetMatchRegister(OSTIMER_Type *base, uint64_t value)
Set value to OSTIMER MATCH register directly.
This function writes the input value to OSTIMER MATCH register directly, it does not touch any other registers. Note that, the data format is gray-code. The function OSTIMER_DecimalToGray could convert decimal value to gray code.
- Parameters:
base – OSTIMER peripheral base address.
value – OSTIMER timer match value (Value is gray-code format).
-
static inline void OSTIMER_EnableMatchInterrupt(OSTIMER_Type *base)
Enable the OSTIMER counter match interrupt.
Enable the timer counter match interrupt. The interrupt happens when OSTIMER counter matches the value in MATCH registers.
- Parameters:
base – OSTIMER peripheral base address.
-
static inline void OSTIMER_DisableMatchInterrupt(OSTIMER_Type *base)
Disable the OSTIMER counter match interrupt.
Disable the timer counter match interrupt. The interrupt happens when OSTIMER counter matches the value in MATCH registers.
- Parameters:
base – OSTIMER peripheral base address.
-
static inline uint64_t OSTIMER_GetCurrentTimerRawValue(OSTIMER_Type *base)
Get current timer raw count value from OSTIMER.
This function will get a gray code type timer count value from OS timer register. The raw value of timer count is gray code format.
- Parameters:
base – OSTIMER peripheral base address.
- Returns:
Raw value of OSTIMER, gray code format.
-
uint64_t OSTIMER_GetCurrentTimerValue(OSTIMER_Type *base)
Get current timer count value from OSTIMER.
This function will get a decimal timer count value. The RAW value of timer count is gray code format, will be translated to decimal data internally.
- Parameters:
base – OSTIMER peripheral base address.
- Returns:
Value of OSTIMER which will be formated to decimal value.
-
static inline uint64_t OSTIMER_GetCaptureRawValue(OSTIMER_Type *base)
Get the capture value from OSTIMER.
This function will get a captured gray-code value from OSTIMER. The Raw value of timer capture is gray code format.
- Parameters:
base – OSTIMER peripheral base address.
- Returns:
Raw value of capture register, data format is gray code.
-
uint64_t OSTIMER_GetCaptureValue(OSTIMER_Type *base)
Get the capture value from OSTIMER.
This function will get a capture decimal-value from OSTIMER. The RAW value of timer capture is gray code format, will be translated to decimal data internally.
- Parameters:
base – OSTIMER peripheral base address.
- Returns:
Value of capture register, data format is decimal.
-
void OSTIMER_HandleIRQ(OSTIMER_Type *base, ostimer_callback_t cb)
OS timer interrupt Service Handler.
This function handles the interrupt and refers to the callback array in the driver to callback user (as per request in OSTIMER_SetMatchValue()). if no user callback is scheduled, the interrupt will simply be cleared.
- Parameters:
base – OS timer peripheral base address.
cb – callback scheduled for this instance of OS timer
- Returns:
none
-
FSL_OSTIMER_DRIVER_VERSION
OSTIMER driver version.
-
enum _ostimer_flags
OSTIMER status flags.
Values:
-
enumerator kOSTIMER_MatchInterruptFlag
Match interrupt flag bit, sets if the match value was reached.
-
enumerator kOSTIMER_MatchInterruptFlag
-
typedef void (*ostimer_callback_t)(void)
ostimer callback function.
PORT: Port Control and Interrupts
-
static inline void PORT_GetVersionInfo(PORT_Type *base, port_version_info_t *info)
Get PORT version information.
- Parameters:
base – PORT peripheral base pointer
info – PORT version information
-
static inline void PORT_SecletPortVoltageRange(PORT_Type *base, port_voltage_range_t range)
Get PORT version information.
Note
: PORTA_CONFIG[RANGE] controls the voltage ranges of Port A, B, and C. Read or write PORTB_CONFIG[RANGE] and PORTC_CONFIG[RANGE] does not take effect.
- Parameters:
base – PORT peripheral base pointer
range – port voltage range
-
static inline void PORT_SetPinConfig(PORT_Type *base, uint32_t pin, const port_pin_config_t *config)
Sets the port PCR register.
This is an example to define an input pin or output pin PCR configuration.
// Define a digital input pin PCR configuration port_pin_config_t config = { kPORT_PullUp, kPORT_FastSlewRate, kPORT_PassiveFilterDisable, kPORT_OpenDrainDisable, kPORT_LowDriveStrength, kPORT_MuxAsGpio, kPORT_UnLockRegister, };
- Parameters:
base – PORT peripheral base pointer.
pin – PORT pin number.
config – PORT PCR register configuration structure.
-
static inline void PORT_SetMultiplePinsConfig(PORT_Type *base, uint32_t mask, const port_pin_config_t *config)
Sets the port PCR register for multiple pins.
This is an example to define input pins or output pins PCR configuration.
Define a digital input pin PCR configuration port_pin_config_t config = { kPORT_PullUp , kPORT_PullEnable, kPORT_FastSlewRate, kPORT_PassiveFilterDisable, kPORT_OpenDrainDisable, kPORT_LowDriveStrength, kPORT_MuxAsGpio, kPORT_UnlockRegister, };
- Parameters:
base – PORT peripheral base pointer.
mask – PORT pin number macro.
config – PORT PCR register configuration structure.
-
static inline void PORT_SetMultipleInterruptPinsConfig(PORT_Type *base, uint32_t mask, port_interrupt_t config)
Sets the port interrupt configuration in PCR register for multiple pins.
- Parameters:
base – PORT peripheral base pointer.
mask – PORT pin number macro.
config – PORT pin interrupt configuration.
#kPORT_InterruptOrDMADisabled: Interrupt/DMA request disabled.
#kPORT_DMARisingEdge : DMA request on rising edge(if the DMA requests exit).
#kPORT_DMAFallingEdge: DMA request on falling edge(if the DMA requests exit).
#kPORT_DMAEitherEdge : DMA request on either edge(if the DMA requests exit).
#kPORT_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).
#kPORT_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).
#kPORT_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).
#kPORT_InterruptLogicZero : Interrupt when logic zero.
#kPORT_InterruptRisingEdge : Interrupt on rising edge.
#kPORT_InterruptFallingEdge: Interrupt on falling edge.
#kPORT_InterruptEitherEdge : Interrupt on either edge.
#kPORT_InterruptLogicOne : Interrupt when logic one.
#kPORT_ActiveHighTriggerOutputEnable : Enable active high-trigger output (if the trigger states exit).
#kPORT_ActiveLowTriggerOutputEnable : Enable active low-trigger output (if the trigger states exit)..
-
static inline void PORT_SetPinMux(PORT_Type *base, uint32_t pin, port_mux_t mux)
Configures the pin muxing.
Note
: This function is NOT recommended to use together with the PORT_SetPinsConfig, because the PORT_SetPinsConfig need to configure the pin mux anyway (Otherwise the pin mux is reset to zero : kPORT_PinDisabledOrAnalog). This function is recommended to use to reset the pin mux
- Parameters:
base – PORT peripheral base pointer.
pin – PORT pin number.
mux – pin muxing slot selection.
kPORT_PinDisabledOrAnalog: Pin disabled or work in analog function.
kPORT_MuxAsGpio : Set as GPIO.
kPORT_MuxAlt2 : chip-specific.
kPORT_MuxAlt3 : chip-specific.
kPORT_MuxAlt4 : chip-specific.
kPORT_MuxAlt5 : chip-specific.
kPORT_MuxAlt6 : chip-specific.
kPORT_MuxAlt7 : chip-specific.
-
static inline void PORT_EnablePinsDigitalFilter(PORT_Type *base, uint32_t mask, bool enable)
Enables the digital filter in one port, each bit of the 32-bit register represents one pin.
- Parameters:
base – PORT peripheral base pointer.
mask – PORT pin number macro.
enable – PORT digital filter configuration.
-
static inline void PORT_SetDigitalFilterConfig(PORT_Type *base, const port_digital_filter_config_t *config)
Sets the digital filter in one port, each bit of the 32-bit register represents one pin.
- Parameters:
base – PORT peripheral base pointer.
config – PORT digital filter configuration structure.
-
static inline void PORT_SetPinDriveStrength(PORT_Type *base, uint32_t pin, uint8_t strength)
Configures the port pin drive strength.
- Parameters:
base – PORT peripheral base pointer.
pin – PORT pin number.
strength – PORT pin drive strength
kPORT_LowDriveStrength = 0U - Low-drive strength is configured.
kPORT_HighDriveStrength = 1U - High-drive strength is configured.
-
static inline void PORT_EnablePinDoubleDriveStrength(PORT_Type *base, uint32_t pin, bool enable)
Enables the port pin double drive strength.
- Parameters:
base – PORT peripheral base pointer.
pin – PORT pin number.
enable – PORT pin drive strength configuration.
-
static inline void PORT_SetPinPullValue(PORT_Type *base, uint32_t pin, uint8_t value)
Configures the port pin pull value.
- Parameters:
base – PORT peripheral base pointer.
pin – PORT pin number.
value – PORT pin pull value
kPORT_LowPullResistor = 0U - Low internal pull resistor value is selected.
kPORT_HighPullResistor = 1U - High internal pull resistor value is selected.
-
static inline uint32_t PORT_GetEFTDetectFlags(PORT_Type *base)
Get EFT detect flags.
- Parameters:
base – PORT peripheral base pointer
- Returns:
EFT detect flags
-
static inline void PORT_EnableEFTDetectInterrupts(PORT_Type *base, uint32_t interrupt)
Enable EFT detect interrupts.
- Parameters:
base – PORT peripheral base pointer
interrupt – EFT detect interrupt
-
static inline void PORT_DisableEFTDetectInterrupts(PORT_Type *base, uint32_t interrupt)
Disable EFT detect interrupts.
- Parameters:
base – PORT peripheral base pointer
interrupt – EFT detect interrupt
-
static inline void PORT_ClearAllLowEFTDetectors(PORT_Type *base)
Clear all low EFT detector.
Note
: Port B and Port C pins share the same EFT detector clear control from PORTC_EDCR register. Any write to the PORTB_EDCR does not take effect.
- Parameters:
base – PORT peripheral base pointer
interrupt – EFT detect interrupt
-
static inline void PORT_ClearAllHighEFTDetectors(PORT_Type *base)
Clear all high EFT detector.
- Parameters:
base – PORT peripheral base pointer
interrupt – EFT detect interrupt
-
FSL_PORT_DRIVER_VERSION
PORT driver version.
-
enum _port_pull
Internal resistor pull feature selection.
Values:
-
enumerator kPORT_PullDisable
Internal pull-up/down resistor is disabled.
-
enumerator kPORT_PullDown
Internal pull-down resistor is enabled.
-
enumerator kPORT_PullUp
Internal pull-up resistor is enabled.
-
enumerator kPORT_PullDisable
-
enum _port_pull_value
Internal resistor pull value selection.
Values:
-
enumerator kPORT_LowPullResistor
Low internal pull resistor value is selected.
-
enumerator kPORT_HighPullResistor
High internal pull resistor value is selected.
-
enumerator kPORT_LowPullResistor
-
enum _port_slew_rate
Slew rate selection.
Values:
-
enumerator kPORT_FastSlewRate
Fast slew rate is configured.
-
enumerator kPORT_SlowSlewRate
Slow slew rate is configured.
-
enumerator kPORT_FastSlewRate
-
enum _port_open_drain_enable
Open Drain feature enable/disable.
Values:
-
enumerator kPORT_OpenDrainDisable
Open drain output is disabled.
-
enumerator kPORT_OpenDrainEnable
Open drain output is enabled.
-
enumerator kPORT_OpenDrainDisable
-
enum _port_passive_filter_enable
Passive filter feature enable/disable.
Values:
-
enumerator kPORT_PassiveFilterDisable
Passive input filter is disabled.
-
enumerator kPORT_PassiveFilterEnable
Passive input filter is enabled.
-
enumerator kPORT_PassiveFilterDisable
-
enum _port_drive_strength
Configures the drive strength.
Values:
-
enumerator kPORT_LowDriveStrength
Low-drive strength is configured.
-
enumerator kPORT_HighDriveStrength
High-drive strength is configured.
-
enumerator kPORT_LowDriveStrength
-
enum _port_drive_strength1
Configures the drive strength1.
Values:
-
enumerator kPORT_NormalDriveStrength
Normal drive strength
-
enumerator kPORT_DoubleDriveStrength
Double drive strength
-
enumerator kPORT_NormalDriveStrength
-
enum _port_input_buffer
input buffer disable/enable.
Values:
-
enumerator kPORT_InputBufferDisable
Digital input is disabled
-
enumerator kPORT_InputBufferEnable
Digital input is enabled
-
enumerator kPORT_InputBufferDisable
-
enum _port_invet_input
Digital input is not inverted or it is inverted.
Values:
-
enumerator kPORT_InputNormal
Digital input is not inverted
-
enumerator kPORT_InputInvert
Digital input is inverted
-
enumerator kPORT_InputNormal
-
enum _port_lock_register
Unlock/lock the pin control register field[15:0].
Values:
-
enumerator kPORT_UnlockRegister
Pin Control Register fields [15:0] are not locked.
-
enumerator kPORT_LockRegister
Pin Control Register fields [15:0] are locked.
-
enumerator kPORT_UnlockRegister
-
enum _port_mux
Pin mux selection.
Values:
-
enumerator kPORT_PinDisabledOrAnalog
Corresponding pin is disabled, but is used as an analog pin.
-
enumerator kPORT_MuxAsGpio
Corresponding pin is configured as GPIO.
-
enumerator kPORT_MuxAlt0
Chip-specific
-
enumerator kPORT_MuxAlt1
Chip-specific
-
enumerator kPORT_MuxAlt2
Chip-specific
-
enumerator kPORT_MuxAlt3
Chip-specific
-
enumerator kPORT_MuxAlt4
Chip-specific
-
enumerator kPORT_MuxAlt5
Chip-specific
-
enumerator kPORT_MuxAlt6
Chip-specific
-
enumerator kPORT_MuxAlt7
Chip-specific
-
enumerator kPORT_MuxAlt8
Chip-specific
-
enumerator kPORT_MuxAlt9
Chip-specific
-
enumerator kPORT_MuxAlt10
Chip-specific
-
enumerator kPORT_MuxAlt11
Chip-specific
-
enumerator kPORT_MuxAlt12
Chip-specific
-
enumerator kPORT_MuxAlt13
Chip-specific
-
enumerator kPORT_MuxAlt14
Chip-specific
-
enumerator kPORT_MuxAlt15
Chip-specific
-
enumerator kPORT_PinDisabledOrAnalog
-
enum _port_digital_filter_clock_source
Digital filter clock source selection.
Values:
-
enumerator kPORT_BusClock
Digital filters are clocked by the bus clock.
-
enumerator kPORT_LpoClock
Digital filters are clocked by the 1 kHz LPO clock.
-
enumerator kPORT_BusClock
-
enum _port_voltage_range
PORT voltage range.
Values:
-
enumerator kPORT_VoltageRange1Dot71V_3Dot6V
Port voltage range is 1.71 V - 3.6 V.
-
enumerator kPORT_VoltageRange2Dot70V_3Dot6V
Port voltage range is 2.70 V - 3.6 V.
-
enumerator kPORT_VoltageRange1Dot71V_3Dot6V
-
typedef enum _port_mux port_mux_t
Pin mux selection.
-
typedef enum _port_digital_filter_clock_source port_digital_filter_clock_source_t
Digital filter clock source selection.
-
typedef struct _port_digital_filter_config port_digital_filter_config_t
PORT digital filter feature configuration definition.
-
typedef struct _port_pin_config port_pin_config_t
PORT pin configuration structure.
-
typedef struct _port_version_info port_version_info_t
PORT version information.
-
typedef enum _port_voltage_range port_voltage_range_t
PORT voltage range.
-
FSL_COMPONENT_ID
-
struct _port_digital_filter_config
- #include <fsl_port.h>
PORT digital filter feature configuration definition.
Public Members
-
uint32_t digitalFilterWidth
Set digital filter width
-
port_digital_filter_clock_source_t clockSource
Set digital filter clockSource
-
uint32_t digitalFilterWidth
-
struct _port_pin_config
- #include <fsl_port.h>
PORT pin configuration structure.
Public Members
-
uint16_t pullSelect
No-pull/pull-down/pull-up select
-
uint16_t pullValueSelect
Pull value select
-
uint16_t slewRate
Fast/slow slew rate Configure
-
uint16_t passiveFilterEnable
Passive filter enable/disable
-
uint16_t openDrainEnable
Open drain enable/disable
-
uint16_t driveStrength
Fast/slow drive strength configure
-
uint16_t driveStrength1
Normal/Double drive strength enable/disable
-
uint16_t inputBuffer
Input Buffer Configure
-
uint16_t invertInput
Invert Input Configure
-
uint16_t lockRegister
Lock/unlock the PCR field[15:0]
-
uint16_t pullSelect
-
struct _port_version_info
- #include <fsl_port.h>
PORT version information.
Public Members
-
uint16_t feature
Feature Specification Number.
-
uint8_t minor
Minor Version Number.
-
uint8_t major
Major Version Number.
-
uint16_t feature
PWM: Pulse Width Modulator
-
status_t PWM_Init(PWM_Type *base, pwm_submodule_t subModule, const pwm_config_t *config)
Ungates the PWM submodule clock and configures the peripheral for basic operation.
This API should be called at the beginning of the application using the PWM driver. When user select PWMX, user must choose edge aligned output, becasue there are some limitation on center aligned PWMX output. When output PWMX in center aligned mode, VAL1 register controls both PWM period and PWMX duty cycle, PWMA and PWMB output will be corrupted. But edge aligned PWMX output do not have such limit. In master reload counter initialization mode, PWM period is depended by period of set LDOK in submodule 0 because this operation will reload register. Submodule 0 counter initialization cannot be master sync or master reload.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
config – Pointer to user’s PWM config structure.
- Returns:
kStatus_Success means success; else failed.
-
void PWM_Deinit(PWM_Type *base, pwm_submodule_t subModule)
Gate the PWM submodule clock.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to deinitialize
-
void PWM_GetDefaultConfig(pwm_config_t *config)
Fill in the PWM config struct with the default settings.
The default values are:
config->enableDebugMode = false; config->enableWait = false; config->reloadSelect = kPWM_LocalReload; config->clockSource = kPWM_BusClock; config->prescale = kPWM_Prescale_Divide_1; config->initializationControl = kPWM_Initialize_LocalSync; config->forceTrigger = kPWM_Force_Local; config->reloadFrequency = kPWM_LoadEveryOportunity; config->reloadLogic = kPWM_ReloadImmediate; config->pairOperation = kPWM_Independent;
- Parameters:
config – Pointer to user’s PWM config structure.
-
status_t PWM_SetupPwm(PWM_Type *base, pwm_submodule_t subModule, const pwm_signal_param_t *chnlParams, uint8_t numOfChnls, pwm_mode_t mode, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz)
Sets up the PWM signals for a PWM submodule.
The function initializes the submodule according to the parameters passed in by the user. The function also sets up the value compare registers to match the PWM signal requirements. If the dead time insertion logic is enabled, the pulse period is reduced by the dead time period specified by the user. When user select PWMX, user must choose edge aligned output, becasue there are some limitation on center aligned PWMX output. Due to edge aligned PWMX is negative true signal, need to configure PWMX active low true level to get correct duty cycle. The half cycle point will not be exactly in the middle of the PWM cycle when PWMX enabled.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
chnlParams – Array of PWM channel parameters to configure the channel(s).
numOfChnls – Number of channels to configure, this should be the size of the array passed in. Array size should not be more than 3 as each submodule has 3 pins to output PWM.
mode – PWM operation mode, options available in enumeration pwm_mode_t
pwmFreq_Hz – PWM signal frequency in Hz
srcClock_Hz – PWM source clock of correspond submodule in Hz. If source clock of submodule1,2,3 is from submodule0 AUX_CLK, its source clock is submodule0 source clock divided with submodule0 prescaler value instead of submodule0 source clock.
- Returns:
Returns kStatus_Fail if there was error setting up the signal; kStatus_Success otherwise
-
status_t PWM_SetupPwmPhaseShift(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz, uint8_t shiftvalue, bool doSync)
Set PWM phase shift for PWM channel running on channel PWM_A, PWM_B which with 50% duty cycle.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – PWM channel to configure
pwmFreq_Hz – PWM signal frequency in Hz
srcClock_Hz – PWM main counter clock in Hz.
shiftvalue – Phase shift value, range in 0 ~ 50
doSync – true: Set LDOK bit for the submodule list; false: LDOK bit don’t set, need to call PWM_SetPwmLdok to sync update.
- Returns:
Returns kStatus_Fail if there was error setting up the signal; kStatus_Success otherwise
-
void PWM_UpdatePwmDutycycle(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmSignal, pwm_mode_t currPwmMode, uint8_t dutyCyclePercent)
Updates the PWM signal’s dutycycle.
The function updates the PWM dutycyle to the new value that is passed in. If the dead time insertion logic is enabled then the pulse period is reduced by the dead time period specified by the user.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmSignal – Signal (PWM A, PWM B, PWM X) to update
currPwmMode – The current PWM mode set during PWM setup
dutyCyclePercent – New PWM pulse width, value should be between 0 to 100 0=inactive signal(0% duty cycle)… 100=active signal (100% duty cycle)
-
void PWM_UpdatePwmDutycycleHighAccuracy(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmSignal, pwm_mode_t currPwmMode, uint16_t dutyCycle)
Updates the PWM signal’s dutycycle with 16-bit accuracy.
The function updates the PWM dutycyle to the new value that is passed in. If the dead time insertion logic is enabled then the pulse period is reduced by the dead time period specified by the user.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmSignal – Signal (PWM A, PWM B, PWM X) to update
currPwmMode – The current PWM mode set during PWM setup
dutyCycle – New PWM pulse width, value should be between 0 to 65535 0=inactive signal(0% duty cycle)… 65535=active signal (100% duty cycle)
-
void PWM_UpdatePwmPeriodAndDutycycle(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmSignal, pwm_mode_t currPwmMode, uint16_t pulseCnt, uint16_t dutyCycle)
Update the PWM signal’s period and dutycycle for a PWM submodule.
The function updates PWM signal period generated by a specific submodule according to the parameters passed in by the user. This function can also set dutycycle weather you want to keep original dutycycle or update new dutycycle. Call this function in local sync control mode because PWM period is depended by
INIT and VAL1 register of each submodule. In master sync initialization control mode, call this function to update INIT and VAL1 register of all submodule because PWM period is depended by INIT and VAL1 register in submodule0. If the dead time insertion logic is enabled, the pulse period is reduced by the dead time period specified by the user. PWM signal will not be generated if its period is less than dead time duration.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmSignal – Signal (PWM A or PWM B) to update
currPwmMode – The current PWM mode set during PWM setup, options available in enumeration pwm_mode_t
pulseCnt – New PWM period, value should be between 0 to 65535 0=minimum PWM period… 65535=maximum PWM period
dutyCycle – New PWM pulse width of channel, value should be between 0 to 65535 0=inactive signal(0% duty cycle)… 65535=active signal (100% duty cycle) You can keep original duty cycle or update new duty cycle
-
static inline void PWM_EnableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
Enables the selected PWM interrupts.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
mask – The interrupts to enable. This is a logical OR of members of the enumeration pwm_interrupt_enable_t
-
static inline void PWM_DisableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
Disables the selected PWM interrupts.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
mask – The interrupts to enable. This is a logical OR of members of the enumeration pwm_interrupt_enable_t
-
static inline uint32_t PWM_GetEnabledInterrupts(PWM_Type *base, pwm_submodule_t subModule)
Gets the enabled PWM interrupts.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration pwm_interrupt_enable_t
-
static inline void PWM_DMAFIFOWatermarkControl(PWM_Type *base, pwm_submodule_t subModule, pwm_watermark_control_t pwm_watermark_control)
Capture DMA Enable Source Select.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwm_watermark_control – PWM FIFO watermark and control
-
static inline void PWM_DMACaptureSourceSelect(PWM_Type *base, pwm_submodule_t subModule, pwm_dma_source_select_t pwm_dma_source_select)
Capture DMA Enable Source Select.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwm_dma_source_select – PWM capture DMA enable source select
-
static inline void PWM_EnableDMACapture(PWM_Type *base, pwm_submodule_t subModule, uint16_t mask, bool activate)
Enables or disables the selected PWM DMA Capture read request.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
mask – The DMA to enable or disable. This is a logical OR of members of the enumeration pwm_dma_enable_t
activate – true: Enable DMA read request; false: Disable DMA read request
-
static inline void PWM_EnableDMAWrite(PWM_Type *base, pwm_submodule_t subModule, bool activate)
Enables or disables the PWM DMA write request.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
activate – true: Enable DMA write request; false: Disable DMA write request
-
static inline uint32_t PWM_GetStatusFlags(PWM_Type *base, pwm_submodule_t subModule)
Gets the PWM status flags.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
- Returns:
The status flags. This is the logical OR of members of the enumeration pwm_status_flags_t
-
static inline void PWM_ClearStatusFlags(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
Clears the PWM status flags.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
mask – The status flags to clear. This is a logical OR of members of the enumeration pwm_status_flags_t
-
static inline void PWM_StartTimer(PWM_Type *base, uint8_t subModulesToStart)
Starts the PWM counter for a single or multiple submodules.
Sets the Run bit which enables the clocks to the PWM submodule. This function can start multiple submodules at the same time.
- Parameters:
base – PWM peripheral base address
subModulesToStart – PWM submodules to start. This is a logical OR of members of the enumeration pwm_module_control_t
-
static inline void PWM_StopTimer(PWM_Type *base, uint8_t subModulesToStop)
Stops the PWM counter for a single or multiple submodules.
Clears the Run bit which resets the submodule’s counter. This function can stop multiple submodules at the same time.
- Parameters:
base – PWM peripheral base address
subModulesToStop – PWM submodules to stop. This is a logical OR of members of the enumeration pwm_module_control_t
-
FSL_PWM_DRIVER_VERSION
Version 2.9.0
-
enum _pwm_submodule
List of PWM submodules.
Values:
-
enumerator kPWM_Module_0
Submodule 0
-
enumerator kPWM_Module_1
Submodule 1
-
enumerator kPWM_Module_2
Submodule 2
-
enumerator kPWM_Module_0
-
enum _pwm_channels
List of PWM channels in each module.
Values:
-
enumerator kPWM_PwmB
-
enumerator kPWM_PwmA
-
enumerator kPWM_PwmX
-
enumerator kPWM_PwmB
-
enum _pwm_value_register
List of PWM value registers.
Values:
-
enumerator kPWM_ValueRegister_0
PWM Value0 register
-
enumerator kPWM_ValueRegister_1
PWM Value1 register
-
enumerator kPWM_ValueRegister_2
PWM Value2 register
-
enumerator kPWM_ValueRegister_3
PWM Value3 register
-
enumerator kPWM_ValueRegister_4
PWM Value4 register
-
enumerator kPWM_ValueRegister_5
PWM Value5 register
-
enumerator kPWM_ValueRegister_0
-
enum _pwm_value_register_mask
List of PWM value registers mask.
Values:
-
enumerator kPWM_ValueRegisterMask_0
PWM Value0 register mask
-
enumerator kPWM_ValueRegisterMask_1
PWM Value1 register mask
-
enumerator kPWM_ValueRegisterMask_2
PWM Value2 register mask
-
enumerator kPWM_ValueRegisterMask_3
PWM Value3 register mask
-
enumerator kPWM_ValueRegisterMask_4
PWM Value4 register mask
-
enumerator kPWM_ValueRegisterMask_5
PWM Value5 register mask
-
enumerator kPWM_ValueRegisterMask_0
-
enum _pwm_clock_source
PWM clock source selection.
Values:
-
enumerator kPWM_BusClock
The IPBus clock is used as the clock
-
enumerator kPWM_ExternalClock
EXT_CLK is used as the clock
-
enumerator kPWM_Submodule0Clock
Clock of the submodule 0 (AUX_CLK) is used as the source clock
-
enumerator kPWM_BusClock
-
enum _pwm_clock_prescale
PWM prescaler factor selection for clock source.
Values:
-
enumerator kPWM_Prescale_Divide_1
PWM clock frequency = fclk/1
-
enumerator kPWM_Prescale_Divide_2
PWM clock frequency = fclk/2
-
enumerator kPWM_Prescale_Divide_4
PWM clock frequency = fclk/4
-
enumerator kPWM_Prescale_Divide_8
PWM clock frequency = fclk/8
-
enumerator kPWM_Prescale_Divide_16
PWM clock frequency = fclk/16
-
enumerator kPWM_Prescale_Divide_32
PWM clock frequency = fclk/32
-
enumerator kPWM_Prescale_Divide_64
PWM clock frequency = fclk/64
-
enumerator kPWM_Prescale_Divide_128
PWM clock frequency = fclk/128
-
enumerator kPWM_Prescale_Divide_1
-
enum _pwm_force_output_trigger
Options that can trigger a PWM FORCE_OUT.
Values:
-
enumerator kPWM_Force_Local
The local force signal, CTRL2[FORCE], from the submodule is used to force updates
-
enumerator kPWM_Force_Master
The master force signal from submodule 0 is used to force updates
-
enumerator kPWM_Force_LocalReload
The local reload signal from this submodule is used to force updates without regard to the state of LDOK
-
enumerator kPWM_Force_MasterReload
The master reload signal from submodule 0 is used to force updates if LDOK is set
-
enumerator kPWM_Force_LocalSync
The local sync signal from this submodule is used to force updates
-
enumerator kPWM_Force_MasterSync
The master sync signal from submodule0 is used to force updates
-
enumerator kPWM_Force_External
The external force signal, EXT_FORCE, from outside the PWM module causes updates
-
enumerator kPWM_Force_ExternalSync
The external sync signal, EXT_SYNC, from outside the PWM module causes updates
-
enumerator kPWM_Force_Local
-
enum _pwm_output_state
PWM channel output status.
Values:
-
enumerator kPWM_HighState
The output state of PWM channel is high
-
enumerator kPWM_LowState
The output state of PWM channel is low
-
enumerator kPWM_NormalState
The output state of PWM channel is normal
-
enumerator kPWM_InvertState
The output state of PWM channel is invert
-
enumerator kPWM_MaskState
The output state of PWM channel is mask
-
enumerator kPWM_HighState
-
enum _pwm_init_source
PWM counter initialization options.
Values:
-
enumerator kPWM_Initialize_LocalSync
Local sync causes initialization
-
enumerator kPWM_Initialize_MasterReload
Master reload from submodule 0 causes initialization
-
enumerator kPWM_Initialize_MasterSync
Master sync from submodule 0 causes initialization
-
enumerator kPWM_Initialize_ExtSync
EXT_SYNC causes initialization
-
enumerator kPWM_Initialize_LocalSync
-
enum _pwm_load_frequency
PWM load frequency selection.
Values:
-
enumerator kPWM_LoadEveryOportunity
Every PWM opportunity
-
enumerator kPWM_LoadEvery2Oportunity
Every 2 PWM opportunities
-
enumerator kPWM_LoadEvery3Oportunity
Every 3 PWM opportunities
-
enumerator kPWM_LoadEvery4Oportunity
Every 4 PWM opportunities
-
enumerator kPWM_LoadEvery5Oportunity
Every 5 PWM opportunities
-
enumerator kPWM_LoadEvery6Oportunity
Every 6 PWM opportunities
-
enumerator kPWM_LoadEvery7Oportunity
Every 7 PWM opportunities
-
enumerator kPWM_LoadEvery8Oportunity
Every 8 PWM opportunities
-
enumerator kPWM_LoadEvery9Oportunity
Every 9 PWM opportunities
-
enumerator kPWM_LoadEvery10Oportunity
Every 10 PWM opportunities
-
enumerator kPWM_LoadEvery11Oportunity
Every 11 PWM opportunities
-
enumerator kPWM_LoadEvery12Oportunity
Every 12 PWM opportunities
-
enumerator kPWM_LoadEvery13Oportunity
Every 13 PWM opportunities
-
enumerator kPWM_LoadEvery14Oportunity
Every 14 PWM opportunities
-
enumerator kPWM_LoadEvery15Oportunity
Every 15 PWM opportunities
-
enumerator kPWM_LoadEvery16Oportunity
Every 16 PWM opportunities
-
enumerator kPWM_LoadEveryOportunity
-
enum _pwm_fault_input
List of PWM fault selections.
Values:
-
enumerator kPWM_Fault_0
Fault 0 input pin
-
enumerator kPWM_Fault_1
Fault 1 input pin
-
enumerator kPWM_Fault_2
Fault 2 input pin
-
enumerator kPWM_Fault_3
Fault 3 input pin
-
enumerator kPWM_Fault_0
-
enum _pwm_fault_disable
List of PWM fault disable mapping selections.
Values:
-
enumerator kPWM_FaultDisable_0
Fault 0 disable mapping
-
enumerator kPWM_FaultDisable_1
Fault 1 disable mapping
-
enumerator kPWM_FaultDisable_2
Fault 2 disable mapping
-
enumerator kPWM_FaultDisable_3
Fault 3 disable mapping
-
enumerator kPWM_FaultDisable_0
-
enum _pwm_fault_channels
List of PWM fault channels.
Values:
-
enumerator kPWM_faultchannel_0
-
enumerator kPWM_faultchannel_1
-
enumerator kPWM_faultchannel_0
-
enum _pwm_input_capture_edge
PWM capture edge select.
Values:
-
enumerator kPWM_Disable
Disabled
-
enumerator kPWM_FallingEdge
Capture on falling edge only
-
enumerator kPWM_RisingEdge
Capture on rising edge only
-
enumerator kPWM_RiseAndFallEdge
Capture on rising or falling edge
-
enumerator kPWM_Disable
-
enum _pwm_force_signal
PWM output options when a FORCE_OUT signal is asserted.
Values:
-
enumerator kPWM_UsePwm
Generated PWM signal is used by the deadtime logic.
-
enumerator kPWM_InvertedPwm
Inverted PWM signal is used by the deadtime logic.
-
enumerator kPWM_SoftwareControl
Software controlled value is used by the deadtime logic.
-
enumerator kPWM_UseExternal
PWM_EXTA signal is used by the deadtime logic.
-
enumerator kPWM_UsePwm
-
enum _pwm_chnl_pair_operation
Options available for the PWM A & B pair operation.
Values:
-
enumerator kPWM_Independent
PWM A & PWM B operate as 2 independent channels
-
enumerator kPWM_ComplementaryPwmA
PWM A & PWM B are complementary channels, PWM A generates the signal
-
enumerator kPWM_ComplementaryPwmB
PWM A & PWM B are complementary channels, PWM B generates the signal
-
enumerator kPWM_Independent
-
enum _pwm_register_reload
Options available on how to load the buffered-registers with new values.
Values:
-
enumerator kPWM_ReloadImmediate
Buffered-registers get loaded with new values as soon as LDOK bit is set
-
enumerator kPWM_ReloadPwmHalfCycle
Registers loaded on a PWM half cycle
-
enumerator kPWM_ReloadPwmFullCycle
Registers loaded on a PWM full cycle
-
enumerator kPWM_ReloadPwmHalfAndFullCycle
Registers loaded on a PWM half & full cycle
-
enumerator kPWM_ReloadImmediate
-
enum _pwm_fault_recovery_mode
Options available on how to re-enable the PWM output when recovering from a fault.
Values:
-
enumerator kPWM_NoRecovery
PWM output will stay inactive
-
enumerator kPWM_RecoverHalfCycle
PWM output re-enabled at the first half cycle
-
enumerator kPWM_RecoverFullCycle
PWM output re-enabled at the first full cycle
-
enumerator kPWM_RecoverHalfAndFullCycle
PWM output re-enabled at the first half or full cycle
-
enumerator kPWM_NoRecovery
-
enum _pwm_interrupt_enable
List of PWM interrupt options.
Values:
-
enumerator kPWM_CompareVal0InterruptEnable
PWM VAL0 compare interrupt
-
enumerator kPWM_CompareVal1InterruptEnable
PWM VAL1 compare interrupt
-
enumerator kPWM_CompareVal2InterruptEnable
PWM VAL2 compare interrupt
-
enumerator kPWM_CompareVal3InterruptEnable
PWM VAL3 compare interrupt
-
enumerator kPWM_CompareVal4InterruptEnable
PWM VAL4 compare interrupt
-
enumerator kPWM_CompareVal5InterruptEnable
PWM VAL5 compare interrupt
-
enumerator kPWM_CaptureX0InterruptEnable
PWM capture X0 interrupt
-
enumerator kPWM_CaptureX1InterruptEnable
PWM capture X1 interrupt
-
enumerator kPWM_CaptureB0InterruptEnable
PWM capture B0 interrupt
-
enumerator kPWM_CaptureB1InterruptEnable
PWM capture B1 interrupt
-
enumerator kPWM_CaptureA0InterruptEnable
PWM capture A0 interrupt
-
enumerator kPWM_CaptureA1InterruptEnable
PWM capture A1 interrupt
-
enumerator kPWM_ReloadInterruptEnable
PWM reload interrupt
-
enumerator kPWM_ReloadErrorInterruptEnable
PWM reload error interrupt
-
enumerator kPWM_Fault0InterruptEnable
PWM fault 0 interrupt
-
enumerator kPWM_Fault1InterruptEnable
PWM fault 1 interrupt
-
enumerator kPWM_Fault2InterruptEnable
PWM fault 2 interrupt
-
enumerator kPWM_Fault3InterruptEnable
PWM fault 3 interrupt
-
enumerator kPWM_CompareVal0InterruptEnable
-
enum _pwm_status_flags
List of PWM status flags.
Values:
-
enumerator kPWM_CompareVal0Flag
PWM VAL0 compare flag
-
enumerator kPWM_CompareVal1Flag
PWM VAL1 compare flag
-
enumerator kPWM_CompareVal2Flag
PWM VAL2 compare flag
-
enumerator kPWM_CompareVal3Flag
PWM VAL3 compare flag
-
enumerator kPWM_CompareVal4Flag
PWM VAL4 compare flag
-
enumerator kPWM_CompareVal5Flag
PWM VAL5 compare flag
-
enumerator kPWM_CaptureX0Flag
PWM capture X0 flag
-
enumerator kPWM_CaptureX1Flag
PWM capture X1 flag
-
enumerator kPWM_CaptureB0Flag
PWM capture B0 flag
-
enumerator kPWM_CaptureB1Flag
PWM capture B1 flag
-
enumerator kPWM_CaptureA0Flag
PWM capture A0 flag
-
enumerator kPWM_CaptureA1Flag
PWM capture A1 flag
-
enumerator kPWM_ReloadFlag
PWM reload flag
-
enumerator kPWM_ReloadErrorFlag
PWM reload error flag
-
enumerator kPWM_RegUpdatedFlag
PWM registers updated flag
-
enumerator kPWM_Fault0Flag
PWM fault 0 flag
-
enumerator kPWM_Fault1Flag
PWM fault 1 flag
-
enumerator kPWM_Fault2Flag
PWM fault 2 flag
-
enumerator kPWM_Fault3Flag
PWM fault 3 flag
-
enumerator kPWM_CompareVal0Flag
-
enum _pwm_dma_enable
List of PWM DMA options.
Values:
-
enumerator kPWM_CaptureX0DMAEnable
PWM capture X0 DMA
-
enumerator kPWM_CaptureX1DMAEnable
PWM capture X1 DMA
-
enumerator kPWM_CaptureB0DMAEnable
PWM capture B0 DMA
-
enumerator kPWM_CaptureB1DMAEnable
PWM capture B1 DMA
-
enumerator kPWM_CaptureA0DMAEnable
PWM capture A0 DMA
-
enumerator kPWM_CaptureA1DMAEnable
PWM capture A1 DMA
-
enumerator kPWM_CaptureX0DMAEnable
-
enum _pwm_dma_source_select
List of PWM capture DMA enable source select.
Values:
-
enumerator kPWM_DMARequestDisable
Read DMA requests disabled
-
enumerator kPWM_DMAWatermarksEnable
Exceeding a FIFO watermark sets the DMA read request
-
enumerator kPWM_DMALocalSync
A local sync (VAL1 matches counter) sets the read DMA request
-
enumerator kPWM_DMALocalReload
A local reload (STS[RF] being set) sets the read DMA request
-
enumerator kPWM_DMARequestDisable
-
enum _pwm_watermark_control
PWM FIFO Watermark AND Control.
Values:
-
enumerator kPWM_FIFOWatermarksOR
Selected FIFO watermarks are OR’ed together
-
enumerator kPWM_FIFOWatermarksAND
Selected FIFO watermarks are AND’ed together
-
enumerator kPWM_FIFOWatermarksOR
-
enum _pwm_mode
PWM operation mode.
Values:
-
enumerator kPWM_SignedCenterAligned
Signed center-aligned
-
enumerator kPWM_CenterAligned
Unsigned cente-aligned
-
enumerator kPWM_SignedEdgeAligned
Signed edge-aligned
-
enumerator kPWM_EdgeAligned
Unsigned edge-aligned
-
enumerator kPWM_SignedCenterAligned
-
enum _pwm_level_select
PWM output pulse mode, high-true or low-true.
Values:
-
enumerator kPWM_HighTrue
High level represents “on” or “active” state
-
enumerator kPWM_LowTrue
Low level represents “on” or “active” state
-
enumerator kPWM_HighTrue
-
enum _pwm_fault_state
PWM output fault status.
Values:
-
enumerator kPWM_PwmFaultState0
Output is forced to logic 0 state prior to consideration of output polarity control.
-
enumerator kPWM_PwmFaultState1
Output is forced to logic 1 state prior to consideration of output polarity control.
-
enumerator kPWM_PwmFaultState2
Output is tristated.
-
enumerator kPWM_PwmFaultState3
Output is tristated.
-
enumerator kPWM_PwmFaultState0
-
enum _pwm_reload_source_select
PWM reload source select.
Values:
-
enumerator kPWM_LocalReload
The local reload signal is used to reload registers
-
enumerator kPWM_MasterReload
The master reload signal (from submodule 0) is used to reload
-
enumerator kPWM_LocalReload
-
enum _pwm_fault_clear
PWM fault clearing options.
Values:
-
enumerator kPWM_Automatic
Automatic fault clearing
-
enumerator kPWM_ManualNormal
Manual fault clearing with no fault safety mode
-
enumerator kPWM_ManualSafety
Manual fault clearing with fault safety mode
-
enumerator kPWM_Automatic
-
enum _pwm_module_control
Options for submodule master control operation.
Values:
-
enumerator kPWM_Control_Module_0
Control submodule 0’s start/stop,buffer reload operation
-
enumerator kPWM_Control_Module_1
Control submodule 1’s start/stop,buffer reload operation
-
enumerator kPWM_Control_Module_2
Control submodule 2’s start/stop,buffer reload operation
-
enumerator kPWM_Control_Module_3
Control submodule 3’s start/stop,buffer reload operation
-
enumerator kPWM_Control_Module_0
-
typedef enum _pwm_submodule pwm_submodule_t
List of PWM submodules.
-
typedef enum _pwm_channels pwm_channels_t
List of PWM channels in each module.
-
typedef enum _pwm_value_register pwm_value_register_t
List of PWM value registers.
-
typedef enum _pwm_clock_source pwm_clock_source_t
PWM clock source selection.
-
typedef enum _pwm_clock_prescale pwm_clock_prescale_t
PWM prescaler factor selection for clock source.
-
typedef enum _pwm_force_output_trigger pwm_force_output_trigger_t
Options that can trigger a PWM FORCE_OUT.
-
typedef enum _pwm_output_state pwm_output_state_t
PWM channel output status.
-
typedef enum _pwm_init_source pwm_init_source_t
PWM counter initialization options.
-
typedef enum _pwm_load_frequency pwm_load_frequency_t
PWM load frequency selection.
-
typedef enum _pwm_fault_input pwm_fault_input_t
List of PWM fault selections.
-
typedef enum _pwm_fault_disable pwm_fault_disable_t
List of PWM fault disable mapping selections.
-
typedef enum _pwm_fault_channels pwm_fault_channels_t
List of PWM fault channels.
-
typedef enum _pwm_input_capture_edge pwm_input_capture_edge_t
PWM capture edge select.
-
typedef enum _pwm_force_signal pwm_force_signal_t
PWM output options when a FORCE_OUT signal is asserted.
-
typedef enum _pwm_chnl_pair_operation pwm_chnl_pair_operation_t
Options available for the PWM A & B pair operation.
-
typedef enum _pwm_register_reload pwm_register_reload_t
Options available on how to load the buffered-registers with new values.
-
typedef enum _pwm_fault_recovery_mode pwm_fault_recovery_mode_t
Options available on how to re-enable the PWM output when recovering from a fault.
-
typedef enum _pwm_interrupt_enable pwm_interrupt_enable_t
List of PWM interrupt options.
-
typedef enum _pwm_status_flags pwm_status_flags_t
List of PWM status flags.
-
typedef enum _pwm_dma_enable pwm_dma_enable_t
List of PWM DMA options.
-
typedef enum _pwm_dma_source_select pwm_dma_source_select_t
List of PWM capture DMA enable source select.
-
typedef enum _pwm_watermark_control pwm_watermark_control_t
PWM FIFO Watermark AND Control.
-
typedef enum _pwm_mode pwm_mode_t
PWM operation mode.
-
typedef enum _pwm_level_select pwm_level_select_t
PWM output pulse mode, high-true or low-true.
-
typedef enum _pwm_fault_state pwm_fault_state_t
PWM output fault status.
-
typedef enum _pwm_reload_source_select pwm_reload_source_select_t
PWM reload source select.
-
typedef enum _pwm_fault_clear pwm_fault_clear_t
PWM fault clearing options.
-
typedef enum _pwm_module_control pwm_module_control_t
Options for submodule master control operation.
-
typedef struct _pwm_signal_param pwm_signal_param_t
Structure for the user to define the PWM signal characteristics.
-
typedef struct _pwm_config pwm_config_t
PWM config structure.
This structure holds the configuration settings for the PWM peripheral. To initialize this structure to reasonable defaults, call the PWM_GetDefaultConfig() function and pass a pointer to your config structure instance.
The config struct can be made const so it resides in flash
-
typedef struct _pwm_fault_input_filter_param pwm_fault_input_filter_param_t
Structure for the user to configure the fault input filter.
-
typedef struct _pwm_fault_param pwm_fault_param_t
Structure is used to hold the parameters to configure a PWM fault.
-
typedef struct _pwm_input_capture_param pwm_input_capture_param_t
Structure is used to hold parameters to configure the capture capability of a signal pin.
-
void PWM_SetupInputCapture(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, const pwm_input_capture_param_t *inputCaptureParams)
Sets up the PWM input capture.
Each PWM submodule has 3 pins that can be configured for use as input capture pins. This function sets up the capture parameters for each pin and enables the pin for input capture operation.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – Channel in the submodule to setup
inputCaptureParams – Parameters passed in to set up the input pin
-
void PWM_SetupFaultInputFilter(PWM_Type *base, const pwm_fault_input_filter_param_t *faultInputFilterParams)
Sets up the PWM fault input filter.
- Parameters:
base – PWM peripheral base address
faultInputFilterParams – Parameters passed in to set up the fault input filter.
-
void PWM_SetupFaults(PWM_Type *base, pwm_fault_input_t faultNum, const pwm_fault_param_t *faultParams)
Sets up the PWM fault protection.
PWM has 4 fault inputs.
- Parameters:
base – PWM peripheral base address
faultNum – PWM fault to configure.
faultParams – Pointer to the PWM fault config structure
-
void PWM_FaultDefaultConfig(pwm_fault_param_t *config)
Fill in the PWM fault config struct with the default settings.
The default values are:
config->faultClearingMode = kPWM_Automatic; config->faultLevel = false; config->enableCombinationalPath = true; config->recoverMode = kPWM_NoRecovery;
- Parameters:
config – Pointer to user’s PWM fault config structure.
-
void PWM_SetupForceSignal(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, pwm_force_signal_t mode)
Selects the signal to output on a PWM pin when a FORCE_OUT signal is asserted.
The user specifies which channel to configure by supplying the submodule number and whether to modify PWM A or PWM B within that submodule.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – Channel to configure
mode – Signal to output when a FORCE_OUT is triggered
-
static inline void PWM_SetVALxValue(PWM_Type *base, pwm_submodule_t subModule, pwm_value_register_t valueRegister, uint16_t value)
Set the PWM VALx registers.
This function allows the user to write value into VAL registers directly. And it will destroying the PWM clock period set by the PWM_SetupPwm()/PWM_SetupPwmPhaseShift() functions. Due to VALx registers are bufferd, the new value will not active uless call PWM_SetPwmLdok() and the reload point is reached.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
valueRegister – VALx register that will be writen new value
value – Value that will been write into VALx register
-
static inline uint16_t PWM_GetVALxValue(PWM_Type *base, pwm_submodule_t subModule, pwm_value_register_t valueRegister)
Get the PWM VALx registers.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
valueRegister – VALx register that will be read value
- Returns:
The VALx register value
-
static inline void PWM_OutputTriggerEnable(PWM_Type *base, pwm_submodule_t subModule, pwm_value_register_t valueRegister, bool activate)
Enables or disables the PWM output trigger.
This function allows the user to enable or disable the PWM trigger. The PWM has 2 triggers. Trigger 0 is activated when the counter matches VAL 0, VAL 2, or VAL 4 register. Trigger 1 is activated when the counter matches VAL 1, VAL 3, or VAL 5 register.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
valueRegister – Value register that will activate the trigger
activate – true: Enable the trigger; false: Disable the trigger
-
static inline void PWM_ActivateOutputTrigger(PWM_Type *base, pwm_submodule_t subModule, uint16_t valueRegisterMask)
Enables the PWM output trigger.
This function allows the user to enable one or more (VAL0-5) PWM trigger.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
valueRegisterMask – Value register mask that will activate one or more (VAL0-5) trigger enumeration _pwm_value_register_mask
-
static inline void PWM_DeactivateOutputTrigger(PWM_Type *base, pwm_submodule_t subModule, uint16_t valueRegisterMask)
Disables the PWM output trigger.
This function allows the user to disables one or more (VAL0-5) PWM trigger.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
valueRegisterMask – Value register mask that will Deactivate one or more (VAL0-5) trigger enumeration _pwm_value_register_mask
-
static inline void PWM_SetupSwCtrlOut(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, bool value)
Sets the software control output for a pin to high or low.
The user specifies which channel to modify by supplying the submodule number and whether to modify PWM A or PWM B within that submodule.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – Channel to configure
value – true: Supply a logic 1, false: Supply a logic 0.
-
static inline void PWM_SetPwmLdok(PWM_Type *base, uint8_t subModulesToUpdate, bool value)
Sets or clears the PWM LDOK bit on a single or multiple submodules.
Set LDOK bit to load buffered values into CTRL[PRSC] and the INIT, FRACVAL and VAL registers. The values are loaded immediately if kPWM_ReloadImmediate option was choosen during config. Else the values are loaded at the next PWM reload point. This function can issue the load command to multiple submodules at the same time.
- Parameters:
base – PWM peripheral base address
subModulesToUpdate – PWM submodules to update with buffered values. This is a logical OR of members of the enumeration pwm_module_control_t
value – true: Set LDOK bit for the submodule list; false: Clear LDOK bit
-
static inline void PWM_SetPwmFaultState(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, pwm_fault_state_t faultState)
Set PWM output fault status.
These bits determine the fault state for the PWM_A output in fault conditions and STOP mode. It may also define the output state in WAIT and DEBUG modes depending on the settings of CTRL2[WAITEN] and CTRL2[DBGEN]. This function can update PWM output fault status.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – Channel to configure
faultState – PWM output fault status
-
static inline void PWM_SetupFaultDisableMap(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, pwm_fault_channels_t pwm_fault_channels, uint16_t value)
Set PWM fault disable mapping.
Each of the four bits of this read/write field is one-to-one associated with the four FAULTx inputs of fault channel 0/1. The PWM output will be turned off if there is a logic 1 on an FAULTx input and a 1 in the corresponding bit of this field. A reset sets all bits in this field.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – PWM channel to configure
pwm_fault_channels – PWM fault channel to configure
value – Fault disable mapping mask value enumeration pwm_fault_disable_t
-
static inline void PWM_OutputEnable(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule)
Set PWM output enable.
This feature allows the user to enable the PWM Output. Recommend to invoke this API after PWM and fault configuration. But invoke this API before configure MCTRL register is okay, such as set LDOK or start timer.
- Parameters:
base – PWM peripheral base address
pwmChannel – PWM channel to configure
subModule – PWM submodule to configure
-
static inline void PWM_OutputDisable(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule)
Set PWM output disable.
This feature allows the user to disable the PWM output. Recommend to invoke this API after PWM and fault configuration. But invoke this API before configure MCTRL register is okay, such as set LDOK or start timer.
- Parameters:
base – PWM peripheral base address
pwmChannel – PWM channel to configure
subModule – PWM submodule to configure
-
uint8_t PWM_GetPwmChannelState(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel)
Get the dutycycle value.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – PWM channel to configure
- Returns:
Current channel dutycycle value.
-
status_t PWM_SetOutputToIdle(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule, bool idleStatus)
Set PWM output in idle status (high or low).
Note
This API should call after PWM_SetupPwm() APIs, and PWMX submodule is not supported.
- Parameters:
base – PWM peripheral base address
pwmChannel – PWM channel to configure
subModule – PWM submodule to configure
idleStatus – True: PWM output is high in idle status; false: PWM output is low in idle status.
- Returns:
kStatus_Fail if there was error setting up the signal; kStatus_Success if set output idle success
-
void PWM_SetClockMode(PWM_Type *base, pwm_submodule_t subModule, pwm_clock_prescale_t prescaler)
Set the pwm submodule prescaler.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
prescaler – Set prescaler value
-
void PWM_SetPwmForceOutputToZero(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, bool forcetozero)
This function enables-disables the forcing of the output of a given eFlexPwm channel to logic 0.
- Parameters:
base – PWM peripheral base address
pwmChannel – PWM channel to configure
subModule – PWM submodule to configure
forcetozero – True: Enable the pwm force output to zero; False: Disable the pwm output resumes normal function.
-
void PWM_SetChannelOutput(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, pwm_output_state_t outputstate)
This function set the output state of the PWM pin as requested for the current cycle.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – PWM channel to configure
outputstate – Set pwm output state, see pwm_output_state_t.
-
status_t PWM_SetPhaseDelay(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule, uint16_t delayCycles)
This function set the phase delay from the master sync signal of submodule 0.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – PWM channel to configure
delayCycles – Number of cycles delayed from submodule 0.
- Returns:
kStatus_Fail if the number of delay cycles is set larger than the period defined in submodule 0; kStatus_Success if set phase delay success
-
static inline void PWM_SetFilterSampleCount(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule, uint8_t filterSampleCount)
This function set the number of consecutive samples that must agree prior to the input filter.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – PWM channel to configure
filterSampleCount – Number of consecutive samples.
-
static inline void PWM_SetFilterSamplePeriod(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule, uint8_t filterSamplePeriod)
This function set the sampling period of the fault pin input filter.
- Parameters:
base – PWM peripheral base address
subModule – PWM submodule to configure
pwmChannel – PWM channel to configure
filterSamplePeriod – Sampling period of input filter.
-
PWM_SUBMODULE_SWCONTROL_WIDTH
Number of bits per submodule for software output control
-
PWM_SUBMODULE_CHANNEL
Submodule channels include PWMA, PWMB, PWMX.
-
struct _pwm_signal_param
- #include <fsl_pwm.h>
Structure for the user to define the PWM signal characteristics.
Public Members
-
pwm_channels_t pwmChannel
PWM channel being configured; PWM A or PWM B
-
uint8_t dutyCyclePercent
PWM pulse width, value should be between 0 to 100 0=inactive signal(0% duty cycle)… 100=always active signal (100% duty cycle)
-
pwm_level_select_t level
PWM output active level select
-
uint16_t deadtimeValue
The deadtime value; only used if channel pair is operating in complementary mode
-
pwm_fault_state_t faultState
PWM output fault status
-
bool pwmchannelenable
Enable PWM output
-
pwm_channels_t pwmChannel
-
struct _pwm_config
- #include <fsl_pwm.h>
PWM config structure.
This structure holds the configuration settings for the PWM peripheral. To initialize this structure to reasonable defaults, call the PWM_GetDefaultConfig() function and pass a pointer to your config structure instance.
The config struct can be made const so it resides in flash
Public Members
-
bool enableDebugMode
true: PWM continues to run in debug mode; false: PWM is paused in debug mode
-
pwm_init_source_t initializationControl
Option to initialize the counter
-
pwm_clock_source_t clockSource
Clock source for the counter
-
pwm_clock_prescale_t prescale
Pre-scaler to divide down the clock
-
pwm_chnl_pair_operation_t pairOperation
Channel pair in indepedent or complementary mode
-
pwm_register_reload_t reloadLogic
PWM Reload logic setup
-
pwm_reload_source_select_t reloadSelect
Reload source select
-
pwm_load_frequency_t reloadFrequency
Specifies when to reload, used when user’s choice is not immediate reload
-
pwm_force_output_trigger_t forceTrigger
Specify which signal will trigger a FORCE_OUT
-
bool enableDebugMode
-
struct _pwm_fault_input_filter_param
- #include <fsl_pwm.h>
Structure for the user to configure the fault input filter.
Public Members
-
uint8_t faultFilterCount
Fault filter count
-
uint8_t faultFilterPeriod
Fault filter period;value of 0 will bypass the filter
-
bool faultGlitchStretch
Fault Glitch Stretch Enable: A logic 1 means that input fault signals will be stretched to at least 2 IPBus clock cycles
-
uint8_t faultFilterCount
-
struct _pwm_fault_param
- #include <fsl_pwm.h>
Structure is used to hold the parameters to configure a PWM fault.
Public Members
-
pwm_fault_clear_t faultClearingMode
Fault clearing mode to use
-
bool faultLevel
true: Logic 1 indicates fault; false: Logic 0 indicates fault
-
bool enableCombinationalPath
true: Combinational Path from fault input is enabled; false: No combination path is available
-
pwm_fault_recovery_mode_t recoverMode
Specify when to re-enable the PWM output
-
pwm_fault_clear_t faultClearingMode
-
struct _pwm_input_capture_param
- #include <fsl_pwm.h>
Structure is used to hold parameters to configure the capture capability of a signal pin.
Public Members
-
bool captureInputSel
true: Use the edge counter signal as source false: Use the raw input signal from the pin as source
-
uint8_t edgeCompareValue
Compare value, used only if edge counter is used as source
-
pwm_input_capture_edge_t edge0
Specify which edge causes a capture for input circuitry 0
-
pwm_input_capture_edge_t edge1
Specify which edge causes a capture for input circuitry 1
-
bool enableOneShotCapture
true: Use one-shot capture mode; false: Use free-running capture mode
-
uint8_t fifoWatermark
Watermark level for capture FIFO. The capture flags in the status register will set if the word count in the FIFO is greater than this watermark level
-
bool captureInputSel
Reset Driver
-
enum _SYSCON_RSTn
Enumeration for peripheral reset control bits.
Defines the enumeration for peripheral reset control bits in PRESETCTRL/ASYNCPRESETCTRL registers
Values:
-
enumerator kINPUTMUX0_RST_SHIFT_RSTn
INPUTMUX0 reset control
-
enumerator kI3C0_RST_SHIFT_RSTn
I3C0 reset control
-
enumerator kCTIMER0_RST_SHIFT_RSTn
CTIMER0 reset control
-
enumerator kCTIMER1_RST_SHIFT_RSTn
CTIMER1 reset control
-
enumerator kCTIMER2_RST_SHIFT_RSTn
CTIMER2 reset control
-
enumerator kCTIMER3_RST_SHIFT_RSTn
CTIMER3 reset control
-
enumerator kCTIMER4_RST_SHIFT_RSTn
CTIMER4 reset control
-
enumerator kFREQME_RST_SHIFT_RSTn
FREQME reset control
-
enumerator kUTICK0_RST_SHIFT_RSTn
UTICK0 reset control
-
enumerator kDMA_RST_SHIFT_RSTn
DMA reset control
-
enumerator kAOI0_RST_SHIFT_RSTn
AOI0 reset control
-
enumerator kCRC0_RST_SHIFT_RSTn
CRC0 reset control
-
enumerator kEIM0_RST_SHIFT_RSTn
EIM0 reset control
-
enumerator kERM0_RST_SHIFT_RSTn
ERM0 reset control
-
enumerator kAOI1_RST_SHIFT_RSTn
AOI1 reset control
-
enumerator kFLEXIO0_RST_SHIFT_RSTn
FLEXIO0 reset control
-
enumerator kLPI2C0_RST_SHIFT_RSTn
LPI2C0 reset control
-
enumerator kLPI2C1_RST_SHIFT_RSTn
LPI2C1 reset control
-
enumerator kLPSPI0_RST_SHIFT_RSTn
LPSPI0 reset control
-
enumerator kLPSPI1_RST_SHIFT_RSTn
LPSPI1 reset control
-
enumerator kLPUART0_RST_SHIFT_RSTn
LPUART0 reset control
-
enumerator kLPUART1_RST_SHIFT_RSTn
LPUART1 reset control
-
enumerator kLPUART2_RST_SHIFT_RSTn
LPUART2 reset control
-
enumerator kLPUART3_RST_SHIFT_RSTn
LPUART3 reset control
-
enumerator kLPUART4_RST_SHIFT_RSTn
LPUART4 reset control
-
enumerator kUSB0_RST_SHIFT_RSTn
USB0 reset control
-
enumerator kQDC0_RST_SHIFT_RSTn
QDC0 reset control
-
enumerator kQDC1_RST_SHIFT_RSTn
QDC1 reset control
-
enumerator kFLEXPWM0_RST_SHIFT_RSTn
FLEXPWM0 reset control
-
enumerator kFLEXPWM1_RST_SHIFT_RSTn
FLEXPWM1 reset control
-
enumerator kOSTIMER0_RST_SHIFT_RSTn
OSTIMER0 reset control
-
enumerator kADC0_RST_SHIFT_RSTn
ADC0 reset control
-
enumerator kADC1_RST_SHIFT_RSTn
ADC1 reset control
-
enumerator kCMP1_RST_SHIFT_RSTn
CMP1 reset control
-
enumerator kDAC0_RST_SHIFT_RSTn
DAC0 reset control
-
enumerator kOPAMP0_RST_SHIFT_RSTn
OPAMP0 reset control
-
enumerator kPORT0_RST_SHIFT_RSTn
PORT0 reset control
-
enumerator kPORT1_RST_SHIFT_RSTn
PORT1 reset control
-
enumerator kPORT2_RST_SHIFT_RSTn
PORT2 reset control
-
enumerator kPORT3_RST_SHIFT_RSTn
PORT3 reset control
-
enumerator kPORT4_RST_SHIFT_RSTn
PORT4 reset control
-
enumerator kFLEXCAN0_RST_SHIFT_RSTn
FLEXCAN0 reset control
-
enumerator kLPI2C2_RST_SHIFT_RSTn
LPI2C2 reset control
-
enumerator kLPI2C3_RST_SHIFT_RSTn
LPI2C3 reset control
-
enumerator kGPIO0_RST_SHIFT_RSTn
GPIO0 reset control
-
enumerator kGPIO1_RST_SHIFT_RSTn
GPIO1 reset control
-
enumerator kGPIO2_RST_SHIFT_RSTn
GPIO2 reset control
-
enumerator kGPIO3_RST_SHIFT_RSTn
GPIO3 reset control
-
enumerator kGPIO4_RST_SHIFT_RSTn
GPIO4 reset control
-
enumerator NotAvail_RSTn
No reset control
-
enumerator kINPUTMUX0_RST_SHIFT_RSTn
-
typedef enum _SYSCON_RSTn SYSCON_RSTn_t
Enumeration for peripheral reset control bits.
Defines the enumeration for peripheral reset control bits in PRESETCTRL/ASYNCPRESETCTRL registers
-
typedef SYSCON_RSTn_t reset_ip_name_t
-
void RESET_SetPeripheralReset(reset_ip_name_t peripheral)
Assert reset to peripheral.
Asserts reset signal to specified peripheral module.
- Parameters:
peripheral – Assert reset to this peripheral. The enum argument contains encoding of reset register and reset bit position in the reset register.
-
void RESET_ClearPeripheralReset(reset_ip_name_t peripheral)
Clear reset to peripheral.
Clears reset signal to specified peripheral module, allows it to operate.
- Parameters:
peripheral – Clear reset to this peripheral. The enum argument contains encoding of reset register and reset bit position in the reset register.
-
void RESET_PeripheralReset(reset_ip_name_t peripheral)
Reset peripheral module.
Reset peripheral module.
- Parameters:
peripheral – Peripheral to reset. The enum argument contains encoding of reset register and reset bit position in the reset register.
-
static inline void RESET_ReleasePeripheralReset(reset_ip_name_t peripheral)
Release peripheral module.
Release peripheral module.
- Parameters:
peripheral – Peripheral to release. The enum argument contains encoding of reset register and reset bit position in the reset register.
-
FSL_RESET_DRIVER_VERSION
reset driver version 2.4.0
-
AOI_RSTS
Array initializers with peripheral reset bits
-
ADC_RSTS
-
CRC_RSTS
-
CTIMER_RSTS
-
DAC_RSTS_N
-
DMA_RSTS_N
-
EIM_RSTS_N
-
ERM_RSTS_N
-
FLEXCAN_RSTS_N
-
FLEXIO_RSTS_N
-
FLEXPWM_RSTS_N
-
FREQME_RSTS_N
-
GPIO_RSTS_N
-
I3C_RSTS
-
INPUTMUX_RSTS
-
LPUART_RSTS
-
LPSPI_RSTS
-
LPI2C_RSTS
-
LPCMP_RSTS
-
OPAMP_RSTS
-
OSTIMER_RSTS
-
PORT_RSTS_N
-
EQDC_RSTS
-
UTICK_RSTS
TRDC: Trusted Resource Domain Controller
-
void TRDC_Init(TRDC_Type *base)
Initializes the TRDC module.
This function enables the TRDC clock.
- Parameters:
base – TRDC peripheral base address.
-
void TRDC_Deinit(TRDC_Type *base)
De-initializes the TRDC module.
This function disables the TRDC clock.
- Parameters:
base – TRDC peripheral base address.
-
static inline uint8_t TRDC_GetCurrentMasterDomainId(TRDC_Type *base)
Gets the domain ID of the current bus master.
- Parameters:
base – TRDC peripheral base address.
- Returns:
Domain ID of current bus master.
-
void TRDC_GetHardwareConfig(TRDC_Type *base, trdc_hardware_config_t *config)
Gets the TRDC hardware configuration.
This function gets the TRDC hardware configurations, including number of bus masters, number of domains, number of MRCs and number of PACs.
- Parameters:
base – TRDC peripheral base address.
config – Pointer to the structure to get the configuration.
-
static inline void TRDC_SetDacGlobalValid(TRDC_Type *base)
Sets the TRDC DAC(Domain Assignment Controllers) global valid.
Once enabled, it will remain enabled until next reset.
- Parameters:
base – TRDC peripheral base address.
-
static inline void TRDC_LockMasterDomainAssignment(TRDC_Type *base, uint8_t master, uint8_t regNum)
Locks the bus master domain assignment register.
This function locks the master domain assignment. After it is locked, the register can’t be changed until next reset.
- Parameters:
base – TRDC peripheral base address.
master – Which master to configure, refer to trdcx_master_t in processor header file, x is trdc instance.
regNum – Which register to configure, processor master can have more than one register for the MDAC configuration.
assignIndex – Which assignment register to lock.
-
static inline void TRDC_SetMasterDomainAssignmentValid(TRDC_Type *base, uint8_t master, uint8_t regNum, bool valid)
Sets the master domain assignment as valid or invalid.
This function sets the master domain assignment as valid or invalid.
- Parameters:
base – TRDC peripheral base address.
master – Which master to configure.
regNum – Which register to configure, processor master can have more than one register for the MDAC configuration.
assignIndex – Index for the domain assignment register.
valid – True to set valid, false to set invalid.
-
void TRDC_GetDefaultProcessorDomainAssignment(trdc_processor_domain_assignment_t *domainAssignment)
Gets the default master domain assignment for the processor bus master.
This function gets the default master domain assignment for the processor bus master. It should only be used for the processor bus masters, such as CORE0. This function sets the assignment as follows:
assignment->domainId = 0U; assignment->domainIdSelect = kTRDC_DidMda; assignment->lock = 0U;
- Parameters:
domainAssignment – Pointer to the assignment structure.
-
void TRDC_GetDefaultNonProcessorDomainAssignment(trdc_non_processor_domain_assignment_t *domainAssignment)
Gets the default master domain assignment for non-processor bus master.
This function gets the default master domain assignment for non-processor bus master. It should only be used for the non-processor bus masters, such as DMA. This function sets the assignment as follows:
assignment->domainId = 0U; assignment->privilegeAttr = kTRDC_ForceUser; assignment->secureAttr = kTRDC_ForceSecure; assignment->bypassDomainId = 0U; assignment->lock = 0U;
- Parameters:
domainAssignment – Pointer to the assignment structure.
-
void TRDC_SetProcessorDomainAssignment(TRDC_Type *base, uint8_t master, uint8_t regNum, const trdc_processor_domain_assignment_t *domainAssignment)
Sets the processor bus master domain assignment.
This function sets the processor master domain assignment as valid. One bus master might have multiple domain assignment registers. The parameter
assignIndex
specifies which assignment register to set.Example: Set domain assignment for core 0.
trdc_processor_domain_assignment_t processorAssignment; TRDC_GetDefaultProcessorDomainAssignment(&processorAssignment); processorAssignment.domainId = 0; processorAssignment.xxx = xxx; TRDC_SetMasterDomainAssignment(TRDC, &processorAssignment);
- Parameters:
base – TRDC peripheral base address.
master – Which master to configure, refer to trdc_master_t in processor header file.
regNum – Which register to configure, processor master can have more than one register for the MDAC configuration.
domainAssignment – Pointer to the assignment structure.
-
void TRDC_SetNonProcessorDomainAssignment(TRDC_Type *base, uint8_t master, const trdc_non_processor_domain_assignment_t *domainAssignment)
Sets the non-processor bus master domain assignment.
This function sets the non-processor master domain assignment as valid. One bus master might have multiple domain assignment registers. The parameter
assignIndex
specifies which assignment register to set.Example: Set domain assignment for DMA0.
trdc_non_processor_domain_assignment_t nonProcessorAssignment; TRDC_GetDefaultNonProcessorDomainAssignment(&nonProcessorAssignment); nonProcessorAssignment.domainId = 1; nonProcessorAssignment.xxx = xxx; TRDC_SetMasterDomainAssignment(TRDC, kTrdcMasterDma0, 0U, &nonProcessorAssignment);
- Parameters:
base – TRDC peripheral base address.
master – Which master to configure, refer to trdc_master_t in processor header file.
domainAssignment – Pointer to the assignment structure.
-
static inline uint64_t TRDC_GetActiveMasterPidMap(TRDC_Type *base)
Gets the bit map of the bus master(s) that is(are) sourcing a PID register.
This function sets the non-processor master domain assignment as valid.
- Parameters:
base – TRDC peripheral base address.
- Returns:
the bit map of the master(s). Bit 1 sets indicates bus master 1.
-
void TRDC_SetPid(TRDC_Type *base, uint8_t master, const trdc_pid_config_t *pidConfig)
Sets the current Process identifier(PID) for processor core.
Each processor has a corresponding process identifier (PID) which can be used to group tasks into different domains. Secure privileged software saves and restores the PID as part of any context switch. This data structure defines an array of 32-bit values, one per MDA module, that define the PID. Since this register resource is only applicable to processor cores, the data structure is typically sparsely populated. The HWCFG[2-3] registers provide a bitmap of the implemented PIDn registers. This data structure is indexed using the corresponding MDA instance number. Depending on the operating clock domain of each DAC instance, there may be optional information stored in the corresponding PIDm register to properly implement the LK2 = 2 functionality.
- Parameters:
base – TRDC peripheral base address.
master – Which processor master to configure, refer to trdc_master_t in processor header file.
pidConfig – Pointer to the configuration structure.
-
void TRDC_GetDefaultIDAUConfig(trdc_idau_config_t *idauConfiguration)
Gets the default IDAU(Implementation-Defined Attribution Unit) configuration.
config->lockSecureVTOR = false; config->lockNonsecureVTOR = false; config->lockSecureMPU = false; config->lockNonsecureMPU = false; config->lockSAU = false;
- Parameters:
domainAssignment – Pointer to the configuration structure.
-
void TRDC_SetIDAU(TRDC_Type *base, const trdc_idau_config_t *idauConfiguration)
Sets the IDAU(Implementation-Defined Attribution Unit) control configuration.
Example: Lock the secure and non-secure MPU registers.
trdc_idau_config_t idauConfiguration; TRDC_GetDefaultIDAUConfig(&idauConfiguration); idauConfiguration.lockSecureMPU = true; idauConfiguration.lockNonsecureMPU = true; TRDC_SetIDAU(TRDC, &idauConfiguration);
- Parameters:
base – TRDC peripheral base address.
domainAssignment – Pointer to the configuration structure.
-
static inline void TRDC_EnableFlashLogicalWindow(TRDC_Type *base, bool enable)
Enables/disables the FLW(flash logical window) function.
- Parameters:
base – TRDC peripheral base address.
enable – True to enable, false to disable.
-
static inline void TRDC_LockFlashLogicalWindow(TRDC_Type *base)
Locks FLW registers. Once locked the registers can noy be updated until next reset.
- Parameters:
base – TRDC peripheral base address.
-
static inline uint32_t TRDC_GetFlashLogicalWindowPbase(TRDC_Type *base)
Gets the FLW physical base address.
- Parameters:
base – TRDC peripheral base address.
- Returns:
Physical address of the FLW function.
-
static inline void TRDC_GetSetFlashLogicalWindowSize(TRDC_Type *base, uint16_t size)
Sets the FLW size.
- Parameters:
base – TRDC peripheral base address.
size – Size of the FLW in unit of 32k bytes.
-
void TRDC_GetDefaultFlashLogicalWindowConfig(trdc_flw_config_t *flwConfiguration)
Gets the default FLW(Flsh Logical Window) configuration.
config->blockCount = false; config->arrayBaseAddr = false; config->lock = false; config->enable = false;
- Parameters:
flwConfiguration – Pointer to the configuration structure.
-
void TRDC_SetFlashLogicalWindow(TRDC_Type *base, const trdc_flw_config_t *flwConfiguration)
Sets the FLW function’s configuration.
trdc_flw_config_t flwConfiguration; TRDC_GetDefaultIDAUConfig(&flwConfiguration); flwConfiguration.blockCount = 32U; flwConfiguration.arrayBaseAddr = 0xXXXXXXXX; TRDC_SetIDAU(TRDC, &flwConfiguration);
- Parameters:
base – TRDC peripheral base address.
flwConfiguration – Pointer to the configuration structure.
-
status_t TRDC_GetAndClearFirstDomainError(TRDC_Type *base, trdc_domain_error_t *error)
Gets and clears the first domain error of the current domain.
This function gets the first access violation information for the current domain and clears the pending flag. There might be multiple access violations pending for the current domain. This function only processes the first error.
- Parameters:
base – TRDC peripheral base address.
error – Pointer to the error information.
- Returns:
If the access violation is captured, this function returns the kStatus_Success. The error information can be obtained from the parameter error. If no access violation is captured, this function returns the kStatus_NoData.
-
status_t TRDC_GetAndClearFirstSpecificDomainError(TRDC_Type *base, trdc_domain_error_t *error, uint8_t domainId)
Gets and clears the first domain error of the specific domain.
This function gets the first access violation information for the specific domain and clears the pending flag. There might be multiple access violations pending for the current domain. This function only processes the first error.
- Parameters:
base – TRDC peripheral base address.
error – Pointer to the error information.
domainId – The error of which domain to get and clear.
- Returns:
If the access violation is captured, this function returns the kStatus_Success. The error information can be obtained from the parameter error. If no access violation is captured, this function returns the kStatus_NoData.
-
static inline void TRDC_SetMrcGlobalValid(TRDC_Type *base)
Sets the TRDC MRC(Memory Region Checkers) global valid.
Once enabled, it will remain enabled until next reset.
- Parameters:
base – TRDC peripheral base address.
-
static inline uint8_t TRDC_GetMrcRegionNumber(TRDC_Type *base, uint8_t mrcIdx)
Gets the TRDC MRC(Memory Region Checkers) region number valid.
- Parameters:
base – TRDC peripheral base address.
- Returns:
the region number of the given MRC instance
-
void TRDC_MrcSetMemoryAccessConfig(TRDC_Type *base, const trdc_memory_access_control_config_t *config, uint8_t mrcIdx, uint8_t regIdx)
Sets the memory access configuration for one of the access control register of one MRC.
Example: Enable the secure operations and lock the configuration for MRC0 region 1.
trdc_memory_access_control_config_t config; config.securePrivX = true; config.securePrivW = true; config.securePrivR = true; config.lock = true; TRDC_SetMrcMemoryAccess(TRDC, &config, 0, 1);
- Parameters:
base – TRDC peripheral base address.
config – Pointer to the configuration structure.
mrcIdx – MRC index.
regIdx – Register number.
-
void TRDC_MrcEnableDomainNseUpdate(TRDC_Type *base, uint8_t mrcIdx, uint16_t domianMask, bool enable)
Enables the update of the selected domians.
After the domians’ update are enabled, their regions’ NSE bits can be set or clear.
- Parameters:
base – TRDC peripheral base address.
mrcIdx – MRC index.
domianMask – Bit mask of the domains to be enabled.
enable – True to enable, false to disable.
-
void TRDC_MrcRegionNseSet(TRDC_Type *base, uint8_t mrcIdx, uint16_t regionMask)
Sets the NSE bits of the selected regions for domains.
This function sets the NSE bits for the selected regions for the domains whose update are enabled.
- Parameters:
base – TRDC peripheral base address.
mrcIdx – MRC index.
regionMask – Bit mask of the regions whose NSE bits to set.
-
void TRDC_MrcRegionNseClear(TRDC_Type *base, uint8_t mrcIdx, uint16_t regionMask)
Clears the NSE bits of the selected regions for domains.
This function clears the NSE bits for the selected regions for the domains whose update are enabled.
- Parameters:
base – TRDC peripheral base address.
mrcIdx – MRC index.
regionMask – Bit mask of the regions whose NSE bits to clear.
-
void TRDC_MrcDomainNseClear(TRDC_Type *base, uint8_t mrcIdx, uint16_t domainMask)
Clears the NSE bits for all the regions of the selected domains.
This function clears the NSE bits for all regions of selected domains whose update are enabled.
- Parameters:
base – TRDC peripheral base address.
mrcIdx – MRC index.
domainMask – Bit mask of the domians whose NSE bits to clear.
-
void TRDC_MrcSetRegionDescriptorConfig(TRDC_Type *base, const trdc_mrc_region_descriptor_config_t *config)
Sets the configuration for one of the region descriptor per domain per MRC instnce.
This function sets the configuration for one of the region descriptor, including the start and end address of the region, memory access control policy and valid.
- Parameters:
base – TRDC peripheral base address.
config – Pointer to region descriptor configuration structure.
-
static inline void TRDC_SetMbcGlobalValid(TRDC_Type *base)
Sets the TRDC MBC(Memory Block Checkers) global valid.
Once enabled, it will remain enabled until next reset.
- Parameters:
base – TRDC peripheral base address.
-
void TRDC_GetMbcHardwareConfig(TRDC_Type *base, trdc_slave_memory_hardware_config_t *config, uint8_t mbcIdx, uint8_t slvIdx)
Gets the hardware configuration of the one of two slave memories within each MBC(memory block checker).
- Parameters:
base – TRDC peripheral base address.
config – Pointer to the structure to get the configuration.
mbcIdx – MBC number.
slvIdx – Slave number.
-
void TRDC_MbcSetNseUpdateConfig(TRDC_Type *base, const trdc_mbc_nse_update_config_t *config, uint8_t mbcIdx)
Sets the NSR update configuration for one of the MBC instance.
After set the NSE configuration, the configured memory area can be updateby NSE set/clear.
- Parameters:
base – TRDC peripheral base address.
config – Pointer to NSE update configuration structure.
mbcIdx – MBC index.
-
void TRDC_MbcWordNseSet(TRDC_Type *base, uint8_t mbcIdx, uint32_t bitMask)
Sets the NSE bits of the selected configuration words according to NSE update configuration.
This function sets the NSE bits of the word for the configured regio, memory.
- Parameters:
base – TRDC peripheral base address.
mbcIdx – MBC index.
bitMask – Mask of the bits whose NSE bits to set.
-
void TRDC_MbcWordNseClear(TRDC_Type *base, uint8_t mbcIdx, uint32_t bitMask)
Clears the NSE bits of the selected configuration words according to NSE update configuration.
This function sets the NSE bits of the word for the configured regio, memory.
- Parameters:
base – TRDC peripheral base address.
mbcIdx – MBC index.
bitMask – Mask of the bits whose NSE bits to clear.
-
void TRDC_MbcNseClearAll(TRDC_Type *base, uint8_t mbcIdx, uint16_t domainMask, uint8_t slave)
Clears all configuration words’ NSE bits of the selected domain and memory.
- Parameters:
base – TRDC peripheral base address.
mbcIdx – MBC index.
domainMask – Mask of the domains whose NSE bits to clear, 0b110 means clear domain 1&2.
slaveMask – Mask of the slaves whose NSE bits to clear, 0x11 means clear all slave 0&1’s NSE bits.
-
void TRDC_MbcSetMemoryAccessConfig(TRDC_Type *base, const trdc_memory_access_control_config_t *config, uint8_t mbcIdx, uint8_t rgdIdx)
Sets the memory access configuration for one of the region descriptor of one MBC.
Example: Enable the secure operations and lock the configuration for MRC0 region 1.
trdc_memory_access_control_config_t config; config.securePrivX = true; config.securePrivW = true; config.securePrivR = true; config.lock = true; TRDC_SetMbcMemoryAccess(TRDC, &config, 0, 1);
- Parameters:
base – TRDC peripheral base address.
config – Pointer to the configuration structure.
mbcIdx – MBC index.
rgdIdx – Region descriptor number.
-
void TRDC_MbcSetMemoryBlockConfig(TRDC_Type *base, const trdc_mbc_memory_block_config_t *config)
Sets the configuration for one of the memory block per domain per MBC instnce.
This function sets the configuration for one of the memory block, including the memory access control policy and nse enable.
- Parameters:
base – TRDC peripheral base address.
config – Pointer to memory block configuration structure.
-
enum _trdc_did_sel
TRDC domain ID select method, the register bit TRDC_MDA_W0_0_DFMT0[DIDS], used for domain hit evaluation.
Values:
-
enumerator kTRDC_DidMda
Use MDAn[2:0] as DID.
-
enumerator kTRDC_DidInput
Use the input DID (DID_in) as DID.
-
enumerator kTRDC_DidMdaAndInput
Use MDAn[2] concatenated with DID_in[1:0] as DID.
-
enumerator kTRDC_DidReserved
Reserved.
-
enumerator kTRDC_DidMda
-
enum _trdc_secure_attr
TRDC secure attribute, the register bit TRDC_MDA_W0_0_DFMT0[SA], used for bus master domain assignment.
Values:
-
enumerator kTRDC_ForceSecure
Force the bus attribute for this master to secure.
-
enumerator kTRDC_ForceNonSecure
Force the bus attribute for this master to non-secure.
-
enumerator kTRDC_MasterSecure
Use the bus master’s secure/nonsecure attribute directly.
-
enumerator kTRDC_MasterSecure1
Use the bus master’s secure/nonsecure attribute directly.
-
enumerator kTRDC_ForceSecure
-
enum _trdc_pid_domain_hit_config
The configuration of domain hit evaluation of PID.
Values:
-
enumerator kTRDC_pidDomainHitNone0
No PID is included in the domain hit evaluation.
-
enumerator kTRDC_pidDomainHitNone1
No PID is included in the domain hit evaluation.
-
enumerator kTRDC_pidDomainHitInclusive
The PID is included in the domain hit evaluation when (PID & ~PIDM).
-
enumerator kTRDC_pidDomainHitExclusive
The PID is included in the domain hit evaluation when ~(PID & ~PIDM).
-
enumerator kTRDC_pidDomainHitNone0
-
enum _trdc_privilege_attr
TRDC privileged attribute, the register bit TRDC_MDA_W0_x_DFMT1[PA], used for non-processor bus master domain assignment.
Values:
-
enumerator kTRDC_ForceUser
Force the bus attribute for this master to user.
-
enumerator kTRDC_ForcePrivilege
Force the bus attribute for this master to privileged.
-
enumerator kTRDC_MasterPrivilege
Use the bus master’s attribute directly.
-
enumerator kTRDC_MasterPrivilege1
Use the bus master’s attribute directly.
-
enumerator kTRDC_ForceUser
-
enum _trdc_pid_lock
PID lock configuration.
Values:
-
enumerator kTRDC_PidUnlocked0
The PID value can be updated by any secure priviledged write.
-
enumerator kTRDC_PidUnlocked1
The PID value can be updated by any secure priviledged write.
-
enumerator kTRDC_PidUnlocked2
The PID value can be updated by any secure priviledged write from the bus master that first configured this register.
-
enumerator kTRDC_PidLocked
The PID value is locked until next reset.
-
enumerator kTRDC_PidUnlocked0
-
enum _trdc_controller
TRDC controller definition for domain error check. Each TRDC instance may have different MRC or MBC count, call TRDC_GetHardwareConfig to get the actual count.
Values:
-
enumerator kTRDC_MemBlockController0
Memory block checker 0.
-
enumerator kTRDC_MemBlockController1
Memory block checker 1.
-
enumerator kTRDC_MemBlockController2
Memory block checker 2.
-
enumerator kTRDC_MemBlockController3
Memory block checker 3.
-
enumerator kTRDC_MemRegionChecker0
Memory region checker 0.
-
enumerator kTRDC_MemRegionChecker1
Memory region checker 1.
-
enumerator kTRDC_MemRegionChecker2
Memory region checker 2.
-
enumerator kTRDC_MemRegionChecker3
Memory region checker 3.
-
enumerator kTRDC_MemRegionChecker4
Memory region checker 4.
-
enumerator kTRDC_MemRegionChecker5
Memory region checker 5.
-
enumerator kTRDC_MemRegionChecker6
Memory region checker 6.
-
enumerator kTRDC_MemBlockController0
-
enum _trdc_error_state
TRDC domain error state definition TRDC_MBCn_DERR_W1[EST] or TRDC_MRCn_DERR_W1[EST].
Values:
-
enumerator kTRDC_ErrorStateNone
No access violation detected.
-
enumerator kTRDC_ErrorStateNone1
No access violation detected.
-
enumerator kTRDC_ErrorStateSingle
Single access violation detected.
-
enumerator kTRDC_ErrorStateMulti
Multiple access violation detected.
-
enumerator kTRDC_ErrorStateNone
-
enum _trdc_error_attr
TRDC domain error attribute definition TRDC_MBCn_DERR_W1[EATR] or TRDC_MRCn_DERR_W1[EATR].
Values:
-
enumerator kTRDC_ErrorSecureUserInst
Secure user mode, instruction fetch access.
-
enumerator kTRDC_ErrorSecureUserData
Secure user mode, data access.
-
enumerator kTRDC_ErrorSecurePrivilegeInst
Secure privileged mode, instruction fetch access.
-
enumerator kTRDC_ErrorSecurePrivilegeData
Secure privileged mode, data access.
-
enumerator kTRDC_ErrorNonSecureUserInst
NonSecure user mode, instruction fetch access.
-
enumerator kTRDC_ErrorNonSecureUserData
NonSecure user mode, data access.
-
enumerator kTRDC_ErrorNonSecurePrivilegeInst
NonSecure privileged mode, instruction fetch access.
-
enumerator kTRDC_ErrorNonSecurePrivilegeData
NonSecure privileged mode, data access.
-
enumerator kTRDC_ErrorSecureUserInst
-
enum _trdc_error_type
TRDC domain error access type definition TRDC_DERR_W1_n[ERW].
Values:
-
enumerator kTRDC_ErrorTypeRead
Error occurs on read reference.
-
enumerator kTRDC_ErrorTypeWrite
Error occurs on write reference.
-
enumerator kTRDC_ErrorTypeRead
-
enum _trdc_region_descriptor
The region descriptor enumeration, used to form a mask to set/clear the NSE bits for one or several regions.
Values:
-
enumerator kTRDC_RegionDescriptor0
Region descriptor 0.
-
enumerator kTRDC_RegionDescriptor1
Region descriptor 1.
-
enumerator kTRDC_RegionDescriptor2
Region descriptor 2.
-
enumerator kTRDC_RegionDescriptor3
Region descriptor 3.
-
enumerator kTRDC_RegionDescriptor4
Region descriptor 4.
-
enumerator kTRDC_RegionDescriptor5
Region descriptor 5.
-
enumerator kTRDC_RegionDescriptor6
Region descriptor 6.
-
enumerator kTRDC_RegionDescriptor7
Region descriptor 7.
-
enumerator kTRDC_RegionDescriptor8
Region descriptor 8.
-
enumerator kTRDC_RegionDescriptor9
Region descriptor 9.
-
enumerator kTRDC_RegionDescriptor10
Region descriptor 10.
-
enumerator kTRDC_RegionDescriptor11
Region descriptor 11.
-
enumerator kTRDC_RegionDescriptor12
Region descriptor 12.
-
enumerator kTRDC_RegionDescriptor13
Region descriptor 13.
-
enumerator kTRDC_RegionDescriptor14
Region descriptor 14.
-
enumerator kTRDC_RegionDescriptor15
Region descriptor 15.
-
enumerator kTRDC_RegionDescriptor0
-
enum _trdc_MRC_domain
The MRC domain enumeration, used to form a mask to enable/disable the update or clear all NSE bits of one or several domains.
Values:
-
enumerator kTRDC_MrcDomain0
Domain 0.
-
enumerator kTRDC_MrcDomain1
Domain 1.
-
enumerator kTRDC_MrcDomain2
Domain 2.
-
enumerator kTRDC_MrcDomain3
Domain 3.
-
enumerator kTRDC_MrcDomain4
Domain 4.
-
enumerator kTRDC_MrcDomain5
Domain 5.
-
enumerator kTRDC_MrcDomain6
Domain 6.
-
enumerator kTRDC_MrcDomain7
Domain 7.
-
enumerator kTRDC_MrcDomain8
Domain 8.
-
enumerator kTRDC_MrcDomain9
Domain 9.
-
enumerator kTRDC_MrcDomain10
Domain 10.
-
enumerator kTRDC_MrcDomain11
Domain 11.
-
enumerator kTRDC_MrcDomain12
Domain 12.
-
enumerator kTRDC_MrcDomain13
Domain 13.
-
enumerator kTRDC_MrcDomain14
Domain 14.
-
enumerator kTRDC_MrcDomain15
Domain 15.
-
enumerator kTRDC_MrcDomain0
-
enum _trdc_MBC_domain
The MBC domain enumeration, used to form a mask to enable/disable the update or clear NSE bits of one or several domains.
Values:
-
enumerator kTRDC_MbcDomain0
Domain 0.
-
enumerator kTRDC_MbcDomain1
Domain 1.
-
enumerator kTRDC_MbcDomain2
Domain 2.
-
enumerator kTRDC_MbcDomain3
Domain 3.
-
enumerator kTRDC_MbcDomain4
Domain 4.
-
enumerator kTRDC_MbcDomain5
Domain 5.
-
enumerator kTRDC_MbcDomain6
Domain 6.
-
enumerator kTRDC_MbcDomain7
Domain 7.
-
enumerator kTRDC_MbcDomain0
-
enum _trdc_MBC_memory
The MBC slave memory enumeration, used to form a mask to enable/disable the update or clear NSE bits of one or several memory block.
Values:
-
enumerator kTRDC_MbcSlaveMemory0
Memory 0.
-
enumerator kTRDC_MbcSlaveMemory1
Memory 1.
-
enumerator kTRDC_MbcSlaveMemory2
Memory 2.
-
enumerator kTRDC_MbcSlaveMemory3
Memory 3.
-
enumerator kTRDC_MbcSlaveMemory0
-
enum _trdc_MBC_bit
The MBC bit enumeration, used to form a mask to set/clear configured words’ NSE.
Values:
-
enumerator kTRDC_MbcBit0
Bit 0.
-
enumerator kTRDC_MbcBit1
Bit 1.
-
enumerator kTRDC_MbcBit2
Bit 2.
-
enumerator kTRDC_MbcBit3
Bit 3.
-
enumerator kTRDC_MbcBit4
Bit 4.
-
enumerator kTRDC_MbcBit5
Bit 5.
-
enumerator kTRDC_MbcBit6
Bit 6.
-
enumerator kTRDC_MbcBit7
Bit 7.
-
enumerator kTRDC_MbcBit8
Bit 8.
-
enumerator kTRDC_MbcBit9
Bit 9.
-
enumerator kTRDC_MbcBit10
Bit 10.
-
enumerator kTRDC_MbcBit11
Bit 11.
-
enumerator kTRDC_MbcBit12
Bit 12.
-
enumerator kTRDC_MbcBit13
Bit 13.
-
enumerator kTRDC_MbcBit14
Bit 14.
-
enumerator kTRDC_MbcBit15
Bit 15.
-
enumerator kTRDC_MbcBit16
Bit 16.
-
enumerator kTRDC_MbcBit17
Bit 17.
-
enumerator kTRDC_MbcBit18
Bit 18.
-
enumerator kTRDC_MbcBit19
Bit 19.
-
enumerator kTRDC_MbcBit20
Bit 20.
-
enumerator kTRDC_MbcBit21
Bit 21.
-
enumerator kTRDC_MbcBit22
Bit 22.
-
enumerator kTRDC_MbcBit23
Bit 23.
-
enumerator kTRDC_MbcBit24
Bit 24.
-
enumerator kTRDC_MbcBit25
Bit 25.
-
enumerator kTRDC_MbcBit26
Bit 26.
-
enumerator kTRDC_MbcBit27
Bit 27.
-
enumerator kTRDC_MbcBit28
Bit 28.
-
enumerator kTRDC_MbcBit29
Bit 29.
-
enumerator kTRDC_MbcBit30
Bit 30.
-
enumerator kTRDC_MbcBit31
Bit 31.
-
enumerator kTRDC_MbcBit0
-
typedef struct _trdc_hardware_config trdc_hardware_config_t
TRDC hardware configuration.
-
typedef struct _trdc_slave_memory_hardware_config trdc_slave_memory_hardware_config_t
Hardware configuration of the two slave memories within each MBC(memory block checker).
-
typedef enum _trdc_did_sel trdc_did_sel_t
TRDC domain ID select method, the register bit TRDC_MDA_W0_0_DFMT0[DIDS], used for domain hit evaluation.
-
typedef enum _trdc_secure_attr trdc_secure_attr_t
TRDC secure attribute, the register bit TRDC_MDA_W0_0_DFMT0[SA], used for bus master domain assignment.
-
typedef enum _trdc_pid_domain_hit_config trdc_pid_domain_hit_config_t
The configuration of domain hit evaluation of PID.
-
typedef struct _trdc_processor_domain_assignment trdc_processor_domain_assignment_t
Domain assignment for the processor bus master.
-
typedef enum _trdc_privilege_attr trdc_privilege_attr_t
TRDC privileged attribute, the register bit TRDC_MDA_W0_x_DFMT1[PA], used for non-processor bus master domain assignment.
-
typedef struct _trdc_non_processor_domain_assignment trdc_non_processor_domain_assignment_t
Domain assignment for the non-processor bus master.
-
typedef enum _trdc_pid_lock trdc_pid_lock_t
PID lock configuration.
-
typedef struct _trdc_pid_config trdc_pid_config_t
Process identifier(PID) configuration for processor cores.
-
typedef struct _trdc_idau_config trdc_idau_config_t
IDAU(Implementation-Defined Attribution Unit) configuration for TZ-M function control.
-
typedef struct _trdc_flw_config trdc_flw_config_t
FLW(Flash Logical Window) configuration.
-
typedef enum _trdc_controller trdc_controller_t
TRDC controller definition for domain error check. Each TRDC instance may have different MRC or MBC count, call TRDC_GetHardwareConfig to get the actual count.
-
typedef enum _trdc_error_state trdc_error_state_t
TRDC domain error state definition TRDC_MBCn_DERR_W1[EST] or TRDC_MRCn_DERR_W1[EST].
-
typedef enum _trdc_error_attr trdc_error_attr_t
TRDC domain error attribute definition TRDC_MBCn_DERR_W1[EATR] or TRDC_MRCn_DERR_W1[EATR].
-
typedef enum _trdc_error_type trdc_error_type_t
TRDC domain error access type definition TRDC_DERR_W1_n[ERW].
-
typedef struct _trdc_domain_error trdc_domain_error_t
TRDC domain error definition.
-
typedef struct _trdc_memory_access_control_config trdc_memory_access_control_config_t
Memory access control configuration for MBC/MRC.
-
typedef struct _trdc_mrc_region_descriptor_config trdc_mrc_region_descriptor_config_t
The configuration of each region descriptor per domain per MRC instance.
-
typedef struct _trdc_mbc_nse_update_config trdc_mbc_nse_update_config_t
The configuration of MBC NSE update.
-
typedef struct _trdc_mbc_memory_block_config trdc_mbc_memory_block_config_t
The configuration of each memory block per domain per MBC instance.
-
FSL_TRDC_DRIVER_VERSION
-
struct _trdc_hardware_config
- #include <fsl_trdc.h>
TRDC hardware configuration.
Public Members
-
uint8_t masterNumber
Number of bus masters.
-
uint8_t domainNumber
Number of domains.
-
uint8_t mbcNumber
Number of MBCs.
-
uint8_t mrcNumber
Number of MRCs.
-
uint8_t masterNumber
-
struct _trdc_slave_memory_hardware_config
- #include <fsl_trdc.h>
Hardware configuration of the two slave memories within each MBC(memory block checker).
Public Members
-
uint32_t blockNum
Number of blocks.
-
uint32_t blockSize
Block size.
-
uint32_t blockNum
-
struct _trdc_processor_domain_assignment
- #include <fsl_trdc.h>
Domain assignment for the processor bus master.
Public Members
-
uint32_t domainId
Domain ID.
-
uint32_t domainIdSelect
Domain ID select method, see trdc_did_sel_t.
-
uint32_t pidDomainHitConfig
The configuration of the domain hit evaluation for PID, see trdc_pid_domain_hit_config_t.
-
uint32_t pidMask
The mask combined with PID, so multiple PID can be included as part of the domain hit determination. Set to 0 to disable.
-
uint32_t secureAttr
Secure attribute, see trdc_secure_attr_t.
-
uint32_t pid
The process identifier, combined with pidMask to form the domain hit determination.
-
uint32_t __pad0__
Reserved.
-
uint32_t lock
Lock the register.
-
uint32_t __pad1__
Reserved.
-
uint32_t domainId
-
struct _trdc_non_processor_domain_assignment
- #include <fsl_trdc.h>
Domain assignment for the non-processor bus master.
Public Members
-
uint32_t domainId
Domain ID.
-
uint32_t privilegeAttr
Privileged attribute, see trdc_privilege_attr_t.
-
uint32_t secureAttr
Secure attribute, see trdc_secure_attr_t.
-
uint32_t bypassDomainId
Bypass domain ID.
-
uint32_t __pad0__
Reserved.
-
uint32_t lock
Lock the register.
-
uint32_t __pad1__
Reserved.
-
uint32_t domainId
-
struct _trdc_pid_config
- #include <fsl_trdc.h>
Process identifier(PID) configuration for processor cores.
Public Members
-
uint32_t pid
The process identifier of the executing task. The highest bit can be used to define secure/nonsecure attribute of the task.
-
uint32_t __pad0__
Reserved.
-
uint32_t lock
How to lock the register, see trdc_pid_lock_t.
-
uint32_t __pad1__
Reserved.
-
uint32_t pid
-
struct _trdc_idau_config
- #include <fsl_trdc.h>
IDAU(Implementation-Defined Attribution Unit) configuration for TZ-M function control.
Public Members
-
uint32_t __pad0__
Reserved.
-
uint32_t lockSecureVTOR
Disable writes to secure VTOR(Vector Table Offset Register).
-
uint32_t lockNonsecureVTOR
Disable writes to non-secure VTOR, Application interrupt and Reset Control Registers.
-
uint32_t lockSecureMPU
Disable writes to secure MPU(Memory Protection Unit) from software or from a debug agent connected to the processor in Secure state.
-
uint32_t lockNonsecureMPU
Disable writes to non-secure MPU(Memory Protection Unit) from software or from a debug agent connected to the processor.
-
uint32_t lockSAU
Disable writes to SAU(Security Attribution Unit) registers.
-
uint32_t __pad1__
Reserved.
-
uint32_t __pad0__
-
struct _trdc_flw_config
- #include <fsl_trdc.h>
FLW(Flash Logical Window) configuration.
Public Members
-
uint16_t blockCount
Block count of the Flash Logic Window in 32KByte blocks.
-
uint32_t arrayBaseAddr
Flash array base address of the Flash Logical Window.
-
bool lock
Disable writes to FLW registers.
-
bool enable
Enable FLW function.
-
uint16_t blockCount
-
struct _trdc_domain_error
- #include <fsl_trdc.h>
TRDC domain error definition.
Public Members
-
trdc_controller_t controller
Which controller captured access violation.
-
uint32_t address
Access address that generated access violation.
-
trdc_error_state_t errorState
Error state.
-
trdc_error_attr_t errorAttr
Error attribute.
-
trdc_error_type_t errorType
Error type.
-
uint8_t errorPort
Error port.
-
uint8_t domainId
Domain ID.
-
uint8_t slaveMemoryIdx
The slave memory index. Only apply when violation in MBC.
-
trdc_controller_t controller
-
struct _trdc_memory_access_control_config
- #include <fsl_trdc.h>
Memory access control configuration for MBC/MRC.
Public Members
-
uint32_t nonsecureUsrX
Allow nonsecure user execute access.
-
uint32_t nonsecureUsrW
Allow nonsecure user write access.
-
uint32_t nonsecureUsrR
Allow nonsecure user read access.
-
uint32_t __pad0__
Reserved.
-
uint32_t nonsecurePrivX
Allow nonsecure privilege execute access.
-
uint32_t nonsecurePrivW
Allow nonsecure privilege write access.
-
uint32_t nonsecurePrivR
Allow nonsecure privilege read access.
-
uint32_t __pad1__
Reserved.
-
uint32_t secureUsrX
Allow secure user execute access.
-
uint32_t secureUsrW
Allow secure user write access.
-
uint32_t secureUsrR
Allow secure user read access.
-
uint32_t __pad2__
Reserved.
-
uint32_t securePrivX
Allownsecure privilege execute access.
-
uint32_t securePrivW
Allownsecure privilege write access.
-
uint32_t securePrivR
Allownsecure privilege read access.
-
uint32_t __pad3__
Reserved.
-
uint32_t lock
Lock the configuration until next reset, only apply to access control register 0.
-
uint32_t nonsecureUsrX
-
struct _trdc_mrc_region_descriptor_config
- #include <fsl_trdc.h>
The configuration of each region descriptor per domain per MRC instance.
Public Members
-
uint8_t memoryAccessControlSelect
Select one of the 8 access control policies for this region, for access cotrol policies see trdc_memory_access_control_config_t.
-
uint32_t startAddr
Physical start address.
-
bool valid
Lock the register.
-
bool nseEnable
Enable non-secure accesses and disable secure accesses.
-
uint32_t endAddr
Physical start address.
-
uint8_t mrcIdx
The index of the MRC for this configuration to take effect.
-
uint8_t domainIdx
The index of the domain for this configuration to take effect.
-
uint8_t regionIdx
The index of the region for this configuration to take effect.
-
uint8_t memoryAccessControlSelect
-
struct _trdc_mbc_nse_update_config
- #include <fsl_trdc.h>
The configuration of MBC NSE update.
Public Members
-
uint32_t __pad0__
Reserved.
-
uint32_t wordIdx
MBC configuration word index to be updated.
-
uint32_t __pad1__
Reserved.
-
uint32_t memorySelect
Bit mask of the selected memory to be updated. _trdc_MBC_memory.
-
uint32_t __pad2__
Reserved.
-
uint32_t domianSelect
Bit mask of the selected domain to be updated. _trdc_MBC_domain.
-
uint32_t __pad3__
Reserved.
-
uint32_t autoIncrement
Whether to increment the word index after current word is updated using this configuration.
-
uint32_t __pad0__
-
struct _trdc_mbc_memory_block_config
- #include <fsl_trdc.h>
The configuration of each memory block per domain per MBC instance.
Public Members
-
uint32_t memoryAccessControlSelect
Select one of the 8 access control policies for this memory block, for access cotrol policies see trdc_memory_access_control_config_t.
-
uint32_t nseEnable
Enable non-secure accesses and disable secure accesses.
-
uint32_t mbcIdx
The index of the MBC for this configuration to take effect.
-
uint32_t domainIdx
The index of the domain for this configuration to take effect.
-
uint32_t slaveMemoryIdx
The index of the slave memory for this configuration to take effect.
-
uint32_t memoryBlockIdx
The index of the memory block for this configuration to take effect.
-
uint32_t memoryAccessControlSelect
Trdc_core
-
typedef struct _TRDC_General_Type TRDC_General_Type
TRDC general configuration register definition.
-
typedef struct _TRDC_FLW_Type TRDC_FLW_Type
TRDC flash logical control register definition.
-
typedef struct _TRDC_DomainError_Type TRDC_DomainError_Type
TRDC domain error register definition.
-
typedef struct _TRDC_DomainAssignment_Type TRDC_DomainAssignment_Type
TRDC master domain assignment register definition.
-
typedef struct _TRDC_MBC_Type TRDC_MBC_Type
TRDC MBC control register definition.
-
typedef struct _TRDC_MRC_Type TRDC_MRC_Type
TRDC MRC control register definition. MRC_DOM0_RGD_W[region][word].
-
TRDC_GENERAL_BASE(base)
TRDC base address convert macro.
-
TRDC_FLW_BASE(base)
-
TRDC_DOMAIN_ERROR_BASE(base)
-
TRDC_DOMAIN_ASSIGNMENT_BASE(base)
-
TRDC_MBC_BASE(base, instance)
-
TRDC_MRC_BASE(base, instance)
-
struct _TRDC_General_Type
- #include <fsl_trdc_core.h>
TRDC general configuration register definition.
Public Members
- __IO uint32_t TRDC_CR
TRDC Register, offset: 0x0
- __I uint32_t TRDC_HWCFG0
TRDC Hardware Configuration Register 0, offset: 0xF0
- __I uint32_t TRDC_HWCFG1
TRDC Hardware Configuration Register 1, offset: 0xF4
- __I uint32_t TRDC_HWCFG2
TRDC Hardware Configuration Register 2, offset: 0xF8
- __I uint32_t TRDC_HWCFG3
TRDC Hardware Configuration Register 3, offset: 0xFC
- __I uint8_t DACFG [8]
Domain Assignment Configuration Register, array offset: 0x100, array step: 0x1
- __IO uint32_t TRDC_IDAU_CR
TRDC IDAU Control Register, offset: 0x1C0
-
struct _TRDC_FLW_Type
- #include <fsl_trdc_core.h>
TRDC flash logical control register definition.
Public Members
- __IO uint32_t TRDC_FLW_CTL
TRDC FLW Control, offset: 0x1E0
- __I uint32_t TRDC_FLW_PBASE
TRDC FLW Physical Base, offset: 0x1E4
- __IO uint32_t TRDC_FLW_ABASE
TRDC FLW Array Base, offset: 0x1E8
- __IO uint32_t TRDC_FLW_BCNT
TRDC FLW Block Count, offset: 0x1EC
-
struct _TRDC_DomainError_Type
- #include <fsl_trdc_core.h>
TRDC domain error register definition.
Public Members
- __IO uint32_t TRDC_FDID
TRDC Fault Domain ID, offset: 0x1FC
- __I uint32_t TRDC_DERRLOC [16]
TRDC Domain Error Location Register, array offset: 0x200, array step: 0x4
-
struct _TRDC_DomainAssignment_Type
- #include <fsl_trdc_core.h>
TRDC master domain assignment register definition.
Public Members
- __IO uint32_t PID [8]
Process Identifier, array offset: 0x700, array step: 0x4
-
struct _TRDC_MBC_Type
- #include <fsl_trdc_core.h>
TRDC MBC control register definition.
Public Members
- __I uint32_t MBC_MEM_GLBCFG [4]
MBC Global Configuration Register, array offset: 0x10000, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_NSE_BLK_INDEX
MBC NonSecure Enable Block Index, array offset: 0x10010, array step: 0x2000
- __O uint32_t MBC_NSE_BLK_SET
MBC NonSecure Enable Block Set, array offset: 0x10014, array step: 0x2000
- __O uint32_t MBC_NSE_BLK_CLR
MBC NonSecure Enable Block Clear, array offset: 0x10018, array step: 0x2000
- __O uint32_t MBC_NSE_BLK_CLR_ALL
MBC NonSecure Enable Block Clear All, array offset: 0x1001C, array step: 0x2000
- __IO uint32_t MBC_MEMN_GLBAC [8]
MBC Global Access Control, array offset: 0x10020, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM0_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x10040, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM0_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x10140, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM0_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10180, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM0_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x101A0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM0_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x101A8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM0_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x101C8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM0_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x101D0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM0_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x101F0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM1_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x10240, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM1_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x10340, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM1_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10380, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM1_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x103A0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM1_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x103A8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM1_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x103C8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM1_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x103D0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM1_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x103F0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM2_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x10440, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM2_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x10540, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM2_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10580, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM2_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x105A0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM2_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x105A8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM2_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x105C8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM2_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x105D0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM2_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x105F0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM3_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x10640, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM3_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x10740, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM3_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10780, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM3_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x107A0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM3_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x107A8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM3_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x107C8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM3_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x107D0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM3_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x107F0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM4_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x10840, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM4_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x10940, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM4_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10980, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM4_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x109A0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM4_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x109A8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM4_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x109C8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM4_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x109D0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM4_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x109F0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM5_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x10A40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM5_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x10B40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM5_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10B80, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM5_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x10BA0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM5_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10BA8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM5_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x10BC8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM5_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10BD0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM5_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x10BF0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM6_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x10C40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM6_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x10D40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM6_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10D80, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM6_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x10DA0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM6_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10DA8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM6_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x10DC8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM6_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10DD0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM6_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x10DF0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM7_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x10E40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM7_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x10F40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM7_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10F80, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM7_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x10FA0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM7_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10FA8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM7_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x10FC8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM7_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x10FD0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM7_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x10FF0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM8_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x11040, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM8_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x11140, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM8_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11180, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM8_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x111A0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM8_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x111A8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM8_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x111C8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM8_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x111D0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM8_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x111F0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM9_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x11240, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM9_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x11340, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM9_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11380, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM9_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x113A0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM9_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x113A8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM9_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x113C8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM9_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x113D0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM9_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x113F0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM10_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x11440, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM10_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x11540, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM10_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11580, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM10_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x115A0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM10_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x115A8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM10_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x115C8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM10_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x115D0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM10_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x115F0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM11_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x11640, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM11_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x11740, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM11_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11780, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM11_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x117A0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM11_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x117A8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM11_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x117C8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM11_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x117D0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM11_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x117F0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM12_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x11840, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM12_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x11940, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM12_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11980, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM12_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x119A0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM12_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x119A8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM12_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x119C8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM12_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x119D0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM12_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x119F0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM13_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x11A40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM13_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x11B40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM13_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11B80, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM13_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x11BA0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM13_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11BA8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM13_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x11BC8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM13_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11BD0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM13_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x11BF0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM14_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x11C40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM14_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x11D40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM14_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11D80, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM14_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x11DA0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM14_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11DA8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM14_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x11DC8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM14_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11DD0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM14_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x11DF0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM15_MEM0_BLK_CFG_W [64]
MBC Memory Block Configuration Word, array offset: 0x11E40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM15_MEM0_BLK_NSE_W [16]
MBC Memory Block NonSecure Enable Word, array offset: 0x11F40, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM15_MEM1_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11F80, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM15_MEM1_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x11FA0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM15_MEM2_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11FA8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM15_MEM2_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x11FC8, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM15_MEM3_BLK_CFG_W [8]
MBC Memory Block Configuration Word, array offset: 0x11FD0, array step: index*0x2000, index2*0x4
- __IO uint32_t MBC_DOM15_MEM3_BLK_NSE_W [2]
MBC Memory Block NonSecure Enable Word, array offset: 0x11FF0, array step: index*0x2000, index2*0x4
-
struct _TRDC_MRC_Type
- #include <fsl_trdc_core.h>
TRDC MRC control register definition. MRC_DOM0_RGD_W[region][word].
Public Members
- __I uint32_t MRC_GLBCFG
MRC Global Configuration Register, array offset: 0x14000, array step: 0x1000
- __IO uint32_t MRC_NSE_RGN_INDIRECT
MRC NonSecure Enable Region Indirect, array offset: 0x14010, array step: 0x1000
- __O uint32_t MRC_NSE_RGN_SET
MRC NonSecure Enable Region Set, array offset: 0x14014, array step: 0x1000
- __O uint32_t MRC_NSE_RGN_CLR
MRC NonSecure Enable Region Clear, array offset: 0x14018, array step: 0x1000
- __O uint32_t MRC_NSE_RGN_CLR_ALL
MRC NonSecure Enable Region Clear All, array offset: 0x1401C, array step: 0x1000
- __IO uint32_t MRC_GLBAC [8]
MRC Global Access Control, array offset: 0x14020, array step: index*0x1000, index2*0x4
- __IO uint32_t MRC_DOM0_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14040, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM0_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x140C0, array step: 0x1000
- __IO uint32_t MRC_DOM1_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14140, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM1_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x141C0, array step: 0x1000
- __IO uint32_t MRC_DOM2_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14240, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM2_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x142C0, array step: 0x1000
- __IO uint32_t MRC_DOM3_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14340, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM3_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x143C0, array step: 0x1000
- __IO uint32_t MRC_DOM4_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14440, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM4_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x144C0, array step: 0x1000
- __IO uint32_t MRC_DOM5_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14540, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM5_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x145C0, array step: 0x1000
- __IO uint32_t MRC_DOM6_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14640, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM6_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x146C0, array step: 0x1000
- __IO uint32_t MRC_DOM7_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14740, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM7_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x147C0, array step: 0x1000
- __IO uint32_t MRC_DOM8_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14840, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM8_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x148C0, array step: 0x1000
- __IO uint32_t MRC_DOM9_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14940, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM9_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x149C0, array step: 0x1000
- __IO uint32_t MRC_DOM10_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14A40, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM10_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x14AC0, array step: 0x1000
- __IO uint32_t MRC_DOM11_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14B40, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM11_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x14BC0, array step: 0x1000
- __IO uint32_t MRC_DOM12_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14C40, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM12_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x14CC0, array step: 0x1000
- __IO uint32_t MRC_DOM13_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14D40, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM13_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x14DC0, array step: 0x1000
- __IO uint32_t MRC_DOM14_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14E40, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM14_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x14EC0, array step: 0x1000
- __IO uint32_t MRC_DOM15_RGD_W [16][2]
MRC Region Descriptor Word 0..MRC Region Descriptor Word 1, array offset: 0x14F40, array step: index*0x1000, index2*0x8, index3*0x4
- __IO uint32_t MRC_DOM15_RGD_NSE
MRC Region Descriptor NonSecure Enable, array offset: 0x14FC0, array step: 0x1000
-
struct MBC_DERR
Public Members
- __I uint32_t W0
MBC Domain Error Word0 Register, array offset: 0x400, array step: 0x10
- __I uint32_t W1
MBC Domain Error Word1 Register, array offset: 0x404, array step: 0x10
- __O uint32_t W3
MBC Domain Error Word3 Register, array offset: 0x40C, array step: 0x10
-
struct MRC_DERR
Public Members
- __I uint32_t W0
MRC Domain Error Word0 Register, array offset: 0x480, array step: 0x10
- __I uint32_t W1
MRC Domain Error Word1 Register, array offset: 0x484, array step: 0x10
- __O uint32_t W3
MRC Domain Error Word3 Register, array offset: 0x48C, array step: 0x10
-
union __unnamed79__
Public Members
-
struct _TRDC_DomainAssignment_Type MDA_DFMT0[8]
-
struct _TRDC_DomainAssignment_Type MDA_DFMT1[8]
-
struct _TRDC_DomainAssignment_Type MDA_DFMT0[8]
-
struct MDA_DFMT0
Public Members
- __IO uint32_t MDA_W_DFMT0 [8]
DAC Master Domain Assignment Register, array offset: 0x800, array step: index*0x20, index2*0x4
-
struct MDA_DFMT1
Public Members
- __IO uint32_t MDA_W_DFMT1 [1]
DAC Master Domain Assignment Register, array offset: 0x800, array step: index*0x20, index2*0x4
Trdc_soc
-
FSL_TRDC_SOC_DRIVER_VERSION
Driver version 2.0.0.
-
TRDC_MBC_MEM_GLBCFG_NBLKS_MASK
-
TRDC_MBC_MEM_GLBCFG_SIZE_LOG2_MASK
-
TRDC_MBC_MEM_GLBCFG_SIZE_LOG2_SHIFT
-
TRDC_MBC_NSE_BLK_CLR_ALL_MEMSEL(x)
-
TRDC_MBC_NSE_BLK_CLR_ALL_DID_SEL(x)
-
FSL_FEATURE_TRDC_DOMAIN_COUNT
TRDC feature.
-
TRDC_MBC_COUNT
TRDC base address convert macro.
-
TRDC_MBC_OFFSET(x)
-
TRDC_MBC_ARRAY_STEP
-
FSL_COMPONENT_ID
UTICK: MictoTick Timer Driver
-
void UTICK_Init(UTICK_Type *base)
Initializes an UTICK by turning its bus clock on.
-
void UTICK_Deinit(UTICK_Type *base)
Deinitializes a UTICK instance.
This function shuts down Utick bus clock
- Parameters:
base – UTICK peripheral base address.
-
uint32_t UTICK_GetStatusFlags(UTICK_Type *base)
Get Status Flags.
This returns the status flag
- Parameters:
base – UTICK peripheral base address.
- Returns:
status register value
-
void UTICK_ClearStatusFlags(UTICK_Type *base)
Clear Status Interrupt Flags.
This clears intr status flag
- Parameters:
base – UTICK peripheral base address.
- Returns:
none
-
void UTICK_SetTick(UTICK_Type *base, utick_mode_t mode, uint32_t count, utick_callback_t cb)
Starts UTICK.
This function starts a repeat/onetime countdown with an optional callback
- Parameters:
base – UTICK peripheral base address.
mode – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)
count – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)
cb – UTICK callback (can be left as NULL if none, otherwise should be a void func(void))
- Returns:
none
-
void UTICK_HandleIRQ(UTICK_Type *base, utick_callback_t cb)
UTICK Interrupt Service Handler.
This function handles the interrupt and refers to the callback array in the driver to callback user (as per request in UTICK_SetTick()). if no user callback is scheduled, the interrupt will simply be cleared.
- Parameters:
base – UTICK peripheral base address.
cb – callback scheduled for this instance of UTICK
- Returns:
none
-
FSL_UTICK_DRIVER_VERSION
UTICK driver version 2.0.5.
-
enum _utick_mode
UTICK timer operational mode.
Values:
-
enumerator kUTICK_Onetime
Trigger once
-
enumerator kUTICK_Repeat
Trigger repeatedly
-
enumerator kUTICK_Onetime
-
typedef enum _utick_mode utick_mode_t
UTICK timer operational mode.
-
typedef void (*utick_callback_t)(void)
UTICK callback function.
WAKETIMER: WAKETIMER Driver
-
void WAKETIMER_Init(WAKETIMER_Type *base, const waketimer_config_t *config)
Initializes an WAKETIMER.
This function initializes the WAKETIMER.
- Parameters:
base – WAKETIMER peripheral base address.
config – Pointer to the user configuration structure.
-
void WAKETIMER_Deinit(WAKETIMER_Type *base)
Deinitializes a WAKETIMER instance.
This function deinitialize the WAKETIMER.
- Parameters:
base – WAKETIMER peripheral base address.
-
void WAKETIMER_GetDefaultConfig(waketimer_config_t *config)
Fills in the WAKETIMER configuration structure with the default settings.
The default values are:
config->enableInterrupt = true; config->enableOSCDivide = true; config->callback = NULL;
- Parameters:
config – Pointer to the user configuration structure.
-
void WAKETIMER_EnableInterrupts(WAKETIMER_Type *base, uint32_t mask)
Enables the selected WAKETIMER interrupts.
- Parameters:
base – WAKETIMER peripheral base address
mask – Mask value for interrupt events. See to _waketimer_interrupt_enable
-
void WAKETIMER_DisableInterrupts(WAKETIMER_Type *base, uint32_t mask)
Enables the selected WAKETIMER interrupts.
- Parameters:
base – WAKETIMER peripheral base address
mask – Mask value for interrupt events. See to _waketimer_interrupt_enable
-
void WAKETIMER_ClearStatusFlags(WAKETIMER_Type *base, uint32_t mask)
Clear Status Interrupt Flag.
This clears intrrupt status flag. Currently, only match interrupt flag can be cleared.
- Parameters:
base – WAKETIMER peripheral base address.
mask – Mask value for flags to be cleared. See to _waketimer_status_flags.
- Returns:
none
-
void WAKETIMER_SetCallback(WAKETIMER_Type *base, waketimer_callback_t callback)
Receive noticification when waketime countdown.
If the interrupt for the waketime countdown is enabled, then a callback can be registered which will be invoked when the event is triggered
- Parameters:
base – WAKETIMER peripheral base address
callback – Function to invoke when the event is triggered
-
static inline void WAKETIMER_HaltTimer(WAKETIMER_Type *base)
Halt and clear timer counter.
This halt and clear timer counter.
- Parameters:
base – WAKETIMER peripheral base address.
- Returns:
none
-
static inline void WAKETIMER_StartTimer(WAKETIMER_Type *base, uint32_t value)
Set timer counter.
This set the timer counter and start the timer countdown.
- Parameters:
base – WAKETIMER peripheral base address.
value – countdown value.
- Returns:
none
-
uint32_t WAKETIMER_GetCurrentTimerValue(WAKETIMER_Type *base)
Get current timer count value from WAKETIMER.
This function will get a decimal timer count value. The RAW value of timer count is gray code format, will be translated to decimal data internally.
- Parameters:
base – WAKETIMER peripheral base address.
- Returns:
Value of WAKETIMER which will be formated to decimal value.
-
FSL_WAKETIMER_DRIVER_VERSION
WAKETIMER driver version.
-
enum _waketimer_status_flags
WAKETIMER status flags.
Values:
-
enumerator kWAKETIMER_WakeFlag
Wake Timer Status Flag, sets wake timer has timed out.
-
enumerator kWAKETIMER_WakeFlag
-
enum _waketimer_interrupt_enable
Define interrupt switchers of the module.
Values:
-
enumerator kWAKETIMER_WakeInterruptEnable
Generate interrupt requests when WAKE_FLAG is asserted.
-
enumerator kWAKETIMER_WakeInterruptEnable
-
typedef void (*waketimer_callback_t)(void)
waketimer callback function.
-
typedef struct _waketimer_config waketimer_config_t
WAKETIMER configuration structure.
This structure holds the configuration settings for the WAKETIMER peripheral. To initialize this structure to reasonable defaults, call the WAKETIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.
The configuration structure can be made constant so as to reside in flash.
-
struct _waketimer_config
- #include <fsl_waketimer.h>
WAKETIMER configuration structure.
This structure holds the configuration settings for the WAKETIMER peripheral. To initialize this structure to reasonable defaults, call the WAKETIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.
The configuration structure can be made constant so as to reside in flash.
Public Members
-
bool enableOSCDivide
true: Enable OSC Divide. false: Disable OSC Divide.
-
bool enableInterrupt
true: Enable interrupt. false: Disable interrupt.
-
waketimer_callback_t callback
timer countdown callback.
-
bool enableOSCDivide
WUU: Wakeup Unit driver
-
void WUU_SetExternalWakeUpPinsConfig(WUU_Type *base, uint8_t pinIndex, const wuu_external_wakeup_pin_config_t *config)
Enables and Configs External WakeUp Pins.
This function enables/disables the external pin as wakeup input. What’s more this function configs pins options, including edge detection wakeup event and operate mode.
- Parameters:
base – MUU peripheral base address.
pinIndex – The index of the external input pin. See Reference Manual for the details.
config – Pointer to wuu_external_wakeup_pin_config_t structure.
-
void WUU_ClearExternalWakeupPinsConfig(WUU_Type *base, uint8_t pinIndex)
Disable and clear external wakeup pin settings.
- Parameters:
base – MUU peripheral base address.
pinIndex – The index of the external input pin.
-
static inline uint32_t WUU_GetExternalWakeUpPinsFlag(WUU_Type *base)
Gets External Wakeup pin flags.
This function return the external wakeup pin flags.
- Parameters:
base – WUU peripheral base address.
- Returns:
Wakeup flags for all external wakeup pins.
-
static inline void WUU_ClearExternalWakeUpPinsFlag(WUU_Type *base, uint32_t mask)
Clears External WakeUp Pin flags.
This function clears external wakeup pins flags based on the mask.
- Parameters:
base – WUU peripheral base address.
mask – The mask of Wakeup pin index to be cleared.
-
void WUU_SetInternalWakeUpModulesConfig(WUU_Type *base, uint8_t moduleIndex, wuu_internal_wakeup_module_event_t event)
Config Internal modules’ event as the wake up soures.
This function configs the internal modules event as the wake up sources.
- Parameters:
base – WUU peripheral base address.
moduleIndex – The selected internal module. See the Reference Manual for the details.
event – Select interrupt or DMA/Trigger of the internal module as the wake up source.
-
void WUU_ClearInternalWakeUpModulesConfig(WUU_Type *base, uint8_t moduleIndex, wuu_internal_wakeup_module_event_t event)
Disable an on-chip internal modules’ event as the wakeup sources.
- Parameters:
base – WUU peripheral base address.
moduleIndex – The selected internal module. See the Reference Manual for the details.
event – The event(interrupt or DMA/trigger) of the internal module to disable.
-
void WUU_SetPinFilterConfig(WUU_Type *base, uint8_t filterIndex, const wuu_pin_filter_config_t *config)
Configs and Enables Pin filters.
This function configs Pin filter, including pin select, filer operate mode filer wakeup event and filter edge detection.
- Parameters:
base – WUU peripheral base address.
filterIndex – The index of the pin filer.
config – Pointer to wuu_pin_filter_config_t structure.
-
bool WUU_GetPinFilterFlag(WUU_Type *base, uint8_t filterIndex)
Gets the pin filter configuration.
This function gets the pin filter flag.
- Parameters:
base – WUU peripheral base address.
filterIndex – A pin filter index, which starts from 1.
- Returns:
True if the flag is a source of the existing low-leakage power mode.
-
void WUU_ClearPinFilterFlag(WUU_Type *base, uint8_t filterIndex)
Clears the pin filter configuration.
This function clears the pin filter flag.
- Parameters:
base – WUU peripheral base address.
filterIndex – A pin filter index to clear the flag, starting from 1.
-
bool WUU_GetExternalWakeupPinFlag(WUU_Type *base, uint32_t pinIndex)
brief Gets the external wakeup source flag.
This function checks the external pin flag to detect whether the MCU is woken up by the specific pin.
param base WUU peripheral base address. param pinIndex A pin index, which starts from 0. return True if the specific pin is a wakeup source.
-
void WUU_ClearExternalWakeupPinFlag(WUU_Type *base, uint32_t pinIndex)
brief Clears the external wakeup source flag.
This function clears the external wakeup source flag for a specific pin.
param base WUU peripheral base address. param pinIndex A pin index, which starts from 0.
-
FSL_WUU_DRIVER_VERSION
Defines WUU driver version 2.4.0.
-
enum _wuu_external_pin_edge_detection
External WakeUp pin edge detection enumeration.
Values:
-
enumerator kWUU_ExternalPinDisable
External input Pin disabled as wake up input.
-
enumerator kWUU_ExternalPinRisingEdge
External input Pin enabled with the rising edge detection.
-
enumerator kWUU_ExternalPinFallingEdge
External input Pin enabled with the falling edge detection.
-
enumerator kWUU_ExternalPinAnyEdge
External input Pin enabled with any change detection.
-
enumerator kWUU_ExternalPinDisable
-
enum _wuu_external_wakeup_pin_event
External input wake up pin event enumeration.
Values:
-
enumerator kWUU_ExternalPinInterrupt
External input Pin configured as interrupt.
-
enumerator kWUU_ExternalPinDMARequest
External input Pin configured as DMA request.
-
enumerator kWUU_ExternalPinTriggerEvent
External input Pin configured as Trigger event.
-
enumerator kWUU_ExternalPinInterrupt
-
enum _wuu_external_wakeup_pin_mode
External input wake up pin mode enumeration.
Values:
-
enumerator kWUU_ExternalPinActiveDSPD
External input Pin is active only during Deep Sleep/Power Down Mode.
-
enumerator kWUU_ExternalPinActiveAlways
External input Pin is active during all power modes.
-
enumerator kWUU_ExternalPinActiveDSPD
-
enum _wuu_internal_wakeup_module_event
Internal module wake up event enumeration.
Values:
-
enumerator kWUU_InternalModuleInterrupt
Internal modules’ interrupt as a wakeup source.
-
enumerator kWUU_InternalModuleDMATrigger
Internal modules’ DMA/Trigger as a wakeup source.
-
enumerator kWUU_InternalModuleInterrupt
-
enum _wuu_filter_edge
Pin filter edge enumeration.
Values:
-
enumerator kWUU_FilterDisabled
Filter disabled.
-
enumerator kWUU_FilterPosedgeEnable
Filter posedge detect enabled.
-
enumerator kWUU_FilterNegedgeEnable
Filter negedge detect enabled.
-
enumerator kWUU_FilterAnyEdge
Filter any edge detect enabled.
-
enumerator kWUU_FilterDisabled
-
enum _wuu_filter_event
Pin Filter event enumeration.
Values:
-
enumerator kWUU_FilterInterrupt
Filter output configured as interrupt.
-
enumerator kWUU_FilterDMARequest
Filter output configured as DMA request.
-
enumerator kWUU_FilterTriggerEvent
Filter output configured as Trigger event.
-
enumerator kWUU_FilterInterrupt
-
enum _wuu_filter_mode
Pin filter mode enumeration.
Values:
-
enumerator kWUU_FilterActiveDSPD
External input pin filter is active only during Deep Sleep/Power Down Mode.
-
enumerator kWUU_FilterActiveAlways
External input Pin filter is active during all power modes.
-
enumerator kWUU_FilterActiveDSPD
-
typedef enum _wuu_external_pin_edge_detection wuu_external_pin_edge_detection_t
External WakeUp pin edge detection enumeration.
-
typedef enum _wuu_external_wakeup_pin_event wuu_external_wakeup_pin_event_t
External input wake up pin event enumeration.
-
typedef enum _wuu_external_wakeup_pin_mode wuu_external_wakeup_pin_mode_t
External input wake up pin mode enumeration.
-
typedef enum _wuu_internal_wakeup_module_event wuu_internal_wakeup_module_event_t
Internal module wake up event enumeration.
-
typedef enum _wuu_filter_edge wuu_filter_edge_t
Pin filter edge enumeration.
-
typedef enum _wuu_filter_event wuu_filter_event_t
Pin Filter event enumeration.
-
typedef enum _wuu_filter_mode wuu_filter_mode_t
Pin filter mode enumeration.
-
typedef struct _wuu_external_wakeup_pin_config wuu_external_wakeup_pin_config_t
External WakeUp pin configuration.
-
typedef struct _wuu_pin_filter_config wuu_pin_filter_config_t
Pin Filter configuration.
-
struct _wuu_external_wakeup_pin_config
- #include <fsl_wuu.h>
External WakeUp pin configuration.
Public Members
-
wuu_external_pin_edge_detection_t edge
External Input pin edge detection.
-
wuu_external_wakeup_pin_event_t event
External Input wakeup Pin event
-
wuu_external_wakeup_pin_mode_t mode
External Input wakeup Pin operate mode.
-
wuu_external_pin_edge_detection_t edge
-
struct _wuu_pin_filter_config
- #include <fsl_wuu.h>
Pin Filter configuration.
Public Members
-
uint32_t pinIndex
The index of wakeup pin to be muxxed into filter.
-
wuu_filter_edge_t edge
The edge of the pin digital filter.
-
wuu_filter_event_t event
The event of the filter output.
-
wuu_filter_mode_t mode
The mode of the filter operate.
-
uint32_t pinIndex
WWDT: Windowed Watchdog Timer Driver
-
void WWDT_GetDefaultConfig(wwdt_config_t *config)
Initializes WWDT configure structure.
This function initializes the WWDT configure structure to default value. The default value are:
config->enableWwdt = true; config->enableWatchdogReset = false; config->enableWatchdogProtect = false; config->enableLockOscillator = false; config->windowValue = 0xFFFFFFU; config->timeoutValue = 0xFFFFFFU; config->warningValue = 0;
See also
wwdt_config_t
- Parameters:
config – Pointer to WWDT config structure.
-
void WWDT_Init(WWDT_Type *base, const wwdt_config_t *config)
Initializes the WWDT.
This function initializes the WWDT. When called, the WWDT runs according to the configuration.
Example:
wwdt_config_t config; WWDT_GetDefaultConfig(&config); config.timeoutValue = 0x7ffU; WWDT_Init(wwdt_base,&config);
- Parameters:
base – WWDT peripheral base address
config – The configuration of WWDT
-
void WWDT_Deinit(WWDT_Type *base)
Shuts down the WWDT.
This function shuts down the WWDT.
- Parameters:
base – WWDT peripheral base address
-
static inline void WWDT_Enable(WWDT_Type *base)
Enables the WWDT module.
This function write value into WWDT_MOD register to enable the WWDT, it is a write-once bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will run permanently.
- Parameters:
base – WWDT peripheral base address
-
static inline void WWDT_Disable(WWDT_Type *base)
Disables the WWDT module.
- Deprecated:
Do not use this function. It will be deleted in next release version, for once the bit field of WDEN written with a 1, it can not be re-written with a 0.
This function write value into WWDT_MOD register to disable the WWDT.
- Parameters:
base – WWDT peripheral base address
-
static inline uint32_t WWDT_GetStatusFlags(WWDT_Type *base)
Gets all WWDT status flags.
This function gets all status flags.
Example for getting Timeout Flag:
uint32_t status; status = WWDT_GetStatusFlags(wwdt_base) & kWWDT_TimeoutFlag;
- Parameters:
base – WWDT peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration _wwdt_status_flags_t
-
void WWDT_ClearStatusFlags(WWDT_Type *base, uint32_t mask)
Clear WWDT flag.
This function clears WWDT status flag.
Example for clearing warning flag:
WWDT_ClearStatusFlags(wwdt_base, kWWDT_WarningFlag);
- Parameters:
base – WWDT peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration _wwdt_status_flags_t
-
static inline void WWDT_SetWarningValue(WWDT_Type *base, uint32_t warningValue)
Set the WWDT warning value.
The WDWARNINT register determines the watchdog timer counter value that will generate a watchdog interrupt. When the watchdog timer counter is no longer greater than the value defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.
- Parameters:
base – WWDT peripheral base address
warningValue – WWDT warning value.
-
static inline void WWDT_SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)
Set the WWDT timeout value.
This function sets the timeout value. Every time a feed sequence occurs the value in the TC register is loaded into the Watchdog timer. Writing a value below 0xFF will cause 0xFF to be loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If enableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change the timeout value before the watchdog counter is below the warning and window values will cause a watchdog reset and set the WDTOF flag.
- Parameters:
base – WWDT peripheral base address
timeoutCount – WWDT timeout value, count of WWDT clock tick.
-
static inline void WWDT_SetWindowValue(WWDT_Type *base, uint32_t windowValue)
Sets the WWDT window value.
The WINDOW register determines the highest TV value allowed when a watchdog feed is performed. If a feed sequence occurs when timer value is greater than the value in WINDOW, a watchdog event will occur. To disable windowing, set windowValue to 0xFFFFFF (maximum possible timer value) so windowing is not in effect.
- Parameters:
base – WWDT peripheral base address
windowValue – WWDT window value.
-
void WWDT_Refresh(WWDT_Type *base)
Refreshes the WWDT timer.
This function feeds the WWDT. This function should be called before WWDT timer is in timeout. Otherwise, a reset is asserted.
- Parameters:
base – WWDT peripheral base address
-
FSL_WWDT_DRIVER_VERSION
Defines WWDT driver version.
-
WWDT_FIRST_WORD_OF_REFRESH
First word of refresh sequence
-
WWDT_SECOND_WORD_OF_REFRESH
Second word of refresh sequence
-
enum _wwdt_status_flags_t
WWDT status flags.
This structure contains the WWDT status flags for use in the WWDT functions.
Values:
-
enumerator kWWDT_TimeoutFlag
Time-out flag, set when the timer times out
-
enumerator kWWDT_WarningFlag
Warning interrupt flag, set when timer is below the value WDWARNINT
-
enumerator kWWDT_TimeoutFlag
-
typedef struct _wwdt_config wwdt_config_t
Describes WWDT configuration structure.
-
struct _wwdt_config
- #include <fsl_wwdt.h>
Describes WWDT configuration structure.
Public Members
-
bool enableWwdt
Enables or disables WWDT
-
bool enableWatchdogReset
true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause a chip reset
-
bool enableWatchdogProtect
true: Enable watchdog protect i.e timeout value can only be changed after counter is below warning & window values false: Disable watchdog protect; timeout value can be changed at any time
-
bool enableLockOscillator
true: Disabling or powering down the watchdog oscillator is prevented Once set, this bit can only be cleared by a reset false: Do not lock oscillator
-
uint32_t windowValue
Window value, set this to 0xFFFFFF if windowing is not in effect
-
uint32_t timeoutValue
Timeout value
-
uint32_t warningValue
Watchdog time counter value that will generate a warning interrupt. Set this to 0 for no warning
-
uint32_t clockFreq_Hz
Watchdog clock source frequency.
-
bool enableWwdt