MCXC041
ADC16: 16-bit SAR Analog-to-Digital Converter Driver
-
void ADC16_Init(ADC_Type *base, const adc16_config_t *config)
Initializes the ADC16 module.
- Parameters:
base – ADC16 peripheral base address.
config – Pointer to configuration structure. See “adc16_config_t”.
-
void ADC16_Deinit(ADC_Type *base)
De-initializes the ADC16 module.
- Parameters:
base – ADC16 peripheral base address.
-
void ADC16_GetDefaultConfig(adc16_config_t *config)
Gets an available pre-defined settings for the converter’s configuration.
This function initializes the converter configuration structure with available settings. The default values are as follows.
config->referenceVoltageSource = kADC16_ReferenceVoltageSourceVref; config->clockSource = kADC16_ClockSourceAsynchronousClock; config->enableAsynchronousClock = false; config->clockDivider = kADC16_ClockDivider8; config->resolution = kADC16_ResolutionSE12Bit; config->longSampleMode = kADC16_LongSampleDisabled; config->enableHighSpeed = false; config->enableLowPower = false; config->enableContinuousConversion = false;
- Parameters:
config – Pointer to the configuration structure.
-
status_t ADC16_DoAutoCalibration(ADC_Type *base)
Automates the hardware calibration.
This auto calibration helps to adjust the plus/minus side gain automatically. Execute the calibration before using the converter. Note that the hardware trigger should be used during the calibration.
- Parameters:
base – ADC16 peripheral base address.
- Return values:
kStatus_Success – Calibration is done successfully.
kStatus_Fail – Calibration has failed.
- Returns:
Execution status.
-
static inline void ADC16_SetOffsetValue(ADC_Type *base, int16_t value)
Sets the offset value for the conversion result.
This offset value takes effect on the conversion result. If the offset value is not zero, the reading result is subtracted by it. Note, the hardware calibration fills the offset value automatically.
- Parameters:
base – ADC16 peripheral base address.
value – Setting offset value.
-
static inline void ADC16_EnableDMA(ADC_Type *base, bool enable)
Enables generating the DMA trigger when the conversion is complete.
- Parameters:
base – ADC16 peripheral base address.
enable – Switcher of the DMA feature. “true” means enabled, “false” means not enabled.
-
static inline void ADC16_EnableHardwareTrigger(ADC_Type *base, bool enable)
Enables the hardware trigger mode.
- Parameters:
base – ADC16 peripheral base address.
enable – Switcher of the hardware trigger feature. “true” means enabled, “false” means not enabled.
-
void ADC16_SetChannelMuxMode(ADC_Type *base, adc16_channel_mux_mode_t mode)
Sets the channel mux mode.
Some sample pins share the same channel index. The channel mux mode decides which pin is used for an indicated channel.
- Parameters:
base – ADC16 peripheral base address.
mode – Setting channel mux mode. See “adc16_channel_mux_mode_t”.
-
void ADC16_SetHardwareCompareConfig(ADC_Type *base, const adc16_hardware_compare_config_t *config)
Configures the hardware compare mode.
The hardware compare mode provides a way to process the conversion result automatically by using hardware. Only the result in the compare range is available. To compare the range, see “adc16_hardware_compare_mode_t” or the appopriate reference manual for more information.
- Parameters:
base – ADC16 peripheral base address.
config – Pointer to the “adc16_hardware_compare_config_t” structure. Passing “NULL” disables the feature.
-
void ADC16_SetHardwareAverage(ADC_Type *base, adc16_hardware_average_mode_t mode)
Sets the hardware average mode.
The hardware average mode provides a way to process the conversion result automatically by using hardware. The multiple conversion results are accumulated and averaged internally making them easier to read.
- Parameters:
base – ADC16 peripheral base address.
mode – Setting the hardware average mode. See “adc16_hardware_average_mode_t”.
-
void ADC16_SetPGAConfig(ADC_Type *base, const adc16_pga_config_t *config)
Configures the PGA for the converter’s front end.
- Parameters:
base – ADC16 peripheral base address.
config – Pointer to the “adc16_pga_config_t” structure. Passing “NULL” disables the feature.
-
uint32_t ADC16_GetStatusFlags(ADC_Type *base)
Gets the status flags of the converter.
- Parameters:
base – ADC16 peripheral base address.
- Returns:
Flags’ mask if indicated flags are asserted. See “_adc16_status_flags”.
-
void ADC16_ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clears the status flags of the converter.
- Parameters:
base – ADC16 peripheral base address.
mask – Mask value for the cleared flags. See “_adc16_status_flags”.
-
static inline void ADC16_EnableAsynchronousClockOutput(ADC_Type *base, bool enable)
Enable/disable ADC Asynchronous clock output to other modules.
- Parameters:
base – ADC16 peripheral base address.
enable – Used to enable/disable ADC ADACK output.
true Asynchronous clock and clock output is enabled regardless of the state of the ADC.
false Asynchronous clock output disabled, asynchronous clock is enabled only if it is selected as input clock and a conversion is active.
-
void ADC16_SetChannelConfig(ADC_Type *base, uint32_t channelGroup, const adc16_channel_config_t *config)
Configures the conversion channel.
This operation triggers the conversion when in software trigger mode. When in hardware trigger mode, this API configures the channel while the external trigger source helps to trigger the conversion.
Note that the “Channel Group” has a detailed description. To allow sequential conversions of the ADC to be triggered by internal peripherals, the ADC has more than one group of status and control registers, one for each conversion. The channel group parameter indicates which group of registers are used, for example, channel group 0 is for Group A registers and channel group 1 is for Group B registers. The channel groups are used in a “ping-pong” approach to control the ADC operation. At any point, only one of the channel groups is actively controlling ADC conversions. The channel group 0 is used for both software and hardware trigger modes. Channel group 1 and greater indicates multiple channel group registers for use only in hardware trigger mode. See the chip configuration information in the appropriate MCU reference manual for the number of SC1n registers (channel groups) specific to this device. Channel group 1 or greater are not used for software trigger operation. Therefore, writing to these channel groups does not initiate a new conversion. Updating the channel group 0 while a different channel group is actively controlling a conversion is allowed and vice versa. Writing any of the channel group registers while that specific channel group is actively controlling a conversion aborts the current conversion.
- Parameters:
base – ADC16 peripheral base address.
channelGroup – Channel group index.
config – Pointer to the “adc16_channel_config_t” structure for the conversion channel.
-
static inline uint32_t ADC16_GetChannelConversionValue(ADC_Type *base, uint32_t channelGroup)
Gets the conversion value.
- Parameters:
base – ADC16 peripheral base address.
channelGroup – Channel group index.
- Returns:
Conversion value.
-
uint32_t ADC16_GetChannelStatusFlags(ADC_Type *base, uint32_t channelGroup)
Gets the status flags of channel.
- Parameters:
base – ADC16 peripheral base address.
channelGroup – Channel group index.
- Returns:
Flags’ mask if indicated flags are asserted. See “_adc16_channel_status_flags”.
-
FSL_ADC16_DRIVER_VERSION
ADC16 driver version 2.3.0.
-
enum _adc16_channel_status_flags
Channel status flags.
Values:
-
enumerator kADC16_ChannelConversionDoneFlag
Conversion done.
-
enumerator kADC16_ChannelConversionDoneFlag
-
enum _adc16_status_flags
Converter status flags.
Values:
-
enumerator kADC16_ActiveFlag
Converter is active.
-
enumerator kADC16_CalibrationFailedFlag
Calibration is failed.
-
enumerator kADC16_ActiveFlag
-
enum _adc_channel_mux_mode
Channel multiplexer mode for each channel.
For some ADC16 channels, there are two pin selections in channel multiplexer. For example, ADC0_SE4a and ADC0_SE4b are the different channels that share the same channel number.
Values:
-
enumerator kADC16_ChannelMuxA
For channel with channel mux a.
-
enumerator kADC16_ChannelMuxB
For channel with channel mux b.
-
enumerator kADC16_ChannelMuxA
-
enum _adc16_clock_divider
Clock divider for the converter.
Values:
-
enumerator kADC16_ClockDivider1
For divider 1 from the input clock to the module.
-
enumerator kADC16_ClockDivider2
For divider 2 from the input clock to the module.
-
enumerator kADC16_ClockDivider4
For divider 4 from the input clock to the module.
-
enumerator kADC16_ClockDivider8
For divider 8 from the input clock to the module.
-
enumerator kADC16_ClockDivider1
-
enum _adc16_resolution
Converter’s resolution.
Values:
-
enumerator kADC16_Resolution8or9Bit
Single End 8-bit or Differential Sample 9-bit.
-
enumerator kADC16_Resolution12or13Bit
Single End 12-bit or Differential Sample 13-bit.
-
enumerator kADC16_Resolution10or11Bit
Single End 10-bit or Differential Sample 11-bit.
-
enumerator kADC16_ResolutionSE8Bit
Single End 8-bit.
-
enumerator kADC16_ResolutionSE12Bit
Single End 12-bit.
-
enumerator kADC16_ResolutionSE10Bit
Single End 10-bit.
-
enumerator kADC16_ResolutionDF9Bit
Differential Sample 9-bit.
-
enumerator kADC16_ResolutionDF13Bit
Differential Sample 13-bit.
-
enumerator kADC16_ResolutionDF11Bit
Differential Sample 11-bit.
-
enumerator kADC16_Resolution8or9Bit
-
enum _adc16_clock_source
Clock source.
Values:
-
enumerator kADC16_ClockSourceAlt0
Selection 0 of the clock source.
-
enumerator kADC16_ClockSourceAlt1
Selection 1 of the clock source.
-
enumerator kADC16_ClockSourceAlt2
Selection 2 of the clock source.
-
enumerator kADC16_ClockSourceAlt3
Selection 3 of the clock source.
-
enumerator kADC16_ClockSourceAsynchronousClock
Using internal asynchronous clock.
-
enumerator kADC16_ClockSourceAlt0
-
enum _adc16_long_sample_mode
Long sample mode.
Values:
-
enumerator kADC16_LongSampleCycle24
20 extra ADCK cycles, 24 ADCK cycles total.
-
enumerator kADC16_LongSampleCycle16
12 extra ADCK cycles, 16 ADCK cycles total.
-
enumerator kADC16_LongSampleCycle10
6 extra ADCK cycles, 10 ADCK cycles total.
-
enumerator kADC16_LongSampleCycle6
2 extra ADCK cycles, 6 ADCK cycles total.
-
enumerator kADC16_LongSampleDisabled
Disable the long sample feature.
-
enumerator kADC16_LongSampleCycle24
-
enum _adc16_reference_voltage_source
Reference voltage source.
Values:
-
enumerator kADC16_ReferenceVoltageSourceVref
For external pins pair of VrefH and VrefL.
-
enumerator kADC16_ReferenceVoltageSourceValt
For alternate reference pair of ValtH and ValtL.
-
enumerator kADC16_ReferenceVoltageSourceVref
-
enum _adc16_hardware_average_mode
Hardware average mode.
Values:
-
enumerator kADC16_HardwareAverageCount4
For hardware average with 4 samples.
-
enumerator kADC16_HardwareAverageCount8
For hardware average with 8 samples.
-
enumerator kADC16_HardwareAverageCount16
For hardware average with 16 samples.
-
enumerator kADC16_HardwareAverageCount32
For hardware average with 32 samples.
-
enumerator kADC16_HardwareAverageDisabled
Disable the hardware average feature.
-
enumerator kADC16_HardwareAverageCount4
-
enum _adc16_hardware_compare_mode
Hardware compare mode.
Values:
-
enumerator kADC16_HardwareCompareMode0
x < value1.
-
enumerator kADC16_HardwareCompareMode1
x > value1.
-
enumerator kADC16_HardwareCompareMode2
if value1 <= value2, then x < value1 || x > value2; else, value1 > x > value2.
-
enumerator kADC16_HardwareCompareMode3
if value1 <= value2, then value1 <= x <= value2; else x >= value1 || x <= value2.
-
enumerator kADC16_HardwareCompareMode0
-
enum _adc16_pga_gain
PGA’s Gain mode.
Values:
-
enumerator kADC16_PGAGainValueOf1
For amplifier gain of 1.
-
enumerator kADC16_PGAGainValueOf2
For amplifier gain of 2.
-
enumerator kADC16_PGAGainValueOf4
For amplifier gain of 4.
-
enumerator kADC16_PGAGainValueOf8
For amplifier gain of 8.
-
enumerator kADC16_PGAGainValueOf16
For amplifier gain of 16.
-
enumerator kADC16_PGAGainValueOf32
For amplifier gain of 32.
-
enumerator kADC16_PGAGainValueOf64
For amplifier gain of 64.
-
enumerator kADC16_PGAGainValueOf1
-
typedef enum _adc_channel_mux_mode adc16_channel_mux_mode_t
Channel multiplexer mode for each channel.
For some ADC16 channels, there are two pin selections in channel multiplexer. For example, ADC0_SE4a and ADC0_SE4b are the different channels that share the same channel number.
-
typedef enum _adc16_clock_divider adc16_clock_divider_t
Clock divider for the converter.
-
typedef enum _adc16_resolution adc16_resolution_t
Converter’s resolution.
-
typedef enum _adc16_clock_source adc16_clock_source_t
Clock source.
-
typedef enum _adc16_long_sample_mode adc16_long_sample_mode_t
Long sample mode.
-
typedef enum _adc16_reference_voltage_source adc16_reference_voltage_source_t
Reference voltage source.
-
typedef enum _adc16_hardware_average_mode adc16_hardware_average_mode_t
Hardware average mode.
-
typedef enum _adc16_hardware_compare_mode adc16_hardware_compare_mode_t
Hardware compare mode.
-
typedef enum _adc16_pga_gain adc16_pga_gain_t
PGA’s Gain mode.
-
typedef struct _adc16_config adc16_config_t
ADC16 converter configuration.
-
typedef struct _adc16_hardware_compare_config adc16_hardware_compare_config_t
ADC16 Hardware comparison configuration.
-
typedef struct _adc16_channel_config adc16_channel_config_t
ADC16 channel conversion configuration.
-
typedef struct _adc16_pga_config adc16_pga_config_t
ADC16 programmable gain amplifier configuration.
-
struct _adc16_config
- #include <fsl_adc16.h>
ADC16 converter configuration.
Public Members
-
adc16_reference_voltage_source_t referenceVoltageSource
Select the reference voltage source.
-
adc16_clock_source_t clockSource
Select the input clock source to converter.
-
bool enableAsynchronousClock
Enable the asynchronous clock output.
-
adc16_clock_divider_t clockDivider
Select the divider of input clock source.
-
adc16_resolution_t resolution
Select the sample resolution mode.
-
adc16_long_sample_mode_t longSampleMode
Select the long sample mode.
-
bool enableHighSpeed
Enable the high-speed mode.
-
bool enableLowPower
Enable low power.
-
bool enableContinuousConversion
Enable continuous conversion mode.
-
adc16_hardware_average_mode_t hardwareAverageMode
Set hardware average mode.
-
adc16_reference_voltage_source_t referenceVoltageSource
-
struct _adc16_hardware_compare_config
- #include <fsl_adc16.h>
ADC16 Hardware comparison configuration.
Public Members
-
adc16_hardware_compare_mode_t hardwareCompareMode
Select the hardware compare mode. See “adc16_hardware_compare_mode_t”.
-
int16_t value1
Setting value1 for hardware compare mode.
-
int16_t value2
Setting value2 for hardware compare mode.
-
adc16_hardware_compare_mode_t hardwareCompareMode
-
struct _adc16_channel_config
- #include <fsl_adc16.h>
ADC16 channel conversion configuration.
Public Members
-
uint32_t channelNumber
Setting the conversion channel number. The available range is 0-31. See channel connection information for each chip in Reference Manual document.
-
bool enableInterruptOnConversionCompleted
Generate an interrupt request once the conversion is completed.
-
bool enableDifferentialConversion
Using Differential sample mode.
-
uint32_t channelNumber
-
struct _adc16_pga_config
- #include <fsl_adc16.h>
ADC16 programmable gain amplifier configuration.
Public Members
-
adc16_pga_gain_t pgaGain
Setting PGA gain.
-
bool enableRunInNormalMode
Enable PGA working in normal mode, or low power mode by default.
-
bool disablePgaChopping
Disable the PGA chopping function. The PGA employs chopping to remove/reduce offset and 1/f noise and offers an offset measurement configuration that aids the offset calibration.
-
bool enableRunInOffsetMeasurement
Enable the PGA working in offset measurement mode. When this feature is enabled, the PGA disconnects itself from the external inputs and auto-configures into offset measurement mode. With this field set, run the ADC in the recommended settings and enable the maximum hardware averaging to get the PGA offset number. The output is the (PGA offset * (64+1)) for the given PGA setting.
-
adc16_pga_gain_t pgaGain
Clock Driver
-
enum _clock_name
Clock name used to get clock frequency.
Values:
-
enumerator kCLOCK_CoreSysClk
Core/system clock
-
enumerator kCLOCK_PlatClk
Platform clock
-
enumerator kCLOCK_BusClk
Bus clock
-
enumerator kCLOCK_FlashClk
Flash clock
-
enumerator kCLOCK_Er32kClk
External reference 32K clock (ERCLK32K)
-
enumerator kCLOCK_Osc0ErClk
OSC0 external reference clock (OSC0ERCLK)
-
enumerator kCLOCK_McgFixedFreqClk
MCG fixed frequency clock (MCGFFCLK)
-
enumerator kCLOCK_McgInternalRefClk
MCG internal reference clock (MCGIRCLK)
-
enumerator kCLOCK_McgFllClk
MCGFLLCLK
-
enumerator kCLOCK_McgPeriphClk
MCG peripheral clock (MCGPCLK)
-
enumerator kCLOCK_McgIrc48MClk
MCG IRC48M clock
-
enumerator kCLOCK_LpoClk
LPO clock
-
enumerator kCLOCK_CoreSysClk
-
enum _clock_ip_name
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.
Values:
-
enumerator kCLOCK_IpInvalid
-
enumerator kCLOCK_I2c0
-
enumerator kCLOCK_Cmp0
-
enumerator kCLOCK_Vref0
-
enumerator kCLOCK_Spi0
-
enumerator kCLOCK_Lptmr0
-
enumerator kCLOCK_PortA
-
enumerator kCLOCK_PortB
-
enumerator kCLOCK_Lpuart0
-
enumerator kCLOCK_Ftf0
-
enumerator kCLOCK_Tpm0
-
enumerator kCLOCK_Tpm1
-
enumerator kCLOCK_Adc0
-
enumerator kCLOCK_Rtc0
-
enumerator kCLOCK_IpInvalid
-
enum _osc_cap_load
Oscillator capacitor load setting.
Values:
-
enumerator kOSC_Cap2P
2 pF capacitor load
-
enumerator kOSC_Cap4P
4 pF capacitor load
-
enumerator kOSC_Cap8P
8 pF capacitor load
-
enumerator kOSC_Cap16P
16 pF capacitor load
-
enumerator kOSC_Cap2P
-
enum _oscer_enable_mode
OSCERCLK enable mode.
Values:
-
enumerator kOSC_ErClkEnable
Enable.
-
enumerator kOSC_ErClkEnableInStop
Enable in stop mode.
-
enumerator kOSC_ErClkEnable
-
enum _osc_mode
The OSC work mode.
Values:
-
enumerator kOSC_ModeExt
Use external clock.
-
enumerator kOSC_ModeOscLowPower
Oscillator low power.
-
enumerator kOSC_ModeExt
-
enum _mcglite_clkout_src
MCG_Lite clock source selection.
Values:
-
enumerator kMCGLITE_ClkSrcHirc
MCGOUTCLK source is HIRC
-
enumerator kMCGLITE_ClkSrcLirc
MCGOUTCLK source is LIRC
-
enumerator kMCGLITE_ClkSrcExt
MCGOUTCLK source is external clock source
-
enumerator kMCGLITE_ClkSrcReserved
-
enumerator kMCGLITE_ClkSrcHirc
-
enum _mcglite_lirc_mode
MCG_Lite LIRC select.
Values:
-
enumerator kMCGLITE_Lirc2M
Slow internal reference(LIRC) 2 MHz clock selected
-
enumerator kMCGLITE_Lirc8M
Slow internal reference(LIRC) 8 MHz clock selected
-
enumerator kMCGLITE_Lirc2M
-
enum _mcglite_lirc_div
MCG_Lite divider factor selection for clock source.
Values:
-
enumerator kMCGLITE_LircDivBy1
Divider is 1
-
enumerator kMCGLITE_LircDivBy2
Divider is 2
-
enumerator kMCGLITE_LircDivBy4
Divider is 4
-
enumerator kMCGLITE_LircDivBy8
Divider is 8
-
enumerator kMCGLITE_LircDivBy16
Divider is 16
-
enumerator kMCGLITE_LircDivBy32
Divider is 32
-
enumerator kMCGLITE_LircDivBy64
Divider is 64
-
enumerator kMCGLITE_LircDivBy128
Divider is 128
-
enumerator kMCGLITE_LircDivBy1
-
enum _mcglite_mode
MCG_Lite clock mode definitions.
Values:
-
enumerator kMCGLITE_ModeHirc48M
Clock mode is HIRC 48 M
-
enumerator kMCGLITE_ModeLirc8M
Clock mode is LIRC 8 M
-
enumerator kMCGLITE_ModeLirc2M
Clock mode is LIRC 2 M
-
enumerator kMCGLITE_ModeExt
Clock mode is EXT
-
enumerator kMCGLITE_ModeError
Unknown mode
-
enumerator kMCGLITE_ModeHirc48M
-
enum _mcglite_irclk_enable_mode
MCG internal reference clock (MCGIRCLK) enable mode definition.
Values:
-
enumerator kMCGLITE_IrclkEnable
MCGIRCLK enable.
-
enumerator kMCGLITE_IrclkEnableInStop
MCGIRCLK enable in stop mode.
-
enumerator kMCGLITE_IrclkEnable
-
typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.
-
typedef enum _clock_ip_name clock_ip_name_t
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.
-
typedef struct _sim_clock_config sim_clock_config_t
SIM configuration structure for clock setting.
-
typedef struct _oscer_config oscer_config_t
The OSC configuration for OSCERCLK.
-
typedef enum _osc_mode osc_mode_t
The OSC work mode.
-
typedef struct _osc_config osc_config_t
OSC Initialization Configuration Structure.
Defines the configuration data structure to initialize the OSC. When porting to a new board, set the following members according to the board settings:
freq: The external frequency.
workMode: The OSC module mode.
-
typedef enum _mcglite_clkout_src mcglite_clkout_src_t
MCG_Lite clock source selection.
-
typedef enum _mcglite_lirc_mode mcglite_lirc_mode_t
MCG_Lite LIRC select.
-
typedef enum _mcglite_lirc_div mcglite_lirc_div_t
MCG_Lite divider factor selection for clock source.
-
typedef enum _mcglite_mode mcglite_mode_t
MCG_Lite clock mode definitions.
-
typedef struct _mcglite_config mcglite_config_t
MCG_Lite configure structure for mode change.
-
volatile uint32_t g_xtal0Freq
External XTAL0 (OSC0) clock frequency.
The XTAL0/EXTAL0 (OSC0) clock frequency in Hz. When the clock is set up, use the function CLOCK_SetXtal0Freq to set the value in the clock driver. For example, if XTAL0 is 8 MHz:
CLOCK_InitOsc0(...); // Set up the OSC0 CLOCK_SetXtal0Freq(80000000); // Set the XTAL0 value to clock driver.
This is important for the multicore platforms where one core needs to set up the OSC0 using the CLOCK_InitOsc0. All other cores need to call the CLOCK_SetXtal0Freq to get a valid clock frequency.
-
volatile uint32_t g_xtal32Freq
The external XTAL32/EXTAL32/RTC_CLKIN clock frequency.
The XTAL32/EXTAL32/RTC_CLKIN clock frequency in Hz. When the clock is set up, use the function CLOCK_SetXtal32Freq to set the value in the clock driver.
This is important for the multicore platforms where one core needs to set up the clock. All other cores need to call the CLOCK_SetXtal32Freq to get a valid clock frequency.
-
static inline void CLOCK_EnableClock(clock_ip_name_t name)
Enable the clock for specific IP.
- Parameters:
name – Which clock to enable, see clock_ip_name_t.
-
static inline void CLOCK_DisableClock(clock_ip_name_t name)
Disable the clock for specific IP.
- Parameters:
name – Which clock to disable, see clock_ip_name_t.
-
static inline void CLOCK_SetEr32kClock(uint32_t src)
Set ERCLK32K source.
- Parameters:
src – The value to set ERCLK32K clock source.
-
static inline void CLOCK_SetLpuart0Clock(uint32_t src)
Set LPUART clock source.
- Parameters:
src – The value to set LPUART clock source.
-
static inline void CLOCK_SetTpmClock(uint32_t src)
Set TPM clock source.
- Parameters:
src – The value to set TPM clock source.
-
static inline void CLOCK_SetClkOutClock(uint32_t src)
Set CLKOUT source.
- Parameters:
src – The value to set CLKOUT source.
-
static inline void CLOCK_SetRtcClkOutClock(uint32_t src)
Set RTC_CLKOUT source.
- Parameters:
src – The value to set RTC_CLKOUT source.
-
static inline void CLOCK_SetOutDiv(uint32_t outdiv1, uint32_t outdiv4)
System clock divider.
Set the SIM_CLKDIV1[OUTDIV1], SIM_CLKDIV1[OUTDIV4].
- Parameters:
outdiv1 – Clock 1 output divider value.
outdiv4 – Clock 4 output divider value.
-
uint32_t CLOCK_GetFreq(clock_name_t clockName)
Gets the clock frequency for a specific clock name.
This function checks the current clock configurations and then calculates the clock frequency for a specific clock name defined in clock_name_t. The MCG must be properly configured before using this function.
- Parameters:
clockName – Clock names defined in clock_name_t
- Returns:
Clock frequency value in Hertz
-
uint32_t CLOCK_GetCoreSysClkFreq(void)
Get the core clock or system clock frequency.
- Returns:
Clock frequency in Hz.
-
uint32_t CLOCK_GetPlatClkFreq(void)
Get the platform clock frequency.
- Returns:
Clock frequency in Hz.
-
uint32_t CLOCK_GetBusClkFreq(void)
Get the bus clock frequency.
- Returns:
Clock frequency in Hz.
-
uint32_t CLOCK_GetFlashClkFreq(void)
Get the flash clock frequency.
- Returns:
Clock frequency in Hz.
-
uint32_t CLOCK_GetEr32kClkFreq(void)
Get the external reference 32K clock frequency (ERCLK32K).
- Returns:
Clock frequency in Hz.
-
uint32_t CLOCK_GetOsc0ErClkFreq(void)
Get the OSC0 external reference clock frequency (OSC0ERCLK).
- Returns:
Clock frequency in Hz.
-
void CLOCK_SetSimConfig(sim_clock_config_t const *config)
Set the clock configure in SIM module.
This function sets system layer clock settings in SIM module.
- Parameters:
config – Pointer to the configure structure.
-
static inline void CLOCK_SetSimSafeDivs(void)
Set the system clock dividers in SIM to safe value.
The system level clocks (core clock, bus clock, flexbus clock and flash clock) must be in allowed ranges. During MCG clock mode switch, the MCG output clock changes then the system level clocks may be out of range. This function could be used before MCG mode change, to make sure system level clocks are in allowed range.
- Parameters:
config – Pointer to the configure structure.
-
FSL_CLOCK_DRIVER_VERSION
CLOCK driver version 2.0.0.
-
SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
-
RTC_CLOCKS
Clock ip name array for RTC.
-
LPUART_CLOCKS
Clock ip name array for LPUART.
-
SPI_CLOCKS
Clock ip name array for SPI.
-
LPTMR_CLOCKS
Clock ip name array for LPTMR.
-
ADC16_CLOCKS
Clock ip name array for ADC16.
-
TPM_CLOCKS
Clock ip name array for TPM.
-
VREF_CLOCKS
Clock ip name array for VREF.
-
I2C_CLOCKS
Clock ip name array for I2C.
-
PORT_CLOCKS
Clock ip name array for PORT.
-
FTF_CLOCKS
Clock ip name array for FTF.
-
CMP_CLOCKS
Clock ip name array for CMP.
-
LPO_CLK_FREQ
LPO clock frequency.
-
SYS_CLK
Peripherals clock source definition.
-
BUS_CLK
-
I2C0_CLK_SRC
-
SPI0_CLK_SRC
-
CLK_GATE_REG_OFFSET_SHIFT
-
CLK_GATE_REG_OFFSET_MASK
-
CLK_GATE_BIT_SHIFT_SHIFT
-
CLK_GATE_BIT_SHIFT_MASK
-
CLK_GATE_DEFINE(reg_offset, bit_shift)
-
CLK_GATE_ABSTRACT_REG_OFFSET(x)
-
CLK_GATE_ABSTRACT_BITS_SHIFT(x)
-
uint32_t CLOCK_GetOutClkFreq(void)
Gets the MCG_Lite output clock (MCGOUTCLK) frequency.
This function gets the MCG_Lite output clock frequency in Hz based on the current MCG_Lite register value.
- Returns:
The frequency of MCGOUTCLK.
-
uint32_t CLOCK_GetInternalRefClkFreq(void)
Gets the MCG internal reference clock (MCGIRCLK) frequency.
This function gets the MCG_Lite internal reference clock frequency in Hz based on the current MCG register value.
- Returns:
The frequency of MCGIRCLK.
-
uint32_t CLOCK_GetPeriphClkFreq(void)
Gets the current MCGPCLK frequency.
This function gets the MCGPCLK frequency in Hz based on the current MCG_Lite register settings.
- Returns:
The frequency of MCGPCLK.
-
mcglite_mode_t CLOCK_GetMode(void)
Gets the current MCG_Lite mode.
This function checks the MCG_Lite registers and determines the current MCG_Lite mode.
- Returns:
The current MCG_Lite mode or error code.
-
status_t CLOCK_SetMcgliteConfig(mcglite_config_t const *targetConfig)
Sets the MCG_Lite configuration.
This function configures the MCG_Lite, includes the output clock source, MCGIRCLK settings, HIRC settings, and so on. See mcglite_config_t for details.
- Parameters:
targetConfig – Pointer to the target MCG_Lite mode configuration structure.
- Returns:
Error code.
-
static inline void OSC_SetExtRefClkConfig(OSC_Type *base, oscer_config_t const *config)
Configures the OSC external reference clock (OSCERCLK).
This function configures the OSC external reference clock (OSCERCLK). This is an example to enable the OSCERCLK in normal mode and stop mode, and set the output divider to 1.
oscer_config_t config = { .enableMode = kOSC_ErClkEnable | kOSC_ErClkEnableInStop, .erclkDiv = 1U, }; OSC_SetExtRefClkConfig(OSC, &config);
- Parameters:
base – OSC peripheral address.
config – Pointer to the configuration structure.
-
static inline void OSC_SetCapLoad(OSC_Type *base, uint8_t capLoad)
Sets the capacitor load configuration for the oscillator.
This function sets the specified capacitor configuration for the oscillator. This should be done in the early system level initialization function call based on the system configuration.
Example:
// To enable only 2 pF and 8 pF capacitor load, please use like this. OSC_SetCapLoad(OSC, kOSC_Cap2P | kOSC_Cap8P);
- Parameters:
base – OSC peripheral address.
capLoad – OR’ed value for the capacitor load option.See _osc_cap_load.
-
void CLOCK_InitOsc0(osc_config_t const *config)
Initializes the OSC0.
This function initializes the OSC0 according to the board configuration.
- Parameters:
config – Pointer to the OSC0 configuration structure.
-
void CLOCK_DeinitOsc0(void)
Deinitializes the OSC0.
This function deinitializes the OSC0.
-
static inline void CLOCK_SetXtal0Freq(uint32_t freq)
Sets the XTAL0 frequency based on board settings.
- Parameters:
freq – The XTAL0/EXTAL0 input clock frequency in Hz.
-
static inline void CLOCK_SetXtal32Freq(uint32_t freq)
Sets the XTAL32/RTC_CLKIN frequency based on board settings.
- Parameters:
freq – The XTAL32/EXTAL32/RTC_CLKIN input clock frequency in Hz.
-
uint8_t er32kSrc
ERCLK32K source selection.
-
uint32_t clkdiv1
SIM_CLKDIV1.
-
uint8_t enableMode
OSCERCLK enable mode. OR’ed value of _oscer_enable_mode.
-
uint32_t freq
External clock frequency.
-
uint8_t capLoad
Capacitor load setting.
-
osc_mode_t workMode
OSC work mode setting.
-
oscer_config_t oscerConfig
Configuration for OSCERCLK.
-
mcglite_clkout_src_t outSrc
MCGOUT clock select.
-
uint8_t irclkEnableMode
MCGIRCLK enable mode, OR’ed value of _mcglite_irclk_enable_mode.
-
mcglite_lirc_mode_t ircs
MCG_C2[IRCS].
-
mcglite_lirc_div_t fcrdiv
MCG_SC[FCRDIV].
-
mcglite_lirc_div_t lircDiv2
MCG_MC[LIRC_DIV2].
-
bool hircEnableInNotHircMode
HIRC enable when not in HIRC mode.
-
FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
Configure whether driver controls clock.
When set to 0, peripheral drivers will enable clock in initialize function and disable clock in de-initialize function. When set to 1, peripheral driver will not control the clock, application could control the clock out of the driver.
Note
All drivers share this feature switcher. If it is set to 1, application should handle clock enable and disable for all drivers.
-
struct _sim_clock_config
- #include <fsl_clock.h>
SIM configuration structure for clock setting.
-
struct _oscer_config
- #include <fsl_clock.h>
The OSC configuration for OSCERCLK.
-
struct _osc_config
- #include <fsl_clock.h>
OSC Initialization Configuration Structure.
Defines the configuration data structure to initialize the OSC. When porting to a new board, set the following members according to the board settings:
freq: The external frequency.
workMode: The OSC module mode.
-
struct _mcglite_config
- #include <fsl_clock.h>
MCG_Lite configure structure for mode change.
CMP: Analog Comparator Driver
-
void CMP_Init(CMP_Type *base, const cmp_config_t *config)
Initializes the CMP.
This function initializes the CMP module. The operations included are as follows.
Enabling the clock for CMP module.
Configuring the comparator.
Enabling the CMP module. Note that for some devices, multiple CMP instances share the same clock gate. In this case, to enable the clock for any instance enables all CMPs. See the appropriate MCU reference manual for the clock assignment of the CMP.
- Parameters:
base – CMP peripheral base address.
config – Pointer to the configuration structure.
-
void CMP_Deinit(CMP_Type *base)
De-initializes the CMP module.
This function de-initializes the CMP module. The operations included are as follows.
Disabling the CMP module.
Disabling the clock for CMP module.
This function disables the clock for the CMP. Note that for some devices, multiple CMP instances share the same clock gate. In this case, before disabling the clock for the CMP, ensure that all the CMP instances are not used.
- Parameters:
base – CMP peripheral base address.
-
static inline void CMP_Enable(CMP_Type *base, bool enable)
Enables/disables the CMP module.
- Parameters:
base – CMP peripheral base address.
enable – Enables or disables the module.
-
void CMP_GetDefaultConfig(cmp_config_t *config)
Initializes the CMP user configuration structure.
This function initializes the user configuration structure to these default values.
config->enableCmp = true; config->hysteresisMode = kCMP_HysteresisLevel0; config->enableHighSpeed = false; config->enableInvertOutput = false; config->useUnfilteredOutput = false; config->enablePinOut = false; config->enableTriggerMode = false;
- Parameters:
config – Pointer to the configuration structure.
-
void CMP_SetInputChannels(CMP_Type *base, uint8_t positiveChannel, uint8_t negativeChannel)
Sets the input channels for the comparator.
This function sets the input channels for the comparator. Note that two input channels cannot be set the same way in the application. When the user selects the same input from the analog mux to the positive and negative port, the comparator is disabled automatically.
- Parameters:
base – CMP peripheral base address.
positiveChannel – Positive side input channel number. Available range is 0-7.
negativeChannel – Negative side input channel number. Available range is 0-7.
-
void CMP_EnableDMA(CMP_Type *base, bool enable)
Enables/disables the DMA request for rising/falling events.
This function enables/disables the DMA request for rising/falling events. Either event triggers the generation of the DMA request from CMP if the DMA feature is enabled. Both events are ignored for generating the DMA request from the CMP if the DMA is disabled.
- Parameters:
base – CMP peripheral base address.
enable – Enables or disables the feature.
-
static inline void CMP_EnableWindowMode(CMP_Type *base, bool enable)
Enables/disables the window mode.
- Parameters:
base – CMP peripheral base address.
enable – Enables or disables the feature.
-
static inline void CMP_EnablePassThroughMode(CMP_Type *base, bool enable)
Enables/disables the pass through mode.
- Parameters:
base – CMP peripheral base address.
enable – Enables or disables the feature.
-
void CMP_SetFilterConfig(CMP_Type *base, const cmp_filter_config_t *config)
Configures the filter.
- Parameters:
base – CMP peripheral base address.
config – Pointer to the configuration structure.
-
void CMP_SetDACConfig(CMP_Type *base, const cmp_dac_config_t *config)
Configures the internal DAC.
- Parameters:
base – CMP peripheral base address.
config – Pointer to the configuration structure. “NULL” disables the feature.
-
void CMP_EnableInterrupts(CMP_Type *base, uint32_t mask)
Enables the interrupts.
- Parameters:
base – CMP peripheral base address.
mask – Mask value for interrupts. See “_cmp_interrupt_enable”.
-
void CMP_DisableInterrupts(CMP_Type *base, uint32_t mask)
Disables the interrupts.
- Parameters:
base – CMP peripheral base address.
mask – Mask value for interrupts. See “_cmp_interrupt_enable”.
-
uint32_t CMP_GetStatusFlags(CMP_Type *base)
Gets the status flags.
- Parameters:
base – CMP peripheral base address.
- Returns:
Mask value for the asserted flags. See “_cmp_status_flags”.
-
void CMP_ClearStatusFlags(CMP_Type *base, uint32_t mask)
Clears the status flags.
- Parameters:
base – CMP peripheral base address.
mask – Mask value for the flags. See “_cmp_status_flags”.
-
FSL_CMP_DRIVER_VERSION
CMP driver version 2.0.3.
-
enum _cmp_interrupt_enable
Interrupt enable/disable mask.
Values:
-
enumerator kCMP_OutputRisingInterruptEnable
Comparator interrupt enable rising.
-
enumerator kCMP_OutputFallingInterruptEnable
Comparator interrupt enable falling.
-
enumerator kCMP_OutputRisingInterruptEnable
-
enum _cmp_status_flags
Status flags’ mask.
Values:
-
enumerator kCMP_OutputRisingEventFlag
Rising-edge on the comparison output has occurred.
-
enumerator kCMP_OutputFallingEventFlag
Falling-edge on the comparison output has occurred.
-
enumerator kCMP_OutputAssertEventFlag
Return the current value of the analog comparator output.
-
enumerator kCMP_OutputRisingEventFlag
-
enum _cmp_hysteresis_mode
CMP Hysteresis mode.
Values:
-
enumerator kCMP_HysteresisLevel0
Hysteresis level 0.
-
enumerator kCMP_HysteresisLevel1
Hysteresis level 1.
-
enumerator kCMP_HysteresisLevel2
Hysteresis level 2.
-
enumerator kCMP_HysteresisLevel3
Hysteresis level 3.
-
enumerator kCMP_HysteresisLevel0
-
enum _cmp_reference_voltage_source
CMP Voltage Reference source.
Values:
-
enumerator kCMP_VrefSourceVin1
Vin1 is selected as a resistor ladder network supply reference Vin.
-
enumerator kCMP_VrefSourceVin2
Vin2 is selected as a resistor ladder network supply reference Vin.
-
enumerator kCMP_VrefSourceVin1
-
typedef enum _cmp_hysteresis_mode cmp_hysteresis_mode_t
CMP Hysteresis mode.
-
typedef enum _cmp_reference_voltage_source cmp_reference_voltage_source_t
CMP Voltage Reference source.
-
typedef struct _cmp_config cmp_config_t
Configures the comparator.
-
typedef struct _cmp_filter_config cmp_filter_config_t
Configures the filter.
-
typedef struct _cmp_dac_config cmp_dac_config_t
Configures the internal DAC.
-
struct _cmp_config
- #include <fsl_cmp.h>
Configures the comparator.
Public Members
-
bool enableCmp
Enable the CMP module.
-
cmp_hysteresis_mode_t hysteresisMode
CMP Hysteresis mode.
-
bool enableHighSpeed
Enable High-speed (HS) comparison mode.
-
bool enableInvertOutput
Enable the inverted comparator output.
-
bool useUnfilteredOutput
Set the compare output(COUT) to equal COUTA(true) or COUT(false).
-
bool enablePinOut
The comparator output is available on the associated pin.
-
bool enableTriggerMode
Enable the trigger mode.
-
bool enableCmp
-
struct _cmp_filter_config
- #include <fsl_cmp.h>
Configures the filter.
Public Members
-
bool enableSample
Using the external SAMPLE as a sampling clock input or using a divided bus clock.
-
uint8_t filterCount
Filter Sample Count. Available range is 1-7; 0 disables the filter.
-
uint8_t filterPeriod
Filter Sample Period. The divider to the bus clock. Available range is 0-255.
-
bool enableSample
-
struct _cmp_dac_config
- #include <fsl_cmp.h>
Configures the internal DAC.
Public Members
-
cmp_reference_voltage_source_t referenceVoltageSource
Supply voltage reference source.
-
uint8_t DACValue
Value for the DAC Output Voltage. Available range is 0-63.
-
cmp_reference_voltage_source_t referenceVoltageSource
COP: Watchdog Driver
-
void COP_GetDefaultConfig(cop_config_t *config)
Initializes the COP configuration structure.
This function initializes the COP configuration structure to default values. The default values are:
copConfig->enableWindowMode = false; copConfig->timeoutMode = kCOP_LongTimeoutMode; copConfig->enableStop = false; copConfig->enableDebug = false; copConfig->clockSource = kCOP_LpoClock; copConfig->timeoutCycles = kCOP_2Power10CyclesOr2Power18Cycles;
See also
cop_config_t
- Parameters:
config – Pointer to the COP configuration structure.
-
void COP_Init(SIM_Type *base, const cop_config_t *config)
Initializes the COP module.
This function configures the COP. After it is called, the COP starts running according to the configuration. Because all COP control registers are write-once only, the COP_Init function and the COP_Disable function can be called only once. A second call has no effect.
Example:
cop_config_t config; COP_GetDefaultConfig(&config); config.timeoutCycles = kCOP_2Power8CyclesOr2Power16Cycles; COP_Init(sim_base,&config);
- Parameters:
base – SIM peripheral base address.
config – The configuration of COP.
-
static inline void COP_Disable(SIM_Type *base)
De-initializes the COP module. This dedicated function is not provided. Instead, the COP_Disable function can be used to disable the COP.
Disables the COP module.
This function disables the COP Watchdog. Note: The COP configuration register is a write-once after reset. To disable the COP Watchdog, call this function first.
- Parameters:
base – SIM peripheral base address.
-
void COP_Refresh(SIM_Type *base)
Refreshes the COP timer.
This function feeds the COP.
- Parameters:
base – SIM peripheral base address.
-
FSL_COP_DRIVER_VERSION
COP driver version 2.0.1.
-
COP_FIRST_BYTE_OF_REFRESH
First byte of refresh sequence
-
COP_SECOND_BYTE_OF_REFRESH
Second byte of refresh sequence
-
enum _cop_clock_source
COP clock source selection.
Values:
-
enumerator kCOP_LpoClock
COP clock sourced from LPO
-
enumerator kCOP_McgIrClock
COP clock sourced from MCGIRCLK
-
enumerator kCOP_OscErClock
COP clock sourced from OSCERCLK
-
enumerator kCOP_BusClock
COP clock sourced from Bus clock
-
enumerator kCOP_LpoClock
-
enum _cop_timeout_cycles
Define the COP timeout cycles.
Values:
-
enumerator kCOP_2Power5CyclesOr2Power13Cycles
2^5 or 2^13 clock cycles
-
enumerator kCOP_2Power8CyclesOr2Power16Cycles
2^8 or 2^16 clock cycles
-
enumerator kCOP_2Power10CyclesOr2Power18Cycles
2^10 or 2^18 clock cycles
-
enumerator kCOP_2Power5CyclesOr2Power13Cycles
-
enum _cop_timeout_mode
Define the COP timeout mode.
Values:
-
enumerator kCOP_ShortTimeoutMode
COP selects long timeout
-
enumerator kCOP_LongTimeoutMode
COP selects short timeout
-
enumerator kCOP_ShortTimeoutMode
-
typedef enum _cop_clock_source cop_clock_source_t
COP clock source selection.
-
typedef enum _cop_timeout_cycles cop_timeout_cycles_t
Define the COP timeout cycles.
-
typedef enum _cop_timeout_mode cop_timeout_mode_t
Define the COP timeout mode.
-
typedef struct _cop_config cop_config_t
Describes COP configuration structure.
-
struct _cop_config
- #include <fsl_cop.h>
Describes COP configuration structure.
Public Members
-
bool enableWindowMode
COP run mode: window mode or normal mode
-
cop_timeout_mode_t timeoutMode
COP timeout mode: long timeout or short timeout
-
bool enableStop
Enable or disable COP in STOP mode
-
bool enableDebug
Enable or disable COP in DEBUG mode
-
cop_clock_source_t clockSource
Set COP clock source
-
cop_timeout_cycles_t timeoutCycles
Set COP timeout value
-
bool enableWindowMode
FGPIO Driver
-
void FGPIO_PinInit(FGPIO_Type *base, uint32_t pin, const gpio_pin_config_t *config)
Initializes a FGPIO pin used by the board.
To initialize the FGPIO driver, define a pin configuration, as either input or output, in the user file. Then, call the FGPIO_PinInit() function.
This is an example to define an input pin or an output pin configuration:
Define a digital input pin configuration, gpio_pin_config_t config = { kGPIO_DigitalInput, 0, } Define a digital output pin configuration, gpio_pin_config_t config = { kGPIO_DigitalOutput, 0, }
- Parameters:
base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)
pin – FGPIO port pin number
config – FGPIO pin configuration pointer
-
static inline void FGPIO_PinWrite(FGPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the multiple FGPIO pins to the logic 1 or 0.
- Parameters:
base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)
pin – FGPIO pin number
output – FGPIOpin output logic level.
0: corresponding pin output low-logic level.
1: corresponding pin output high-logic level.
-
static inline void FGPIO_PortSet(FGPIO_Type *base, uint32_t mask)
Sets the output level of the multiple FGPIO pins to the logic 1.
- Parameters:
base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)
mask – FGPIO pin number macro
-
static inline void FGPIO_PortClear(FGPIO_Type *base, uint32_t mask)
Sets the output level of the multiple FGPIO pins to the logic 0.
- Parameters:
base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)
mask – FGPIO pin number macro
-
static inline void FGPIO_PortToggle(FGPIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple FGPIO pins.
- Parameters:
base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)
mask – FGPIO pin number macro
-
static inline uint32_t FGPIO_PinRead(FGPIO_Type *base, uint32_t pin)
Reads the current input value of the FGPIO port.
- Parameters:
base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)
pin – FGPIO pin number
- Return values:
FGPIO – port input value
0: corresponding pin input low-logic level.
1: corresponding pin input high-logic level.
-
uint32_t FGPIO_PortGetInterruptFlags(FGPIO_Type *base)
Reads the FGPIO port interrupt status flag.
If a pin is configured to generate the DMA request, the corresponding flag is cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic one is written to that flag. If configured for a level-sensitive interrupt that remains asserted, the flag is set again immediately.
- Parameters:
base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)
- Return values:
The – current FGPIO port interrupt status flags, for example, 0x00010001 means the pin 0 and 17 have the interrupt.
-
void FGPIO_PortClearInterruptFlags(FGPIO_Type *base, uint32_t mask)
Clears the multiple FGPIO pin interrupt status flag.
- Parameters:
base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so on.)
mask – FGPIO pin number macro
C90TFS Flash Driver
ftfx adapter
Ftftx CACHE Driver
-
enum _ftfx_cache_ram_func_constants
Constants for execute-in-RAM flash function.
Values:
-
enumerator kFTFx_CACHE_RamFuncMaxSizeInWords
The maximum size of execute-in-RAM function.
-
enumerator kFTFx_CACHE_RamFuncMaxSizeInWords
-
typedef struct _flash_prefetch_speculation_status ftfx_prefetch_speculation_status_t
FTFx prefetch speculation status.
-
typedef struct _ftfx_cache_config ftfx_cache_config_t
FTFx cache driver state information.
An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.
-
status_t FTFx_CACHE_Init(ftfx_cache_config_t *config)
Initializes the global FTFx cache structure members.
This function checks and initializes the Flash module for the other FTFx cache APIs.
- Parameters:
config – Pointer to the storage for the driver runtime state.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
-
status_t FTFx_CACHE_ClearCachePrefetchSpeculation(ftfx_cache_config_t *config, bool isPreProcess)
Process the cache/prefetch/speculation to the flash.
- Parameters:
config – A pointer to the storage for the driver runtime state.
isPreProcess – The possible option used to control flash cache/prefetch/speculation
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – Invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
-
status_t FTFx_CACHE_PflashSetPrefetchSpeculation(ftfx_prefetch_speculation_status_t *speculationStatus)
Sets the PFlash prefetch speculation to the intended speculation status.
- Parameters:
speculationStatus – The expected protect status to set to the PFlash protection register. Each bit is
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidSpeculationOption – An invalid speculation option argument is provided.
-
status_t FTFx_CACHE_PflashGetPrefetchSpeculation(ftfx_prefetch_speculation_status_t *speculationStatus)
Gets the PFlash prefetch speculation status.
- Parameters:
speculationStatus – Speculation status returned by the PFlash IP.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
-
struct _flash_prefetch_speculation_status
- #include <fsl_ftfx_cache.h>
FTFx prefetch speculation status.
Public Members
-
bool instructionOff
Instruction speculation.
-
bool dataOff
Data speculation.
-
bool instructionOff
-
union function_bit_operation_ptr_t
- #include <fsl_ftfx_cache.h>
Public Members
-
uint32_t commadAddr
-
void (*callFlashCommand)(volatile uint32_t *base, uint32_t bitMask, uint32_t bitShift, uint32_t bitValue)
-
uint32_t commadAddr
-
struct _ftfx_cache_config
- #include <fsl_ftfx_cache.h>
FTFx cache driver state information.
An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.
Public Members
-
uint8_t flashMemoryIndex
0 - primary flash; 1 - secondary flash
-
function_bit_operation_ptr_t bitOperFuncAddr
An buffer point to the flash execute-in-RAM function.
-
uint8_t flashMemoryIndex
ftfx controller
FTFx driver status codes.
Values:
-
enumerator kStatus_FTFx_Success
API is executed successfully
-
enumerator kStatus_FTFx_InvalidArgument
Invalid argument
-
enumerator kStatus_FTFx_SizeError
Error size
-
enumerator kStatus_FTFx_AlignmentError
Parameter is not aligned with the specified baseline
-
enumerator kStatus_FTFx_AddressError
Address is out of range
-
enumerator kStatus_FTFx_AccessError
Invalid instruction codes and out-of bound addresses
-
enumerator kStatus_FTFx_ProtectionViolation
The program/erase operation is requested to execute on protected areas
-
enumerator kStatus_FTFx_CommandFailure
Run-time error during command execution.
-
enumerator kStatus_FTFx_UnknownProperty
Unknown property.
-
enumerator kStatus_FTFx_EraseKeyError
API erase key is invalid.
-
enumerator kStatus_FTFx_RegionExecuteOnly
The current region is execute-only.
-
enumerator kStatus_FTFx_ExecuteInRamFunctionNotReady
Execute-in-RAM function is not available.
-
enumerator kStatus_FTFx_PartitionStatusUpdateFailure
Failed to update partition status.
-
enumerator kStatus_FTFx_SetFlexramAsEepromError
Failed to set FlexRAM as EEPROM.
-
enumerator kStatus_FTFx_RecoverFlexramAsRamError
Failed to recover FlexRAM as RAM.
-
enumerator kStatus_FTFx_SetFlexramAsRamError
Failed to set FlexRAM as RAM.
-
enumerator kStatus_FTFx_RecoverFlexramAsEepromError
Failed to recover FlexRAM as EEPROM.
-
enumerator kStatus_FTFx_CommandNotSupported
Flash API is not supported.
-
enumerator kStatus_FTFx_SwapSystemNotInUninitialized
Swap system is not in an uninitialzed state.
-
enumerator kStatus_FTFx_SwapIndicatorAddressError
The swap indicator address is invalid.
-
enumerator kStatus_FTFx_ReadOnlyProperty
The flash property is read-only.
-
enumerator kStatus_FTFx_InvalidPropertyValue
The flash property value is out of range.
-
enumerator kStatus_FTFx_InvalidSpeculationOption
The option of flash prefetch speculation is invalid.
-
enumerator kStatus_FTFx_CommandOperationInProgress
The option of flash command is processing.
-
enumerator kStatus_FTFx_Success
-
enum _ftfx_driver_api_keys
Enumeration for FTFx driver API keys.
Note
The resulting value is built with a byte order such that the string being readable in expected order when viewed in a hex editor, if the value is treated as a 32-bit little endian value.
Values:
-
enumerator kFTFx_ApiEraseKey
Key value used to validate all FTFx erase APIs.
-
enumerator kFTFx_ApiEraseKey
-
void FTFx_API_Init(ftfx_config_t *config)
Initializes the global flash properties structure members.
This function checks and initializes the Flash module for the other Flash APIs.
- Parameters:
config – Pointer to the storage for the driver runtime state.
-
status_t FTFx_API_UpdateFlexnvmPartitionStatus(ftfx_config_t *config)
Updates FlexNVM memory partition status according to data flash 0 IFR.
This function updates FlexNVM memory partition status.
- Parameters:
config – Pointer to the storage for the driver runtime state.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.
-
status_t FTFx_CMD_Erase(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)
Erases the flash sectors encompassed by parameters passed into function.
This function erases the appropriate number of flash sectors based on the desired start address and length.
- Parameters:
config – The pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be word-aligned.
key – The value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – The address is out of range.
kStatus_FTFx_EraseKeyError – The API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_EraseSectorNonBlocking(ftfx_config_t *config, uint32_t start, uint32_t key)
Erases the flash sectors encompassed by parameters passed into function.
This function erases one flash sector size based on the start address.
- Parameters:
config – The pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.
key – The value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – The address is out of range.
kStatus_FTFx_EraseKeyError – The API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
-
status_t FTFx_CMD_EraseAll(ftfx_config_t *config, uint32_t key)
Erases entire flash.
- Parameters:
config – Pointer to the storage for the driver runtime state.
key – A value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_EraseKeyError – API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.
-
status_t FTFx_CMD_EraseAllUnsecure(ftfx_config_t *config, uint32_t key)
Erases the entire flash, including protected sectors.
- Parameters:
config – Pointer to the storage for the driver runtime state.
key – A value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_EraseKeyError – API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.
-
status_t FTFx_CMD_EraseAllExecuteOnlySegments(ftfx_config_t *config, uint32_t key)
Erases all program flash execute-only segments defined by the FXACC registers.
- Parameters:
config – Pointer to the storage for the driver runtime state.
key – A value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_EraseKeyError – API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_Program(ftfx_config_t *config, uint32_t start, const uint8_t *src, uint32_t lengthInBytes)
Programs flash with data at locations passed in through parameters.
This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be word-aligned.
src – A pointer to the source buffer of data that is to be programmed into the flash.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_ProgramOnce(ftfx_config_t *config, uint32_t index, const uint8_t *src, uint32_t lengthInBytes)
Programs Program Once Field through parameters.
This function programs the Program Once Field with the desired data for a given flash area as determined by the index and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
index – The index indicating which area of the Program Once Field to be programmed.
src – A pointer to the source buffer of data that is to be programmed into the Program Once Field.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_ProgramSection(ftfx_config_t *config, uint32_t start, const uint8_t *src, uint32_t lengthInBytes)
Programs flash with data at locations passed in through parameters via the Program Section command.
This function programs the flash memory with the desired data for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be word-aligned.
src – A pointer to the source buffer of data that is to be programmed into the flash.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM as EEPROM.
-
status_t FTFx_CMD_ProgramPartition(ftfx_config_t *config, ftfx_partition_flexram_load_opt_t option, uint32_t eepromDataSizeCode, uint32_t flexnvmPartitionCode)
Prepares the FlexNVM block for use as data flash, EEPROM backup, or a combination of both and initializes the FlexRAM.
- Parameters:
config – Pointer to storage for the driver runtime state.
option – The option used to set FlexRAM load behavior during reset.
eepromDataSizeCode – Determines the amount of FlexRAM used in each of the available EEPROM subsystems.
flexnvmPartitionCode – Specifies how to split the FlexNVM block between data flash memory and EEPROM backup memory supporting EEPROM functions.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – Invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
-
status_t FTFx_CMD_ReadOnce(ftfx_config_t *config, uint32_t index, uint8_t *dst, uint32_t lengthInBytes)
Reads the Program Once Field through parameters.
This function reads the read once feild with given index and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
index – The index indicating the area of program once field to be read.
dst – A pointer to the destination buffer of data that is used to store data to be read.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_ReadResource(ftfx_config_t *config, uint32_t start, uint8_t *dst, uint32_t lengthInBytes, ftfx_read_resource_opt_t option)
Reads the resource with data at locations passed in through parameters.
This function reads the flash memory with the desired location for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be word-aligned.
dst – A pointer to the destination buffer of data that is used to store data to be read.
lengthInBytes – The length, given in bytes (not words or long-words), to be read. Must be word-aligned.
option – The resource option which indicates which area should be read back.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_VerifyErase(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, ftfx_margin_value_t margin)
Verifies an erasure of the desired flash area at a specified margin level.
This function checks the appropriate number of flash sectors based on the desired start address and length to check whether the flash is erased to the specified read margin level.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be verified. The start address does not need to be sector-aligned but must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.
margin – Read margin choice.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_VerifyEraseAll(ftfx_config_t *config, ftfx_margin_value_t margin)
Verifies erasure of the entire flash at a specified margin level.
This function checks whether the flash is erased to the specified read margin level.
- Parameters:
config – A pointer to the storage for the driver runtime state.
margin – Read margin choice.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_VerifyEraseAllExecuteOnlySegments(ftfx_config_t *config, ftfx_margin_value_t margin)
Verifies whether the program flash execute-only segments have been erased to the specified read margin level.
- Parameters:
config – A pointer to the storage for the driver runtime state.
margin – Read margin choice.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_VerifyProgram(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, ftfx_margin_value_t margin, uint32_t *failedAddress, uint32_t *failedData)
Verifies programming of the desired flash area at a specified margin level.
This function verifies the data programed in the flash memory using the Flash Program Check Command and compares it to the expected data for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be verified. Must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.
expectedData – A pointer to the expected data that is to be verified against.
margin – Read margin choice.
failedAddress – A pointer to the returned failing address.
failedData – A pointer to the returned failing data. Some derivatives do not include failed data as part of the FCCOBx registers. In this case, zeros are returned upon failure.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_REG_GetSecurityState(ftfx_config_t *config, ftfx_security_state_t *state)
Returns the security state via the pointer passed into the function.
This function retrieves the current flash security status, including the security enabling state and the backdoor key enabling state.
- Parameters:
config – A pointer to storage for the driver runtime state.
state – A pointer to the value returned for the current security status code:
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
-
status_t FTFx_CMD_SecurityBypass(ftfx_config_t *config, const uint8_t *backdoorKey)
Allows users to bypass security with a backdoor key.
If the MCU is in secured state, this function unsecures the MCU by comparing the provided backdoor key with ones in the flash configuration field.
- Parameters:
config – A pointer to the storage for the driver runtime state.
backdoorKey – A pointer to the user buffer containing the backdoor key.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_SetFlexramFunction(ftfx_config_t *config, ftfx_flexram_func_opt_t option)
Sets the FlexRAM function command.
- Parameters:
config – A pointer to the storage for the driver runtime state.
option – The option used to set the work mode of FlexRAM.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FTFx_CMD_SwapControl(ftfx_config_t *config, uint32_t address, ftfx_swap_control_opt_t option, ftfx_swap_state_config_t *returnInfo)
Configures the Swap function or checks the swap state of the Flash module.
- Parameters:
config – A pointer to the storage for the driver runtime state.
address – Address used to configure the flash Swap function.
option – The possible option used to configure Flash Swap function or check the flash Swap status
returnInfo – A pointer to the data which is used to return the information of flash Swap.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_SwapIndicatorAddressError – Swap indicator address is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
enum _ftfx_partition_flexram_load_option
Enumeration for the FlexRAM load during reset option.
Values:
-
enumerator kFTFx_PartitionFlexramLoadOptLoadedWithValidEepromData
FlexRAM is loaded with valid EEPROM data during reset sequence.
-
enumerator kFTFx_PartitionFlexramLoadOptNotLoaded
FlexRAM is not loaded during reset sequence.
-
enumerator kFTFx_PartitionFlexramLoadOptLoadedWithValidEepromData
-
enum _ftfx_read_resource_opt
Enumeration for the two possible options of flash read resource command.
Values:
-
enumerator kFTFx_ResourceOptionFlashIfr
Select code for Program flash 0 IFR, Program flash swap 0 IFR, Data flash 0 IFR
-
enumerator kFTFx_ResourceOptionVersionId
Select code for the version ID
-
enumerator kFTFx_ResourceOptionFlashIfr
-
enum _ftfx_margin_value
Enumeration for supported FTFx margin levels.
Values:
-
enumerator kFTFx_MarginValueNormal
Use the ‘normal’ read level for 1s.
-
enumerator kFTFx_MarginValueUser
Apply the ‘User’ margin to the normal read-1 level.
-
enumerator kFTFx_MarginValueFactory
Apply the ‘Factory’ margin to the normal read-1 level.
-
enumerator kFTFx_MarginValueInvalid
Not real margin level, Used to determine the range of valid margin level.
-
enumerator kFTFx_MarginValueNormal
-
enum _ftfx_security_state
Enumeration for the three possible FTFx security states.
Values:
-
enumerator kFTFx_SecurityStateNotSecure
Flash is not secure.
-
enumerator kFTFx_SecurityStateBackdoorEnabled
Flash backdoor is enabled.
-
enumerator kFTFx_SecurityStateBackdoorDisabled
Flash backdoor is disabled.
-
enumerator kFTFx_SecurityStateNotSecure
-
enum _ftfx_flexram_function_option
Enumeration for the two possilbe options of set FlexRAM function command.
Values:
-
enumerator kFTFx_FlexramFuncOptAvailableAsRam
An option used to make FlexRAM available as RAM
-
enumerator kFTFx_FlexramFuncOptAvailableForEeprom
An option used to make FlexRAM available for EEPROM
-
enumerator kFTFx_FlexramFuncOptAvailableAsRam
-
enum _flash_acceleration_ram_property
Enumeration for acceleration ram property.
Values:
-
enumerator kFLASH_AccelerationRamSize
-
enumerator kFLASH_AccelerationRamSize
-
enum _ftfx_swap_control_option
Enumeration for the possible options of Swap control commands.
Values:
-
enumerator kFTFx_SwapControlOptionIntializeSystem
An option used to initialize the Swap system
-
enumerator kFTFx_SwapControlOptionSetInUpdateState
An option used to set the Swap in an update state
-
enumerator kFTFx_SwapControlOptionSetInCompleteState
An option used to set the Swap in a complete state
-
enumerator kFTFx_SwapControlOptionReportStatus
An option used to report the Swap status
-
enumerator kFTFx_SwapControlOptionDisableSystem
An option used to disable the Swap status
-
enumerator kFTFx_SwapControlOptionIntializeSystem
-
enum _ftfx_swap_state
Enumeration for the possible flash Swap status.
Values:
-
enumerator kFTFx_SwapStateUninitialized
Flash Swap system is in an uninitialized state.
-
enumerator kFTFx_SwapStateReady
Flash Swap system is in a ready state.
-
enumerator kFTFx_SwapStateUpdate
Flash Swap system is in an update state.
-
enumerator kFTFx_SwapStateUpdateErased
Flash Swap system is in an updateErased state.
-
enumerator kFTFx_SwapStateComplete
Flash Swap system is in a complete state.
-
enumerator kFTFx_SwapStateDisabled
Flash Swap system is in a disabled state.
-
enumerator kFTFx_SwapStateUninitialized
-
enum _ftfx_swap_block_status
Enumeration for the possible flash Swap block status.
Values:
-
enumerator kFTFx_SwapBlockStatusLowerHalfProgramBlocksAtZero
Swap block status is that lower half program block at zero.
-
enumerator kFTFx_SwapBlockStatusUpperHalfProgramBlocksAtZero
Swap block status is that upper half program block at zero.
-
enumerator kFTFx_SwapBlockStatusLowerHalfProgramBlocksAtZero
-
enum _ftfx_memory_type
Enumeration for FTFx memory type.
Values:
-
enumerator kFTFx_MemTypePflash
-
enumerator kFTFx_MemTypeFlexnvm
-
enumerator kFTFx_MemTypePflash
-
typedef enum _ftfx_partition_flexram_load_option ftfx_partition_flexram_load_opt_t
Enumeration for the FlexRAM load during reset option.
-
typedef enum _ftfx_read_resource_opt ftfx_read_resource_opt_t
Enumeration for the two possible options of flash read resource command.
-
typedef enum _ftfx_margin_value ftfx_margin_value_t
Enumeration for supported FTFx margin levels.
-
typedef enum _ftfx_security_state ftfx_security_state_t
Enumeration for the three possible FTFx security states.
-
typedef enum _ftfx_flexram_function_option ftfx_flexram_func_opt_t
Enumeration for the two possilbe options of set FlexRAM function command.
-
typedef enum _ftfx_swap_control_option ftfx_swap_control_opt_t
Enumeration for the possible options of Swap control commands.
-
typedef enum _ftfx_swap_state ftfx_swap_state_t
Enumeration for the possible flash Swap status.
-
typedef enum _ftfx_swap_block_status ftfx_swap_block_status_t
Enumeration for the possible flash Swap block status.
-
typedef struct _ftfx_swap_state_config ftfx_swap_state_config_t
Flash Swap information.
-
typedef struct _ftfx_special_mem ftfx_spec_mem_t
ftfx special memory access information.
-
typedef struct _ftfx_mem_descriptor ftfx_mem_desc_t
Flash memory descriptor.
-
typedef struct _ftfx_ops_config ftfx_ops_config_t
Active FTFx information for the current operation.
-
typedef struct _ftfx_ifr_descriptor ftfx_ifr_desc_t
Flash IFR memory descriptor.
-
typedef struct _ftfx_config ftfx_config_t
Flash driver state information.
An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.
-
struct _ftfx_swap_state_config
- #include <fsl_ftfx_controller.h>
Flash Swap information.
Public Members
-
ftfx_swap_state_t flashSwapState
The current Swap system status.
-
ftfx_swap_block_status_t currentSwapBlockStatus
The current Swap block status.
-
ftfx_swap_block_status_t nextSwapBlockStatus
The next Swap block status.
-
ftfx_swap_state_t flashSwapState
-
struct _ftfx_special_mem
- #include <fsl_ftfx_controller.h>
ftfx special memory access information.
Public Members
-
uint32_t base
Base address of flash special memory.
-
uint32_t size
size of flash special memory.
-
uint32_t count
flash special memory count.
-
uint32_t base
-
struct _ftfx_mem_descriptor
- #include <fsl_ftfx_controller.h>
Flash memory descriptor.
Public Members
-
uint32_t blockBase
A base address of the flash block
-
uint32_t aliasBlockBase
A base address of the alias flash block
-
uint32_t totalSize
The size of the flash block.
-
uint32_t sectorSize
The size in bytes of a sector of flash.
-
uint32_t blockCount
A number of flash blocks.
-
uint32_t blockBase
-
struct _ftfx_ops_config
- #include <fsl_ftfx_controller.h>
Active FTFx information for the current operation.
Public Members
-
uint32_t convertedAddress
A converted address for the current flash type.
-
uint32_t convertedAddress
-
struct _ftfx_ifr_descriptor
- #include <fsl_ftfx_controller.h>
Flash IFR memory descriptor.
-
union function_ptr_t
- #include <fsl_ftfx_controller.h>
Public Members
-
uint32_t commadAddr
-
void (*callFlashCommand)(volatile uint8_t *FTMRx_fstat)
-
uint32_t commadAddr
-
struct _ftfx_config
- #include <fsl_ftfx_controller.h>
Flash driver state information.
An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.
Public Members
-
uint32_t flexramBlockBase
The base address of the FlexRAM/acceleration RAM
-
uint32_t flexramTotalSize
The size of the FlexRAM/acceleration RAM
-
uint16_t eepromTotalSize
The size of EEPROM area which was partitioned from FlexRAM
-
function_ptr_t runCmdFuncAddr
An buffer point to the flash execute-in-RAM function.
-
uint32_t flexramBlockBase
-
struct __unnamed3__
Public Members
-
uint8_t type
Type of flash block.
-
uint8_t index
Index of flash block.
-
uint8_t type
-
struct feature
-
struct addrAligment
-
struct feature
-
struct resRange
Public Members
-
uint8_t versionIdStart
Version ID start address
-
uint32_t pflashIfrStart
Program Flash 0 IFR start address
-
uint32_t dflashIfrStart
Data Flash 0 IFR start address
-
uint32_t pflashSwapIfrStart
Program Flash Swap IFR start address
-
uint8_t versionIdStart
-
struct idxInfo
ftfx feature
-
FTFx_DRIVER_IS_FLASH_RESIDENT
Flash driver location.
Used for the flash resident application.
-
FTFx_DRIVER_IS_EXPORTED
Flash Driver Export option.
Used for the MCUXpresso SDK application.
-
FTFx_FLASH1_HAS_PROT_CONTROL
Indicates whether the secondary flash has its own protection register in flash module.
-
FTFx_FLASH1_HAS_XACC_CONTROL
Indicates whether the secondary flash has its own Execute-Only access register in flash module.
-
FTFx_DRIVER_HAS_FLASH1_SUPPORT
Indicates whether the secondary flash is supported in the Flash driver.
-
FTFx_FLASH_COUNT
-
FTFx_FLASH1_IS_INDEPENDENT_BLOCK
Ftftx FLASH Driver
-
status_t FLASH_Init(flash_config_t *config)
Initializes the global flash properties structure members.
This function checks and initializes the Flash module for the other Flash APIs.
- Parameters:
config – Pointer to the storage for the driver runtime state.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.
-
status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)
Erases the Dflash sectors encompassed by parameters passed into function.
This function erases the appropriate number of flash sectors based on the desired start address and length.
- Parameters:
config – The pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be word-aligned.
key – The value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the appropriate number of flash sectors based on the desired start address and length were erased successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – The address is out of range.
kStatus_FTFx_EraseKeyError – The API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLASH_EraseSectorNonBlocking(flash_config_t *config, uint32_t start, uint32_t key)
Erases the Dflash sectors encompassed by parameters passed into function.
This function erases one flash sector size based on the start address, and it is executed asynchronously.
NOTE: This function can only erase one flash sector at a time, and the other commands can be executed after the previous command has been completed.
- Parameters:
config – The pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.
key – The value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – The address is out of range.
kStatus_FTFx_EraseKeyError – The API erase key is invalid.
-
status_t FLASH_EraseAll(flash_config_t *config, uint32_t key)
Erases entire flexnvm.
- Parameters:
config – Pointer to the storage for the driver runtime state.
key – A value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the all pflash and flexnvm were erased successfully, the swap and eeprom have been reset to unconfigured state.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_EraseKeyError – API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.
-
status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key)
Erases the entire flexnvm, including protected sectors.
- Parameters:
config – Pointer to the storage for the driver runtime state.
key – A value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the protected sectors of flash were reset to unprotected status.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_EraseKeyError – API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.
-
status_t FLASH_Program(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)
Programs flash with data at locations passed in through parameters.
This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be word-aligned.
src – A pointer to the source buffer of data that is to be programmed into the flash.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the desired data were programed successfully into flash based on desired start address and length.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLASH_ProgramOnce(flash_config_t *config, uint32_t index, uint8_t *src, uint32_t lengthInBytes)
Program the Program-Once-Field through parameters.
This function Program the Program-once-feild with given index and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
index – The index indicating the area of program once field to be read.
src – A pointer to the source buffer of data that is used to store data to be write.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully; The index indicating the area of program once field was programed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLASH_ProgramSection(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)
Programs flash with data at locations passed in through parameters via the Program Section command.
This function programs the flash memory with the desired data for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be word-aligned.
src – A pointer to the source buffer of data that is to be programmed into the flash.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the desired data have been programed successfully into flash based on start address and length.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM as EEPROM.
-
status_t FLASH_ReadResource(flash_config_t *config, uint32_t start, uint8_t *dst, uint32_t lengthInBytes, ftfx_read_resource_opt_t option)
Reads the resource with data at locations passed in through parameters.
This function reads the flash memory with the desired location for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be word-aligned.
dst – A pointer to the destination buffer of data that is used to store data to be read.
lengthInBytes – The length, given in bytes (not words or long-words), to be read. Must be word-aligned.
option – The resource option which indicates which area should be read back.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the data have been read successfully from program flash IFR, data flash IFR space, and the Version ID field.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLASH_ReadOnce(flash_config_t *config, uint32_t index, uint8_t *dst, uint32_t lengthInBytes)
Reads the Program Once Field through parameters.
This function reads the read once feild with given index and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
index – The index indicating the area of program once field to be read.
dst – A pointer to the destination buffer of data that is used to store data to be read.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the data have been successfuly read form Program flash0 IFR map and Program Once field based on index and length.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, ftfx_margin_value_t margin)
Verifies an erasure of the desired flash area at a specified margin level.
This function checks the appropriate number of flash sectors based on the desired start address and length to check whether the flash is erased to the specified read margin level.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be verified. The start address does not need to be sector-aligned but must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.
margin – Read margin choice.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the specified FLASH region has been erased.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLASH_VerifyEraseAll(flash_config_t *config, ftfx_margin_value_t margin)
Verifies erasure of the entire flash at a specified margin level.
This function checks whether the flash is erased to the specified read margin level.
- Parameters:
config – A pointer to the storage for the driver runtime state.
margin – Read margin choice.
- Return values:
kStatus_FTFx_Success – API was executed successfully; all program flash and flexnvm were in erased state.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLASH_VerifyProgram(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, ftfx_margin_value_t margin, uint32_t *failedAddress, uint32_t *failedData)
Verifies programming of the desired flash area at a specified margin level.
This function verifies the data programmed in the flash memory using the Flash Program Check Command and compares it to the expected data for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be verified. Must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.
expectedData – A pointer to the expected data that is to be verified against.
margin – Read margin choice.
failedAddress – A pointer to the returned failing address.
failedData – A pointer to the returned failing data. Some derivatives do not include failed data as part of the FCCOBx registers. In this case, zeros are returned upon failure.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the desired data have been successfully programed into specified FLASH region.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLASH_GetSecurityState(flash_config_t *config, ftfx_security_state_t *state)
Returns the security state via the pointer passed into the function.
This function retrieves the current flash security status, including the security enabling state and the backdoor key enabling state.
- Parameters:
config – A pointer to storage for the driver runtime state.
state – A pointer to the value returned for the current security status code:
- Return values:
kStatus_FTFx_Success – API was executed successfully; the security state of flash was stored to state.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
-
status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey)
Allows users to bypass security with a backdoor key.
If the MCU is in secured state, this function unsecures the MCU by comparing the provided backdoor key with ones in the flash configuration field.
- Parameters:
config – A pointer to the storage for the driver runtime state.
backdoorKey – A pointer to the user buffer containing the backdoor key.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLASH_SetFlexramFunction(flash_config_t *config, ftfx_flexram_func_opt_t option)
Sets the FlexRAM function command.
- Parameters:
config – A pointer to the storage for the driver runtime state.
option – The option used to set the work mode of FlexRAM.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the FlexRAM has been successfully configured as RAM or EEPROM.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLASH_Swap(flash_config_t *config, uint32_t address, bool isSetEnable)
Swaps the lower half flash with the higher half flash.
- Parameters:
config – A pointer to the storage for the driver runtime state.
address – Address used to configure the flash swap function
isSetEnable – The possible option used to configure the Flash Swap function or check the flash Swap status.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the lower half flash and higher half flash have been swaped.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_SwapIndicatorAddressError – Swap indicator address is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
kStatus_FTFx_SwapSystemNotInUninitialized – Swap system is not in an uninitialized state.
-
status_t FLASH_IsProtected(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_prot_state_t *protection_state)
Returns the protection state of the desired flash area via the pointer passed into the function.
This function retrieves the current flash protect status for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be checked. Must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words) to be checked. Must be word-aligned.
protection_state – A pointer to the value returned for the current protection status code for the desired flash area.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the protection state of specified FLASH region was stored to protection_state.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_AddressError – The address is out of range.
-
status_t FLASH_IsExecuteOnly(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_xacc_state_t *access_state)
Returns the access state of the desired flash area via the pointer passed into the function.
This function retrieves the current flash access status for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be checked. Must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words), to be checked. Must be word-aligned.
access_state – A pointer to the value returned for the current access status code for the desired flash area.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the executeOnly state of specified FLASH region was stored to access_state.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – The parameter is not aligned to the specified baseline.
kStatus_FTFx_AddressError – The address is out of range.
-
status_t FLASH_PflashSetProtection(flash_config_t *config, pflash_prot_status_t *protectStatus)
Sets the PFlash Protection to the intended protection status.
- Parameters:
config – A pointer to storage for the driver runtime state.
protectStatus – The expected protect status to set to the PFlash protection register. Each bit is corresponding to protection of 1/32(64) of the total PFlash. The least significant bit is corresponding to the lowest address area of PFlash. The most significant bit is corresponding to the highest address area of PFlash. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the specified FLASH region is protected.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
-
status_t FLASH_PflashGetProtection(flash_config_t *config, pflash_prot_status_t *protectStatus)
Gets the PFlash protection status.
- Parameters:
config – A pointer to the storage for the driver runtime state.
protectStatus – Protect status returned by the PFlash IP. Each bit is corresponding to the protection of 1/32(64) of the total PFlash. The least significant bit corresponds to the lowest address area of the PFlash. The most significant bit corresponds to the highest address area of PFlash. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the Protection state was stored to protectStatus;
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
-
status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t *value)
Returns the desired flash property.
- Parameters:
config – A pointer to the storage for the driver runtime state.
whichProperty – The desired property from the list of properties in enum flash_property_tag_t
value – A pointer to the value returned for the desired flash property.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the flash property was stored to value.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_UnknownProperty – An unknown property tag.
-
status_t FLASH_GetCommandState(void)
Get previous command status.
This function is used to obtain the execution status of the previous command.
- Return values:
kStatus_FTFx_Success – The previous command is executed successfully.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
FSL_FLASH_DRIVER_VERSION
Flash driver version for SDK.
Version 3.1.3.
-
FSL_FLASH_DRIVER_VERSION_ROM
Flash driver version for ROM.
Version 3.0.0.
-
enum _flash_protection_state
Enumeration for the three possible flash protection levels.
Values:
-
enumerator kFLASH_ProtectionStateUnprotected
Flash region is not protected.
-
enumerator kFLASH_ProtectionStateProtected
Flash region is protected.
-
enumerator kFLASH_ProtectionStateMixed
Flash is mixed with protected and unprotected region.
-
enumerator kFLASH_ProtectionStateUnprotected
-
enum _flash_execute_only_access_state
Enumeration for the three possible flash execute access levels.
Values:
-
enumerator kFLASH_AccessStateUnLimited
Flash region is unlimited.
-
enumerator kFLASH_AccessStateExecuteOnly
Flash region is execute only.
-
enumerator kFLASH_AccessStateMixed
Flash is mixed with unlimited and execute only region.
-
enumerator kFLASH_AccessStateUnLimited
-
enum _flash_property_tag
Enumeration for various flash properties.
Values:
-
enumerator kFLASH_PropertyPflash0SectorSize
Pflash sector size property.
-
enumerator kFLASH_PropertyPflash0TotalSize
Pflash total size property.
-
enumerator kFLASH_PropertyPflash0BlockSize
Pflash block size property.
-
enumerator kFLASH_PropertyPflash0BlockCount
Pflash block count property.
-
enumerator kFLASH_PropertyPflash0BlockBaseAddr
Pflash block base address property.
-
enumerator kFLASH_PropertyPflash0FacSupport
Pflash fac support property.
-
enumerator kFLASH_PropertyPflash0AccessSegmentSize
Pflash access segment size property.
-
enumerator kFLASH_PropertyPflash0AccessSegmentCount
Pflash access segment count property.
-
enumerator kFLASH_PropertyPflash1SectorSize
Pflash sector size property.
-
enumerator kFLASH_PropertyPflash1TotalSize
Pflash total size property.
-
enumerator kFLASH_PropertyPflash1BlockSize
Pflash block size property.
-
enumerator kFLASH_PropertyPflash1BlockCount
Pflash block count property.
-
enumerator kFLASH_PropertyPflash1BlockBaseAddr
Pflash block base address property.
-
enumerator kFLASH_PropertyPflash1FacSupport
Pflash fac support property.
-
enumerator kFLASH_PropertyPflash1AccessSegmentSize
Pflash access segment size property.
-
enumerator kFLASH_PropertyPflash1AccessSegmentCount
Pflash access segment count property.
-
enumerator kFLASH_PropertyFlexRamBlockBaseAddr
FlexRam block base address property.
-
enumerator kFLASH_PropertyFlexRamTotalSize
FlexRam total size property.
-
enumerator kFLASH_PropertyPflash0SectorSize
-
typedef enum _flash_protection_state flash_prot_state_t
Enumeration for the three possible flash protection levels.
-
typedef union _pflash_protection_status pflash_prot_status_t
PFlash protection status.
-
typedef enum _flash_execute_only_access_state flash_xacc_state_t
Enumeration for the three possible flash execute access levels.
-
typedef enum _flash_property_tag flash_property_tag_t
Enumeration for various flash properties.
-
typedef struct _flash_config flash_config_t
Flash driver state information.
An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.
-
kStatus_FLASH_Success
-
kFLASH_ApiEraseKey
-
union _pflash_protection_status
- #include <fsl_ftfx_flash.h>
PFlash protection status.
Public Members
-
uint32_t protl
PROT[31:0] .
-
uint32_t proth
PROT[63:32].
-
uint8_t protsl
PROTS[7:0] .
-
uint8_t protsh
PROTS[15:8] .
-
uint8_t reserved[2]
-
uint32_t protl
-
struct _flash_config
- #include <fsl_ftfx_flash.h>
Flash driver state information.
An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.
Ftftx FLEXNVM Driver
-
status_t FLEXNVM_Init(flexnvm_config_t *config)
Initializes the global flash properties structure members.
This function checks and initializes the Flash module for the other Flash APIs.
- Parameters:
config – Pointer to the storage for the driver runtime state.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.
-
status_t FLEXNVM_DflashErase(flexnvm_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)
Erases the Dflash sectors encompassed by parameters passed into function.
This function erases the appropriate number of flash sectors based on the desired start address and length.
- Parameters:
config – The pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be erased. The start address does not need to be sector-aligned but must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be word-aligned.
key – The value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the appropriate number of date flash sectors based on the desired start address and length were erased successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – The parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – The address is out of range.
kStatus_FTFx_EraseKeyError – The API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLEXNVM_EraseAll(flexnvm_config_t *config, uint32_t key)
Erases entire flexnvm.
- Parameters:
config – Pointer to the storage for the driver runtime state.
key – A value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the entire flexnvm has been erased successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_EraseKeyError – API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.
-
status_t FLEXNVM_EraseAllUnsecure(flexnvm_config_t *config, uint32_t key)
Erases the entire flexnvm, including protected sectors.
- Parameters:
config – Pointer to the storage for the driver runtime state.
key – A value used to validate all flash erase APIs.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the flexnvm is not in securityi state.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_EraseKeyError – API erase key is invalid.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition status.
-
status_t FLEXNVM_DflashProgram(flexnvm_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)
Programs flash with data at locations passed in through parameters.
This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be word-aligned.
src – A pointer to the source buffer of data that is to be programmed into the flash.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the desired date have been successfully programed into specified date flash region.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLEXNVM_DflashProgramSection(flexnvm_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)
Programs flash with data at locations passed in through parameters via the Program Section command.
This function programs the flash memory with the desired data for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be word-aligned.
src – A pointer to the source buffer of data that is to be programmed into the flash.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the desired date have been successfully programed into specified date flash area.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM as EEPROM.
-
status_t FLEXNVM_ProgramPartition(flexnvm_config_t *config, ftfx_partition_flexram_load_opt_t option, uint32_t eepromDataSizeCode, uint32_t flexnvmPartitionCode)
Prepares the FlexNVM block for use as data flash, EEPROM backup, or a combination of both and initializes the FlexRAM.
- Parameters:
config – Pointer to storage for the driver runtime state.
option – The option used to set FlexRAM load behavior during reset.
eepromDataSizeCode – Determines the amount of FlexRAM used in each of the available EEPROM subsystems.
flexnvmPartitionCode – Specifies how to split the FlexNVM block between data flash memory and EEPROM backup memory supporting EEPROM functions.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the FlexNVM block for use as data flash, EEPROM backup, or a combination of both have been Prepared.
kStatus_FTFx_InvalidArgument – Invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
-
status_t FLEXNVM_ReadResource(flexnvm_config_t *config, uint32_t start, uint8_t *dst, uint32_t lengthInBytes, ftfx_read_resource_opt_t option)
Reads the resource with data at locations passed in through parameters.
This function reads the flash memory with the desired location for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be word-aligned.
dst – A pointer to the destination buffer of data that is used to store data to be read.
lengthInBytes – The length, given in bytes (not words or long-words), to be read. Must be word-aligned.
option – The resource option which indicates which area should be read back.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the data have been read successfully from program flash IFR, data flash IFR space, and the Version ID field
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with the specified baseline.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLEXNVM_DflashVerifyErase(flexnvm_config_t *config, uint32_t start, uint32_t lengthInBytes, ftfx_margin_value_t margin)
Verifies an erasure of the desired flash area at a specified margin level.
This function checks the appropriate number of flash sectors based on the desired start address and length to check whether the flash is erased to the specified read margin level.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be verified. The start address does not need to be sector-aligned but must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.
margin – Read margin choice.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the specified data flash region is in erased state.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLEXNVM_VerifyEraseAll(flexnvm_config_t *config, ftfx_margin_value_t margin)
Verifies erasure of the entire flash at a specified margin level.
This function checks whether the flash is erased to the specified read margin level.
- Parameters:
config – A pointer to the storage for the driver runtime state.
margin – Read margin choice.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the entire flexnvm region is in erased state.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLEXNVM_DflashVerifyProgram(flexnvm_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, ftfx_margin_value_t margin, uint32_t *failedAddress, uint32_t *failedData)
Verifies programming of the desired flash area at a specified margin level.
This function verifies the data programmed in the flash memory using the Flash Program Check Command and compares it to the expected data for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be verified. Must be word-aligned.
lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be word-aligned.
expectedData – A pointer to the expected data that is to be verified against.
margin – Read margin choice.
failedAddress – A pointer to the returned failing address.
failedData – A pointer to the returned failing data. Some derivatives do not include failed data as part of the FCCOBx registers. In this case, zeros are returned upon failure.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the desired data hve been programed successfully into specified data flash region.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLEXNVM_GetSecurityState(flexnvm_config_t *config, ftfx_security_state_t *state)
Returns the security state via the pointer passed into the function.
This function retrieves the current flash security status, including the security enabling state and the backdoor key enabling state.
- Parameters:
config – A pointer to storage for the driver runtime state.
state – A pointer to the value returned for the current security status code:
- Return values:
kStatus_FTFx_Success – API was executed successfully; the security state of flexnvm was stored to state.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
-
status_t FLEXNVM_SecurityBypass(flexnvm_config_t *config, const uint8_t *backdoorKey)
Allows users to bypass security with a backdoor key.
If the MCU is in secured state, this function unsecures the MCU by comparing the provided backdoor key with ones in the flash configuration field.
- Parameters:
config – A pointer to the storage for the driver runtime state.
backdoorKey – A pointer to the user buffer containing the backdoor key.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLEXNVM_SetFlexramFunction(flexnvm_config_t *config, ftfx_flexram_func_opt_t option)
Sets the FlexRAM function command.
- Parameters:
config – A pointer to the storage for the driver runtime state.
option – The option used to set the work mode of FlexRAM.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the FlexRAM has been successfully configured as RAM or EEPROM
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function is not available.
kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_CommandFailure – Run-time error during the command execution.
-
status_t FLEXNVM_DflashSetProtection(flexnvm_config_t *config, uint8_t protectStatus)
Sets the DFlash protection to the intended protection status.
- Parameters:
config – A pointer to the storage for the driver runtime state.
protectStatus – The expected protect status to set to the DFlash protection register. Each bit corresponds to the protection of the 1/8 of the total DFlash. The least significant bit corresponds to the lowest address area of the DFlash. The most significant bit corresponds to the highest address area of the DFlash. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the specified DFlash region is protected.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_CommandNotSupported – Flash API is not supported.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
-
status_t FLEXNVM_DflashGetProtection(flexnvm_config_t *config, uint8_t *protectStatus)
Gets the DFlash protection status.
- Parameters:
config – A pointer to the storage for the driver runtime state.
protectStatus – DFlash Protect status returned by the PFlash IP. Each bit corresponds to the protection of the 1/8 of the total DFlash. The least significant bit corresponds to the lowest address area of the DFlash. The most significant bit corresponds to the highest address area of the DFlash, and so on. There are two possible cases as below: 0: this area is protected. 1: this area is unprotected.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_CommandNotSupported – Flash API is not supported.
-
status_t FLEXNVM_EepromSetProtection(flexnvm_config_t *config, uint8_t protectStatus)
Sets the EEPROM protection to the intended protection status.
- Parameters:
config – A pointer to the storage for the driver runtime state.
protectStatus – The expected protect status to set to the EEPROM protection register. Each bit corresponds to the protection of the 1/8 of the total EEPROM. The least significant bit corresponds to the lowest address area of the EEPROM. The most significant bit corresponds to the highest address area of EEPROM, and so on. There are two possible cases as shown below: 0: this area is protected. 1: this area is unprotected.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_CommandNotSupported – Flash API is not supported.
kStatus_FTFx_CommandFailure – Run-time error during command execution.
-
status_t FLEXNVM_EepromGetProtection(flexnvm_config_t *config, uint8_t *protectStatus)
Gets the EEPROM protection status.
- Parameters:
config – A pointer to the storage for the driver runtime state.
protectStatus – DFlash Protect status returned by the PFlash IP. Each bit corresponds to the protection of the 1/8 of the total EEPROM. The least significant bit corresponds to the lowest address area of the EEPROM. The most significant bit corresponds to the highest address area of the EEPROM. There are two possible cases as below: 0: this area is protected. 1: this area is unprotected.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_CommandNotSupported – Flash API is not supported.
-
status_t FLEXNVM_GetProperty(flexnvm_config_t *config, flexnvm_property_tag_t whichProperty, uint32_t *value)
Returns the desired flexnvm property.
- Parameters:
config – A pointer to the storage for the driver runtime state.
whichProperty – The desired property from the list of properties in enum flexnvm_property_tag_t
value – A pointer to the value returned for the desired flexnvm property.
- Return values:
kStatus_FTFx_Success – API was executed successfully.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_UnknownProperty – An unknown property tag.
-
enum _flexnvm_property_tag
Enumeration for various flexnvm properties.
Values:
-
enumerator kFLEXNVM_PropertyDflashSectorSize
Dflash sector size property.
-
enumerator kFLEXNVM_PropertyDflashTotalSize
Dflash total size property.
-
enumerator kFLEXNVM_PropertyDflashBlockSize
Dflash block size property.
-
enumerator kFLEXNVM_PropertyDflashBlockCount
Dflash block count property.
-
enumerator kFLEXNVM_PropertyDflashBlockBaseAddr
Dflash block base address property.
-
enumerator kFLEXNVM_PropertyAliasDflashBlockBaseAddr
Dflash block base address Alias property.
-
enumerator kFLEXNVM_PropertyFlexRamBlockBaseAddr
FlexRam block base address property.
-
enumerator kFLEXNVM_PropertyFlexRamTotalSize
FlexRam total size property.
-
enumerator kFLEXNVM_PropertyEepromTotalSize
EEPROM total size property.
-
enumerator kFLEXNVM_PropertyDflashSectorSize
-
typedef enum _flexnvm_property_tag flexnvm_property_tag_t
Enumeration for various flexnvm properties.
-
typedef struct _flexnvm_config flexnvm_config_t
Flexnvm driver state information.
An instance of this structure is allocated by the user of the Flexnvm driver and passed into each of the driver APIs.
-
status_t FLEXNVM_EepromWrite(flexnvm_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)
Programs the EEPROM with data at locations passed in through parameters.
This function programs the emulated EEPROM with the desired data for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be word-aligned.
src – A pointer to the source buffer of data that is to be programmed into the flash.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be word-aligned.
- Return values:
kStatus_FTFx_Success – API was executed successfully; the desires data have been successfully programed into specified eeprom region.
kStatus_FTFx_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FTFx_SetFlexramAsEepromError – Failed to set flexram as eeprom.
kStatus_FTFx_ProtectionViolation – The program/erase operation is requested to execute on protected areas.
kStatus_FTFx_RecoverFlexramAsRamError – Failed to recover the FlexRAM as RAM.
-
struct _flexnvm_config
- #include <fsl_ftfx_flexnvm.h>
Flexnvm driver state information.
An instance of this structure is allocated by the user of the Flexnvm driver and passed into each of the driver APIs.
ftfx utilities
-
ALIGN_DOWN(x, a)
Alignment(down) utility.
-
ALIGN_UP(x, a)
Alignment(up) utility.
-
MAKE_VERSION(major, minor, bugfix)
Constructs the version number for drivers.
-
MAKE_STATUS(group, code)
Constructs a status code value from a group and a code number.
-
FOUR_CHAR_CODE(a, b, c, d)
Constructs the four character code for the Flash driver API key.
-
B1P4(b)
bytes2word utility.
-
B1P3(b)
-
B1P2(b)
-
B1P1(b)
-
B2P3(b)
-
B2P2(b)
-
B2P1(b)
-
B3P2(b)
-
B3P1(b)
-
BYTE2WORD_1_3(x, y)
-
BYTE2WORD_2_2(x, y)
-
BYTE2WORD_3_1(x, y)
-
BYTE2WORD_1_1_2(x, y, z)
-
BYTE2WORD_1_2_1(x, y, z)
-
BYTE2WORD_2_1_1(x, y, z)
-
BYTE2WORD_1_1_1_1(x, y, z, w)
GPIO: General-Purpose Input/Output Driver
-
FSL_GPIO_DRIVER_VERSION
GPIO driver version.
-
enum _gpio_pin_direction
GPIO direction definition.
Values:
-
enumerator kGPIO_DigitalInput
Set current pin as digital input
-
enumerator kGPIO_DigitalOutput
Set current pin as digital output
-
enumerator kGPIO_DigitalInput
-
enum _gpio_checker_attribute
GPIO checker attribute.
Values:
-
enumerator kGPIO_UsernonsecureRWUsersecureRWPrivilegedsecureRW
User nonsecure:Read+Write; User Secure:Read+Write; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureRUsersecureRWPrivilegedsecureRW
User nonsecure:Read; User Secure:Read+Write; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureNUsersecureRWPrivilegedsecureRW
User nonsecure:None; User Secure:Read+Write; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureRUsersecureRPrivilegedsecureRW
User nonsecure:Read; User Secure:Read; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureNUsersecureRPrivilegedsecureRW
User nonsecure:None; User Secure:Read; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureRW
User nonsecure:None; User Secure:None; Privileged Secure:Read+Write
-
enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureR
User nonsecure:None; User Secure:None; Privileged Secure:Read
-
enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureN
User nonsecure:None; User Secure:None; Privileged Secure:None
-
enumerator kGPIO_IgnoreAttributeCheck
Ignores the attribute check
-
enumerator kGPIO_UsernonsecureRWUsersecureRWPrivilegedsecureRW
-
typedef enum _gpio_pin_direction gpio_pin_direction_t
GPIO direction definition.
-
typedef enum _gpio_checker_attribute gpio_checker_attribute_t
GPIO checker attribute.
-
typedef struct _gpio_pin_config gpio_pin_config_t
The GPIO pin configuration structure.
Each pin can only be configured as either an output pin or an input pin at a time. If configured as an input pin, leave the outputConfig unused. Note that in some use cases, the corresponding port property should be configured in advance with the PORT_SetPinConfig().
-
GPIO_FIT_REG(value)
-
struct _gpio_pin_config
- #include <fsl_gpio.h>
The GPIO pin configuration structure.
Each pin can only be configured as either an output pin or an input pin at a time. If configured as an input pin, leave the outputConfig unused. Note that in some use cases, the corresponding port property should be configured in advance with the PORT_SetPinConfig().
Public Members
-
gpio_pin_direction_t pinDirection
GPIO direction, input or output
-
uint8_t outputLogic
Set a default output logic, which has no use in input
-
gpio_pin_direction_t pinDirection
GPIO Driver
-
void GPIO_PortInit(GPIO_Type *base)
Initializes the GPIO peripheral.
This function ungates the GPIO clock.
- Parameters:
base – GPIO peripheral base pointer.
-
void GPIO_PortDenit(GPIO_Type *base)
Denitializes the GPIO peripheral.
- Parameters:
base – GPIO peripheral base pointer.
-
void GPIO_PinInit(GPIO_Type *base, uint32_t pin, const gpio_pin_config_t *config)
Initializes a GPIO pin used by the board.
To initialize the GPIO, define a pin configuration, as either input or output, in the user file. Then, call the GPIO_PinInit() function.
This is an example to define an input pin or an output pin configuration.
Define a digital input pin configuration, gpio_pin_config_t config = { kGPIO_DigitalInput, 0, } Define a digital output pin configuration, gpio_pin_config_t config = { kGPIO_DigitalOutput, 0, }
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
pin – GPIO port pin number
config – GPIO pin configuration pointer
-
static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the multiple GPIO pins to the logic 1 or 0.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
pin – GPIO pin number
output – GPIO pin output logic level.
0: corresponding pin output low-logic level.
1: corresponding pin output high-logic level.
-
static inline void GPIO_PortSet(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_PortClear(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple GPIO pins.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
pin – GPIO pin number
- Return values:
GPIO – port input value
0: corresponding pin input low-logic level.
1: corresponding pin input high-logic level.
-
uint32_t GPIO_PortGetInterruptFlags(GPIO_Type *base)
Reads the GPIO port interrupt status flag.
If a pin is configured to generate the DMA request, the corresponding flag is cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic one is written to that flag. If configured for a level sensitive interrupt that remains asserted, the flag is set again immediately.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
- Return values:
The – current GPIO port interrupt status flag, for example, 0x00010001 means the pin 0 and 17 have the interrupt.
-
void GPIO_PortClearInterruptFlags(GPIO_Type *base, uint32_t mask)
Clears multiple GPIO pin interrupt status flags.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
mask – GPIO pin number macro
-
void GPIO_CheckAttributeBytes(GPIO_Type *base, gpio_checker_attribute_t attribute)
brief The GPIO module supports a device-specific number of data ports, organized as 32-bit words/8-bit Bytes. Each 32-bit/8-bit data port includes a GACR register, which defines the byte-level attributes required for a successful access to the GPIO programming model. If the GPIO module’s GACR register organized as 32-bit words, the attribute controls for the 4 data bytes in the GACR follow a standard little endian data convention.
- Parameters:
base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)
attribute – GPIO checker attribute
I2C: Inter-Integrated Circuit Driver
I2C Driver
-
void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)
Initializes the I2C peripheral. Call this API to ungate the I2C clock and configure the I2C with master configuration.
Note
This API should be called at the beginning of the application. Otherwise, any operation to the I2C module can cause a hard fault because the clock is not enabled. The configuration structure can be custom filled or it can be set with default values by using the I2C_MasterGetDefaultConfig(). After calling this API, the master is ready to transfer. This is an example.
i2c_master_config_t config = { .enableMaster = true, .enableStopHold = false, .highDrive = false, .baudRate_Bps = 100000, .glitchFilterWidth = 0 }; I2C_MasterInit(I2C0, &config, 12000000U);
- Parameters:
base – I2C base pointer
masterConfig – A pointer to the master configuration structure
srcClock_Hz – I2C peripheral clock frequency in Hz
-
void I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)
Initializes the I2C peripheral. Call this API to ungate the I2C clock and initialize the I2C with the slave configuration.
Note
This API should be called at the beginning of the application. Otherwise, any operation to the I2C module can cause a hard fault because the clock is not enabled. The configuration structure can partly be set with default values by I2C_SlaveGetDefaultConfig() or it can be custom filled by the user. This is an example.
i2c_slave_config_t config = { .enableSlave = true, .enableGeneralCall = false, .addressingMode = kI2C_Address7bit, .slaveAddress = 0x1DU, .enableWakeUp = false, .enablehighDrive = false, .enableBaudRateCtl = false, .sclStopHoldTime_ns = 4000 }; I2C_SlaveInit(I2C0, &config, 12000000U);
- Parameters:
base – I2C base pointer
slaveConfig – A pointer to the slave configuration structure
srcClock_Hz – I2C peripheral clock frequency in Hz
-
void I2C_MasterDeinit(I2C_Type *base)
De-initializes the I2C master peripheral. Call this API to gate the I2C clock. The I2C master module can’t work unless the I2C_MasterInit is called.
- Parameters:
base – I2C base pointer
-
void I2C_SlaveDeinit(I2C_Type *base)
De-initializes the I2C slave peripheral. Calling this API gates the I2C clock. The I2C slave module can’t work unless the I2C_SlaveInit is called to enable the clock.
- Parameters:
base – I2C base pointer
-
uint32_t I2C_GetInstance(I2C_Type *base)
Get instance number for I2C module.
- Parameters:
base – I2C peripheral base address.
-
void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Sets the I2C master configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in the I2C_MasterConfigure(). Use the initialized structure unchanged in the I2C_MasterConfigure() or modify the structure before calling the I2C_MasterConfigure(). This is an example.
i2c_master_config_t config; I2C_MasterGetDefaultConfig(&config);
- Parameters:
masterConfig – A pointer to the master configuration structure.
-
void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Sets the I2C slave configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in the I2C_SlaveConfigure(). Modify fields of the structure before calling the I2C_SlaveConfigure(). This is an example.
i2c_slave_config_t config; I2C_SlaveGetDefaultConfig(&config);
- Parameters:
slaveConfig – A pointer to the slave configuration structure.
-
static inline void I2C_Enable(I2C_Type *base, bool enable)
Enables or disables the I2C peripheral operation.
- Parameters:
base – I2C base pointer
enable – Pass true to enable and false to disable the module.
-
uint32_t I2C_MasterGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.
- Parameters:
base – I2C base pointer
- Returns:
status flag, use status flag to AND _i2c_flags to get the related status.
-
static inline uint32_t I2C_SlaveGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.
- Parameters:
base – I2C base pointer
- Returns:
status flag, use status flag to AND _i2c_flags to get the related status.
-
static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.
The following status register flags can be cleared kI2C_ArbitrationLostFlag and kI2C_IntPendingFlag.
- Parameters:
base – I2C base pointer
statusMask – The status flag mask, defined in type i2c_status_flag_t. The parameter can be any combination of the following values:
kI2C_StartDetectFlag (if available)
kI2C_StopDetectFlag (if available)
kI2C_ArbitrationLostFlag
kI2C_IntPendingFlagFlag
-
static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.
The following status register flags can be cleared kI2C_ArbitrationLostFlag and kI2C_IntPendingFlag
- Parameters:
base – I2C base pointer
statusMask – The status flag mask, defined in type i2c_status_flag_t. The parameter can be any combination of the following values:
kI2C_StartDetectFlag (if available)
kI2C_StopDetectFlag (if available)
kI2C_ArbitrationLostFlag
kI2C_IntPendingFlagFlag
-
void I2C_EnableInterrupts(I2C_Type *base, uint32_t mask)
Enables I2C interrupt requests.
- Parameters:
base – I2C base pointer
mask – interrupt source The parameter can be combination of the following source if defined:
kI2C_GlobalInterruptEnable
kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable
kI2C_SdaTimeoutInterruptEnable
-
void I2C_DisableInterrupts(I2C_Type *base, uint32_t mask)
Disables I2C interrupt requests.
- Parameters:
base – I2C base pointer
mask – interrupt source The parameter can be combination of the following source if defined:
kI2C_GlobalInterruptEnable
kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable
kI2C_SdaTimeoutInterruptEnable
-
static inline void I2C_EnableDMA(I2C_Type *base, bool enable)
Enables/disables the I2C DMA interrupt.
- Parameters:
base – I2C base pointer
enable – true to enable, false to disable
-
static inline uint32_t I2C_GetDataRegAddr(I2C_Type *base)
Gets the I2C tx/rx data register address. This API is used to provide a transfer address for I2C DMA transfer configuration.
- Parameters:
base – I2C base pointer
- Returns:
data register address
-
void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C master transfer baud rate.
- Parameters:
base – I2C base pointer
baudRate_Bps – the baud rate value in bps
srcClock_Hz – Source clock
-
status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.
This function is used to initiate a new master mode transfer by sending the START signal. The slave address is sent following the I2C START signal.
- Parameters:
base – I2C peripheral base pointer
address – 7-bit slave device address.
direction – Master transfer directions(transmit/receive).
- Return values:
kStatus_Success – Successfully send the start signal.
kStatus_I2C_Busy – Current bus is busy.
-
status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.
- Return values:
kStatus_Success – Successfully send the stop signal.
kStatus_I2C_Timeout – Send stop signal failed, timeout.
-
status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a REPEATED START on the I2C bus.
- Parameters:
base – I2C peripheral base pointer
address – 7-bit slave device address.
direction – Master transfer directions(transmit/receive).
- Return values:
kStatus_Success – Successfully send the start signal.
kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C master.
-
status_t I2C_MasterWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize, uint32_t flags)
Performs a polling send transaction on the I2C bus.
- Parameters:
base – The I2C peripheral base pointer.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
flags – Transfer control flag to decide whether need to send a stop, use kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not send a stop.
- Return values:
kStatus_Success – Successfully complete the data transmission.
kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.
kStataus_I2C_Nak – Transfer error, receive NAK during transfer.
-
status_t I2C_MasterReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transaction on the I2C bus.
Note
The I2C_MasterReadBlocking function stops the bus before reading the final byte. Without stopping the bus prior for the final read, the bus issues another read, resulting in garbage data being read into the data register.
- Parameters:
base – I2C peripheral base pointer.
rxBuff – The pointer to the data to store the received data.
rxSize – The length in bytes of the data to be received.
flags – Transfer control flag to decide whether need to send a stop, use kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not send a stop.
- Return values:
kStatus_Success – Successfully complete the data transmission.
kStatus_I2C_Timeout – Send stop signal failed, timeout.
-
status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transaction on the I2C bus.
- Parameters:
base – The I2C peripheral base pointer.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
- Return values:
kStatus_Success – Successfully complete the data transmission.
kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.
kStataus_I2C_Nak – Transfer error, receive NAK during transfer.
-
status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transaction on the I2C bus.
- Parameters:
base – I2C peripheral base pointer.
rxBuff – The pointer to the data to store the received data.
rxSize – The length in bytes of the data to be received.
- Return values:
kStatus_Success – Successfully complete data receive.
kStatus_I2C_Timeout – Wait status flag timeout.
-
status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.
Note
The API does not return until the transfer succeeds or fails due to arbitration lost or receiving a NAK.
- Parameters:
base – I2C peripheral base address.
xfer – Pointer to the transfer structure.
- Return values:
kStatus_Success – Successfully complete the data transmission.
kStatus_I2C_Busy – Previous transmission still not finished.
kStatus_I2C_Timeout – Transfer error, wait signal timeout.
kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.
kStataus_I2C_Nak – Transfer error, receive NAK during transfer.
-
void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_callback_t callback, void *userData)
Initializes the I2C handle which is used in transactional functions.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_master_handle_t structure to store the transfer state.
callback – pointer to user callback function.
userData – user parameter passed to the callback function.
-
status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)
Performs a master interrupt non-blocking transfer on the I2C bus.
Note
Calling the API returns immediately after transfer initiates. The user needs to call I2C_MasterGetTransferCount to poll the transfer status to check whether the transfer is finished. If the return status is not kStatus_I2C_Busy, the transfer is finished.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_master_handle_t structure which stores the transfer state.
xfer – pointer to i2c_master_transfer_t structure.
- Return values:
kStatus_Success – Successfully start the data transmission.
kStatus_I2C_Busy – Previous transmission still not finished.
kStatus_I2C_Timeout – Transfer error, wait signal timeout.
-
status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count)
Gets the master transfer status during a interrupt non-blocking transfer.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_master_handle_t structure which stores the transfer state.
count – Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Aborts an interrupt non-blocking transfer early.
Note
This API can be called at any time when an interrupt non-blocking transfer initiates to abort the transfer early.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_master_handle_t structure which stores the transfer state
- Return values:
kStatus_I2C_Timeout – Timeout during polling flag.
kStatus_Success – Successfully abort the transfer.
-
void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Master interrupt handler.
- Parameters:
base – I2C base pointer.
i2cHandle – pointer to i2c_master_handle_t structure.
-
void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_callback_t callback, void *userData)
Initializes the I2C handle which is used in transactional functions.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_slave_handle_t structure to store the transfer state.
callback – pointer to user callback function.
userData – user parameter passed to the callback function.
-
status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask)
Starts accepting slave transfers.
Call this API after calling the I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start processing transactions driven by an I2C master. The slave monitors the I2C bus and passes events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The callback is always invoked from the interrupt context.
The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kLPI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.
eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.
- Return values:
kStatus_Success – Slave transfers were successfully started.
kStatus_I2C_Busy – Slave transfers have already been started on this handle.
-
void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave transfer.
Note
This API can be called at any time to stop slave for handling the bus events.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_slave_handle_t structure which stores the transfer state.
-
status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_slave_handle_t structure.
count – Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Slave interrupt handler.
- Parameters:
base – I2C base pointer.
i2cHandle – pointer to i2c_slave_handle_t structure which stores the transfer state
-
FSL_I2C_DRIVER_VERSION
I2C driver version.
I2C status return codes.
Values:
-
enumerator kStatus_I2C_Busy
I2C is busy with current transfer.
-
enumerator kStatus_I2C_Idle
Bus is Idle.
-
enumerator kStatus_I2C_Nak
NAK received during transfer.
-
enumerator kStatus_I2C_ArbitrationLost
Arbitration lost during transfer.
-
enumerator kStatus_I2C_Timeout
Timeout polling status flags.
-
enumerator kStatus_I2C_Addr_Nak
NAK received during the address probe.
-
enumerator kStatus_I2C_Busy
-
enum _i2c_flags
I2C peripheral flags.
Note
These enumerations are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI2C_ReceiveNakFlag
I2C receive NAK flag.
-
enumerator kI2C_IntPendingFlag
I2C interrupt pending flag. This flag can be cleared.
-
enumerator kI2C_TransferDirectionFlag
I2C transfer direction flag.
-
enumerator kI2C_RangeAddressMatchFlag
I2C range address match flag.
-
enumerator kI2C_ArbitrationLostFlag
I2C arbitration lost flag. This flag can be cleared.
-
enumerator kI2C_BusBusyFlag
I2C bus busy flag.
-
enumerator kI2C_AddressMatchFlag
I2C address match flag.
-
enumerator kI2C_TransferCompleteFlag
I2C transfer complete flag.
-
enumerator kI2C_StopDetectFlag
I2C stop detect flag. This flag can be cleared.
-
enumerator kI2C_StartDetectFlag
I2C start detect flag. This flag can be cleared.
-
enumerator kI2C_ReceiveNakFlag
-
enum _i2c_interrupt_enable
I2C feature interrupt source.
Values:
-
enumerator kI2C_GlobalInterruptEnable
I2C global interrupt.
-
enumerator kI2C_StopDetectInterruptEnable
I2C stop detect interrupt.
-
enumerator kI2C_StartStopDetectInterruptEnable
I2C start&stop detect interrupt.
-
enumerator kI2C_GlobalInterruptEnable
-
enum _i2c_direction
The direction of master and slave transfers.
Values:
-
enumerator kI2C_Write
Master transmits to the slave.
-
enumerator kI2C_Read
Master receives from the slave.
-
enumerator kI2C_Write
-
enum _i2c_slave_address_mode
Addressing mode.
Values:
-
enumerator kI2C_Address7bit
7-bit addressing mode.
-
enumerator kI2C_RangeMatch
Range address match addressing mode.
-
enumerator kI2C_Address7bit
-
enum _i2c_master_transfer_flags
I2C transfer control flag.
Values:
-
enumerator kI2C_TransferDefaultFlag
A transfer starts with a start signal, stops with a stop signal.
-
enumerator kI2C_TransferNoStartFlag
A transfer starts without a start signal, only support write only or write+read with no start flag, do not support read only with no start flag.
-
enumerator kI2C_TransferRepeatedStartFlag
A transfer starts with a repeated start signal.
-
enumerator kI2C_TransferNoStopFlag
A transfer ends without a stop signal.
-
enumerator kI2C_TransferDefaultFlag
-
enum _i2c_slave_transfer_event
Set of events sent to the callback for nonblocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
Values:
-
enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.
-
enumerator kI2C_SlaveTransmitEvent
A callback is requested to provide data to transmit (slave-transmitter role).
-
enumerator kI2C_SlaveReceiveEvent
A callback is requested to provide a buffer in which to place received data (slave-receiver role).
-
enumerator kI2C_SlaveTransmitAckEvent
A callback needs to either transmit an ACK or NACK.
-
enumerator kI2C_SlaveStartEvent
A start/repeated start was detected.
-
enumerator kI2C_SlaveCompletionEvent
A stop was detected or finished transfer, completing the transfer.
-
enumerator kI2C_SlaveGenaralcallEvent
Received the general call address after a start or repeated start.
-
enumerator kI2C_SlaveAllEvents
A bit mask of all available events.
-
enumerator kI2C_SlaveAddressMatchEvent
Common sets of flags used by the driver.
Values:
-
enumerator kClearFlags
All flags which are cleared by the driver upon starting a transfer.
-
enumerator kIrqFlags
-
enumerator kClearFlags
-
typedef enum _i2c_direction i2c_direction_t
The direction of master and slave transfers.
-
typedef enum _i2c_slave_address_mode i2c_slave_address_mode_t
Addressing mode.
-
typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for nonblocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
-
typedef struct _i2c_master_config i2c_master_config_t
I2C master user configuration.
-
typedef struct _i2c_slave_config i2c_slave_config_t
I2C slave user configuration.
-
typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.
-
typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle, status_t status, void *userData)
I2C master transfer callback typedef.
-
typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.
-
typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer structure.
-
typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.
-
typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, i2c_slave_transfer_t *xfer, void *userData)
I2C slave transfer callback typedef.
-
I2C_RETRY_TIMES
Retry times for waiting flag.
-
I2C_MASTER_FACK_CONTROL
Mater Fast ack control, control if master needs to manually write ack, this is used to low the speed of transfer for SoCs with feature FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING.
-
I2C_HAS_STOP_DETECT
-
struct _i2c_master_config
- #include <fsl_i2c.h>
I2C master user configuration.
Public Members
-
bool enableMaster
Enables the I2C peripheral at initialization time.
-
bool enableStopHold
Controls the stop hold enable.
-
bool enableDoubleBuffering
Controls double buffer enable; notice that enabling the double buffer disables the clock stretch.
-
uint32_t baudRate_Bps
Baud rate configuration of I2C peripheral.
-
uint8_t glitchFilterWidth
Controls the width of the glitch.
-
bool enableMaster
-
struct _i2c_slave_config
- #include <fsl_i2c.h>
I2C slave user configuration.
Public Members
-
bool enableSlave
Enables the I2C peripheral at initialization time.
-
bool enableGeneralCall
Enables the general call addressing mode.
-
bool enableWakeUp
Enables/disables waking up MCU from low-power mode.
-
bool enableDoubleBuffering
Controls a double buffer enable; notice that enabling the double buffer disables the clock stretch.
-
bool enableBaudRateCtl
Enables/disables independent slave baud rate on SCL in very fast I2C modes.
-
uint16_t slaveAddress
A slave address configuration.
-
uint16_t upperAddress
A maximum boundary slave address used in a range matching mode.
-
i2c_slave_address_mode_t addressingMode
An addressing mode configuration of i2c_slave_address_mode_config_t.
-
uint32_t sclStopHoldTime_ns
the delay from the rising edge of SCL (I2C clock) to the rising edge of SDA (I2C data) while SCL is high (stop condition), SDA hold time and SCL start hold time are also configured according to the SCL stop hold time.
-
bool enableSlave
-
struct _i2c_master_transfer
- #include <fsl_i2c.h>
I2C master transfer structure.
Public Members
-
uint32_t flags
A transfer flag which controls the transfer.
-
uint8_t slaveAddress
7-bit slave address.
-
i2c_direction_t direction
A transfer direction, read or write.
-
uint32_t subaddress
A sub address. Transferred MSB first.
-
uint8_t subaddressSize
A size of the command buffer.
-
uint8_t *volatile data
A transfer buffer.
-
volatile size_t dataSize
A transfer size.
-
uint32_t flags
-
struct _i2c_master_handle
- #include <fsl_i2c.h>
I2C master handle structure.
Public Members
-
i2c_master_transfer_t transfer
I2C master transfer copy.
-
size_t transferSize
Total bytes to be transferred.
-
uint8_t state
A transfer state maintained during transfer.
-
i2c_master_transfer_callback_t completionCallback
A callback function called when the transfer is finished.
-
void *userData
A callback parameter passed to the callback function.
-
i2c_master_transfer_t transfer
-
struct _i2c_slave_transfer
- #include <fsl_i2c.h>
I2C slave transfer structure.
Public Members
-
i2c_slave_transfer_event_t event
A reason that the callback is invoked.
-
uint8_t *volatile data
A transfer buffer.
-
volatile size_t dataSize
A transfer size.
-
status_t completionStatus
Success or error code describing how the transfer completed. Only applies for kI2C_SlaveCompletionEvent.
-
size_t transferredCount
A number of bytes actually transferred since the start or since the last repeated start.
-
i2c_slave_transfer_event_t event
-
struct _i2c_slave_handle
- #include <fsl_i2c.h>
I2C slave handle structure.
Public Members
-
volatile bool isBusy
Indicates whether a transfer is busy.
-
i2c_slave_transfer_t transfer
I2C slave transfer copy.
-
uint32_t eventMask
A mask of enabled events.
-
i2c_slave_transfer_callback_t callback
A callback function called at the transfer event.
-
void *userData
A callback parameter passed to the callback.
-
volatile bool isBusy
Common Driver
-
FSL_COMMON_DRIVER_VERSION
common driver version.
-
DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.
-
DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.
-
DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.
-
DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.
-
DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.
-
DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.
-
DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.
-
DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.
-
DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.
-
DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.
-
DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.
-
MIN(a, b)
Computes the minimum of a and b.
-
MAX(a, b)
Computes the maximum of a and b.
-
UINT16_MAX
Max value of uint16_t type.
-
UINT32_MAX
Max value of uint32_t type.
-
SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.
-
SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.
-
SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits specifiled by setBits.
-
SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value same as expected then update newValue to address and return true , else return false .
-
SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.
-
USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value
-
COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond
-
MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value
-
COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond
-
SDK_ISR_EXIT_BARRIER
-
SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment
Macro to define a variable with L2 cache line size alignment
Macro to change a value to a given size aligned value
-
AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.
-
AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.
-
AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.
-
AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.
-
enum _status_groups
Status group numbers.
Values:
-
enumerator kStatusGroup_Generic
Group number for generic status codes.
-
enumerator kStatusGroup_FLASH
Group number for FLASH status codes.
-
enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.
-
enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.
-
enumerator kStatusGroup_DSPI
Group number for DSPI status codes.
-
enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.
-
enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.
-
enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.
-
enumerator kStatusGroup_UART
Group number for UART status codes.
-
enumerator kStatusGroup_I2C
Group number for UART status codes.
-
enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.
-
enumerator kStatusGroup_LPUART
Group number for LPUART status codes.
-
enumerator kStatusGroup_SPI
Group number for SPI status code.
-
enumerator kStatusGroup_XRDC
Group number for XRDC status code.
-
enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.
-
enumerator kStatusGroup_SDHC
Group number for SDHC status code
-
enumerator kStatusGroup_SDMMC
Group number for SDMMC status code
-
enumerator kStatusGroup_SAI
Group number for SAI status code
-
enumerator kStatusGroup_MCG
Group number for MCG status codes.
-
enumerator kStatusGroup_SCG
Group number for SCG status codes.
-
enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.
-
enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes
-
enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes
-
enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes
-
enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes
-
enumerator kStatusGroup_I2S
Group number for I2S status codes
-
enumerator kStatusGroup_IUART
Group number for IUART status codes
-
enumerator kStatusGroup_CSI
Group number for CSI status codes
-
enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes
-
enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.
-
enumerator kStatusGroup_POWER
Group number for POWER status codes.
-
enumerator kStatusGroup_ENET
Group number for ENET status codes.
-
enumerator kStatusGroup_PHY
Group number for PHY status codes.
-
enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.
-
enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.
-
enumerator kStatusGroup_LMEM
Group number for LMEM status codes.
-
enumerator kStatusGroup_QSPI
Group number for QSPI status codes.
-
enumerator kStatusGroup_DMA
Group number for DMA status codes.
-
enumerator kStatusGroup_EDMA
Group number for EDMA status codes.
-
enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.
-
enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.
-
enumerator kStatusGroup_LTC
Group number for LTC status codes.
-
enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.
-
enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.
-
enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.
-
enumerator kStatusGroup_DMIC
Group number for DMIC status codes.
-
enumerator kStatusGroup_SDIF
Group number for SDIF status codes.
-
enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.
-
enumerator kStatusGroup_OTP
Group number for OTP status codes.
-
enumerator kStatusGroup_MCAN
Group number for MCAN status codes.
-
enumerator kStatusGroup_CAAM
Group number for CAAM status codes.
-
enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.
-
enumerator kStatusGroup_USDHC
Group number for USDHC status codes.
-
enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.
-
enumerator kStatusGroup_DCP
Group number for DCP status codes.
-
enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.
-
enumerator kStatusGroup_ESAI
Group number for ESAI status codes.
-
enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.
-
enumerator kStatusGroup_MMDC
Group number for MMDC status codes.
-
enumerator kStatusGroup_PDM
Group number for MIC status codes.
-
enumerator kStatusGroup_SDMA
Group number for SDMA status codes.
-
enumerator kStatusGroup_ICS
Group number for ICS status codes.
-
enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.
-
enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.
-
enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes
-
enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.
-
enumerator kStatusGroup_I3C
Group number for I3C status codes
-
enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.
-
enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.
-
enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.
-
enumerator kStatusGroup_SEMC
Group number for SEMC status codes.
-
enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.
-
enumerator kStatusGroup_IAP
Group number for IAP status codes
-
enumerator kStatusGroup_SFA
Group number for SFA status codes
-
enumerator kStatusGroup_SPC
Group number for SPC status codes.
-
enumerator kStatusGroup_PUF
Group number for PUF status codes.
-
enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes
-
enumerator kStatusGroup_VBAT
Group number for VBAT status codes
-
enumerator kStatusGroup_XSPI
Group number for XSPI status codes
-
enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes
-
enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes
-
enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.
-
enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.
-
enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.
-
enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.
-
enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.
-
enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.
-
enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.
-
enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.
-
enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.
-
enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.
-
enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.
-
enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.
-
enumerator kStatusGroup_LED
Group number for LED status codes.
-
enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.
-
enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.
-
enumerator kStatusGroup_SHELL
Group number for SHELL status codes.
-
enumerator kStatusGroup_MEM_MANAGER
Group number for MEM MANAGER status codes.
-
enumerator kStatusGroup_LIST
Group number for List status codes.
-
enumerator kStatusGroup_OSA
Group number for OSA status codes.
-
enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.
-
enumerator kStatusGroup_MSG
Group number for messaging status codes.
-
enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.
-
enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.
-
enumerator kStatusGroup_CODEC
Group number for codec status codes.
-
enumerator kStatusGroup_ASRC
Group number for codec status ASRC.
-
enumerator kStatusGroup_OTFAD
Group number for codec status codes.
-
enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.
-
enumerator kStatusGroup_MECC
Group number for MECC status codes.
-
enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.
-
enumerator kStatusGroup_LOG
Group number for LOG status codes.
-
enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.
-
enumerator kStatusGroup_QSCI
Group number for QSCI status codes.
-
enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.
-
enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.
-
enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.
-
enumerator kStatusGroup_IPED
Group number for IPED status codes.
-
enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.
-
enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.
-
enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.
-
enumerator kStatusGroup_CLIF
Group number for CLIF status codes.
-
enumerator kStatusGroup_BMA
Group number for BMA status codes.
-
enumerator kStatusGroup_NETC
Group number for NETC status codes.
-
enumerator kStatusGroup_ELE
Group number for ELE status codes.
-
enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.
-
enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.
-
enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.
-
enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.
-
enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.
-
enumerator kStatusGroup_Generic
Generic status return codes.
Values:
-
enumerator kStatus_Success
Generic status for Success.
-
enumerator kStatus_Fail
Generic status for Fail.
-
enumerator kStatus_ReadOnly
Generic status for read only failure.
-
enumerator kStatus_OutOfRange
Generic status for out of range access.
-
enumerator kStatus_InvalidArgument
Generic status for invalid argument check.
-
enumerator kStatus_Timeout
Generic status for timeout.
-
enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.
-
enumerator kStatus_Busy
Generic status for module is busy.
-
enumerator kStatus_NoData
Generic status for no data is found for the operation.
-
enumerator kStatus_Success
-
typedef int32_t status_t
Type used for all status and error return values.
-
void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.
This is provided to support the dynamically allocated memory used in cache-able region.
- Parameters:
size – The length required to malloc.
alignbytes – The alignment size.
- Return values:
The – allocated memory.
-
void SDK_Free(void *ptr)
Free memory.
- Parameters:
ptr – The memory to be release.
-
void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different run-time environments make the time not precise, if precise delay count was needed, please implement a new delay function with hardware timer.
- Parameters:
delayTime_us – Delay time in unit of microsecond.
coreClock_Hz – Core clock frequency with Hz.
-
static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.
Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ number.
- Return values:
kStatus_Success – Interrupt enabled successfully
kStatus_Fail – Failed to enable the interrupt
-
static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.
Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ number.
- Return values:
kStatus_Success – Interrupt disabled successfully
kStatus_Fail – Failed to disable the interrupt
-
static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ to Enable.
priNum – Priority number set to interrupt controller register.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ to set.
priNum – Priority number set to interrupt controller register.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The flag which IRQ to clear.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.
Disable the global interrupt and return the current primask register. User is required to provided the primask register for the EnableGlobalIRQ().
- Returns:
Current primask value.
-
static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.
Set the primask register with the provided primask value but not just enable the primask. The idea is for the convenience of integration of RTOS. some RTOS get its own management mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlobalIRQ() in pair.
- Parameters:
primask – value of primask register to be restored. The primask value is supposed to be provided by the DisableGlobalIRQ().
-
static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t newValue)
-
static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
-
FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.
-
MAKE_STATUS(group, code)
Construct a status code value from a group and code number.
-
MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.
The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit platforms(such as DSC).
| Unused || Major Version || Minor Version || Bug Fix | 31 25 24 17 16 9 8 0
-
ARRAY_SIZE(x)
Computes the number of elements in an array.
-
UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value
-
UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value
-
SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be added at the end of each case section which misses “break;”statement.
-
MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.
-
MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.
Lin_lpuart_driver
-
FSL_LIN_LPUART_DRIVER_VERSION
LIN LPUART driver version.
-
enum _lin_lpuart_stop_bit_count
Values:
-
enumerator kLPUART_OneStopBit
One stop bit
-
enumerator kLPUART_TwoStopBit
Two stop bits
-
enumerator kLPUART_OneStopBit
-
enum _lin_lpuart_flags
Values:
-
enumerator kLPUART_TxDataRegEmptyFlag
Transmit data register empty flag, sets when transmit buffer is empty
-
enumerator kLPUART_TransmissionCompleteFlag
Transmission complete flag, sets when transmission activity complete
-
enumerator kLPUART_RxDataRegFullFlag
Receive data register full flag, sets when the receive data buffer is full
-
enumerator kLPUART_IdleLineFlag
Idle line detect flag, sets when idle line detected
-
enumerator kLPUART_RxOverrunFlag
Receive Overrun, sets when new data is received before data is read from receive register
-
enumerator kLPUART_NoiseErrorFlag
Receive takes 3 samples of each received bit. If any of these samples differ, noise flag sets
-
enumerator kLPUART_FramingErrorFlag
Frame error flag, sets if logic 0 was detected where stop bit expected
-
enumerator kLPUART_ParityErrorFlag
If parity enabled, sets upon parity error detection
-
enumerator kLPUART_LinBreakFlag
LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit enabled
-
enumerator kLPUART_RxActiveEdgeFlag
Receive pin active edge interrupt flag, sets when active edge detected
-
enumerator kLPUART_RxActiveFlag
Receiver Active Flag (RAF), sets at beginning of valid start bit
-
enumerator kLPUART_DataMatch1Flag
The next character to be read from LPUART_DATA matches MA1
-
enumerator kLPUART_DataMatch2Flag
The next character to be read from LPUART_DATA matches MA2
-
enumerator kLPUART_NoiseErrorInRxDataRegFlag
NOISY bit, sets if noise detected in current data word
-
enumerator kLPUART_ParityErrorInRxDataRegFlag
PARITY bit, sets if noise detected in current data word
-
enumerator kLPUART_TxFifoEmptyFlag
TXEMPT bit, sets if transmit buffer is empty
-
enumerator kLPUART_RxFifoEmptyFlag
RXEMPT bit, sets if receive buffer is empty
-
enumerator kLPUART_TxFifoOverflowFlag
TXOF bit, sets if transmit buffer overflow occurred
-
enumerator kLPUART_RxFifoUnderflowFlag
RXUF bit, sets if receive buffer underflow occurred
-
enumerator kLPUART_TxDataRegEmptyFlag
-
enum _lin_lpuart_interrupt_enable
Values:
-
enumerator kLPUART_LinBreakInterruptEnable
LIN break detect.
-
enumerator kLPUART_RxActiveEdgeInterruptEnable
Receive Active Edge.
-
enumerator kLPUART_TxDataRegEmptyInterruptEnable
Transmit data register empty.
-
enumerator kLPUART_TransmissionCompleteInterruptEnable
Transmission complete.
-
enumerator kLPUART_RxDataRegFullInterruptEnable
Receiver data register full.
-
enumerator kLPUART_IdleLineInterruptEnable
Idle line.
-
enumerator kLPUART_RxOverrunInterruptEnable
Receiver Overrun.
-
enumerator kLPUART_NoiseErrorInterruptEnable
Noise error flag.
-
enumerator kLPUART_FramingErrorInterruptEnable
Framing error flag.
-
enumerator kLPUART_ParityErrorInterruptEnable
Parity error flag.
-
enumerator kLPUART_TxFifoOverflowInterruptEnable
Transmit FIFO Overflow.
-
enumerator kLPUART_RxFifoUnderflowInterruptEnable
Receive FIFO Underflow.
-
enumerator kLPUART_LinBreakInterruptEnable
-
enum _lin_lpuart_status
Values:
-
enumerator kStatus_LPUART_TxBusy
TX busy
-
enumerator kStatus_LPUART_RxBusy
RX busy
-
enumerator kStatus_LPUART_TxIdle
LPUART transmitter is idle.
-
enumerator kStatus_LPUART_RxIdle
LPUART receiver is idle.
-
enumerator kStatus_LPUART_TxWatermarkTooLarge
TX FIFO watermark too large
-
enumerator kStatus_LPUART_RxWatermarkTooLarge
RX FIFO watermark too large
-
enumerator kStatus_LPUART_FlagCannotClearManually
Some flag can’t manually clear
-
enumerator kStatus_LPUART_Error
Error happens on LPUART.
-
enumerator kStatus_LPUART_RxRingBufferOverrun
LPUART RX software ring buffer overrun.
-
enumerator kStatus_LPUART_RxHardwareOverrun
LPUART RX receiver overrun.
-
enumerator kStatus_LPUART_NoiseError
LPUART noise error.
-
enumerator kStatus_LPUART_FramingError
LPUART framing error.
-
enumerator kStatus_LPUART_ParityError
LPUART parity error.
-
enumerator kStatus_LPUART_TxBusy
-
enum lin_lpuart_bit_count_per_char_t
Values:
-
enumerator LPUART_8_BITS_PER_CHAR
8-bit data characters
-
enumerator LPUART_9_BITS_PER_CHAR
9-bit data characters
-
enumerator LPUART_10_BITS_PER_CHAR
10-bit data characters
-
enumerator LPUART_8_BITS_PER_CHAR
-
typedef enum _lin_lpuart_stop_bit_count lin_lpuart_stop_bit_count_t
-
static inline bool LIN_LPUART_GetRxDataPolarity(const LPUART_Type *base)
-
static inline void LIN_LPUART_SetRxDataPolarity(LPUART_Type *base, bool polarity)
-
static inline void LIN_LPUART_WriteByte(LPUART_Type *base, uint8_t data)
-
static inline void LIN_LPUART_ReadByte(const LPUART_Type *base, uint8_t *readData)
-
status_t LIN_LPUART_CalculateBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz, uint32_t *osr, uint16_t *sbr)
Calculates the best osr and sbr value for configured baudrate.
- Parameters:
base – LPUART peripheral base address
baudRate_Bps – user configuration structure of type #lin_user_config_t
srcClock_Hz – pointer to the LIN_LPUART driver state structure
osr – pointer to osr value
sbr – pointer to sbr value
- Returns:
An error code or lin_status_t
-
void LIN_LPUART_SetBaudRate(LPUART_Type *base, uint32_t *osr, uint16_t *sbr)
Configure baudrate according to osr and sbr value.
- Parameters:
base – LPUART peripheral base address
osr – pointer to osr value
sbr – pointer to sbr value
-
lin_status_t LIN_LPUART_Init(LPUART_Type *base, lin_user_config_t *linUserConfig, lin_state_t *linCurrentState, uint32_t linSourceClockFreq)
Initializes an LIN_LPUART instance for LIN Network.
The caller provides memory for the driver state structures during initialization. The user must select the LIN_LPUART clock source in the application to initialize the LIN_LPUART. This function initializes a LPUART instance for operation. This function will initialize the run-time state structure to keep track of the on-going transfers, initialize the module to user defined settings and default settings, set break field length to be 13 bit times minimum, enable the break detect interrupt, Rx complete interrupt, frame error detect interrupt, and enable the LPUART module transmitter and receiver
- Parameters:
base – LPUART peripheral base address
linUserConfig – user configuration structure of type #lin_user_config_t
linCurrentState – pointer to the LIN_LPUART driver state structure
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_Deinit(LPUART_Type *base)
Shuts down the LIN_LPUART by disabling interrupts and transmitter/receiver.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_SendFrameDataBlocking(LPUART_Type *base, const uint8_t *txBuff, uint8_t txSize, uint32_t timeoutMSec)
Sends Frame data out through the LIN_LPUART module using blocking method. This function will calculate the checksum byte and send it with the frame data. Blocking means that the function does not return until the transmission is complete.
- Parameters:
base – LPUART peripheral base address
txBuff – source buffer containing 8-bit data chars to send
txSize – the number of bytes to send
timeoutMSec – timeout value in milli seconds
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_SendFrameData(LPUART_Type *base, const uint8_t *txBuff, uint8_t txSize)
Sends frame data out through the LIN_LPUART module using non-blocking method. This enables an a-sync method for transmitting data. Non-blocking means that the function returns immediately. The application has to get the transmit status to know when the transmit is complete. This function will calculate the checksum byte and send it with the frame data.
- Parameters:
base – LPUART peripheral base address
txBuff – source buffer containing 8-bit data chars to send
txSize – the number of bytes to send
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_GetTransmitStatus(LPUART_Type *base, uint8_t *bytesRemaining)
Get status of an on-going non-blocking transmission While sending frame data using non-blocking method, users can use this function to get status of that transmission. This function return LIN_TX_BUSY while sending, or LIN_TIMEOUT if timeout has occurred, or return LIN_SUCCESS when the transmission is complete. The bytesRemaining shows number of bytes that still needed to transmit.
- Parameters:
base – LPUART peripheral base address
bytesRemaining – Number of bytes still needed to transmit
- Returns:
lin_status_t LIN_TX_BUSY, LIN_SUCCESS or LIN_TIMEOUT
-
lin_status_t LIN_LPUART_RecvFrmDataBlocking(LPUART_Type *base, uint8_t *rxBuff, uint8_t rxSize, uint32_t timeoutMSec)
Receives frame data through the LIN_LPUART module using blocking method. This function will check the checksum byte. If the checksum is correct, it will receive the frame data. Blocking means that the function does not return until the reception is complete.
- Parameters:
base – LPUART peripheral base address
rxBuff – buffer containing 8-bit received data
rxSize – the number of bytes to receive
timeoutMSec – timeout value in milli seconds
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_RecvFrmData(LPUART_Type *base, uint8_t *rxBuff, uint8_t rxSize)
Receives frame data through the LIN_LPUART module using non-blocking method. This function will check the checksum byte. If the checksum is correct, it will receive it with the frame data. Non-blocking means that the function returns immediately. The application has to get the receive status to know when the reception is complete.
- Parameters:
base – LPUART peripheral base address
rxBuff – buffer containing 8-bit received data
rxSize – the number of bytes to receive
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_AbortTransferData(LPUART_Type *base)
Aborts an on-going non-blocking transmission/reception. While performing a non-blocking transferring data, users can call this function to terminate immediately the transferring.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_GetReceiveStatus(LPUART_Type *base, uint8_t *bytesRemaining)
Get status of an on-going non-blocking reception While receiving frame data using non-blocking method, users can use this function to get status of that receiving. This function return the current event ID, LIN_RX_BUSY while receiving and return LIN_SUCCESS, or timeout (LIN_TIMEOUT) when the reception is complete. The bytesRemaining shows number of bytes that still needed to receive.
- Parameters:
base – LPUART peripheral base address
bytesRemaining – Number of bytes still needed to receive
- Returns:
lin_status_t LIN_RX_BUSY, LIN_TIMEOUT or LIN_SUCCESS
-
lin_status_t LIN_LPUART_GoToSleepMode(LPUART_Type *base)
This function puts current node to sleep mode This function changes current node state to LIN_NODE_STATE_SLEEP_MODE.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_GotoIdleState(LPUART_Type *base)
Puts current LIN node to Idle state This function changes current node state to LIN_NODE_STATE_IDLE.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_SendWakeupSignal(LPUART_Type *base)
Sends a wakeup signal through the LIN_LPUART interface.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_MasterSendHeader(LPUART_Type *base, uint8_t id)
Sends frame header out through the LIN_LPUART module using a non-blocking method. This function sends LIN Break field, sync field then the ID with correct parity.
- Parameters:
base – LPUART peripheral base address
id – Frame Identifier
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_EnableIRQ(LPUART_Type *base)
Enables LIN_LPUART hardware interrupts.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_DisableIRQ(LPUART_Type *base)
Disables LIN_LPUART hardware interrupts.
- Parameters:
base – LPUART peripheral base address
- Returns:
An error code or lin_status_t
-
lin_status_t LIN_LPUART_AutoBaudCapture(uint32_t instance)
This function capture bits time to detect break char, calculate baudrate from sync bits and enable transceiver if autobaud successful. This function should only be used in Slave. The timer should be in mode input capture of both rising and falling edges. The timer input capture pin should be externally connected to RXD pin.
- Parameters:
instance – LPUART instance
- Returns:
lin_status_t
-
void LIN_LPUART_IRQHandler(LPUART_Type *base)
LIN_LPUART RX TX interrupt handler.
- Parameters:
base – LPUART peripheral base address
- Returns:
void
-
AUTOBAUD_BAUDRATE_TOLERANCE
-
BIT_RATE_TOLERANCE_UNSYNC
-
BIT_DURATION_MAX_19200
-
BIT_DURATION_MIN_19200
-
BIT_DURATION_MAX_14400
-
BIT_DURATION_MIN_14400
-
BIT_DURATION_MAX_9600
-
BIT_DURATION_MIN_9600
-
BIT_DURATION_MAX_4800
-
BIT_DURATION_MIN_4800
-
BIT_DURATION_MAX_2400
-
BIT_DURATION_MIN_2400
-
TWO_BIT_DURATION_MAX_19200
-
TWO_BIT_DURATION_MIN_19200
-
TWO_BIT_DURATION_MAX_14400
-
TWO_BIT_DURATION_MIN_14400
-
TWO_BIT_DURATION_MAX_9600
-
TWO_BIT_DURATION_MIN_9600
-
TWO_BIT_DURATION_MAX_4800
-
TWO_BIT_DURATION_MIN_4800
-
TWO_BIT_DURATION_MAX_2400
-
TWO_BIT_DURATION_MIN_2400
-
AUTOBAUD_BREAK_TIME_MIN
LLWU: Low-Leakage Wakeup Unit Driver
-
static inline void LLWU_GetVersionId(LLWU_Type *base, llwu_version_id_t *versionId)
Gets the LLWU version ID.
This function gets the LLWU version ID, including the major version number, the minor version number, and the feature specification number.
- Parameters:
base – LLWU peripheral base address.
versionId – A pointer to the version ID structure.
-
static inline void LLWU_GetParam(LLWU_Type *base, llwu_param_t *param)
Gets the LLWU parameter.
This function gets the LLWU parameter, including a wakeup pin number, a module number, a DMA number, and a pin filter number.
- Parameters:
base – LLWU peripheral base address.
param – A pointer to the LLWU parameter structure.
-
void LLWU_SetExternalWakeupPinMode(LLWU_Type *base, uint32_t pinIndex, llwu_external_pin_mode_t pinMode)
Sets the external input pin source mode.
This function sets the external input pin source mode that is used as a wake up source.
- Parameters:
base – LLWU peripheral base address.
pinIndex – A pin index to be enabled as an external wakeup source starting from 1.
pinMode – A pin configuration mode defined in the llwu_external_pin_modes_t.
-
bool LLWU_GetExternalWakeupPinFlag(LLWU_Type *base, uint32_t pinIndex)
Gets the external wakeup source flag.
This function checks the external pin flag to detect whether the MCU is woken up by the specific pin.
- Parameters:
base – LLWU peripheral base address.
pinIndex – A pin index, which starts from 1.
- Returns:
True if the specific pin is a wakeup source.
-
void LLWU_ClearExternalWakeupPinFlag(LLWU_Type *base, uint32_t pinIndex)
Clears the external wakeup source flag.
This function clears the external wakeup source flag for a specific pin.
- Parameters:
base – LLWU peripheral base address.
pinIndex – A pin index, which starts from 1.
-
static inline void LLWU_EnableInternalModuleInterruptWakup(LLWU_Type *base, uint32_t moduleIndex, bool enable)
Enables/disables the internal module source.
This function enables/disables the internal module source mode that is used as a wake up source.
- Parameters:
base – LLWU peripheral base address.
moduleIndex – A module index to be enabled as an internal wakeup source starting from 1.
enable – An enable or a disable setting
-
static inline void LLWU_EnableInternalModuleDmaRequestWakup(LLWU_Type *base, uint32_t moduleIndex, bool enable)
Enables/disables the internal module DMA wakeup source.
This function enables/disables the internal DMA that is used as a wake up source.
- Parameters:
base – LLWU peripheral base address.
moduleIndex – An internal module index which is used as a DMA request source, starting from 1.
enable – Enable or disable the DMA request source
-
void LLWU_SetPinFilterMode(LLWU_Type *base, uint32_t filterIndex, llwu_external_pin_filter_mode_t filterMode)
Sets the pin filter configuration.
This function sets the pin filter configuration.
- Parameters:
base – LLWU peripheral base address.
filterIndex – A pin filter index used to enable/disable the digital filter, starting from 1.
filterMode – A filter mode configuration
-
bool LLWU_GetPinFilterFlag(LLWU_Type *base, uint32_t filterIndex)
Gets the pin filter configuration.
This function gets the pin filter flag.
- Parameters:
base – LLWU peripheral base address.
filterIndex – A pin filter index, which starts from 1.
- Returns:
True if the flag is a source of the existing low-leakage power mode.
-
void LLWU_ClearPinFilterFlag(LLWU_Type *base, uint32_t filterIndex)
Clears the pin filter configuration.
This function clears the pin filter flag.
- Parameters:
base – LLWU peripheral base address.
filterIndex – A pin filter index to clear the flag, starting from 1.
-
void LLWU_SetResetPinMode(LLWU_Type *base, bool pinEnable, bool pinFilterEnable)
Sets the reset pin mode.
This function determines how the reset pin is used as a low leakage mode exit source.
- Parameters:
base – LLWU peripheral base address.
pinEnable – Enable reset the pin filter
pinFilterEnable – Specify whether the pin filter is enabled in Low-Leakage power mode.
-
FSL_LLWU_DRIVER_VERSION
LLWU driver version.
-
enum _llwu_external_pin_mode
External input pin control modes.
Values:
-
enumerator kLLWU_ExternalPinDisable
Pin disabled as a wakeup input.
-
enumerator kLLWU_ExternalPinRisingEdge
Pin enabled with the rising edge detection.
-
enumerator kLLWU_ExternalPinFallingEdge
Pin enabled with the falling edge detection.
-
enumerator kLLWU_ExternalPinAnyEdge
Pin enabled with any change detection.
-
enumerator kLLWU_ExternalPinDisable
-
enum _llwu_pin_filter_mode
Digital filter control modes.
Values:
-
enumerator kLLWU_PinFilterDisable
Filter disabled.
-
enumerator kLLWU_PinFilterRisingEdge
Filter positive edge detection.
-
enumerator kLLWU_PinFilterFallingEdge
Filter negative edge detection.
-
enumerator kLLWU_PinFilterAnyEdge
Filter any edge detection.
-
enumerator kLLWU_PinFilterDisable
-
typedef enum _llwu_external_pin_mode llwu_external_pin_mode_t
External input pin control modes.
-
typedef enum _llwu_pin_filter_mode llwu_pin_filter_mode_t
Digital filter control modes.
-
typedef struct _llwu_version_id llwu_version_id_t
IP version ID definition.
-
typedef struct _llwu_param llwu_param_t
IP parameter definition.
-
typedef struct _llwu_external_pin_filter_mode llwu_external_pin_filter_mode_t
An external input pin filter control structure.
-
LLWU_REG_VAL(x)
-
struct _llwu_version_id
- #include <fsl_llwu.h>
IP version ID definition.
Public Members
-
uint16_t feature
A feature specification number.
-
uint8_t minor
The minor version number.
-
uint8_t major
The major version number.
-
uint16_t feature
-
struct _llwu_param
- #include <fsl_llwu.h>
IP parameter definition.
Public Members
-
uint8_t filters
A number of the pin filter.
-
uint8_t dmas
A number of the wakeup DMA.
-
uint8_t modules
A number of the wakeup module.
-
uint8_t pins
A number of the wake up pin.
-
uint8_t filters
-
struct _llwu_external_pin_filter_mode
- #include <fsl_llwu.h>
An external input pin filter control structure.
LPTMR: Low-Power Timer
-
void LPTMR_Init(LPTMR_Type *base, const lptmr_config_t *config)
Ungates the LPTMR clock and configures the peripheral for a basic operation.
Note
This API should be called at the beginning of the application using the LPTMR driver.
- Parameters:
base – LPTMR peripheral base address
config – A pointer to the LPTMR configuration structure.
-
void LPTMR_Deinit(LPTMR_Type *base)
Gates the LPTMR clock.
- Parameters:
base – LPTMR peripheral base address
-
void LPTMR_GetDefaultConfig(lptmr_config_t *config)
Fills in the LPTMR configuration structure with default settings.
The default values are as follows.
config->timerMode = kLPTMR_TimerModeTimeCounter; config->pinSelect = kLPTMR_PinSelectInput_0; config->pinPolarity = kLPTMR_PinPolarityActiveHigh; config->enableFreeRunning = false; config->bypassPrescaler = true; config->prescalerClockSource = kLPTMR_PrescalerClock_1; config->value = kLPTMR_Prescale_Glitch_0;
- Parameters:
config – A pointer to the LPTMR configuration structure.
-
static inline void LPTMR_EnableInterrupts(LPTMR_Type *base, uint32_t mask)
Enables the selected LPTMR interrupts.
- Parameters:
base – LPTMR peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration lptmr_interrupt_enable_t
-
static inline void LPTMR_DisableInterrupts(LPTMR_Type *base, uint32_t mask)
Disables the selected LPTMR interrupts.
- Parameters:
base – LPTMR peripheral base address
mask – The interrupts to disable. This is a logical OR of members of the enumeration lptmr_interrupt_enable_t.
-
static inline uint32_t LPTMR_GetEnabledInterrupts(LPTMR_Type *base)
Gets the enabled LPTMR interrupts.
- Parameters:
base – LPTMR peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration lptmr_interrupt_enable_t
-
static inline uint32_t LPTMR_GetStatusFlags(LPTMR_Type *base)
Gets the LPTMR status flags.
- Parameters:
base – LPTMR peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration lptmr_status_flags_t
-
static inline void LPTMR_ClearStatusFlags(LPTMR_Type *base, uint32_t mask)
Clears the LPTMR status flags.
- Parameters:
base – LPTMR peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration lptmr_status_flags_t.
-
static inline void LPTMR_SetTimerPeriod(LPTMR_Type *base, uint32_t ticks)
Sets the timer period in units of count.
Timers counts from 0 until it equals the count value set here. The count value is written to the CMR register.
Note
The TCF flag is set with the CNR equals the count provided here and then increments.
Call the utility macros provided in the fsl_common.h to convert to ticks.
- Parameters:
base – LPTMR peripheral base address
ticks – A timer period in units of ticks, which should be equal or greater than 1.
-
static inline uint32_t LPTMR_GetCurrentTimerCount(LPTMR_Type *base)
Reads the current timer counting value.
This function returns the real-time timer counting value in a range from 0 to a timer period.
Note
Call the utility macros provided in the fsl_common.h to convert ticks to usec or msec.
- Parameters:
base – LPTMR peripheral base address
- Returns:
The current counter value in ticks
-
static inline void LPTMR_StartTimer(LPTMR_Type *base)
Starts the timer.
After calling this function, the timer counts up to the CMR register value. Each time the timer reaches the CMR value and then increments, it generates a trigger pulse and sets the timeout interrupt flag. An interrupt is also triggered if the timer interrupt is enabled.
- Parameters:
base – LPTMR peripheral base address
-
static inline void LPTMR_StopTimer(LPTMR_Type *base)
Stops the timer.
This function stops the timer and resets the timer’s counter register.
- Parameters:
base – LPTMR peripheral base address
-
FSL_LPTMR_DRIVER_VERSION
Driver Version
-
enum _lptmr_pin_select
LPTMR pin selection used in pulse counter mode.
Values:
-
enumerator kLPTMR_PinSelectInput_0
Pulse counter input 0 is selected
-
enumerator kLPTMR_PinSelectInput_1
Pulse counter input 1 is selected
-
enumerator kLPTMR_PinSelectInput_2
Pulse counter input 2 is selected
-
enumerator kLPTMR_PinSelectInput_3
Pulse counter input 3 is selected
-
enumerator kLPTMR_PinSelectInput_0
-
enum _lptmr_pin_polarity
LPTMR pin polarity used in pulse counter mode.
Values:
-
enumerator kLPTMR_PinPolarityActiveHigh
Pulse Counter input source is active-high
-
enumerator kLPTMR_PinPolarityActiveLow
Pulse Counter input source is active-low
-
enumerator kLPTMR_PinPolarityActiveHigh
-
enum _lptmr_timer_mode
LPTMR timer mode selection.
Values:
-
enumerator kLPTMR_TimerModeTimeCounter
Time Counter mode
-
enumerator kLPTMR_TimerModePulseCounter
Pulse Counter mode
-
enumerator kLPTMR_TimerModeTimeCounter
-
enum _lptmr_prescaler_glitch_value
LPTMR prescaler/glitch filter values.
Values:
-
enumerator kLPTMR_Prescale_Glitch_0
Prescaler divide 2, glitch filter does not support this setting
-
enumerator kLPTMR_Prescale_Glitch_1
Prescaler divide 4, glitch filter 2
-
enumerator kLPTMR_Prescale_Glitch_2
Prescaler divide 8, glitch filter 4
-
enumerator kLPTMR_Prescale_Glitch_3
Prescaler divide 16, glitch filter 8
-
enumerator kLPTMR_Prescale_Glitch_4
Prescaler divide 32, glitch filter 16
-
enumerator kLPTMR_Prescale_Glitch_5
Prescaler divide 64, glitch filter 32
-
enumerator kLPTMR_Prescale_Glitch_6
Prescaler divide 128, glitch filter 64
-
enumerator kLPTMR_Prescale_Glitch_7
Prescaler divide 256, glitch filter 128
-
enumerator kLPTMR_Prescale_Glitch_8
Prescaler divide 512, glitch filter 256
-
enumerator kLPTMR_Prescale_Glitch_9
Prescaler divide 1024, glitch filter 512
-
enumerator kLPTMR_Prescale_Glitch_10
Prescaler divide 2048 glitch filter 1024
-
enumerator kLPTMR_Prescale_Glitch_11
Prescaler divide 4096, glitch filter 2048
-
enumerator kLPTMR_Prescale_Glitch_12
Prescaler divide 8192, glitch filter 4096
-
enumerator kLPTMR_Prescale_Glitch_13
Prescaler divide 16384, glitch filter 8192
-
enumerator kLPTMR_Prescale_Glitch_14
Prescaler divide 32768, glitch filter 16384
-
enumerator kLPTMR_Prescale_Glitch_15
Prescaler divide 65536, glitch filter 32768
-
enumerator kLPTMR_Prescale_Glitch_0
-
enum _lptmr_prescaler_clock_select
LPTMR prescaler/glitch filter clock select.
Note
Clock connections are SoC-specific
Values:
-
enumerator kLPTMR_PrescalerClock_0
Prescaler/glitch filter clock 0 selected.
-
enumerator kLPTMR_PrescalerClock_1
Prescaler/glitch filter clock 1 selected.
-
enumerator kLPTMR_PrescalerClock_2
Prescaler/glitch filter clock 2 selected.
-
enumerator kLPTMR_PrescalerClock_3
Prescaler/glitch filter clock 3 selected.
-
enumerator kLPTMR_PrescalerClock_0
-
enum _lptmr_interrupt_enable
List of the LPTMR interrupts.
Values:
-
enumerator kLPTMR_TimerInterruptEnable
Timer interrupt enable
-
enumerator kLPTMR_TimerInterruptEnable
-
enum _lptmr_status_flags
List of the LPTMR status flags.
Values:
-
enumerator kLPTMR_TimerCompareFlag
Timer compare flag
-
enumerator kLPTMR_TimerCompareFlag
-
typedef enum _lptmr_pin_select lptmr_pin_select_t
LPTMR pin selection used in pulse counter mode.
-
typedef enum _lptmr_pin_polarity lptmr_pin_polarity_t
LPTMR pin polarity used in pulse counter mode.
-
typedef enum _lptmr_timer_mode lptmr_timer_mode_t
LPTMR timer mode selection.
-
typedef enum _lptmr_prescaler_glitch_value lptmr_prescaler_glitch_value_t
LPTMR prescaler/glitch filter values.
-
typedef enum _lptmr_prescaler_clock_select lptmr_prescaler_clock_select_t
LPTMR prescaler/glitch filter clock select.
Note
Clock connections are SoC-specific
-
typedef enum _lptmr_interrupt_enable lptmr_interrupt_enable_t
List of the LPTMR interrupts.
-
typedef enum _lptmr_status_flags lptmr_status_flags_t
List of the LPTMR status flags.
-
typedef struct _lptmr_config lptmr_config_t
LPTMR config structure.
This structure holds the configuration settings for the LPTMR peripheral. To initialize this structure to reasonable defaults, call the LPTMR_GetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration struct can be made constant so it resides in flash.
-
static inline void LPTMR_EnableTimerDMA(LPTMR_Type *base, bool enable)
Enable or disable timer DMA request.
- Parameters:
base – base LPTMR peripheral base address
enable – Switcher of timer DMA feature. “true” means to enable, “false” means to disable.
-
struct _lptmr_config
- #include <fsl_lptmr.h>
LPTMR config structure.
This structure holds the configuration settings for the LPTMR peripheral. To initialize this structure to reasonable defaults, call the LPTMR_GetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration struct can be made constant so it resides in flash.
Public Members
-
lptmr_timer_mode_t timerMode
Time counter mode or pulse counter mode
-
lptmr_pin_select_t pinSelect
LPTMR pulse input pin select; used only in pulse counter mode
-
lptmr_pin_polarity_t pinPolarity
LPTMR pulse input pin polarity; used only in pulse counter mode
-
bool enableFreeRunning
True: enable free running, counter is reset on overflow False: counter is reset when the compare flag is set
-
bool bypassPrescaler
True: bypass prescaler; false: use clock from prescaler
-
lptmr_prescaler_clock_select_t prescalerClockSource
LPTMR clock source
-
lptmr_prescaler_glitch_value_t value
Prescaler or glitch filter value
-
lptmr_timer_mode_t timerMode
LPUART: Low Power Universal Asynchronous Receiver/Transmitter Driver
LPUART Driver
-
static inline void LPUART_SoftwareReset(LPUART_Type *base)
Resets the LPUART using software.
This function resets all internal logic and registers except the Global Register. Remains set until cleared by software.
- Parameters:
base – LPUART peripheral base address.
-
status_t LPUART_Init(LPUART_Type *base, const lpuart_config_t *config, uint32_t srcClock_Hz)
Initializes an LPUART instance with the user configuration structure and the peripheral clock.
This function configures the LPUART module with user-defined settings. Call the LPUART_GetDefaultConfig() function to configure the configuration structure and get the default configuration. The example below shows how to use this API to configure the LPUART.
lpuart_config_t lpuartConfig; lpuartConfig.baudRate_Bps = 115200U; lpuartConfig.parityMode = kLPUART_ParityDisabled; lpuartConfig.dataBitsCount = kLPUART_EightDataBits; lpuartConfig.isMsb = false; lpuartConfig.stopBitCount = kLPUART_OneStopBit; lpuartConfig.txFifoWatermark = 0; lpuartConfig.rxFifoWatermark = 1; LPUART_Init(LPUART1, &lpuartConfig, 20000000U);
- Parameters:
base – LPUART peripheral base address.
config – Pointer to a user-defined configuration structure.
srcClock_Hz – LPUART clock source frequency in HZ.
- Return values:
kStatus_LPUART_BaudrateNotSupport – Baudrate is not support in current clock source.
kStatus_Success – LPUART initialize succeed
-
void LPUART_Deinit(LPUART_Type *base)
Deinitializes a LPUART instance.
This function waits for transmit to complete, disables TX and RX, and disables the LPUART clock.
- Parameters:
base – LPUART peripheral base address.
-
void LPUART_GetDefaultConfig(lpuart_config_t *config)
Gets the default configuration structure.
This function initializes the LPUART configuration structure to a default value. The default values are: lpuartConfig->baudRate_Bps = 115200U; lpuartConfig->parityMode = kLPUART_ParityDisabled; lpuartConfig->dataBitsCount = kLPUART_EightDataBits; lpuartConfig->isMsb = false; lpuartConfig->stopBitCount = kLPUART_OneStopBit; lpuartConfig->txFifoWatermark = 0; lpuartConfig->rxFifoWatermark = 1; lpuartConfig->rxIdleType = kLPUART_IdleTypeStartBit; lpuartConfig->rxIdleConfig = kLPUART_IdleCharacter1; lpuartConfig->enableTx = false; lpuartConfig->enableRx = false;
- Parameters:
config – Pointer to a configuration structure.
-
status_t LPUART_SetBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the LPUART instance baudrate.
This function configures the LPUART module baudrate. This function is used to update the LPUART module baudrate after the LPUART module is initialized by the LPUART_Init.
LPUART_SetBaudRate(LPUART1, 115200U, 20000000U);
- Parameters:
base – LPUART peripheral base address.
baudRate_Bps – LPUART baudrate to be set.
srcClock_Hz – LPUART clock source frequency in HZ.
- Return values:
kStatus_LPUART_BaudrateNotSupport – Baudrate is not supported in the current clock source.
kStatus_Success – Set baudrate succeeded.
-
void LPUART_Enable9bitMode(LPUART_Type *base, bool enable)
Enable 9-bit data mode for LPUART.
This function set the 9-bit mode for LPUART module. The 9th bit is not used for parity thus can be modified by user.
- Parameters:
base – LPUART peripheral base address.
enable – true to enable, flase to disable.
-
static inline void LPUART_SetMatchAddress(LPUART_Type *base, uint16_t address1, uint16_t address2)
Set the LPUART address.
This function configures the address for LPUART module that works as slave in 9-bit data mode. One or two address fields can be configured. When the address field’s match enable bit is set, the frame it receices with MSB being 1 is considered as an address frame, otherwise it is considered as data frame. Once the address frame matches one of slave’s own addresses, this slave is addressed. This address frame and its following data frames are stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave, just send an address frame with unmatched address.
Note
Any LPUART instance joined in the multi-slave system can work as slave. The position of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit data formats.
- Parameters:
base – LPUART peripheral base address.
address1 – LPUART slave address1.
address2 – LPUART slave address2.
-
static inline void LPUART_EnableMatchAddress(LPUART_Type *base, bool match1, bool match2)
Enable the LPUART match address feature.
- Parameters:
base – LPUART peripheral base address.
match1 – true to enable match address1, false to disable.
match2 – true to enable match address2, false to disable.
-
static inline void LPUART_SetRxFifoWatermark(LPUART_Type *base, uint8_t water)
Sets the rx FIFO watermark.
- Parameters:
base – LPUART peripheral base address.
water – Rx FIFO watermark.
-
static inline void LPUART_SetTxFifoWatermark(LPUART_Type *base, uint8_t water)
Sets the tx FIFO watermark.
- Parameters:
base – LPUART peripheral base address.
water – Tx FIFO watermark.
-
static inline void LPUART_TransferEnable16Bit(lpuart_handle_t *handle, bool enable)
Sets the LPUART using 16bit transmit, only for 9bit or 10bit mode.
This function Enable 16bit Data transmit in lpuart_handle_t.
- Parameters:
handle – LPUART handle pointer.
enable – true to enable, false to disable.
-
uint32_t LPUART_GetStatusFlags(LPUART_Type *base)
Gets LPUART status flags.
This function gets all LPUART status flags. The flags are returned as the logical OR value of the enumerators _lpuart_flags. To check for a specific status, compare the return value with enumerators in the _lpuart_flags. For example, to check whether the TX is empty:
if (kLPUART_TxDataRegEmptyFlag & LPUART_GetStatusFlags(LPUART1)) { ... }
- Parameters:
base – LPUART peripheral base address.
- Returns:
LPUART status flags which are ORed by the enumerators in the _lpuart_flags.
-
status_t LPUART_ClearStatusFlags(LPUART_Type *base, uint32_t mask)
Clears status flags with a provided mask.
This function clears LPUART status flags with a provided mask. Automatically cleared flags can’t be cleared by this function. Flags that can only cleared or set by hardware are: kLPUART_TxDataRegEmptyFlag, kLPUART_TransmissionCompleteFlag, kLPUART_RxDataRegFullFlag, kLPUART_RxActiveFlag, kLPUART_NoiseErrorFlag, kLPUART_ParityErrorFlag, kLPUART_TxFifoEmptyFlag,kLPUART_RxFifoEmptyFlag Note: This API should be called when the Tx/Rx is idle, otherwise it takes no effects.
- Parameters:
base – LPUART peripheral base address.
mask – the status flags to be cleared. The user can use the enumerators in the _lpuart_status_flag_t to do the OR operation and get the mask.
- Return values:
kStatus_LPUART_FlagCannotClearManually – The flag can’t be cleared by this function but it is cleared automatically by hardware.
kStatus_Success – Status in the mask are cleared.
- Returns:
0 succeed, others failed.
-
void LPUART_EnableInterrupts(LPUART_Type *base, uint32_t mask)
Enables LPUART interrupts according to a provided mask.
This function enables the LPUART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See the _lpuart_interrupt_enable. This examples shows how to enable TX empty interrupt and RX full interrupt:
LPUART_EnableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);
- Parameters:
base – LPUART peripheral base address.
mask – The interrupts to enable. Logical OR of _lpuart_interrupt_enable.
-
void LPUART_DisableInterrupts(LPUART_Type *base, uint32_t mask)
Disables LPUART interrupts according to a provided mask.
This function disables the LPUART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See _lpuart_interrupt_enable. This example shows how to disable the TX empty interrupt and RX full interrupt:
LPUART_DisableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);
- Parameters:
base – LPUART peripheral base address.
mask – The interrupts to disable. Logical OR of _lpuart_interrupt_enable.
-
uint32_t LPUART_GetEnabledInterrupts(LPUART_Type *base)
Gets enabled LPUART interrupts.
This function gets the enabled LPUART interrupts. The enabled interrupts are returned as the logical OR value of the enumerators _lpuart_interrupt_enable. To check a specific interrupt enable status, compare the return value with enumerators in _lpuart_interrupt_enable. For example, to check whether the TX empty interrupt is enabled:
uint32_t enabledInterrupts = LPUART_GetEnabledInterrupts(LPUART1); if (kLPUART_TxDataRegEmptyInterruptEnable & enabledInterrupts) { ... }
- Parameters:
base – LPUART peripheral base address.
- Returns:
LPUART interrupt flags which are logical OR of the enumerators in _lpuart_interrupt_enable.
-
static inline uintptr_t LPUART_GetDataRegisterAddress(LPUART_Type *base)
Gets the LPUART data register address.
This function returns the LPUART data register address, which is mainly used by the DMA/eDMA.
- Parameters:
base – LPUART peripheral base address.
- Returns:
LPUART data register addresses which are used both by the transmitter and receiver.
-
static inline void LPUART_EnableTxDMA(LPUART_Type *base, bool enable)
Enables or disables the LPUART transmitter DMA request.
This function enables or disables the transmit data register empty flag, STAT[TDRE], to generate DMA requests.
- Parameters:
base – LPUART peripheral base address.
enable – True to enable, false to disable.
-
static inline void LPUART_EnableRxDMA(LPUART_Type *base, bool enable)
Enables or disables the LPUART receiver DMA.
This function enables or disables the receiver data register full flag, STAT[RDRF], to generate DMA requests.
- Parameters:
base – LPUART peripheral base address.
enable – True to enable, false to disable.
-
uint32_t LPUART_GetInstance(LPUART_Type *base)
Get the LPUART instance from peripheral base address.
- Parameters:
base – LPUART peripheral base address.
- Returns:
LPUART instance.
-
static inline void LPUART_EnableTx(LPUART_Type *base, bool enable)
Enables or disables the LPUART transmitter.
This function enables or disables the LPUART transmitter.
- Parameters:
base – LPUART peripheral base address.
enable – True to enable, false to disable.
-
static inline void LPUART_EnableRx(LPUART_Type *base, bool enable)
Enables or disables the LPUART receiver.
This function enables or disables the LPUART receiver.
- Parameters:
base – LPUART peripheral base address.
enable – True to enable, false to disable.
-
static inline void LPUART_WriteByte(LPUART_Type *base, uint8_t data)
Writes to the transmitter register.
This function writes data to the transmitter register directly. The upper layer must ensure that the TX register is empty or that the TX FIFO has room before calling this function.
- Parameters:
base – LPUART peripheral base address.
data – Data write to the TX register.
-
static inline uint8_t LPUART_ReadByte(LPUART_Type *base)
Reads the receiver register.
This function reads data from the receiver register directly. The upper layer must ensure that the receiver register is full or that the RX FIFO has data before calling this function.
- Parameters:
base – LPUART peripheral base address.
- Returns:
Data read from data register.
-
static inline uint8_t LPUART_GetRxFifoCount(LPUART_Type *base)
Gets the rx FIFO data count.
- Parameters:
base – LPUART peripheral base address.
- Returns:
rx FIFO data count.
-
static inline uint8_t LPUART_GetTxFifoCount(LPUART_Type *base)
Gets the tx FIFO data count.
- Parameters:
base – LPUART peripheral base address.
- Returns:
tx FIFO data count.
-
void LPUART_SendAddress(LPUART_Type *base, uint8_t address)
Transmit an address frame in 9-bit data mode.
- Parameters:
base – LPUART peripheral base address.
address – LPUART slave address.
-
status_t LPUART_WriteBlocking(LPUART_Type *base, const uint8_t *data, size_t length)
Writes to the transmitter register using a blocking method.
This function polls the transmitter register, first waits for the register to be empty or TX FIFO to have room, and writes data to the transmitter buffer, then waits for the dat to be sent out to the bus.
- Parameters:
base – LPUART peripheral base address.
data – Start address of the data to write.
length – Size of the data to write.
- Return values:
kStatus_LPUART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully wrote all data.
-
status_t LPUART_WriteBlocking16bit(LPUART_Type *base, const uint16_t *data, size_t length)
Writes to the transmitter register using a blocking method in 9bit or 10bit mode.
Note
This function only support 9bit or 10bit transfer. Please make sure only 10bit of data is valid and other bits are 0.
- Parameters:
base – LPUART peripheral base address.
data – Start address of the data to write.
length – Size of the data to write.
- Return values:
kStatus_LPUART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully wrote all data.
-
status_t LPUART_ReadBlocking(LPUART_Type *base, uint8_t *data, size_t length)
Reads the receiver data register using a blocking method.
This function polls the receiver register, waits for the receiver register full or receiver FIFO has data, and reads data from the TX register.
- Parameters:
base – LPUART peripheral base address.
data – Start address of the buffer to store the received data.
length – Size of the buffer.
- Return values:
kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened while receiving data.
kStatus_LPUART_NoiseError – Noise error happened while receiving data.
kStatus_LPUART_FramingError – Framing error happened while receiving data.
kStatus_LPUART_ParityError – Parity error happened while receiving data.
kStatus_LPUART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully received all data.
-
status_t LPUART_ReadBlocking16bit(LPUART_Type *base, uint16_t *data, size_t length)
Reads the receiver data register in 9bit or 10bit mode.
Note
This function only support 9bit or 10bit transfer.
- Parameters:
base – LPUART peripheral base address.
data – Start address of the buffer to store the received data by 16bit, only 10bit is valid.
length – Size of the buffer.
- Return values:
kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened while receiving data.
kStatus_LPUART_NoiseError – Noise error happened while receiving data.
kStatus_LPUART_FramingError – Framing error happened while receiving data.
kStatus_LPUART_ParityError – Parity error happened while receiving data.
kStatus_LPUART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully received all data.
-
void LPUART_TransferCreateHandle(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_callback_t callback, void *userData)
Initializes the LPUART handle.
This function initializes the LPUART handle, which can be used for other LPUART transactional APIs. Usually, for a specified LPUART instance, call this API once to get the initialized handle.
The LPUART driver supports the “background” receiving, which means that user can set up an RX ring buffer optionally. Data received is stored into the ring buffer even when the user doesn’t call the LPUART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly. The ring buffer is disabled if passing NULL as
ringBuffer
.- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
callback – Callback function.
userData – User data.
-
status_t LPUART_TransferSendNonBlocking(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_t *xfer)
Transmits a buffer of data using the interrupt method.
This function send data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data written to the transmitter register. When all data is written to the TX register in the ISR, the LPUART driver calls the callback function and passes the kStatus_LPUART_TxIdle as status parameter.
Note
The kStatus_LPUART_TxIdle is passed to the upper layer when all data are written to the TX register. However, there is no check to ensure that all the data sent out. Before disabling the TX, check the kLPUART_TransmissionCompleteFlag to ensure that the transmit is finished.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
xfer – LPUART transfer structure, see lpuart_transfer_t.
- Return values:
kStatus_Success – Successfully start the data transmission.
kStatus_LPUART_TxBusy – Previous transmission still not finished, data not all written to the TX register.
kStatus_InvalidArgument – Invalid argument.
-
void LPUART_TransferStartRingBuffer(LPUART_Type *base, lpuart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)
Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific UART handle.
When the RX ring buffer is used, data received is stored into the ring buffer even when the user doesn’t call the UART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly.
Note
When using RX ring buffer, one byte is reserved for internal use. In other words, if
ringBufferSize
is 32, then only 31 bytes are used for saving data.- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
ringBuffer – Start address of ring buffer for background receiving. Pass NULL to disable the ring buffer.
ringBufferSize – size of the ring buffer.
-
void LPUART_TransferStopRingBuffer(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.
This function aborts the background transfer and uninstalls the ring buffer.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
-
size_t LPUART_TransferGetRxRingBufferLength(LPUART_Type *base, lpuart_handle_t *handle)
Get the length of received data in RX ring buffer.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
- Returns:
Length of received data in RX ring buffer.
-
void LPUART_TransferAbortSend(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the interrupt-driven data transmit.
This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out how many bytes are not sent out.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
-
status_t LPUART_TransferGetSendCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)
Gets the number of bytes that have been sent out to bus.
This function gets the number of bytes that have been sent out to bus by an interrupt method.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
count – Send bytes count.
- Return values:
kStatus_NoTransferInProgress – No send in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
status_t LPUART_TransferReceiveNonBlocking(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_t *xfer, size_t *receivedBytes)
Receives a buffer of data using the interrupt method.
This function receives data using an interrupt method. This is a non-blocking function which returns without waiting to ensure that all data are received. If the RX ring buffer is used and not empty, the data in the ring buffer is copied and the parameter
receivedBytes
shows how many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is not enough for read, the receive request is saved by the LPUART driver. When the new data arrives, the receive request is serviced first. When all data is received, the LPUART driver notifies the upper layer through a callback function and passes a status parameter kStatus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in ring buffer. The 5 bytes are copied to xfer->data, which returns with the parameterreceivedBytes
set to 5. For the remaining 5 bytes, the newly arrived data is saved from xfer->data[5]. When 5 bytes are received, the LPUART driver notifies the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to xfer->data. When all data is received, the upper layer is notified.- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
xfer – LPUART transfer structure, see uart_transfer_t.
receivedBytes – Bytes received from the ring buffer directly.
- Return values:
kStatus_Success – Successfully queue the transfer into the transmit queue.
kStatus_LPUART_RxBusy – Previous receive request is not finished.
kStatus_InvalidArgument – Invalid argument.
-
void LPUART_TransferAbortReceive(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the interrupt-driven data receiving.
This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out how many bytes not received yet.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
-
status_t LPUART_TransferGetReceiveCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)
Gets the number of bytes that have been received.
This function gets the number of bytes that have been received.
- Parameters:
base – LPUART peripheral base address.
handle – LPUART handle pointer.
count – Receive bytes count.
- Return values:
kStatus_NoTransferInProgress – No receive in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
void LPUART_TransferHandleIRQ(LPUART_Type *base, void *irqHandle)
LPUART IRQ handle function.
This function handles the LPUART transmit and receive IRQ request.
- Parameters:
base – LPUART peripheral base address.
irqHandle – LPUART handle pointer.
-
void LPUART_TransferHandleErrorIRQ(LPUART_Type *base, void *irqHandle)
LPUART Error IRQ handle function.
This function handles the LPUART error IRQ request.
- Parameters:
base – LPUART peripheral base address.
irqHandle – LPUART handle pointer.
-
FSL_LPUART_DRIVER_VERSION
LPUART driver version.
Error codes for the LPUART driver.
Values:
-
enumerator kStatus_LPUART_TxBusy
TX busy
-
enumerator kStatus_LPUART_RxBusy
RX busy
-
enumerator kStatus_LPUART_TxIdle
LPUART transmitter is idle.
-
enumerator kStatus_LPUART_RxIdle
LPUART receiver is idle.
-
enumerator kStatus_LPUART_TxWatermarkTooLarge
TX FIFO watermark too large
-
enumerator kStatus_LPUART_RxWatermarkTooLarge
RX FIFO watermark too large
-
enumerator kStatus_LPUART_FlagCannotClearManually
Some flag can’t manually clear
-
enumerator kStatus_LPUART_Error
Error happens on LPUART.
-
enumerator kStatus_LPUART_RxRingBufferOverrun
LPUART RX software ring buffer overrun.
-
enumerator kStatus_LPUART_RxHardwareOverrun
LPUART RX receiver overrun.
-
enumerator kStatus_LPUART_NoiseError
LPUART noise error.
-
enumerator kStatus_LPUART_FramingError
LPUART framing error.
-
enumerator kStatus_LPUART_ParityError
LPUART parity error.
-
enumerator kStatus_LPUART_BaudrateNotSupport
Baudrate is not support in current clock source
-
enumerator kStatus_LPUART_IdleLineDetected
IDLE flag.
-
enumerator kStatus_LPUART_Timeout
LPUART times out.
-
enumerator kStatus_LPUART_TxBusy
-
enum _lpuart_parity_mode
LPUART parity mode.
Values:
-
enumerator kLPUART_ParityDisabled
Parity disabled
-
enumerator kLPUART_ParityEven
Parity enabled, type even, bit setting: PE|PT = 10
-
enumerator kLPUART_ParityOdd
Parity enabled, type odd, bit setting: PE|PT = 11
-
enumerator kLPUART_ParityDisabled
-
enum _lpuart_data_bits
LPUART data bits count.
Values:
-
enumerator kLPUART_EightDataBits
Eight data bit
-
enumerator kLPUART_SevenDataBits
Seven data bit
-
enumerator kLPUART_EightDataBits
-
enum _lpuart_stop_bit_count
LPUART stop bit count.
Values:
-
enumerator kLPUART_OneStopBit
One stop bit
-
enumerator kLPUART_TwoStopBit
Two stop bits
-
enumerator kLPUART_OneStopBit
-
enum _lpuart_transmit_cts_source
LPUART transmit CTS source.
Values:
-
enumerator kLPUART_CtsSourcePin
CTS resource is the LPUART_CTS pin.
-
enumerator kLPUART_CtsSourceMatchResult
CTS resource is the match result.
-
enumerator kLPUART_CtsSourcePin
-
enum _lpuart_transmit_cts_config
LPUART transmit CTS configure.
Values:
-
enumerator kLPUART_CtsSampleAtStart
CTS input is sampled at the start of each character.
-
enumerator kLPUART_CtsSampleAtIdle
CTS input is sampled when the transmitter is idle
-
enumerator kLPUART_CtsSampleAtStart
-
enum _lpuart_idle_type_select
LPUART idle flag type defines when the receiver starts counting.
Values:
-
enumerator kLPUART_IdleTypeStartBit
Start counting after a valid start bit.
-
enumerator kLPUART_IdleTypeStopBit
Start counting after a stop bit.
-
enumerator kLPUART_IdleTypeStartBit
-
enum _lpuart_idle_config
LPUART idle detected configuration. This structure defines the number of idle characters that must be received before the IDLE flag is set.
Values:
-
enumerator kLPUART_IdleCharacter1
the number of idle characters.
-
enumerator kLPUART_IdleCharacter2
the number of idle characters.
-
enumerator kLPUART_IdleCharacter4
the number of idle characters.
-
enumerator kLPUART_IdleCharacter8
the number of idle characters.
-
enumerator kLPUART_IdleCharacter16
the number of idle characters.
-
enumerator kLPUART_IdleCharacter32
the number of idle characters.
-
enumerator kLPUART_IdleCharacter64
the number of idle characters.
-
enumerator kLPUART_IdleCharacter128
the number of idle characters.
-
enumerator kLPUART_IdleCharacter1
-
enum _lpuart_interrupt_enable
LPUART interrupt configuration structure, default settings all disabled.
This structure contains the settings for all LPUART interrupt configurations.
Values:
-
enumerator kLPUART_LinBreakInterruptEnable
LIN break detect. bit 7
-
enumerator kLPUART_RxActiveEdgeInterruptEnable
Receive Active Edge. bit 6
-
enumerator kLPUART_TxDataRegEmptyInterruptEnable
Transmit data register empty. bit 23
-
enumerator kLPUART_TransmissionCompleteInterruptEnable
Transmission complete. bit 22
-
enumerator kLPUART_RxDataRegFullInterruptEnable
Receiver data register full. bit 21
-
enumerator kLPUART_IdleLineInterruptEnable
Idle line. bit 20
-
enumerator kLPUART_RxOverrunInterruptEnable
Receiver Overrun. bit 27
-
enumerator kLPUART_NoiseErrorInterruptEnable
Noise error flag. bit 26
-
enumerator kLPUART_FramingErrorInterruptEnable
Framing error flag. bit 25
-
enumerator kLPUART_ParityErrorInterruptEnable
Parity error flag. bit 24
-
enumerator kLPUART_Match1InterruptEnable
Parity error flag. bit 15
-
enumerator kLPUART_Match2InterruptEnable
Parity error flag. bit 14
-
enumerator kLPUART_TxFifoOverflowInterruptEnable
Transmit FIFO Overflow. bit 9
-
enumerator kLPUART_RxFifoUnderflowInterruptEnable
Receive FIFO Underflow. bit 8
-
enumerator kLPUART_AllInterruptEnable
-
enumerator kLPUART_LinBreakInterruptEnable
-
enum _lpuart_flags
LPUART status flags.
This provides constants for the LPUART status flags for use in the LPUART functions.
Values:
-
enumerator kLPUART_TxDataRegEmptyFlag
Transmit data register empty flag, sets when transmit buffer is empty. bit 23
-
enumerator kLPUART_TransmissionCompleteFlag
Transmission complete flag, sets when transmission activity complete. bit 22
-
enumerator kLPUART_RxDataRegFullFlag
Receive data register full flag, sets when the receive data buffer is full. bit 21
-
enumerator kLPUART_IdleLineFlag
Idle line detect flag, sets when idle line detected. bit 20
-
enumerator kLPUART_RxOverrunFlag
Receive Overrun, sets when new data is received before data is read from receive register. bit 19
-
enumerator kLPUART_NoiseErrorFlag
Receive takes 3 samples of each received bit. If any of these samples differ, noise flag sets. bit 18
-
enumerator kLPUART_FramingErrorFlag
Frame error flag, sets if logic 0 was detected where stop bit expected. bit 17
-
enumerator kLPUART_ParityErrorFlag
If parity enabled, sets upon parity error detection. bit 16
-
enumerator kLPUART_LinBreakFlag
LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit enabled. bit 31
-
enumerator kLPUART_RxActiveEdgeFlag
Receive pin active edge interrupt flag, sets when active edge detected. bit 30
-
enumerator kLPUART_RxActiveFlag
Receiver Active Flag (RAF), sets at beginning of valid start. bit 24
-
enumerator kLPUART_DataMatch1Flag
The next character to be read from LPUART_DATA matches MA1. bit 15
-
enumerator kLPUART_DataMatch2Flag
The next character to be read from LPUART_DATA matches MA2. bit 14
-
enumerator kLPUART_TxFifoEmptyFlag
TXEMPT bit, sets if transmit buffer is empty. bit 7
-
enumerator kLPUART_RxFifoEmptyFlag
RXEMPT bit, sets if receive buffer is empty. bit 6
-
enumerator kLPUART_TxFifoOverflowFlag
TXOF bit, sets if transmit buffer overflow occurred. bit 1
-
enumerator kLPUART_RxFifoUnderflowFlag
RXUF bit, sets if receive buffer underflow occurred. bit 0
-
enumerator kLPUART_AllClearFlags
-
enumerator kLPUART_AllFlags
-
enumerator kLPUART_TxDataRegEmptyFlag
-
typedef enum _lpuart_parity_mode lpuart_parity_mode_t
LPUART parity mode.
-
typedef enum _lpuart_data_bits lpuart_data_bits_t
LPUART data bits count.
-
typedef enum _lpuart_stop_bit_count lpuart_stop_bit_count_t
LPUART stop bit count.
-
typedef enum _lpuart_transmit_cts_source lpuart_transmit_cts_source_t
LPUART transmit CTS source.
-
typedef enum _lpuart_transmit_cts_config lpuart_transmit_cts_config_t
LPUART transmit CTS configure.
-
typedef enum _lpuart_idle_type_select lpuart_idle_type_select_t
LPUART idle flag type defines when the receiver starts counting.
-
typedef enum _lpuart_idle_config lpuart_idle_config_t
LPUART idle detected configuration. This structure defines the number of idle characters that must be received before the IDLE flag is set.
-
typedef struct _lpuart_config lpuart_config_t
LPUART configuration structure.
-
typedef struct _lpuart_transfer lpuart_transfer_t
LPUART transfer structure.
-
typedef struct _lpuart_handle lpuart_handle_t
-
typedef void (*lpuart_transfer_callback_t)(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *userData)
LPUART transfer callback function.
-
typedef void (*lpuart_isr_t)(LPUART_Type *base, void *handle)
-
void *s_lpuartHandle[]
-
const IRQn_Type s_lpuartTxIRQ[]
-
lpuart_isr_t s_lpuartIsr[]
-
UART_RETRY_TIMES
Retry times for waiting flag.
-
struct _lpuart_config
- #include <fsl_lpuart.h>
LPUART configuration structure.
Public Members
-
uint32_t baudRate_Bps
LPUART baud rate
-
lpuart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd
-
lpuart_data_bits_t dataBitsCount
Data bits count, eight (default), seven
-
bool isMsb
Data bits order, LSB (default), MSB
-
lpuart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits
-
uint8_t txFifoWatermark
TX FIFO watermark
-
uint8_t rxFifoWatermark
RX FIFO watermark
-
bool enableRxRTS
RX RTS enable
-
bool enableTxCTS
TX CTS enable
-
lpuart_transmit_cts_source_t txCtsSource
TX CTS source
-
lpuart_transmit_cts_config_t txCtsConfig
TX CTS configure
-
lpuart_idle_type_select_t rxIdleType
RX IDLE type.
-
lpuart_idle_config_t rxIdleConfig
RX IDLE configuration.
-
bool enableTx
Enable TX
-
bool enableRx
Enable RX
-
uint32_t baudRate_Bps
-
struct _lpuart_transfer
- #include <fsl_lpuart.h>
LPUART transfer structure.
Public Members
-
size_t dataSize
The byte count to be transfer.
-
size_t dataSize
-
struct _lpuart_handle
- #include <fsl_lpuart.h>
LPUART handle structure.
Public Members
-
volatile size_t txDataSize
Size of the remaining data to send.
-
size_t txDataSizeAll
Size of the data to send out.
-
volatile size_t rxDataSize
Size of the remaining data to receive.
-
size_t rxDataSizeAll
Size of the data to receive.
-
size_t rxRingBufferSize
Size of the ring buffer.
-
volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.
-
volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.
-
lpuart_transfer_callback_t callback
Callback function.
-
void *userData
LPUART callback function parameter.
-
volatile uint8_t txState
TX transfer state.
-
volatile uint8_t rxState
RX transfer state.
-
bool isSevenDataBits
Seven data bits flag.
-
bool is16bitData
16bit data bits flag, only used for 9bit or 10bit data
-
volatile size_t txDataSize
-
union __unnamed13__
Public Members
-
uint8_t *data
The buffer of data to be transfer.
-
uint8_t *rxData
The buffer to receive data.
-
uint16_t *rxData16
The buffer to receive data.
-
const uint8_t *txData
The buffer of data to be sent.
-
const uint16_t *txData16
The buffer of data to be sent.
-
uint8_t *data
-
union __unnamed15__
Public Members
-
const uint8_t *volatile txData
Address of remaining data to send.
-
const uint16_t *volatile txData16
Address of remaining data to send.
-
const uint8_t *volatile txData
-
union __unnamed17__
Public Members
-
uint8_t *volatile rxData
Address of remaining data to receive.
-
uint16_t *volatile rxData16
Address of remaining data to receive.
-
uint8_t *volatile rxData
-
union __unnamed19__
Public Members
-
uint8_t *rxRingBuffer
Start address of the receiver ring buffer.
-
uint16_t *rxRingBuffer16
Start address of the receiver ring buffer.
-
uint8_t *rxRingBuffer
MCM: Miscellaneous Control Module
-
FSL_MCM_DRIVER_VERSION
MCM driver version.
Enum _mcm_interrupt_flag. Interrupt status flag mask. .
Values:
-
enumerator kMCM_CacheWriteBuffer
Cache Write Buffer Error Enable.
-
enumerator kMCM_ParityError
Cache Parity Error Enable.
-
enumerator kMCM_FPUInvalidOperation
FPU Invalid Operation Interrupt Enable.
-
enumerator kMCM_FPUDivideByZero
FPU Divide-by-zero Interrupt Enable.
-
enumerator kMCM_FPUOverflow
FPU Overflow Interrupt Enable.
-
enumerator kMCM_FPUUnderflow
FPU Underflow Interrupt Enable.
-
enumerator kMCM_FPUInexact
FPU Inexact Interrupt Enable.
-
enumerator kMCM_FPUInputDenormalInterrupt
FPU Input Denormal Interrupt Enable.
-
enumerator kMCM_CacheWriteBuffer
-
typedef union _mcm_buffer_fault_attribute mcm_buffer_fault_attribute_t
The union of buffer fault attribute.
-
typedef union _mcm_lmem_fault_attribute mcm_lmem_fault_attribute_t
The union of LMEM fault attribute.
-
static inline void MCM_EnableCrossbarRoundRobin(MCM_Type *base, bool enable)
Enables/Disables crossbar round robin.
- Parameters:
base – MCM peripheral base address.
enable – Used to enable/disable crossbar round robin.
true Enable crossbar round robin.
false disable crossbar round robin.
-
static inline void MCM_EnableInterruptStatus(MCM_Type *base, uint32_t mask)
Enables the interrupt.
- Parameters:
base – MCM peripheral base address.
mask – Interrupt status flags mask(_mcm_interrupt_flag).
-
static inline void MCM_DisableInterruptStatus(MCM_Type *base, uint32_t mask)
Disables the interrupt.
- Parameters:
base – MCM peripheral base address.
mask – Interrupt status flags mask(_mcm_interrupt_flag).
-
static inline uint16_t MCM_GetInterruptStatus(MCM_Type *base)
Gets the Interrupt status .
- Parameters:
base – MCM peripheral base address.
-
static inline void MCM_ClearCacheWriteBufferErroStatus(MCM_Type *base)
Clears the Interrupt status .
- Parameters:
base – MCM peripheral base address.
-
static inline uint32_t MCM_GetBufferFaultAddress(MCM_Type *base)
Gets buffer fault address.
- Parameters:
base – MCM peripheral base address.
-
static inline void MCM_GetBufferFaultAttribute(MCM_Type *base, mcm_buffer_fault_attribute_t *bufferfault)
Gets buffer fault attributes.
- Parameters:
base – MCM peripheral base address.
-
static inline uint32_t MCM_GetBufferFaultData(MCM_Type *base)
Gets buffer fault data.
- Parameters:
base – MCM peripheral base address.
-
static inline void MCM_LimitCodeCachePeripheralWriteBuffering(MCM_Type *base, bool enable)
Limit code cache peripheral write buffering.
- Parameters:
base – MCM peripheral base address.
enable – Used to enable/disable limit code cache peripheral write buffering.
true Enable limit code cache peripheral write buffering.
false disable limit code cache peripheral write buffering.
-
static inline void MCM_BypassFixedCodeCacheMap(MCM_Type *base, bool enable)
Bypass fixed code cache map.
- Parameters:
base – MCM peripheral base address.
enable – Used to enable/disable bypass fixed code cache map.
true Enable bypass fixed code cache map.
false disable bypass fixed code cache map.
-
static inline void MCM_EnableCodeBusCache(MCM_Type *base, bool enable)
Enables/Disables code bus cache.
- Parameters:
base – MCM peripheral base address.
enable – Used to disable/enable code bus cache.
true Enable code bus cache.
false disable code bus cache.
-
static inline void MCM_ForceCodeCacheToNoAllocation(MCM_Type *base, bool enable)
Force code cache to no allocation.
- Parameters:
base – MCM peripheral base address.
enable – Used to force code cache to allocation or no allocation.
true Force code cache to no allocation.
false Force code cache to allocation.
-
static inline void MCM_EnableCodeCacheWriteBuffer(MCM_Type *base, bool enable)
Enables/Disables code cache write buffer.
- Parameters:
base – MCM peripheral base address.
enable – Used to enable/disable code cache write buffer.
true Enable code cache write buffer.
false Disable code cache write buffer.
-
static inline void MCM_ClearCodeBusCache(MCM_Type *base)
Clear code bus cache.
- Parameters:
base – MCM peripheral base address.
-
static inline void MCM_EnablePcParityFaultReport(MCM_Type *base, bool enable)
Enables/Disables PC Parity Fault Report.
- Parameters:
base – MCM peripheral base address.
enable – Used to enable/disable PC Parity Fault Report.
true Enable PC Parity Fault Report.
false disable PC Parity Fault Report.
-
static inline void MCM_EnablePcParity(MCM_Type *base, bool enable)
Enables/Disables PC Parity.
- Parameters:
base – MCM peripheral base address.
enable – Used to enable/disable PC Parity.
true Enable PC Parity.
false disable PC Parity.
-
static inline void MCM_LockConfigState(MCM_Type *base)
Lock the configuration state.
- Parameters:
base – MCM peripheral base address.
-
static inline void MCM_EnableCacheParityReporting(MCM_Type *base, bool enable)
Enables/Disables cache parity reporting.
- Parameters:
base – MCM peripheral base address.
enable – Used to enable/disable cache parity reporting.
true Enable cache parity reporting.
false disable cache parity reporting.
-
static inline uint32_t MCM_GetLmemFaultAddress(MCM_Type *base)
Gets LMEM fault address.
- Parameters:
base – MCM peripheral base address.
-
static inline void MCM_GetLmemFaultAttribute(MCM_Type *base, mcm_lmem_fault_attribute_t *lmemFault)
Get LMEM fault attributes.
- Parameters:
base – MCM peripheral base address.
-
static inline uint64_t MCM_GetLmemFaultData(MCM_Type *base)
Gets LMEM fault data.
- Parameters:
base – MCM peripheral base address.
-
MCM_LMFATR_TYPE_MASK
-
MCM_LMFATR_MODE_MASK
-
MCM_LMFATR_BUFF_MASK
-
MCM_LMFATR_CACH_MASK
-
MCM_ISCR_STAT_MASK
-
MCM_ISCR_CPEE_MASK
-
FSL_COMPONENT_ID
-
union _mcm_buffer_fault_attribute
- #include <fsl_mcm.h>
The union of buffer fault attribute.
Public Members
-
uint32_t attribute
Indicates the faulting attributes, when a properly-enabled cache write buffer error interrupt event is detected.
-
struct _mcm_buffer_fault_attribute._mcm_buffer_fault_attribut attribute_memory
-
struct _mcm_buffer_fault_attribut
- #include <fsl_mcm.h>
Public Members
-
uint32_t busErrorDataAccessType
Indicates the type of cache write buffer access.
-
uint32_t busErrorPrivilegeLevel
Indicates the privilege level of the cache write buffer access.
-
uint32_t busErrorSize
Indicates the size of the cache write buffer access.
-
uint32_t busErrorAccess
Indicates the type of system bus access.
-
uint32_t busErrorMasterID
Indicates the crossbar switch bus master number of the captured cache write buffer bus error.
-
uint32_t busErrorOverrun
Indicates if another cache write buffer bus error is detected.
-
uint32_t busErrorDataAccessType
-
uint32_t attribute
-
union _mcm_lmem_fault_attribute
- #include <fsl_mcm.h>
The union of LMEM fault attribute.
Public Members
-
uint32_t attribute
Indicates the attributes of the LMEM fault detected.
-
struct _mcm_lmem_fault_attribute._mcm_lmem_fault_attribut attribute_memory
-
struct _mcm_lmem_fault_attribut
- #include <fsl_mcm.h>
Public Members
-
uint32_t parityFaultProtectionSignal
Indicates the features of parity fault protection signal.
-
uint32_t parityFaultMasterSize
Indicates the parity fault master size.
-
uint32_t parityFaultWrite
Indicates the parity fault is caused by read or write.
-
uint32_t backdoorAccess
Indicates the LMEM access fault is initiated by core access or backdoor access.
-
uint32_t parityFaultSyndrome
Indicates the parity fault syndrome.
-
uint32_t overrun
Indicates the number of faultss.
-
uint32_t parityFaultProtectionSignal
-
uint32_t attribute
PMC: Power Management Controller
-
static inline void PMC_GetVersionId(PMC_Type *base, pmc_version_id_t *versionId)
Gets the PMC version ID.
This function gets the PMC version ID, including major version number, minor version number, and a feature specification number.
- Parameters:
base – PMC peripheral base address.
versionId – Pointer to version ID structure.
-
void PMC_GetParam(PMC_Type *base, pmc_param_t *param)
Gets the PMC parameter.
This function gets the PMC parameter including the VLPO enable and the HVD enable.
- Parameters:
base – PMC peripheral base address.
param – Pointer to PMC param structure.
-
void PMC_ConfigureLowVoltDetect(PMC_Type *base, const pmc_low_volt_detect_config_t *config)
Configures the low-voltage detect setting.
This function configures the low-voltage detect setting, including the trip point voltage setting, enables or disables the interrupt, enables or disables the system reset.
- Parameters:
base – PMC peripheral base address.
config – Low-voltage detect configuration structure.
-
static inline bool PMC_GetLowVoltDetectFlag(PMC_Type *base)
Gets the Low-voltage Detect Flag status.
This function reads the current LVDF status. If it returns 1, a low-voltage event is detected.
- Parameters:
base – PMC peripheral base address.
- Returns:
Current low-voltage detect flag
true: Low-voltage detected
false: Low-voltage not detected
-
static inline void PMC_ClearLowVoltDetectFlag(PMC_Type *base)
Acknowledges clearing the Low-voltage Detect flag.
This function acknowledges the low-voltage detection errors (write 1 to clear LVDF).
- Parameters:
base – PMC peripheral base address.
-
void PMC_ConfigureLowVoltWarning(PMC_Type *base, const pmc_low_volt_warning_config_t *config)
Configures the low-voltage warning setting.
This function configures the low-voltage warning setting, including the trip point voltage setting and enabling or disabling the interrupt.
- Parameters:
base – PMC peripheral base address.
config – Low-voltage warning configuration structure.
-
static inline bool PMC_GetLowVoltWarningFlag(PMC_Type *base)
Gets the Low-voltage Warning Flag status.
This function polls the current LVWF status. When 1 is returned, it indicates a low-voltage warning event. LVWF is set when V Supply transitions below the trip point or after reset and V Supply is already below the V LVW.
- Parameters:
base – PMC peripheral base address.
- Returns:
Current LVWF status
true: Low-voltage Warning Flag is set.
false: the Low-voltage Warning does not happen.
-
static inline void PMC_ClearLowVoltWarningFlag(PMC_Type *base)
Acknowledges the Low-voltage Warning flag.
This function acknowledges the low voltage warning errors (write 1 to clear LVWF).
- Parameters:
base – PMC peripheral base address.
-
void PMC_ConfigureHighVoltDetect(PMC_Type *base, const pmc_high_volt_detect_config_t *config)
Configures the high-voltage detect setting.
This function configures the high-voltage detect setting, including the trip point voltage setting, enabling or disabling the interrupt, enabling or disabling the system reset.
- Parameters:
base – PMC peripheral base address.
config – High-voltage detect configuration structure.
-
static inline bool PMC_GetHighVoltDetectFlag(PMC_Type *base)
Gets the High-voltage Detect Flag status.
This function reads the current HVDF status. If it returns 1, a low voltage event is detected.
- Parameters:
base – PMC peripheral base address.
- Returns:
Current high-voltage detect flag
true: High-voltage detected
false: High-voltage not detected
-
static inline void PMC_ClearHighVoltDetectFlag(PMC_Type *base)
Acknowledges clearing the High-voltage Detect flag.
This function acknowledges the high-voltage detection errors (write 1 to clear HVDF).
- Parameters:
base – PMC peripheral base address.
-
void PMC_ConfigureBandgapBuffer(PMC_Type *base, const pmc_bandgap_buffer_config_t *config)
Configures the PMC bandgap.
This function configures the PMC bandgap, including the drive select and behavior in low-power mode.
- Parameters:
base – PMC peripheral base address.
config – Pointer to the configuration structure
-
static inline bool PMC_GetPeriphIOIsolationFlag(PMC_Type *base)
Gets the acknowledge Peripherals and I/O pads isolation flag.
This function reads the Acknowledge Isolation setting that indicates whether certain peripherals and the I/O pads are in a latched state as a result of having been in the VLLS mode.
- Parameters:
base – PMC peripheral base address.
base – Base address for current PMC instance.
- Returns:
ACK isolation 0 - Peripherals and I/O pads are in a normal run state. 1 - Certain peripherals and I/O pads are in an isolated and latched state.
-
static inline void PMC_ClearPeriphIOIsolationFlag(PMC_Type *base)
Acknowledges the isolation flag to Peripherals and I/O pads.
This function clears the ACK Isolation flag. Writing one to this setting when it is set releases the I/O pads and certain peripherals to their normal run mode state.
- Parameters:
base – PMC peripheral base address.
-
static inline bool PMC_IsRegulatorInRunRegulation(PMC_Type *base)
Gets the regulator regulation status.
This function returns the regulator to run a regulation status. It provides the current status of the internal voltage regulator.
- Parameters:
base – PMC peripheral base address.
base – Base address for current PMC instance.
- Returns:
Regulation status 0 - Regulator is in a stop regulation or in transition to/from the regulation. 1 - Regulator is in a run regulation.
-
FSL_PMC_DRIVER_VERSION
PMC driver version.
Version 2.0.3.
-
enum _pmc_low_volt_detect_volt_select
Low-voltage Detect Voltage Select.
Values:
-
enumerator kPMC_LowVoltDetectLowTrip
Low-trip point selected (VLVD = VLVDL )
-
enumerator kPMC_LowVoltDetectHighTrip
High-trip point selected (VLVD = VLVDH )
-
enumerator kPMC_LowVoltDetectLowTrip
-
enum _pmc_low_volt_warning_volt_select
Low-voltage Warning Voltage Select.
Values:
-
enumerator kPMC_LowVoltWarningLowTrip
Low-trip point selected (VLVW = VLVW1)
-
enumerator kPMC_LowVoltWarningMid1Trip
Mid 1 trip point selected (VLVW = VLVW2)
-
enumerator kPMC_LowVoltWarningMid2Trip
Mid 2 trip point selected (VLVW = VLVW3)
-
enumerator kPMC_LowVoltWarningHighTrip
High-trip point selected (VLVW = VLVW4)
-
enumerator kPMC_LowVoltWarningLowTrip
-
enum _pmc_high_volt_detect_volt_select
High-voltage Detect Voltage Select.
Values:
-
enumerator kPMC_HighVoltDetectLowTrip
Low-trip point selected (VHVD = VHVDL )
-
enumerator kPMC_HighVoltDetectHighTrip
High-trip point selected (VHVD = VHVDH )
-
enumerator kPMC_HighVoltDetectLowTrip
-
enum _pmc_bandgap_buffer_drive_select
Bandgap Buffer Drive Select.
Values:
-
enumerator kPMC_BandgapBufferDriveLow
Low-drive.
-
enumerator kPMC_BandgapBufferDriveHigh
High-drive.
-
enumerator kPMC_BandgapBufferDriveLow
-
enum _pmc_vlp_freq_option
VLPx Option.
Values:
-
enumerator kPMC_FreqRestrict
Frequency is restricted in VLPx mode.
-
enumerator kPMC_FreqUnrestrict
Frequency is unrestricted in VLPx mode.
-
enumerator kPMC_FreqRestrict
-
typedef enum _pmc_low_volt_detect_volt_select pmc_low_volt_detect_volt_select_t
Low-voltage Detect Voltage Select.
-
typedef enum _pmc_low_volt_warning_volt_select pmc_low_volt_warning_volt_select_t
Low-voltage Warning Voltage Select.
-
typedef enum _pmc_high_volt_detect_volt_select pmc_high_volt_detect_volt_select_t
High-voltage Detect Voltage Select.
-
typedef enum _pmc_bandgap_buffer_drive_select pmc_bandgap_buffer_drive_select_t
Bandgap Buffer Drive Select.
-
typedef enum _pmc_vlp_freq_option pmc_vlp_freq_mode_t
VLPx Option.
-
typedef struct _pmc_version_id pmc_version_id_t
IP version ID definition.
-
typedef struct _pmc_param pmc_param_t
IP parameter definition.
-
typedef struct _pmc_low_volt_detect_config pmc_low_volt_detect_config_t
Low-voltage Detect Configuration Structure.
-
typedef struct _pmc_low_volt_warning_config pmc_low_volt_warning_config_t
Low-voltage Warning Configuration Structure.
-
typedef struct _pmc_high_volt_detect_config pmc_high_volt_detect_config_t
High-voltage Detect Configuration Structure.
-
typedef struct _pmc_bandgap_buffer_config pmc_bandgap_buffer_config_t
Bandgap Buffer configuration.
-
struct _pmc_version_id
- #include <fsl_pmc.h>
IP version ID definition.
Public Members
-
uint16_t feature
Feature Specification Number.
-
uint8_t minor
Minor version number.
-
uint8_t major
Major version number.
-
uint16_t feature
-
struct _pmc_param
- #include <fsl_pmc.h>
IP parameter definition.
Public Members
-
bool vlpoEnable
VLPO enable.
-
bool hvdEnable
HVD enable.
-
bool vlpoEnable
-
struct _pmc_low_volt_detect_config
- #include <fsl_pmc.h>
Low-voltage Detect Configuration Structure.
Public Members
-
bool enableInt
Enable interrupt when Low-voltage detect
-
bool enableReset
Enable system reset when Low-voltage detect
-
pmc_low_volt_detect_volt_select_t voltSelect
Low-voltage detect trip point voltage selection
-
bool enableInt
-
struct _pmc_low_volt_warning_config
- #include <fsl_pmc.h>
Low-voltage Warning Configuration Structure.
Public Members
-
bool enableInt
Enable interrupt when low-voltage warning
-
pmc_low_volt_warning_volt_select_t voltSelect
Low-voltage warning trip point voltage selection
-
bool enableInt
-
struct _pmc_high_volt_detect_config
- #include <fsl_pmc.h>
High-voltage Detect Configuration Structure.
Public Members
-
bool enableInt
Enable interrupt when high-voltage detect
-
bool enableReset
Enable system reset when high-voltage detect
-
pmc_high_volt_detect_volt_select_t voltSelect
High-voltage detect trip point voltage selection
-
bool enableInt
-
struct _pmc_bandgap_buffer_config
- #include <fsl_pmc.h>
Bandgap Buffer configuration.
Public Members
-
bool enable
Enable bandgap buffer.
-
bool enableInLowPowerMode
Enable bandgap buffer in low-power mode.
-
pmc_bandgap_buffer_drive_select_t drive
Bandgap buffer drive select.
-
bool enable
PORT: Port Control and Interrupts
-
static inline void PORT_SetPinConfig(PORT_Type *base, uint32_t pin, const port_pin_config_t *config)
Sets the port PCR register.
This is an example to define an input pin or output pin PCR configuration.
// Define a digital input pin PCR configuration port_pin_config_t config = { kPORT_PullUp, kPORT_FastSlewRate, kPORT_PassiveFilterDisable, kPORT_OpenDrainDisable, kPORT_LowDriveStrength, kPORT_MuxAsGpio, kPORT_UnLockRegister, };
- Parameters:
base – PORT peripheral base pointer.
pin – PORT pin number.
config – PORT PCR register configuration structure.
-
static inline void PORT_SetMultiplePinsConfig(PORT_Type *base, uint32_t mask, const port_pin_config_t *config)
Sets the port PCR register for multiple pins.
This is an example to define input pins or output pins PCR configuration.
Define a digital input pin PCR configuration port_pin_config_t config = { kPORT_PullUp , kPORT_PullEnable, kPORT_FastSlewRate, kPORT_PassiveFilterDisable, kPORT_OpenDrainDisable, kPORT_LowDriveStrength, kPORT_MuxAsGpio, kPORT_UnlockRegister, };
- Parameters:
base – PORT peripheral base pointer.
mask – PORT pin number macro.
config – PORT PCR register configuration structure.
-
static inline void PORT_SetMultipleInterruptPinsConfig(PORT_Type *base, uint32_t mask, port_interrupt_t config)
Sets the port interrupt configuration in PCR register for multiple pins.
- Parameters:
base – PORT peripheral base pointer.
mask – PORT pin number macro.
config – PORT pin interrupt configuration.
kPORT_InterruptOrDMADisabled: Interrupt/DMA request disabled.
kPORT_DMARisingEdge : DMA request on rising edge(if the DMA requests exit).
kPORT_DMAFallingEdge: DMA request on falling edge(if the DMA requests exit).
kPORT_DMAEitherEdge : DMA request on either edge(if the DMA requests exit).
kPORT_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).
kPORT_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).
kPORT_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).
kPORT_InterruptLogicZero : Interrupt when logic zero.
kPORT_InterruptRisingEdge : Interrupt on rising edge.
kPORT_InterruptFallingEdge: Interrupt on falling edge.
kPORT_InterruptEitherEdge : Interrupt on either edge.
kPORT_InterruptLogicOne : Interrupt when logic one.
kPORT_ActiveHighTriggerOutputEnable : Enable active high-trigger output (if the trigger states exit).
kPORT_ActiveLowTriggerOutputEnable : Enable active low-trigger output (if the trigger states exit)..
-
static inline void PORT_SetPinMux(PORT_Type *base, uint32_t pin, port_mux_t mux)
Configures the pin muxing.
Note
: This function is NOT recommended to use together with the PORT_SetPinsConfig, because the PORT_SetPinsConfig need to configure the pin mux anyway (Otherwise the pin mux is reset to zero : kPORT_PinDisabledOrAnalog). This function is recommended to use to reset the pin mux
- Parameters:
base – PORT peripheral base pointer.
pin – PORT pin number.
mux – pin muxing slot selection.
kPORT_PinDisabledOrAnalog: Pin disabled or work in analog function.
kPORT_MuxAsGpio : Set as GPIO.
kPORT_MuxAlt2 : chip-specific.
kPORT_MuxAlt3 : chip-specific.
kPORT_MuxAlt4 : chip-specific.
kPORT_MuxAlt5 : chip-specific.
kPORT_MuxAlt6 : chip-specific.
kPORT_MuxAlt7 : chip-specific.
-
static inline void PORT_EnablePinsDigitalFilter(PORT_Type *base, uint32_t mask, bool enable)
Enables the digital filter in one port, each bit of the 32-bit register represents one pin.
- Parameters:
base – PORT peripheral base pointer.
mask – PORT pin number macro.
enable – PORT digital filter configuration.
-
static inline void PORT_SetDigitalFilterConfig(PORT_Type *base, const port_digital_filter_config_t *config)
Sets the digital filter in one port, each bit of the 32-bit register represents one pin.
- Parameters:
base – PORT peripheral base pointer.
config – PORT digital filter configuration structure.
-
static inline void PORT_SetPinInterruptConfig(PORT_Type *base, uint32_t pin, port_interrupt_t config)
Configures the port pin interrupt/DMA request.
- Parameters:
base – PORT peripheral base pointer.
pin – PORT pin number.
config – PORT pin interrupt configuration.
kPORT_InterruptOrDMADisabled: Interrupt/DMA request disabled.
kPORT_DMARisingEdge : DMA request on rising edge(if the DMA requests exit).
kPORT_DMAFallingEdge: DMA request on falling edge(if the DMA requests exit).
kPORT_DMAEitherEdge : DMA request on either edge(if the DMA requests exit).
kPORT_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).
kPORT_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).
kPORT_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).
kPORT_InterruptLogicZero : Interrupt when logic zero.
kPORT_InterruptRisingEdge : Interrupt on rising edge.
kPORT_InterruptFallingEdge: Interrupt on falling edge.
kPORT_InterruptEitherEdge : Interrupt on either edge.
kPORT_InterruptLogicOne : Interrupt when logic one.
kPORT_ActiveHighTriggerOutputEnable : Enable active high-trigger output (if the trigger states exit).
kPORT_ActiveLowTriggerOutputEnable : Enable active low-trigger output (if the trigger states exit).
-
static inline void PORT_SetPinDriveStrength(PORT_Type *base, uint32_t pin, uint8_t strength)
Configures the port pin drive strength.
- Parameters:
base – PORT peripheral base pointer.
pin – PORT pin number.
strength – PORT pin drive strength
kPORT_LowDriveStrength = 0U - Low-drive strength is configured.
kPORT_HighDriveStrength = 1U - High-drive strength is configured.
-
static inline uint32_t PORT_GetPinsInterruptFlags(PORT_Type *base)
Reads the whole port status flag.
If a pin is configured to generate the DMA request, the corresponding flag is cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic one is written to that flag. If configured for a level sensitive interrupt that remains asserted, the flag is set again immediately.
- Parameters:
base – PORT peripheral base pointer.
- Returns:
Current port interrupt status flags, for example, 0x00010001 means the pin 0 and 16 have the interrupt.
-
static inline void PORT_ClearPinsInterruptFlags(PORT_Type *base, uint32_t mask)
Clears the multiple pin interrupt status flag.
- Parameters:
base – PORT peripheral base pointer.
mask – PORT pin number macro.
-
FSL_PORT_DRIVER_VERSION
PORT driver version.
-
enum _port_pull
Internal resistor pull feature selection.
Values:
-
enumerator kPORT_PullDisable
Internal pull-up/down resistor is disabled.
-
enumerator kPORT_PullDown
Internal pull-down resistor is enabled.
-
enumerator kPORT_PullUp
Internal pull-up resistor is enabled.
-
enumerator kPORT_PullDisable
-
enum _port_slew_rate
Slew rate selection.
Values:
-
enumerator kPORT_FastSlewRate
Fast slew rate is configured.
-
enumerator kPORT_SlowSlewRate
Slow slew rate is configured.
-
enumerator kPORT_FastSlewRate
-
enum _port_open_drain_enable
Open Drain feature enable/disable.
Values:
-
enumerator kPORT_OpenDrainDisable
Open drain output is disabled.
-
enumerator kPORT_OpenDrainEnable
Open drain output is enabled.
-
enumerator kPORT_OpenDrainDisable
-
enum _port_passive_filter_enable
Passive filter feature enable/disable.
Values:
-
enumerator kPORT_PassiveFilterDisable
Passive input filter is disabled.
-
enumerator kPORT_PassiveFilterEnable
Passive input filter is enabled.
-
enumerator kPORT_PassiveFilterDisable
-
enum _port_drive_strength
Configures the drive strength.
Values:
-
enumerator kPORT_LowDriveStrength
Low-drive strength is configured.
-
enumerator kPORT_HighDriveStrength
High-drive strength is configured.
-
enumerator kPORT_LowDriveStrength
-
enum _port_lock_register
Unlock/lock the pin control register field[15:0].
Values:
-
enumerator kPORT_UnlockRegister
Pin Control Register fields [15:0] are not locked.
-
enumerator kPORT_LockRegister
Pin Control Register fields [15:0] are locked.
-
enumerator kPORT_UnlockRegister
-
enum _port_mux
Pin mux selection.
Values:
-
enumerator kPORT_PinDisabledOrAnalog
Corresponding pin is disabled, but is used as an analog pin.
-
enumerator kPORT_MuxAsGpio
Corresponding pin is configured as GPIO.
-
enumerator kPORT_MuxAlt0
Chip-specific
-
enumerator kPORT_MuxAlt1
Chip-specific
-
enumerator kPORT_MuxAlt2
Chip-specific
-
enumerator kPORT_MuxAlt3
Chip-specific
-
enumerator kPORT_MuxAlt4
Chip-specific
-
enumerator kPORT_MuxAlt5
Chip-specific
-
enumerator kPORT_MuxAlt6
Chip-specific
-
enumerator kPORT_MuxAlt7
Chip-specific
-
enumerator kPORT_MuxAlt8
Chip-specific
-
enumerator kPORT_MuxAlt9
Chip-specific
-
enumerator kPORT_MuxAlt10
Chip-specific
-
enumerator kPORT_MuxAlt11
Chip-specific
-
enumerator kPORT_MuxAlt12
Chip-specific
-
enumerator kPORT_MuxAlt13
Chip-specific
-
enumerator kPORT_MuxAlt14
Chip-specific
-
enumerator kPORT_MuxAlt15
Chip-specific
-
enumerator kPORT_PinDisabledOrAnalog
-
enum _port_interrupt
Configures the interrupt generation condition.
Values:
-
enumerator kPORT_InterruptOrDMADisabled
Interrupt/DMA request is disabled.
-
enumerator kPORT_DMARisingEdge
DMA request on rising edge.
-
enumerator kPORT_DMAFallingEdge
DMA request on falling edge.
-
enumerator kPORT_DMAEitherEdge
DMA request on either edge.
-
enumerator kPORT_FlagRisingEdge
Flag sets on rising edge.
-
enumerator kPORT_FlagFallingEdge
Flag sets on falling edge.
-
enumerator kPORT_FlagEitherEdge
Flag sets on either edge.
-
enumerator kPORT_InterruptLogicZero
Interrupt when logic zero.
-
enumerator kPORT_InterruptRisingEdge
Interrupt on rising edge.
-
enumerator kPORT_InterruptFallingEdge
Interrupt on falling edge.
-
enumerator kPORT_InterruptEitherEdge
Interrupt on either edge.
-
enumerator kPORT_InterruptLogicOne
Interrupt when logic one.
-
enumerator kPORT_ActiveHighTriggerOutputEnable
Enable active high-trigger output.
-
enumerator kPORT_ActiveLowTriggerOutputEnable
Enable active low-trigger output.
-
enumerator kPORT_InterruptOrDMADisabled
-
enum _port_digital_filter_clock_source
Digital filter clock source selection.
Values:
-
enumerator kPORT_BusClock
Digital filters are clocked by the bus clock.
-
enumerator kPORT_LpoClock
Digital filters are clocked by the 1 kHz LPO clock.
-
enumerator kPORT_BusClock
-
typedef enum _port_mux port_mux_t
Pin mux selection.
-
typedef enum _port_interrupt port_interrupt_t
Configures the interrupt generation condition.
-
typedef enum _port_digital_filter_clock_source port_digital_filter_clock_source_t
Digital filter clock source selection.
-
typedef struct _port_digital_filter_config port_digital_filter_config_t
PORT digital filter feature configuration definition.
-
typedef struct _port_pin_config port_pin_config_t
PORT pin configuration structure.
-
FSL_COMPONENT_ID
-
struct _port_digital_filter_config
- #include <fsl_port.h>
PORT digital filter feature configuration definition.
Public Members
-
uint32_t digitalFilterWidth
Set digital filter width
-
port_digital_filter_clock_source_t clockSource
Set digital filter clockSource
-
uint32_t digitalFilterWidth
-
struct _port_pin_config
- #include <fsl_port.h>
PORT pin configuration structure.
Public Members
-
uint16_t pullSelect
No-pull/pull-down/pull-up select
-
uint16_t slewRate
Fast/slow slew rate Configure
-
uint16_t passiveFilterEnable
Passive filter enable/disable
-
uint16_t openDrainEnable
Open drain enable/disable
-
uint16_t driveStrength
Fast/slow drive strength configure
-
uint16_t lockRegister
Lock/unlock the PCR field[15:0]
-
uint16_t pullSelect
RCM: Reset Control Module Driver
-
static inline void RCM_GetVersionId(RCM_Type *base, rcm_version_id_t *versionId)
Gets the RCM version ID.
This function gets the RCM version ID including the major version number, the minor version number, and the feature specification number.
- Parameters:
base – RCM peripheral base address.
versionId – Pointer to the version ID structure.
-
static inline uint32_t RCM_GetResetSourceImplementedStatus(RCM_Type *base)
Gets the reset source implemented status.
This function gets the RCM parameter that indicates whether the corresponding reset source is implemented. Use source masks defined in the rcm_reset_source_t to get the desired source status.
This is an example.
uint32_t status; To test whether the MCU is reset using Watchdog. status = RCM_GetResetSourceImplementedStatus(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);
- Parameters:
base – RCM peripheral base address.
- Returns:
All reset source implemented status bit map.
-
static inline uint32_t RCM_GetPreviousResetSources(RCM_Type *base)
Gets the reset source status which caused a previous reset.
This function gets the current reset source status. Use source masks defined in the rcm_reset_source_t to get the desired source status.
This is an example.
uint32_t resetStatus; To get all reset source statuses. resetStatus = RCM_GetPreviousResetSources(RCM) & kRCM_SourceAll; To test whether the MCU is reset using Watchdog. resetStatus = RCM_GetPreviousResetSources(RCM) & kRCM_SourceWdog; To test multiple reset sources. resetStatus = RCM_GetPreviousResetSources(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);
- Parameters:
base – RCM peripheral base address.
- Returns:
All reset source status bit map.
-
static inline uint32_t RCM_GetStickyResetSources(RCM_Type *base)
Gets the sticky reset source status.
This function gets the current reset source status that has not been cleared by software for a specific source.
This is an example.
uint32_t resetStatus; To get all reset source statuses. resetStatus = RCM_GetStickyResetSources(RCM) & kRCM_SourceAll; To test whether the MCU is reset using Watchdog. resetStatus = RCM_GetStickyResetSources(RCM) & kRCM_SourceWdog; To test multiple reset sources. resetStatus = RCM_GetStickyResetSources(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);
- Parameters:
base – RCM peripheral base address.
- Returns:
All reset source status bit map.
-
static inline void RCM_ClearStickyResetSources(RCM_Type *base, uint32_t sourceMasks)
Clears the sticky reset source status.
This function clears the sticky system reset flags indicated by source masks.
This is an example.
Clears multiple reset sources. RCM_ClearStickyResetSources(kRCM_SourceWdog | kRCM_SourcePin);
- Parameters:
base – RCM peripheral base address.
sourceMasks – reset source status bit map
-
void RCM_ConfigureResetPinFilter(RCM_Type *base, const rcm_reset_pin_filter_config_t *config)
Configures the reset pin filter.
This function sets the reset pin filter including the filter source, filter width, and so on.
- Parameters:
base – RCM peripheral base address.
config – Pointer to the configuration structure.
-
static inline bool RCM_GetEasyPortModePinStatus(RCM_Type *base)
Gets the EZP_MS_B pin assert status.
This function gets the easy port mode status (EZP_MS_B) pin assert status.
- Parameters:
base – RCM peripheral base address.
- Returns:
status true - asserted, false - reasserted
-
static inline rcm_boot_rom_config_t RCM_GetBootRomSource(RCM_Type *base)
Gets the ROM boot source.
This function gets the ROM boot source during the last chip reset.
- Parameters:
base – RCM peripheral base address.
- Returns:
The ROM boot source.
-
static inline void RCM_ClearBootRomSource(RCM_Type *base)
Clears the ROM boot source flag.
This function clears the ROM boot source flag.
- Parameters:
base – Register base address of RCM
-
void RCM_SetForceBootRomSource(RCM_Type *base, rcm_boot_rom_config_t config)
Forces the boot from ROM.
This function forces booting from ROM during all subsequent system resets.
- Parameters:
base – RCM peripheral base address.
config – Boot configuration.
-
static inline void RCM_SetSystemResetInterruptConfig(RCM_Type *base, uint32_t intMask, rcm_reset_delay_t delay)
Sets the system reset interrupt configuration.
For a graceful shut down, the RCM supports delaying the assertion of the system reset for a period of time when the reset interrupt is generated. This function can be used to enable the interrupt and the delay period. The interrupts are passed in as bit mask. See rcm_int_t for details. For example, to delay a reset for 512 LPO cycles after the WDOG timeout or loss-of-clock occurs, configure as follows: RCM_SetSystemResetInterruptConfig(kRCM_IntWatchDog | kRCM_IntLossOfClk, kRCM_ResetDelay512Lpo);
- Parameters:
base – RCM peripheral base address.
intMask – Bit mask of the system reset interrupts to enable. See rcm_interrupt_enable_t for details.
delay – Bit mask of the system reset interrupts to enable.
-
FSL_RCM_DRIVER_VERSION
RCM driver version 2.0.4.
-
enum _rcm_reset_source
System Reset Source Name definitions.
Values:
-
enumerator kRCM_SourceWakeup
Low-leakage wakeup reset
-
enumerator kRCM_SourceLvd
Low-voltage detect reset
-
enumerator kRCM_SourceLoc
Loss of clock reset
-
enumerator kRCM_SourceLol
Loss of lock reset
-
enumerator kRCM_SourceWdog
Watchdog reset
-
enumerator kRCM_SourcePin
External pin reset
-
enumerator kRCM_SourcePor
Power on reset
-
enumerator kRCM_SourceJtag
JTAG generated reset
-
enumerator kRCM_SourceLockup
Core lock up reset
-
enumerator kRCM_SourceSw
Software reset
-
enumerator kRCM_SourceMdmap
MDM-AP system reset
-
enumerator kRCM_SourceEzpt
EzPort reset
-
enumerator kRCM_SourceSackerr
Parameter could get all reset flags
-
enumerator kRCM_SourceAll
-
enumerator kRCM_SourceWakeup
-
enum _rcm_run_wait_filter_mode
Reset pin filter select in Run and Wait modes.
Values:
-
enumerator kRCM_FilterDisable
All filtering disabled
-
enumerator kRCM_FilterBusClock
Bus clock filter enabled
-
enumerator kRCM_FilterLpoClock
LPO clock filter enabled
-
enumerator kRCM_FilterDisable
-
enum _rcm_boot_rom_config
Boot from ROM configuration.
Values:
-
enumerator kRCM_BootFlash
Boot from flash
-
enumerator kRCM_BootRomCfg0
Boot from boot ROM due to BOOTCFG0
-
enumerator kRCM_BootRomFopt
Boot from boot ROM due to FOPT[7]
-
enumerator kRCM_BootRomBoth
Boot from boot ROM due to both BOOTCFG0 and FOPT[7]
-
enumerator kRCM_BootFlash
-
enum _rcm_reset_delay
Maximum delay time from interrupt asserts to system reset.
Values:
-
enumerator kRCM_ResetDelay8Lpo
Delay 8 LPO cycles.
-
enumerator kRCM_ResetDelay32Lpo
Delay 32 LPO cycles.
-
enumerator kRCM_ResetDelay128Lpo
Delay 128 LPO cycles.
-
enumerator kRCM_ResetDelay512Lpo
Delay 512 LPO cycles.
-
enumerator kRCM_ResetDelay8Lpo
-
enum _rcm_interrupt_enable
System reset interrupt enable bit definitions.
Values:
-
enumerator kRCM_IntNone
No interrupt enabled.
-
enumerator kRCM_IntLossOfClk
Loss of clock interrupt.
-
enumerator kRCM_IntLossOfLock
Loss of lock interrupt.
-
enumerator kRCM_IntWatchDog
Watch dog interrupt.
-
enumerator kRCM_IntExternalPin
External pin interrupt.
-
enumerator kRCM_IntGlobal
Global interrupts.
-
enumerator kRCM_IntCoreLockup
Core lock up interrupt
-
enumerator kRCM_IntSoftware
software interrupt
-
enumerator kRCM_IntStopModeAckErr
Stop mode ACK error interrupt.
-
enumerator kRCM_IntCore1
Core 1 interrupt.
-
enumerator kRCM_IntAll
Enable all interrupts.
-
enumerator kRCM_IntNone
-
typedef enum _rcm_reset_source rcm_reset_source_t
System Reset Source Name definitions.
-
typedef enum _rcm_run_wait_filter_mode rcm_run_wait_filter_mode_t
Reset pin filter select in Run and Wait modes.
-
typedef enum _rcm_boot_rom_config rcm_boot_rom_config_t
Boot from ROM configuration.
-
typedef enum _rcm_reset_delay rcm_reset_delay_t
Maximum delay time from interrupt asserts to system reset.
-
typedef enum _rcm_interrupt_enable rcm_interrupt_enable_t
System reset interrupt enable bit definitions.
-
typedef struct _rcm_version_id rcm_version_id_t
IP version ID definition.
-
typedef struct _rcm_reset_pin_filter_config rcm_reset_pin_filter_config_t
Reset pin filter configuration.
-
struct _rcm_version_id
- #include <fsl_rcm.h>
IP version ID definition.
Public Members
-
uint16_t feature
Feature Specification Number.
-
uint8_t minor
Minor version number.
-
uint8_t major
Major version number.
-
uint16_t feature
-
struct _rcm_reset_pin_filter_config
- #include <fsl_rcm.h>
Reset pin filter configuration.
Public Members
-
bool enableFilterInStop
Reset pin filter select in stop mode.
-
rcm_run_wait_filter_mode_t filterInRunWait
Reset pin filter in run/wait mode.
-
uint8_t busClockFilterCount
Reset pin bus clock filter width.
-
bool enableFilterInStop
RTC: Real Time Clock
-
void RTC_Init(RTC_Type *base, const rtc_config_t *config)
Ungates the RTC clock and configures the peripheral for basic operation.
This function issues a software reset if the timer invalid flag is set.
Note
This API should be called at the beginning of the application using the RTC driver.
- Parameters:
base – RTC peripheral base address
config – Pointer to the user’s RTC configuration structure.
-
static inline void RTC_Deinit(RTC_Type *base)
Stops the timer and gate the RTC clock.
- Parameters:
base – RTC peripheral base address
-
void RTC_GetDefaultConfig(rtc_config_t *config)
Fills in the RTC config struct with the default settings.
The default values are as follows.
config->wakeupSelect = false; config->updateMode = false; config->supervisorAccess = false; config->compensationInterval = 0; config->compensationTime = 0;
- Parameters:
config – Pointer to the user’s RTC configuration structure.
-
status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)
Sets the RTC date and time according to the given time structure.
The RTC counter must be stopped prior to calling this function because writes to the RTC seconds register fail if the RTC counter is running.
- Parameters:
base – RTC peripheral base address
datetime – Pointer to the structure where the date and time details are stored.
- Returns:
kStatus_Success: Success in setting the time and starting the RTC kStatus_InvalidArgument: Error because the datetime format is incorrect
-
void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)
Gets the RTC time and stores it in the given time structure.
- Parameters:
base – RTC peripheral base address
datetime – Pointer to the structure where the date and time details are stored.
-
status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)
Sets the RTC alarm time.
The function checks whether the specified alarm time is greater than the present time. If not, the function does not set the alarm and returns an error.
- Parameters:
base – RTC peripheral base address
alarmTime – Pointer to the structure where the alarm time is stored.
- Returns:
kStatus_Success: success in setting the RTC alarm kStatus_InvalidArgument: Error because the alarm datetime format is incorrect kStatus_Fail: Error because the alarm time has already passed
-
void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)
Returns the RTC alarm time.
- Parameters:
base – RTC peripheral base address
datetime – Pointer to the structure where the alarm date and time details are stored.
-
void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)
Enables the selected RTC interrupts.
- Parameters:
base – RTC peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t
-
void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)
Disables the selected RTC interrupts.
- Parameters:
base – RTC peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t
-
uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)
Gets the enabled RTC interrupts.
- Parameters:
base – RTC peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration rtc_interrupt_enable_t
-
uint32_t RTC_GetStatusFlags(RTC_Type *base)
Gets the RTC status flags.
- Parameters:
base – RTC peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration rtc_status_flags_t
-
void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)
Clears the RTC status flags.
- Parameters:
base – RTC peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration rtc_status_flags_t
-
static inline void RTC_EnableOscillatorClock(RTC_Type *base, bool enable)
Enable/Disable RTC 32kHz Oscillator clock.
Note
After setting this bit, wait the oscillator startup time before enabling the time counter to allow the 32.768 kHz clock time to stabilize.
- Parameters:
base – RTC peripheral base address
enable – Enable/Disable RTC 32.768 kHz clock
-
static inline void RTC_SetClockSource(RTC_Type *base)
Set RTC clock source.
- Deprecated:
Do not use this function. It has been superceded by RTC_EnableOscillatorClock
Note
After setting this bit, wait the oscillator startup time before enabling the time counter to allow the 32.768 kHz clock time to stabilize.
- Parameters:
base – RTC peripheral base address
-
static inline void RTC_EnableLPOClock(RTC_Type *base, bool enable)
Enable/Disable RTC 1kHz LPO clock.
Note
After setting this bit, RTC prescaler increments using the LPO 1kHz clock and not the RTC 32kHz crystal clock.
- Parameters:
base – RTC peripheral base address
enable – Enable/Disable RTC 1kHz LPO clock
-
static inline void RTC_StartTimer(RTC_Type *base)
Starts the RTC time counter.
After calling this function, the timer counter increments once a second provided SR[TOF] or SR[TIF] are not set.
- Parameters:
base – RTC peripheral base address
-
static inline void RTC_StopTimer(RTC_Type *base)
Stops the RTC time counter.
RTC’s seconds register can be written to only when the timer is stopped.
- Parameters:
base – RTC peripheral base address
-
void RTC_GetMonotonicCounter(RTC_Type *base, uint64_t *counter)
Reads the values of the Monotonic Counter High and Monotonic Counter Low and returns them as a single value.
- Parameters:
base – RTC peripheral base address
counter – Pointer to variable where the value is stored.
-
void RTC_SetMonotonicCounter(RTC_Type *base, uint64_t counter)
Writes values Monotonic Counter High and Monotonic Counter Low by decomposing the given single value. The Monotonic Overflow Flag in RTC_SR is cleared due to the API.
- Parameters:
base – RTC peripheral base address
counter – Counter value
-
status_t RTC_IncrementMonotonicCounter(RTC_Type *base)
Increments the Monotonic Counter by one.
Increments the Monotonic Counter (registers RTC_MCLR and RTC_MCHR accordingly) by setting the monotonic counter enable (MER[MCE]) and then writing to the RTC_MCLR register. A write to the monotonic counter low that causes it to overflow also increments the monotonic counter high.
- Parameters:
base – RTC peripheral base address
- Returns:
kStatus_Success: success kStatus_Fail: error occurred, either time invalid or monotonic overflow flag was found
-
FSL_RTC_DRIVER_VERSION
Version 2.3.0
-
enum _rtc_interrupt_enable
List of RTC interrupts.
Values:
-
enumerator kRTC_TimeInvalidInterruptEnable
Time invalid interrupt.
-
enumerator kRTC_TimeOverflowInterruptEnable
Time overflow interrupt.
-
enumerator kRTC_AlarmInterruptEnable
Alarm interrupt.
-
enumerator kRTC_MonotonicOverflowInterruptEnable
Monotonic Overflow Interrupt Enable
-
enumerator kRTC_SecondsInterruptEnable
Seconds interrupt.
-
enumerator kRTC_TestModeInterruptEnable
-
enumerator kRTC_FlashSecurityInterruptEnable
-
enumerator kRTC_TamperPinInterruptEnable
-
enumerator kRTC_SecurityModuleInterruptEnable
-
enumerator kRTC_LossOfClockInterruptEnable
-
enumerator kRTC_TimeInvalidInterruptEnable
-
enum _rtc_status_flags
List of RTC flags.
Values:
-
enumerator kRTC_TimeInvalidFlag
Time invalid flag
-
enumerator kRTC_TimeOverflowFlag
Time overflow flag
-
enumerator kRTC_AlarmFlag
Alarm flag
-
enumerator kRTC_MonotonicOverflowFlag
Monotonic Overflow Flag
-
enumerator kRTC_TamperInterruptDetectFlag
Tamper interrupt detect flag
-
enumerator kRTC_TestModeFlag
-
enumerator kRTC_FlashSecurityFlag
-
enumerator kRTC_TamperPinFlag
-
enumerator kRTC_SecurityTamperFlag
-
enumerator kRTC_LossOfClockTamperFlag
-
enumerator kRTC_TimeInvalidFlag
-
enum _rtc_osc_cap_load
List of RTC Oscillator capacitor load settings.
Values:
-
enumerator kRTC_Capacitor_2p
2 pF capacitor load
-
enumerator kRTC_Capacitor_4p
4 pF capacitor load
-
enumerator kRTC_Capacitor_8p
8 pF capacitor load
-
enumerator kRTC_Capacitor_16p
16 pF capacitor load
-
enumerator kRTC_Capacitor_2p
-
typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t
List of RTC interrupts.
-
typedef enum _rtc_status_flags rtc_status_flags_t
List of RTC flags.
-
typedef enum _rtc_osc_cap_load rtc_osc_cap_load_t
List of RTC Oscillator capacitor load settings.
-
typedef struct _rtc_datetime rtc_datetime_t
Structure is used to hold the date and time.
-
typedef struct _rtc_pin_config rtc_pin_config_t
RTC pin config structure.
-
typedef struct _rtc_config rtc_config_t
RTC config structure.
This structure holds the configuration settings for the RTC peripheral. To initialize this structure to reasonable defaults, call the RTC_GetDefaultConfig() function and pass a pointer to your config structure instance.
The config struct can be made const so it resides in flash
-
static inline uint32_t RTC_GetTamperTimeSeconds(RTC_Type *base)
Get the RTC tamper time seconds.
- Parameters:
base – RTC peripheral base address
-
static inline void RTC_SetOscCapLoad(RTC_Type *base, uint32_t capLoad)
This function sets the specified capacitor configuration for the RTC oscillator.
- Parameters:
base – RTC peripheral base address
capLoad – Oscillator loads to enable. This is a logical OR of members of the enumeration rtc_osc_cap_load_t
-
static inline void RTC_Reset(RTC_Type *base)
Performs a software reset on the RTC module.
This resets all RTC registers except for the SWR bit and the RTC_WAR and RTC_RAR registers. The SWR bit is cleared by software explicitly clearing it.
- Parameters:
base – RTC peripheral base address
-
static inline void RTC_EnableWakeUpPin(RTC_Type *base, bool enable)
Enables or disables the RTC Wakeup Pin Operation.
This function enable or disable RTC Wakeup Pin. The wakeup pin is optional and not available on all devices.
- Parameters:
base – RTC_Type base pointer.
enable – true to enable, false to disable.
-
struct _rtc_datetime
- #include <fsl_rtc.h>
Structure is used to hold the date and time.
Public Members
-
uint16_t year
Range from 1970 to 2099.
-
uint8_t month
Range from 1 to 12.
-
uint8_t day
Range from 1 to 31 (depending on month).
-
uint8_t hour
Range from 0 to 23.
-
uint8_t minute
Range from 0 to 59.
-
uint8_t second
Range from 0 to 59.
-
uint16_t year
-
struct _rtc_pin_config
- #include <fsl_rtc.h>
RTC pin config structure.
Public Members
-
bool inputLogic
true: Tamper pin input data is logic one. false: Tamper pin input data is logic zero.
-
bool pinActiveLow
true: Tamper pin is active low. false: Tamper pin is active high.
-
bool filterEnable
true: Input filter is enabled on the tamper pin. false: Input filter is disabled on the tamper pin.
-
bool pullSelectNegate
true: Tamper pin pull resistor direction will negate the tamper pin. false: Tamper pin pull resistor direction will assert the tamper pin.
-
bool pullEnable
true: Pull resistor is enabled on tamper pin. false: Pull resistor is disabled on tamper pin.
-
bool inputLogic
-
struct _rtc_config
- #include <fsl_rtc.h>
RTC config structure.
This structure holds the configuration settings for the RTC peripheral. To initialize this structure to reasonable defaults, call the RTC_GetDefaultConfig() function and pass a pointer to your config structure instance.
The config struct can be made const so it resides in flash
Public Members
-
bool wakeupSelect
true: Wakeup pin outputs the 32 KHz clock; false:Wakeup pin used to wakeup the chip
-
bool updateMode
true: Registers can be written even when locked under certain conditions, false: No writes allowed when registers are locked
-
bool supervisorAccess
true: Non-supervisor accesses are allowed; false: Non-supervisor accesses are not supported
-
uint32_t compensationInterval
Compensation interval that is written to the CIR field in RTC TCR Register
-
uint32_t compensationTime
Compensation time that is written to the TCR field in RTC TCR Register
-
bool wakeupSelect
SIM: System Integration Module Driver
-
FSL_SIM_DRIVER_VERSION
Driver version.
-
enum _sim_usb_volt_reg_enable_mode
USB voltage regulator enable setting.
Values:
-
enumerator kSIM_UsbVoltRegEnable
Enable voltage regulator.
-
enumerator kSIM_UsbVoltRegEnableInLowPower
Enable voltage regulator in VLPR/VLPW modes.
-
enumerator kSIM_UsbVoltRegEnableInStop
Enable voltage regulator in STOP/VLPS/LLS/VLLS modes.
-
enumerator kSIM_UsbVoltRegEnableInAllModes
Enable voltage regulator in all power modes.
-
enumerator kSIM_UsbVoltRegEnable
-
enum _sim_flash_mode
Flash enable mode.
Values:
-
enumerator kSIM_FlashDisableInWait
Disable flash in wait mode.
-
enumerator kSIM_FlashDisable
Disable flash in normal mode.
-
enumerator kSIM_FlashDisableInWait
-
typedef struct _sim_uid sim_uid_t
Unique ID.
-
void SIM_SetUsbVoltRegulatorEnableMode(uint32_t mask)
Sets the USB voltage regulator setting.
This function configures whether the USB voltage regulator is enabled in normal RUN mode, STOP/VLPS/LLS/VLLS modes, and VLPR/VLPW modes. The configurations are passed in as mask value of _sim_usb_volt_reg_enable_mode. For example, to enable USB voltage regulator in RUN/VLPR/VLPW modes and disable in STOP/VLPS/LLS/VLLS mode, use:
SIM_SetUsbVoltRegulatorEnableMode(kSIM_UsbVoltRegEnable | kSIM_UsbVoltRegEnableInLowPower);
- Parameters:
mask – USB voltage regulator enable setting.
-
void SIM_GetUniqueId(sim_uid_t *uid)
Gets the unique identification register value.
- Parameters:
uid – Pointer to the structure to save the UID value.
-
static inline void SIM_SetFlashMode(uint8_t mode)
Sets the flash enable mode.
- Parameters:
mode – The mode to set; see _sim_flash_mode for mode details.
-
struct _sim_uid
- #include <fsl_sim.h>
Unique ID.
Public Members
-
uint32_t H
UIDH.
-
uint32_t M
SIM_UIDM.
-
uint32_t L
UIDL.
-
uint32_t H
SMC: System Mode Controller Driver
-
static inline void SMC_GetVersionId(SMC_Type *base, smc_version_id_t *versionId)
Gets the SMC version ID.
This function gets the SMC version ID, including major version number, minor version number, and feature specification number.
- Parameters:
base – SMC peripheral base address.
versionId – Pointer to the version ID structure.
-
void SMC_GetParam(SMC_Type *base, smc_param_t *param)
Gets the SMC parameter.
This function gets the SMC parameter including the enabled power mdoes.
- Parameters:
base – SMC peripheral base address.
param – Pointer to the SMC param structure.
-
static inline void SMC_SetPowerModeProtection(SMC_Type *base, uint8_t allowedModes)
Configures all power mode protection settings.
This function configures the power mode protection settings for supported power modes in the specified chip family. The available power modes are defined in the smc_power_mode_protection_t. This should be done at an early system level initialization stage. See the reference manual for details. This register can only write once after the power reset.
The allowed modes are passed as bit map. For example, to allow LLS and VLLS, use SMC_SetPowerModeProtection(kSMC_AllowPowerModeVlls | kSMC_AllowPowerModeVlps). To allow all modes, use SMC_SetPowerModeProtection(kSMC_AllowPowerModeAll).
- Parameters:
base – SMC peripheral base address.
allowedModes – Bitmap of the allowed power modes.
-
static inline smc_power_state_t SMC_GetPowerModeState(SMC_Type *base)
Gets the current power mode status.
This function returns the current power mode status. After the application switches the power mode, it should always check the status to check whether it runs into the specified mode or not. The application should check this mode before switching to a different mode. The system requires that only certain modes can switch to other specific modes. See the reference manual for details and the smc_power_state_t for information about the power status.
- Parameters:
base – SMC peripheral base address.
- Returns:
Current power mode status.
-
void SMC_PreEnterStopModes(void)
Prepares to enter stop modes.
This function should be called before entering STOP/VLPS/LLS/VLLS modes.
-
void SMC_PostExitStopModes(void)
Recovers after wake up from stop modes.
This function should be called after wake up from STOP/VLPS/LLS/VLLS modes. It is used with SMC_PreEnterStopModes.
-
void SMC_PreEnterWaitModes(void)
Prepares to enter wait modes.
This function should be called before entering WAIT/VLPW modes.
-
void SMC_PostExitWaitModes(void)
Recovers after wake up from stop modes.
This function should be called after wake up from WAIT/VLPW modes. It is used with SMC_PreEnterWaitModes.
-
status_t SMC_SetPowerModeRun(SMC_Type *base)
Configures the system to RUN power mode.
- Parameters:
base – SMC peripheral base address.
- Returns:
SMC configuration error code.
-
status_t SMC_SetPowerModeHsrun(SMC_Type *base)
Configures the system to HSRUN power mode.
- Parameters:
base – SMC peripheral base address.
- Returns:
SMC configuration error code.
-
status_t SMC_SetPowerModeWait(SMC_Type *base)
Configures the system to WAIT power mode.
- Parameters:
base – SMC peripheral base address.
- Returns:
SMC configuration error code.
-
status_t SMC_SetPowerModeStop(SMC_Type *base, smc_partial_stop_option_t option)
Configures the system to Stop power mode.
- Parameters:
base – SMC peripheral base address.
option – Partial Stop mode option.
- Returns:
SMC configuration error code.
-
status_t SMC_SetPowerModeVlpr(SMC_Type *base, bool wakeupMode)
Configures the system to VLPR power mode.
- Parameters:
base – SMC peripheral base address.
wakeupMode – Enter Normal Run mode if true, else stay in VLPR mode.
- Returns:
SMC configuration error code.
-
status_t SMC_SetPowerModeVlpw(SMC_Type *base)
Configures the system to VLPW power mode.
- Parameters:
base – SMC peripheral base address.
- Returns:
SMC configuration error code.
-
status_t SMC_SetPowerModeVlps(SMC_Type *base)
Configures the system to VLPS power mode.
- Parameters:
base – SMC peripheral base address.
- Returns:
SMC configuration error code.
-
status_t SMC_SetPowerModeLls(SMC_Type *base, const smc_power_mode_lls_config_t *config)
Configures the system to LLS power mode.
- Parameters:
base – SMC peripheral base address.
config – The LLS power mode configuration structure
- Returns:
SMC configuration error code.
-
status_t SMC_SetPowerModeVlls(SMC_Type *base, const smc_power_mode_vlls_config_t *config)
Configures the system to VLLS power mode.
- Parameters:
base – SMC peripheral base address.
config – The VLLS power mode configuration structure.
- Returns:
SMC configuration error code.
-
FSL_SMC_DRIVER_VERSION
SMC driver version.
-
enum _smc_power_mode_protection
Power Modes Protection.
Values:
-
enumerator kSMC_AllowPowerModeVlls
Allow Very-low-leakage Stop Mode.
-
enumerator kSMC_AllowPowerModeLls
Allow Low-leakage Stop Mode.
-
enumerator kSMC_AllowPowerModeVlp
Allow Very-Low-power Mode.
-
enumerator kSMC_AllowPowerModeHsrun
Allow High-speed Run mode.
-
enumerator kSMC_AllowPowerModeAll
Allow all power mode.
-
enumerator kSMC_AllowPowerModeVlls
-
enum _smc_power_state
Power Modes in PMSTAT.
Values:
-
enumerator kSMC_PowerStateRun
0000_0001 - Current power mode is RUN
-
enumerator kSMC_PowerStateStop
0000_0010 - Current power mode is STOP
-
enumerator kSMC_PowerStateVlpr
0000_0100 - Current power mode is VLPR
-
enumerator kSMC_PowerStateVlpw
0000_1000 - Current power mode is VLPW
-
enumerator kSMC_PowerStateVlps
0001_0000 - Current power mode is VLPS
-
enumerator kSMC_PowerStateLls
0010_0000 - Current power mode is LLS
-
enumerator kSMC_PowerStateVlls
0100_0000 - Current power mode is VLLS
-
enumerator kSMC_PowerStateHsrun
1000_0000 - Current power mode is HSRUN
-
enumerator kSMC_PowerStateRun
-
enum _smc_run_mode
Run mode definition.
Values:
-
enumerator kSMC_RunNormal
Normal RUN mode.
-
enumerator kSMC_RunVlpr
Very-low-power RUN mode.
-
enumerator kSMC_Hsrun
High-speed Run mode (HSRUN).
-
enumerator kSMC_RunNormal
-
enum _smc_stop_mode
Stop mode definition.
Values:
-
enumerator kSMC_StopNormal
Normal STOP mode.
-
enumerator kSMC_StopVlps
Very-low-power STOP mode.
-
enumerator kSMC_StopLls
Low-leakage Stop mode.
-
enumerator kSMC_StopVlls
Very-low-leakage Stop mode.
-
enumerator kSMC_StopNormal
-
enum _smc_stop_submode
VLLS/LLS stop sub mode definition.
Values:
-
enumerator kSMC_StopSub0
Stop submode 0, for VLLS0/LLS0.
-
enumerator kSMC_StopSub1
Stop submode 1, for VLLS1/LLS1.
-
enumerator kSMC_StopSub2
Stop submode 2, for VLLS2/LLS2.
-
enumerator kSMC_StopSub3
Stop submode 3, for VLLS3/LLS3.
-
enumerator kSMC_StopSub0
-
enum _smc_partial_stop_mode
Partial STOP option.
Values:
-
enumerator kSMC_PartialStop
STOP - Normal Stop mode
-
enumerator kSMC_PartialStop1
Partial Stop with both system and bus clocks disabled
-
enumerator kSMC_PartialStop2
Partial Stop with system clock disabled and bus clock enabled
-
enumerator kSMC_PartialStop
_smc_status, SMC configuration status.
Values:
-
enumerator kStatus_SMC_StopAbort
Entering Stop mode is abort
-
enumerator kStatus_SMC_StopAbort
-
typedef enum _smc_power_mode_protection smc_power_mode_protection_t
Power Modes Protection.
-
typedef enum _smc_power_state smc_power_state_t
Power Modes in PMSTAT.
-
typedef enum _smc_run_mode smc_run_mode_t
Run mode definition.
-
typedef enum _smc_stop_mode smc_stop_mode_t
Stop mode definition.
-
typedef enum _smc_stop_submode smc_stop_submode_t
VLLS/LLS stop sub mode definition.
-
typedef enum _smc_partial_stop_mode smc_partial_stop_option_t
Partial STOP option.
-
typedef struct _smc_version_id smc_version_id_t
IP version ID definition.
-
typedef struct _smc_param smc_param_t
IP parameter definition.
-
typedef struct _smc_power_mode_lls_config smc_power_mode_lls_config_t
SMC Low-Leakage Stop power mode configuration.
-
typedef struct _smc_power_mode_vlls_config smc_power_mode_vlls_config_t
SMC Very Low-Leakage Stop power mode configuration.
-
struct _smc_version_id
- #include <fsl_smc.h>
IP version ID definition.
Public Members
-
uint16_t feature
Feature Specification Number.
-
uint8_t minor
Minor version number.
-
uint8_t major
Major version number.
-
uint16_t feature
-
struct _smc_param
- #include <fsl_smc.h>
IP parameter definition.
Public Members
-
bool hsrunEnable
HSRUN mode enable.
-
bool llsEnable
LLS mode enable.
-
bool lls2Enable
LLS2 mode enable.
-
bool vlls0Enable
VLLS0 mode enable.
-
bool hsrunEnable
-
struct _smc_power_mode_lls_config
- #include <fsl_smc.h>
SMC Low-Leakage Stop power mode configuration.
Public Members
-
smc_stop_submode_t subMode
Low-leakage Stop sub-mode
-
bool enableLpoClock
Enable LPO clock in LLS mode
-
smc_stop_submode_t subMode
-
struct _smc_power_mode_vlls_config
- #include <fsl_smc.h>
SMC Very Low-Leakage Stop power mode configuration.
Public Members
-
smc_stop_submode_t subMode
Very Low-leakage Stop sub-mode
-
bool enablePorDetectInVlls0
Enable Power on reset detect in VLLS mode
-
bool enableRam2InVlls2
Enable RAM2 power in VLLS2
-
bool enableLpoClock
Enable LPO clock in VLLS mode
-
smc_stop_submode_t subMode
SPI: Serial Peripheral Interface Driver
SPI Driver
-
void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
Sets the SPI master configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in SPI_MasterInit(). User may use the initialized structure unchanged in SPI_MasterInit(), or modify some fields of the structure before calling SPI_MasterInit(). After calling this API, the master is ready to transfer. Example:
spi_master_config_t config; SPI_MasterGetDefaultConfig(&config);
- Parameters:
config – pointer to master config structure
-
void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)
Initializes the SPI with master configuration.
The configuration structure can be filled by user from scratch, or be set with default values by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer. Example
spi_master_config_t config = { .baudRate_Bps = 400000, ... }; SPI_MasterInit(SPI0, &config);
- Parameters:
base – SPI base pointer
config – pointer to master configuration structure
srcClock_Hz – Source clock frequency.
-
void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
Sets the SPI slave configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in SPI_SlaveInit(). Modify some fields of the structure before calling SPI_SlaveInit(). Example:
spi_slave_config_t config; SPI_SlaveGetDefaultConfig(&config);
- Parameters:
config – pointer to slave configuration structure
-
void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
Initializes the SPI with slave configuration.
The configuration structure can be filled by user from scratch or be set with default values by SPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer. Example
spi_slave_config_t config = { .polarity = kSPIClockPolarity_ActiveHigh; .phase = kSPIClockPhase_FirstEdge; .direction = kSPIMsbFirst; ... }; SPI_MasterInit(SPI0, &config);
- Parameters:
base – SPI base pointer
config – pointer to master configuration structure
-
void SPI_Deinit(SPI_Type *base)
De-initializes the SPI.
Calling this API resets the SPI module, gates the SPI clock. The SPI module can’t work unless calling the SPI_MasterInit/SPI_SlaveInit to initialize module.
- Parameters:
base – SPI base pointer
-
static inline void SPI_Enable(SPI_Type *base, bool enable)
Enables or disables the SPI.
- Parameters:
base – SPI base pointer
enable – pass true to enable module, false to disable module
-
uint32_t SPI_GetStatusFlags(SPI_Type *base)
Gets the status flag.
- Parameters:
base – SPI base pointer
- Returns:
SPI Status, use status flag to AND _spi_flags could get the related status.
-
static inline void SPI_ClearInterrupt(SPI_Type *base, uint8_t mask)
Clear the interrupt if enable INCTLR.
- Parameters:
base – SPI base pointer
mask – Interrupt need to be cleared The parameter could be any combination of the following values:
kSPI_RxFullAndModfInterruptEnable
kSPI_TxEmptyInterruptEnable
kSPI_MatchInterruptEnable
kSPI_RxFifoNearFullInterruptEnable
kSPI_TxFifoNearEmptyInterruptEnable
-
void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
Enables the interrupt for the SPI.
- Parameters:
base – SPI base pointer
mask – SPI interrupt source. The parameter can be any combination of the following values:
kSPI_RxFullAndModfInterruptEnable
kSPI_TxEmptyInterruptEnable
kSPI_MatchInterruptEnable
kSPI_RxFifoNearFullInterruptEnable
kSPI_TxFifoNearEmptyInterruptEnable
-
void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask)
Disables the interrupt for the SPI.
- Parameters:
base – SPI base pointer
mask – SPI interrupt source. The parameter can be any combination of the following values:
kSPI_RxFullAndModfInterruptEnable
kSPI_TxEmptyInterruptEnable
kSPI_MatchInterruptEnable
kSPI_RxFifoNearFullInterruptEnable
kSPI_TxFifoNearEmptyInterruptEnable
-
static inline void SPI_EnableDMA(SPI_Type *base, uint8_t mask, bool enable)
Enables the DMA source for SPI.
- Parameters:
base – SPI base pointer
mask – SPI DMA source.
enable – True means enable DMA, false means disable DMA
-
static inline uint32_t SPI_GetDataRegisterAddress(SPI_Type *base)
Gets the SPI tx/rx data register address.
This API is used to provide a transfer address for the SPI DMA transfer configuration.
- Parameters:
base – SPI base pointer
- Returns:
data register address
-
uint32_t SPI_GetInstance(SPI_Type *base)
Get the instance for SPI module.
- Parameters:
base – SPI base address
-
static inline void SPI_SetPinMode(SPI_Type *base, spi_pin_mode_t pinMode)
Sets the pin mode for transfer.
- Parameters:
base – SPI base pointer
pinMode – pin mode for transfer AND _spi_pin_mode could get the related configuration.
-
void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the baud rate for SPI transfer. This is only used in master.
- Parameters:
base – SPI base pointer
baudRate_Bps – baud rate needed in Hz.
srcClock_Hz – SPI source clock frequency in Hz.
-
static inline void SPI_SetMatchData(SPI_Type *base, uint32_t matchData)
Sets the match data for SPI.
The match data is a hardware comparison value. When the value received in the SPI receive data buffer equals the hardware comparison value, the SPI Match Flag in the S register (S[SPMF]) sets. This can also generate an interrupt if the enable bit sets.
- Parameters:
base – SPI base pointer
matchData – Match data.
-
void SPI_EnableFIFO(SPI_Type *base, bool enable)
Enables or disables the FIFO if there is a FIFO.
- Parameters:
base – SPI base pointer
enable – True means enable FIFO, false means disable FIFO.
-
status_t SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
Sends a buffer of data bytes using a blocking method.
Note
This function blocks via polling until all bytes have been sent.
- Parameters:
base – SPI base pointer
buffer – The data bytes to send
size – The number of data bytes to send
- Returns:
kStatus_SPI_Timeout The transfer timed out and was aborted.
-
void SPI_WriteData(SPI_Type *base, uint16_t data)
Writes a data into the SPI data register.
- Parameters:
base – SPI base pointer
data – needs to be write.
-
uint16_t SPI_ReadData(SPI_Type *base)
Gets a data from the SPI data register.
- Parameters:
base – SPI base pointer
- Returns:
Data in the register.
-
void SPI_SetDummyData(SPI_Type *base, uint8_t dummyData)
Set up the dummy data.
- Parameters:
base – SPI peripheral address.
dummyData – Data to be transferred when tx buffer is NULL.
-
void SPI_MasterTransferCreateHandle(SPI_Type *base, spi_master_handle_t *handle, spi_master_callback_t callback, void *userData)
Initializes the SPI master handle.
This function initializes the SPI master handle which can be used for other SPI master transactional APIs. Usually, for a specified SPI instance, call this API once to get the initialized handle.
- Parameters:
base – SPI peripheral base address.
handle – SPI handle pointer.
callback – Callback function.
userData – User data.
-
status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
Transfers a block of data using a polling method.
- Parameters:
base – SPI base pointer
xfer – pointer to spi_xfer_config_t structure
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
-
status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle, spi_transfer_t *xfer)
Performs a non-blocking SPI interrupt transfer.
Note
The API immediately returns after transfer initialization is finished. Call SPI_GetStatusIRQ() to get the transfer status.
Note
If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
- Parameters:
base – SPI peripheral base address.
handle – pointer to spi_master_handle_t structure which stores the transfer state
xfer – pointer to spi_xfer_config_t structure
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_SPI_Busy – SPI is not idle, is running another transfer.
-
status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t *count)
Gets the bytes of the SPI interrupt transferred.
- Parameters:
base – SPI peripheral base address.
handle – Pointer to SPI transfer handle, this should be a static variable.
count – Transferred bytes of SPI master.
- Return values:
kStatus_SPI_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
Aborts an SPI transfer using interrupt.
- Parameters:
base – SPI peripheral base address.
handle – Pointer to SPI transfer handle, this should be a static variable.
-
void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
Interrupts the handler for the SPI.
- Parameters:
base – SPI peripheral base address.
handle – pointer to spi_master_handle_t structure which stores the transfer state.
-
void SPI_SlaveTransferCreateHandle(SPI_Type *base, spi_slave_handle_t *handle, spi_slave_callback_t callback, void *userData)
Initializes the SPI slave handle.
This function initializes the SPI slave handle which can be used for other SPI slave transactional APIs. Usually, for a specified SPI instance, call this API once to get the initialized handle.
- Parameters:
base – SPI peripheral base address.
handle – SPI handle pointer.
callback – Callback function.
userData – User data.
-
status_t SPI_SlaveTransferNonBlocking(SPI_Type *base, spi_slave_handle_t *handle, spi_transfer_t *xfer)
Performs a non-blocking SPI slave interrupt transfer.
Note
The API returns immediately after the transfer initialization is finished. Call SPI_GetStatusIRQ() to get the transfer status.
Note
If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
- Parameters:
base – SPI peripheral base address.
handle – pointer to spi_slave_handle_t structure which stores the transfer state
xfer – pointer to spi_xfer_config_t structure
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_SPI_Busy – SPI is not idle, is running another transfer.
-
static inline status_t SPI_SlaveTransferGetCount(SPI_Type *base, spi_slave_handle_t *handle, size_t *count)
Gets the bytes of the SPI interrupt transferred.
- Parameters:
base – SPI peripheral base address.
handle – Pointer to SPI transfer handle, this should be a static variable.
count – Transferred bytes of SPI slave.
- Return values:
kStatus_SPI_Success – Succeed get the transfer count.
kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.
-
static inline void SPI_SlaveTransferAbort(SPI_Type *base, spi_slave_handle_t *handle)
Aborts an SPI slave transfer using interrupt.
- Parameters:
base – SPI peripheral base address.
handle – Pointer to SPI transfer handle, this should be a static variable.
-
void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
Interrupts a handler for the SPI slave.
- Parameters:
base – SPI peripheral base address.
handle – pointer to spi_slave_handle_t structure which stores the transfer state
-
FSL_SPI_DRIVER_VERSION
SPI driver version.
Return status for the SPI driver.
Values:
-
enumerator kStatus_SPI_Busy
SPI bus is busy
-
enumerator kStatus_SPI_Idle
SPI is idle
-
enumerator kStatus_SPI_Error
SPI error
-
enumerator kStatus_SPI_Timeout
SPI timeout polling status flags.
-
enumerator kStatus_SPI_Busy
-
enum _spi_clock_polarity
SPI clock polarity configuration.
Values:
-
enumerator kSPI_ClockPolarityActiveHigh
Active-high SPI clock (idles low).
-
enumerator kSPI_ClockPolarityActiveLow
Active-low SPI clock (idles high).
-
enumerator kSPI_ClockPolarityActiveHigh
-
enum _spi_clock_phase
SPI clock phase configuration.
Values:
-
enumerator kSPI_ClockPhaseFirstEdge
First edge on SPSCK occurs at the middle of the first cycle of a data transfer.
-
enumerator kSPI_ClockPhaseSecondEdge
First edge on SPSCK occurs at the start of the first cycle of a data transfer.
-
enumerator kSPI_ClockPhaseFirstEdge
-
enum _spi_shift_direction
SPI data shifter direction options.
Values:
-
enumerator kSPI_MsbFirst
Data transfers start with most significant bit.
-
enumerator kSPI_LsbFirst
Data transfers start with least significant bit.
-
enumerator kSPI_MsbFirst
-
enum _spi_ss_output_mode
SPI slave select output mode options.
Values:
-
enumerator kSPI_SlaveSelectAsGpio
Slave select pin configured as GPIO.
-
enumerator kSPI_SlaveSelectFaultInput
Slave select pin configured for fault detection.
-
enumerator kSPI_SlaveSelectAutomaticOutput
Slave select pin configured for automatic SPI output.
-
enumerator kSPI_SlaveSelectAsGpio
-
enum _spi_pin_mode
SPI pin mode options.
Values:
-
enumerator kSPI_PinModeNormal
Pins operate in normal, single-direction mode.
-
enumerator kSPI_PinModeInput
Bidirectional mode. Master: MOSI pin is input; Slave: MISO pin is input.
-
enumerator kSPI_PinModeOutput
Bidirectional mode. Master: MOSI pin is output; Slave: MISO pin is output.
-
enumerator kSPI_PinModeNormal
-
enum _spi_data_bitcount_mode
SPI data length mode options.
Values:
-
enumerator kSPI_8BitMode
8-bit data transmission mode
-
enumerator kSPI_16BitMode
16-bit data transmission mode
-
enumerator kSPI_8BitMode
-
enum _spi_interrupt_enable
SPI interrupt sources.
Values:
-
enumerator kSPI_RxFullAndModfInterruptEnable
Receive buffer full (SPRF) and mode fault (MODF) interrupt
-
enumerator kSPI_TxEmptyInterruptEnable
Transmit buffer empty interrupt
-
enumerator kSPI_MatchInterruptEnable
Match interrupt
-
enumerator kSPI_RxFifoNearFullInterruptEnable
Receive FIFO nearly full interrupt
-
enumerator kSPI_TxFifoNearEmptyInterruptEnable
Transmit FIFO nearly empty interrupt
-
enumerator kSPI_RxFullAndModfInterruptEnable
-
enum _spi_flags
SPI status flags.
Values:
-
enumerator kSPI_RxBufferFullFlag
Read buffer full flag
-
enumerator kSPI_MatchFlag
Match flag
-
enumerator kSPI_TxBufferEmptyFlag
Transmit buffer empty flag
-
enumerator kSPI_ModeFaultFlag
Mode fault flag
-
enumerator kSPI_RxFifoNearFullFlag
Rx FIFO near full
-
enumerator kSPI_TxFifoNearEmptyFlag
Tx FIFO near empty
-
enumerator kSPI_TxFifoFullFlag
Tx FIFO full
-
enumerator kSPI_RxFifoEmptyFlag
Rx FIFO empty
-
enumerator kSPI_TxFifoError
Tx FIFO error
-
enumerator kSPI_RxFifoError
Rx FIFO error
-
enumerator kSPI_TxOverflow
Tx FIFO Overflow
-
enumerator kSPI_RxOverflow
Rx FIFO Overflow
-
enumerator kSPI_RxBufferFullFlag
-
enum _spi_w1c_interrupt
SPI FIFO write-1-to-clear interrupt flags.
Values:
-
enumerator kSPI_RxFifoFullClearInterrupt
Receive FIFO full interrupt
-
enumerator kSPI_TxFifoEmptyClearInterrupt
Transmit FIFO empty interrupt
-
enumerator kSPI_RxNearFullClearInterrupt
Receive FIFO nearly full interrupt
-
enumerator kSPI_TxNearEmptyClearInterrupt
Transmit FIFO nearly empty interrupt
-
enumerator kSPI_RxFifoFullClearInterrupt
-
enum _spi_txfifo_watermark
SPI TX FIFO watermark settings.
Values:
-
enumerator kSPI_TxFifoOneFourthEmpty
SPI tx watermark at 1/4 FIFO size
-
enumerator kSPI_TxFifoOneHalfEmpty
SPI tx watermark at 1/2 FIFO size
-
enumerator kSPI_TxFifoOneFourthEmpty
-
enum _spi_rxfifo_watermark
SPI RX FIFO watermark settings.
Values:
-
enumerator kSPI_RxFifoThreeFourthsFull
SPI rx watermark at 3/4 FIFO size
-
enumerator kSPI_RxFifoOneHalfFull
SPI rx watermark at 1/2 FIFO size
-
enumerator kSPI_RxFifoThreeFourthsFull
-
enum _spi_dma_enable_t
SPI DMA source.
Values:
-
enumerator kSPI_TxDmaEnable
Tx DMA request source
-
enumerator kSPI_RxDmaEnable
Rx DMA request source
-
enumerator kSPI_DmaAllEnable
All DMA request source
-
enumerator kSPI_TxDmaEnable
-
typedef enum _spi_clock_polarity spi_clock_polarity_t
SPI clock polarity configuration.
-
typedef enum _spi_clock_phase spi_clock_phase_t
SPI clock phase configuration.
-
typedef enum _spi_shift_direction spi_shift_direction_t
SPI data shifter direction options.
-
typedef enum _spi_ss_output_mode spi_ss_output_mode_t
SPI slave select output mode options.
-
typedef enum _spi_pin_mode spi_pin_mode_t
SPI pin mode options.
-
typedef enum _spi_data_bitcount_mode spi_data_bitcount_mode_t
SPI data length mode options.
-
typedef enum _spi_w1c_interrupt spi_w1c_interrupt_t
SPI FIFO write-1-to-clear interrupt flags.
-
typedef enum _spi_txfifo_watermark spi_txfifo_watermark_t
SPI TX FIFO watermark settings.
-
typedef enum _spi_rxfifo_watermark spi_rxfifo_watermark_t
SPI RX FIFO watermark settings.
-
typedef struct _spi_master_config spi_master_config_t
SPI master user configure structure.
-
typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.
-
typedef struct _spi_transfer spi_transfer_t
SPI transfer structure.
-
typedef struct _spi_master_handle spi_master_handle_t
-
typedef spi_master_handle_t spi_slave_handle_t
Slave handle is the same with master handle
-
typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t status, void *userData)
SPI master callback for finished transmit.
-
typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status, void *userData)
SPI master callback for finished transmit.
-
volatile uint8_t g_spiDummyData[]
Global variable for dummy data value setting.
-
SPI_DUMMYDATA
SPI dummy transfer data, the data is sent while txBuff is NULL.
-
SPI_RETRY_TIMES
Retry times for waiting flag.
-
struct _spi_master_config
- #include <fsl_spi.h>
SPI master user configure structure.
Public Members
-
bool enableMaster
Enable SPI at initialization time
-
bool enableStopInWaitMode
SPI stop in wait mode
-
spi_clock_polarity_t polarity
Clock polarity
-
spi_clock_phase_t phase
Clock phase
-
spi_shift_direction_t direction
MSB or LSB
-
spi_data_bitcount_mode_t dataMode
8bit or 16bit mode
-
spi_txfifo_watermark_t txWatermark
Tx watermark settings
-
spi_rxfifo_watermark_t rxWatermark
Rx watermark settings
-
spi_ss_output_mode_t outputMode
SS pin setting
-
spi_pin_mode_t pinMode
SPI pin mode select
-
uint32_t baudRate_Bps
Baud Rate for SPI in Hz
-
bool enableMaster
-
struct _spi_slave_config
- #include <fsl_spi.h>
SPI slave user configure structure.
Public Members
-
bool enableSlave
Enable SPI at initialization time
-
bool enableStopInWaitMode
SPI stop in wait mode
-
spi_clock_polarity_t polarity
Clock polarity
-
spi_clock_phase_t phase
Clock phase
-
spi_shift_direction_t direction
MSB or LSB
-
spi_data_bitcount_mode_t dataMode
8bit or 16bit mode
-
spi_txfifo_watermark_t txWatermark
Tx watermark settings
-
spi_rxfifo_watermark_t rxWatermark
Rx watermark settings
-
spi_pin_mode_t pinMode
SPI pin mode select
-
bool enableSlave
-
struct _spi_transfer
- #include <fsl_spi.h>
SPI transfer structure.
Public Members
-
const uint8_t *txData
Send buffer
-
uint8_t *rxData
Receive buffer
-
size_t dataSize
Transfer bytes
-
uint32_t flags
SPI control flag, useless to SPI.
-
const uint8_t *txData
-
struct _spi_master_handle
- #include <fsl_spi.h>
SPI transfer handle structure.
Public Members
-
const uint8_t *volatile txData
Transfer buffer
-
uint8_t *volatile rxData
Receive buffer
-
volatile size_t txRemainingBytes
Send data remaining in bytes
-
volatile size_t rxRemainingBytes
Receive data remaining in bytes
-
volatile uint32_t state
SPI internal state
-
size_t transferSize
Bytes to be transferred
-
uint8_t bytePerFrame
SPI mode, 2bytes or 1byte in a frame
-
uint8_t watermark
Watermark value for SPI transfer
-
spi_master_callback_t callback
SPI callback
-
void *userData
Callback parameter
-
const uint8_t *volatile txData
TPM: Timer PWM Module
-
uint32_t TPM_GetInstance(TPM_Type *base)
Gets the instance from the base address.
- Parameters:
base – TPM peripheral base address
- Returns:
The TPM instance
-
void TPM_Init(TPM_Type *base, const tpm_config_t *config)
Ungates the TPM clock and configures the peripheral for basic operation.
Note
This API should be called at the beginning of the application using the TPM driver.
- Parameters:
base – TPM peripheral base address
config – Pointer to user’s TPM config structure.
-
void TPM_Deinit(TPM_Type *base)
Stops the counter and gates the TPM clock.
- Parameters:
base – TPM peripheral base address
-
void TPM_GetDefaultConfig(tpm_config_t *config)
Fill in the TPM config struct with the default settings.
The default values are:
config->prescale = kTPM_Prescale_Divide_1; config->useGlobalTimeBase = false; config->syncGlobalTimeBase = false; config->dozeEnable = false; config->dbgMode = false; config->enableReloadOnTrigger = false; config->enableStopOnOverflow = false; config->enableStartOnTrigger = false; #if FSL_FEATURE_TPM_HAS_PAUSE_COUNTER_ON_TRIGGER config->enablePauseOnTrigger = false; #endif config->triggerSelect = kTPM_Trigger_Select_0; #if FSL_FEATURE_TPM_HAS_EXTERNAL_TRIGGER_SELECTION config->triggerSource = kTPM_TriggerSource_External; config->extTriggerPolarity = kTPM_ExtTrigger_Active_High; #endif #if defined(FSL_FEATURE_TPM_HAS_POL) && FSL_FEATURE_TPM_HAS_POL config->chnlPolarity = 0U; #endif
- Parameters:
config – Pointer to user’s TPM config structure.
-
tpm_clock_prescale_t TPM_CalculateCounterClkDiv(TPM_Type *base, uint32_t counterPeriod_Hz, uint32_t srcClock_Hz)
Calculates the counter clock prescaler.
This function calculates the values for SC[PS].
return Calculated clock prescaler value.
- Parameters:
base – TPM peripheral base address
counterPeriod_Hz – The desired frequency in Hz which corresponding to the time when the counter reaches the mod value
srcClock_Hz – TPM counter clock in Hz
-
status_t TPM_SetupPwm(TPM_Type *base, const tpm_chnl_pwm_signal_param_t *chnlParams, uint8_t numOfChnls, tpm_pwm_mode_t mode, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz)
Configures the PWM signal parameters.
User calls this function to configure the PWM signals period, mode, dutycycle and edge. Use this function to configure all the TPM channels that will be used to output a PWM signal
- Parameters:
base – TPM peripheral base address
chnlParams – Array of PWM channel parameters to configure the channel(s)
numOfChnls – Number of channels to configure, this should be the size of the array passed in
mode – PWM operation mode, options available in enumeration tpm_pwm_mode_t
pwmFreq_Hz – PWM signal frequency in Hz
srcClock_Hz – TPM counter clock in Hz
- Returns:
kStatus_Success if the PWM setup was successful, kStatus_Error on failure
-
status_t TPM_UpdatePwmDutycycle(TPM_Type *base, tpm_chnl_t chnlNumber, tpm_pwm_mode_t currentPwmMode, uint8_t dutyCyclePercent)
Update the duty cycle of an active PWM signal.
- Parameters:
base – TPM peripheral base address
chnlNumber – The channel number. In combined mode, this represents the channel pair number
currentPwmMode – The current PWM mode set during PWM setup
dutyCyclePercent – New PWM pulse width, value should be between 0 to 100 0=inactive signal(0% duty cycle)… 100=active signal (100% duty cycle)
- Returns:
kStatus_Success if the PWM setup was successful, kStatus_Error on failure
-
void TPM_UpdateChnlEdgeLevelSelect(TPM_Type *base, tpm_chnl_t chnlNumber, uint8_t level)
Update the edge level selection for a channel.
Note
When the TPM has PWM pause level select feature (FSL_FEATURE_TPM_HAS_PAUSE_LEVEL_SELECT = 1), the PWM output cannot be turned off by selecting the output level. In this case, must use TPM_DisableChannel API to close the PWM output.
- Parameters:
base – TPM peripheral base address
chnlNumber – The channel number
level – The level to be set to the ELSnB:ELSnA field; valid values are 00, 01, 10, 11. See the appropriate SoC reference manual for details about this field.
-
static inline uint8_t TPM_GetChannelContorlBits(TPM_Type *base, tpm_chnl_t chnlNumber)
Get the channel control bits value (mode, edge and level bit fileds).
This function disable the channel by clear all mode and level control bits.
- Parameters:
base – TPM peripheral base address
chnlNumber – The channel number
- Returns:
The contorl bits value. This is the logical OR of members of the enumeration tpm_chnl_control_bit_mask_t.
-
static inline void TPM_DisableChannel(TPM_Type *base, tpm_chnl_t chnlNumber)
Dsiable the channel.
This function disable the channel by clear all mode and level control bits.
- Parameters:
base – TPM peripheral base address
chnlNumber – The channel number
-
static inline void TPM_EnableChannel(TPM_Type *base, tpm_chnl_t chnlNumber, uint8_t control)
Enable the channel according to mode and level configs.
This function enable the channel output according to input mode/level config parameters.
- Parameters:
base – TPM peripheral base address
chnlNumber – The channel number
control – The contorl bits value. This is the logical OR of members of the enumeration tpm_chnl_control_bit_mask_t.
-
void TPM_SetupInputCapture(TPM_Type *base, tpm_chnl_t chnlNumber, tpm_input_capture_edge_t captureMode)
Enables capturing an input signal on the channel using the function parameters.
When the edge specified in the captureMode argument occurs on the channel, the TPM counter is captured into the CnV register. The user has to read the CnV register separately to get this value.
- Parameters:
base – TPM peripheral base address
chnlNumber – The channel number
captureMode – Specifies which edge to capture
-
void TPM_SetupOutputCompare(TPM_Type *base, tpm_chnl_t chnlNumber, tpm_output_compare_mode_t compareMode, uint32_t compareValue)
Configures the TPM to generate timed pulses.
When the TPM counter matches the value of compareVal argument (this is written into CnV reg), the channel output is changed based on what is specified in the compareMode argument.
- Parameters:
base – TPM peripheral base address
chnlNumber – The channel number
compareMode – Action to take on the channel output when the compare condition is met
compareValue – Value to be programmed in the CnV register.
-
void TPM_SetupDualEdgeCapture(TPM_Type *base, tpm_chnl_t chnlPairNumber, const tpm_dual_edge_capture_param_t *edgeParam, uint32_t filterValue)
Configures the dual edge capture mode of the TPM.
This function allows to measure a pulse width of the signal on the input of channel of a channel pair. The filter function is disabled if the filterVal argument passed is zero.
- Parameters:
base – TPM peripheral base address
chnlPairNumber – The TPM channel pair number; options are 0, 1, 2, 3
edgeParam – Sets up the dual edge capture function
filterValue – Filter value, specify 0 to disable filter.
-
void TPM_SetupQuadDecode(TPM_Type *base, const tpm_phase_params_t *phaseAParams, const tpm_phase_params_t *phaseBParams, tpm_quad_decode_mode_t quadMode)
Configures the parameters and activates the quadrature decode mode.
- Parameters:
base – TPM peripheral base address
phaseAParams – Phase A configuration parameters
phaseBParams – Phase B configuration parameters
quadMode – Selects encoding mode used in quadrature decoder mode
-
static inline void TPM_SetChannelPolarity(TPM_Type *base, tpm_chnl_t chnlNumber, bool enable)
Set the input and output polarity of each of the channels.
- Parameters:
base – TPM peripheral base address
chnlNumber – The channel number
enable – true: Set the channel polarity to active high; false: Set the channel polarity to active low;
-
static inline void TPM_EnableChannelExtTrigger(TPM_Type *base, tpm_chnl_t chnlNumber, bool enable)
Enable external trigger input to be used by channel.
In input capture mode, configures the trigger input that is used by the channel to capture the counter value. In output compare or PWM mode, configures the trigger input used to modulate the channel output. When modulating the output, the output is forced to the channel initial value whenever the trigger is not asserted.
Note
No matter how many external trigger sources there are, only input trigger 0 and 1 are used. The even numbered channels share the input trigger 0 and the odd numbered channels share the second input trigger 1.
- Parameters:
base – TPM peripheral base address
chnlNumber – The channel number
enable – true: Configures trigger input 0 or 1 to be used by channel; false: Trigger input has no effect on the channel
-
void TPM_EnableInterrupts(TPM_Type *base, uint32_t mask)
Enables the selected TPM interrupts.
- Parameters:
base – TPM peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration tpm_interrupt_enable_t
-
void TPM_DisableInterrupts(TPM_Type *base, uint32_t mask)
Disables the selected TPM interrupts.
- Parameters:
base – TPM peripheral base address
mask – The interrupts to disable. This is a logical OR of members of the enumeration tpm_interrupt_enable_t
-
uint32_t TPM_GetEnabledInterrupts(TPM_Type *base)
Gets the enabled TPM interrupts.
- Parameters:
base – TPM peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration tpm_interrupt_enable_t
-
void TPM_RegisterCallBack(TPM_Type *base, tpm_callback_t callback)
Register callback.
If channel or overflow interrupt is enabled by the user, then a callback can be registered which will be invoked when the interrupt is triggered.
- Parameters:
base – TPM peripheral base address
callback – Callback function
-
static inline uint32_t TPM_GetChannelValue(TPM_Type *base, tpm_chnl_t chnlNumber)
Gets the TPM channel value.
Note
The TPM channel value contain the captured TPM counter value for the input modes or the match value for the output modes.
- Parameters:
base – TPM peripheral base address
chnlNumber – The channel number
- Returns:
The channle CnV regisyer value.
-
static inline uint32_t TPM_GetStatusFlags(TPM_Type *base)
Gets the TPM status flags.
- Parameters:
base – TPM peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration tpm_status_flags_t
-
static inline void TPM_ClearStatusFlags(TPM_Type *base, uint32_t mask)
Clears the TPM status flags.
- Parameters:
base – TPM peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration tpm_status_flags_t
-
static inline void TPM_SetTimerPeriod(TPM_Type *base, uint32_t ticks)
Sets the timer period in units of ticks.
Timers counts from 0 until it equals the count value set here. The count value is written to the MOD register.
Note
This API allows the user to use the TPM module as a timer. Do not mix usage of this API with TPM’s PWM setup API’s.
Call the utility macros provided in the fsl_common.h to convert usec or msec to ticks.
- Parameters:
base – TPM peripheral base address
ticks – A timer period in units of ticks, which should be equal or greater than 1.
-
static inline uint32_t TPM_GetCurrentTimerCount(TPM_Type *base)
Reads the current timer counting value.
This function returns the real-time timer counting value in a range from 0 to a timer period.
Note
Call the utility macros provided in the fsl_common.h to convert ticks to usec or msec.
- Parameters:
base – TPM peripheral base address
- Returns:
The current counter value in ticks
-
static inline void TPM_StartTimer(TPM_Type *base, tpm_clock_source_t clockSource)
Starts the TPM counter.
- Parameters:
base – TPM peripheral base address
clockSource – TPM clock source; once clock source is set the counter will start running
-
static inline void TPM_StopTimer(TPM_Type *base)
Stops the TPM counter.
- Parameters:
base – TPM peripheral base address
-
FSL_TPM_DRIVER_VERSION
TPM driver version 2.3.2.
-
enum _tpm_chnl
List of TPM channels.
Note
Actual number of available channels is SoC dependent
Values:
-
enumerator kTPM_Chnl_0
TPM channel number 0
-
enumerator kTPM_Chnl_1
TPM channel number 1
-
enumerator kTPM_Chnl_2
TPM channel number 2
-
enumerator kTPM_Chnl_3
TPM channel number 3
-
enumerator kTPM_Chnl_4
TPM channel number 4
-
enumerator kTPM_Chnl_5
TPM channel number 5
-
enumerator kTPM_Chnl_6
TPM channel number 6
-
enumerator kTPM_Chnl_7
TPM channel number 7
-
enumerator kTPM_Chnl_0
-
enum _tpm_pwm_mode
TPM PWM operation modes.
Values:
-
enumerator kTPM_EdgeAlignedPwm
Edge aligned PWM
-
enumerator kTPM_CenterAlignedPwm
Center aligned PWM
-
enumerator kTPM_CombinedPwm
Combined PWM (Edge-aligned, center-aligned, or asymmetrical PWMs can be obtained in combined mode using different software configurations)
-
enumerator kTPM_EdgeAlignedPwm
-
enum _tpm_pwm_level_select
TPM PWM output pulse mode: high-true, low-true or no output.
Note
When the TPM has PWM pause level select feature, the PWM output cannot be turned off by selecting the output level. In this case, the channel must be closed to close the PWM output.
Values:
-
enumerator kTPM_NoPwmSignal
No PWM output on pin
-
enumerator kTPM_LowTrue
Low true pulses
-
enumerator kTPM_HighTrue
High true pulses
-
enumerator kTPM_NoPwmSignal
-
enum _tpm_chnl_control_bit_mask
List of TPM channel modes and level control bit mask.
Values:
-
enumerator kTPM_ChnlELSnAMask
Channel ELSA bit mask.
-
enumerator kTPM_ChnlELSnBMask
Channel ELSB bit mask.
-
enumerator kTPM_ChnlMSAMask
Channel MSA bit mask.
-
enumerator kTPM_ChnlMSBMask
Channel MSB bit mask.
-
enumerator kTPM_ChnlELSnAMask
-
enum _tpm_trigger_select
Trigger sources available.
This is used for both internal & external trigger sources (external trigger sources available in certain SoC’s)
Note
The actual trigger sources available is SoC-specific.
Values:
-
enumerator kTPM_Trigger_Select_0
-
enumerator kTPM_Trigger_Select_1
-
enumerator kTPM_Trigger_Select_2
-
enumerator kTPM_Trigger_Select_3
-
enumerator kTPM_Trigger_Select_4
-
enumerator kTPM_Trigger_Select_5
-
enumerator kTPM_Trigger_Select_6
-
enumerator kTPM_Trigger_Select_7
-
enumerator kTPM_Trigger_Select_8
-
enumerator kTPM_Trigger_Select_9
-
enumerator kTPM_Trigger_Select_10
-
enumerator kTPM_Trigger_Select_11
-
enumerator kTPM_Trigger_Select_12
-
enumerator kTPM_Trigger_Select_13
-
enumerator kTPM_Trigger_Select_14
-
enumerator kTPM_Trigger_Select_15
-
enumerator kTPM_Trigger_Select_0
-
enum _tpm_trigger_source
Trigger source options available.
Note
This selection is available only on some SoC’s. For SoC’s without this selection, the only trigger source available is internal triger.
Values:
-
enumerator kTPM_TriggerSource_External
Use external trigger input
-
enumerator kTPM_TriggerSource_Internal
Use internal trigger (channel pin input capture)
-
enumerator kTPM_TriggerSource_External
-
enum _tpm_ext_trigger_polarity
External trigger source polarity.
Note
Selects the polarity of the external trigger source.
Values:
-
enumerator kTPM_ExtTrigger_Active_High
External trigger input is active high
-
enumerator kTPM_ExtTrigger_Active_Low
External trigger input is active low
-
enumerator kTPM_ExtTrigger_Active_High
-
enum _tpm_output_compare_mode
TPM output compare modes.
Values:
-
enumerator kTPM_NoOutputSignal
No channel output when counter reaches CnV
-
enumerator kTPM_ToggleOnMatch
Toggle output
-
enumerator kTPM_ClearOnMatch
Clear output
-
enumerator kTPM_SetOnMatch
Set output
-
enumerator kTPM_HighPulseOutput
Pulse output high
-
enumerator kTPM_LowPulseOutput
Pulse output low
-
enumerator kTPM_NoOutputSignal
-
enum _tpm_input_capture_edge
TPM input capture edge.
Values:
-
enumerator kTPM_RisingEdge
Capture on rising edge only
-
enumerator kTPM_FallingEdge
Capture on falling edge only
-
enumerator kTPM_RiseAndFallEdge
Capture on rising or falling edge
-
enumerator kTPM_RisingEdge
-
enum _tpm_quad_decode_mode
TPM quadrature decode modes.
Note
This mode is available only on some SoC’s.
Values:
-
enumerator kTPM_QuadPhaseEncode
Phase A and Phase B encoding mode
-
enumerator kTPM_QuadCountAndDir
Count and direction encoding mode
-
enumerator kTPM_QuadPhaseEncode
-
enum _tpm_phase_polarity
TPM quadrature phase polarities.
Values:
-
enumerator kTPM_QuadPhaseNormal
Phase input signal is not inverted
-
enumerator kTPM_QuadPhaseInvert
Phase input signal is inverted
-
enumerator kTPM_QuadPhaseNormal
-
enum _tpm_clock_source
TPM clock source selection.
Values:
-
enumerator kTPM_SystemClock
System clock
-
enumerator kTPM_ExternalClock
External TPM_EXTCLK pin clock
-
enumerator kTPM_ExternalInputTriggerClock
Selected external input trigger clock
-
enumerator kTPM_SystemClock
-
enum _tpm_clock_prescale
TPM prescale value selection for the clock source.
Values:
-
enumerator kTPM_Prescale_Divide_1
Divide by 1
-
enumerator kTPM_Prescale_Divide_2
Divide by 2
-
enumerator kTPM_Prescale_Divide_4
Divide by 4
-
enumerator kTPM_Prescale_Divide_8
Divide by 8
-
enumerator kTPM_Prescale_Divide_16
Divide by 16
-
enumerator kTPM_Prescale_Divide_32
Divide by 32
-
enumerator kTPM_Prescale_Divide_64
Divide by 64
-
enumerator kTPM_Prescale_Divide_128
Divide by 128
-
enumerator kTPM_Prescale_Divide_1
-
enum _tpm_interrupt_enable
List of TPM interrupts.
Values:
-
enumerator kTPM_Chnl0InterruptEnable
Channel 0 interrupt.
-
enumerator kTPM_Chnl1InterruptEnable
Channel 1 interrupt.
-
enumerator kTPM_Chnl2InterruptEnable
Channel 2 interrupt.
-
enumerator kTPM_Chnl3InterruptEnable
Channel 3 interrupt.
-
enumerator kTPM_Chnl4InterruptEnable
Channel 4 interrupt.
-
enumerator kTPM_Chnl5InterruptEnable
Channel 5 interrupt.
-
enumerator kTPM_Chnl6InterruptEnable
Channel 6 interrupt.
-
enumerator kTPM_Chnl7InterruptEnable
Channel 7 interrupt.
-
enumerator kTPM_TimeOverflowInterruptEnable
Time overflow interrupt.
-
enumerator kTPM_Chnl0InterruptEnable
-
enum _tpm_status_flags
List of TPM flags.
Values:
-
enumerator kTPM_Chnl0Flag
Channel 0 flag
-
enumerator kTPM_Chnl1Flag
Channel 1 flag
-
enumerator kTPM_Chnl2Flag
Channel 2 flag
-
enumerator kTPM_Chnl3Flag
Channel 3 flag
-
enumerator kTPM_Chnl4Flag
Channel 4 flag
-
enumerator kTPM_Chnl5Flag
Channel 5 flag
-
enumerator kTPM_Chnl6Flag
Channel 6 flag
-
enumerator kTPM_Chnl7Flag
Channel 7 flag
-
enumerator kTPM_TimeOverflowFlag
Time overflow flag
-
enumerator kTPM_Chnl0Flag
-
typedef enum _tpm_chnl tpm_chnl_t
List of TPM channels.
Note
Actual number of available channels is SoC dependent
-
typedef enum _tpm_pwm_mode tpm_pwm_mode_t
TPM PWM operation modes.
-
typedef enum _tpm_pwm_level_select tpm_pwm_level_select_t
TPM PWM output pulse mode: high-true, low-true or no output.
Note
When the TPM has PWM pause level select feature, the PWM output cannot be turned off by selecting the output level. In this case, the channel must be closed to close the PWM output.
-
typedef enum _tpm_chnl_control_bit_mask tpm_chnl_control_bit_mask_t
List of TPM channel modes and level control bit mask.
-
typedef struct _tpm_chnl_pwm_signal_param tpm_chnl_pwm_signal_param_t
Options to configure a TPM channel’s PWM signal.
-
typedef enum _tpm_trigger_select tpm_trigger_select_t
Trigger sources available.
This is used for both internal & external trigger sources (external trigger sources available in certain SoC’s)
Note
The actual trigger sources available is SoC-specific.
-
typedef enum _tpm_trigger_source tpm_trigger_source_t
Trigger source options available.
Note
This selection is available only on some SoC’s. For SoC’s without this selection, the only trigger source available is internal triger.
-
typedef enum _tpm_ext_trigger_polarity tpm_ext_trigger_polarity_t
External trigger source polarity.
Note
Selects the polarity of the external trigger source.
-
typedef enum _tpm_output_compare_mode tpm_output_compare_mode_t
TPM output compare modes.
-
typedef enum _tpm_input_capture_edge tpm_input_capture_edge_t
TPM input capture edge.
-
typedef struct _tpm_dual_edge_capture_param tpm_dual_edge_capture_param_t
TPM dual edge capture parameters.
Note
This mode is available only on some SoC’s.
-
typedef enum _tpm_quad_decode_mode tpm_quad_decode_mode_t
TPM quadrature decode modes.
Note
This mode is available only on some SoC’s.
-
typedef enum _tpm_phase_polarity tpm_phase_polarity_t
TPM quadrature phase polarities.
-
typedef struct _tpm_phase_param tpm_phase_params_t
TPM quadrature decode phase parameters.
-
typedef enum _tpm_clock_source tpm_clock_source_t
TPM clock source selection.
-
typedef enum _tpm_clock_prescale tpm_clock_prescale_t
TPM prescale value selection for the clock source.
-
typedef struct _tpm_config tpm_config_t
TPM config structure.
This structure holds the configuration settings for the TPM peripheral. To initialize this structure to reasonable defaults, call the TPM_GetDefaultConfig() function and pass a pointer to your config structure instance.
The config struct can be made const so it resides in flash
-
typedef enum _tpm_interrupt_enable tpm_interrupt_enable_t
List of TPM interrupts.
-
typedef enum _tpm_status_flags tpm_status_flags_t
List of TPM flags.
-
typedef void (*tpm_callback_t)(TPM_Type *base)
TPM callback function pointer.
- Param base:
TPM peripheral base address.
-
static inline void TPM_Reset(TPM_Type *base)
Performs a software reset on the TPM module.
Reset all internal logic and registers, except the Global Register. Remains set until cleared by software.
Note
TPM software reset is available on certain SoC’s only
- Parameters:
base – TPM peripheral base address
-
TPM_MAX_COUNTER_VALUE(x)
Help macro to get the max counter value.
-
struct _tpm_chnl_pwm_signal_param
- #include <fsl_tpm.h>
Options to configure a TPM channel’s PWM signal.
Public Members
-
tpm_chnl_t chnlNumber
TPM channel to configure. In combined mode (available in some SoC’s), this represents the channel pair number
-
tpm_pwm_level_select_t level
PWM output active level select
-
uint8_t dutyCyclePercent
PWM pulse width, value should be between 0 to 100 0=inactive signal(0% duty cycle)… 100=always active signal (100% duty cycle)
-
uint8_t firstEdgeDelayPercent
Used only in combined PWM mode to generate asymmetrical PWM. Specifies the delay to the first edge in a PWM period. If unsure, leave as 0. Should be specified as percentage of the PWM period, (dutyCyclePercent + firstEdgeDelayPercent) value should be not greate than 100.
-
bool enableComplementary
Used only in combined PWM mode. true: The combined channels output complementary signals; false: The combined channels output same signals;
-
uint8_t deadTimeValue[2]
The dead time value for channel n and n+1 in combined complementary PWM mode. Deadtime insertion is disabled when this value is zero, otherwise deadtime insertion for channel n/n+1 is configured as (deadTimeValue * 4) clock cycles. deadTimeValue’s available range is 0 ~ 15.
-
tpm_chnl_t chnlNumber
-
struct _tpm_dual_edge_capture_param
- #include <fsl_tpm.h>
TPM dual edge capture parameters.
Note
This mode is available only on some SoC’s.
Public Members
-
bool enableSwap
true: Use channel n+1 input, channel n input is ignored; false: Use channel n input, channel n+1 input is ignored
-
tpm_input_capture_edge_t currChanEdgeMode
Input capture edge select for channel n
-
tpm_input_capture_edge_t nextChanEdgeMode
Input capture edge select for channel n+1
-
bool enableSwap
-
struct _tpm_phase_param
- #include <fsl_tpm.h>
TPM quadrature decode phase parameters.
Public Members
-
uint32_t phaseFilterVal
Filter value, filter is disabled when the value is zero
-
tpm_phase_polarity_t phasePolarity
Phase polarity
-
uint32_t phaseFilterVal
-
struct _tpm_config
- #include <fsl_tpm.h>
TPM config structure.
This structure holds the configuration settings for the TPM peripheral. To initialize this structure to reasonable defaults, call the TPM_GetDefaultConfig() function and pass a pointer to your config structure instance.
The config struct can be made const so it resides in flash
Public Members
-
tpm_clock_prescale_t prescale
Select TPM clock prescale value
-
bool useGlobalTimeBase
true: The TPM channels use an external global time base (the local counter still use for generate overflow interrupt and DMA request); false: All TPM channels use the local counter as their timebase
-
bool syncGlobalTimeBase
true: The TPM counter is synchronized to the global time base; false: disabled
-
tpm_trigger_select_t triggerSelect
Input trigger to use for controlling the counter operation
-
tpm_trigger_source_t triggerSource
Decides if we use external or internal trigger.
-
tpm_ext_trigger_polarity_t extTriggerPolarity
when using external trigger source, need selects the polarity of it.
-
bool enableDoze
true: TPM counter is paused in doze mode; false: TPM counter continues in doze mode
-
bool enableDebugMode
true: TPM counter continues in debug mode; false: TPM counter is paused in debug mode
-
bool enableReloadOnTrigger
true: TPM counter is reloaded on trigger; false: TPM counter not reloaded
-
bool enableStopOnOverflow
true: TPM counter stops after overflow; false: TPM counter continues running after overflow
-
bool enableStartOnTrigger
true: TPM counter only starts when a trigger is detected; false: TPM counter starts immediately
-
bool enablePauseOnTrigger
true: TPM counter will pause while trigger remains asserted; false: TPM counter continues running
-
uint8_t chnlPolarity
Defines the input/output polarity of the channels in POL register
-
tpm_clock_prescale_t prescale
VREF: Voltage Reference Driver
-
void VREF_Init(VREF_Type *base, const vref_config_t *config)
Enables the clock gate and configures the VREF module according to the configuration structure.
This function must be called before calling all other VREF driver functions, read/write registers, and configurations with user-defined settings. The example below shows how to set up vref_config_t parameters and how to call the VREF_Init function by passing in these parameters. This is an example.
vref_config_t vrefConfig; vrefConfig.bufferMode = kVREF_ModeHighPowerBuffer; vrefConfig.enableExternalVoltRef = false; vrefConfig.enableLowRef = false; VREF_Init(VREF, &vrefConfig);
- Parameters:
base – VREF peripheral address.
config – Pointer to the configuration structure.
-
void VREF_Deinit(VREF_Type *base)
Stops and disables the clock for the VREF module.
This function should be called to shut down the module. This is an example.
vref_config_t vrefUserConfig; VREF_Init(VREF); VREF_GetDefaultConfig(&vrefUserConfig); ... VREF_Deinit(VREF);
- Parameters:
base – VREF peripheral address.
-
void VREF_GetDefaultConfig(vref_config_t *config)
Initializes the VREF configuration structure.
This function initializes the VREF configuration structure to default values. This is an example.
vrefConfig->bufferMode = kVREF_ModeHighPowerBuffer; vrefConfig->enableExternalVoltRef = false; vrefConfig->enableLowRef = false;
- Parameters:
config – Pointer to the initialization structure.
-
void VREF_SetTrimVal(VREF_Type *base, uint8_t trimValue)
Sets a TRIM value for the reference voltage.
This function sets a TRIM value for the reference voltage. Note that the TRIM value maximum is 0x3F.
- Parameters:
base – VREF peripheral address.
trimValue – Value of the trim register to set the output reference voltage (maximum 0x3F (6-bit)).
-
static inline uint8_t VREF_GetTrimVal(VREF_Type *base)
Reads the value of the TRIM meaning output voltage.
This function gets the TRIM value from the TRM register.
- Parameters:
base – VREF peripheral address.
- Returns:
Six-bit value of trim setting.
-
void VREF_SetTrim2V1Val(VREF_Type *base, uint8_t trimValue)
Sets a TRIM value for the reference voltage (2V1).
This function sets a TRIM value for the reference voltage (2V1). Note that the TRIM value maximum is 0x3F.
- Parameters:
base – VREF peripheral address.
trimValue – Value of the trim register to set the output reference voltage (maximum 0x3F (6-bit)).
-
static inline uint8_t VREF_GetTrim2V1Val(VREF_Type *base)
Reads the value of the TRIM meaning output voltage (2V1).
This function gets the TRIM value from the VREF_TRM4 register.
- Parameters:
base – VREF peripheral address.
- Returns:
Six-bit value of trim setting.
-
void VREF_SetLowReferenceTrimVal(VREF_Type *base, uint8_t trimValue)
Sets the TRIM value for the low voltage reference.
This function sets the TRIM value for low reference voltage. Note the following.
The TRIM value maximum is 0x05U
The values 111b and 110b are not valid/allowed.
- Parameters:
base – VREF peripheral address.
trimValue – Value of the trim register to set output low reference voltage (maximum 0x05U (3-bit)).
-
static inline uint8_t VREF_GetLowReferenceTrimVal(VREF_Type *base)
Reads the value of the TRIM meaning output voltage.
This function gets the TRIM value from the VREFL_TRM register.
- Parameters:
base – VREF peripheral address.
- Returns:
Three-bit value of the trim setting.
-
FSL_VREF_DRIVER_VERSION
Version 2.1.2.
-
enum _vref_buffer_mode
VREF modes.
Values:
-
enumerator kVREF_ModeBandgapOnly
Bandgap on only, for stabilization and startup
-
enumerator kVREF_ModeHighPowerBuffer
High-power buffer mode enabled
-
enumerator kVREF_ModeLowPowerBuffer
Low-power buffer mode enabled
-
enumerator kVREF_ModeBandgapOnly
-
typedef enum _vref_buffer_mode vref_buffer_mode_t
VREF modes.
-
typedef struct _vref_config vref_config_t
The description structure for the VREF module.
-
VREF_SC_MODE_LV
-
VREF_SC_REGEN
-
VREF_SC_VREFEN
-
VREF_SC_ICOMPEN
-
VREF_SC_REGEN_MASK
-
VREF_SC_VREFST_MASK
-
VREF_SC_VREFEN_MASK
-
VREF_SC_MODE_LV_MASK
-
VREF_SC_ICOMPEN_MASK
-
TRM
-
VREF_TRM_TRIM
-
VREF_TRM_CHOPEN_MASK
-
VREF_TRM_TRIM_MASK
-
VREF_TRM_CHOPEN_SHIFT
-
VREF_TRM_TRIM_SHIFT
-
VREF_SC_MODE_LV_SHIFT
-
VREF_SC_REGEN_SHIFT
-
VREF_SC_VREFST_SHIFT
-
VREF_SC_ICOMPEN_SHIFT
-
struct _vref_config
- #include <fsl_vref.h>
The description structure for the VREF module.
Public Members
-
vref_buffer_mode_t bufferMode
Buffer mode selection
-
bool enableLowRef
Set VREFL (0.4 V) reference buffer enable or disable
-
bool enableExternalVoltRef
Select external voltage reference or not (internal)
-
bool enable2V1VoltRef
Enable Internal Voltage Reference (2.1V)
-
vref_buffer_mode_t bufferMode