MCXC041

ADC16: 16-bit SAR Analog-to-Digital Converter Driver

void ADC16_Init(ADC_Type *base, const adc16_config_t *config)

Initializes the ADC16 module.

Parameters:
  • base – ADC16 peripheral base address.

  • config – Pointer to configuration structure. See “adc16_config_t”.

void ADC16_Deinit(ADC_Type *base)

De-initializes the ADC16 module.

Parameters:
  • base – ADC16 peripheral base address.

void ADC16_GetDefaultConfig(adc16_config_t *config)

Gets an available pre-defined settings for the converter’s configuration.

This function initializes the converter configuration structure with available settings. The default values are as follows.

config->referenceVoltageSource     = kADC16_ReferenceVoltageSourceVref;
config->clockSource                = kADC16_ClockSourceAsynchronousClock;
config->enableAsynchronousClock    = false;
config->clockDivider               = kADC16_ClockDivider8;
config->resolution                 = kADC16_ResolutionSE12Bit;
config->longSampleMode             = kADC16_LongSampleDisabled;
config->enableHighSpeed            = false;
config->enableLowPower             = false;
config->enableContinuousConversion = false;

Parameters:
  • config – Pointer to the configuration structure.

status_t ADC16_DoAutoCalibration(ADC_Type *base)

Automates the hardware calibration.

This auto calibration helps to adjust the plus/minus side gain automatically. Execute the calibration before using the converter. Note that the hardware trigger should be used during the calibration.

Parameters:
  • base – ADC16 peripheral base address.

Return values:
  • kStatus_Success – Calibration is done successfully.

  • kStatus_Fail – Calibration has failed.

Returns:

Execution status.

static inline void ADC16_SetOffsetValue(ADC_Type *base, int16_t value)

Sets the offset value for the conversion result.

This offset value takes effect on the conversion result. If the offset value is not zero, the reading result is subtracted by it. Note, the hardware calibration fills the offset value automatically.

Parameters:
  • base – ADC16 peripheral base address.

  • value – Setting offset value.

static inline void ADC16_EnableDMA(ADC_Type *base, bool enable)

Enables generating the DMA trigger when the conversion is complete.

Parameters:
  • base – ADC16 peripheral base address.

  • enable – Switcher of the DMA feature. “true” means enabled, “false” means not enabled.

static inline void ADC16_EnableHardwareTrigger(ADC_Type *base, bool enable)

Enables the hardware trigger mode.

Parameters:
  • base – ADC16 peripheral base address.

  • enable – Switcher of the hardware trigger feature. “true” means enabled, “false” means not enabled.

void ADC16_SetChannelMuxMode(ADC_Type *base, adc16_channel_mux_mode_t mode)

Sets the channel mux mode.

Some sample pins share the same channel index. The channel mux mode decides which pin is used for an indicated channel.

Parameters:
  • base – ADC16 peripheral base address.

  • mode – Setting channel mux mode. See “adc16_channel_mux_mode_t”.

void ADC16_SetHardwareCompareConfig(ADC_Type *base, const adc16_hardware_compare_config_t *config)

Configures the hardware compare mode.

The hardware compare mode provides a way to process the conversion result automatically by using hardware. Only the result in the compare range is available. To compare the range, see “adc16_hardware_compare_mode_t” or the appopriate reference manual for more information.

Parameters:
  • base – ADC16 peripheral base address.

  • config – Pointer to the “adc16_hardware_compare_config_t” structure. Passing “NULL” disables the feature.

void ADC16_SetHardwareAverage(ADC_Type *base, adc16_hardware_average_mode_t mode)

Sets the hardware average mode.

The hardware average mode provides a way to process the conversion result automatically by using hardware. The multiple conversion results are accumulated and averaged internally making them easier to read.

Parameters:
  • base – ADC16 peripheral base address.

  • mode – Setting the hardware average mode. See “adc16_hardware_average_mode_t”.

void ADC16_SetPGAConfig(ADC_Type *base, const adc16_pga_config_t *config)

Configures the PGA for the converter’s front end.

Parameters:
  • base – ADC16 peripheral base address.

  • config – Pointer to the “adc16_pga_config_t” structure. Passing “NULL” disables the feature.

uint32_t ADC16_GetStatusFlags(ADC_Type *base)

Gets the status flags of the converter.

Parameters:
  • base – ADC16 peripheral base address.

Returns:

Flags’ mask if indicated flags are asserted. See “_adc16_status_flags”.

void ADC16_ClearStatusFlags(ADC_Type *base, uint32_t mask)

Clears the status flags of the converter.

Parameters:
  • base – ADC16 peripheral base address.

  • mask – Mask value for the cleared flags. See “_adc16_status_flags”.

static inline void ADC16_EnableAsynchronousClockOutput(ADC_Type *base, bool enable)

Enable/disable ADC Asynchronous clock output to other modules.

Parameters:
  • base – ADC16 peripheral base address.

  • enable – Used to enable/disable ADC ADACK output.

    • true Asynchronous clock and clock output is enabled regardless of the state of the ADC.

    • false Asynchronous clock output disabled, asynchronous clock is enabled only if it is selected as input clock and a conversion is active.

void ADC16_SetChannelConfig(ADC_Type *base, uint32_t channelGroup, const adc16_channel_config_t *config)

Configures the conversion channel.

This operation triggers the conversion when in software trigger mode. When in hardware trigger mode, this API configures the channel while the external trigger source helps to trigger the conversion.

Note that the “Channel Group” has a detailed description. To allow sequential conversions of the ADC to be triggered by internal peripherals, the ADC has more than one group of status and control registers, one for each conversion. The channel group parameter indicates which group of registers are used, for example, channel group 0 is for Group A registers and channel group 1 is for Group B registers. The channel groups are used in a “ping-pong” approach to control the ADC operation. At any point, only one of the channel groups is actively controlling ADC conversions. The channel group 0 is used for both software and hardware trigger modes. Channel group 1 and greater indicates multiple channel group registers for use only in hardware trigger mode. See the chip configuration information in the appropriate MCU reference manual for the number of SC1n registers (channel groups) specific to this device. Channel group 1 or greater are not used for software trigger operation. Therefore, writing to these channel groups does not initiate a new conversion. Updating the channel group 0 while a different channel group is actively controlling a conversion is allowed and vice versa. Writing any of the channel group registers while that specific channel group is actively controlling a conversion aborts the current conversion.

Parameters:
  • base – ADC16 peripheral base address.

  • channelGroup – Channel group index.

  • config – Pointer to the “adc16_channel_config_t” structure for the conversion channel.

static inline uint32_t ADC16_GetChannelConversionValue(ADC_Type *base, uint32_t channelGroup)

Gets the conversion value.

Parameters:
  • base – ADC16 peripheral base address.

  • channelGroup – Channel group index.

Returns:

Conversion value.

uint32_t ADC16_GetChannelStatusFlags(ADC_Type *base, uint32_t channelGroup)

Gets the status flags of channel.

Parameters:
  • base – ADC16 peripheral base address.

  • channelGroup – Channel group index.

Returns:

Flags’ mask if indicated flags are asserted. See “_adc16_channel_status_flags”.

FSL_ADC16_DRIVER_VERSION

ADC16 driver version 2.3.0.

enum _adc16_channel_status_flags

Channel status flags.

Values:

enumerator kADC16_ChannelConversionDoneFlag

Conversion done.

enum _adc16_status_flags

Converter status flags.

Values:

enumerator kADC16_ActiveFlag

Converter is active.

enumerator kADC16_CalibrationFailedFlag

Calibration is failed.

enum _adc_channel_mux_mode

Channel multiplexer mode for each channel.

For some ADC16 channels, there are two pin selections in channel multiplexer. For example, ADC0_SE4a and ADC0_SE4b are the different channels that share the same channel number.

Values:

enumerator kADC16_ChannelMuxA

For channel with channel mux a.

enumerator kADC16_ChannelMuxB

For channel with channel mux b.

enum _adc16_clock_divider

Clock divider for the converter.

Values:

enumerator kADC16_ClockDivider1

For divider 1 from the input clock to the module.

enumerator kADC16_ClockDivider2

For divider 2 from the input clock to the module.

enumerator kADC16_ClockDivider4

For divider 4 from the input clock to the module.

enumerator kADC16_ClockDivider8

For divider 8 from the input clock to the module.

enum _adc16_resolution

Converter’s resolution.

Values:

enumerator kADC16_Resolution8or9Bit

Single End 8-bit or Differential Sample 9-bit.

enumerator kADC16_Resolution12or13Bit

Single End 12-bit or Differential Sample 13-bit.

enumerator kADC16_Resolution10or11Bit

Single End 10-bit or Differential Sample 11-bit.

enumerator kADC16_ResolutionSE8Bit

Single End 8-bit.

enumerator kADC16_ResolutionSE12Bit

Single End 12-bit.

enumerator kADC16_ResolutionSE10Bit

Single End 10-bit.

enumerator kADC16_ResolutionDF9Bit

Differential Sample 9-bit.

enumerator kADC16_ResolutionDF13Bit

Differential Sample 13-bit.

enumerator kADC16_ResolutionDF11Bit

Differential Sample 11-bit.

enum _adc16_clock_source

Clock source.

Values:

enumerator kADC16_ClockSourceAlt0

Selection 0 of the clock source.

enumerator kADC16_ClockSourceAlt1

Selection 1 of the clock source.

enumerator kADC16_ClockSourceAlt2

Selection 2 of the clock source.

enumerator kADC16_ClockSourceAlt3

Selection 3 of the clock source.

enumerator kADC16_ClockSourceAsynchronousClock

Using internal asynchronous clock.

enum _adc16_long_sample_mode

Long sample mode.

Values:

enumerator kADC16_LongSampleCycle24

20 extra ADCK cycles, 24 ADCK cycles total.

enumerator kADC16_LongSampleCycle16

12 extra ADCK cycles, 16 ADCK cycles total.

enumerator kADC16_LongSampleCycle10

6 extra ADCK cycles, 10 ADCK cycles total.

enumerator kADC16_LongSampleCycle6

2 extra ADCK cycles, 6 ADCK cycles total.

enumerator kADC16_LongSampleDisabled

Disable the long sample feature.

enum _adc16_reference_voltage_source

Reference voltage source.

Values:

enumerator kADC16_ReferenceVoltageSourceVref

For external pins pair of VrefH and VrefL.

enumerator kADC16_ReferenceVoltageSourceValt

For alternate reference pair of ValtH and ValtL.

enum _adc16_hardware_average_mode

Hardware average mode.

Values:

enumerator kADC16_HardwareAverageCount4

For hardware average with 4 samples.

enumerator kADC16_HardwareAverageCount8

For hardware average with 8 samples.

enumerator kADC16_HardwareAverageCount16

For hardware average with 16 samples.

enumerator kADC16_HardwareAverageCount32

For hardware average with 32 samples.

enumerator kADC16_HardwareAverageDisabled

Disable the hardware average feature.

enum _adc16_hardware_compare_mode

Hardware compare mode.

Values:

enumerator kADC16_HardwareCompareMode0

x < value1.

enumerator kADC16_HardwareCompareMode1

x > value1.

enumerator kADC16_HardwareCompareMode2

if value1 <= value2, then x < value1 || x > value2; else, value1 > x > value2.

enumerator kADC16_HardwareCompareMode3

if value1 <= value2, then value1 <= x <= value2; else x >= value1 || x <= value2.

enum _adc16_pga_gain

PGA’s Gain mode.

Values:

enumerator kADC16_PGAGainValueOf1

For amplifier gain of 1.

enumerator kADC16_PGAGainValueOf2

For amplifier gain of 2.

enumerator kADC16_PGAGainValueOf4

For amplifier gain of 4.

enumerator kADC16_PGAGainValueOf8

For amplifier gain of 8.

enumerator kADC16_PGAGainValueOf16

For amplifier gain of 16.

enumerator kADC16_PGAGainValueOf32

For amplifier gain of 32.

enumerator kADC16_PGAGainValueOf64

For amplifier gain of 64.

typedef enum _adc_channel_mux_mode adc16_channel_mux_mode_t

Channel multiplexer mode for each channel.

For some ADC16 channels, there are two pin selections in channel multiplexer. For example, ADC0_SE4a and ADC0_SE4b are the different channels that share the same channel number.

typedef enum _adc16_clock_divider adc16_clock_divider_t

Clock divider for the converter.

typedef enum _adc16_resolution adc16_resolution_t

Converter’s resolution.

typedef enum _adc16_clock_source adc16_clock_source_t

Clock source.

typedef enum _adc16_long_sample_mode adc16_long_sample_mode_t

Long sample mode.

typedef enum _adc16_reference_voltage_source adc16_reference_voltage_source_t

Reference voltage source.

typedef enum _adc16_hardware_average_mode adc16_hardware_average_mode_t

Hardware average mode.

typedef enum _adc16_hardware_compare_mode adc16_hardware_compare_mode_t

Hardware compare mode.

typedef enum _adc16_pga_gain adc16_pga_gain_t

PGA’s Gain mode.

typedef struct _adc16_config adc16_config_t

ADC16 converter configuration.

typedef struct _adc16_hardware_compare_config adc16_hardware_compare_config_t

ADC16 Hardware comparison configuration.

typedef struct _adc16_channel_config adc16_channel_config_t

ADC16 channel conversion configuration.

typedef struct _adc16_pga_config adc16_pga_config_t

ADC16 programmable gain amplifier configuration.

struct _adc16_config
#include <fsl_adc16.h>

ADC16 converter configuration.

Public Members

adc16_reference_voltage_source_t referenceVoltageSource

Select the reference voltage source.

adc16_clock_source_t clockSource

Select the input clock source to converter.

bool enableAsynchronousClock

Enable the asynchronous clock output.

adc16_clock_divider_t clockDivider

Select the divider of input clock source.

adc16_resolution_t resolution

Select the sample resolution mode.

adc16_long_sample_mode_t longSampleMode

Select the long sample mode.

bool enableHighSpeed

Enable the high-speed mode.

bool enableLowPower

Enable low power.

bool enableContinuousConversion

Enable continuous conversion mode.

adc16_hardware_average_mode_t hardwareAverageMode

Set hardware average mode.

struct _adc16_hardware_compare_config
#include <fsl_adc16.h>

ADC16 Hardware comparison configuration.

Public Members

adc16_hardware_compare_mode_t hardwareCompareMode

Select the hardware compare mode. See “adc16_hardware_compare_mode_t”.

int16_t value1

Setting value1 for hardware compare mode.

int16_t value2

Setting value2 for hardware compare mode.

struct _adc16_channel_config
#include <fsl_adc16.h>

ADC16 channel conversion configuration.

Public Members

uint32_t channelNumber

Setting the conversion channel number. The available range is 0-31. See channel connection information for each chip in Reference Manual document.

bool enableInterruptOnConversionCompleted

Generate an interrupt request once the conversion is completed.

bool enableDifferentialConversion

Using Differential sample mode.

struct _adc16_pga_config
#include <fsl_adc16.h>

ADC16 programmable gain amplifier configuration.

Public Members

adc16_pga_gain_t pgaGain

Setting PGA gain.

bool enableRunInNormalMode

Enable PGA working in normal mode, or low power mode by default.

bool disablePgaChopping

Disable the PGA chopping function. The PGA employs chopping to remove/reduce offset and 1/f noise and offers an offset measurement configuration that aids the offset calibration.

bool enableRunInOffsetMeasurement

Enable the PGA working in offset measurement mode. When this feature is enabled, the PGA disconnects itself from the external inputs and auto-configures into offset measurement mode. With this field set, run the ADC in the recommended settings and enable the maximum hardware averaging to get the PGA offset number. The output is the (PGA offset * (64+1)) for the given PGA setting.

Clock Driver

enum _clock_name

Clock name used to get clock frequency.

Values:

enumerator kCLOCK_CoreSysClk

Core/system clock

enumerator kCLOCK_PlatClk

Platform clock

enumerator kCLOCK_BusClk

Bus clock

enumerator kCLOCK_FlashClk

Flash clock

enumerator kCLOCK_Er32kClk

External reference 32K clock (ERCLK32K)

enumerator kCLOCK_Osc0ErClk

OSC0 external reference clock (OSC0ERCLK)

enumerator kCLOCK_McgFixedFreqClk

MCG fixed frequency clock (MCGFFCLK)

enumerator kCLOCK_McgInternalRefClk

MCG internal reference clock (MCGIRCLK)

enumerator kCLOCK_McgFllClk

MCGFLLCLK

enumerator kCLOCK_McgPeriphClk

MCG peripheral clock (MCGPCLK)

enumerator kCLOCK_McgIrc48MClk

MCG IRC48M clock

enumerator kCLOCK_LpoClk

LPO clock

enum _clock_ip_name

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:

enumerator kCLOCK_IpInvalid
enumerator kCLOCK_I2c0
enumerator kCLOCK_Cmp0
enumerator kCLOCK_Vref0
enumerator kCLOCK_Spi0
enumerator kCLOCK_Lptmr0
enumerator kCLOCK_PortA
enumerator kCLOCK_PortB
enumerator kCLOCK_Lpuart0
enumerator kCLOCK_Ftf0
enumerator kCLOCK_Tpm0
enumerator kCLOCK_Tpm1
enumerator kCLOCK_Adc0
enumerator kCLOCK_Rtc0
enum _osc_cap_load

Oscillator capacitor load setting.

Values:

enumerator kOSC_Cap2P

2 pF capacitor load

enumerator kOSC_Cap4P

4 pF capacitor load

enumerator kOSC_Cap8P

8 pF capacitor load

enumerator kOSC_Cap16P

16 pF capacitor load

enum _oscer_enable_mode

OSCERCLK enable mode.

Values:

enumerator kOSC_ErClkEnable

Enable.

enumerator kOSC_ErClkEnableInStop

Enable in stop mode.

enum _osc_mode

The OSC work mode.

Values:

enumerator kOSC_ModeExt

Use external clock.

enumerator kOSC_ModeOscLowPower

Oscillator low power.

enum _mcglite_clkout_src

MCG_Lite clock source selection.

Values:

enumerator kMCGLITE_ClkSrcHirc

MCGOUTCLK source is HIRC

enumerator kMCGLITE_ClkSrcLirc

MCGOUTCLK source is LIRC

enumerator kMCGLITE_ClkSrcExt

MCGOUTCLK source is external clock source

enumerator kMCGLITE_ClkSrcReserved
enum _mcglite_lirc_mode

MCG_Lite LIRC select.

Values:

enumerator kMCGLITE_Lirc2M

Slow internal reference(LIRC) 2 MHz clock selected

enumerator kMCGLITE_Lirc8M

Slow internal reference(LIRC) 8 MHz clock selected

enum _mcglite_lirc_div

MCG_Lite divider factor selection for clock source.

Values:

enumerator kMCGLITE_LircDivBy1

Divider is 1

enumerator kMCGLITE_LircDivBy2

Divider is 2

enumerator kMCGLITE_LircDivBy4

Divider is 4

enumerator kMCGLITE_LircDivBy8

Divider is 8

enumerator kMCGLITE_LircDivBy16

Divider is 16

enumerator kMCGLITE_LircDivBy32

Divider is 32

enumerator kMCGLITE_LircDivBy64

Divider is 64

enumerator kMCGLITE_LircDivBy128

Divider is 128

enum _mcglite_mode

MCG_Lite clock mode definitions.

Values:

enumerator kMCGLITE_ModeHirc48M

Clock mode is HIRC 48 M

enumerator kMCGLITE_ModeLirc8M

Clock mode is LIRC 8 M

enumerator kMCGLITE_ModeLirc2M

Clock mode is LIRC 2 M

enumerator kMCGLITE_ModeExt

Clock mode is EXT

enumerator kMCGLITE_ModeError

Unknown mode

enum _mcglite_irclk_enable_mode

MCG internal reference clock (MCGIRCLK) enable mode definition.

Values:

enumerator kMCGLITE_IrclkEnable

MCGIRCLK enable.

enumerator kMCGLITE_IrclkEnableInStop

MCGIRCLK enable in stop mode.

typedef enum _clock_name clock_name_t

Clock name used to get clock frequency.

typedef enum _clock_ip_name clock_ip_name_t

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef struct _sim_clock_config sim_clock_config_t

SIM configuration structure for clock setting.

typedef struct _oscer_config oscer_config_t

The OSC configuration for OSCERCLK.

typedef enum _osc_mode osc_mode_t

The OSC work mode.

typedef struct _osc_config osc_config_t

OSC Initialization Configuration Structure.

Defines the configuration data structure to initialize the OSC. When porting to a new board, set the following members according to the board settings:

  1. freq: The external frequency.

  2. workMode: The OSC module mode.

typedef enum _mcglite_clkout_src mcglite_clkout_src_t

MCG_Lite clock source selection.

typedef enum _mcglite_lirc_mode mcglite_lirc_mode_t

MCG_Lite LIRC select.

typedef enum _mcglite_lirc_div mcglite_lirc_div_t

MCG_Lite divider factor selection for clock source.

typedef enum _mcglite_mode mcglite_mode_t

MCG_Lite clock mode definitions.

typedef struct _mcglite_config mcglite_config_t

MCG_Lite configure structure for mode change.

volatile uint32_t g_xtal0Freq

External XTAL0 (OSC0) clock frequency.

The XTAL0/EXTAL0 (OSC0) clock frequency in Hz. When the clock is set up, use the function CLOCK_SetXtal0Freq to set the value in the clock driver. For example, if XTAL0 is 8 MHz:

CLOCK_InitOsc0(...); // Set up the OSC0
CLOCK_SetXtal0Freq(80000000); // Set the XTAL0 value to clock driver.

This is important for the multicore platforms where one core needs to set up the OSC0 using the CLOCK_InitOsc0. All other cores need to call the CLOCK_SetXtal0Freq to get a valid clock frequency.

volatile uint32_t g_xtal32Freq

The external XTAL32/EXTAL32/RTC_CLKIN clock frequency.

The XTAL32/EXTAL32/RTC_CLKIN clock frequency in Hz. When the clock is set up, use the function CLOCK_SetXtal32Freq to set the value in the clock driver.

This is important for the multicore platforms where one core needs to set up the clock. All other cores need to call the CLOCK_SetXtal32Freq to get a valid clock frequency.

static inline void CLOCK_EnableClock(clock_ip_name_t name)

Enable the clock for specific IP.

Parameters:
  • name – Which clock to enable, see clock_ip_name_t.

static inline void CLOCK_DisableClock(clock_ip_name_t name)

Disable the clock for specific IP.

Parameters:
  • name – Which clock to disable, see clock_ip_name_t.

static inline void CLOCK_SetEr32kClock(uint32_t src)

Set ERCLK32K source.

Parameters:
  • src – The value to set ERCLK32K clock source.

static inline void CLOCK_SetLpuart0Clock(uint32_t src)

Set LPUART clock source.

Parameters:
  • src – The value to set LPUART clock source.

static inline void CLOCK_SetTpmClock(uint32_t src)

Set TPM clock source.

Parameters:
  • src – The value to set TPM clock source.

static inline void CLOCK_SetClkOutClock(uint32_t src)

Set CLKOUT source.

Parameters:
  • src – The value to set CLKOUT source.

static inline void CLOCK_SetRtcClkOutClock(uint32_t src)

Set RTC_CLKOUT source.

Parameters:
  • src – The value to set RTC_CLKOUT source.

static inline void CLOCK_SetOutDiv(uint32_t outdiv1, uint32_t outdiv4)

System clock divider.

Set the SIM_CLKDIV1[OUTDIV1], SIM_CLKDIV1[OUTDIV4].

Parameters:
  • outdiv1 – Clock 1 output divider value.

  • outdiv4 – Clock 4 output divider value.

uint32_t CLOCK_GetFreq(clock_name_t clockName)

Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock frequency for a specific clock name defined in clock_name_t. The MCG must be properly configured before using this function.

Parameters:
  • clockName – Clock names defined in clock_name_t

Returns:

Clock frequency value in Hertz

uint32_t CLOCK_GetCoreSysClkFreq(void)

Get the core clock or system clock frequency.

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetPlatClkFreq(void)

Get the platform clock frequency.

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetBusClkFreq(void)

Get the bus clock frequency.

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetFlashClkFreq(void)

Get the flash clock frequency.

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetEr32kClkFreq(void)

Get the external reference 32K clock frequency (ERCLK32K).

Returns:

Clock frequency in Hz.

uint32_t CLOCK_GetOsc0ErClkFreq(void)

Get the OSC0 external reference clock frequency (OSC0ERCLK).

Returns:

Clock frequency in Hz.

void CLOCK_SetSimConfig(sim_clock_config_t const *config)

Set the clock configure in SIM module.

This function sets system layer clock settings in SIM module.

Parameters:
  • config – Pointer to the configure structure.

static inline void CLOCK_SetSimSafeDivs(void)

Set the system clock dividers in SIM to safe value.

The system level clocks (core clock, bus clock, flexbus clock and flash clock) must be in allowed ranges. During MCG clock mode switch, the MCG output clock changes then the system level clocks may be out of range. This function could be used before MCG mode change, to make sure system level clocks are in allowed range.

Parameters:
  • config – Pointer to the configure structure.

FSL_CLOCK_DRIVER_VERSION

CLOCK driver version 2.0.0.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
RTC_CLOCKS

Clock ip name array for RTC.

LPUART_CLOCKS

Clock ip name array for LPUART.

SPI_CLOCKS

Clock ip name array for SPI.

LPTMR_CLOCKS

Clock ip name array for LPTMR.

ADC16_CLOCKS

Clock ip name array for ADC16.

TPM_CLOCKS

Clock ip name array for TPM.

VREF_CLOCKS

Clock ip name array for VREF.

I2C_CLOCKS

Clock ip name array for I2C.

PORT_CLOCKS

Clock ip name array for PORT.

FTF_CLOCKS

Clock ip name array for FTF.

CMP_CLOCKS

Clock ip name array for CMP.

LPO_CLK_FREQ

LPO clock frequency.

SYS_CLK

Peripherals clock source definition.

BUS_CLK
I2C0_CLK_SRC
SPI0_CLK_SRC
CLK_GATE_REG_OFFSET_SHIFT
CLK_GATE_REG_OFFSET_MASK
CLK_GATE_BIT_SHIFT_SHIFT
CLK_GATE_BIT_SHIFT_MASK
CLK_GATE_DEFINE(reg_offset, bit_shift)
CLK_GATE_ABSTRACT_REG_OFFSET(x)
CLK_GATE_ABSTRACT_BITS_SHIFT(x)
uint32_t CLOCK_GetOutClkFreq(void)

Gets the MCG_Lite output clock (MCGOUTCLK) frequency.

This function gets the MCG_Lite output clock frequency in Hz based on the current MCG_Lite register value.

Returns:

The frequency of MCGOUTCLK.

uint32_t CLOCK_GetInternalRefClkFreq(void)

Gets the MCG internal reference clock (MCGIRCLK) frequency.

This function gets the MCG_Lite internal reference clock frequency in Hz based on the current MCG register value.

Returns:

The frequency of MCGIRCLK.

uint32_t CLOCK_GetPeriphClkFreq(void)

Gets the current MCGPCLK frequency.

This function gets the MCGPCLK frequency in Hz based on the current MCG_Lite register settings.

Returns:

The frequency of MCGPCLK.

mcglite_mode_t CLOCK_GetMode(void)

Gets the current MCG_Lite mode.

This function checks the MCG_Lite registers and determines the current MCG_Lite mode.

Returns:

The current MCG_Lite mode or error code.

status_t CLOCK_SetMcgliteConfig(mcglite_config_t const *targetConfig)

Sets the MCG_Lite configuration.

This function configures the MCG_Lite, includes the output clock source, MCGIRCLK settings, HIRC settings, and so on. See mcglite_config_t for details.

Parameters:
  • targetConfig – Pointer to the target MCG_Lite mode configuration structure.

Returns:

Error code.

static inline void OSC_SetExtRefClkConfig(OSC_Type *base, oscer_config_t const *config)

Configures the OSC external reference clock (OSCERCLK).

This function configures the OSC external reference clock (OSCERCLK). This is an example to enable the OSCERCLK in normal mode and stop mode, and set the output divider to 1.

oscer_config_t config =
{
    .enableMode = kOSC_ErClkEnable | kOSC_ErClkEnableInStop,
    .erclkDiv   = 1U,
};

OSC_SetExtRefClkConfig(OSC, &config);
Parameters:
  • base – OSC peripheral address.

  • config – Pointer to the configuration structure.

static inline void OSC_SetCapLoad(OSC_Type *base, uint8_t capLoad)

Sets the capacitor load configuration for the oscillator.

This function sets the specified capacitor configuration for the oscillator. This should be done in the early system level initialization function call based on the system configuration.

Example:

// To enable only 2 pF and 8 pF capacitor load, please use like this.
OSC_SetCapLoad(OSC, kOSC_Cap2P | kOSC_Cap8P);

Parameters:
  • base – OSC peripheral address.

  • capLoad – OR’ed value for the capacitor load option.See _osc_cap_load.

void CLOCK_InitOsc0(osc_config_t const *config)

Initializes the OSC0.

This function initializes the OSC0 according to the board configuration.

Parameters:
  • config – Pointer to the OSC0 configuration structure.

void CLOCK_DeinitOsc0(void)

Deinitializes the OSC0.

This function deinitializes the OSC0.

static inline void CLOCK_SetXtal0Freq(uint32_t freq)

Sets the XTAL0 frequency based on board settings.

Parameters:
  • freq – The XTAL0/EXTAL0 input clock frequency in Hz.

static inline void CLOCK_SetXtal32Freq(uint32_t freq)

Sets the XTAL32/RTC_CLKIN frequency based on board settings.

Parameters:
  • freq – The XTAL32/EXTAL32/RTC_CLKIN input clock frequency in Hz.

uint8_t er32kSrc

ERCLK32K source selection.

uint32_t clkdiv1

SIM_CLKDIV1.

uint8_t enableMode

OSCERCLK enable mode. OR’ed value of _oscer_enable_mode.

uint32_t freq

External clock frequency.

uint8_t capLoad

Capacitor load setting.

osc_mode_t workMode

OSC work mode setting.

oscer_config_t oscerConfig

Configuration for OSCERCLK.

mcglite_clkout_src_t outSrc

MCGOUT clock select.

uint8_t irclkEnableMode

MCGIRCLK enable mode, OR’ed value of _mcglite_irclk_enable_mode.

mcglite_lirc_mode_t ircs

MCG_C2[IRCS].

mcglite_lirc_div_t fcrdiv

MCG_SC[FCRDIV].

mcglite_lirc_div_t lircDiv2

MCG_MC[LIRC_DIV2].

bool hircEnableInNotHircMode

HIRC enable when not in HIRC mode.

FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL

Configure whether driver controls clock.

When set to 0, peripheral drivers will enable clock in initialize function and disable clock in de-initialize function. When set to 1, peripheral driver will not control the clock, application could control the clock out of the driver.

Note

All drivers share this feature switcher. If it is set to 1, application should handle clock enable and disable for all drivers.

struct _sim_clock_config
#include <fsl_clock.h>

SIM configuration structure for clock setting.

struct _oscer_config
#include <fsl_clock.h>

The OSC configuration for OSCERCLK.

struct _osc_config
#include <fsl_clock.h>

OSC Initialization Configuration Structure.

Defines the configuration data structure to initialize the OSC. When porting to a new board, set the following members according to the board settings:

  1. freq: The external frequency.

  2. workMode: The OSC module mode.

struct _mcglite_config
#include <fsl_clock.h>

MCG_Lite configure structure for mode change.

CMP: Analog Comparator Driver

void CMP_Init(CMP_Type *base, const cmp_config_t *config)

Initializes the CMP.

This function initializes the CMP module. The operations included are as follows.

  • Enabling the clock for CMP module.

  • Configuring the comparator.

  • Enabling the CMP module. Note that for some devices, multiple CMP instances share the same clock gate. In this case, to enable the clock for any instance enables all CMPs. See the appropriate MCU reference manual for the clock assignment of the CMP.

Parameters:
  • base – CMP peripheral base address.

  • config – Pointer to the configuration structure.

void CMP_Deinit(CMP_Type *base)

De-initializes the CMP module.

This function de-initializes the CMP module. The operations included are as follows.

  • Disabling the CMP module.

  • Disabling the clock for CMP module.

This function disables the clock for the CMP. Note that for some devices, multiple CMP instances share the same clock gate. In this case, before disabling the clock for the CMP, ensure that all the CMP instances are not used.

Parameters:
  • base – CMP peripheral base address.

static inline void CMP_Enable(CMP_Type *base, bool enable)

Enables/disables the CMP module.

Parameters:
  • base – CMP peripheral base address.

  • enable – Enables or disables the module.

void CMP_GetDefaultConfig(cmp_config_t *config)

Initializes the CMP user configuration structure.

This function initializes the user configuration structure to these default values.

config->enableCmp           = true;
config->hysteresisMode      = kCMP_HysteresisLevel0;
config->enableHighSpeed     = false;
config->enableInvertOutput  = false;
config->useUnfilteredOutput = false;
config->enablePinOut        = false;
config->enableTriggerMode   = false;

Parameters:
  • config – Pointer to the configuration structure.

void CMP_SetInputChannels(CMP_Type *base, uint8_t positiveChannel, uint8_t negativeChannel)

Sets the input channels for the comparator.

This function sets the input channels for the comparator. Note that two input channels cannot be set the same way in the application. When the user selects the same input from the analog mux to the positive and negative port, the comparator is disabled automatically.

Parameters:
  • base – CMP peripheral base address.

  • positiveChannel – Positive side input channel number. Available range is 0-7.

  • negativeChannel – Negative side input channel number. Available range is 0-7.

void CMP_EnableDMA(CMP_Type *base, bool enable)

Enables/disables the DMA request for rising/falling events.

This function enables/disables the DMA request for rising/falling events. Either event triggers the generation of the DMA request from CMP if the DMA feature is enabled. Both events are ignored for generating the DMA request from the CMP if the DMA is disabled.

Parameters:
  • base – CMP peripheral base address.

  • enable – Enables or disables the feature.

static inline void CMP_EnableWindowMode(CMP_Type *base, bool enable)

Enables/disables the window mode.

Parameters:
  • base – CMP peripheral base address.

  • enable – Enables or disables the feature.

static inline void CMP_EnablePassThroughMode(CMP_Type *base, bool enable)

Enables/disables the pass through mode.

Parameters:
  • base – CMP peripheral base address.

  • enable – Enables or disables the feature.

void CMP_SetFilterConfig(CMP_Type *base, const cmp_filter_config_t *config)

Configures the filter.

Parameters:
  • base – CMP peripheral base address.

  • config – Pointer to the configuration structure.

void CMP_SetDACConfig(CMP_Type *base, const cmp_dac_config_t *config)

Configures the internal DAC.

Parameters:
  • base – CMP peripheral base address.

  • config – Pointer to the configuration structure. “NULL” disables the feature.

void CMP_EnableInterrupts(CMP_Type *base, uint32_t mask)

Enables the interrupts.

Parameters:
  • base – CMP peripheral base address.

  • mask – Mask value for interrupts. See “_cmp_interrupt_enable”.

void CMP_DisableInterrupts(CMP_Type *base, uint32_t mask)

Disables the interrupts.

Parameters:
  • base – CMP peripheral base address.

  • mask – Mask value for interrupts. See “_cmp_interrupt_enable”.

uint32_t CMP_GetStatusFlags(CMP_Type *base)

Gets the status flags.

Parameters:
  • base – CMP peripheral base address.

Returns:

Mask value for the asserted flags. See “_cmp_status_flags”.

void CMP_ClearStatusFlags(CMP_Type *base, uint32_t mask)

Clears the status flags.

Parameters:
  • base – CMP peripheral base address.

  • mask – Mask value for the flags. See “_cmp_status_flags”.

FSL_CMP_DRIVER_VERSION

CMP driver version 2.0.3.

enum _cmp_interrupt_enable

Interrupt enable/disable mask.

Values:

enumerator kCMP_OutputRisingInterruptEnable

Comparator interrupt enable rising.

enumerator kCMP_OutputFallingInterruptEnable

Comparator interrupt enable falling.

enum _cmp_status_flags

Status flags’ mask.

Values:

enumerator kCMP_OutputRisingEventFlag

Rising-edge on the comparison output has occurred.

enumerator kCMP_OutputFallingEventFlag

Falling-edge on the comparison output has occurred.

enumerator kCMP_OutputAssertEventFlag

Return the current value of the analog comparator output.

enum _cmp_hysteresis_mode

CMP Hysteresis mode.

Values:

enumerator kCMP_HysteresisLevel0

Hysteresis level 0.

enumerator kCMP_HysteresisLevel1

Hysteresis level 1.

enumerator kCMP_HysteresisLevel2

Hysteresis level 2.

enumerator kCMP_HysteresisLevel3

Hysteresis level 3.

enum _cmp_reference_voltage_source

CMP Voltage Reference source.

Values:

enumerator kCMP_VrefSourceVin1

Vin1 is selected as a resistor ladder network supply reference Vin.

enumerator kCMP_VrefSourceVin2

Vin2 is selected as a resistor ladder network supply reference Vin.

typedef enum _cmp_hysteresis_mode cmp_hysteresis_mode_t

CMP Hysteresis mode.

typedef enum _cmp_reference_voltage_source cmp_reference_voltage_source_t

CMP Voltage Reference source.

typedef struct _cmp_config cmp_config_t

Configures the comparator.

typedef struct _cmp_filter_config cmp_filter_config_t

Configures the filter.

typedef struct _cmp_dac_config cmp_dac_config_t

Configures the internal DAC.

struct _cmp_config
#include <fsl_cmp.h>

Configures the comparator.

Public Members

bool enableCmp

Enable the CMP module.

cmp_hysteresis_mode_t hysteresisMode

CMP Hysteresis mode.

bool enableHighSpeed

Enable High-speed (HS) comparison mode.

bool enableInvertOutput

Enable the inverted comparator output.

bool useUnfilteredOutput

Set the compare output(COUT) to equal COUTA(true) or COUT(false).

bool enablePinOut

The comparator output is available on the associated pin.

bool enableTriggerMode

Enable the trigger mode.

struct _cmp_filter_config
#include <fsl_cmp.h>

Configures the filter.

Public Members

bool enableSample

Using the external SAMPLE as a sampling clock input or using a divided bus clock.

uint8_t filterCount

Filter Sample Count. Available range is 1-7; 0 disables the filter.

uint8_t filterPeriod

Filter Sample Period. The divider to the bus clock. Available range is 0-255.

struct _cmp_dac_config
#include <fsl_cmp.h>

Configures the internal DAC.

Public Members

cmp_reference_voltage_source_t referenceVoltageSource

Supply voltage reference source.

uint8_t DACValue

Value for the DAC Output Voltage. Available range is 0-63.

COP: Watchdog Driver

void COP_GetDefaultConfig(cop_config_t *config)

Initializes the COP configuration structure.

This function initializes the COP configuration structure to default values. The default values are:

copConfig->enableWindowMode = false;
copConfig->timeoutMode = kCOP_LongTimeoutMode;
copConfig->enableStop = false;
copConfig->enableDebug = false;
copConfig->clockSource = kCOP_LpoClock;
copConfig->timeoutCycles = kCOP_2Power10CyclesOr2Power18Cycles;

See also

cop_config_t

Parameters:
  • config – Pointer to the COP configuration structure.

void COP_Init(SIM_Type *base, const cop_config_t *config)

Initializes the COP module.

This function configures the COP. After it is called, the COP starts running according to the configuration. Because all COP control registers are write-once only, the COP_Init function and the COP_Disable function can be called only once. A second call has no effect.

Example:

cop_config_t config;
COP_GetDefaultConfig(&config);
config.timeoutCycles = kCOP_2Power8CyclesOr2Power16Cycles;
COP_Init(sim_base,&config);

Parameters:
  • base – SIM peripheral base address.

  • config – The configuration of COP.

static inline void COP_Disable(SIM_Type *base)

De-initializes the COP module. This dedicated function is not provided. Instead, the COP_Disable function can be used to disable the COP.

Disables the COP module.

This function disables the COP Watchdog. Note: The COP configuration register is a write-once after reset. To disable the COP Watchdog, call this function first.

Parameters:
  • base – SIM peripheral base address.

void COP_Refresh(SIM_Type *base)

Refreshes the COP timer.

This function feeds the COP.

Parameters:
  • base – SIM peripheral base address.

FSL_COP_DRIVER_VERSION

COP driver version 2.0.1.

COP_FIRST_BYTE_OF_REFRESH

First byte of refresh sequence

COP_SECOND_BYTE_OF_REFRESH

Second byte of refresh sequence

enum _cop_clock_source

COP clock source selection.

Values:

enumerator kCOP_LpoClock

COP clock sourced from LPO

enumerator kCOP_McgIrClock

COP clock sourced from MCGIRCLK

enumerator kCOP_OscErClock

COP clock sourced from OSCERCLK

enumerator kCOP_BusClock

COP clock sourced from Bus clock

enum _cop_timeout_cycles

Define the COP timeout cycles.

Values:

enumerator kCOP_2Power5CyclesOr2Power13Cycles

2^5 or 2^13 clock cycles

enumerator kCOP_2Power8CyclesOr2Power16Cycles

2^8 or 2^16 clock cycles

enumerator kCOP_2Power10CyclesOr2Power18Cycles

2^10 or 2^18 clock cycles

enum _cop_timeout_mode

Define the COP timeout mode.

Values:

enumerator kCOP_ShortTimeoutMode

COP selects long timeout

enumerator kCOP_LongTimeoutMode

COP selects short timeout

typedef enum _cop_clock_source cop_clock_source_t

COP clock source selection.

typedef enum _cop_timeout_cycles cop_timeout_cycles_t

Define the COP timeout cycles.

typedef enum _cop_timeout_mode cop_timeout_mode_t

Define the COP timeout mode.

typedef struct _cop_config cop_config_t

Describes COP configuration structure.

struct _cop_config
#include <fsl_cop.h>

Describes COP configuration structure.

Public Members

bool enableWindowMode

COP run mode: window mode or normal mode

cop_timeout_mode_t timeoutMode

COP timeout mode: long timeout or short timeout

bool enableStop

Enable or disable COP in STOP mode

bool enableDebug

Enable or disable COP in DEBUG mode

cop_clock_source_t clockSource

Set COP clock source

cop_timeout_cycles_t timeoutCycles

Set COP timeout value

FGPIO Driver

void FGPIO_PinInit(FGPIO_Type *base, uint32_t pin, const gpio_pin_config_t *config)

Initializes a FGPIO pin used by the board.

To initialize the FGPIO driver, define a pin configuration, as either input or output, in the user file. Then, call the FGPIO_PinInit() function.

This is an example to define an input pin or an output pin configuration:

Define a digital input pin configuration,
gpio_pin_config_t config =
{
  kGPIO_DigitalInput,
  0,
}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
  kGPIO_DigitalOutput,
  0,
}

Parameters:
  • base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)

  • pin – FGPIO port pin number

  • config – FGPIO pin configuration pointer

static inline void FGPIO_PinWrite(FGPIO_Type *base, uint32_t pin, uint8_t output)

Sets the output level of the multiple FGPIO pins to the logic 1 or 0.

Parameters:
  • base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)

  • pin – FGPIO pin number

  • output – FGPIOpin output logic level.

    • 0: corresponding pin output low-logic level.

    • 1: corresponding pin output high-logic level.

static inline void FGPIO_PortSet(FGPIO_Type *base, uint32_t mask)

Sets the output level of the multiple FGPIO pins to the logic 1.

Parameters:
  • base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)

  • mask – FGPIO pin number macro

static inline void FGPIO_PortClear(FGPIO_Type *base, uint32_t mask)

Sets the output level of the multiple FGPIO pins to the logic 0.

Parameters:
  • base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)

  • mask – FGPIO pin number macro

static inline void FGPIO_PortToggle(FGPIO_Type *base, uint32_t mask)

Reverses the current output logic of the multiple FGPIO pins.

Parameters:
  • base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)

  • mask – FGPIO pin number macro

static inline uint32_t FGPIO_PinRead(FGPIO_Type *base, uint32_t pin)

Reads the current input value of the FGPIO port.

Parameters:
  • base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)

  • pin – FGPIO pin number

Return values:

FGPIO – port input value

  • 0: corresponding pin input low-logic level.

  • 1: corresponding pin input high-logic level.

uint32_t FGPIO_PortGetInterruptFlags(FGPIO_Type *base)

Reads the FGPIO port interrupt status flag.

If a pin is configured to generate the DMA request, the corresponding flag is cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic one is written to that flag. If configured for a level-sensitive interrupt that remains asserted, the flag is set again immediately.

Parameters:
  • base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)

Return values:

The – current FGPIO port interrupt status flags, for example, 0x00010001 means the pin 0 and 17 have the interrupt.

void FGPIO_PortClearInterruptFlags(FGPIO_Type *base, uint32_t mask)

Clears the multiple FGPIO pin interrupt status flag.

Parameters:
  • base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)

  • mask – FGPIO pin number macro

C90TFS Flash Driver

ftfx adapter

Ftftx CACHE Driver

enum _ftfx_cache_ram_func_constants

Constants for execute-in-RAM flash function.

Values:

enumerator kFTFx_CACHE_RamFuncMaxSizeInWords

The maximum size of execute-in-RAM function.

typedef struct _flash_prefetch_speculation_status ftfx_prefetch_speculation_status_t

FTFx prefetch speculation status.

typedef struct _ftfx_cache_config ftfx_cache_config_t

FTFx cache driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

status_t FTFx_CACHE_Init(ftfx_cache_config_t *config)

Initializes the global FTFx cache structure members.

This function checks and initializes the Flash module for the other FTFx cache APIs.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

status_t FTFx_CACHE_ClearCachePrefetchSpeculation(ftfx_cache_config_t *config, bool isPreProcess)

Process the cache/prefetch/speculation to the flash.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • isPreProcess – The possible option used to control flash cache/prefetch/speculation

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – Invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

status_t FTFx_CACHE_PflashSetPrefetchSpeculation(ftfx_prefetch_speculation_status_t *speculationStatus)

Sets the PFlash prefetch speculation to the intended speculation status.

Parameters:
  • speculationStatus – The expected protect status to set to the PFlash protection register. Each bit is

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidSpeculationOption – An invalid speculation option argument is provided.

status_t FTFx_CACHE_PflashGetPrefetchSpeculation(ftfx_prefetch_speculation_status_t *speculationStatus)

Gets the PFlash prefetch speculation status.

Parameters:
  • speculationStatus – Speculation status returned by the PFlash IP.

Return values:

kStatus_FTFx_Success – API was executed successfully.

struct _flash_prefetch_speculation_status
#include <fsl_ftfx_cache.h>

FTFx prefetch speculation status.

Public Members

bool instructionOff

Instruction speculation.

bool dataOff

Data speculation.

union function_bit_operation_ptr_t
#include <fsl_ftfx_cache.h>

Public Members

uint32_t commadAddr
void (*callFlashCommand)(volatile uint32_t *base, uint32_t bitMask, uint32_t bitShift, uint32_t bitValue)
struct _ftfx_cache_config
#include <fsl_ftfx_cache.h>

FTFx cache driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

Public Members

uint8_t flashMemoryIndex

0 - primary flash; 1 - secondary flash

function_bit_operation_ptr_t bitOperFuncAddr

An buffer point to the flash execute-in-RAM function.

ftfx controller

FTFx driver status codes.

Values:

enumerator kStatus_FTFx_Success

API is executed successfully

enumerator kStatus_FTFx_InvalidArgument

Invalid argument

enumerator kStatus_FTFx_SizeError

Error size

enumerator kStatus_FTFx_AlignmentError

Parameter is not aligned with the specified baseline

enumerator kStatus_FTFx_AddressError

Address is out of range

enumerator kStatus_FTFx_AccessError

Invalid instruction codes and out-of bound addresses

enumerator kStatus_FTFx_ProtectionViolation

The program/erase operation is requested to execute on protected areas

enumerator kStatus_FTFx_CommandFailure

Run-time error during command execution.

enumerator kStatus_FTFx_UnknownProperty

Unknown property.

enumerator kStatus_FTFx_EraseKeyError

API erase key is invalid.

enumerator kStatus_FTFx_RegionExecuteOnly

The current region is execute-only.

enumerator kStatus_FTFx_ExecuteInRamFunctionNotReady

Execute-in-RAM function is not available.

enumerator kStatus_FTFx_PartitionStatusUpdateFailure

Failed to update partition status.

enumerator kStatus_FTFx_SetFlexramAsEepromError

Failed to set FlexRAM as EEPROM.

enumerator kStatus_FTFx_RecoverFlexramAsRamError

Failed to recover FlexRAM as RAM.

enumerator kStatus_FTFx_SetFlexramAsRamError

Failed to set FlexRAM as RAM.

enumerator kStatus_FTFx_RecoverFlexramAsEepromError

Failed to recover FlexRAM as EEPROM.

enumerator kStatus_FTFx_CommandNotSupported

Flash API is not supported.

enumerator kStatus_FTFx_SwapSystemNotInUninitialized

Swap system is not in an uninitialzed state.

enumerator kStatus_FTFx_SwapIndicatorAddressError

The swap indicator address is invalid.

enumerator kStatus_FTFx_ReadOnlyProperty

The flash property is read-only.

enumerator kStatus_FTFx_InvalidPropertyValue

The flash property value is out of range.

enumerator kStatus_FTFx_InvalidSpeculationOption

The option of flash prefetch speculation is invalid.

enumerator kStatus_FTFx_CommandOperationInProgress

The option of flash command is processing.

enum _ftfx_driver_api_keys

Enumeration for FTFx driver API keys.

Note

The resulting value is built with a byte order such that the string being readable in expected order when viewed in a hex editor, if the value is treated as a 32-bit little endian value.

Values:

enumerator kFTFx_ApiEraseKey

Key value used to validate all FTFx erase APIs.

void FTFx_API_Init(ftfx_config_t *config)

Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

status_t FTFx_API_UpdateFlexnvmPartitionStatus(ftfx_config_t *config)

Updates FlexNVM memory partition status according to data flash 0 IFR.

This function updates FlexNVM memory partition status.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FTFx_CMD_Erase(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)

Erases the flash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start address and length.

Parameters:
  • config – The pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be word-aligned.

  • key – The value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

  • kStatus_FTFx_EraseKeyError – The API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_EraseSectorNonBlocking(ftfx_config_t *config, uint32_t start, uint32_t key)

Erases the flash sectors encompassed by parameters passed into function.

This function erases one flash sector size based on the start address.

Parameters:
  • config – The pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.

  • key – The value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

  • kStatus_FTFx_EraseKeyError – The API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

status_t FTFx_CMD_EraseAll(ftfx_config_t *config, uint32_t key)

Erases entire flash.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FTFx_CMD_EraseAllUnsecure(ftfx_config_t *config, uint32_t key)

Erases the entire flash, including protected sectors.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FTFx_CMD_EraseAllExecuteOnlySegments(ftfx_config_t *config, uint32_t key)

Erases all program flash execute-only segments defined by the FXACC registers.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_Program(ftfx_config_t *config, uint32_t start, const uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_ProgramOnce(ftfx_config_t *config, uint32_t index, const uint8_t *src, uint32_t lengthInBytes)

Programs Program Once Field through parameters.

This function programs the Program Once Field with the desired data for a given flash area as determined by the index and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • index – The index indicating which area of the Program Once Field to be programmed.

  • src – A pointer to the source buffer of data that is to be programmed into the Program Once Field.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_ProgramSection(ftfx_config_t *config, uint32_t start, const uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters via the Program Section command.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM as EEPROM.

status_t FTFx_CMD_ProgramPartition(ftfx_config_t *config, ftfx_partition_flexram_load_opt_t option, uint32_t eepromDataSizeCode, uint32_t flexnvmPartitionCode)

Prepares the FlexNVM block for use as data flash, EEPROM backup, or a combination of both and initializes the FlexRAM.

Parameters:
  • config – Pointer to storage for the driver runtime state.

  • option – The option used to set FlexRAM load behavior during reset.

  • eepromDataSizeCode – Determines the amount of FlexRAM used in each of the available EEPROM subsystems.

  • flexnvmPartitionCode – Specifies how to split the FlexNVM block between data flash memory and EEPROM backup memory supporting EEPROM functions.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – Invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

status_t FTFx_CMD_ReadOnce(ftfx_config_t *config, uint32_t index, uint8_t *dst, uint32_t lengthInBytes)

Reads the Program Once Field through parameters.

This function reads the read once feild with given index and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • index – The index indicating the area of program once field to be read.

  • dst – A pointer to the destination buffer of data that is used to store data to be read.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_ReadResource(ftfx_config_t *config, uint32_t start, uint8_t *dst, uint32_t lengthInBytes, ftfx_read_resource_opt_t option)

Reads the resource with data at locations passed in through parameters.

This function reads the flash memory with the desired location for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • dst – A pointer to the destination buffer of data that is used to store data to be read.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be read. Must be word-aligned.

  • option – The resource option which indicates which area should be read back.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_VerifyErase(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, ftfx_margin_value_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start address and length to check whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_VerifyEraseAll(ftfx_config_t *config, ftfx_margin_value_t margin)

Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_VerifyEraseAllExecuteOnlySegments(ftfx_config_t *config, ftfx_margin_value_t margin)

Verifies whether the program flash execute-only segments have been erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_VerifyProgram(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, ftfx_margin_value_t margin, uint32_t *failedAddress, uint32_t *failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programed in the flash memory using the Flash Program Check Command and compares it to the expected data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. Must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • expectedData – A pointer to the expected data that is to be verified against.

  • margin – Read margin choice.

  • failedAddress – A pointer to the returned failing address.

  • failedData – A pointer to the returned failing data. Some derivatives do not include failed data as part of the FCCOBx registers. In this case, zeros are returned upon failure.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_REG_GetSecurityState(ftfx_config_t *config, ftfx_security_state_t *state)

Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling state and the backdoor key enabling state.

Parameters:
  • config – A pointer to storage for the driver runtime state.

  • state – A pointer to the value returned for the current security status code:

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FTFx_CMD_SecurityBypass(ftfx_config_t *config, const uint8_t *backdoorKey)

Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided backdoor key with ones in the flash configuration field.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • backdoorKey – A pointer to the user buffer containing the backdoor key.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_SetFlexramFunction(ftfx_config_t *config, ftfx_flexram_func_opt_t option)

Sets the FlexRAM function command.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • option – The option used to set the work mode of FlexRAM.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FTFx_CMD_SwapControl(ftfx_config_t *config, uint32_t address, ftfx_swap_control_opt_t option, ftfx_swap_state_config_t *returnInfo)

Configures the Swap function or checks the swap state of the Flash module.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • address – Address used to configure the flash Swap function.

  • option – The possible option used to configure Flash Swap function or check the flash Swap status

  • returnInfo – A pointer to the data which is used to return the information of flash Swap.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_SwapIndicatorAddressError – Swap indicator address is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

enum _ftfx_partition_flexram_load_option

Enumeration for the FlexRAM load during reset option.

Values:

enumerator kFTFx_PartitionFlexramLoadOptLoadedWithValidEepromData

FlexRAM is loaded with valid EEPROM data during reset sequence.

enumerator kFTFx_PartitionFlexramLoadOptNotLoaded

FlexRAM is not loaded during reset sequence.

enum _ftfx_read_resource_opt

Enumeration for the two possible options of flash read resource command.

Values:

enumerator kFTFx_ResourceOptionFlashIfr

Select code for Program flash 0 IFR, Program flash swap 0 IFR, Data flash 0 IFR

enumerator kFTFx_ResourceOptionVersionId

Select code for the version ID

enum _ftfx_margin_value

Enumeration for supported FTFx margin levels.

Values:

enumerator kFTFx_MarginValueNormal

Use the ‘normal’ read level for 1s.

enumerator kFTFx_MarginValueUser

Apply the ‘User’ margin to the normal read-1 level.

enumerator kFTFx_MarginValueFactory

Apply the ‘Factory’ margin to the normal read-1 level.

enumerator kFTFx_MarginValueInvalid

Not real margin level, Used to determine the range of valid margin level.

enum _ftfx_security_state

Enumeration for the three possible FTFx security states.

Values:

enumerator kFTFx_SecurityStateNotSecure

Flash is not secure.

enumerator kFTFx_SecurityStateBackdoorEnabled

Flash backdoor is enabled.

enumerator kFTFx_SecurityStateBackdoorDisabled

Flash backdoor is disabled.

enum _ftfx_flexram_function_option

Enumeration for the two possilbe options of set FlexRAM function command.

Values:

enumerator kFTFx_FlexramFuncOptAvailableAsRam

An option used to make FlexRAM available as RAM

enumerator kFTFx_FlexramFuncOptAvailableForEeprom

An option used to make FlexRAM available for EEPROM

enum _flash_acceleration_ram_property

Enumeration for acceleration ram property.

Values:

enumerator kFLASH_AccelerationRamSize
enum _ftfx_swap_control_option

Enumeration for the possible options of Swap control commands.

Values:

enumerator kFTFx_SwapControlOptionIntializeSystem

An option used to initialize the Swap system

enumerator kFTFx_SwapControlOptionSetInUpdateState

An option used to set the Swap in an update state

enumerator kFTFx_SwapControlOptionSetInCompleteState

An option used to set the Swap in a complete state

enumerator kFTFx_SwapControlOptionReportStatus

An option used to report the Swap status

enumerator kFTFx_SwapControlOptionDisableSystem

An option used to disable the Swap status

enum _ftfx_swap_state

Enumeration for the possible flash Swap status.

Values:

enumerator kFTFx_SwapStateUninitialized

Flash Swap system is in an uninitialized state.

enumerator kFTFx_SwapStateReady

Flash Swap system is in a ready state.

enumerator kFTFx_SwapStateUpdate

Flash Swap system is in an update state.

enumerator kFTFx_SwapStateUpdateErased

Flash Swap system is in an updateErased state.

enumerator kFTFx_SwapStateComplete

Flash Swap system is in a complete state.

enumerator kFTFx_SwapStateDisabled

Flash Swap system is in a disabled state.

enum _ftfx_swap_block_status

Enumeration for the possible flash Swap block status.

Values:

enumerator kFTFx_SwapBlockStatusLowerHalfProgramBlocksAtZero

Swap block status is that lower half program block at zero.

enumerator kFTFx_SwapBlockStatusUpperHalfProgramBlocksAtZero

Swap block status is that upper half program block at zero.

enum _ftfx_memory_type

Enumeration for FTFx memory type.

Values:

enumerator kFTFx_MemTypePflash
enumerator kFTFx_MemTypeFlexnvm
typedef enum _ftfx_partition_flexram_load_option ftfx_partition_flexram_load_opt_t

Enumeration for the FlexRAM load during reset option.

typedef enum _ftfx_read_resource_opt ftfx_read_resource_opt_t

Enumeration for the two possible options of flash read resource command.

typedef enum _ftfx_margin_value ftfx_margin_value_t

Enumeration for supported FTFx margin levels.

typedef enum _ftfx_security_state ftfx_security_state_t

Enumeration for the three possible FTFx security states.

typedef enum _ftfx_flexram_function_option ftfx_flexram_func_opt_t

Enumeration for the two possilbe options of set FlexRAM function command.

typedef enum _ftfx_swap_control_option ftfx_swap_control_opt_t

Enumeration for the possible options of Swap control commands.

typedef enum _ftfx_swap_state ftfx_swap_state_t

Enumeration for the possible flash Swap status.

typedef enum _ftfx_swap_block_status ftfx_swap_block_status_t

Enumeration for the possible flash Swap block status.

typedef struct _ftfx_swap_state_config ftfx_swap_state_config_t

Flash Swap information.

typedef struct _ftfx_special_mem ftfx_spec_mem_t

ftfx special memory access information.

typedef struct _ftfx_mem_descriptor ftfx_mem_desc_t

Flash memory descriptor.

typedef struct _ftfx_ops_config ftfx_ops_config_t

Active FTFx information for the current operation.

typedef struct _ftfx_ifr_descriptor ftfx_ifr_desc_t

Flash IFR memory descriptor.

typedef struct _ftfx_config ftfx_config_t

Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

struct _ftfx_swap_state_config
#include <fsl_ftfx_controller.h>

Flash Swap information.

Public Members

ftfx_swap_state_t flashSwapState

The current Swap system status.

ftfx_swap_block_status_t currentSwapBlockStatus

The current Swap block status.

ftfx_swap_block_status_t nextSwapBlockStatus

The next Swap block status.

struct _ftfx_special_mem
#include <fsl_ftfx_controller.h>

ftfx special memory access information.

Public Members

uint32_t base

Base address of flash special memory.

uint32_t size

size of flash special memory.

uint32_t count

flash special memory count.

struct _ftfx_mem_descriptor
#include <fsl_ftfx_controller.h>

Flash memory descriptor.

Public Members

uint32_t blockBase

A base address of the flash block

uint32_t aliasBlockBase

A base address of the alias flash block

uint32_t totalSize

The size of the flash block.

uint32_t sectorSize

The size in bytes of a sector of flash.

uint32_t blockCount

A number of flash blocks.

struct _ftfx_ops_config
#include <fsl_ftfx_controller.h>

Active FTFx information for the current operation.

Public Members

uint32_t convertedAddress

A converted address for the current flash type.

struct _ftfx_ifr_descriptor
#include <fsl_ftfx_controller.h>

Flash IFR memory descriptor.

union function_ptr_t
#include <fsl_ftfx_controller.h>

Public Members

uint32_t commadAddr
void (*callFlashCommand)(volatile uint8_t *FTMRx_fstat)
struct _ftfx_config
#include <fsl_ftfx_controller.h>

Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

Public Members

uint32_t flexramBlockBase

The base address of the FlexRAM/acceleration RAM

uint32_t flexramTotalSize

The size of the FlexRAM/acceleration RAM

uint16_t eepromTotalSize

The size of EEPROM area which was partitioned from FlexRAM

function_ptr_t runCmdFuncAddr

An buffer point to the flash execute-in-RAM function.

struct __unnamed3__

Public Members

uint8_t type

Type of flash block.

uint8_t index

Index of flash block.

struct feature
struct addrAligment
struct feature
struct resRange

Public Members

uint8_t versionIdStart

Version ID start address

uint32_t pflashIfrStart

Program Flash 0 IFR start address

uint32_t dflashIfrStart

Data Flash 0 IFR start address

uint32_t pflashSwapIfrStart

Program Flash Swap IFR start address

struct idxInfo

ftfx feature

FTFx_DRIVER_IS_FLASH_RESIDENT

Flash driver location.

Used for the flash resident application.

FTFx_DRIVER_IS_EXPORTED

Flash Driver Export option.

Used for the MCUXpresso SDK application.

FTFx_FLASH1_HAS_PROT_CONTROL

Indicates whether the secondary flash has its own protection register in flash module.

FTFx_FLASH1_HAS_XACC_CONTROL

Indicates whether the secondary flash has its own Execute-Only access register in flash module.

FTFx_DRIVER_HAS_FLASH1_SUPPORT

Indicates whether the secondary flash is supported in the Flash driver.

FTFx_FLASH_COUNT
FTFx_FLASH1_IS_INDEPENDENT_BLOCK

Ftftx FLASH Driver

status_t FLASH_Init(flash_config_t *config)

Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)

Erases the Dflash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start address and length.

Parameters:
  • config – The pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be word-aligned.

  • key – The value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the appropriate number of flash sectors based on the desired start address and length were erased successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

  • kStatus_FTFx_EraseKeyError – The API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_EraseSectorNonBlocking(flash_config_t *config, uint32_t start, uint32_t key)

Erases the Dflash sectors encompassed by parameters passed into function.

This function erases one flash sector size based on the start address, and it is executed asynchronously.

NOTE: This function can only erase one flash sector at a time, and the other commands can be executed after the previous command has been completed.

Parameters:
  • config – The pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.

  • key – The value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

  • kStatus_FTFx_EraseKeyError – The API erase key is invalid.

status_t FLASH_EraseAll(flash_config_t *config, uint32_t key)

Erases entire flexnvm.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the all pflash and flexnvm were erased successfully, the swap and eeprom have been reset to unconfigured state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key)

Erases the entire flexnvm, including protected sectors.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the protected sectors of flash were reset to unprotected status.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLASH_Program(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired data were programed successfully into flash based on desired start address and length.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_ProgramOnce(flash_config_t *config, uint32_t index, uint8_t *src, uint32_t lengthInBytes)

Program the Program-Once-Field through parameters.

This function Program the Program-once-feild with given index and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • index – The index indicating the area of program once field to be read.

  • src – A pointer to the source buffer of data that is used to store data to be write.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; The index indicating the area of program once field was programed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_ProgramSection(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters via the Program Section command.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired data have been programed successfully into flash based on start address and length.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM as EEPROM.

status_t FLASH_ReadResource(flash_config_t *config, uint32_t start, uint8_t *dst, uint32_t lengthInBytes, ftfx_read_resource_opt_t option)

Reads the resource with data at locations passed in through parameters.

This function reads the flash memory with the desired location for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • dst – A pointer to the destination buffer of data that is used to store data to be read.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be read. Must be word-aligned.

  • option – The resource option which indicates which area should be read back.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the data have been read successfully from program flash IFR, data flash IFR space, and the Version ID field.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_ReadOnce(flash_config_t *config, uint32_t index, uint8_t *dst, uint32_t lengthInBytes)

Reads the Program Once Field through parameters.

This function reads the read once feild with given index and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • index – The index indicating the area of program once field to be read.

  • dst – A pointer to the destination buffer of data that is used to store data to be read.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the data have been successfuly read form Program flash0 IFR map and Program Once field based on index and length.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, ftfx_margin_value_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start address and length to check whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the specified FLASH region has been erased.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_VerifyEraseAll(flash_config_t *config, ftfx_margin_value_t margin)

Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; all program flash and flexnvm were in erased state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_VerifyProgram(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, ftfx_margin_value_t margin, uint32_t *failedAddress, uint32_t *failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programmed in the flash memory using the Flash Program Check Command and compares it to the expected data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. Must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • expectedData – A pointer to the expected data that is to be verified against.

  • margin – Read margin choice.

  • failedAddress – A pointer to the returned failing address.

  • failedData – A pointer to the returned failing data. Some derivatives do not include failed data as part of the FCCOBx registers. In this case, zeros are returned upon failure.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired data have been successfully programed into specified FLASH region.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_GetSecurityState(flash_config_t *config, ftfx_security_state_t *state)

Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling state and the backdoor key enabling state.

Parameters:
  • config – A pointer to storage for the driver runtime state.

  • state – A pointer to the value returned for the current security status code:

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the security state of flash was stored to state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey)

Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided backdoor key with ones in the flash configuration field.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • backdoorKey – A pointer to the user buffer containing the backdoor key.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_SetFlexramFunction(flash_config_t *config, ftfx_flexram_func_opt_t option)

Sets the FlexRAM function command.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • option – The option used to set the work mode of FlexRAM.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the FlexRAM has been successfully configured as RAM or EEPROM.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLASH_Swap(flash_config_t *config, uint32_t address, bool isSetEnable)

Swaps the lower half flash with the higher half flash.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • address – Address used to configure the flash swap function

  • isSetEnable – The possible option used to configure the Flash Swap function or check the flash Swap status.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the lower half flash and higher half flash have been swaped.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_SwapIndicatorAddressError – Swap indicator address is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_SwapSystemNotInUninitialized – Swap system is not in an uninitialized state.

status_t FLASH_IsProtected(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_prot_state_t *protection_state)

Returns the protection state of the desired flash area via the pointer passed into the function.

This function retrieves the current flash protect status for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be checked. Must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words) to be checked. Must be word-aligned.

  • protection_state – A pointer to the value returned for the current protection status code for the desired flash area.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the protection state of specified FLASH region was stored to protection_state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

status_t FLASH_IsExecuteOnly(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_xacc_state_t *access_state)

Returns the access state of the desired flash area via the pointer passed into the function.

This function retrieves the current flash access status for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be checked. Must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be checked. Must be word-aligned.

  • access_state – A pointer to the value returned for the current access status code for the desired flash area.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the executeOnly state of specified FLASH region was stored to access_state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned to the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

status_t FLASH_PflashSetProtection(flash_config_t *config, pflash_prot_status_t *protectStatus)

Sets the PFlash Protection to the intended protection status.

Parameters:
  • config – A pointer to storage for the driver runtime state.

  • protectStatus – The expected protect status to set to the PFlash protection register. Each bit is corresponding to protection of 1/32(64) of the total PFlash. The least significant bit is corresponding to the lowest address area of PFlash. The most significant bit is corresponding to the highest address area of PFlash. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the specified FLASH region is protected.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

status_t FLASH_PflashGetProtection(flash_config_t *config, pflash_prot_status_t *protectStatus)

Gets the PFlash protection status.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • protectStatus – Protect status returned by the PFlash IP. Each bit is corresponding to the protection of 1/32(64) of the total PFlash. The least significant bit corresponds to the lowest address area of the PFlash. The most significant bit corresponds to the highest address area of PFlash. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the Protection state was stored to protectStatus;

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t *value)

Returns the desired flash property.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • whichProperty – The desired property from the list of properties in enum flash_property_tag_t

  • value – A pointer to the value returned for the desired flash property.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the flash property was stored to value.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_UnknownProperty – An unknown property tag.

status_t FLASH_GetCommandState(void)

Get previous command status.

This function is used to obtain the execution status of the previous command.

Return values:
  • kStatus_FTFx_Success – The previous command is executed successfully.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

FSL_FLASH_DRIVER_VERSION

Flash driver version for SDK.

Version 3.1.3.

FSL_FLASH_DRIVER_VERSION_ROM

Flash driver version for ROM.

Version 3.0.0.

enum _flash_protection_state

Enumeration for the three possible flash protection levels.

Values:

enumerator kFLASH_ProtectionStateUnprotected

Flash region is not protected.

enumerator kFLASH_ProtectionStateProtected

Flash region is protected.

enumerator kFLASH_ProtectionStateMixed

Flash is mixed with protected and unprotected region.

enum _flash_execute_only_access_state

Enumeration for the three possible flash execute access levels.

Values:

enumerator kFLASH_AccessStateUnLimited

Flash region is unlimited.

enumerator kFLASH_AccessStateExecuteOnly

Flash region is execute only.

enumerator kFLASH_AccessStateMixed

Flash is mixed with unlimited and execute only region.

enum _flash_property_tag

Enumeration for various flash properties.

Values:

enumerator kFLASH_PropertyPflash0SectorSize

Pflash sector size property.

enumerator kFLASH_PropertyPflash0TotalSize

Pflash total size property.

enumerator kFLASH_PropertyPflash0BlockSize

Pflash block size property.

enumerator kFLASH_PropertyPflash0BlockCount

Pflash block count property.

enumerator kFLASH_PropertyPflash0BlockBaseAddr

Pflash block base address property.

enumerator kFLASH_PropertyPflash0FacSupport

Pflash fac support property.

enumerator kFLASH_PropertyPflash0AccessSegmentSize

Pflash access segment size property.

enumerator kFLASH_PropertyPflash0AccessSegmentCount

Pflash access segment count property.

enumerator kFLASH_PropertyPflash1SectorSize

Pflash sector size property.

enumerator kFLASH_PropertyPflash1TotalSize

Pflash total size property.

enumerator kFLASH_PropertyPflash1BlockSize

Pflash block size property.

enumerator kFLASH_PropertyPflash1BlockCount

Pflash block count property.

enumerator kFLASH_PropertyPflash1BlockBaseAddr

Pflash block base address property.

enumerator kFLASH_PropertyPflash1FacSupport

Pflash fac support property.

enumerator kFLASH_PropertyPflash1AccessSegmentSize

Pflash access segment size property.

enumerator kFLASH_PropertyPflash1AccessSegmentCount

Pflash access segment count property.

enumerator kFLASH_PropertyFlexRamBlockBaseAddr

FlexRam block base address property.

enumerator kFLASH_PropertyFlexRamTotalSize

FlexRam total size property.

typedef enum _flash_protection_state flash_prot_state_t

Enumeration for the three possible flash protection levels.

typedef union _pflash_protection_status pflash_prot_status_t

PFlash protection status.

typedef enum _flash_execute_only_access_state flash_xacc_state_t

Enumeration for the three possible flash execute access levels.

typedef enum _flash_property_tag flash_property_tag_t

Enumeration for various flash properties.

typedef struct _flash_config flash_config_t

Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

kStatus_FLASH_Success
kFLASH_ApiEraseKey
union _pflash_protection_status
#include <fsl_ftfx_flash.h>

PFlash protection status.

Public Members

uint32_t protl

PROT[31:0] .

uint32_t proth

PROT[63:32].

uint8_t protsl

PROTS[7:0] .

uint8_t protsh

PROTS[15:8] .

uint8_t reserved[2]
struct _flash_config
#include <fsl_ftfx_flash.h>

Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.

Ftftx FLEXNVM Driver

status_t FLEXNVM_Init(flexnvm_config_t *config)

Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLEXNVM_DflashErase(flexnvm_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)

Erases the Dflash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start address and length.

Parameters:
  • config – The pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be word-aligned.

  • key – The value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the appropriate number of date flash sectors based on the desired start address and length were erased successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – The address is out of range.

  • kStatus_FTFx_EraseKeyError – The API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_EraseAll(flexnvm_config_t *config, uint32_t key)

Erases entire flexnvm.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the entire flexnvm has been erased successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLEXNVM_EraseAllUnsecure(flexnvm_config_t *config, uint32_t key)

Erases the entire flexnvm, including protected sectors.

Parameters:
  • config – Pointer to the storage for the driver runtime state.

  • key – A value used to validate all flash erase APIs.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the flexnvm is not in securityi state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_EraseKeyError – API erase key is invalid.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.

status_t FLEXNVM_DflashProgram(flexnvm_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired date have been successfully programed into specified date flash region.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_DflashProgramSection(flexnvm_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters via the Program Section command.

This function programs the flash memory with the desired data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired date have been successfully programed into specified date flash area.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

  • kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM as EEPROM.

status_t FLEXNVM_ProgramPartition(flexnvm_config_t *config, ftfx_partition_flexram_load_opt_t option, uint32_t eepromDataSizeCode, uint32_t flexnvmPartitionCode)

Prepares the FlexNVM block for use as data flash, EEPROM backup, or a combination of both and initializes the FlexRAM.

Parameters:
  • config – Pointer to storage for the driver runtime state.

  • option – The option used to set FlexRAM load behavior during reset.

  • eepromDataSizeCode – Determines the amount of FlexRAM used in each of the available EEPROM subsystems.

  • flexnvmPartitionCode – Specifies how to split the FlexNVM block between data flash memory and EEPROM backup memory supporting EEPROM functions.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the FlexNVM block for use as data flash, EEPROM backup, or a combination of both have been Prepared.

  • kStatus_FTFx_InvalidArgument – Invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

status_t FLEXNVM_ReadResource(flexnvm_config_t *config, uint32_t start, uint8_t *dst, uint32_t lengthInBytes, ftfx_read_resource_opt_t option)

Reads the resource with data at locations passed in through parameters.

This function reads the flash memory with the desired location for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • dst – A pointer to the destination buffer of data that is used to store data to be read.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be read. Must be word-aligned.

  • option – The resource option which indicates which area should be read back.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the data have been read successfully from program flash IFR, data flash IFR space, and the Version ID field

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_DflashVerifyErase(flexnvm_config_t *config, uint32_t start, uint32_t lengthInBytes, ftfx_margin_value_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start address and length to check whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. The start address does not need to be sector-aligned but must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the specified data flash region is in erased state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_VerifyEraseAll(flexnvm_config_t *config, ftfx_margin_value_t margin)

Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • margin – Read margin choice.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the entire flexnvm region is in erased state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_DflashVerifyProgram(flexnvm_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, ftfx_margin_value_t margin, uint32_t *failedAddress, uint32_t *failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programmed in the flash memory using the Flash Program Check Command and compares it to the expected data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be verified. Must be word-aligned.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.

  • expectedData – A pointer to the expected data that is to be verified against.

  • margin – Read margin choice.

  • failedAddress – A pointer to the returned failing address.

  • failedData – A pointer to the returned failing data. Some derivatives do not include failed data as part of the FCCOBx registers. In this case, zeros are returned upon failure.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desired data hve been programed successfully into specified data flash region.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_GetSecurityState(flexnvm_config_t *config, ftfx_security_state_t *state)

Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling state and the backdoor key enabling state.

Parameters:
  • config – A pointer to storage for the driver runtime state.

  • state – A pointer to the value returned for the current security status code:

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the security state of flexnvm was stored to state.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FLEXNVM_SecurityBypass(flexnvm_config_t *config, const uint8_t *backdoorKey)

Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided backdoor key with ones in the flash configuration field.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • backdoorKey – A pointer to the user buffer containing the backdoor key.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_SetFlexramFunction(flexnvm_config_t *config, ftfx_flexram_func_opt_t option)

Sets the FlexRAM function command.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • option – The option used to set the work mode of FlexRAM.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the FlexRAM has been successfully configured as RAM or EEPROM

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.

  • kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_CommandFailure – Run-time error during the command execution.

status_t FLEXNVM_DflashSetProtection(flexnvm_config_t *config, uint8_t protectStatus)

Sets the DFlash protection to the intended protection status.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • protectStatus – The expected protect status to set to the DFlash protection register. Each bit corresponds to the protection of the 1/8 of the total DFlash. The least significant bit corresponds to the lowest address area of the DFlash. The most significant bit corresponds to the highest address area of the DFlash. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the specified DFlash region is protected.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_CommandNotSupported – Flash API is not supported.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

status_t FLEXNVM_DflashGetProtection(flexnvm_config_t *config, uint8_t *protectStatus)

Gets the DFlash protection status.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • protectStatus – DFlash Protect status returned by the PFlash IP. Each bit corresponds to the protection of the 1/8 of the total DFlash. The least significant bit corresponds to the lowest address area of the DFlash. The most significant bit corresponds to the highest address area of the DFlash, and so on. There are two possible cases as below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_CommandNotSupported – Flash API is not supported.

status_t FLEXNVM_EepromSetProtection(flexnvm_config_t *config, uint8_t protectStatus)

Sets the EEPROM protection to the intended protection status.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • protectStatus – The expected protect status to set to the EEPROM protection register. Each bit corresponds to the protection of the 1/8 of the total EEPROM. The least significant bit corresponds to the lowest address area of the EEPROM. The most significant bit corresponds to the highest address area of EEPROM, and so on. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_CommandNotSupported – Flash API is not supported.

  • kStatus_FTFx_CommandFailure – Run-time error during command execution.

status_t FLEXNVM_EepromGetProtection(flexnvm_config_t *config, uint8_t *protectStatus)

Gets the EEPROM protection status.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • protectStatus – DFlash Protect status returned by the PFlash IP. Each bit corresponds to the protection of the 1/8 of the total EEPROM. The least significant bit corresponds to the lowest address area of the EEPROM. The most significant bit corresponds to the highest address area of the EEPROM. There are two possible cases as below: 0: this area is protected. 1: this area is unprotected.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_CommandNotSupported – Flash API is not supported.

status_t FLEXNVM_GetProperty(flexnvm_config_t *config, flexnvm_property_tag_t whichProperty, uint32_t *value)

Returns the desired flexnvm property.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • whichProperty – The desired property from the list of properties in enum flexnvm_property_tag_t

  • value – A pointer to the value returned for the desired flexnvm property.

Return values:
  • kStatus_FTFx_Success – API was executed successfully.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_UnknownProperty – An unknown property tag.

enum _flexnvm_property_tag

Enumeration for various flexnvm properties.

Values:

enumerator kFLEXNVM_PropertyDflashSectorSize

Dflash sector size property.

enumerator kFLEXNVM_PropertyDflashTotalSize

Dflash total size property.

enumerator kFLEXNVM_PropertyDflashBlockSize

Dflash block size property.

enumerator kFLEXNVM_PropertyDflashBlockCount

Dflash block count property.

enumerator kFLEXNVM_PropertyDflashBlockBaseAddr

Dflash block base address property.

enumerator kFLEXNVM_PropertyAliasDflashBlockBaseAddr

Dflash block base address Alias property.

enumerator kFLEXNVM_PropertyFlexRamBlockBaseAddr

FlexRam block base address property.

enumerator kFLEXNVM_PropertyFlexRamTotalSize

FlexRam total size property.

enumerator kFLEXNVM_PropertyEepromTotalSize

EEPROM total size property.

typedef enum _flexnvm_property_tag flexnvm_property_tag_t

Enumeration for various flexnvm properties.

typedef struct _flexnvm_config flexnvm_config_t

Flexnvm driver state information.

An instance of this structure is allocated by the user of the Flexnvm driver and passed into each of the driver APIs.

status_t FLEXNVM_EepromWrite(flexnvm_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)

Programs the EEPROM with data at locations passed in through parameters.

This function programs the emulated EEPROM with the desired data for a given flash area as determined by the start address and length.

Parameters:
  • config – A pointer to the storage for the driver runtime state.

  • start – The start address of the desired flash memory to be programmed. Must be word-aligned.

  • src – A pointer to the source buffer of data that is to be programmed into the flash.

  • lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.

Return values:
  • kStatus_FTFx_Success – API was executed successfully; the desires data have been successfully programed into specified eeprom region.

  • kStatus_FTFx_InvalidArgument – An invalid argument is provided.

  • kStatus_FTFx_AddressError – Address is out of range.

  • kStatus_FTFx_SetFlexramAsEepromError – Failed to set flexram as eeprom.

  • kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.

  • kStatus_FTFx_RecoverFlexramAsRamError – Failed to recover the FlexRAM as RAM.

struct _flexnvm_config
#include <fsl_ftfx_flexnvm.h>

Flexnvm driver state information.

An instance of this structure is allocated by the user of the Flexnvm driver and passed into each of the driver APIs.

ftfx utilities

ALIGN_DOWN(x, a)

Alignment(down) utility.

ALIGN_UP(x, a)

Alignment(up) utility.

MAKE_VERSION(major, minor, bugfix)

Constructs the version number for drivers.

MAKE_STATUS(group, code)

Constructs a status code value from a group and a code number.

FOUR_CHAR_CODE(a, b, c, d)

Constructs the four character code for the Flash driver API key.

B1P4(b)

bytes2word utility.

B1P3(b)
B1P2(b)
B1P1(b)
B2P3(b)
B2P2(b)
B2P1(b)
B3P2(b)
B3P1(b)
BYTE2WORD_1_3(x, y)
BYTE2WORD_2_2(x, y)
BYTE2WORD_3_1(x, y)
BYTE2WORD_1_1_2(x, y, z)
BYTE2WORD_1_2_1(x, y, z)
BYTE2WORD_2_1_1(x, y, z)
BYTE2WORD_1_1_1_1(x, y, z, w)

GPIO: General-Purpose Input/Output Driver

FSL_GPIO_DRIVER_VERSION

GPIO driver version.

enum _gpio_pin_direction

GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput

Set current pin as digital input

enumerator kGPIO_DigitalOutput

Set current pin as digital output

enum _gpio_checker_attribute

GPIO checker attribute.

Values:

enumerator kGPIO_UsernonsecureRWUsersecureRWPrivilegedsecureRW

User nonsecure:Read+Write; User Secure:Read+Write; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureRUsersecureRWPrivilegedsecureRW

User nonsecure:Read; User Secure:Read+Write; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureRWPrivilegedsecureRW

User nonsecure:None; User Secure:Read+Write; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureRUsersecureRPrivilegedsecureRW

User nonsecure:Read; User Secure:Read; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureRPrivilegedsecureRW

User nonsecure:None; User Secure:Read; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureRW

User nonsecure:None; User Secure:None; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureR

User nonsecure:None; User Secure:None; Privileged Secure:Read

enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureN

User nonsecure:None; User Secure:None; Privileged Secure:None

enumerator kGPIO_IgnoreAttributeCheck

Ignores the attribute check

typedef enum _gpio_pin_direction gpio_pin_direction_t

GPIO direction definition.

typedef enum _gpio_checker_attribute gpio_checker_attribute_t

GPIO checker attribute.

typedef struct _gpio_pin_config gpio_pin_config_t

The GPIO pin configuration structure.

Each pin can only be configured as either an output pin or an input pin at a time. If configured as an input pin, leave the outputConfig unused. Note that in some use cases, the corresponding port property should be configured in advance with the PORT_SetPinConfig().

GPIO_FIT_REG(value)
struct _gpio_pin_config
#include <fsl_gpio.h>

The GPIO pin configuration structure.

Each pin can only be configured as either an output pin or an input pin at a time. If configured as an input pin, leave the outputConfig unused. Note that in some use cases, the corresponding port property should be configured in advance with the PORT_SetPinConfig().

Public Members

gpio_pin_direction_t pinDirection

GPIO direction, input or output

uint8_t outputLogic

Set a default output logic, which has no use in input

GPIO Driver

void GPIO_PortInit(GPIO_Type *base)

Initializes the GPIO peripheral.

This function ungates the GPIO clock.

Parameters:
  • base – GPIO peripheral base pointer.

void GPIO_PortDenit(GPIO_Type *base)

Denitializes the GPIO peripheral.

Parameters:
  • base – GPIO peripheral base pointer.

void GPIO_PinInit(GPIO_Type *base, uint32_t pin, const gpio_pin_config_t *config)

Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, as either input or output, in the user file. Then, call the GPIO_PinInit() function.

This is an example to define an input pin or an output pin configuration.

Define a digital input pin configuration,
gpio_pin_config_t config =
{
  kGPIO_DigitalInput,
  0,
}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
  kGPIO_DigitalOutput,
  0,
}

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • pin – GPIO port pin number

  • config – GPIO pin configuration pointer

static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t pin, uint8_t output)

Sets the output level of the multiple GPIO pins to the logic 1 or 0.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • pin – GPIO pin number

  • output – GPIO pin output logic level.

    • 0: corresponding pin output low-logic level.

    • 1: corresponding pin output high-logic level.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t mask)

Sets the output level of the multiple GPIO pins to the logic 1.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • mask – GPIO pin number macro

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t mask)

Sets the output level of the multiple GPIO pins to the logic 0.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • mask – GPIO pin number macro

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t mask)

Reverses the current output logic of the multiple GPIO pins.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • mask – GPIO pin number macro

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t pin)

Reads the current input value of the GPIO port.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • pin – GPIO pin number

Return values:

GPIO – port input value

  • 0: corresponding pin input low-logic level.

  • 1: corresponding pin input high-logic level.

uint32_t GPIO_PortGetInterruptFlags(GPIO_Type *base)

Reads the GPIO port interrupt status flag.

If a pin is configured to generate the DMA request, the corresponding flag is cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic one is written to that flag. If configured for a level sensitive interrupt that remains asserted, the flag is set again immediately.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

Return values:

The – current GPIO port interrupt status flag, for example, 0x00010001 means the pin 0 and 17 have the interrupt.

void GPIO_PortClearInterruptFlags(GPIO_Type *base, uint32_t mask)

Clears multiple GPIO pin interrupt status flags.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • mask – GPIO pin number macro

void GPIO_CheckAttributeBytes(GPIO_Type *base, gpio_checker_attribute_t attribute)

brief The GPIO module supports a device-specific number of data ports, organized as 32-bit words/8-bit Bytes. Each 32-bit/8-bit data port includes a GACR register, which defines the byte-level attributes required for a successful access to the GPIO programming model. If the GPIO module’s GACR register organized as 32-bit words, the attribute controls for the 4 data bytes in the GACR follow a standard little endian data convention.

Parameters:
  • base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

  • attribute – GPIO checker attribute

I2C: Inter-Integrated Circuit Driver

I2C Driver

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)

Initializes the I2C peripheral. Call this API to ungate the I2C clock and configure the I2C with master configuration.

Note

This API should be called at the beginning of the application. Otherwise, any operation to the I2C module can cause a hard fault because the clock is not enabled. The configuration structure can be custom filled or it can be set with default values by using the I2C_MasterGetDefaultConfig(). After calling this API, the master is ready to transfer. This is an example.

i2c_master_config_t config = {
.enableMaster = true,
.enableStopHold = false,
.highDrive = false,
.baudRate_Bps = 100000,
.glitchFilterWidth = 0
};
I2C_MasterInit(I2C0, &config, 12000000U);

Parameters:
  • base – I2C base pointer

  • masterConfig – A pointer to the master configuration structure

  • srcClock_Hz – I2C peripheral clock frequency in Hz

void I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)

Initializes the I2C peripheral. Call this API to ungate the I2C clock and initialize the I2C with the slave configuration.

Note

This API should be called at the beginning of the application. Otherwise, any operation to the I2C module can cause a hard fault because the clock is not enabled. The configuration structure can partly be set with default values by I2C_SlaveGetDefaultConfig() or it can be custom filled by the user. This is an example.

i2c_slave_config_t config = {
.enableSlave = true,
.enableGeneralCall = false,
.addressingMode = kI2C_Address7bit,
.slaveAddress = 0x1DU,
.enableWakeUp = false,
.enablehighDrive = false,
.enableBaudRateCtl = false,
.sclStopHoldTime_ns = 4000
};
I2C_SlaveInit(I2C0, &config, 12000000U);

Parameters:
  • base – I2C base pointer

  • slaveConfig – A pointer to the slave configuration structure

  • srcClock_Hz – I2C peripheral clock frequency in Hz

void I2C_MasterDeinit(I2C_Type *base)

De-initializes the I2C master peripheral. Call this API to gate the I2C clock. The I2C master module can’t work unless the I2C_MasterInit is called.

Parameters:
  • base – I2C base pointer

void I2C_SlaveDeinit(I2C_Type *base)

De-initializes the I2C slave peripheral. Calling this API gates the I2C clock. The I2C slave module can’t work unless the I2C_SlaveInit is called to enable the clock.

Parameters:
  • base – I2C base pointer

uint32_t I2C_GetInstance(I2C_Type *base)

Get instance number for I2C module.

Parameters:
  • base – I2C peripheral base address.

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)

Sets the I2C master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the I2C_MasterConfigure(). Use the initialized structure unchanged in the I2C_MasterConfigure() or modify the structure before calling the I2C_MasterConfigure(). This is an example.

i2c_master_config_t config;
I2C_MasterGetDefaultConfig(&config);

Parameters:
  • masterConfig – A pointer to the master configuration structure.

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)

Sets the I2C slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the I2C_SlaveConfigure(). Modify fields of the structure before calling the I2C_SlaveConfigure(). This is an example.

i2c_slave_config_t config;
I2C_SlaveGetDefaultConfig(&config);

Parameters:
  • slaveConfig – A pointer to the slave configuration structure.

static inline void I2C_Enable(I2C_Type *base, bool enable)

Enables or disables the I2C peripheral operation.

Parameters:
  • base – I2C base pointer

  • enable – Pass true to enable and false to disable the module.

uint32_t I2C_MasterGetStatusFlags(I2C_Type *base)

Gets the I2C status flags.

Parameters:
  • base – I2C base pointer

Returns:

status flag, use status flag to AND _i2c_flags to get the related status.

static inline uint32_t I2C_SlaveGetStatusFlags(I2C_Type *base)

Gets the I2C status flags.

Parameters:
  • base – I2C base pointer

Returns:

status flag, use status flag to AND _i2c_flags to get the related status.

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and kI2C_IntPendingFlag.

Parameters:
  • base – I2C base pointer

  • statusMask – The status flag mask, defined in type i2c_status_flag_t. The parameter can be any combination of the following values:

    • kI2C_StartDetectFlag (if available)

    • kI2C_StopDetectFlag (if available)

    • kI2C_ArbitrationLostFlag

    • kI2C_IntPendingFlagFlag

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and kI2C_IntPendingFlag

Parameters:
  • base – I2C base pointer

  • statusMask – The status flag mask, defined in type i2c_status_flag_t. The parameter can be any combination of the following values:

    • kI2C_StartDetectFlag (if available)

    • kI2C_StopDetectFlag (if available)

    • kI2C_ArbitrationLostFlag

    • kI2C_IntPendingFlagFlag

void I2C_EnableInterrupts(I2C_Type *base, uint32_t mask)

Enables I2C interrupt requests.

Parameters:
  • base – I2C base pointer

  • mask – interrupt source The parameter can be combination of the following source if defined:

    • kI2C_GlobalInterruptEnable

    • kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

    • kI2C_SdaTimeoutInterruptEnable

void I2C_DisableInterrupts(I2C_Type *base, uint32_t mask)

Disables I2C interrupt requests.

Parameters:
  • base – I2C base pointer

  • mask – interrupt source The parameter can be combination of the following source if defined:

    • kI2C_GlobalInterruptEnable

    • kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

    • kI2C_SdaTimeoutInterruptEnable

static inline void I2C_EnableDMA(I2C_Type *base, bool enable)

Enables/disables the I2C DMA interrupt.

Parameters:
  • base – I2C base pointer

  • enable – true to enable, false to disable

static inline uint32_t I2C_GetDataRegAddr(I2C_Type *base)

Gets the I2C tx/rx data register address. This API is used to provide a transfer address for I2C DMA transfer configuration.

Parameters:
  • base – I2C base pointer

Returns:

data register address

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)

Sets the I2C master transfer baud rate.

Parameters:
  • base – I2C base pointer

  • baudRate_Bps – the baud rate value in bps

  • srcClock_Hz – Source clock

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal. The slave address is sent following the I2C START signal.

Parameters:
  • base – I2C peripheral base pointer

  • address – 7-bit slave device address.

  • direction – Master transfer directions(transmit/receive).

Return values:
  • kStatus_Success – Successfully send the start signal.

  • kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)

Sends a STOP signal on the I2C bus.

Return values:
  • kStatus_Success – Successfully send the stop signal.

  • kStatus_I2C_Timeout – Send stop signal failed, timeout.

status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a REPEATED START on the I2C bus.

Parameters:
  • base – I2C peripheral base pointer

  • address – 7-bit slave device address.

  • direction – Master transfer directions(transmit/receive).

Return values:
  • kStatus_Success – Successfully send the start signal.

  • kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C master.

status_t I2C_MasterWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize, uint32_t flags)

Performs a polling send transaction on the I2C bus.

Parameters:
  • base – The I2C peripheral base pointer.

  • txBuff – The pointer to the data to be transferred.

  • txSize – The length in bytes of the data to be transferred.

  • flags – Transfer control flag to decide whether need to send a stop, use kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not send a stop.

Return values:
  • kStatus_Success – Successfully complete the data transmission.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

status_t I2C_MasterReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize, uint32_t flags)

Performs a polling receive transaction on the I2C bus.

Note

The I2C_MasterReadBlocking function stops the bus before reading the final byte. Without stopping the bus prior for the final read, the bus issues another read, resulting in garbage data being read into the data register.

Parameters:
  • base – I2C peripheral base pointer.

  • rxBuff – The pointer to the data to store the received data.

  • rxSize – The length in bytes of the data to be received.

  • flags – Transfer control flag to decide whether need to send a stop, use kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not send a stop.

Return values:
  • kStatus_Success – Successfully complete the data transmission.

  • kStatus_I2C_Timeout – Send stop signal failed, timeout.

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)

Performs a polling send transaction on the I2C bus.

Parameters:
  • base – The I2C peripheral base pointer.

  • txBuff – The pointer to the data to be transferred.

  • txSize – The length in bytes of the data to be transferred.

Return values:
  • kStatus_Success – Successfully complete the data transmission.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)

Performs a polling receive transaction on the I2C bus.

Parameters:
  • base – I2C peripheral base pointer.

  • rxBuff – The pointer to the data to store the received data.

  • rxSize – The length in bytes of the data to be received.

Return values:
  • kStatus_Success – Successfully complete data receive.

  • kStatus_I2C_Timeout – Wait status flag timeout.

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)

Performs a master polling transfer on the I2C bus.

Note

The API does not return until the transfer succeeds or fails due to arbitration lost or receiving a NAK.

Parameters:
  • base – I2C peripheral base address.

  • xfer – Pointer to the transfer structure.

Return values:
  • kStatus_Success – Successfully complete the data transmission.

  • kStatus_I2C_Busy – Previous transmission still not finished.

  • kStatus_I2C_Timeout – Transfer error, wait signal timeout.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_master_handle_t structure to store the transfer state.

  • callback – pointer to user callback function.

  • userData – user parameter passed to the callback function.

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)

Performs a master interrupt non-blocking transfer on the I2C bus.

Note

Calling the API returns immediately after transfer initiates. The user needs to call I2C_MasterGetTransferCount to poll the transfer status to check whether the transfer is finished. If the return status is not kStatus_I2C_Busy, the transfer is finished.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_master_handle_t structure which stores the transfer state.

  • xfer – pointer to i2c_master_transfer_t structure.

Return values:
  • kStatus_Success – Successfully start the data transmission.

  • kStatus_I2C_Busy – Previous transmission still not finished.

  • kStatus_I2C_Timeout – Transfer error, wait signal timeout.

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count)

Gets the master transfer status during a interrupt non-blocking transfer.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_master_handle_t structure which stores the transfer state.

  • count – Number of bytes transferred so far by the non-blocking transaction.

Return values:
  • kStatus_InvalidArgument – count is Invalid.

  • kStatus_Success – Successfully return the count.

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)

Aborts an interrupt non-blocking transfer early.

Note

This API can be called at any time when an interrupt non-blocking transfer initiates to abort the transfer early.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_master_handle_t structure which stores the transfer state

Return values:
  • kStatus_I2C_Timeout – Timeout during polling flag.

  • kStatus_Success – Successfully abort the transfer.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)

Master interrupt handler.

Parameters:
  • base – I2C base pointer.

  • i2cHandle – pointer to i2c_master_handle_t structure.

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_slave_handle_t structure to store the transfer state.

  • callback – pointer to user callback function.

  • userData – user parameter passed to the callback function.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask)

Starts accepting slave transfers.

Call this API after calling the I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start processing transactions driven by an I2C master. The slave monitors the I2C bus and passes events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The callback is always invoked from the interrupt context.

The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kLPI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.

  • eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.

Return values:
  • kStatus_Success – Slave transfers were successfully started.

  • kStatus_I2C_Busy – Slave transfers have already been started on this handle.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)

Aborts the slave transfer.

Note

This API can be called at any time to stop slave for handling the bus events.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_slave_handle_t structure which stores the transfer state.

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)

Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_slave_handle_t structure.

  • count – Number of bytes transferred so far by the non-blocking transaction.

Return values:
  • kStatus_InvalidArgument – count is Invalid.

  • kStatus_Success – Successfully return the count.

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)

Slave interrupt handler.

Parameters:
  • base – I2C base pointer.

  • i2cHandle – pointer to i2c_slave_handle_t structure which stores the transfer state

FSL_I2C_DRIVER_VERSION

I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy

I2C is busy with current transfer.

enumerator kStatus_I2C_Idle

Bus is Idle.

enumerator kStatus_I2C_Nak

NAK received during transfer.

enumerator kStatus_I2C_ArbitrationLost

Arbitration lost during transfer.

enumerator kStatus_I2C_Timeout

Timeout polling status flags.

enumerator kStatus_I2C_Addr_Nak

NAK received during the address probe.

enum _i2c_flags

I2C peripheral flags.

Note

These enumerations are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ReceiveNakFlag

I2C receive NAK flag.

enumerator kI2C_IntPendingFlag

I2C interrupt pending flag. This flag can be cleared.

enumerator kI2C_TransferDirectionFlag

I2C transfer direction flag.

enumerator kI2C_RangeAddressMatchFlag

I2C range address match flag.

enumerator kI2C_ArbitrationLostFlag

I2C arbitration lost flag. This flag can be cleared.

enumerator kI2C_BusBusyFlag

I2C bus busy flag.

enumerator kI2C_AddressMatchFlag

I2C address match flag.

enumerator kI2C_TransferCompleteFlag

I2C transfer complete flag.

enumerator kI2C_StopDetectFlag

I2C stop detect flag. This flag can be cleared.

enumerator kI2C_StartDetectFlag

I2C start detect flag. This flag can be cleared.

enum _i2c_interrupt_enable

I2C feature interrupt source.

Values:

enumerator kI2C_GlobalInterruptEnable

I2C global interrupt.

enumerator kI2C_StopDetectInterruptEnable

I2C stop detect interrupt.

enumerator kI2C_StartStopDetectInterruptEnable

I2C start&stop detect interrupt.

enum _i2c_direction

The direction of master and slave transfers.

Values:

enumerator kI2C_Write

Master transmits to the slave.

enumerator kI2C_Read

Master receives from the slave.

enum _i2c_slave_address_mode

Addressing mode.

Values:

enumerator kI2C_Address7bit

7-bit addressing mode.

enumerator kI2C_RangeMatch

Range address match addressing mode.

enum _i2c_master_transfer_flags

I2C transfer control flag.

Values:

enumerator kI2C_TransferDefaultFlag

A transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag

A transfer starts without a start signal, only support write only or write+read with no start flag, do not support read only with no start flag.

enumerator kI2C_TransferRepeatedStartFlag

A transfer starts with a repeated start signal.

enumerator kI2C_TransferNoStopFlag

A transfer ends without a stop signal.

enum _i2c_slave_transfer_event

Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.

Note

These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent

Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent

A callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_SlaveReceiveEvent

A callback is requested to provide a buffer in which to place received data (slave-receiver role).

enumerator kI2C_SlaveTransmitAckEvent

A callback needs to either transmit an ACK or NACK.

enumerator kI2C_SlaveStartEvent

A start/repeated start was detected.

enumerator kI2C_SlaveCompletionEvent

A stop was detected or finished transfer, completing the transfer.

enumerator kI2C_SlaveGenaralcallEvent

Received the general call address after a start or repeated start.

enumerator kI2C_SlaveAllEvents

A bit mask of all available events.

Common sets of flags used by the driver.

Values:

enumerator kClearFlags

All flags which are cleared by the driver upon starting a transfer.

enumerator kIrqFlags
typedef enum _i2c_direction i2c_direction_t

The direction of master and slave transfers.

typedef enum _i2c_slave_address_mode i2c_slave_address_mode_t

Addressing mode.

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t

Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.

Note

These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_master_config i2c_master_config_t

I2C master user configuration.

typedef struct _i2c_slave_config i2c_slave_config_t

I2C slave user configuration.

typedef struct _i2c_master_handle i2c_master_handle_t

I2C master handle typedef.

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle, status_t status, void *userData)

I2C master transfer callback typedef.

typedef struct _i2c_slave_handle i2c_slave_handle_t

I2C slave handle typedef.

typedef struct _i2c_master_transfer i2c_master_transfer_t

I2C master transfer structure.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t

I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, i2c_slave_transfer_t *xfer, void *userData)

I2C slave transfer callback typedef.

I2C_RETRY_TIMES

Retry times for waiting flag.

I2C_MASTER_FACK_CONTROL

Mater Fast ack control, control if master needs to manually write ack, this is used to low the speed of transfer for SoCs with feature FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING.

I2C_HAS_STOP_DETECT
struct _i2c_master_config
#include <fsl_i2c.h>

I2C master user configuration.

Public Members

bool enableMaster

Enables the I2C peripheral at initialization time.

bool enableStopHold

Controls the stop hold enable.

bool enableDoubleBuffering

Controls double buffer enable; notice that enabling the double buffer disables the clock stretch.

uint32_t baudRate_Bps

Baud rate configuration of I2C peripheral.

uint8_t glitchFilterWidth

Controls the width of the glitch.

struct _i2c_slave_config
#include <fsl_i2c.h>

I2C slave user configuration.

Public Members

bool enableSlave

Enables the I2C peripheral at initialization time.

bool enableGeneralCall

Enables the general call addressing mode.

bool enableWakeUp

Enables/disables waking up MCU from low-power mode.

bool enableDoubleBuffering

Controls a double buffer enable; notice that enabling the double buffer disables the clock stretch.

bool enableBaudRateCtl

Enables/disables independent slave baud rate on SCL in very fast I2C modes.

uint16_t slaveAddress

A slave address configuration.

uint16_t upperAddress

A maximum boundary slave address used in a range matching mode.

i2c_slave_address_mode_t addressingMode

An addressing mode configuration of i2c_slave_address_mode_config_t.

uint32_t sclStopHoldTime_ns

the delay from the rising edge of SCL (I2C clock) to the rising edge of SDA (I2C data) while SCL is high (stop condition), SDA hold time and SCL start hold time are also configured according to the SCL stop hold time.

struct _i2c_master_transfer
#include <fsl_i2c.h>

I2C master transfer structure.

Public Members

uint32_t flags

A transfer flag which controls the transfer.

uint8_t slaveAddress

7-bit slave address.

i2c_direction_t direction

A transfer direction, read or write.

uint32_t subaddress

A sub address. Transferred MSB first.

uint8_t subaddressSize

A size of the command buffer.

uint8_t *volatile data

A transfer buffer.

volatile size_t dataSize

A transfer size.

struct _i2c_master_handle
#include <fsl_i2c.h>

I2C master handle structure.

Public Members

i2c_master_transfer_t transfer

I2C master transfer copy.

size_t transferSize

Total bytes to be transferred.

uint8_t state

A transfer state maintained during transfer.

i2c_master_transfer_callback_t completionCallback

A callback function called when the transfer is finished.

void *userData

A callback parameter passed to the callback function.

struct _i2c_slave_transfer
#include <fsl_i2c.h>

I2C slave transfer structure.

Public Members

i2c_slave_transfer_event_t event

A reason that the callback is invoked.

uint8_t *volatile data

A transfer buffer.

volatile size_t dataSize

A transfer size.

status_t completionStatus

Success or error code describing how the transfer completed. Only applies for kI2C_SlaveCompletionEvent.

size_t transferredCount

A number of bytes actually transferred since the start or since the last repeated start.

struct _i2c_slave_handle
#include <fsl_i2c.h>

I2C slave handle structure.

Public Members

volatile bool isBusy

Indicates whether a transfer is busy.

i2c_slave_transfer_t transfer

I2C slave transfer copy.

uint32_t eventMask

A mask of enabled events.

i2c_slave_transfer_callback_t callback

A callback function called at the transfer event.

void *userData

A callback parameter passed to the callback.

Common Driver

FSL_COMMON_DRIVER_VERSION

common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE

No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART

Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART

Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI

Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC

Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM

Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART

Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART

Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART

Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO

Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI

Debug console based on QSCI.

MIN(a, b)

Computes the minimum of a and b.

MAX(a, b)

Computes the maximum of a and b.

UINT16_MAX

Max value of uint16_t type.

UINT32_MAX

Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)

Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)

Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)

Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)

Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)

Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)

For the variable at address address, clear the bits specifiled by clearBits and set the bits specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)

For the variable at address address, check whether the value equal to expected. If value same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)

For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)

Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)

Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)

Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)

Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER
SDK_SIZEALIGN(var, alignbytes)

Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

AT_NONCACHEABLE_SECTION(var)

Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)

Define a variable var, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)

Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)

Define a variable var with initial value, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.

enum _status_groups

Status group numbers.

Values:

enumerator kStatusGroup_Generic

Group number for generic status codes.

enumerator kStatusGroup_FLASH

Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI

Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI

Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI

Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART

Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C

Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C

Group number for LPI2C status codes.

enumerator kStatusGroup_UART

Group number for UART status codes.

enumerator kStatusGroup_I2C

Group number for UART status codes.

enumerator kStatusGroup_LPSCI

Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART

Group number for LPUART status codes.

enumerator kStatusGroup_SPI

Group number for SPI status code.

enumerator kStatusGroup_XRDC

Group number for XRDC status code.

enumerator kStatusGroup_SEMA42

Group number for SEMA42 status code.

enumerator kStatusGroup_SDHC

Group number for SDHC status code

enumerator kStatusGroup_SDMMC

Group number for SDMMC status code

enumerator kStatusGroup_SAI

Group number for SAI status code

enumerator kStatusGroup_MCG

Group number for MCG status codes.

enumerator kStatusGroup_SCG

Group number for SCG status codes.

enumerator kStatusGroup_SDSPI

Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S

Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD

Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP

Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C

Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S

Group number for I2S status codes

enumerator kStatusGroup_IUART

Group number for IUART status codes

enumerator kStatusGroup_CSI

Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI

Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC

Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER

Group number for POWER status codes.

enumerator kStatusGroup_ENET

Group number for ENET status codes.

enumerator kStatusGroup_PHY

Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX

Group number for TRGMUX status codes.

enumerator kStatusGroup_SMARTCARD

Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM

Group number for LMEM status codes.

enumerator kStatusGroup_QSPI

Group number for QSPI status codes.

enumerator kStatusGroup_DMA

Group number for DMA status codes.

enumerator kStatusGroup_EDMA

Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR

Group number for DMAMGR status codes.

enumerator kStatusGroup_FLEXCAN

Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC

Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA

Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI

Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART

Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC

Group number for DMIC status codes.

enumerator kStatusGroup_SDIF

Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI

Group number for SPIFI status codes.

enumerator kStatusGroup_OTP

Group number for OTP status codes.

enumerator kStatusGroup_MCAN

Group number for MCAN status codes.

enumerator kStatusGroup_CAAM

Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI

Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC

Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C

Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP

Group number for DCP status codes.

enumerator kStatusGroup_MSCAN

Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI

Group number for ESAI status codes.

enumerator kStatusGroup_FLEXSPI

Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC

Group number for MMDC status codes.

enumerator kStatusGroup_PDM

Group number for MIC status codes.

enumerator kStatusGroup_SDMA

Group number for SDMA status codes.

enumerator kStatusGroup_ICS

Group number for ICS status codes.

enumerator kStatusGroup_SPDIF

Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI

Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT

Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP

Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C

Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1

Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER

Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole

Group number for debug console status codes.

enumerator kStatusGroup_SEMC

Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart

Starting number for application groups.

enumerator kStatusGroup_IAP

Group number for IAP status codes

enumerator kStatusGroup_SFA

Group number for SFA status codes

enumerator kStatusGroup_SPC

Group number for SPC status codes.

enumerator kStatusGroup_PUF

Group number for PUF status codes.

enumerator kStatusGroup_TOUCH_PANEL

Group number for touch panel status codes

enumerator kStatusGroup_VBAT

Group number for VBAT status codes

enumerator kStatusGroup_XSPI

Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC

Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC

Group number for JPEGDEC status codes

enumerator kStatusGroup_HAL_GPIO

Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART

Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER

Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI

Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C

Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH

Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM

Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG

Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S

Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR

Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER

Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER

Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED

Group number for LED status codes.

enumerator kStatusGroup_BUTTON

Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM

Group number for EXTERN EEPROM status codes.

enumerator kStatusGroup_SHELL

Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER

Group number for MEM MANAGER status codes.

enumerator kStatusGroup_LIST

Group number for List status codes.

enumerator kStatusGroup_OSA

Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK

Group number for Common task status codes.

enumerator kStatusGroup_MSG

Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP

Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR

Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC

Group number for codec status codes.

enumerator kStatusGroup_ASRC

Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD

Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV

Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC

Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS

Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG

Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS

Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI

Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU

Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI

Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER

Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED

Group number for IPED status codes.

enumerator kStatusGroup_ELS_PKC

Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC

Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF

Group number for HOSTIF status codes.

enumerator kStatusGroup_CLIF

Group number for CLIF status codes.

enumerator kStatusGroup_BMA

Group number for BMA status codes.

enumerator kStatusGroup_NETC

Group number for NETC status codes.

enumerator kStatusGroup_ELE

Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY

Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER

Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON

Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3

Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE

Group number for HIPERFACE status codes.

Generic status return codes.

Values:

enumerator kStatus_Success

Generic status for Success.

enumerator kStatus_Fail

Generic status for Fail.

enumerator kStatus_ReadOnly

Generic status for read only failure.

enumerator kStatus_OutOfRange

Generic status for out of range access.

enumerator kStatus_InvalidArgument

Generic status for invalid argument check.

enumerator kStatus_Timeout

Generic status for timeout.

enumerator kStatus_NoTransferInProgress

Generic status for no transfer in progress.

enumerator kStatus_Busy

Generic status for module is busy.

enumerator kStatus_NoData

Generic status for no data is found for the operation.

typedef int32_t status_t

Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)

Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters:
  • size – The length required to malloc.

  • alignbytes – The alignment size.

Return values:

The – allocated memory.

void SDK_Free(void *ptr)

Free memory.

Parameters:
  • ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)

Delay at least for some time. Please note that, this API uses while loop for delay, different run-time environments make the time not precise, if precise delay count was needed, please implement a new delay function with hardware timer.

Parameters:
  • delayTime_us – Delay time in unit of microsecond.

  • coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)

Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ number.

Return values:
  • kStatus_Success – Interrupt enabled successfully

  • kStatus_Fail – Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)

Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ number.

Return values:
  • kStatus_Success – Interrupt disabled successfully

  • kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)

Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ to Enable.

  • priNum – Priority number set to interrupt controller register.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)

Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ to set.

  • priNum – Priority number set to interrupt controller register.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)

Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The flag which IRQ to clear.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)

Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to provided the primask register for the EnableGlobalIRQ().

Returns:

Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)

Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask. The idea is for the convenience of integration of RTOS. some RTOS get its own management mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlobalIRQ() in pair.

Parameters:
  • primask – value of primask register to be restored. The primask value is supposed to be provided by the DisableGlobalIRQ().

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t newValue)
static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ

Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)

Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)

Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit platforms(such as DSC).

| Unused    || Major Version || Minor Version ||  Bug Fix    |
31        25  24           17  16            9  8            0
ARRAY_SIZE(x)

Computes the number of elements in an array.

UINT64_H(X)

Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)

Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()

For switch case code block, if case section ends without “break;” statement, there wil be fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)

Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)

Convert the register address to the one used in non-secure mode.

Lin_lpuart_driver

FSL_LIN_LPUART_DRIVER_VERSION

LIN LPUART driver version.

enum _lin_lpuart_stop_bit_count

Values:

enumerator kLPUART_OneStopBit

One stop bit

enumerator kLPUART_TwoStopBit

Two stop bits

enum _lin_lpuart_flags

Values:

enumerator kLPUART_TxDataRegEmptyFlag

Transmit data register empty flag, sets when transmit buffer is empty

enumerator kLPUART_TransmissionCompleteFlag

Transmission complete flag, sets when transmission activity complete

enumerator kLPUART_RxDataRegFullFlag

Receive data register full flag, sets when the receive data buffer is full

enumerator kLPUART_IdleLineFlag

Idle line detect flag, sets when idle line detected

enumerator kLPUART_RxOverrunFlag

Receive Overrun, sets when new data is received before data is read from receive register

enumerator kLPUART_NoiseErrorFlag

Receive takes 3 samples of each received bit. If any of these samples differ, noise flag sets

enumerator kLPUART_FramingErrorFlag

Frame error flag, sets if logic 0 was detected where stop bit expected

enumerator kLPUART_ParityErrorFlag

If parity enabled, sets upon parity error detection

enumerator kLPUART_LinBreakFlag

LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit enabled

enumerator kLPUART_RxActiveEdgeFlag

Receive pin active edge interrupt flag, sets when active edge detected

enumerator kLPUART_RxActiveFlag

Receiver Active Flag (RAF), sets at beginning of valid start bit

enumerator kLPUART_DataMatch1Flag

The next character to be read from LPUART_DATA matches MA1

enumerator kLPUART_DataMatch2Flag

The next character to be read from LPUART_DATA matches MA2

enumerator kLPUART_NoiseErrorInRxDataRegFlag

NOISY bit, sets if noise detected in current data word

enumerator kLPUART_ParityErrorInRxDataRegFlag

PARITY bit, sets if noise detected in current data word

enumerator kLPUART_TxFifoEmptyFlag

TXEMPT bit, sets if transmit buffer is empty

enumerator kLPUART_RxFifoEmptyFlag

RXEMPT bit, sets if receive buffer is empty

enumerator kLPUART_TxFifoOverflowFlag

TXOF bit, sets if transmit buffer overflow occurred

enumerator kLPUART_RxFifoUnderflowFlag

RXUF bit, sets if receive buffer underflow occurred

enum _lin_lpuart_interrupt_enable

Values:

enumerator kLPUART_LinBreakInterruptEnable

LIN break detect.

enumerator kLPUART_RxActiveEdgeInterruptEnable

Receive Active Edge.

enumerator kLPUART_TxDataRegEmptyInterruptEnable

Transmit data register empty.

enumerator kLPUART_TransmissionCompleteInterruptEnable

Transmission complete.

enumerator kLPUART_RxDataRegFullInterruptEnable

Receiver data register full.

enumerator kLPUART_IdleLineInterruptEnable

Idle line.

enumerator kLPUART_RxOverrunInterruptEnable

Receiver Overrun.

enumerator kLPUART_NoiseErrorInterruptEnable

Noise error flag.

enumerator kLPUART_FramingErrorInterruptEnable

Framing error flag.

enumerator kLPUART_ParityErrorInterruptEnable

Parity error flag.

enumerator kLPUART_TxFifoOverflowInterruptEnable

Transmit FIFO Overflow.

enumerator kLPUART_RxFifoUnderflowInterruptEnable

Receive FIFO Underflow.

enum _lin_lpuart_status

Values:

enumerator kStatus_LPUART_TxBusy

TX busy

enumerator kStatus_LPUART_RxBusy

RX busy

enumerator kStatus_LPUART_TxIdle

LPUART transmitter is idle.

enumerator kStatus_LPUART_RxIdle

LPUART receiver is idle.

enumerator kStatus_LPUART_TxWatermarkTooLarge

TX FIFO watermark too large

enumerator kStatus_LPUART_RxWatermarkTooLarge

RX FIFO watermark too large

enumerator kStatus_LPUART_FlagCannotClearManually

Some flag can’t manually clear

enumerator kStatus_LPUART_Error

Error happens on LPUART.

enumerator kStatus_LPUART_RxRingBufferOverrun

LPUART RX software ring buffer overrun.

enumerator kStatus_LPUART_RxHardwareOverrun

LPUART RX receiver overrun.

enumerator kStatus_LPUART_NoiseError

LPUART noise error.

enumerator kStatus_LPUART_FramingError

LPUART framing error.

enumerator kStatus_LPUART_ParityError

LPUART parity error.

enum lin_lpuart_bit_count_per_char_t

Values:

enumerator LPUART_8_BITS_PER_CHAR

8-bit data characters

enumerator LPUART_9_BITS_PER_CHAR

9-bit data characters

enumerator LPUART_10_BITS_PER_CHAR

10-bit data characters

typedef enum _lin_lpuart_stop_bit_count lin_lpuart_stop_bit_count_t
static inline bool LIN_LPUART_GetRxDataPolarity(const LPUART_Type *base)
static inline void LIN_LPUART_SetRxDataPolarity(LPUART_Type *base, bool polarity)
static inline void LIN_LPUART_WriteByte(LPUART_Type *base, uint8_t data)
static inline void LIN_LPUART_ReadByte(const LPUART_Type *base, uint8_t *readData)
status_t LIN_LPUART_CalculateBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz, uint32_t *osr, uint16_t *sbr)

Calculates the best osr and sbr value for configured baudrate.

Parameters:
  • base – LPUART peripheral base address

  • baudRate_Bps – user configuration structure of type #lin_user_config_t

  • srcClock_Hz – pointer to the LIN_LPUART driver state structure

  • osr – pointer to osr value

  • sbr – pointer to sbr value

Returns:

An error code or lin_status_t

void LIN_LPUART_SetBaudRate(LPUART_Type *base, uint32_t *osr, uint16_t *sbr)

Configure baudrate according to osr and sbr value.

Parameters:
  • base – LPUART peripheral base address

  • osr – pointer to osr value

  • sbr – pointer to sbr value

lin_status_t LIN_LPUART_Init(LPUART_Type *base, lin_user_config_t *linUserConfig, lin_state_t *linCurrentState, uint32_t linSourceClockFreq)

Initializes an LIN_LPUART instance for LIN Network.

The caller provides memory for the driver state structures during initialization. The user must select the LIN_LPUART clock source in the application to initialize the LIN_LPUART. This function initializes a LPUART instance for operation. This function will initialize the run-time state structure to keep track of the on-going transfers, initialize the module to user defined settings and default settings, set break field length to be 13 bit times minimum, enable the break detect interrupt, Rx complete interrupt, frame error detect interrupt, and enable the LPUART module transmitter and receiver

Parameters:
  • base – LPUART peripheral base address

  • linUserConfig – user configuration structure of type #lin_user_config_t

  • linCurrentState – pointer to the LIN_LPUART driver state structure

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_Deinit(LPUART_Type *base)

Shuts down the LIN_LPUART by disabling interrupts and transmitter/receiver.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_SendFrameDataBlocking(LPUART_Type *base, const uint8_t *txBuff, uint8_t txSize, uint32_t timeoutMSec)

Sends Frame data out through the LIN_LPUART module using blocking method. This function will calculate the checksum byte and send it with the frame data. Blocking means that the function does not return until the transmission is complete.

Parameters:
  • base – LPUART peripheral base address

  • txBuff – source buffer containing 8-bit data chars to send

  • txSize – the number of bytes to send

  • timeoutMSec – timeout value in milli seconds

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_SendFrameData(LPUART_Type *base, const uint8_t *txBuff, uint8_t txSize)

Sends frame data out through the LIN_LPUART module using non-blocking method. This enables an a-sync method for transmitting data. Non-blocking means that the function returns immediately. The application has to get the transmit status to know when the transmit is complete. This function will calculate the checksum byte and send it with the frame data.

Parameters:
  • base – LPUART peripheral base address

  • txBuff – source buffer containing 8-bit data chars to send

  • txSize – the number of bytes to send

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_GetTransmitStatus(LPUART_Type *base, uint8_t *bytesRemaining)

Get status of an on-going non-blocking transmission While sending frame data using non-blocking method, users can use this function to get status of that transmission. This function return LIN_TX_BUSY while sending, or LIN_TIMEOUT if timeout has occurred, or return LIN_SUCCESS when the transmission is complete. The bytesRemaining shows number of bytes that still needed to transmit.

Parameters:
  • base – LPUART peripheral base address

  • bytesRemaining – Number of bytes still needed to transmit

Returns:

lin_status_t LIN_TX_BUSY, LIN_SUCCESS or LIN_TIMEOUT

lin_status_t LIN_LPUART_RecvFrmDataBlocking(LPUART_Type *base, uint8_t *rxBuff, uint8_t rxSize, uint32_t timeoutMSec)

Receives frame data through the LIN_LPUART module using blocking method. This function will check the checksum byte. If the checksum is correct, it will receive the frame data. Blocking means that the function does not return until the reception is complete.

Parameters:
  • base – LPUART peripheral base address

  • rxBuff – buffer containing 8-bit received data

  • rxSize – the number of bytes to receive

  • timeoutMSec – timeout value in milli seconds

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_RecvFrmData(LPUART_Type *base, uint8_t *rxBuff, uint8_t rxSize)

Receives frame data through the LIN_LPUART module using non-blocking method. This function will check the checksum byte. If the checksum is correct, it will receive it with the frame data. Non-blocking means that the function returns immediately. The application has to get the receive status to know when the reception is complete.

Parameters:
  • base – LPUART peripheral base address

  • rxBuff – buffer containing 8-bit received data

  • rxSize – the number of bytes to receive

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_AbortTransferData(LPUART_Type *base)

Aborts an on-going non-blocking transmission/reception. While performing a non-blocking transferring data, users can call this function to terminate immediately the transferring.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_GetReceiveStatus(LPUART_Type *base, uint8_t *bytesRemaining)

Get status of an on-going non-blocking reception While receiving frame data using non-blocking method, users can use this function to get status of that receiving. This function return the current event ID, LIN_RX_BUSY while receiving and return LIN_SUCCESS, or timeout (LIN_TIMEOUT) when the reception is complete. The bytesRemaining shows number of bytes that still needed to receive.

Parameters:
  • base – LPUART peripheral base address

  • bytesRemaining – Number of bytes still needed to receive

Returns:

lin_status_t LIN_RX_BUSY, LIN_TIMEOUT or LIN_SUCCESS

lin_status_t LIN_LPUART_GoToSleepMode(LPUART_Type *base)

This function puts current node to sleep mode This function changes current node state to LIN_NODE_STATE_SLEEP_MODE.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_GotoIdleState(LPUART_Type *base)

Puts current LIN node to Idle state This function changes current node state to LIN_NODE_STATE_IDLE.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_SendWakeupSignal(LPUART_Type *base)

Sends a wakeup signal through the LIN_LPUART interface.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_MasterSendHeader(LPUART_Type *base, uint8_t id)

Sends frame header out through the LIN_LPUART module using a non-blocking method. This function sends LIN Break field, sync field then the ID with correct parity.

Parameters:
  • base – LPUART peripheral base address

  • id – Frame Identifier

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_EnableIRQ(LPUART_Type *base)

Enables LIN_LPUART hardware interrupts.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_DisableIRQ(LPUART_Type *base)

Disables LIN_LPUART hardware interrupts.

Parameters:
  • base – LPUART peripheral base address

Returns:

An error code or lin_status_t

lin_status_t LIN_LPUART_AutoBaudCapture(uint32_t instance)

This function capture bits time to detect break char, calculate baudrate from sync bits and enable transceiver if autobaud successful. This function should only be used in Slave. The timer should be in mode input capture of both rising and falling edges. The timer input capture pin should be externally connected to RXD pin.

Parameters:
  • instance – LPUART instance

Returns:

lin_status_t

void LIN_LPUART_IRQHandler(LPUART_Type *base)

LIN_LPUART RX TX interrupt handler.

Parameters:
  • base – LPUART peripheral base address

Returns:

void

AUTOBAUD_BAUDRATE_TOLERANCE
BIT_RATE_TOLERANCE_UNSYNC
BIT_DURATION_MAX_19200
BIT_DURATION_MIN_19200
BIT_DURATION_MAX_14400
BIT_DURATION_MIN_14400
BIT_DURATION_MAX_9600
BIT_DURATION_MIN_9600
BIT_DURATION_MAX_4800
BIT_DURATION_MIN_4800
BIT_DURATION_MAX_2400
BIT_DURATION_MIN_2400
TWO_BIT_DURATION_MAX_19200
TWO_BIT_DURATION_MIN_19200
TWO_BIT_DURATION_MAX_14400
TWO_BIT_DURATION_MIN_14400
TWO_BIT_DURATION_MAX_9600
TWO_BIT_DURATION_MIN_9600
TWO_BIT_DURATION_MAX_4800
TWO_BIT_DURATION_MIN_4800
TWO_BIT_DURATION_MAX_2400
TWO_BIT_DURATION_MIN_2400
AUTOBAUD_BREAK_TIME_MIN

LLWU: Low-Leakage Wakeup Unit Driver

static inline void LLWU_GetVersionId(LLWU_Type *base, llwu_version_id_t *versionId)

Gets the LLWU version ID.

This function gets the LLWU version ID, including the major version number, the minor version number, and the feature specification number.

Parameters:
  • base – LLWU peripheral base address.

  • versionId – A pointer to the version ID structure.

static inline void LLWU_GetParam(LLWU_Type *base, llwu_param_t *param)

Gets the LLWU parameter.

This function gets the LLWU parameter, including a wakeup pin number, a module number, a DMA number, and a pin filter number.

Parameters:
  • base – LLWU peripheral base address.

  • param – A pointer to the LLWU parameter structure.

void LLWU_SetExternalWakeupPinMode(LLWU_Type *base, uint32_t pinIndex, llwu_external_pin_mode_t pinMode)

Sets the external input pin source mode.

This function sets the external input pin source mode that is used as a wake up source.

Parameters:
  • base – LLWU peripheral base address.

  • pinIndex – A pin index to be enabled as an external wakeup source starting from 1.

  • pinMode – A pin configuration mode defined in the llwu_external_pin_modes_t.

bool LLWU_GetExternalWakeupPinFlag(LLWU_Type *base, uint32_t pinIndex)

Gets the external wakeup source flag.

This function checks the external pin flag to detect whether the MCU is woken up by the specific pin.

Parameters:
  • base – LLWU peripheral base address.

  • pinIndex – A pin index, which starts from 1.

Returns:

True if the specific pin is a wakeup source.

void LLWU_ClearExternalWakeupPinFlag(LLWU_Type *base, uint32_t pinIndex)

Clears the external wakeup source flag.

This function clears the external wakeup source flag for a specific pin.

Parameters:
  • base – LLWU peripheral base address.

  • pinIndex – A pin index, which starts from 1.

static inline void LLWU_EnableInternalModuleInterruptWakup(LLWU_Type *base, uint32_t moduleIndex, bool enable)

Enables/disables the internal module source.

This function enables/disables the internal module source mode that is used as a wake up source.

Parameters:
  • base – LLWU peripheral base address.

  • moduleIndex – A module index to be enabled as an internal wakeup source starting from 1.

  • enable – An enable or a disable setting

static inline void LLWU_EnableInternalModuleDmaRequestWakup(LLWU_Type *base, uint32_t moduleIndex, bool enable)

Enables/disables the internal module DMA wakeup source.

This function enables/disables the internal DMA that is used as a wake up source.

Parameters:
  • base – LLWU peripheral base address.

  • moduleIndex – An internal module index which is used as a DMA request source, starting from 1.

  • enable – Enable or disable the DMA request source

void LLWU_SetPinFilterMode(LLWU_Type *base, uint32_t filterIndex, llwu_external_pin_filter_mode_t filterMode)

Sets the pin filter configuration.

This function sets the pin filter configuration.

Parameters:
  • base – LLWU peripheral base address.

  • filterIndex – A pin filter index used to enable/disable the digital filter, starting from 1.

  • filterMode – A filter mode configuration

bool LLWU_GetPinFilterFlag(LLWU_Type *base, uint32_t filterIndex)

Gets the pin filter configuration.

This function gets the pin filter flag.

Parameters:
  • base – LLWU peripheral base address.

  • filterIndex – A pin filter index, which starts from 1.

Returns:

True if the flag is a source of the existing low-leakage power mode.

void LLWU_ClearPinFilterFlag(LLWU_Type *base, uint32_t filterIndex)

Clears the pin filter configuration.

This function clears the pin filter flag.

Parameters:
  • base – LLWU peripheral base address.

  • filterIndex – A pin filter index to clear the flag, starting from 1.

void LLWU_SetResetPinMode(LLWU_Type *base, bool pinEnable, bool pinFilterEnable)

Sets the reset pin mode.

This function determines how the reset pin is used as a low leakage mode exit source.

Parameters:
  • base – LLWU peripheral base address.

  • pinEnable – Enable reset the pin filter

  • pinFilterEnable – Specify whether the pin filter is enabled in Low-Leakage power mode.

FSL_LLWU_DRIVER_VERSION

LLWU driver version.

enum _llwu_external_pin_mode

External input pin control modes.

Values:

enumerator kLLWU_ExternalPinDisable

Pin disabled as a wakeup input.

enumerator kLLWU_ExternalPinRisingEdge

Pin enabled with the rising edge detection.

enumerator kLLWU_ExternalPinFallingEdge

Pin enabled with the falling edge detection.

enumerator kLLWU_ExternalPinAnyEdge

Pin enabled with any change detection.

enum _llwu_pin_filter_mode

Digital filter control modes.

Values:

enumerator kLLWU_PinFilterDisable

Filter disabled.

enumerator kLLWU_PinFilterRisingEdge

Filter positive edge detection.

enumerator kLLWU_PinFilterFallingEdge

Filter negative edge detection.

enumerator kLLWU_PinFilterAnyEdge

Filter any edge detection.

typedef enum _llwu_external_pin_mode llwu_external_pin_mode_t

External input pin control modes.

typedef enum _llwu_pin_filter_mode llwu_pin_filter_mode_t

Digital filter control modes.

typedef struct _llwu_version_id llwu_version_id_t

IP version ID definition.

typedef struct _llwu_param llwu_param_t

IP parameter definition.

typedef struct _llwu_external_pin_filter_mode llwu_external_pin_filter_mode_t

An external input pin filter control structure.

LLWU_REG_VAL(x)
struct _llwu_version_id
#include <fsl_llwu.h>

IP version ID definition.

Public Members

uint16_t feature

A feature specification number.

uint8_t minor

The minor version number.

uint8_t major

The major version number.

struct _llwu_param
#include <fsl_llwu.h>

IP parameter definition.

Public Members

uint8_t filters

A number of the pin filter.

uint8_t dmas

A number of the wakeup DMA.

uint8_t modules

A number of the wakeup module.

uint8_t pins

A number of the wake up pin.

struct _llwu_external_pin_filter_mode
#include <fsl_llwu.h>

An external input pin filter control structure.

Public Members

uint32_t pinIndex

A pin number

llwu_pin_filter_mode_t filterMode

Filter mode

LPTMR: Low-Power Timer

void LPTMR_Init(LPTMR_Type *base, const lptmr_config_t *config)

Ungates the LPTMR clock and configures the peripheral for a basic operation.

Note

This API should be called at the beginning of the application using the LPTMR driver.

Parameters:
  • base – LPTMR peripheral base address

  • config – A pointer to the LPTMR configuration structure.

void LPTMR_Deinit(LPTMR_Type *base)

Gates the LPTMR clock.

Parameters:
  • base – LPTMR peripheral base address

void LPTMR_GetDefaultConfig(lptmr_config_t *config)

Fills in the LPTMR configuration structure with default settings.

The default values are as follows.

config->timerMode = kLPTMR_TimerModeTimeCounter;
config->pinSelect = kLPTMR_PinSelectInput_0;
config->pinPolarity = kLPTMR_PinPolarityActiveHigh;
config->enableFreeRunning = false;
config->bypassPrescaler = true;
config->prescalerClockSource = kLPTMR_PrescalerClock_1;
config->value = kLPTMR_Prescale_Glitch_0;

Parameters:
  • config – A pointer to the LPTMR configuration structure.

static inline void LPTMR_EnableInterrupts(LPTMR_Type *base, uint32_t mask)

Enables the selected LPTMR interrupts.

Parameters:
  • base – LPTMR peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration lptmr_interrupt_enable_t

static inline void LPTMR_DisableInterrupts(LPTMR_Type *base, uint32_t mask)

Disables the selected LPTMR interrupts.

Parameters:
  • base – LPTMR peripheral base address

  • mask – The interrupts to disable. This is a logical OR of members of the enumeration lptmr_interrupt_enable_t.

static inline uint32_t LPTMR_GetEnabledInterrupts(LPTMR_Type *base)

Gets the enabled LPTMR interrupts.

Parameters:
  • base – LPTMR peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration lptmr_interrupt_enable_t

static inline uint32_t LPTMR_GetStatusFlags(LPTMR_Type *base)

Gets the LPTMR status flags.

Parameters:
  • base – LPTMR peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration lptmr_status_flags_t

static inline void LPTMR_ClearStatusFlags(LPTMR_Type *base, uint32_t mask)

Clears the LPTMR status flags.

Parameters:
  • base – LPTMR peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration lptmr_status_flags_t.

static inline void LPTMR_SetTimerPeriod(LPTMR_Type *base, uint32_t ticks)

Sets the timer period in units of count.

Timers counts from 0 until it equals the count value set here. The count value is written to the CMR register.

Note

  1. The TCF flag is set with the CNR equals the count provided here and then increments.

  2. Call the utility macros provided in the fsl_common.h to convert to ticks.

Parameters:
  • base – LPTMR peripheral base address

  • ticks – A timer period in units of ticks, which should be equal or greater than 1.

static inline uint32_t LPTMR_GetCurrentTimerCount(LPTMR_Type *base)

Reads the current timer counting value.

This function returns the real-time timer counting value in a range from 0 to a timer period.

Note

Call the utility macros provided in the fsl_common.h to convert ticks to usec or msec.

Parameters:
  • base – LPTMR peripheral base address

Returns:

The current counter value in ticks

static inline void LPTMR_StartTimer(LPTMR_Type *base)

Starts the timer.

After calling this function, the timer counts up to the CMR register value. Each time the timer reaches the CMR value and then increments, it generates a trigger pulse and sets the timeout interrupt flag. An interrupt is also triggered if the timer interrupt is enabled.

Parameters:
  • base – LPTMR peripheral base address

static inline void LPTMR_StopTimer(LPTMR_Type *base)

Stops the timer.

This function stops the timer and resets the timer’s counter register.

Parameters:
  • base – LPTMR peripheral base address

FSL_LPTMR_DRIVER_VERSION

Driver Version

enum _lptmr_pin_select

LPTMR pin selection used in pulse counter mode.

Values:

enumerator kLPTMR_PinSelectInput_0

Pulse counter input 0 is selected

enumerator kLPTMR_PinSelectInput_1

Pulse counter input 1 is selected

enumerator kLPTMR_PinSelectInput_2

Pulse counter input 2 is selected

enumerator kLPTMR_PinSelectInput_3

Pulse counter input 3 is selected

enum _lptmr_pin_polarity

LPTMR pin polarity used in pulse counter mode.

Values:

enumerator kLPTMR_PinPolarityActiveHigh

Pulse Counter input source is active-high

enumerator kLPTMR_PinPolarityActiveLow

Pulse Counter input source is active-low

enum _lptmr_timer_mode

LPTMR timer mode selection.

Values:

enumerator kLPTMR_TimerModeTimeCounter

Time Counter mode

enumerator kLPTMR_TimerModePulseCounter

Pulse Counter mode

enum _lptmr_prescaler_glitch_value

LPTMR prescaler/glitch filter values.

Values:

enumerator kLPTMR_Prescale_Glitch_0

Prescaler divide 2, glitch filter does not support this setting

enumerator kLPTMR_Prescale_Glitch_1

Prescaler divide 4, glitch filter 2

enumerator kLPTMR_Prescale_Glitch_2

Prescaler divide 8, glitch filter 4

enumerator kLPTMR_Prescale_Glitch_3

Prescaler divide 16, glitch filter 8

enumerator kLPTMR_Prescale_Glitch_4

Prescaler divide 32, glitch filter 16

enumerator kLPTMR_Prescale_Glitch_5

Prescaler divide 64, glitch filter 32

enumerator kLPTMR_Prescale_Glitch_6

Prescaler divide 128, glitch filter 64

enumerator kLPTMR_Prescale_Glitch_7

Prescaler divide 256, glitch filter 128

enumerator kLPTMR_Prescale_Glitch_8

Prescaler divide 512, glitch filter 256

enumerator kLPTMR_Prescale_Glitch_9

Prescaler divide 1024, glitch filter 512

enumerator kLPTMR_Prescale_Glitch_10

Prescaler divide 2048 glitch filter 1024

enumerator kLPTMR_Prescale_Glitch_11

Prescaler divide 4096, glitch filter 2048

enumerator kLPTMR_Prescale_Glitch_12

Prescaler divide 8192, glitch filter 4096

enumerator kLPTMR_Prescale_Glitch_13

Prescaler divide 16384, glitch filter 8192

enumerator kLPTMR_Prescale_Glitch_14

Prescaler divide 32768, glitch filter 16384

enumerator kLPTMR_Prescale_Glitch_15

Prescaler divide 65536, glitch filter 32768

enum _lptmr_prescaler_clock_select

LPTMR prescaler/glitch filter clock select.

Note

Clock connections are SoC-specific

Values:

enumerator kLPTMR_PrescalerClock_0

Prescaler/glitch filter clock 0 selected.

enumerator kLPTMR_PrescalerClock_1

Prescaler/glitch filter clock 1 selected.

enumerator kLPTMR_PrescalerClock_2

Prescaler/glitch filter clock 2 selected.

enumerator kLPTMR_PrescalerClock_3

Prescaler/glitch filter clock 3 selected.

enum _lptmr_interrupt_enable

List of the LPTMR interrupts.

Values:

enumerator kLPTMR_TimerInterruptEnable

Timer interrupt enable

enum _lptmr_status_flags

List of the LPTMR status flags.

Values:

enumerator kLPTMR_TimerCompareFlag

Timer compare flag

typedef enum _lptmr_pin_select lptmr_pin_select_t

LPTMR pin selection used in pulse counter mode.

typedef enum _lptmr_pin_polarity lptmr_pin_polarity_t

LPTMR pin polarity used in pulse counter mode.

typedef enum _lptmr_timer_mode lptmr_timer_mode_t

LPTMR timer mode selection.

typedef enum _lptmr_prescaler_glitch_value lptmr_prescaler_glitch_value_t

LPTMR prescaler/glitch filter values.

typedef enum _lptmr_prescaler_clock_select lptmr_prescaler_clock_select_t

LPTMR prescaler/glitch filter clock select.

Note

Clock connections are SoC-specific

typedef enum _lptmr_interrupt_enable lptmr_interrupt_enable_t

List of the LPTMR interrupts.

typedef enum _lptmr_status_flags lptmr_status_flags_t

List of the LPTMR status flags.

typedef struct _lptmr_config lptmr_config_t

LPTMR config structure.

This structure holds the configuration settings for the LPTMR peripheral. To initialize this structure to reasonable defaults, call the LPTMR_GetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration struct can be made constant so it resides in flash.

static inline void LPTMR_EnableTimerDMA(LPTMR_Type *base, bool enable)

Enable or disable timer DMA request.

Parameters:
  • base – base LPTMR peripheral base address

  • enable – Switcher of timer DMA feature. “true” means to enable, “false” means to disable.

struct _lptmr_config
#include <fsl_lptmr.h>

LPTMR config structure.

This structure holds the configuration settings for the LPTMR peripheral. To initialize this structure to reasonable defaults, call the LPTMR_GetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration struct can be made constant so it resides in flash.

Public Members

lptmr_timer_mode_t timerMode

Time counter mode or pulse counter mode

lptmr_pin_select_t pinSelect

LPTMR pulse input pin select; used only in pulse counter mode

lptmr_pin_polarity_t pinPolarity

LPTMR pulse input pin polarity; used only in pulse counter mode

bool enableFreeRunning

True: enable free running, counter is reset on overflow False: counter is reset when the compare flag is set

bool bypassPrescaler

True: bypass prescaler; false: use clock from prescaler

lptmr_prescaler_clock_select_t prescalerClockSource

LPTMR clock source

lptmr_prescaler_glitch_value_t value

Prescaler or glitch filter value

LPUART: Low Power Universal Asynchronous Receiver/Transmitter Driver

LPUART Driver

static inline void LPUART_SoftwareReset(LPUART_Type *base)

Resets the LPUART using software.

This function resets all internal logic and registers except the Global Register. Remains set until cleared by software.

Parameters:
  • base – LPUART peripheral base address.

status_t LPUART_Init(LPUART_Type *base, const lpuart_config_t *config, uint32_t srcClock_Hz)

Initializes an LPUART instance with the user configuration structure and the peripheral clock.

This function configures the LPUART module with user-defined settings. Call the LPUART_GetDefaultConfig() function to configure the configuration structure and get the default configuration. The example below shows how to use this API to configure the LPUART.

lpuart_config_t lpuartConfig;
lpuartConfig.baudRate_Bps = 115200U;
lpuartConfig.parityMode = kLPUART_ParityDisabled;
lpuartConfig.dataBitsCount = kLPUART_EightDataBits;
lpuartConfig.isMsb = false;
lpuartConfig.stopBitCount = kLPUART_OneStopBit;
lpuartConfig.txFifoWatermark = 0;
lpuartConfig.rxFifoWatermark = 1;
LPUART_Init(LPUART1, &lpuartConfig, 20000000U);

Parameters:
  • base – LPUART peripheral base address.

  • config – Pointer to a user-defined configuration structure.

  • srcClock_Hz – LPUART clock source frequency in HZ.

Return values:
  • kStatus_LPUART_BaudrateNotSupport – Baudrate is not support in current clock source.

  • kStatus_Success – LPUART initialize succeed

void LPUART_Deinit(LPUART_Type *base)

Deinitializes a LPUART instance.

This function waits for transmit to complete, disables TX and RX, and disables the LPUART clock.

Parameters:
  • base – LPUART peripheral base address.

void LPUART_GetDefaultConfig(lpuart_config_t *config)

Gets the default configuration structure.

This function initializes the LPUART configuration structure to a default value. The default values are: lpuartConfig->baudRate_Bps = 115200U; lpuartConfig->parityMode = kLPUART_ParityDisabled; lpuartConfig->dataBitsCount = kLPUART_EightDataBits; lpuartConfig->isMsb = false; lpuartConfig->stopBitCount = kLPUART_OneStopBit; lpuartConfig->txFifoWatermark = 0; lpuartConfig->rxFifoWatermark = 1; lpuartConfig->rxIdleType = kLPUART_IdleTypeStartBit; lpuartConfig->rxIdleConfig = kLPUART_IdleCharacter1; lpuartConfig->enableTx = false; lpuartConfig->enableRx = false;

Parameters:
  • config – Pointer to a configuration structure.

status_t LPUART_SetBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)

Sets the LPUART instance baudrate.

This function configures the LPUART module baudrate. This function is used to update the LPUART module baudrate after the LPUART module is initialized by the LPUART_Init.

LPUART_SetBaudRate(LPUART1, 115200U, 20000000U);

Parameters:
  • base – LPUART peripheral base address.

  • baudRate_Bps – LPUART baudrate to be set.

  • srcClock_Hz – LPUART clock source frequency in HZ.

Return values:
  • kStatus_LPUART_BaudrateNotSupport – Baudrate is not supported in the current clock source.

  • kStatus_Success – Set baudrate succeeded.

void LPUART_Enable9bitMode(LPUART_Type *base, bool enable)

Enable 9-bit data mode for LPUART.

This function set the 9-bit mode for LPUART module. The 9th bit is not used for parity thus can be modified by user.

Parameters:
  • base – LPUART peripheral base address.

  • enable – true to enable, flase to disable.

static inline void LPUART_SetMatchAddress(LPUART_Type *base, uint16_t address1, uint16_t address2)

Set the LPUART address.

This function configures the address for LPUART module that works as slave in 9-bit data mode. One or two address fields can be configured. When the address field’s match enable bit is set, the frame it receices with MSB being 1 is considered as an address frame, otherwise it is considered as data frame. Once the address frame matches one of slave’s own addresses, this slave is addressed. This address frame and its following data frames are stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave, just send an address frame with unmatched address.

Note

Any LPUART instance joined in the multi-slave system can work as slave. The position of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit data formats.

Parameters:
  • base – LPUART peripheral base address.

  • address1 – LPUART slave address1.

  • address2 – LPUART slave address2.

static inline void LPUART_EnableMatchAddress(LPUART_Type *base, bool match1, bool match2)

Enable the LPUART match address feature.

Parameters:
  • base – LPUART peripheral base address.

  • match1 – true to enable match address1, false to disable.

  • match2 – true to enable match address2, false to disable.

static inline void LPUART_SetRxFifoWatermark(LPUART_Type *base, uint8_t water)

Sets the rx FIFO watermark.

Parameters:
  • base – LPUART peripheral base address.

  • water – Rx FIFO watermark.

static inline void LPUART_SetTxFifoWatermark(LPUART_Type *base, uint8_t water)

Sets the tx FIFO watermark.

Parameters:
  • base – LPUART peripheral base address.

  • water – Tx FIFO watermark.

static inline void LPUART_TransferEnable16Bit(lpuart_handle_t *handle, bool enable)

Sets the LPUART using 16bit transmit, only for 9bit or 10bit mode.

This function Enable 16bit Data transmit in lpuart_handle_t.

Parameters:
  • handle – LPUART handle pointer.

  • enable – true to enable, false to disable.

uint32_t LPUART_GetStatusFlags(LPUART_Type *base)

Gets LPUART status flags.

This function gets all LPUART status flags. The flags are returned as the logical OR value of the enumerators _lpuart_flags. To check for a specific status, compare the return value with enumerators in the _lpuart_flags. For example, to check whether the TX is empty:

if (kLPUART_TxDataRegEmptyFlag & LPUART_GetStatusFlags(LPUART1))
{
    ...
}

Parameters:
  • base – LPUART peripheral base address.

Returns:

LPUART status flags which are ORed by the enumerators in the _lpuart_flags.

status_t LPUART_ClearStatusFlags(LPUART_Type *base, uint32_t mask)

Clears status flags with a provided mask.

This function clears LPUART status flags with a provided mask. Automatically cleared flags can’t be cleared by this function. Flags that can only cleared or set by hardware are: kLPUART_TxDataRegEmptyFlag, kLPUART_TransmissionCompleteFlag, kLPUART_RxDataRegFullFlag, kLPUART_RxActiveFlag, kLPUART_NoiseErrorFlag, kLPUART_ParityErrorFlag, kLPUART_TxFifoEmptyFlag,kLPUART_RxFifoEmptyFlag Note: This API should be called when the Tx/Rx is idle, otherwise it takes no effects.

Parameters:
  • base – LPUART peripheral base address.

  • mask – the status flags to be cleared. The user can use the enumerators in the _lpuart_status_flag_t to do the OR operation and get the mask.

Return values:
  • kStatus_LPUART_FlagCannotClearManually – The flag can’t be cleared by this function but it is cleared automatically by hardware.

  • kStatus_Success – Status in the mask are cleared.

Returns:

0 succeed, others failed.

void LPUART_EnableInterrupts(LPUART_Type *base, uint32_t mask)

Enables LPUART interrupts according to a provided mask.

This function enables the LPUART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See the _lpuart_interrupt_enable. This examples shows how to enable TX empty interrupt and RX full interrupt:

LPUART_EnableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);

Parameters:
  • base – LPUART peripheral base address.

  • mask – The interrupts to enable. Logical OR of _lpuart_interrupt_enable.

void LPUART_DisableInterrupts(LPUART_Type *base, uint32_t mask)

Disables LPUART interrupts according to a provided mask.

This function disables the LPUART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See _lpuart_interrupt_enable. This example shows how to disable the TX empty interrupt and RX full interrupt:

LPUART_DisableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);

Parameters:
  • base – LPUART peripheral base address.

  • mask – The interrupts to disable. Logical OR of _lpuart_interrupt_enable.

uint32_t LPUART_GetEnabledInterrupts(LPUART_Type *base)

Gets enabled LPUART interrupts.

This function gets the enabled LPUART interrupts. The enabled interrupts are returned as the logical OR value of the enumerators _lpuart_interrupt_enable. To check a specific interrupt enable status, compare the return value with enumerators in _lpuart_interrupt_enable. For example, to check whether the TX empty interrupt is enabled:

uint32_t enabledInterrupts = LPUART_GetEnabledInterrupts(LPUART1);

if (kLPUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)
{
    ...
}

Parameters:
  • base – LPUART peripheral base address.

Returns:

LPUART interrupt flags which are logical OR of the enumerators in _lpuart_interrupt_enable.

static inline uintptr_t LPUART_GetDataRegisterAddress(LPUART_Type *base)

Gets the LPUART data register address.

This function returns the LPUART data register address, which is mainly used by the DMA/eDMA.

Parameters:
  • base – LPUART peripheral base address.

Returns:

LPUART data register addresses which are used both by the transmitter and receiver.

static inline void LPUART_EnableTxDMA(LPUART_Type *base, bool enable)

Enables or disables the LPUART transmitter DMA request.

This function enables or disables the transmit data register empty flag, STAT[TDRE], to generate DMA requests.

Parameters:
  • base – LPUART peripheral base address.

  • enable – True to enable, false to disable.

static inline void LPUART_EnableRxDMA(LPUART_Type *base, bool enable)

Enables or disables the LPUART receiver DMA.

This function enables or disables the receiver data register full flag, STAT[RDRF], to generate DMA requests.

Parameters:
  • base – LPUART peripheral base address.

  • enable – True to enable, false to disable.

uint32_t LPUART_GetInstance(LPUART_Type *base)

Get the LPUART instance from peripheral base address.

Parameters:
  • base – LPUART peripheral base address.

Returns:

LPUART instance.

static inline void LPUART_EnableTx(LPUART_Type *base, bool enable)

Enables or disables the LPUART transmitter.

This function enables or disables the LPUART transmitter.

Parameters:
  • base – LPUART peripheral base address.

  • enable – True to enable, false to disable.

static inline void LPUART_EnableRx(LPUART_Type *base, bool enable)

Enables or disables the LPUART receiver.

This function enables or disables the LPUART receiver.

Parameters:
  • base – LPUART peripheral base address.

  • enable – True to enable, false to disable.

static inline void LPUART_WriteByte(LPUART_Type *base, uint8_t data)

Writes to the transmitter register.

This function writes data to the transmitter register directly. The upper layer must ensure that the TX register is empty or that the TX FIFO has room before calling this function.

Parameters:
  • base – LPUART peripheral base address.

  • data – Data write to the TX register.

static inline uint8_t LPUART_ReadByte(LPUART_Type *base)

Reads the receiver register.

This function reads data from the receiver register directly. The upper layer must ensure that the receiver register is full or that the RX FIFO has data before calling this function.

Parameters:
  • base – LPUART peripheral base address.

Returns:

Data read from data register.

static inline uint8_t LPUART_GetRxFifoCount(LPUART_Type *base)

Gets the rx FIFO data count.

Parameters:
  • base – LPUART peripheral base address.

Returns:

rx FIFO data count.

static inline uint8_t LPUART_GetTxFifoCount(LPUART_Type *base)

Gets the tx FIFO data count.

Parameters:
  • base – LPUART peripheral base address.

Returns:

tx FIFO data count.

void LPUART_SendAddress(LPUART_Type *base, uint8_t address)

Transmit an address frame in 9-bit data mode.

Parameters:
  • base – LPUART peripheral base address.

  • address – LPUART slave address.

status_t LPUART_WriteBlocking(LPUART_Type *base, const uint8_t *data, size_t length)

Writes to the transmitter register using a blocking method.

This function polls the transmitter register, first waits for the register to be empty or TX FIFO to have room, and writes data to the transmitter buffer, then waits for the dat to be sent out to the bus.

Parameters:
  • base – LPUART peripheral base address.

  • data – Start address of the data to write.

  • length – Size of the data to write.

Return values:
  • kStatus_LPUART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully wrote all data.

status_t LPUART_WriteBlocking16bit(LPUART_Type *base, const uint16_t *data, size_t length)

Writes to the transmitter register using a blocking method in 9bit or 10bit mode.

Note

This function only support 9bit or 10bit transfer. Please make sure only 10bit of data is valid and other bits are 0.

Parameters:
  • base – LPUART peripheral base address.

  • data – Start address of the data to write.

  • length – Size of the data to write.

Return values:
  • kStatus_LPUART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully wrote all data.

status_t LPUART_ReadBlocking(LPUART_Type *base, uint8_t *data, size_t length)

Reads the receiver data register using a blocking method.

This function polls the receiver register, waits for the receiver register full or receiver FIFO has data, and reads data from the TX register.

Parameters:
  • base – LPUART peripheral base address.

  • data – Start address of the buffer to store the received data.

  • length – Size of the buffer.

Return values:
  • kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened while receiving data.

  • kStatus_LPUART_NoiseError – Noise error happened while receiving data.

  • kStatus_LPUART_FramingError – Framing error happened while receiving data.

  • kStatus_LPUART_ParityError – Parity error happened while receiving data.

  • kStatus_LPUART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully received all data.

status_t LPUART_ReadBlocking16bit(LPUART_Type *base, uint16_t *data, size_t length)

Reads the receiver data register in 9bit or 10bit mode.

Note

This function only support 9bit or 10bit transfer.

Parameters:
  • base – LPUART peripheral base address.

  • data – Start address of the buffer to store the received data by 16bit, only 10bit is valid.

  • length – Size of the buffer.

Return values:
  • kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened while receiving data.

  • kStatus_LPUART_NoiseError – Noise error happened while receiving data.

  • kStatus_LPUART_FramingError – Framing error happened while receiving data.

  • kStatus_LPUART_ParityError – Parity error happened while receiving data.

  • kStatus_LPUART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully received all data.

void LPUART_TransferCreateHandle(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_callback_t callback, void *userData)

Initializes the LPUART handle.

This function initializes the LPUART handle, which can be used for other LPUART transactional APIs. Usually, for a specified LPUART instance, call this API once to get the initialized handle.

The LPUART driver supports the “background” receiving, which means that user can set up an RX ring buffer optionally. Data received is stored into the ring buffer even when the user doesn’t call the LPUART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly. The ring buffer is disabled if passing NULL as ringBuffer.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • callback – Callback function.

  • userData – User data.

status_t LPUART_TransferSendNonBlocking(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function send data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data written to the transmitter register. When all data is written to the TX register in the ISR, the LPUART driver calls the callback function and passes the kStatus_LPUART_TxIdle as status parameter.

Note

The kStatus_LPUART_TxIdle is passed to the upper layer when all data are written to the TX register. However, there is no check to ensure that all the data sent out. Before disabling the TX, check the kLPUART_TransmissionCompleteFlag to ensure that the transmit is finished.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • xfer – LPUART transfer structure, see lpuart_transfer_t.

Return values:
  • kStatus_Success – Successfully start the data transmission.

  • kStatus_LPUART_TxBusy – Previous transmission still not finished, data not all written to the TX register.

  • kStatus_InvalidArgument – Invalid argument.

void LPUART_TransferStartRingBuffer(LPUART_Type *base, lpuart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific UART handle.

When the RX ring buffer is used, data received is stored into the ring buffer even when the user doesn’t call the UART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly.

Note

When using RX ring buffer, one byte is reserved for internal use. In other words, if ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • ringBuffer – Start address of ring buffer for background receiving. Pass NULL to disable the ring buffer.

  • ringBufferSize – size of the ring buffer.

void LPUART_TransferStopRingBuffer(LPUART_Type *base, lpuart_handle_t *handle)

Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

size_t LPUART_TransferGetRxRingBufferLength(LPUART_Type *base, lpuart_handle_t *handle)

Get the length of received data in RX ring buffer.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

Returns:

Length of received data in RX ring buffer.

void LPUART_TransferAbortSend(LPUART_Type *base, lpuart_handle_t *handle)

Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out how many bytes are not sent out.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

status_t LPUART_TransferGetSendCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)

Gets the number of bytes that have been sent out to bus.

This function gets the number of bytes that have been sent out to bus by an interrupt method.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • count – Send bytes count.

Return values:
  • kStatus_NoTransferInProgress – No send in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

status_t LPUART_TransferReceiveNonBlocking(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using the interrupt method.

This function receives data using an interrupt method. This is a non-blocking function which returns without waiting to ensure that all data are received. If the RX ring buffer is used and not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is not enough for read, the receive request is saved by the LPUART driver. When the new data arrives, the receive request is serviced first. When all data is received, the LPUART driver notifies the upper layer through a callback function and passes a status parameter kStatus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in ring buffer. The 5 bytes are copied to xfer->data, which returns with the parameter receivedBytes set to 5. For the remaining 5 bytes, the newly arrived data is saved from xfer->data[5]. When 5 bytes are received, the LPUART driver notifies the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to xfer->data. When all data is received, the upper layer is notified.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • xfer – LPUART transfer structure, see uart_transfer_t.

  • receivedBytes – Bytes received from the ring buffer directly.

Return values:
  • kStatus_Success – Successfully queue the transfer into the transmit queue.

  • kStatus_LPUART_RxBusy – Previous receive request is not finished.

  • kStatus_InvalidArgument – Invalid argument.

void LPUART_TransferAbortReceive(LPUART_Type *base, lpuart_handle_t *handle)

Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out how many bytes not received yet.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

status_t LPUART_TransferGetReceiveCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)

Gets the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters:
  • base – LPUART peripheral base address.

  • handle – LPUART handle pointer.

  • count – Receive bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

void LPUART_TransferHandleIRQ(LPUART_Type *base, void *irqHandle)

LPUART IRQ handle function.

This function handles the LPUART transmit and receive IRQ request.

Parameters:
  • base – LPUART peripheral base address.

  • irqHandle – LPUART handle pointer.

void LPUART_TransferHandleErrorIRQ(LPUART_Type *base, void *irqHandle)

LPUART Error IRQ handle function.

This function handles the LPUART error IRQ request.

Parameters:
  • base – LPUART peripheral base address.

  • irqHandle – LPUART handle pointer.

FSL_LPUART_DRIVER_VERSION

LPUART driver version.

Error codes for the LPUART driver.

Values:

enumerator kStatus_LPUART_TxBusy

TX busy

enumerator kStatus_LPUART_RxBusy

RX busy

enumerator kStatus_LPUART_TxIdle

LPUART transmitter is idle.

enumerator kStatus_LPUART_RxIdle

LPUART receiver is idle.

enumerator kStatus_LPUART_TxWatermarkTooLarge

TX FIFO watermark too large

enumerator kStatus_LPUART_RxWatermarkTooLarge

RX FIFO watermark too large

enumerator kStatus_LPUART_FlagCannotClearManually

Some flag can’t manually clear

enumerator kStatus_LPUART_Error

Error happens on LPUART.

enumerator kStatus_LPUART_RxRingBufferOverrun

LPUART RX software ring buffer overrun.

enumerator kStatus_LPUART_RxHardwareOverrun

LPUART RX receiver overrun.

enumerator kStatus_LPUART_NoiseError

LPUART noise error.

enumerator kStatus_LPUART_FramingError

LPUART framing error.

enumerator kStatus_LPUART_ParityError

LPUART parity error.

enumerator kStatus_LPUART_BaudrateNotSupport

Baudrate is not support in current clock source

enumerator kStatus_LPUART_IdleLineDetected

IDLE flag.

enumerator kStatus_LPUART_Timeout

LPUART times out.

enum _lpuart_parity_mode

LPUART parity mode.

Values:

enumerator kLPUART_ParityDisabled

Parity disabled

enumerator kLPUART_ParityEven

Parity enabled, type even, bit setting: PE|PT = 10

enumerator kLPUART_ParityOdd

Parity enabled, type odd, bit setting: PE|PT = 11

enum _lpuart_data_bits

LPUART data bits count.

Values:

enumerator kLPUART_EightDataBits

Eight data bit

enumerator kLPUART_SevenDataBits

Seven data bit

enum _lpuart_stop_bit_count

LPUART stop bit count.

Values:

enumerator kLPUART_OneStopBit

One stop bit

enumerator kLPUART_TwoStopBit

Two stop bits

enum _lpuart_transmit_cts_source

LPUART transmit CTS source.

Values:

enumerator kLPUART_CtsSourcePin

CTS resource is the LPUART_CTS pin.

enumerator kLPUART_CtsSourceMatchResult

CTS resource is the match result.

enum _lpuart_transmit_cts_config

LPUART transmit CTS configure.

Values:

enumerator kLPUART_CtsSampleAtStart

CTS input is sampled at the start of each character.

enumerator kLPUART_CtsSampleAtIdle

CTS input is sampled when the transmitter is idle

enum _lpuart_idle_type_select

LPUART idle flag type defines when the receiver starts counting.

Values:

enumerator kLPUART_IdleTypeStartBit

Start counting after a valid start bit.

enumerator kLPUART_IdleTypeStopBit

Start counting after a stop bit.

enum _lpuart_idle_config

LPUART idle detected configuration. This structure defines the number of idle characters that must be received before the IDLE flag is set.

Values:

enumerator kLPUART_IdleCharacter1

the number of idle characters.

enumerator kLPUART_IdleCharacter2

the number of idle characters.

enumerator kLPUART_IdleCharacter4

the number of idle characters.

enumerator kLPUART_IdleCharacter8

the number of idle characters.

enumerator kLPUART_IdleCharacter16

the number of idle characters.

enumerator kLPUART_IdleCharacter32

the number of idle characters.

enumerator kLPUART_IdleCharacter64

the number of idle characters.

enumerator kLPUART_IdleCharacter128

the number of idle characters.

enum _lpuart_interrupt_enable

LPUART interrupt configuration structure, default settings all disabled.

This structure contains the settings for all LPUART interrupt configurations.

Values:

enumerator kLPUART_LinBreakInterruptEnable

LIN break detect. bit 7

enumerator kLPUART_RxActiveEdgeInterruptEnable

Receive Active Edge. bit 6

enumerator kLPUART_TxDataRegEmptyInterruptEnable

Transmit data register empty. bit 23

enumerator kLPUART_TransmissionCompleteInterruptEnable

Transmission complete. bit 22

enumerator kLPUART_RxDataRegFullInterruptEnable

Receiver data register full. bit 21

enumerator kLPUART_IdleLineInterruptEnable

Idle line. bit 20

enumerator kLPUART_RxOverrunInterruptEnable

Receiver Overrun. bit 27

enumerator kLPUART_NoiseErrorInterruptEnable

Noise error flag. bit 26

enumerator kLPUART_FramingErrorInterruptEnable

Framing error flag. bit 25

enumerator kLPUART_ParityErrorInterruptEnable

Parity error flag. bit 24

enumerator kLPUART_Match1InterruptEnable

Parity error flag. bit 15

enumerator kLPUART_Match2InterruptEnable

Parity error flag. bit 14

enumerator kLPUART_TxFifoOverflowInterruptEnable

Transmit FIFO Overflow. bit 9

enumerator kLPUART_RxFifoUnderflowInterruptEnable

Receive FIFO Underflow. bit 8

enumerator kLPUART_AllInterruptEnable
enum _lpuart_flags

LPUART status flags.

This provides constants for the LPUART status flags for use in the LPUART functions.

Values:

enumerator kLPUART_TxDataRegEmptyFlag

Transmit data register empty flag, sets when transmit buffer is empty. bit 23

enumerator kLPUART_TransmissionCompleteFlag

Transmission complete flag, sets when transmission activity complete. bit 22

enumerator kLPUART_RxDataRegFullFlag

Receive data register full flag, sets when the receive data buffer is full. bit 21

enumerator kLPUART_IdleLineFlag

Idle line detect flag, sets when idle line detected. bit 20

enumerator kLPUART_RxOverrunFlag

Receive Overrun, sets when new data is received before data is read from receive register. bit 19

enumerator kLPUART_NoiseErrorFlag

Receive takes 3 samples of each received bit. If any of these samples differ, noise flag sets. bit 18

enumerator kLPUART_FramingErrorFlag

Frame error flag, sets if logic 0 was detected where stop bit expected. bit 17

enumerator kLPUART_ParityErrorFlag

If parity enabled, sets upon parity error detection. bit 16

enumerator kLPUART_LinBreakFlag

LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit enabled. bit 31

enumerator kLPUART_RxActiveEdgeFlag

Receive pin active edge interrupt flag, sets when active edge detected. bit 30

enumerator kLPUART_RxActiveFlag

Receiver Active Flag (RAF), sets at beginning of valid start. bit 24

enumerator kLPUART_DataMatch1Flag

The next character to be read from LPUART_DATA matches MA1. bit 15

enumerator kLPUART_DataMatch2Flag

The next character to be read from LPUART_DATA matches MA2. bit 14

enumerator kLPUART_TxFifoEmptyFlag

TXEMPT bit, sets if transmit buffer is empty. bit 7

enumerator kLPUART_RxFifoEmptyFlag

RXEMPT bit, sets if receive buffer is empty. bit 6

enumerator kLPUART_TxFifoOverflowFlag

TXOF bit, sets if transmit buffer overflow occurred. bit 1

enumerator kLPUART_RxFifoUnderflowFlag

RXUF bit, sets if receive buffer underflow occurred. bit 0

enumerator kLPUART_AllClearFlags
enumerator kLPUART_AllFlags
typedef enum _lpuart_parity_mode lpuart_parity_mode_t

LPUART parity mode.

typedef enum _lpuart_data_bits lpuart_data_bits_t

LPUART data bits count.

typedef enum _lpuart_stop_bit_count lpuart_stop_bit_count_t

LPUART stop bit count.

typedef enum _lpuart_transmit_cts_source lpuart_transmit_cts_source_t

LPUART transmit CTS source.

typedef enum _lpuart_transmit_cts_config lpuart_transmit_cts_config_t

LPUART transmit CTS configure.

typedef enum _lpuart_idle_type_select lpuart_idle_type_select_t

LPUART idle flag type defines when the receiver starts counting.

typedef enum _lpuart_idle_config lpuart_idle_config_t

LPUART idle detected configuration. This structure defines the number of idle characters that must be received before the IDLE flag is set.

typedef struct _lpuart_config lpuart_config_t

LPUART configuration structure.

typedef struct _lpuart_transfer lpuart_transfer_t

LPUART transfer structure.

typedef struct _lpuart_handle lpuart_handle_t
typedef void (*lpuart_transfer_callback_t)(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *userData)

LPUART transfer callback function.

typedef void (*lpuart_isr_t)(LPUART_Type *base, void *handle)
void *s_lpuartHandle[]
const IRQn_Type s_lpuartTxIRQ[]
lpuart_isr_t s_lpuartIsr[]
UART_RETRY_TIMES

Retry times for waiting flag.

struct _lpuart_config
#include <fsl_lpuart.h>

LPUART configuration structure.

Public Members

uint32_t baudRate_Bps

LPUART baud rate

lpuart_parity_mode_t parityMode

Parity mode, disabled (default), even, odd

lpuart_data_bits_t dataBitsCount

Data bits count, eight (default), seven

bool isMsb

Data bits order, LSB (default), MSB

lpuart_stop_bit_count_t stopBitCount

Number of stop bits, 1 stop bit (default) or 2 stop bits

uint8_t txFifoWatermark

TX FIFO watermark

uint8_t rxFifoWatermark

RX FIFO watermark

bool enableRxRTS

RX RTS enable

bool enableTxCTS

TX CTS enable

lpuart_transmit_cts_source_t txCtsSource

TX CTS source

lpuart_transmit_cts_config_t txCtsConfig

TX CTS configure

lpuart_idle_type_select_t rxIdleType

RX IDLE type.

lpuart_idle_config_t rxIdleConfig

RX IDLE configuration.

bool enableTx

Enable TX

bool enableRx

Enable RX

struct _lpuart_transfer
#include <fsl_lpuart.h>

LPUART transfer structure.

Public Members

size_t dataSize

The byte count to be transfer.

struct _lpuart_handle
#include <fsl_lpuart.h>

LPUART handle structure.

Public Members

volatile size_t txDataSize

Size of the remaining data to send.

size_t txDataSizeAll

Size of the data to send out.

volatile size_t rxDataSize

Size of the remaining data to receive.

size_t rxDataSizeAll

Size of the data to receive.

size_t rxRingBufferSize

Size of the ring buffer.

volatile uint16_t rxRingBufferHead

Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail

Index for the user to get data from the ring buffer.

lpuart_transfer_callback_t callback

Callback function.

void *userData

LPUART callback function parameter.

volatile uint8_t txState

TX transfer state.

volatile uint8_t rxState

RX transfer state.

bool isSevenDataBits

Seven data bits flag.

bool is16bitData

16bit data bits flag, only used for 9bit or 10bit data

union __unnamed13__

Public Members

uint8_t *data

The buffer of data to be transfer.

uint8_t *rxData

The buffer to receive data.

uint16_t *rxData16

The buffer to receive data.

const uint8_t *txData

The buffer of data to be sent.

const uint16_t *txData16

The buffer of data to be sent.

union __unnamed15__

Public Members

const uint8_t *volatile txData

Address of remaining data to send.

const uint16_t *volatile txData16

Address of remaining data to send.

union __unnamed17__

Public Members

uint8_t *volatile rxData

Address of remaining data to receive.

uint16_t *volatile rxData16

Address of remaining data to receive.

union __unnamed19__

Public Members

uint8_t *rxRingBuffer

Start address of the receiver ring buffer.

uint16_t *rxRingBuffer16

Start address of the receiver ring buffer.

MCM: Miscellaneous Control Module

FSL_MCM_DRIVER_VERSION

MCM driver version.

Enum _mcm_interrupt_flag. Interrupt status flag mask. .

Values:

enumerator kMCM_CacheWriteBuffer

Cache Write Buffer Error Enable.

enumerator kMCM_ParityError

Cache Parity Error Enable.

enumerator kMCM_FPUInvalidOperation

FPU Invalid Operation Interrupt Enable.

enumerator kMCM_FPUDivideByZero

FPU Divide-by-zero Interrupt Enable.

enumerator kMCM_FPUOverflow

FPU Overflow Interrupt Enable.

enumerator kMCM_FPUUnderflow

FPU Underflow Interrupt Enable.

enumerator kMCM_FPUInexact

FPU Inexact Interrupt Enable.

enumerator kMCM_FPUInputDenormalInterrupt

FPU Input Denormal Interrupt Enable.

typedef union _mcm_buffer_fault_attribute mcm_buffer_fault_attribute_t

The union of buffer fault attribute.

typedef union _mcm_lmem_fault_attribute mcm_lmem_fault_attribute_t

The union of LMEM fault attribute.

static inline void MCM_EnableCrossbarRoundRobin(MCM_Type *base, bool enable)

Enables/Disables crossbar round robin.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable crossbar round robin.

    • true Enable crossbar round robin.

    • false disable crossbar round robin.

static inline void MCM_EnableInterruptStatus(MCM_Type *base, uint32_t mask)

Enables the interrupt.

Parameters:
  • base – MCM peripheral base address.

  • mask – Interrupt status flags mask(_mcm_interrupt_flag).

static inline void MCM_DisableInterruptStatus(MCM_Type *base, uint32_t mask)

Disables the interrupt.

Parameters:
  • base – MCM peripheral base address.

  • mask – Interrupt status flags mask(_mcm_interrupt_flag).

static inline uint16_t MCM_GetInterruptStatus(MCM_Type *base)

Gets the Interrupt status .

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_ClearCacheWriteBufferErroStatus(MCM_Type *base)

Clears the Interrupt status .

Parameters:
  • base – MCM peripheral base address.

static inline uint32_t MCM_GetBufferFaultAddress(MCM_Type *base)

Gets buffer fault address.

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_GetBufferFaultAttribute(MCM_Type *base, mcm_buffer_fault_attribute_t *bufferfault)

Gets buffer fault attributes.

Parameters:
  • base – MCM peripheral base address.

static inline uint32_t MCM_GetBufferFaultData(MCM_Type *base)

Gets buffer fault data.

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_LimitCodeCachePeripheralWriteBuffering(MCM_Type *base, bool enable)

Limit code cache peripheral write buffering.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable limit code cache peripheral write buffering.

    • true Enable limit code cache peripheral write buffering.

    • false disable limit code cache peripheral write buffering.

static inline void MCM_BypassFixedCodeCacheMap(MCM_Type *base, bool enable)

Bypass fixed code cache map.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable bypass fixed code cache map.

    • true Enable bypass fixed code cache map.

    • false disable bypass fixed code cache map.

static inline void MCM_EnableCodeBusCache(MCM_Type *base, bool enable)

Enables/Disables code bus cache.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to disable/enable code bus cache.

    • true Enable code bus cache.

    • false disable code bus cache.

static inline void MCM_ForceCodeCacheToNoAllocation(MCM_Type *base, bool enable)

Force code cache to no allocation.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to force code cache to allocation or no allocation.

    • true Force code cache to no allocation.

    • false Force code cache to allocation.

static inline void MCM_EnableCodeCacheWriteBuffer(MCM_Type *base, bool enable)

Enables/Disables code cache write buffer.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable code cache write buffer.

    • true Enable code cache write buffer.

    • false Disable code cache write buffer.

static inline void MCM_ClearCodeBusCache(MCM_Type *base)

Clear code bus cache.

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_EnablePcParityFaultReport(MCM_Type *base, bool enable)

Enables/Disables PC Parity Fault Report.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable PC Parity Fault Report.

    • true Enable PC Parity Fault Report.

    • false disable PC Parity Fault Report.

static inline void MCM_EnablePcParity(MCM_Type *base, bool enable)

Enables/Disables PC Parity.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable PC Parity.

    • true Enable PC Parity.

    • false disable PC Parity.

static inline void MCM_LockConfigState(MCM_Type *base)

Lock the configuration state.

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_EnableCacheParityReporting(MCM_Type *base, bool enable)

Enables/Disables cache parity reporting.

Parameters:
  • base – MCM peripheral base address.

  • enable – Used to enable/disable cache parity reporting.

    • true Enable cache parity reporting.

    • false disable cache parity reporting.

static inline uint32_t MCM_GetLmemFaultAddress(MCM_Type *base)

Gets LMEM fault address.

Parameters:
  • base – MCM peripheral base address.

static inline void MCM_GetLmemFaultAttribute(MCM_Type *base, mcm_lmem_fault_attribute_t *lmemFault)

Get LMEM fault attributes.

Parameters:
  • base – MCM peripheral base address.

static inline uint64_t MCM_GetLmemFaultData(MCM_Type *base)

Gets LMEM fault data.

Parameters:
  • base – MCM peripheral base address.

MCM_LMFATR_TYPE_MASK
MCM_LMFATR_MODE_MASK
MCM_LMFATR_BUFF_MASK
MCM_LMFATR_CACH_MASK
MCM_ISCR_STAT_MASK
MCM_ISCR_CPEE_MASK
FSL_COMPONENT_ID
union _mcm_buffer_fault_attribute
#include <fsl_mcm.h>

The union of buffer fault attribute.

Public Members

uint32_t attribute

Indicates the faulting attributes, when a properly-enabled cache write buffer error interrupt event is detected.

struct _mcm_buffer_fault_attribute._mcm_buffer_fault_attribut attribute_memory
struct _mcm_buffer_fault_attribut
#include <fsl_mcm.h>

Public Members

uint32_t busErrorDataAccessType

Indicates the type of cache write buffer access.

uint32_t busErrorPrivilegeLevel

Indicates the privilege level of the cache write buffer access.

uint32_t busErrorSize

Indicates the size of the cache write buffer access.

uint32_t busErrorAccess

Indicates the type of system bus access.

uint32_t busErrorMasterID

Indicates the crossbar switch bus master number of the captured cache write buffer bus error.

uint32_t busErrorOverrun

Indicates if another cache write buffer bus error is detected.

union _mcm_lmem_fault_attribute
#include <fsl_mcm.h>

The union of LMEM fault attribute.

Public Members

uint32_t attribute

Indicates the attributes of the LMEM fault detected.

struct _mcm_lmem_fault_attribute._mcm_lmem_fault_attribut attribute_memory
struct _mcm_lmem_fault_attribut
#include <fsl_mcm.h>

Public Members

uint32_t parityFaultProtectionSignal

Indicates the features of parity fault protection signal.

uint32_t parityFaultMasterSize

Indicates the parity fault master size.

uint32_t parityFaultWrite

Indicates the parity fault is caused by read or write.

uint32_t backdoorAccess

Indicates the LMEM access fault is initiated by core access or backdoor access.

uint32_t parityFaultSyndrome

Indicates the parity fault syndrome.

uint32_t overrun

Indicates the number of faultss.

PMC: Power Management Controller

static inline void PMC_GetVersionId(PMC_Type *base, pmc_version_id_t *versionId)

Gets the PMC version ID.

This function gets the PMC version ID, including major version number, minor version number, and a feature specification number.

Parameters:
  • base – PMC peripheral base address.

  • versionId – Pointer to version ID structure.

void PMC_GetParam(PMC_Type *base, pmc_param_t *param)

Gets the PMC parameter.

This function gets the PMC parameter including the VLPO enable and the HVD enable.

Parameters:
  • base – PMC peripheral base address.

  • param – Pointer to PMC param structure.

void PMC_ConfigureLowVoltDetect(PMC_Type *base, const pmc_low_volt_detect_config_t *config)

Configures the low-voltage detect setting.

This function configures the low-voltage detect setting, including the trip point voltage setting, enables or disables the interrupt, enables or disables the system reset.

Parameters:
  • base – PMC peripheral base address.

  • config – Low-voltage detect configuration structure.

static inline bool PMC_GetLowVoltDetectFlag(PMC_Type *base)

Gets the Low-voltage Detect Flag status.

This function reads the current LVDF status. If it returns 1, a low-voltage event is detected.

Parameters:
  • base – PMC peripheral base address.

Returns:

Current low-voltage detect flag

  • true: Low-voltage detected

  • false: Low-voltage not detected

static inline void PMC_ClearLowVoltDetectFlag(PMC_Type *base)

Acknowledges clearing the Low-voltage Detect flag.

This function acknowledges the low-voltage detection errors (write 1 to clear LVDF).

Parameters:
  • base – PMC peripheral base address.

void PMC_ConfigureLowVoltWarning(PMC_Type *base, const pmc_low_volt_warning_config_t *config)

Configures the low-voltage warning setting.

This function configures the low-voltage warning setting, including the trip point voltage setting and enabling or disabling the interrupt.

Parameters:
  • base – PMC peripheral base address.

  • config – Low-voltage warning configuration structure.

static inline bool PMC_GetLowVoltWarningFlag(PMC_Type *base)

Gets the Low-voltage Warning Flag status.

This function polls the current LVWF status. When 1 is returned, it indicates a low-voltage warning event. LVWF is set when V Supply transitions below the trip point or after reset and V Supply is already below the V LVW.

Parameters:
  • base – PMC peripheral base address.

Returns:

Current LVWF status

  • true: Low-voltage Warning Flag is set.

  • false: the Low-voltage Warning does not happen.

static inline void PMC_ClearLowVoltWarningFlag(PMC_Type *base)

Acknowledges the Low-voltage Warning flag.

This function acknowledges the low voltage warning errors (write 1 to clear LVWF).

Parameters:
  • base – PMC peripheral base address.

void PMC_ConfigureHighVoltDetect(PMC_Type *base, const pmc_high_volt_detect_config_t *config)

Configures the high-voltage detect setting.

This function configures the high-voltage detect setting, including the trip point voltage setting, enabling or disabling the interrupt, enabling or disabling the system reset.

Parameters:
  • base – PMC peripheral base address.

  • config – High-voltage detect configuration structure.

static inline bool PMC_GetHighVoltDetectFlag(PMC_Type *base)

Gets the High-voltage Detect Flag status.

This function reads the current HVDF status. If it returns 1, a low voltage event is detected.

Parameters:
  • base – PMC peripheral base address.

Returns:

Current high-voltage detect flag

  • true: High-voltage detected

  • false: High-voltage not detected

static inline void PMC_ClearHighVoltDetectFlag(PMC_Type *base)

Acknowledges clearing the High-voltage Detect flag.

This function acknowledges the high-voltage detection errors (write 1 to clear HVDF).

Parameters:
  • base – PMC peripheral base address.

void PMC_ConfigureBandgapBuffer(PMC_Type *base, const pmc_bandgap_buffer_config_t *config)

Configures the PMC bandgap.

This function configures the PMC bandgap, including the drive select and behavior in low-power mode.

Parameters:
  • base – PMC peripheral base address.

  • config – Pointer to the configuration structure

static inline bool PMC_GetPeriphIOIsolationFlag(PMC_Type *base)

Gets the acknowledge Peripherals and I/O pads isolation flag.

This function reads the Acknowledge Isolation setting that indicates whether certain peripherals and the I/O pads are in a latched state as a result of having been in the VLLS mode.

Parameters:
  • base – PMC peripheral base address.

  • base – Base address for current PMC instance.

Returns:

ACK isolation 0 - Peripherals and I/O pads are in a normal run state. 1 - Certain peripherals and I/O pads are in an isolated and latched state.

static inline void PMC_ClearPeriphIOIsolationFlag(PMC_Type *base)

Acknowledges the isolation flag to Peripherals and I/O pads.

This function clears the ACK Isolation flag. Writing one to this setting when it is set releases the I/O pads and certain peripherals to their normal run mode state.

Parameters:
  • base – PMC peripheral base address.

static inline bool PMC_IsRegulatorInRunRegulation(PMC_Type *base)

Gets the regulator regulation status.

This function returns the regulator to run a regulation status. It provides the current status of the internal voltage regulator.

Parameters:
  • base – PMC peripheral base address.

  • base – Base address for current PMC instance.

Returns:

Regulation status 0 - Regulator is in a stop regulation or in transition to/from the regulation. 1 - Regulator is in a run regulation.

FSL_PMC_DRIVER_VERSION

PMC driver version.

Version 2.0.3.

enum _pmc_low_volt_detect_volt_select

Low-voltage Detect Voltage Select.

Values:

enumerator kPMC_LowVoltDetectLowTrip

Low-trip point selected (VLVD = VLVDL )

enumerator kPMC_LowVoltDetectHighTrip

High-trip point selected (VLVD = VLVDH )

enum _pmc_low_volt_warning_volt_select

Low-voltage Warning Voltage Select.

Values:

enumerator kPMC_LowVoltWarningLowTrip

Low-trip point selected (VLVW = VLVW1)

enumerator kPMC_LowVoltWarningMid1Trip

Mid 1 trip point selected (VLVW = VLVW2)

enumerator kPMC_LowVoltWarningMid2Trip

Mid 2 trip point selected (VLVW = VLVW3)

enumerator kPMC_LowVoltWarningHighTrip

High-trip point selected (VLVW = VLVW4)

enum _pmc_high_volt_detect_volt_select

High-voltage Detect Voltage Select.

Values:

enumerator kPMC_HighVoltDetectLowTrip

Low-trip point selected (VHVD = VHVDL )

enumerator kPMC_HighVoltDetectHighTrip

High-trip point selected (VHVD = VHVDH )

enum _pmc_bandgap_buffer_drive_select

Bandgap Buffer Drive Select.

Values:

enumerator kPMC_BandgapBufferDriveLow

Low-drive.

enumerator kPMC_BandgapBufferDriveHigh

High-drive.

enum _pmc_vlp_freq_option

VLPx Option.

Values:

enumerator kPMC_FreqRestrict

Frequency is restricted in VLPx mode.

enumerator kPMC_FreqUnrestrict

Frequency is unrestricted in VLPx mode.

typedef enum _pmc_low_volt_detect_volt_select pmc_low_volt_detect_volt_select_t

Low-voltage Detect Voltage Select.

typedef enum _pmc_low_volt_warning_volt_select pmc_low_volt_warning_volt_select_t

Low-voltage Warning Voltage Select.

typedef enum _pmc_high_volt_detect_volt_select pmc_high_volt_detect_volt_select_t

High-voltage Detect Voltage Select.

typedef enum _pmc_bandgap_buffer_drive_select pmc_bandgap_buffer_drive_select_t

Bandgap Buffer Drive Select.

typedef enum _pmc_vlp_freq_option pmc_vlp_freq_mode_t

VLPx Option.

typedef struct _pmc_version_id pmc_version_id_t

IP version ID definition.

typedef struct _pmc_param pmc_param_t

IP parameter definition.

typedef struct _pmc_low_volt_detect_config pmc_low_volt_detect_config_t

Low-voltage Detect Configuration Structure.

typedef struct _pmc_low_volt_warning_config pmc_low_volt_warning_config_t

Low-voltage Warning Configuration Structure.

typedef struct _pmc_high_volt_detect_config pmc_high_volt_detect_config_t

High-voltage Detect Configuration Structure.

typedef struct _pmc_bandgap_buffer_config pmc_bandgap_buffer_config_t

Bandgap Buffer configuration.

struct _pmc_version_id
#include <fsl_pmc.h>

IP version ID definition.

Public Members

uint16_t feature

Feature Specification Number.

uint8_t minor

Minor version number.

uint8_t major

Major version number.

struct _pmc_param
#include <fsl_pmc.h>

IP parameter definition.

Public Members

bool vlpoEnable

VLPO enable.

bool hvdEnable

HVD enable.

struct _pmc_low_volt_detect_config
#include <fsl_pmc.h>

Low-voltage Detect Configuration Structure.

Public Members

bool enableInt

Enable interrupt when Low-voltage detect

bool enableReset

Enable system reset when Low-voltage detect

pmc_low_volt_detect_volt_select_t voltSelect

Low-voltage detect trip point voltage selection

struct _pmc_low_volt_warning_config
#include <fsl_pmc.h>

Low-voltage Warning Configuration Structure.

Public Members

bool enableInt

Enable interrupt when low-voltage warning

pmc_low_volt_warning_volt_select_t voltSelect

Low-voltage warning trip point voltage selection

struct _pmc_high_volt_detect_config
#include <fsl_pmc.h>

High-voltage Detect Configuration Structure.

Public Members

bool enableInt

Enable interrupt when high-voltage detect

bool enableReset

Enable system reset when high-voltage detect

pmc_high_volt_detect_volt_select_t voltSelect

High-voltage detect trip point voltage selection

struct _pmc_bandgap_buffer_config
#include <fsl_pmc.h>

Bandgap Buffer configuration.

Public Members

bool enable

Enable bandgap buffer.

bool enableInLowPowerMode

Enable bandgap buffer in low-power mode.

pmc_bandgap_buffer_drive_select_t drive

Bandgap buffer drive select.

PORT: Port Control and Interrupts

static inline void PORT_SetPinConfig(PORT_Type *base, uint32_t pin, const port_pin_config_t *config)

Sets the port PCR register.

This is an example to define an input pin or output pin PCR configuration.

// Define a digital input pin PCR configuration
port_pin_config_t config = {
     kPORT_PullUp,
     kPORT_FastSlewRate,
     kPORT_PassiveFilterDisable,
     kPORT_OpenDrainDisable,
     kPORT_LowDriveStrength,
     kPORT_MuxAsGpio,
     kPORT_UnLockRegister,
};

Parameters:
  • base – PORT peripheral base pointer.

  • pin – PORT pin number.

  • config – PORT PCR register configuration structure.

static inline void PORT_SetMultiplePinsConfig(PORT_Type *base, uint32_t mask, const port_pin_config_t *config)

Sets the port PCR register for multiple pins.

This is an example to define input pins or output pins PCR configuration.

Define a digital input pin PCR configuration
port_pin_config_t config = {
     kPORT_PullUp ,
     kPORT_PullEnable,
     kPORT_FastSlewRate,
     kPORT_PassiveFilterDisable,
     kPORT_OpenDrainDisable,
     kPORT_LowDriveStrength,
     kPORT_MuxAsGpio,
     kPORT_UnlockRegister,
};

Parameters:
  • base – PORT peripheral base pointer.

  • mask – PORT pin number macro.

  • config – PORT PCR register configuration structure.

static inline void PORT_SetMultipleInterruptPinsConfig(PORT_Type *base, uint32_t mask, port_interrupt_t config)

Sets the port interrupt configuration in PCR register for multiple pins.

Parameters:
  • base – PORT peripheral base pointer.

  • mask – PORT pin number macro.

  • config – PORT pin interrupt configuration.

    • kPORT_InterruptOrDMADisabled: Interrupt/DMA request disabled.

    • kPORT_DMARisingEdge : DMA request on rising edge(if the DMA requests exit).

    • kPORT_DMAFallingEdge: DMA request on falling edge(if the DMA requests exit).

    • kPORT_DMAEitherEdge : DMA request on either edge(if the DMA requests exit).

    • kPORT_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).

    • kPORT_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).

    • kPORT_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).

    • kPORT_InterruptLogicZero : Interrupt when logic zero.

    • kPORT_InterruptRisingEdge : Interrupt on rising edge.

    • kPORT_InterruptFallingEdge: Interrupt on falling edge.

    • kPORT_InterruptEitherEdge : Interrupt on either edge.

    • kPORT_InterruptLogicOne : Interrupt when logic one.

    • kPORT_ActiveHighTriggerOutputEnable : Enable active high-trigger output (if the trigger states exit).

    • kPORT_ActiveLowTriggerOutputEnable : Enable active low-trigger output (if the trigger states exit)..

static inline void PORT_SetPinMux(PORT_Type *base, uint32_t pin, port_mux_t mux)

Configures the pin muxing.

Note

: This function is NOT recommended to use together with the PORT_SetPinsConfig, because the PORT_SetPinsConfig need to configure the pin mux anyway (Otherwise the pin mux is reset to zero : kPORT_PinDisabledOrAnalog). This function is recommended to use to reset the pin mux

Parameters:
  • base – PORT peripheral base pointer.

  • pin – PORT pin number.

  • mux – pin muxing slot selection.

    • kPORT_PinDisabledOrAnalog: Pin disabled or work in analog function.

    • kPORT_MuxAsGpio : Set as GPIO.

    • kPORT_MuxAlt2 : chip-specific.

    • kPORT_MuxAlt3 : chip-specific.

    • kPORT_MuxAlt4 : chip-specific.

    • kPORT_MuxAlt5 : chip-specific.

    • kPORT_MuxAlt6 : chip-specific.

    • kPORT_MuxAlt7 : chip-specific.

static inline void PORT_EnablePinsDigitalFilter(PORT_Type *base, uint32_t mask, bool enable)

Enables the digital filter in one port, each bit of the 32-bit register represents one pin.

Parameters:
  • base – PORT peripheral base pointer.

  • mask – PORT pin number macro.

  • enable – PORT digital filter configuration.

static inline void PORT_SetDigitalFilterConfig(PORT_Type *base, const port_digital_filter_config_t *config)

Sets the digital filter in one port, each bit of the 32-bit register represents one pin.

Parameters:
  • base – PORT peripheral base pointer.

  • config – PORT digital filter configuration structure.

static inline void PORT_SetPinInterruptConfig(PORT_Type *base, uint32_t pin, port_interrupt_t config)

Configures the port pin interrupt/DMA request.

Parameters:
  • base – PORT peripheral base pointer.

  • pin – PORT pin number.

  • config – PORT pin interrupt configuration.

    • kPORT_InterruptOrDMADisabled: Interrupt/DMA request disabled.

    • kPORT_DMARisingEdge : DMA request on rising edge(if the DMA requests exit).

    • kPORT_DMAFallingEdge: DMA request on falling edge(if the DMA requests exit).

    • kPORT_DMAEitherEdge : DMA request on either edge(if the DMA requests exit).

    • kPORT_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).

    • kPORT_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).

    • kPORT_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).

    • kPORT_InterruptLogicZero : Interrupt when logic zero.

    • kPORT_InterruptRisingEdge : Interrupt on rising edge.

    • kPORT_InterruptFallingEdge: Interrupt on falling edge.

    • kPORT_InterruptEitherEdge : Interrupt on either edge.

    • kPORT_InterruptLogicOne : Interrupt when logic one.

    • kPORT_ActiveHighTriggerOutputEnable : Enable active high-trigger output (if the trigger states exit).

    • kPORT_ActiveLowTriggerOutputEnable : Enable active low-trigger output (if the trigger states exit).

static inline void PORT_SetPinDriveStrength(PORT_Type *base, uint32_t pin, uint8_t strength)

Configures the port pin drive strength.

Parameters:
  • base – PORT peripheral base pointer.

  • pin – PORT pin number.

  • strength – PORT pin drive strength

    • kPORT_LowDriveStrength = 0U - Low-drive strength is configured.

    • kPORT_HighDriveStrength = 1U - High-drive strength is configured.

static inline uint32_t PORT_GetPinsInterruptFlags(PORT_Type *base)

Reads the whole port status flag.

If a pin is configured to generate the DMA request, the corresponding flag is cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic one is written to that flag. If configured for a level sensitive interrupt that remains asserted, the flag is set again immediately.

Parameters:
  • base – PORT peripheral base pointer.

Returns:

Current port interrupt status flags, for example, 0x00010001 means the pin 0 and 16 have the interrupt.

static inline void PORT_ClearPinsInterruptFlags(PORT_Type *base, uint32_t mask)

Clears the multiple pin interrupt status flag.

Parameters:
  • base – PORT peripheral base pointer.

  • mask – PORT pin number macro.

FSL_PORT_DRIVER_VERSION

PORT driver version.

enum _port_pull

Internal resistor pull feature selection.

Values:

enumerator kPORT_PullDisable

Internal pull-up/down resistor is disabled.

enumerator kPORT_PullDown

Internal pull-down resistor is enabled.

enumerator kPORT_PullUp

Internal pull-up resistor is enabled.

enum _port_slew_rate

Slew rate selection.

Values:

enumerator kPORT_FastSlewRate

Fast slew rate is configured.

enumerator kPORT_SlowSlewRate

Slow slew rate is configured.

enum _port_open_drain_enable

Open Drain feature enable/disable.

Values:

enumerator kPORT_OpenDrainDisable

Open drain output is disabled.

enumerator kPORT_OpenDrainEnable

Open drain output is enabled.

enum _port_passive_filter_enable

Passive filter feature enable/disable.

Values:

enumerator kPORT_PassiveFilterDisable

Passive input filter is disabled.

enumerator kPORT_PassiveFilterEnable

Passive input filter is enabled.

enum _port_drive_strength

Configures the drive strength.

Values:

enumerator kPORT_LowDriveStrength

Low-drive strength is configured.

enumerator kPORT_HighDriveStrength

High-drive strength is configured.

enum _port_lock_register

Unlock/lock the pin control register field[15:0].

Values:

enumerator kPORT_UnlockRegister

Pin Control Register fields [15:0] are not locked.

enumerator kPORT_LockRegister

Pin Control Register fields [15:0] are locked.

enum _port_mux

Pin mux selection.

Values:

enumerator kPORT_PinDisabledOrAnalog

Corresponding pin is disabled, but is used as an analog pin.

enumerator kPORT_MuxAsGpio

Corresponding pin is configured as GPIO.

enumerator kPORT_MuxAlt0

Chip-specific

enumerator kPORT_MuxAlt1

Chip-specific

enumerator kPORT_MuxAlt2

Chip-specific

enumerator kPORT_MuxAlt3

Chip-specific

enumerator kPORT_MuxAlt4

Chip-specific

enumerator kPORT_MuxAlt5

Chip-specific

enumerator kPORT_MuxAlt6

Chip-specific

enumerator kPORT_MuxAlt7

Chip-specific

enumerator kPORT_MuxAlt8

Chip-specific

enumerator kPORT_MuxAlt9

Chip-specific

enumerator kPORT_MuxAlt10

Chip-specific

enumerator kPORT_MuxAlt11

Chip-specific

enumerator kPORT_MuxAlt12

Chip-specific

enumerator kPORT_MuxAlt13

Chip-specific

enumerator kPORT_MuxAlt14

Chip-specific

enumerator kPORT_MuxAlt15

Chip-specific

enum _port_interrupt

Configures the interrupt generation condition.

Values:

enumerator kPORT_InterruptOrDMADisabled

Interrupt/DMA request is disabled.

enumerator kPORT_DMARisingEdge

DMA request on rising edge.

enumerator kPORT_DMAFallingEdge

DMA request on falling edge.

enumerator kPORT_DMAEitherEdge

DMA request on either edge.

enumerator kPORT_FlagRisingEdge

Flag sets on rising edge.

enumerator kPORT_FlagFallingEdge

Flag sets on falling edge.

enumerator kPORT_FlagEitherEdge

Flag sets on either edge.

enumerator kPORT_InterruptLogicZero

Interrupt when logic zero.

enumerator kPORT_InterruptRisingEdge

Interrupt on rising edge.

enumerator kPORT_InterruptFallingEdge

Interrupt on falling edge.

enumerator kPORT_InterruptEitherEdge

Interrupt on either edge.

enumerator kPORT_InterruptLogicOne

Interrupt when logic one.

enumerator kPORT_ActiveHighTriggerOutputEnable

Enable active high-trigger output.

enumerator kPORT_ActiveLowTriggerOutputEnable

Enable active low-trigger output.

enum _port_digital_filter_clock_source

Digital filter clock source selection.

Values:

enumerator kPORT_BusClock

Digital filters are clocked by the bus clock.

enumerator kPORT_LpoClock

Digital filters are clocked by the 1 kHz LPO clock.

typedef enum _port_mux port_mux_t

Pin mux selection.

typedef enum _port_interrupt port_interrupt_t

Configures the interrupt generation condition.

typedef enum _port_digital_filter_clock_source port_digital_filter_clock_source_t

Digital filter clock source selection.

typedef struct _port_digital_filter_config port_digital_filter_config_t

PORT digital filter feature configuration definition.

typedef struct _port_pin_config port_pin_config_t

PORT pin configuration structure.

FSL_COMPONENT_ID
struct _port_digital_filter_config
#include <fsl_port.h>

PORT digital filter feature configuration definition.

Public Members

uint32_t digitalFilterWidth

Set digital filter width

port_digital_filter_clock_source_t clockSource

Set digital filter clockSource

struct _port_pin_config
#include <fsl_port.h>

PORT pin configuration structure.

Public Members

uint16_t pullSelect

No-pull/pull-down/pull-up select

uint16_t slewRate

Fast/slow slew rate Configure

uint16_t passiveFilterEnable

Passive filter enable/disable

uint16_t openDrainEnable

Open drain enable/disable

uint16_t driveStrength

Fast/slow drive strength configure

uint16_t lockRegister

Lock/unlock the PCR field[15:0]

RCM: Reset Control Module Driver

static inline void RCM_GetVersionId(RCM_Type *base, rcm_version_id_t *versionId)

Gets the RCM version ID.

This function gets the RCM version ID including the major version number, the minor version number, and the feature specification number.

Parameters:
  • base – RCM peripheral base address.

  • versionId – Pointer to the version ID structure.

static inline uint32_t RCM_GetResetSourceImplementedStatus(RCM_Type *base)

Gets the reset source implemented status.

This function gets the RCM parameter that indicates whether the corresponding reset source is implemented. Use source masks defined in the rcm_reset_source_t to get the desired source status.

This is an example.

uint32_t status;

To test whether the MCU is reset using Watchdog.
status = RCM_GetResetSourceImplementedStatus(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);

Parameters:
  • base – RCM peripheral base address.

Returns:

All reset source implemented status bit map.

static inline uint32_t RCM_GetPreviousResetSources(RCM_Type *base)

Gets the reset source status which caused a previous reset.

This function gets the current reset source status. Use source masks defined in the rcm_reset_source_t to get the desired source status.

This is an example.

uint32_t resetStatus;

To get all reset source statuses.
resetStatus = RCM_GetPreviousResetSources(RCM) & kRCM_SourceAll;

To test whether the MCU is reset using Watchdog.
resetStatus = RCM_GetPreviousResetSources(RCM) & kRCM_SourceWdog;

To test multiple reset sources.
resetStatus = RCM_GetPreviousResetSources(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);

Parameters:
  • base – RCM peripheral base address.

Returns:

All reset source status bit map.

static inline uint32_t RCM_GetStickyResetSources(RCM_Type *base)

Gets the sticky reset source status.

This function gets the current reset source status that has not been cleared by software for a specific source.

This is an example.

uint32_t resetStatus;

To get all reset source statuses.
resetStatus = RCM_GetStickyResetSources(RCM) & kRCM_SourceAll;

To test whether the MCU is reset using Watchdog.
resetStatus = RCM_GetStickyResetSources(RCM) & kRCM_SourceWdog;

To test multiple reset sources.
resetStatus = RCM_GetStickyResetSources(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);

Parameters:
  • base – RCM peripheral base address.

Returns:

All reset source status bit map.

static inline void RCM_ClearStickyResetSources(RCM_Type *base, uint32_t sourceMasks)

Clears the sticky reset source status.

This function clears the sticky system reset flags indicated by source masks.

This is an example.

Clears multiple reset sources.
RCM_ClearStickyResetSources(kRCM_SourceWdog | kRCM_SourcePin);

Parameters:
  • base – RCM peripheral base address.

  • sourceMasks – reset source status bit map

void RCM_ConfigureResetPinFilter(RCM_Type *base, const rcm_reset_pin_filter_config_t *config)

Configures the reset pin filter.

This function sets the reset pin filter including the filter source, filter width, and so on.

Parameters:
  • base – RCM peripheral base address.

  • config – Pointer to the configuration structure.

static inline bool RCM_GetEasyPortModePinStatus(RCM_Type *base)

Gets the EZP_MS_B pin assert status.

This function gets the easy port mode status (EZP_MS_B) pin assert status.

Parameters:
  • base – RCM peripheral base address.

Returns:

status true - asserted, false - reasserted

static inline rcm_boot_rom_config_t RCM_GetBootRomSource(RCM_Type *base)

Gets the ROM boot source.

This function gets the ROM boot source during the last chip reset.

Parameters:
  • base – RCM peripheral base address.

Returns:

The ROM boot source.

static inline void RCM_ClearBootRomSource(RCM_Type *base)

Clears the ROM boot source flag.

This function clears the ROM boot source flag.

Parameters:
  • base – Register base address of RCM

void RCM_SetForceBootRomSource(RCM_Type *base, rcm_boot_rom_config_t config)

Forces the boot from ROM.

This function forces booting from ROM during all subsequent system resets.

Parameters:
  • base – RCM peripheral base address.

  • config – Boot configuration.

static inline void RCM_SetSystemResetInterruptConfig(RCM_Type *base, uint32_t intMask, rcm_reset_delay_t delay)

Sets the system reset interrupt configuration.

For a graceful shut down, the RCM supports delaying the assertion of the system reset for a period of time when the reset interrupt is generated. This function can be used to enable the interrupt and the delay period. The interrupts are passed in as bit mask. See rcm_int_t for details. For example, to delay a reset for 512 LPO cycles after the WDOG timeout or loss-of-clock occurs, configure as follows: RCM_SetSystemResetInterruptConfig(kRCM_IntWatchDog | kRCM_IntLossOfClk, kRCM_ResetDelay512Lpo);

Parameters:
  • base – RCM peripheral base address.

  • intMask – Bit mask of the system reset interrupts to enable. See rcm_interrupt_enable_t for details.

  • delay – Bit mask of the system reset interrupts to enable.

FSL_RCM_DRIVER_VERSION

RCM driver version 2.0.4.

enum _rcm_reset_source

System Reset Source Name definitions.

Values:

enumerator kRCM_SourceWakeup

Low-leakage wakeup reset

enumerator kRCM_SourceLvd

Low-voltage detect reset

enumerator kRCM_SourceLoc

Loss of clock reset

enumerator kRCM_SourceLol

Loss of lock reset

enumerator kRCM_SourceWdog

Watchdog reset

enumerator kRCM_SourcePin

External pin reset

enumerator kRCM_SourcePor

Power on reset

enumerator kRCM_SourceJtag

JTAG generated reset

enumerator kRCM_SourceLockup

Core lock up reset

enumerator kRCM_SourceSw

Software reset

enumerator kRCM_SourceMdmap

MDM-AP system reset

enumerator kRCM_SourceEzpt

EzPort reset

enumerator kRCM_SourceSackerr

Parameter could get all reset flags

enumerator kRCM_SourceAll
enum _rcm_run_wait_filter_mode

Reset pin filter select in Run and Wait modes.

Values:

enumerator kRCM_FilterDisable

All filtering disabled

enumerator kRCM_FilterBusClock

Bus clock filter enabled

enumerator kRCM_FilterLpoClock

LPO clock filter enabled

enum _rcm_boot_rom_config

Boot from ROM configuration.

Values:

enumerator kRCM_BootFlash

Boot from flash

enumerator kRCM_BootRomCfg0

Boot from boot ROM due to BOOTCFG0

enumerator kRCM_BootRomFopt

Boot from boot ROM due to FOPT[7]

enumerator kRCM_BootRomBoth

Boot from boot ROM due to both BOOTCFG0 and FOPT[7]

enum _rcm_reset_delay

Maximum delay time from interrupt asserts to system reset.

Values:

enumerator kRCM_ResetDelay8Lpo

Delay 8 LPO cycles.

enumerator kRCM_ResetDelay32Lpo

Delay 32 LPO cycles.

enumerator kRCM_ResetDelay128Lpo

Delay 128 LPO cycles.

enumerator kRCM_ResetDelay512Lpo

Delay 512 LPO cycles.

enum _rcm_interrupt_enable

System reset interrupt enable bit definitions.

Values:

enumerator kRCM_IntNone

No interrupt enabled.

enumerator kRCM_IntLossOfClk

Loss of clock interrupt.

enumerator kRCM_IntLossOfLock

Loss of lock interrupt.

enumerator kRCM_IntWatchDog

Watch dog interrupt.

enumerator kRCM_IntExternalPin

External pin interrupt.

enumerator kRCM_IntGlobal

Global interrupts.

enumerator kRCM_IntCoreLockup

Core lock up interrupt

enumerator kRCM_IntSoftware

software interrupt

enumerator kRCM_IntStopModeAckErr

Stop mode ACK error interrupt.

enumerator kRCM_IntCore1

Core 1 interrupt.

enumerator kRCM_IntAll

Enable all interrupts.

typedef enum _rcm_reset_source rcm_reset_source_t

System Reset Source Name definitions.

typedef enum _rcm_run_wait_filter_mode rcm_run_wait_filter_mode_t

Reset pin filter select in Run and Wait modes.

typedef enum _rcm_boot_rom_config rcm_boot_rom_config_t

Boot from ROM configuration.

typedef enum _rcm_reset_delay rcm_reset_delay_t

Maximum delay time from interrupt asserts to system reset.

typedef enum _rcm_interrupt_enable rcm_interrupt_enable_t

System reset interrupt enable bit definitions.

typedef struct _rcm_version_id rcm_version_id_t

IP version ID definition.

typedef struct _rcm_reset_pin_filter_config rcm_reset_pin_filter_config_t

Reset pin filter configuration.

struct _rcm_version_id
#include <fsl_rcm.h>

IP version ID definition.

Public Members

uint16_t feature

Feature Specification Number.

uint8_t minor

Minor version number.

uint8_t major

Major version number.

struct _rcm_reset_pin_filter_config
#include <fsl_rcm.h>

Reset pin filter configuration.

Public Members

bool enableFilterInStop

Reset pin filter select in stop mode.

rcm_run_wait_filter_mode_t filterInRunWait

Reset pin filter in run/wait mode.

uint8_t busClockFilterCount

Reset pin bus clock filter width.

RTC: Real Time Clock

void RTC_Init(RTC_Type *base, const rtc_config_t *config)

Ungates the RTC clock and configures the peripheral for basic operation.

This function issues a software reset if the timer invalid flag is set.

Note

This API should be called at the beginning of the application using the RTC driver.

Parameters:
  • base – RTC peripheral base address

  • config – Pointer to the user’s RTC configuration structure.

static inline void RTC_Deinit(RTC_Type *base)

Stops the timer and gate the RTC clock.

Parameters:
  • base – RTC peripheral base address

void RTC_GetDefaultConfig(rtc_config_t *config)

Fills in the RTC config struct with the default settings.

The default values are as follows.

config->wakeupSelect = false;
config->updateMode = false;
config->supervisorAccess = false;
config->compensationInterval = 0;
config->compensationTime = 0;

Parameters:
  • config – Pointer to the user’s RTC configuration structure.

status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)

Sets the RTC date and time according to the given time structure.

The RTC counter must be stopped prior to calling this function because writes to the RTC seconds register fail if the RTC counter is running.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to the structure where the date and time details are stored.

Returns:

kStatus_Success: Success in setting the time and starting the RTC kStatus_InvalidArgument: Error because the datetime format is incorrect

void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)

Gets the RTC time and stores it in the given time structure.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to the structure where the date and time details are stored.

status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)

Sets the RTC alarm time.

The function checks whether the specified alarm time is greater than the present time. If not, the function does not set the alarm and returns an error.

Parameters:
  • base – RTC peripheral base address

  • alarmTime – Pointer to the structure where the alarm time is stored.

Returns:

kStatus_Success: success in setting the RTC alarm kStatus_InvalidArgument: Error because the alarm datetime format is incorrect kStatus_Fail: Error because the alarm time has already passed

void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)

Returns the RTC alarm time.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to the structure where the alarm date and time details are stored.

void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)

Enables the selected RTC interrupts.

Parameters:
  • base – RTC peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t

void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)

Disables the selected RTC interrupts.

Parameters:
  • base – RTC peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t

uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)

Gets the enabled RTC interrupts.

Parameters:
  • base – RTC peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration rtc_interrupt_enable_t

uint32_t RTC_GetStatusFlags(RTC_Type *base)

Gets the RTC status flags.

Parameters:
  • base – RTC peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration rtc_status_flags_t

void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)

Clears the RTC status flags.

Parameters:
  • base – RTC peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration rtc_status_flags_t

static inline void RTC_EnableOscillatorClock(RTC_Type *base, bool enable)

Enable/Disable RTC 32kHz Oscillator clock.

Note

After setting this bit, wait the oscillator startup time before enabling the time counter to allow the 32.768 kHz clock time to stabilize.

Parameters:
  • base – RTC peripheral base address

  • enable – Enable/Disable RTC 32.768 kHz clock

static inline void RTC_SetClockSource(RTC_Type *base)

Set RTC clock source.

Deprecated:

Do not use this function. It has been superceded by RTC_EnableOscillatorClock

Note

After setting this bit, wait the oscillator startup time before enabling the time counter to allow the 32.768 kHz clock time to stabilize.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_EnableLPOClock(RTC_Type *base, bool enable)

Enable/Disable RTC 1kHz LPO clock.

Note

After setting this bit, RTC prescaler increments using the LPO 1kHz clock and not the RTC 32kHz crystal clock.

Parameters:
  • base – RTC peripheral base address

  • enable – Enable/Disable RTC 1kHz LPO clock

static inline void RTC_StartTimer(RTC_Type *base)

Starts the RTC time counter.

After calling this function, the timer counter increments once a second provided SR[TOF] or SR[TIF] are not set.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_StopTimer(RTC_Type *base)

Stops the RTC time counter.

RTC’s seconds register can be written to only when the timer is stopped.

Parameters:
  • base – RTC peripheral base address

void RTC_GetMonotonicCounter(RTC_Type *base, uint64_t *counter)

Reads the values of the Monotonic Counter High and Monotonic Counter Low and returns them as a single value.

Parameters:
  • base – RTC peripheral base address

  • counter – Pointer to variable where the value is stored.

void RTC_SetMonotonicCounter(RTC_Type *base, uint64_t counter)

Writes values Monotonic Counter High and Monotonic Counter Low by decomposing the given single value. The Monotonic Overflow Flag in RTC_SR is cleared due to the API.

Parameters:
  • base – RTC peripheral base address

  • counter – Counter value

status_t RTC_IncrementMonotonicCounter(RTC_Type *base)

Increments the Monotonic Counter by one.

Increments the Monotonic Counter (registers RTC_MCLR and RTC_MCHR accordingly) by setting the monotonic counter enable (MER[MCE]) and then writing to the RTC_MCLR register. A write to the monotonic counter low that causes it to overflow also increments the monotonic counter high.

Parameters:
  • base – RTC peripheral base address

Returns:

kStatus_Success: success kStatus_Fail: error occurred, either time invalid or monotonic overflow flag was found

FSL_RTC_DRIVER_VERSION

Version 2.3.0

enum _rtc_interrupt_enable

List of RTC interrupts.

Values:

enumerator kRTC_TimeInvalidInterruptEnable

Time invalid interrupt.

enumerator kRTC_TimeOverflowInterruptEnable

Time overflow interrupt.

enumerator kRTC_AlarmInterruptEnable

Alarm interrupt.

enumerator kRTC_MonotonicOverflowInterruptEnable

Monotonic Overflow Interrupt Enable

enumerator kRTC_SecondsInterruptEnable

Seconds interrupt.

enumerator kRTC_TestModeInterruptEnable
enumerator kRTC_FlashSecurityInterruptEnable
enumerator kRTC_TamperPinInterruptEnable
enumerator kRTC_SecurityModuleInterruptEnable
enumerator kRTC_LossOfClockInterruptEnable
enum _rtc_status_flags

List of RTC flags.

Values:

enumerator kRTC_TimeInvalidFlag

Time invalid flag

enumerator kRTC_TimeOverflowFlag

Time overflow flag

enumerator kRTC_AlarmFlag

Alarm flag

enumerator kRTC_MonotonicOverflowFlag

Monotonic Overflow Flag

enumerator kRTC_TamperInterruptDetectFlag

Tamper interrupt detect flag

enumerator kRTC_TestModeFlag
enumerator kRTC_FlashSecurityFlag
enumerator kRTC_TamperPinFlag
enumerator kRTC_SecurityTamperFlag
enumerator kRTC_LossOfClockTamperFlag
enum _rtc_osc_cap_load

List of RTC Oscillator capacitor load settings.

Values:

enumerator kRTC_Capacitor_2p

2 pF capacitor load

enumerator kRTC_Capacitor_4p

4 pF capacitor load

enumerator kRTC_Capacitor_8p

8 pF capacitor load

enumerator kRTC_Capacitor_16p

16 pF capacitor load

typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t

List of RTC interrupts.

typedef enum _rtc_status_flags rtc_status_flags_t

List of RTC flags.

typedef enum _rtc_osc_cap_load rtc_osc_cap_load_t

List of RTC Oscillator capacitor load settings.

typedef struct _rtc_datetime rtc_datetime_t

Structure is used to hold the date and time.

typedef struct _rtc_pin_config rtc_pin_config_t

RTC pin config structure.

typedef struct _rtc_config rtc_config_t

RTC config structure.

This structure holds the configuration settings for the RTC peripheral. To initialize this structure to reasonable defaults, call the RTC_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

static inline uint32_t RTC_GetTamperTimeSeconds(RTC_Type *base)

Get the RTC tamper time seconds.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_SetOscCapLoad(RTC_Type *base, uint32_t capLoad)

This function sets the specified capacitor configuration for the RTC oscillator.

Parameters:
  • base – RTC peripheral base address

  • capLoad – Oscillator loads to enable. This is a logical OR of members of the enumeration rtc_osc_cap_load_t

static inline void RTC_Reset(RTC_Type *base)

Performs a software reset on the RTC module.

This resets all RTC registers except for the SWR bit and the RTC_WAR and RTC_RAR registers. The SWR bit is cleared by software explicitly clearing it.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_EnableWakeUpPin(RTC_Type *base, bool enable)

Enables or disables the RTC Wakeup Pin Operation.

This function enable or disable RTC Wakeup Pin. The wakeup pin is optional and not available on all devices.

Parameters:
  • base – RTC_Type base pointer.

  • enable – true to enable, false to disable.

struct _rtc_datetime
#include <fsl_rtc.h>

Structure is used to hold the date and time.

Public Members

uint16_t year

Range from 1970 to 2099.

uint8_t month

Range from 1 to 12.

uint8_t day

Range from 1 to 31 (depending on month).

uint8_t hour

Range from 0 to 23.

uint8_t minute

Range from 0 to 59.

uint8_t second

Range from 0 to 59.

struct _rtc_pin_config
#include <fsl_rtc.h>

RTC pin config structure.

Public Members

bool inputLogic

true: Tamper pin input data is logic one. false: Tamper pin input data is logic zero.

bool pinActiveLow

true: Tamper pin is active low. false: Tamper pin is active high.

bool filterEnable

true: Input filter is enabled on the tamper pin. false: Input filter is disabled on the tamper pin.

bool pullSelectNegate

true: Tamper pin pull resistor direction will negate the tamper pin. false: Tamper pin pull resistor direction will assert the tamper pin.

bool pullEnable

true: Pull resistor is enabled on tamper pin. false: Pull resistor is disabled on tamper pin.

struct _rtc_config
#include <fsl_rtc.h>

RTC config structure.

This structure holds the configuration settings for the RTC peripheral. To initialize this structure to reasonable defaults, call the RTC_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool wakeupSelect

true: Wakeup pin outputs the 32 KHz clock; false:Wakeup pin used to wakeup the chip

bool updateMode

true: Registers can be written even when locked under certain conditions, false: No writes allowed when registers are locked

bool supervisorAccess

true: Non-supervisor accesses are allowed; false: Non-supervisor accesses are not supported

uint32_t compensationInterval

Compensation interval that is written to the CIR field in RTC TCR Register

uint32_t compensationTime

Compensation time that is written to the TCR field in RTC TCR Register

SIM: System Integration Module Driver

FSL_SIM_DRIVER_VERSION

Driver version.

enum _sim_usb_volt_reg_enable_mode

USB voltage regulator enable setting.

Values:

enumerator kSIM_UsbVoltRegEnable

Enable voltage regulator.

enumerator kSIM_UsbVoltRegEnableInLowPower

Enable voltage regulator in VLPR/VLPW modes.

enumerator kSIM_UsbVoltRegEnableInStop

Enable voltage regulator in STOP/VLPS/LLS/VLLS modes.

enumerator kSIM_UsbVoltRegEnableInAllModes

Enable voltage regulator in all power modes.

enum _sim_flash_mode

Flash enable mode.

Values:

enumerator kSIM_FlashDisableInWait

Disable flash in wait mode.

enumerator kSIM_FlashDisable

Disable flash in normal mode.

typedef struct _sim_uid sim_uid_t

Unique ID.

void SIM_SetUsbVoltRegulatorEnableMode(uint32_t mask)

Sets the USB voltage regulator setting.

This function configures whether the USB voltage regulator is enabled in normal RUN mode, STOP/VLPS/LLS/VLLS modes, and VLPR/VLPW modes. The configurations are passed in as mask value of _sim_usb_volt_reg_enable_mode. For example, to enable USB voltage regulator in RUN/VLPR/VLPW modes and disable in STOP/VLPS/LLS/VLLS mode, use:

SIM_SetUsbVoltRegulatorEnableMode(kSIM_UsbVoltRegEnable | kSIM_UsbVoltRegEnableInLowPower);

Parameters:
  • mask – USB voltage regulator enable setting.

void SIM_GetUniqueId(sim_uid_t *uid)

Gets the unique identification register value.

Parameters:
  • uid – Pointer to the structure to save the UID value.

static inline void SIM_SetFlashMode(uint8_t mode)

Sets the flash enable mode.

Parameters:
  • mode – The mode to set; see _sim_flash_mode for mode details.

struct _sim_uid
#include <fsl_sim.h>

Unique ID.

Public Members

uint32_t H

UIDH.

uint32_t M

SIM_UIDM.

uint32_t L

UIDL.

SMC: System Mode Controller Driver

static inline void SMC_GetVersionId(SMC_Type *base, smc_version_id_t *versionId)

Gets the SMC version ID.

This function gets the SMC version ID, including major version number, minor version number, and feature specification number.

Parameters:
  • base – SMC peripheral base address.

  • versionId – Pointer to the version ID structure.

void SMC_GetParam(SMC_Type *base, smc_param_t *param)

Gets the SMC parameter.

This function gets the SMC parameter including the enabled power mdoes.

Parameters:
  • base – SMC peripheral base address.

  • param – Pointer to the SMC param structure.

static inline void SMC_SetPowerModeProtection(SMC_Type *base, uint8_t allowedModes)

Configures all power mode protection settings.

This function configures the power mode protection settings for supported power modes in the specified chip family. The available power modes are defined in the smc_power_mode_protection_t. This should be done at an early system level initialization stage. See the reference manual for details. This register can only write once after the power reset.

The allowed modes are passed as bit map. For example, to allow LLS and VLLS, use SMC_SetPowerModeProtection(kSMC_AllowPowerModeVlls | kSMC_AllowPowerModeVlps). To allow all modes, use SMC_SetPowerModeProtection(kSMC_AllowPowerModeAll).

Parameters:
  • base – SMC peripheral base address.

  • allowedModes – Bitmap of the allowed power modes.

static inline smc_power_state_t SMC_GetPowerModeState(SMC_Type *base)

Gets the current power mode status.

This function returns the current power mode status. After the application switches the power mode, it should always check the status to check whether it runs into the specified mode or not. The application should check this mode before switching to a different mode. The system requires that only certain modes can switch to other specific modes. See the reference manual for details and the smc_power_state_t for information about the power status.

Parameters:
  • base – SMC peripheral base address.

Returns:

Current power mode status.

void SMC_PreEnterStopModes(void)

Prepares to enter stop modes.

This function should be called before entering STOP/VLPS/LLS/VLLS modes.

void SMC_PostExitStopModes(void)

Recovers after wake up from stop modes.

This function should be called after wake up from STOP/VLPS/LLS/VLLS modes. It is used with SMC_PreEnterStopModes.

void SMC_PreEnterWaitModes(void)

Prepares to enter wait modes.

This function should be called before entering WAIT/VLPW modes.

void SMC_PostExitWaitModes(void)

Recovers after wake up from stop modes.

This function should be called after wake up from WAIT/VLPW modes. It is used with SMC_PreEnterWaitModes.

status_t SMC_SetPowerModeRun(SMC_Type *base)

Configures the system to RUN power mode.

Parameters:
  • base – SMC peripheral base address.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeHsrun(SMC_Type *base)

Configures the system to HSRUN power mode.

Parameters:
  • base – SMC peripheral base address.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeWait(SMC_Type *base)

Configures the system to WAIT power mode.

Parameters:
  • base – SMC peripheral base address.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeStop(SMC_Type *base, smc_partial_stop_option_t option)

Configures the system to Stop power mode.

Parameters:
  • base – SMC peripheral base address.

  • option – Partial Stop mode option.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeVlpr(SMC_Type *base, bool wakeupMode)

Configures the system to VLPR power mode.

Parameters:
  • base – SMC peripheral base address.

  • wakeupMode – Enter Normal Run mode if true, else stay in VLPR mode.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeVlpw(SMC_Type *base)

Configures the system to VLPW power mode.

Parameters:
  • base – SMC peripheral base address.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeVlps(SMC_Type *base)

Configures the system to VLPS power mode.

Parameters:
  • base – SMC peripheral base address.

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeLls(SMC_Type *base, const smc_power_mode_lls_config_t *config)

Configures the system to LLS power mode.

Parameters:
  • base – SMC peripheral base address.

  • config – The LLS power mode configuration structure

Returns:

SMC configuration error code.

status_t SMC_SetPowerModeVlls(SMC_Type *base, const smc_power_mode_vlls_config_t *config)

Configures the system to VLLS power mode.

Parameters:
  • base – SMC peripheral base address.

  • config – The VLLS power mode configuration structure.

Returns:

SMC configuration error code.

FSL_SMC_DRIVER_VERSION

SMC driver version.

enum _smc_power_mode_protection

Power Modes Protection.

Values:

enumerator kSMC_AllowPowerModeVlls

Allow Very-low-leakage Stop Mode.

enumerator kSMC_AllowPowerModeLls

Allow Low-leakage Stop Mode.

enumerator kSMC_AllowPowerModeVlp

Allow Very-Low-power Mode.

enumerator kSMC_AllowPowerModeHsrun

Allow High-speed Run mode.

enumerator kSMC_AllowPowerModeAll

Allow all power mode.

enum _smc_power_state

Power Modes in PMSTAT.

Values:

enumerator kSMC_PowerStateRun

0000_0001 - Current power mode is RUN

enumerator kSMC_PowerStateStop

0000_0010 - Current power mode is STOP

enumerator kSMC_PowerStateVlpr

0000_0100 - Current power mode is VLPR

enumerator kSMC_PowerStateVlpw

0000_1000 - Current power mode is VLPW

enumerator kSMC_PowerStateVlps

0001_0000 - Current power mode is VLPS

enumerator kSMC_PowerStateLls

0010_0000 - Current power mode is LLS

enumerator kSMC_PowerStateVlls

0100_0000 - Current power mode is VLLS

enumerator kSMC_PowerStateHsrun

1000_0000 - Current power mode is HSRUN

enum _smc_run_mode

Run mode definition.

Values:

enumerator kSMC_RunNormal

Normal RUN mode.

enumerator kSMC_RunVlpr

Very-low-power RUN mode.

enumerator kSMC_Hsrun

High-speed Run mode (HSRUN).

enum _smc_stop_mode

Stop mode definition.

Values:

enumerator kSMC_StopNormal

Normal STOP mode.

enumerator kSMC_StopVlps

Very-low-power STOP mode.

enumerator kSMC_StopLls

Low-leakage Stop mode.

enumerator kSMC_StopVlls

Very-low-leakage Stop mode.

enum _smc_stop_submode

VLLS/LLS stop sub mode definition.

Values:

enumerator kSMC_StopSub0

Stop submode 0, for VLLS0/LLS0.

enumerator kSMC_StopSub1

Stop submode 1, for VLLS1/LLS1.

enumerator kSMC_StopSub2

Stop submode 2, for VLLS2/LLS2.

enumerator kSMC_StopSub3

Stop submode 3, for VLLS3/LLS3.

enum _smc_partial_stop_mode

Partial STOP option.

Values:

enumerator kSMC_PartialStop

STOP - Normal Stop mode

enumerator kSMC_PartialStop1

Partial Stop with both system and bus clocks disabled

enumerator kSMC_PartialStop2

Partial Stop with system clock disabled and bus clock enabled

_smc_status, SMC configuration status.

Values:

enumerator kStatus_SMC_StopAbort

Entering Stop mode is abort

typedef enum _smc_power_mode_protection smc_power_mode_protection_t

Power Modes Protection.

typedef enum _smc_power_state smc_power_state_t

Power Modes in PMSTAT.

typedef enum _smc_run_mode smc_run_mode_t

Run mode definition.

typedef enum _smc_stop_mode smc_stop_mode_t

Stop mode definition.

typedef enum _smc_stop_submode smc_stop_submode_t

VLLS/LLS stop sub mode definition.

typedef enum _smc_partial_stop_mode smc_partial_stop_option_t

Partial STOP option.

typedef struct _smc_version_id smc_version_id_t

IP version ID definition.

typedef struct _smc_param smc_param_t

IP parameter definition.

typedef struct _smc_power_mode_lls_config smc_power_mode_lls_config_t

SMC Low-Leakage Stop power mode configuration.

typedef struct _smc_power_mode_vlls_config smc_power_mode_vlls_config_t

SMC Very Low-Leakage Stop power mode configuration.

struct _smc_version_id
#include <fsl_smc.h>

IP version ID definition.

Public Members

uint16_t feature

Feature Specification Number.

uint8_t minor

Minor version number.

uint8_t major

Major version number.

struct _smc_param
#include <fsl_smc.h>

IP parameter definition.

Public Members

bool hsrunEnable

HSRUN mode enable.

bool llsEnable

LLS mode enable.

bool lls2Enable

LLS2 mode enable.

bool vlls0Enable

VLLS0 mode enable.

struct _smc_power_mode_lls_config
#include <fsl_smc.h>

SMC Low-Leakage Stop power mode configuration.

Public Members

smc_stop_submode_t subMode

Low-leakage Stop sub-mode

bool enableLpoClock

Enable LPO clock in LLS mode

struct _smc_power_mode_vlls_config
#include <fsl_smc.h>

SMC Very Low-Leakage Stop power mode configuration.

Public Members

smc_stop_submode_t subMode

Very Low-leakage Stop sub-mode

bool enablePorDetectInVlls0

Enable Power on reset detect in VLLS mode

bool enableRam2InVlls2

Enable RAM2 power in VLLS2

bool enableLpoClock

Enable LPO clock in VLLS mode

SPI: Serial Peripheral Interface Driver

SPI Driver

void SPI_MasterGetDefaultConfig(spi_master_config_t *config)

Sets the SPI master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in SPI_MasterInit(). User may use the initialized structure unchanged in SPI_MasterInit(), or modify some fields of the structure before calling SPI_MasterInit(). After calling this API, the master is ready to transfer. Example:

spi_master_config_t config;
SPI_MasterGetDefaultConfig(&config);

Parameters:
  • config – pointer to master config structure

void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)

Initializes the SPI with master configuration.

The configuration structure can be filled by user from scratch, or be set with default values by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer. Example

spi_master_config_t config = {
.baudRate_Bps = 400000,
...
};
SPI_MasterInit(SPI0, &config);

Parameters:
  • base – SPI base pointer

  • config – pointer to master configuration structure

  • srcClock_Hz – Source clock frequency.

void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)

Sets the SPI slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in SPI_SlaveInit(). Modify some fields of the structure before calling SPI_SlaveInit(). Example:

spi_slave_config_t config;
SPI_SlaveGetDefaultConfig(&config);

Parameters:
  • config – pointer to slave configuration structure

void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)

Initializes the SPI with slave configuration.

The configuration structure can be filled by user from scratch or be set with default values by SPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer. Example

spi_slave_config_t config = {
.polarity = kSPIClockPolarity_ActiveHigh;
.phase = kSPIClockPhase_FirstEdge;
.direction = kSPIMsbFirst;
...
};
SPI_MasterInit(SPI0, &config);

Parameters:
  • base – SPI base pointer

  • config – pointer to master configuration structure

void SPI_Deinit(SPI_Type *base)

De-initializes the SPI.

Calling this API resets the SPI module, gates the SPI clock. The SPI module can’t work unless calling the SPI_MasterInit/SPI_SlaveInit to initialize module.

Parameters:
  • base – SPI base pointer

static inline void SPI_Enable(SPI_Type *base, bool enable)

Enables or disables the SPI.

Parameters:
  • base – SPI base pointer

  • enable – pass true to enable module, false to disable module

uint32_t SPI_GetStatusFlags(SPI_Type *base)

Gets the status flag.

Parameters:
  • base – SPI base pointer

Returns:

SPI Status, use status flag to AND _spi_flags could get the related status.

static inline void SPI_ClearInterrupt(SPI_Type *base, uint8_t mask)

Clear the interrupt if enable INCTLR.

Parameters:
  • base – SPI base pointer

  • mask – Interrupt need to be cleared The parameter could be any combination of the following values:

    • kSPI_RxFullAndModfInterruptEnable

    • kSPI_TxEmptyInterruptEnable

    • kSPI_MatchInterruptEnable

    • kSPI_RxFifoNearFullInterruptEnable

    • kSPI_TxFifoNearEmptyInterruptEnable

void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask)

Enables the interrupt for the SPI.

Parameters:
  • base – SPI base pointer

  • mask – SPI interrupt source. The parameter can be any combination of the following values:

    • kSPI_RxFullAndModfInterruptEnable

    • kSPI_TxEmptyInterruptEnable

    • kSPI_MatchInterruptEnable

    • kSPI_RxFifoNearFullInterruptEnable

    • kSPI_TxFifoNearEmptyInterruptEnable

void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask)

Disables the interrupt for the SPI.

Parameters:
  • base – SPI base pointer

  • mask – SPI interrupt source. The parameter can be any combination of the following values:

    • kSPI_RxFullAndModfInterruptEnable

    • kSPI_TxEmptyInterruptEnable

    • kSPI_MatchInterruptEnable

    • kSPI_RxFifoNearFullInterruptEnable

    • kSPI_TxFifoNearEmptyInterruptEnable

static inline void SPI_EnableDMA(SPI_Type *base, uint8_t mask, bool enable)

Enables the DMA source for SPI.

Parameters:
  • base – SPI base pointer

  • mask – SPI DMA source.

  • enable – True means enable DMA, false means disable DMA

static inline uint32_t SPI_GetDataRegisterAddress(SPI_Type *base)

Gets the SPI tx/rx data register address.

This API is used to provide a transfer address for the SPI DMA transfer configuration.

Parameters:
  • base – SPI base pointer

Returns:

data register address

uint32_t SPI_GetInstance(SPI_Type *base)

Get the instance for SPI module.

Parameters:
  • base – SPI base address

static inline void SPI_SetPinMode(SPI_Type *base, spi_pin_mode_t pinMode)

Sets the pin mode for transfer.

Parameters:
  • base – SPI base pointer

  • pinMode – pin mode for transfer AND _spi_pin_mode could get the related configuration.

void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)

Sets the baud rate for SPI transfer. This is only used in master.

Parameters:
  • base – SPI base pointer

  • baudRate_Bps – baud rate needed in Hz.

  • srcClock_Hz – SPI source clock frequency in Hz.

static inline void SPI_SetMatchData(SPI_Type *base, uint32_t matchData)

Sets the match data for SPI.

The match data is a hardware comparison value. When the value received in the SPI receive data buffer equals the hardware comparison value, the SPI Match Flag in the S register (S[SPMF]) sets. This can also generate an interrupt if the enable bit sets.

Parameters:
  • base – SPI base pointer

  • matchData – Match data.

void SPI_EnableFIFO(SPI_Type *base, bool enable)

Enables or disables the FIFO if there is a FIFO.

Parameters:
  • base – SPI base pointer

  • enable – True means enable FIFO, false means disable FIFO.

status_t SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size)

Sends a buffer of data bytes using a blocking method.

Note

This function blocks via polling until all bytes have been sent.

Parameters:
  • base – SPI base pointer

  • buffer – The data bytes to send

  • size – The number of data bytes to send

Returns:

kStatus_SPI_Timeout The transfer timed out and was aborted.

void SPI_WriteData(SPI_Type *base, uint16_t data)

Writes a data into the SPI data register.

Parameters:
  • base – SPI base pointer

  • data – needs to be write.

uint16_t SPI_ReadData(SPI_Type *base)

Gets a data from the SPI data register.

Parameters:
  • base – SPI base pointer

Returns:

Data in the register.

void SPI_SetDummyData(SPI_Type *base, uint8_t dummyData)

Set up the dummy data.

Parameters:
  • base – SPI peripheral address.

  • dummyData – Data to be transferred when tx buffer is NULL.

void SPI_MasterTransferCreateHandle(SPI_Type *base, spi_master_handle_t *handle, spi_master_callback_t callback, void *userData)

Initializes the SPI master handle.

This function initializes the SPI master handle which can be used for other SPI master transactional APIs. Usually, for a specified SPI instance, call this API once to get the initialized handle.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI handle pointer.

  • callback – Callback function.

  • userData – User data.

status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)

Transfers a block of data using a polling method.

Parameters:
  • base – SPI base pointer

  • xfer – pointer to spi_xfer_config_t structure

Return values:
  • kStatus_Success – Successfully start a transfer.

  • kStatus_InvalidArgument – Input argument is invalid.

status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle, spi_transfer_t *xfer)

Performs a non-blocking SPI interrupt transfer.

Note

The API immediately returns after transfer initialization is finished. Call SPI_GetStatusIRQ() to get the transfer status.

Note

If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.

Parameters:
  • base – SPI peripheral base address.

  • handle – pointer to spi_master_handle_t structure which stores the transfer state

  • xfer – pointer to spi_xfer_config_t structure

Return values:
  • kStatus_Success – Successfully start a transfer.

  • kStatus_InvalidArgument – Input argument is invalid.

  • kStatus_SPI_Busy – SPI is not idle, is running another transfer.

status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t *count)

Gets the bytes of the SPI interrupt transferred.

Parameters:
  • base – SPI peripheral base address.

  • handle – Pointer to SPI transfer handle, this should be a static variable.

  • count – Transferred bytes of SPI master.

Return values:
  • kStatus_SPI_Success – Succeed get the transfer count.

  • kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.

void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)

Aborts an SPI transfer using interrupt.

Parameters:
  • base – SPI peripheral base address.

  • handle – Pointer to SPI transfer handle, this should be a static variable.

void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)

Interrupts the handler for the SPI.

Parameters:
  • base – SPI peripheral base address.

  • handle – pointer to spi_master_handle_t structure which stores the transfer state.

void SPI_SlaveTransferCreateHandle(SPI_Type *base, spi_slave_handle_t *handle, spi_slave_callback_t callback, void *userData)

Initializes the SPI slave handle.

This function initializes the SPI slave handle which can be used for other SPI slave transactional APIs. Usually, for a specified SPI instance, call this API once to get the initialized handle.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI handle pointer.

  • callback – Callback function.

  • userData – User data.

status_t SPI_SlaveTransferNonBlocking(SPI_Type *base, spi_slave_handle_t *handle, spi_transfer_t *xfer)

Performs a non-blocking SPI slave interrupt transfer.

Note

The API returns immediately after the transfer initialization is finished. Call SPI_GetStatusIRQ() to get the transfer status.

Note

If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.

Parameters:
  • base – SPI peripheral base address.

  • handle – pointer to spi_slave_handle_t structure which stores the transfer state

  • xfer – pointer to spi_xfer_config_t structure

Return values:
  • kStatus_Success – Successfully start a transfer.

  • kStatus_InvalidArgument – Input argument is invalid.

  • kStatus_SPI_Busy – SPI is not idle, is running another transfer.

static inline status_t SPI_SlaveTransferGetCount(SPI_Type *base, spi_slave_handle_t *handle, size_t *count)

Gets the bytes of the SPI interrupt transferred.

Parameters:
  • base – SPI peripheral base address.

  • handle – Pointer to SPI transfer handle, this should be a static variable.

  • count – Transferred bytes of SPI slave.

Return values:
  • kStatus_SPI_Success – Succeed get the transfer count.

  • kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.

static inline void SPI_SlaveTransferAbort(SPI_Type *base, spi_slave_handle_t *handle)

Aborts an SPI slave transfer using interrupt.

Parameters:
  • base – SPI peripheral base address.

  • handle – Pointer to SPI transfer handle, this should be a static variable.

void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)

Interrupts a handler for the SPI slave.

Parameters:
  • base – SPI peripheral base address.

  • handle – pointer to spi_slave_handle_t structure which stores the transfer state

FSL_SPI_DRIVER_VERSION

SPI driver version.

Return status for the SPI driver.

Values:

enumerator kStatus_SPI_Busy

SPI bus is busy

enumerator kStatus_SPI_Idle

SPI is idle

enumerator kStatus_SPI_Error

SPI error

enumerator kStatus_SPI_Timeout

SPI timeout polling status flags.

enum _spi_clock_polarity

SPI clock polarity configuration.

Values:

enumerator kSPI_ClockPolarityActiveHigh

Active-high SPI clock (idles low).

enumerator kSPI_ClockPolarityActiveLow

Active-low SPI clock (idles high).

enum _spi_clock_phase

SPI clock phase configuration.

Values:

enumerator kSPI_ClockPhaseFirstEdge

First edge on SPSCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ClockPhaseSecondEdge

First edge on SPSCK occurs at the start of the first cycle of a data transfer.

enum _spi_shift_direction

SPI data shifter direction options.

Values:

enumerator kSPI_MsbFirst

Data transfers start with most significant bit.

enumerator kSPI_LsbFirst

Data transfers start with least significant bit.

enum _spi_ss_output_mode

SPI slave select output mode options.

Values:

enumerator kSPI_SlaveSelectAsGpio

Slave select pin configured as GPIO.

enumerator kSPI_SlaveSelectFaultInput

Slave select pin configured for fault detection.

enumerator kSPI_SlaveSelectAutomaticOutput

Slave select pin configured for automatic SPI output.

enum _spi_pin_mode

SPI pin mode options.

Values:

enumerator kSPI_PinModeNormal

Pins operate in normal, single-direction mode.

enumerator kSPI_PinModeInput

Bidirectional mode. Master: MOSI pin is input; Slave: MISO pin is input.

enumerator kSPI_PinModeOutput

Bidirectional mode. Master: MOSI pin is output; Slave: MISO pin is output.

enum _spi_data_bitcount_mode

SPI data length mode options.

Values:

enumerator kSPI_8BitMode

8-bit data transmission mode

enumerator kSPI_16BitMode

16-bit data transmission mode

enum _spi_interrupt_enable

SPI interrupt sources.

Values:

enumerator kSPI_RxFullAndModfInterruptEnable

Receive buffer full (SPRF) and mode fault (MODF) interrupt

enumerator kSPI_TxEmptyInterruptEnable

Transmit buffer empty interrupt

enumerator kSPI_MatchInterruptEnable

Match interrupt

enumerator kSPI_RxFifoNearFullInterruptEnable

Receive FIFO nearly full interrupt

enumerator kSPI_TxFifoNearEmptyInterruptEnable

Transmit FIFO nearly empty interrupt

enum _spi_flags

SPI status flags.

Values:

enumerator kSPI_RxBufferFullFlag

Read buffer full flag

enumerator kSPI_MatchFlag

Match flag

enumerator kSPI_TxBufferEmptyFlag

Transmit buffer empty flag

enumerator kSPI_ModeFaultFlag

Mode fault flag

enumerator kSPI_RxFifoNearFullFlag

Rx FIFO near full

enumerator kSPI_TxFifoNearEmptyFlag

Tx FIFO near empty

enumerator kSPI_TxFifoFullFlag

Tx FIFO full

enumerator kSPI_RxFifoEmptyFlag

Rx FIFO empty

enumerator kSPI_TxFifoError

Tx FIFO error

enumerator kSPI_RxFifoError

Rx FIFO error

enumerator kSPI_TxOverflow

Tx FIFO Overflow

enumerator kSPI_RxOverflow

Rx FIFO Overflow

enum _spi_w1c_interrupt

SPI FIFO write-1-to-clear interrupt flags.

Values:

enumerator kSPI_RxFifoFullClearInterrupt

Receive FIFO full interrupt

enumerator kSPI_TxFifoEmptyClearInterrupt

Transmit FIFO empty interrupt

enumerator kSPI_RxNearFullClearInterrupt

Receive FIFO nearly full interrupt

enumerator kSPI_TxNearEmptyClearInterrupt

Transmit FIFO nearly empty interrupt

enum _spi_txfifo_watermark

SPI TX FIFO watermark settings.

Values:

enumerator kSPI_TxFifoOneFourthEmpty

SPI tx watermark at 1/4 FIFO size

enumerator kSPI_TxFifoOneHalfEmpty

SPI tx watermark at 1/2 FIFO size

enum _spi_rxfifo_watermark

SPI RX FIFO watermark settings.

Values:

enumerator kSPI_RxFifoThreeFourthsFull

SPI rx watermark at 3/4 FIFO size

enumerator kSPI_RxFifoOneHalfFull

SPI rx watermark at 1/2 FIFO size

enum _spi_dma_enable_t

SPI DMA source.

Values:

enumerator kSPI_TxDmaEnable

Tx DMA request source

enumerator kSPI_RxDmaEnable

Rx DMA request source

enumerator kSPI_DmaAllEnable

All DMA request source

typedef enum _spi_clock_polarity spi_clock_polarity_t

SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_clock_phase_t

SPI clock phase configuration.

typedef enum _spi_shift_direction spi_shift_direction_t

SPI data shifter direction options.

typedef enum _spi_ss_output_mode spi_ss_output_mode_t

SPI slave select output mode options.

typedef enum _spi_pin_mode spi_pin_mode_t

SPI pin mode options.

typedef enum _spi_data_bitcount_mode spi_data_bitcount_mode_t

SPI data length mode options.

typedef enum _spi_w1c_interrupt spi_w1c_interrupt_t

SPI FIFO write-1-to-clear interrupt flags.

typedef enum _spi_txfifo_watermark spi_txfifo_watermark_t

SPI TX FIFO watermark settings.

typedef enum _spi_rxfifo_watermark spi_rxfifo_watermark_t

SPI RX FIFO watermark settings.

typedef struct _spi_master_config spi_master_config_t

SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t

SPI slave user configure structure.

typedef struct _spi_transfer spi_transfer_t

SPI transfer structure.

typedef struct _spi_master_handle spi_master_handle_t
typedef spi_master_handle_t spi_slave_handle_t

Slave handle is the same with master handle

typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t status, void *userData)

SPI master callback for finished transmit.

typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status, void *userData)

SPI master callback for finished transmit.

volatile uint8_t g_spiDummyData[]

Global variable for dummy data value setting.

SPI_DUMMYDATA

SPI dummy transfer data, the data is sent while txBuff is NULL.

SPI_RETRY_TIMES

Retry times for waiting flag.

struct _spi_master_config
#include <fsl_spi.h>

SPI master user configure structure.

Public Members

bool enableMaster

Enable SPI at initialization time

bool enableStopInWaitMode

SPI stop in wait mode

spi_clock_polarity_t polarity

Clock polarity

spi_clock_phase_t phase

Clock phase

spi_shift_direction_t direction

MSB or LSB

spi_data_bitcount_mode_t dataMode

8bit or 16bit mode

spi_txfifo_watermark_t txWatermark

Tx watermark settings

spi_rxfifo_watermark_t rxWatermark

Rx watermark settings

spi_ss_output_mode_t outputMode

SS pin setting

spi_pin_mode_t pinMode

SPI pin mode select

uint32_t baudRate_Bps

Baud Rate for SPI in Hz

struct _spi_slave_config
#include <fsl_spi.h>

SPI slave user configure structure.

Public Members

bool enableSlave

Enable SPI at initialization time

bool enableStopInWaitMode

SPI stop in wait mode

spi_clock_polarity_t polarity

Clock polarity

spi_clock_phase_t phase

Clock phase

spi_shift_direction_t direction

MSB or LSB

spi_data_bitcount_mode_t dataMode

8bit or 16bit mode

spi_txfifo_watermark_t txWatermark

Tx watermark settings

spi_rxfifo_watermark_t rxWatermark

Rx watermark settings

spi_pin_mode_t pinMode

SPI pin mode select

struct _spi_transfer
#include <fsl_spi.h>

SPI transfer structure.

Public Members

const uint8_t *txData

Send buffer

uint8_t *rxData

Receive buffer

size_t dataSize

Transfer bytes

uint32_t flags

SPI control flag, useless to SPI.

struct _spi_master_handle
#include <fsl_spi.h>

SPI transfer handle structure.

Public Members

const uint8_t *volatile txData

Transfer buffer

uint8_t *volatile rxData

Receive buffer

volatile size_t txRemainingBytes

Send data remaining in bytes

volatile size_t rxRemainingBytes

Receive data remaining in bytes

volatile uint32_t state

SPI internal state

size_t transferSize

Bytes to be transferred

uint8_t bytePerFrame

SPI mode, 2bytes or 1byte in a frame

uint8_t watermark

Watermark value for SPI transfer

spi_master_callback_t callback

SPI callback

void *userData

Callback parameter

TPM: Timer PWM Module

uint32_t TPM_GetInstance(TPM_Type *base)

Gets the instance from the base address.

Parameters:
  • base – TPM peripheral base address

Returns:

The TPM instance

void TPM_Init(TPM_Type *base, const tpm_config_t *config)

Ungates the TPM clock and configures the peripheral for basic operation.

Note

This API should be called at the beginning of the application using the TPM driver.

Parameters:
  • base – TPM peripheral base address

  • config – Pointer to user’s TPM config structure.

void TPM_Deinit(TPM_Type *base)

Stops the counter and gates the TPM clock.

Parameters:
  • base – TPM peripheral base address

void TPM_GetDefaultConfig(tpm_config_t *config)

Fill in the TPM config struct with the default settings.

The default values are:

     config->prescale = kTPM_Prescale_Divide_1;
     config->useGlobalTimeBase = false;
     config->syncGlobalTimeBase = false;
     config->dozeEnable = false;
     config->dbgMode = false;
     config->enableReloadOnTrigger = false;
     config->enableStopOnOverflow = false;
     config->enableStartOnTrigger = false;
#if FSL_FEATURE_TPM_HAS_PAUSE_COUNTER_ON_TRIGGER
     config->enablePauseOnTrigger = false;
#endif
     config->triggerSelect = kTPM_Trigger_Select_0;
#if FSL_FEATURE_TPM_HAS_EXTERNAL_TRIGGER_SELECTION
     config->triggerSource = kTPM_TriggerSource_External;
     config->extTriggerPolarity = kTPM_ExtTrigger_Active_High;
#endif
#if defined(FSL_FEATURE_TPM_HAS_POL) && FSL_FEATURE_TPM_HAS_POL
     config->chnlPolarity = 0U;
#endif

Parameters:
  • config – Pointer to user’s TPM config structure.

tpm_clock_prescale_t TPM_CalculateCounterClkDiv(TPM_Type *base, uint32_t counterPeriod_Hz, uint32_t srcClock_Hz)

Calculates the counter clock prescaler.

This function calculates the values for SC[PS].

return Calculated clock prescaler value.

Parameters:
  • base – TPM peripheral base address

  • counterPeriod_Hz – The desired frequency in Hz which corresponding to the time when the counter reaches the mod value

  • srcClock_Hz – TPM counter clock in Hz

status_t TPM_SetupPwm(TPM_Type *base, const tpm_chnl_pwm_signal_param_t *chnlParams, uint8_t numOfChnls, tpm_pwm_mode_t mode, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz)

Configures the PWM signal parameters.

User calls this function to configure the PWM signals period, mode, dutycycle and edge. Use this function to configure all the TPM channels that will be used to output a PWM signal

Parameters:
  • base – TPM peripheral base address

  • chnlParams – Array of PWM channel parameters to configure the channel(s)

  • numOfChnls – Number of channels to configure, this should be the size of the array passed in

  • mode – PWM operation mode, options available in enumeration tpm_pwm_mode_t

  • pwmFreq_Hz – PWM signal frequency in Hz

  • srcClock_Hz – TPM counter clock in Hz

Returns:

kStatus_Success if the PWM setup was successful, kStatus_Error on failure

status_t TPM_UpdatePwmDutycycle(TPM_Type *base, tpm_chnl_t chnlNumber, tpm_pwm_mode_t currentPwmMode, uint8_t dutyCyclePercent)

Update the duty cycle of an active PWM signal.

Parameters:
  • base – TPM peripheral base address

  • chnlNumber – The channel number. In combined mode, this represents the channel pair number

  • currentPwmMode – The current PWM mode set during PWM setup

  • dutyCyclePercent – New PWM pulse width, value should be between 0 to 100 0=inactive signal(0% duty cycle)… 100=active signal (100% duty cycle)

Returns:

kStatus_Success if the PWM setup was successful, kStatus_Error on failure

void TPM_UpdateChnlEdgeLevelSelect(TPM_Type *base, tpm_chnl_t chnlNumber, uint8_t level)

Update the edge level selection for a channel.

Note

When the TPM has PWM pause level select feature (FSL_FEATURE_TPM_HAS_PAUSE_LEVEL_SELECT = 1), the PWM output cannot be turned off by selecting the output level. In this case, must use TPM_DisableChannel API to close the PWM output.

Parameters:
  • base – TPM peripheral base address

  • chnlNumber – The channel number

  • level – The level to be set to the ELSnB:ELSnA field; valid values are 00, 01, 10, 11. See the appropriate SoC reference manual for details about this field.

static inline uint8_t TPM_GetChannelContorlBits(TPM_Type *base, tpm_chnl_t chnlNumber)

Get the channel control bits value (mode, edge and level bit fileds).

This function disable the channel by clear all mode and level control bits.

Parameters:
  • base – TPM peripheral base address

  • chnlNumber – The channel number

Returns:

The contorl bits value. This is the logical OR of members of the enumeration tpm_chnl_control_bit_mask_t.

static inline void TPM_DisableChannel(TPM_Type *base, tpm_chnl_t chnlNumber)

Dsiable the channel.

This function disable the channel by clear all mode and level control bits.

Parameters:
  • base – TPM peripheral base address

  • chnlNumber – The channel number

static inline void TPM_EnableChannel(TPM_Type *base, tpm_chnl_t chnlNumber, uint8_t control)

Enable the channel according to mode and level configs.

This function enable the channel output according to input mode/level config parameters.

Parameters:
  • base – TPM peripheral base address

  • chnlNumber – The channel number

  • control – The contorl bits value. This is the logical OR of members of the enumeration tpm_chnl_control_bit_mask_t.

void TPM_SetupInputCapture(TPM_Type *base, tpm_chnl_t chnlNumber, tpm_input_capture_edge_t captureMode)

Enables capturing an input signal on the channel using the function parameters.

When the edge specified in the captureMode argument occurs on the channel, the TPM counter is captured into the CnV register. The user has to read the CnV register separately to get this value.

Parameters:
  • base – TPM peripheral base address

  • chnlNumber – The channel number

  • captureMode – Specifies which edge to capture

void TPM_SetupOutputCompare(TPM_Type *base, tpm_chnl_t chnlNumber, tpm_output_compare_mode_t compareMode, uint32_t compareValue)

Configures the TPM to generate timed pulses.

When the TPM counter matches the value of compareVal argument (this is written into CnV reg), the channel output is changed based on what is specified in the compareMode argument.

Parameters:
  • base – TPM peripheral base address

  • chnlNumber – The channel number

  • compareMode – Action to take on the channel output when the compare condition is met

  • compareValue – Value to be programmed in the CnV register.

void TPM_SetupDualEdgeCapture(TPM_Type *base, tpm_chnl_t chnlPairNumber, const tpm_dual_edge_capture_param_t *edgeParam, uint32_t filterValue)

Configures the dual edge capture mode of the TPM.

This function allows to measure a pulse width of the signal on the input of channel of a channel pair. The filter function is disabled if the filterVal argument passed is zero.

Parameters:
  • base – TPM peripheral base address

  • chnlPairNumber – The TPM channel pair number; options are 0, 1, 2, 3

  • edgeParam – Sets up the dual edge capture function

  • filterValue – Filter value, specify 0 to disable filter.

void TPM_SetupQuadDecode(TPM_Type *base, const tpm_phase_params_t *phaseAParams, const tpm_phase_params_t *phaseBParams, tpm_quad_decode_mode_t quadMode)

Configures the parameters and activates the quadrature decode mode.

Parameters:
  • base – TPM peripheral base address

  • phaseAParams – Phase A configuration parameters

  • phaseBParams – Phase B configuration parameters

  • quadMode – Selects encoding mode used in quadrature decoder mode

static inline void TPM_SetChannelPolarity(TPM_Type *base, tpm_chnl_t chnlNumber, bool enable)

Set the input and output polarity of each of the channels.

Parameters:
  • base – TPM peripheral base address

  • chnlNumber – The channel number

  • enable – true: Set the channel polarity to active high; false: Set the channel polarity to active low;

static inline void TPM_EnableChannelExtTrigger(TPM_Type *base, tpm_chnl_t chnlNumber, bool enable)

Enable external trigger input to be used by channel.

In input capture mode, configures the trigger input that is used by the channel to capture the counter value. In output compare or PWM mode, configures the trigger input used to modulate the channel output. When modulating the output, the output is forced to the channel initial value whenever the trigger is not asserted.

Note

No matter how many external trigger sources there are, only input trigger 0 and 1 are used. The even numbered channels share the input trigger 0 and the odd numbered channels share the second input trigger 1.

Parameters:
  • base – TPM peripheral base address

  • chnlNumber – The channel number

  • enable – true: Configures trigger input 0 or 1 to be used by channel; false: Trigger input has no effect on the channel

void TPM_EnableInterrupts(TPM_Type *base, uint32_t mask)

Enables the selected TPM interrupts.

Parameters:
  • base – TPM peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration tpm_interrupt_enable_t

void TPM_DisableInterrupts(TPM_Type *base, uint32_t mask)

Disables the selected TPM interrupts.

Parameters:
  • base – TPM peripheral base address

  • mask – The interrupts to disable. This is a logical OR of members of the enumeration tpm_interrupt_enable_t

uint32_t TPM_GetEnabledInterrupts(TPM_Type *base)

Gets the enabled TPM interrupts.

Parameters:
  • base – TPM peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration tpm_interrupt_enable_t

void TPM_RegisterCallBack(TPM_Type *base, tpm_callback_t callback)

Register callback.

If channel or overflow interrupt is enabled by the user, then a callback can be registered which will be invoked when the interrupt is triggered.

Parameters:
  • base – TPM peripheral base address

  • callback – Callback function

static inline uint32_t TPM_GetChannelValue(TPM_Type *base, tpm_chnl_t chnlNumber)

Gets the TPM channel value.

Note

The TPM channel value contain the captured TPM counter value for the input modes or the match value for the output modes.

Parameters:
  • base – TPM peripheral base address

  • chnlNumber – The channel number

Returns:

The channle CnV regisyer value.

static inline uint32_t TPM_GetStatusFlags(TPM_Type *base)

Gets the TPM status flags.

Parameters:
  • base – TPM peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration tpm_status_flags_t

static inline void TPM_ClearStatusFlags(TPM_Type *base, uint32_t mask)

Clears the TPM status flags.

Parameters:
  • base – TPM peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration tpm_status_flags_t

static inline void TPM_SetTimerPeriod(TPM_Type *base, uint32_t ticks)

Sets the timer period in units of ticks.

Timers counts from 0 until it equals the count value set here. The count value is written to the MOD register.

Note

  1. This API allows the user to use the TPM module as a timer. Do not mix usage of this API with TPM’s PWM setup API’s.

  2. Call the utility macros provided in the fsl_common.h to convert usec or msec to ticks.

Parameters:
  • base – TPM peripheral base address

  • ticks – A timer period in units of ticks, which should be equal or greater than 1.

static inline uint32_t TPM_GetCurrentTimerCount(TPM_Type *base)

Reads the current timer counting value.

This function returns the real-time timer counting value in a range from 0 to a timer period.

Note

Call the utility macros provided in the fsl_common.h to convert ticks to usec or msec.

Parameters:
  • base – TPM peripheral base address

Returns:

The current counter value in ticks

static inline void TPM_StartTimer(TPM_Type *base, tpm_clock_source_t clockSource)

Starts the TPM counter.

Parameters:
  • base – TPM peripheral base address

  • clockSource – TPM clock source; once clock source is set the counter will start running

static inline void TPM_StopTimer(TPM_Type *base)

Stops the TPM counter.

Parameters:
  • base – TPM peripheral base address

FSL_TPM_DRIVER_VERSION

TPM driver version 2.3.2.

enum _tpm_chnl

List of TPM channels.

Note

Actual number of available channels is SoC dependent

Values:

enumerator kTPM_Chnl_0

TPM channel number 0

enumerator kTPM_Chnl_1

TPM channel number 1

enumerator kTPM_Chnl_2

TPM channel number 2

enumerator kTPM_Chnl_3

TPM channel number 3

enumerator kTPM_Chnl_4

TPM channel number 4

enumerator kTPM_Chnl_5

TPM channel number 5

enumerator kTPM_Chnl_6

TPM channel number 6

enumerator kTPM_Chnl_7

TPM channel number 7

enum _tpm_pwm_mode

TPM PWM operation modes.

Values:

enumerator kTPM_EdgeAlignedPwm

Edge aligned PWM

enumerator kTPM_CenterAlignedPwm

Center aligned PWM

enumerator kTPM_CombinedPwm

Combined PWM (Edge-aligned, center-aligned, or asymmetrical PWMs can be obtained in combined mode using different software configurations)

enum _tpm_pwm_level_select

TPM PWM output pulse mode: high-true, low-true or no output.

Note

When the TPM has PWM pause level select feature, the PWM output cannot be turned off by selecting the output level. In this case, the channel must be closed to close the PWM output.

Values:

enumerator kTPM_NoPwmSignal

No PWM output on pin

enumerator kTPM_LowTrue

Low true pulses

enumerator kTPM_HighTrue

High true pulses

enum _tpm_chnl_control_bit_mask

List of TPM channel modes and level control bit mask.

Values:

enumerator kTPM_ChnlELSnAMask

Channel ELSA bit mask.

enumerator kTPM_ChnlELSnBMask

Channel ELSB bit mask.

enumerator kTPM_ChnlMSAMask

Channel MSA bit mask.

enumerator kTPM_ChnlMSBMask

Channel MSB bit mask.

enum _tpm_trigger_select

Trigger sources available.

This is used for both internal & external trigger sources (external trigger sources available in certain SoC’s)

Note

The actual trigger sources available is SoC-specific.

Values:

enumerator kTPM_Trigger_Select_0
enumerator kTPM_Trigger_Select_1
enumerator kTPM_Trigger_Select_2
enumerator kTPM_Trigger_Select_3
enumerator kTPM_Trigger_Select_4
enumerator kTPM_Trigger_Select_5
enumerator kTPM_Trigger_Select_6
enumerator kTPM_Trigger_Select_7
enumerator kTPM_Trigger_Select_8
enumerator kTPM_Trigger_Select_9
enumerator kTPM_Trigger_Select_10
enumerator kTPM_Trigger_Select_11
enumerator kTPM_Trigger_Select_12
enumerator kTPM_Trigger_Select_13
enumerator kTPM_Trigger_Select_14
enumerator kTPM_Trigger_Select_15
enum _tpm_trigger_source

Trigger source options available.

Note

This selection is available only on some SoC’s. For SoC’s without this selection, the only trigger source available is internal triger.

Values:

enumerator kTPM_TriggerSource_External

Use external trigger input

enumerator kTPM_TriggerSource_Internal

Use internal trigger (channel pin input capture)

enum _tpm_ext_trigger_polarity

External trigger source polarity.

Note

Selects the polarity of the external trigger source.

Values:

enumerator kTPM_ExtTrigger_Active_High

External trigger input is active high

enumerator kTPM_ExtTrigger_Active_Low

External trigger input is active low

enum _tpm_output_compare_mode

TPM output compare modes.

Values:

enumerator kTPM_NoOutputSignal

No channel output when counter reaches CnV

enumerator kTPM_ToggleOnMatch

Toggle output

enumerator kTPM_ClearOnMatch

Clear output

enumerator kTPM_SetOnMatch

Set output

enumerator kTPM_HighPulseOutput

Pulse output high

enumerator kTPM_LowPulseOutput

Pulse output low

enum _tpm_input_capture_edge

TPM input capture edge.

Values:

enumerator kTPM_RisingEdge

Capture on rising edge only

enumerator kTPM_FallingEdge

Capture on falling edge only

enumerator kTPM_RiseAndFallEdge

Capture on rising or falling edge

enum _tpm_quad_decode_mode

TPM quadrature decode modes.

Note

This mode is available only on some SoC’s.

Values:

enumerator kTPM_QuadPhaseEncode

Phase A and Phase B encoding mode

enumerator kTPM_QuadCountAndDir

Count and direction encoding mode

enum _tpm_phase_polarity

TPM quadrature phase polarities.

Values:

enumerator kTPM_QuadPhaseNormal

Phase input signal is not inverted

enumerator kTPM_QuadPhaseInvert

Phase input signal is inverted

enum _tpm_clock_source

TPM clock source selection.

Values:

enumerator kTPM_SystemClock

System clock

enumerator kTPM_ExternalClock

External TPM_EXTCLK pin clock

enumerator kTPM_ExternalInputTriggerClock

Selected external input trigger clock

enum _tpm_clock_prescale

TPM prescale value selection for the clock source.

Values:

enumerator kTPM_Prescale_Divide_1

Divide by 1

enumerator kTPM_Prescale_Divide_2

Divide by 2

enumerator kTPM_Prescale_Divide_4

Divide by 4

enumerator kTPM_Prescale_Divide_8

Divide by 8

enumerator kTPM_Prescale_Divide_16

Divide by 16

enumerator kTPM_Prescale_Divide_32

Divide by 32

enumerator kTPM_Prescale_Divide_64

Divide by 64

enumerator kTPM_Prescale_Divide_128

Divide by 128

enum _tpm_interrupt_enable

List of TPM interrupts.

Values:

enumerator kTPM_Chnl0InterruptEnable

Channel 0 interrupt.

enumerator kTPM_Chnl1InterruptEnable

Channel 1 interrupt.

enumerator kTPM_Chnl2InterruptEnable

Channel 2 interrupt.

enumerator kTPM_Chnl3InterruptEnable

Channel 3 interrupt.

enumerator kTPM_Chnl4InterruptEnable

Channel 4 interrupt.

enumerator kTPM_Chnl5InterruptEnable

Channel 5 interrupt.

enumerator kTPM_Chnl6InterruptEnable

Channel 6 interrupt.

enumerator kTPM_Chnl7InterruptEnable

Channel 7 interrupt.

enumerator kTPM_TimeOverflowInterruptEnable

Time overflow interrupt.

enum _tpm_status_flags

List of TPM flags.

Values:

enumerator kTPM_Chnl0Flag

Channel 0 flag

enumerator kTPM_Chnl1Flag

Channel 1 flag

enumerator kTPM_Chnl2Flag

Channel 2 flag

enumerator kTPM_Chnl3Flag

Channel 3 flag

enumerator kTPM_Chnl4Flag

Channel 4 flag

enumerator kTPM_Chnl5Flag

Channel 5 flag

enumerator kTPM_Chnl6Flag

Channel 6 flag

enumerator kTPM_Chnl7Flag

Channel 7 flag

enumerator kTPM_TimeOverflowFlag

Time overflow flag

typedef enum _tpm_chnl tpm_chnl_t

List of TPM channels.

Note

Actual number of available channels is SoC dependent

typedef enum _tpm_pwm_mode tpm_pwm_mode_t

TPM PWM operation modes.

typedef enum _tpm_pwm_level_select tpm_pwm_level_select_t

TPM PWM output pulse mode: high-true, low-true or no output.

Note

When the TPM has PWM pause level select feature, the PWM output cannot be turned off by selecting the output level. In this case, the channel must be closed to close the PWM output.

typedef enum _tpm_chnl_control_bit_mask tpm_chnl_control_bit_mask_t

List of TPM channel modes and level control bit mask.

typedef struct _tpm_chnl_pwm_signal_param tpm_chnl_pwm_signal_param_t

Options to configure a TPM channel’s PWM signal.

typedef enum _tpm_trigger_select tpm_trigger_select_t

Trigger sources available.

This is used for both internal & external trigger sources (external trigger sources available in certain SoC’s)

Note

The actual trigger sources available is SoC-specific.

typedef enum _tpm_trigger_source tpm_trigger_source_t

Trigger source options available.

Note

This selection is available only on some SoC’s. For SoC’s without this selection, the only trigger source available is internal triger.

typedef enum _tpm_ext_trigger_polarity tpm_ext_trigger_polarity_t

External trigger source polarity.

Note

Selects the polarity of the external trigger source.

typedef enum _tpm_output_compare_mode tpm_output_compare_mode_t

TPM output compare modes.

typedef enum _tpm_input_capture_edge tpm_input_capture_edge_t

TPM input capture edge.

typedef struct _tpm_dual_edge_capture_param tpm_dual_edge_capture_param_t

TPM dual edge capture parameters.

Note

This mode is available only on some SoC’s.

typedef enum _tpm_quad_decode_mode tpm_quad_decode_mode_t

TPM quadrature decode modes.

Note

This mode is available only on some SoC’s.

typedef enum _tpm_phase_polarity tpm_phase_polarity_t

TPM quadrature phase polarities.

typedef struct _tpm_phase_param tpm_phase_params_t

TPM quadrature decode phase parameters.

typedef enum _tpm_clock_source tpm_clock_source_t

TPM clock source selection.

typedef enum _tpm_clock_prescale tpm_clock_prescale_t

TPM prescale value selection for the clock source.

typedef struct _tpm_config tpm_config_t

TPM config structure.

This structure holds the configuration settings for the TPM peripheral. To initialize this structure to reasonable defaults, call the TPM_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

typedef enum _tpm_interrupt_enable tpm_interrupt_enable_t

List of TPM interrupts.

typedef enum _tpm_status_flags tpm_status_flags_t

List of TPM flags.

typedef void (*tpm_callback_t)(TPM_Type *base)

TPM callback function pointer.

Param base:

TPM peripheral base address.

static inline void TPM_Reset(TPM_Type *base)

Performs a software reset on the TPM module.

Reset all internal logic and registers, except the Global Register. Remains set until cleared by software.

Note

TPM software reset is available on certain SoC’s only

Parameters:
  • base – TPM peripheral base address

TPM_MAX_COUNTER_VALUE(x)

Help macro to get the max counter value.

struct _tpm_chnl_pwm_signal_param
#include <fsl_tpm.h>

Options to configure a TPM channel’s PWM signal.

Public Members

tpm_chnl_t chnlNumber

TPM channel to configure. In combined mode (available in some SoC’s), this represents the channel pair number

tpm_pwm_level_select_t level

PWM output active level select

uint8_t dutyCyclePercent

PWM pulse width, value should be between 0 to 100 0=inactive signal(0% duty cycle)… 100=always active signal (100% duty cycle)

uint8_t firstEdgeDelayPercent

Used only in combined PWM mode to generate asymmetrical PWM. Specifies the delay to the first edge in a PWM period. If unsure, leave as 0. Should be specified as percentage of the PWM period, (dutyCyclePercent + firstEdgeDelayPercent) value should be not greate than 100.

bool enableComplementary

Used only in combined PWM mode. true: The combined channels output complementary signals; false: The combined channels output same signals;

uint8_t deadTimeValue[2]

The dead time value for channel n and n+1 in combined complementary PWM mode. Deadtime insertion is disabled when this value is zero, otherwise deadtime insertion for channel n/n+1 is configured as (deadTimeValue * 4) clock cycles. deadTimeValue’s available range is 0 ~ 15.

struct _tpm_dual_edge_capture_param
#include <fsl_tpm.h>

TPM dual edge capture parameters.

Note

This mode is available only on some SoC’s.

Public Members

bool enableSwap

true: Use channel n+1 input, channel n input is ignored; false: Use channel n input, channel n+1 input is ignored

tpm_input_capture_edge_t currChanEdgeMode

Input capture edge select for channel n

tpm_input_capture_edge_t nextChanEdgeMode

Input capture edge select for channel n+1

struct _tpm_phase_param
#include <fsl_tpm.h>

TPM quadrature decode phase parameters.

Public Members

uint32_t phaseFilterVal

Filter value, filter is disabled when the value is zero

tpm_phase_polarity_t phasePolarity

Phase polarity

struct _tpm_config
#include <fsl_tpm.h>

TPM config structure.

This structure holds the configuration settings for the TPM peripheral. To initialize this structure to reasonable defaults, call the TPM_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

tpm_clock_prescale_t prescale

Select TPM clock prescale value

bool useGlobalTimeBase

true: The TPM channels use an external global time base (the local counter still use for generate overflow interrupt and DMA request); false: All TPM channels use the local counter as their timebase

bool syncGlobalTimeBase

true: The TPM counter is synchronized to the global time base; false: disabled

tpm_trigger_select_t triggerSelect

Input trigger to use for controlling the counter operation

tpm_trigger_source_t triggerSource

Decides if we use external or internal trigger.

tpm_ext_trigger_polarity_t extTriggerPolarity

when using external trigger source, need selects the polarity of it.

bool enableDoze

true: TPM counter is paused in doze mode; false: TPM counter continues in doze mode

bool enableDebugMode

true: TPM counter continues in debug mode; false: TPM counter is paused in debug mode

bool enableReloadOnTrigger

true: TPM counter is reloaded on trigger; false: TPM counter not reloaded

bool enableStopOnOverflow

true: TPM counter stops after overflow; false: TPM counter continues running after overflow

bool enableStartOnTrigger

true: TPM counter only starts when a trigger is detected; false: TPM counter starts immediately

bool enablePauseOnTrigger

true: TPM counter will pause while trigger remains asserted; false: TPM counter continues running

uint8_t chnlPolarity

Defines the input/output polarity of the channels in POL register

VREF: Voltage Reference Driver

void VREF_Init(VREF_Type *base, const vref_config_t *config)

Enables the clock gate and configures the VREF module according to the configuration structure.

This function must be called before calling all other VREF driver functions, read/write registers, and configurations with user-defined settings. The example below shows how to set up vref_config_t parameters and how to call the VREF_Init function by passing in these parameters. This is an example.

vref_config_t vrefConfig;
vrefConfig.bufferMode = kVREF_ModeHighPowerBuffer;
vrefConfig.enableExternalVoltRef = false;
vrefConfig.enableLowRef = false;
VREF_Init(VREF, &vrefConfig);

Parameters:
  • base – VREF peripheral address.

  • config – Pointer to the configuration structure.

void VREF_Deinit(VREF_Type *base)

Stops and disables the clock for the VREF module.

This function should be called to shut down the module. This is an example.

vref_config_t vrefUserConfig;
VREF_Init(VREF);
VREF_GetDefaultConfig(&vrefUserConfig);
...
VREF_Deinit(VREF);

Parameters:
  • base – VREF peripheral address.

void VREF_GetDefaultConfig(vref_config_t *config)

Initializes the VREF configuration structure.

This function initializes the VREF configuration structure to default values. This is an example.

vrefConfig->bufferMode = kVREF_ModeHighPowerBuffer;
vrefConfig->enableExternalVoltRef = false;
vrefConfig->enableLowRef = false;

Parameters:
  • config – Pointer to the initialization structure.

void VREF_SetTrimVal(VREF_Type *base, uint8_t trimValue)

Sets a TRIM value for the reference voltage.

This function sets a TRIM value for the reference voltage. Note that the TRIM value maximum is 0x3F.

Parameters:
  • base – VREF peripheral address.

  • trimValue – Value of the trim register to set the output reference voltage (maximum 0x3F (6-bit)).

static inline uint8_t VREF_GetTrimVal(VREF_Type *base)

Reads the value of the TRIM meaning output voltage.

This function gets the TRIM value from the TRM register.

Parameters:
  • base – VREF peripheral address.

Returns:

Six-bit value of trim setting.

void VREF_SetTrim2V1Val(VREF_Type *base, uint8_t trimValue)

Sets a TRIM value for the reference voltage (2V1).

This function sets a TRIM value for the reference voltage (2V1). Note that the TRIM value maximum is 0x3F.

Parameters:
  • base – VREF peripheral address.

  • trimValue – Value of the trim register to set the output reference voltage (maximum 0x3F (6-bit)).

static inline uint8_t VREF_GetTrim2V1Val(VREF_Type *base)

Reads the value of the TRIM meaning output voltage (2V1).

This function gets the TRIM value from the VREF_TRM4 register.

Parameters:
  • base – VREF peripheral address.

Returns:

Six-bit value of trim setting.

void VREF_SetLowReferenceTrimVal(VREF_Type *base, uint8_t trimValue)

Sets the TRIM value for the low voltage reference.

This function sets the TRIM value for low reference voltage. Note the following.

  • The TRIM value maximum is 0x05U

  • The values 111b and 110b are not valid/allowed.

Parameters:
  • base – VREF peripheral address.

  • trimValue – Value of the trim register to set output low reference voltage (maximum 0x05U (3-bit)).

static inline uint8_t VREF_GetLowReferenceTrimVal(VREF_Type *base)

Reads the value of the TRIM meaning output voltage.

This function gets the TRIM value from the VREFL_TRM register.

Parameters:
  • base – VREF peripheral address.

Returns:

Three-bit value of the trim setting.

FSL_VREF_DRIVER_VERSION

Version 2.1.2.

enum _vref_buffer_mode

VREF modes.

Values:

enumerator kVREF_ModeBandgapOnly

Bandgap on only, for stabilization and startup

enumerator kVREF_ModeHighPowerBuffer

High-power buffer mode enabled

enumerator kVREF_ModeLowPowerBuffer

Low-power buffer mode enabled

typedef enum _vref_buffer_mode vref_buffer_mode_t

VREF modes.

typedef struct _vref_config vref_config_t

The description structure for the VREF module.

VREF_SC_MODE_LV
VREF_SC_REGEN
VREF_SC_VREFEN
VREF_SC_ICOMPEN
VREF_SC_REGEN_MASK
VREF_SC_VREFST_MASK
VREF_SC_VREFEN_MASK
VREF_SC_MODE_LV_MASK
VREF_SC_ICOMPEN_MASK
TRM
VREF_TRM_TRIM
VREF_TRM_CHOPEN_MASK
VREF_TRM_TRIM_MASK
VREF_TRM_CHOPEN_SHIFT
VREF_TRM_TRIM_SHIFT
VREF_SC_MODE_LV_SHIFT
VREF_SC_REGEN_SHIFT
VREF_SC_VREFST_SHIFT
VREF_SC_ICOMPEN_SHIFT
struct _vref_config
#include <fsl_vref.h>

The description structure for the VREF module.

Public Members

vref_buffer_mode_t bufferMode

Buffer mode selection

bool enableLowRef

Set VREFL (0.4 V) reference buffer enable or disable

bool enableExternalVoltRef

Select external voltage reference or not (internal)

bool enable2V1VoltRef

Enable Internal Voltage Reference (2.1V)