LPC51U68

Clock Driver

enum _clock_ip_name

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:

enumerator kCLOCK_IpInvalid

Invalid Ip Name.

enumerator kCLOCK_Rom

Clock gate name: Rom.

enumerator kCLOCK_Flash

Clock gate name: Flash.

enumerator kCLOCK_Fmc

Clock gate name: Fmc.

enumerator kCLOCK_InputMux

Clock gate name: InputMux.

enumerator kCLOCK_Iocon

Clock gate name: Iocon.

enumerator kCLOCK_Gpio0

Clock gate name: Gpio0.

enumerator kCLOCK_Gpio1

Clock gate name: Gpio1.

enumerator kCLOCK_Pint

Clock gate name: Pint.

enumerator kCLOCK_Gint

Clock gate name: Gint, GPIO_GLOBALINT0 and GPIO_GLOBALINT1 share the same slot

enumerator kCLOCK_Dma

Clock gate name: Dma.

enumerator kCLOCK_Crc

Clock gate name: Crc.

enumerator kCLOCK_Wwdt

Clock gate name: Wwdt.

enumerator kCLOCK_Rtc

Clock gate name: Rtc.

enumerator kCLOCK_Adc0

Clock gate name: Adc0.

enumerator kCLOCK_Mrt

Clock gate name: Mrt.

enumerator kCLOCK_Sct0

Clock gate name: Sct0.

enumerator kCLOCK_Utick

Clock gate name: Utick.

enumerator kCLOCK_FlexComm0

Clock gate name: FlexComm0.

enumerator kCLOCK_FlexComm1

Clock gate name: FlexComm1.

enumerator kCLOCK_FlexComm2

Clock gate name: FlexComm2.

enumerator kCLOCK_FlexComm3

Clock gate name: FlexComm3.

enumerator kCLOCK_FlexComm4

Clock gate name: FlexComm4.

enumerator kCLOCK_FlexComm5

Clock gate name: FlexComm5.

enumerator kCLOCK_FlexComm6

Clock gate name: FlexComm6.

enumerator kCLOCK_FlexComm7

Clock gate name: FlexComm7.

enumerator kCLOCK_MinUart0

Clock gate name: MinUart0.

enumerator kCLOCK_MinUart1

Clock gate name: MinUart1.

enumerator kCLOCK_MinUart2

Clock gate name: MinUart2.

enumerator kCLOCK_MinUart3

Clock gate name: MinUart3.

enumerator kCLOCK_MinUart4

Clock gate name: MinUart4.

enumerator kCLOCK_MinUart5

Clock gate name: MinUart5.

enumerator kCLOCK_MinUart6

Clock gate name: MinUart6.

enumerator kCLOCK_MinUart7

Clock gate name: MinUart7.

enumerator kCLOCK_LSpi0

Clock gate name: LSpi0.

enumerator kCLOCK_LSpi1

Clock gate name: LSpi1.

enumerator kCLOCK_LSpi2

Clock gate name: LSpi2.

enumerator kCLOCK_LSpi3

Clock gate name: LSpi3.

enumerator kCLOCK_LSpi4

Clock gate name: LSpi4.

enumerator kCLOCK_LSpi5

Clock gate name: LSpi5.

enumerator kCLOCK_LSpi6

Clock gate name: LSpi6.

enumerator kCLOCK_LSpi7

Clock gate name: LSpi7.

enumerator kCLOCK_BI2c0

Clock gate name: BI2c0.

enumerator kCLOCK_BI2c1

Clock gate name: BI2c1.

enumerator kCLOCK_BI2c2

Clock gate name: BI2c2.

enumerator kCLOCK_BI2c3

Clock gate name: BI2c3.

enumerator kCLOCK_BI2c4

Clock gate name: BI2c4.

enumerator kCLOCK_BI2c5

Clock gate name: BI2c5.

enumerator kCLOCK_BI2c6

Clock gate name: BI2c6.

enumerator kCLOCK_BI2c7

Clock gate name: BI2c7.

enumerator kCLOCK_FlexI2s0

Clock gate name: FlexI2s0.

enumerator kCLOCK_FlexI2s1

Clock gate name: FlexI2s1.

enumerator kCLOCK_FlexI2s2

Clock gate name: FlexI2s2.

enumerator kCLOCK_FlexI2s3

Clock gate name: FlexI2s3.

enumerator kCLOCK_FlexI2s4

Clock gate name: FlexI2s4.

enumerator kCLOCK_FlexI2s5

Clock gate name: FlexI2s5.

enumerator kCLOCK_FlexI2s6

Clock gate name: FlexI2s6.

enumerator kCLOCK_FlexI2s7

Clock gate name: FlexI2s7.

enumerator kCLOCK_Ct32b2

Clock gate name: Ct32b2.

enumerator kCLOCK_Usbd0

Clock gate name: Usbd0.

enumerator kCLOCK_Ctimer0

Clock gate name: Ctimer0.

enumerator kCLOCK_Ctimer1

Clock gate name: Ctimer1.

enumerator kCLOCK_Ctimer3

Clock gate name: Ctimer3.

enum _clock_name

Clock name used to get clock frequency.

Values:

enumerator kCLOCK_CoreSysClk

Core/system clock (aka MAIN_CLK)

enumerator kCLOCK_BusClk

Bus clock (AHB clock)

enumerator kCLOCK_ClockOut

CLOCKOUT

enumerator kCLOCK_FroHf

FRO48/96

enumerator kCLOCK_Fro12M

FRO12M

enumerator kCLOCK_ExtClk

External Clock

enumerator kCLOCK_PllOut

PLL Output

enumerator kCLOCK_WdtOsc

Watchdog Oscillator

enumerator kCLOCK_Frg

Frg Clock

enumerator kCLOCK_AsyncApbClk

Async APB clock

enumerator kCLOCK_FlexI2S

FlexI2S clock

enum _async_clock_src

Clock source selections for the asynchronous APB clock.

Values:

enumerator kCLOCK_AsyncMainClk

Main System clock

enumerator kCLOCK_AsyncFro12Mhz

12MHz FRO

enum _clock_attach_id

The enumerator of clock attach Id.

Values:

enumerator kFRO12M_to_MAIN_CLK

Attach FRO12M to MAIN_CLK.

enumerator kEXT_CLK_to_MAIN_CLK

Attach EXT_CLK to MAIN_CLK.

enumerator kWDT_OSC_to_MAIN_CLK

Attach WDT_OSC to MAIN_CLK.

enumerator kFRO_HF_to_MAIN_CLK

Attach FRO_HF to MAIN_CLK.

enumerator kSYS_PLL_to_MAIN_CLK

Attach SYS_PLL to MAIN_CLK.

enumerator kOSC32K_to_MAIN_CLK

Attach OSC32K to MAIN_CLK.

enumerator kFRO12M_to_SYS_PLL

Attach FRO12M to SYS_PLL.

enumerator kEXT_CLK_to_SYS_PLL

Attach EXT_CLK to SYS_PLL.

enumerator kWDT_OSC_to_SYS_PLL

Attach WDT_OSC to SYS_PLL.

enumerator kOSC32K_to_SYS_PLL

Attach OSC32K to SYS_PLL.

enumerator kNONE_to_SYS_PLL

Attach NONE to SYS_PLL.

enumerator kMAIN_CLK_to_ASYNC_APB

Attach MAIN_CLK to ASYNC_APB.

enumerator kFRO12M_to_ASYNC_APB

Attach FRO12M to ASYNC_APB.

enumerator kMAIN_CLK_to_ADC_CLK

Attach MAIN_CLK to ADC_CLK.

enumerator kSYS_PLL_to_ADC_CLK

Attach SYS_PLL to ADC_CLK.

enumerator kFRO_HF_to_ADC_CLK

Attach FRO_HF to ADC_CLK.

enumerator kNONE_to_ADC_CLK

Attach NONE to ADC_CLK.

enumerator kFRO12M_to_FLEXCOMM0

Attach FRO12M to FLEXCOMM0.

enumerator kFRO_HF_to_FLEXCOMM0

Attach FRO_HF to FLEXCOMM0.

enumerator kSYS_PLL_to_FLEXCOMM0

Attach SYS_PLL to FLEXCOMM0.

enumerator kMCLK_to_FLEXCOMM0

Attach MCLK to FLEXCOMM0.

enumerator kFRG_to_FLEXCOMM0

Attach FRG to FLEXCOMM0.

enumerator kNONE_to_FLEXCOMM0

Attach NONE to FLEXCOMM0.

enumerator kFRO12M_to_FLEXCOMM1

Attach FRO12M to FLEXCOMM1.

enumerator kFRO_HF_to_FLEXCOMM1

Attach FRO_HF to FLEXCOMM1.

enumerator kSYS_PLL_to_FLEXCOMM1

Attach SYS_PLL to FLEXCOMM1.

enumerator kMCLK_to_FLEXCOMM1

Attach MCLK to FLEXCOMM1.

enumerator kFRG_to_FLEXCOMM1

Attach FRG to FLEXCOMM1.

enumerator kNONE_to_FLEXCOMM1

Attach NONE to FLEXCOMM1.

enumerator kFRO12M_to_FLEXCOMM2

Attach FRO12M to FLEXCOMM2.

enumerator kFRO_HF_to_FLEXCOMM2

Attach FRO_HF to FLEXCOMM2.

enumerator kSYS_PLL_to_FLEXCOMM2

Attach SYS_PLL to FLEXCOMM2.

enumerator kMCLK_to_FLEXCOMM2

Attach MCLK to FLEXCOMM2.

enumerator kFRG_to_FLEXCOMM2

Attach FRG to FLEXCOMM2.

enumerator kNONE_to_FLEXCOMM2

Attach NONE to FLEXCOMM2.

enumerator kFRO12M_to_FLEXCOMM3

Attach FRO12M to FLEXCOMM3.

enumerator kFRO_HF_to_FLEXCOMM3

Attach FRO_HF to FLEXCOMM3.

enumerator kSYS_PLL_to_FLEXCOMM3

Attach SYS_PLL to FLEXCOMM3.

enumerator kMCLK_to_FLEXCOMM3

Attach MCLK to FLEXCOMM3.

enumerator kFRG_to_FLEXCOMM3

Attach FRG to FLEXCOMM3.

enumerator kNONE_to_FLEXCOMM3

Attach NONE to FLEXCOMM3.

enumerator kFRO12M_to_FLEXCOMM4

Attach FRO12M to FLEXCOMM4.

enumerator kFRO_HF_to_FLEXCOMM4

Attach FRO_HF to FLEXCOMM4.

enumerator kSYS_PLL_to_FLEXCOMM4

Attach SYS_PLL to FLEXCOMM4.

enumerator kMCLK_to_FLEXCOMM4

Attach MCLK to FLEXCOMM4.

enumerator kFRG_to_FLEXCOMM4

Attach FRG to FLEXCOMM4.

enumerator kNONE_to_FLEXCOMM4

Attach NONE to FLEXCOMM4.

enumerator kFRO12M_to_FLEXCOMM5

Attach FRO12M to FLEXCOMM5.

enumerator kFRO_HF_to_FLEXCOMM5

Attach FRO_HF to FLEXCOMM5.

enumerator kSYS_PLL_to_FLEXCOMM5

Attach SYS_PLL to FLEXCOMM5.

enumerator kMCLK_to_FLEXCOMM5

Attach MCLK to FLEXCOMM5.

enumerator kFRG_to_FLEXCOMM5

Attach FRG to FLEXCOMM5.

enumerator kNONE_to_FLEXCOMM5

Attach NONE to FLEXCOMM5.

enumerator kFRO12M_to_FLEXCOMM6

Attach FRO12M to FLEXCOMM6.

enumerator kFRO_HF_to_FLEXCOMM6

Attach FRO_HF to FLEXCOMM6.

enumerator kSYS_PLL_to_FLEXCOMM6

Attach SYS_PLL to FLEXCOMM6.

enumerator kMCLK_to_FLEXCOMM6

Attach MCLK to FLEXCOMM6.

enumerator kFRG_to_FLEXCOMM6

Attach FRG to FLEXCOMM6.

enumerator kNONE_to_FLEXCOMM6

Attach NONE to FLEXCOMM6.

enumerator kFRO12M_to_FLEXCOMM7

Attach FRO12M to FLEXCOMM7.

enumerator kFRO_HF_to_FLEXCOMM7

Attach FRO_HF to FLEXCOMM7.

enumerator kSYS_PLL_to_FLEXCOMM7

Attach SYS_PLL to FLEXCOMM7.

enumerator kMCLK_to_FLEXCOMM7

Attach MCLK to FLEXCOMM7.

enumerator kFRG_to_FLEXCOMM7

Attach FRG to FLEXCOMM7.

enumerator kNONE_to_FLEXCOMM7

Attach NONE to FLEXCOMM7.

enumerator kMAIN_CLK_to_FRG

Attach MAIN_CLK to FRG.

enumerator kSYS_PLL_to_FRG

Attach SYS_PLL to FRG.

enumerator kFRO12M_to_FRG

Attach FRO12M to FRG.

enumerator kFRO_HF_to_FRG

Attach FRO_HF to FRG.

enumerator kNONE_to_FRG

Attach NONE to FRG.

enumerator kFRO_HF_to_MCLK

Attach FRO_HF to MCLK.

enumerator kSYS_PLL_to_MCLK

Attach SYS_PLL to MCLK.

enumerator kMAIN_CLK_to_MCLK

Attach MAIN_CLK to MCLK.

enumerator kNONE_to_MCLK

Attach NONE to MCLK.

enumerator kFRO_HF_to_USB_CLK

Attach FRO_HF to USB_CLK.

enumerator kSYS_PLL_to_USB_CLK

Attach SYS_PLL to USB_CLK.

enumerator kMAIN_CLK_to_USB_CLK

Attach MAIN_CLK to USB_CLK.

enumerator kNONE_to_USB_CLK

Attach NONE to USB_CLK.

enumerator kMAIN_CLK_to_CLKOUT

Attach MAIN_CLK to CLKOUT.

enumerator kEXT_CLK_to_CLKOUT

Attach EXT_CLK to CLKOUT.

enumerator kWDT_OSC_to_CLKOUT

Attach WDT_OSC to CLKOUT.

enumerator kFRO_HF_to_CLKOUT

Attach FRO_HF to CLKOUT.

enumerator kSYS_PLL_to_CLKOUT

Attach SYS_PLL to CLKOUT.

enumerator kFRO12M_to_CLKOUT

Attach FRO12M to CLKOUT.

enumerator kOSC32K_to_CLKOUT

Attach OSC32K to CLKOUT.

enumerator kNONE_to_CLKOUT

Attach NONE to CLKOUT.

enumerator kNONE_to_NONE

Attach NONE to NONE.

enum _clock_div_name

Clock dividers.

Values:

enumerator kCLOCK_DivSystickClk

Systick clock divider.

enumerator kCLOCK_DivTraceClk

Trace clock divider.

enumerator kCLOCK_DivAhbClk

Ahb clock divider.

enumerator kCLOCK_DivClkOut

Clock out divider.

enumerator kCLOCK_DivAdcAsyncClk

Adc Async clock divider.

enumerator kCLOCK_DivUsbClk

Usb clock divier.

enumerator kCLOCK_DivFrg

Frg clock divider.

enumerator kCLOCK_DivFxI2s0MClk

FxI2S0 clock divider.

enum _clock_flashtim

FLASH Access time definitions.

Values:

enumerator kCLOCK_Flash1Cycle

Flash accesses use 1 CPU clock

enumerator kCLOCK_Flash2Cycle

Flash accesses use 2 CPU clocks

enumerator kCLOCK_Flash3Cycle

Flash accesses use 3 CPU clocks

enumerator kCLOCK_Flash4Cycle

Flash accesses use 4 CPU clocks

enumerator kCLOCK_Flash5Cycle

Flash accesses use 5 CPU clocks

enumerator kCLOCK_Flash6Cycle

Flash accesses use 6 CPU clocks

enumerator kCLOCK_Flash7Cycle

Flash accesses use 7 CPU clocks

enum _ss_progmodfm

PLL Spread Spectrum (SS) Programmable modulation frequency See (MF) field in the SYSPLLSSCTRL1 register in the UM.

Values:

enumerator kSS_MF_512

Nss = 512 (fm ? 3.9 - 7.8 kHz)

enumerator kSS_MF_384

Nss ?= 384 (fm ? 5.2 - 10.4 kHz)

enumerator kSS_MF_256

Nss = 256 (fm ? 7.8 - 15.6 kHz)

enumerator kSS_MF_128

Nss = 128 (fm ? 15.6 - 31.3 kHz)

enumerator kSS_MF_64

Nss = 64 (fm ? 32.3 - 64.5 kHz)

enumerator kSS_MF_32

Nss = 32 (fm ? 62.5- 125 kHz)

enumerator kSS_MF_24

Nss ?= 24 (fm ? 83.3- 166.6 kHz)

enumerator kSS_MF_16

Nss = 16 (fm ? 125- 250 kHz)

enum _ss_progmoddp

PLL Spread Spectrum (SS) Programmable frequency modulation depth See (MR) field in the SYSPLLSSCTRL1 register in the UM.

Values:

enumerator kSS_MR_K0

k = 0 (no spread spectrum)

enumerator kSS_MR_K1

k = 1

enumerator kSS_MR_K1_5

k = 1.5

enumerator kSS_MR_K2

k = 2

enumerator kSS_MR_K3

k = 3

enumerator kSS_MR_K4

k = 4

enumerator kSS_MR_K6

k = 6

enumerator kSS_MR_K8

k = 8

enum _ss_modwvctrl

PLL Spread Spectrum (SS) Modulation waveform control See (MC) field in the SYSPLLSSCTRL1 register in the UM.

Compensation for low pass filtering of the PLL to get a triangular modulation at the output of the PLL, giving a flat frequency spectrum.

Values:

enumerator kSS_MC_NOC

no compensation

enumerator kSS_MC_RECC

recommended setting

enumerator kSS_MC_MAXC

max. compensation

enum _pll_error

PLL status definitions.

Values:

enumerator kStatus_PLL_Success

PLL operation was successful

enumerator kStatus_PLL_OutputTooLow

PLL output rate request was too low

enumerator kStatus_PLL_OutputTooHigh

PLL output rate request was too high

enumerator kStatus_PLL_InputTooLow

PLL input rate is too low

enumerator kStatus_PLL_InputTooHigh

PLL input rate is too high

enumerator kStatus_PLL_OutsideIntLimit

Requested output rate isn’t possible

enum _clock_usb_src

USB clock source definition.

Values:

enumerator kCLOCK_UsbSrcFro

Use FRO 96 or 48 MHz.

enumerator kCLOCK_UsbSrcSystemPll

Use System PLL output.

enumerator kCLOCK_UsbSrcMainClock

Use Main clock.

enumerator kCLOCK_UsbSrcNone

Use None, this may be selected in order to reduce power when no output is needed.

typedef enum _clock_ip_name clock_ip_name_t

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef enum _clock_name clock_name_t

Clock name used to get clock frequency.

typedef enum _async_clock_src async_clock_src_t

Clock source selections for the asynchronous APB clock.

typedef enum _clock_attach_id clock_attach_id_t

The enumerator of clock attach Id.

typedef enum _clock_div_name clock_div_name_t

Clock dividers.

typedef enum _clock_flashtim clock_flashtim_t

FLASH Access time definitions.

typedef enum _ss_progmodfm ss_progmodfm_t

PLL Spread Spectrum (SS) Programmable modulation frequency See (MF) field in the SYSPLLSSCTRL1 register in the UM.

typedef enum _ss_progmoddp ss_progmoddp_t

PLL Spread Spectrum (SS) Programmable frequency modulation depth See (MR) field in the SYSPLLSSCTRL1 register in the UM.

typedef enum _ss_modwvctrl ss_modwvctrl_t

PLL Spread Spectrum (SS) Modulation waveform control See (MC) field in the SYSPLLSSCTRL1 register in the UM.

Compensation for low pass filtering of the PLL to get a triangular modulation at the output of the PLL, giving a flat frequency spectrum.

typedef struct _pll_config pll_config_t

PLL configuration structure.

This structure can be used to configure the settings for a PLL setup structure. Fill in the desired configuration for the PLL and call the PLL setup function to fill in a PLL setup structure.

typedef struct _pll_setup pll_setup_t

PLL setup structure This structure can be used to pre-build a PLL setup configuration at run-time and quickly set the PLL to the configuration. It can be populated with the PLL setup function. If powering up or waiting for PLL lock, the PLL input clock source should be configured prior to PLL setup.

typedef enum _pll_error pll_error_t

PLL status definitions.

typedef enum _clock_usb_src clock_usb_src_t

USB clock source definition.

static inline void CLOCK_EnableClock(clock_ip_name_t clk)
static inline void CLOCK_DisableClock(clock_ip_name_t clk)
static inline void CLOCK_SetFLASHAccessCycles(clock_flashtim_t clks)

Set FLASH memory access time in clocks.

Parameters:
  • clks – : Clock cycles for FLASH access

Returns:

Nothing

status_t CLOCK_SetupFROClocking(uint32_t iFreq)

Initialize the Core clock to given frequency (12, 48 or 96 MHz). Turns on FRO and uses default CCO, if freq is 12000000, then high speed output is off, else high speed output is enabled.

Parameters:
  • iFreq – : Desired frequency (must be one of CLK_FRO_12MHZ or CLK_FRO_48MHZ or CLK_FRO_96MHZ)

Returns:

returns success or fail status.

void CLOCK_AttachClk(clock_attach_id_t connection)

Configure the clock selection muxes.

Parameters:
  • connection – : Clock to be configured.

Returns:

Nothing

clock_attach_id_t CLOCK_GetClockAttachId(clock_attach_id_t attachId)

Get the actual clock attach id. This fuction uses the offset in input attach id, then it reads the actual source value in the register and combine the offset to obtain an actual attach id.

Parameters:
  • attachId – : Clock attach id to get.

Returns:

Clock source value.

void CLOCK_SetClkDiv(clock_div_name_t div_name, uint32_t divided_by_value, bool reset)

Setup peripheral clock dividers.

Parameters:
  • div_name – : Clock divider name

  • divided_by_value – Value to be divided

  • reset – : Whether to reset the divider counter.

Returns:

Nothing

void CLOCK_SetFLASHAccessCyclesForFreq(uint32_t iFreq)

Set the flash wait states for the input freuqency.

Parameters:
  • iFreq – : Input frequency

Returns:

Nothing

uint32_t CLOCK_GetFreq(clock_name_t clockName)

Return Frequency of selected clock.

Returns:

Frequency of selected clock

uint32_t CLOCK_GetFRGInputClock(void)

Return Input frequency for the Fractional baud rate generator.

Returns:

Input Frequency for FRG

uint32_t CLOCK_SetFRGClock(uint32_t freq)

Set output of the Fractional baud rate generator.

Parameters:
  • freq – : Desired output frequency

Returns:

Error Code 0 - fail 1 - success

uint32_t CLOCK_GetFro12MFreq(void)

Return Frequency of FRO 12MHz.

Returns:

Frequency of FRO 12MHz

uint32_t CLOCK_GetExtClkFreq(void)

Return Frequency of External Clock.

Returns:

Frequency of External Clock. If no external clock is used returns 0.

uint32_t CLOCK_GetWdtOscFreq(void)

Return Frequency of Watchdog Oscillator.

Returns:

Frequency of Watchdog Oscillator

uint32_t CLOCK_GetFroHfFreq(void)

Return Frequency of High-Freq output of FRO.

Returns:

Frequency of High-Freq output of FRO

uint32_t CLOCK_GetPllOutFreq(void)

Return Frequency of PLL.

Returns:

Frequency of PLL

uint32_t CLOCK_GetOsc32KFreq(void)

Return Frequency of 32kHz osc.

Returns:

Frequency of 32kHz osc

uint32_t CLOCK_GetCoreSysClkFreq(void)

Return Frequency of Core System.

Returns:

Frequency of Core System

uint32_t CLOCK_GetI2SMClkFreq(void)

Return Frequency of I2S MCLK Clock.

Returns:

Frequency of I2S MCLK Clock

uint32_t CLOCK_GetFlexCommClkFreq(uint32_t id)

Return Frequency of Flexcomm functional Clock.

Returns:

Frequency of Flexcomm functional Clock

uint32_t CLOCK_GetUsbClkFreq(void)

brief Return Frequency of Usb Clock return Frequency of Usb Clock.

uint32_t CLOCK_GetAdcClkFreq(void)

Return Frequency of Adc Clock.

Returns:

Frequency of Adc Clock.

uint32_t CLOCK_GetClockOutClkFreq(void)

Return Frequency of ClockOut.

Returns:

Frequency of ClockOut

__STATIC_INLINE async_clock_src_t CLOCK_GetAsyncApbClkSrc (void)

Return Asynchronous APB Clock source.

Returns:

Asynchronous APB CLock source

uint32_t CLOCK_GetAsyncApbClkFreq(void)

Return Frequency of Asynchronous APB Clock.

Returns:

Frequency of Asynchronous APB Clock Clock

uint32_t CLOCK_GetSystemPLLInClockRate(void)

Return System PLL input clock rate.

Returns:

System PLL input clock rate

uint32_t CLOCK_GetSystemPLLOutClockRate(bool recompute)

Return System PLL output clock rate.

Note

The PLL rate is cached in the driver in a variable as the rate computation function can take some time to perform. It is recommended to use ‘false’ with the ‘recompute’ parameter.

Parameters:
  • recompute – : Forces a PLL rate recomputation if true

Returns:

System PLL output clock rate

__STATIC_INLINE void CLOCK_SetBypassPLL (bool bypass)

Enables and disables PLL bypass mode.

bypass : true to bypass PLL (PLL output = PLL input, false to disable bypass

Returns:

System PLL output clock rate

__STATIC_INLINE bool CLOCK_IsSystemPLLLocked (void)

Check if PLL is locked or not.

Returns:

true if the PLL is locked, false if not locked

void CLOCK_SetStoredPLLClockRate(uint32_t rate)

Store the current PLL rate.

Parameters:
  • rate – Current rate of the PLL

Returns:

Nothing

uint32_t CLOCK_GetSystemPLLOutFromSetup(pll_setup_t *pSetup)

Return System PLL output clock rate from setup structure.

Parameters:
  • pSetup – : Pointer to a PLL setup structure

Returns:

System PLL output clock rate calculated from the setup structure

pll_error_t CLOCK_SetupPLLData(pll_config_t *pControl, pll_setup_t *pSetup)

Set PLL output based on the passed PLL setup data.

Note

Actual frequency for setup may vary from the desired frequency based on the accuracy of input clocks, rounding, non-fractional PLL mode, etc.

Parameters:
  • pControl – : Pointer to populated PLL control structure to generate setup with

  • pSetup – : Pointer to PLL setup structure to be filled

Returns:

PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetupSystemPLLPrec(pll_setup_t *pSetup, uint32_t flagcfg)

Set PLL output from PLL setup structure (precise frequency)

Note

This function will power off the PLL, setup the PLL with the new setup data, and then optionally powerup the PLL, wait for PLL lock, and adjust system voltages to the new PLL rate. The function will not alter any source clocks (ie, main systen clock) that may use the PLL, so these should be setup prior to and after exiting the function.

Parameters:
  • pSetup – : Pointer to populated PLL setup structure

  • flagcfg – : Flag configuration for PLL config structure

Returns:

PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetPLLFreq(const pll_setup_t *pSetup)

Set PLL output from PLL setup structure (precise frequency)

Note

This function will power off the PLL, setup the PLL with the new setup data, and then optionally powerup the PLL, wait for PLL lock, and adjust system voltages to the new PLL rate. The function will not alter any source clocks (ie, main systen clock) that may use the PLL, so these should be setup prior to and after exiting the function.

Parameters:
  • pSetup – : Pointer to populated PLL setup structure

Returns:

kStatus_PLL_Success on success, or PLL setup error code

void CLOCK_SetupSystemPLLMult(uint32_t multiply_by, uint32_t input_freq)

Set PLL output based on the multiplier and input frequency.

Note

Unlike the Chip_Clock_SetupSystemPLLPrec() function, this function does not disable or enable PLL power, wait for PLL lock, or adjust system voltages. These must be done in the application. The function will not alter any source clocks (ie, main systen clock) that may use the PLL, so these should be setup prior to and after exiting the function.

Parameters:
  • multiply_by – : multiplier

  • input_freq – : Clock input frequency of the PLL

Returns:

Nothing

static inline void CLOCK_DisableUsbfs0Clock(void)

Disable USB FS clock.

Disable USB FS clock.

bool CLOCK_EnableUsbfs0Clock(clock_usb_src_t src, uint32_t freq)
FSL_CLOCK_DRIVER_VERSION

CLOCK driver version 2.4.2.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT

User-defined the size of cache for CLOCK_PllGetConfig() function.

Once define this MACRO to be non-zero value, CLOCK_PllGetConfig() function would cache the recent calulation and accelerate the execution to get the right settings.

FLEXCOMM_CLOCKS

Clock ip name array for FLEXCOMM.

LPUART_CLOCKS

Clock ip name array for LPUART.

BI2C_CLOCKS

Clock ip name array for BI2C.

LPSI_CLOCKS

Clock ip name array for LSPI.

FLEXI2S_CLOCKS

Clock ip name array for FLEXI2S.

UTICK_CLOCKS

Clock ip name array for UTICK.

DMA_CLOCKS

Clock ip name array for DMA.

CTIMER_CLOCKS

Clock ip name array for CT32B.

GPIO_CLOCKS

Clock ip name array for GPIO.

ADC_CLOCKS

Clock ip name array for ADC.

MRT_CLOCKS

Clock ip name array for MRT.

SCT_CLOCKS

Clock ip name array for MRT.

RTC_CLOCKS

Clock ip name array for RTC.

WWDT_CLOCKS

Clock ip name array for WWDT.

CRC_CLOCKS

Clock ip name array for CRC.

USBD_CLOCKS

Clock ip name array for USBD.

GINT_CLOCKS

Clock ip name array for GINT. GINT0 & GINT1 share same slot.

CLK_GATE_REG_OFFSET_SHIFT

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

CLK_GATE_REG_OFFSET_MASK
CLK_GATE_BIT_SHIFT_SHIFT
CLK_GATE_BIT_SHIFT_MASK
CLK_GATE_DEFINE(reg_offset, bit_shift)
CLK_GATE_ABSTRACT_REG_OFFSET(x)
CLK_GATE_ABSTRACT_BITS_SHIFT(x)
AHB_CLK_CTRL0
AHB_CLK_CTRL1
ASYNC_CLK_CTRL0
CLK_ATTACH_ID(mux, sel, pos)

Clock Mux Switches The encoding is as follows each connection identified is 32bits wide while 24bits are valuable starting from LSB upwards.

[4 bits for choice, 0 means invalid choice] [8 bits mux ID]*

MUX_A(mux, sel)
MUX_B(mux, sel, selector)
GET_ID_ITEM(connection)
GET_ID_NEXT_ITEM(connection)
GET_ID_ITEM_MUX(connection)
GET_ID_ITEM_SEL(connection)
GET_ID_SELECTOR(connection)
CM_MAINCLKSELA
CM_MAINCLKSELB
CM_CLKOUTCLKSELA
CM_CLKOUTCLKSELB
CM_SYSPLLCLKSEL
CM_USBPLLCLKSEL
CM_AUDPLLCLKSEL
CM_SCTPLLCLKSEL
CM_ADCASYNCCLKSEL
CM_USBCLKSEL
CM_USB1CLKSEL
CM_FXCOMCLKSEL0
CM_FXCOMCLKSEL1
CM_FXCOMCLKSEL2
CM_FXCOMCLKSEL3
CM_FXCOMCLKSEL4
CM_FXCOMCLKSEL5
CM_FXCOMCLKSEL6
CM_FXCOMCLKSEL7
CM_FXCOMCLKSEL8
CM_FXCOMCLKSEL9
CM_FXCOMCLKSEL10
CM_FXCOMCLKSEL11
CM_FXI2S0MCLKCLKSEL
CM_FXI2S1MCLKCLKSEL
CM_FRGCLKSEL
CM_ASYNCAPB
PLL_CONFIGFLAG_USEINRATE

PLL configuration structure flags for ‘flags’ field These flags control how the PLL configuration function sets up the PLL setup structure.

When the PLL_CONFIGFLAG_USEINRATE flag is selected, the ‘InputRate’ field in the configuration structure must be assigned with the expected PLL frequency. If the PLL_CONFIGFLAG_USEINRATE is not used, ‘InputRate’ is ignored in the configuration function and the driver will determine the PLL rate from the currently selected PLL source. This flag might be used to configure the PLL input clock more accurately when using the WDT oscillator or a more dyanmic CLKIN source.

When the PLL_CONFIGFLAG_FORCENOFRACT flag is selected, the PLL hardware for the automatic bandwidth selection, Spread Spectrum (SS) support, and fractional M-divider are not used.

Flag to use InputRate in PLL configuration structure for setup

PLL_CONFIGFLAG_FORCENOFRACT

Force non-fractional output mode, PLL output will not use the fractional, automatic bandwidth, or \ SS hardware

PLL_SETUPFLAG_POWERUP

PLL setup structure flags for ‘flags’ field These flags control how the PLL setup function sets up the PLL.

Setup will power on the PLL after setup

PLL_SETUPFLAG_WAITLOCK

Setup will wait for PLL lock, implies the PLL will be pwoered on

PLL_SETUPFLAG_ADGVOLT

Optimize system voltage for the new PLL rate

PLL_SETUPFLAG_USEFEEDBACKDIV2

Use feedback divider by 2 in divider path

uint32_t desiredRate

Desired PLL rate in Hz

uint32_t inputRate

PLL input clock in Hz, only used if PLL_CONFIGFLAG_USEINRATE flag is set

uint32_t flags

PLL configuration flags, Or’ed value of PLL_CONFIGFLAG_* definitions

ss_progmodfm_t ss_mf

SS Programmable modulation frequency, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag

ss_progmoddp_t ss_mr

SS Programmable frequency modulation depth, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag

ss_modwvctrl_t ss_mc

SS Modulation waveform control, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag

bool mfDither

false for fixed modulation frequency or true for dithering, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag

uint32_t syspllctrl

PLL control register SYSPLLCTRL

uint32_t syspllndec

PLL NDEC register SYSPLLNDEC

uint32_t syspllpdec

PLL PDEC register SYSPLLPDEC

uint32_t syspllssctrl[2]

PLL SSCTL registers SYSPLLSSCTRL

uint32_t pllRate

Acutal PLL rate

uint32_t flags

PLL setup flags, Or’ed value of PLL_SETUPFLAG_* definitions

struct _pll_config
#include <fsl_clock.h>

PLL configuration structure.

This structure can be used to configure the settings for a PLL setup structure. Fill in the desired configuration for the PLL and call the PLL setup function to fill in a PLL setup structure.

struct _pll_setup
#include <fsl_clock.h>

PLL setup structure This structure can be used to pre-build a PLL setup configuration at run-time and quickly set the PLL to the configuration. It can be populated with the PLL setup function. If powering up or waiting for PLL lock, the PLL input clock source should be configured prior to PLL setup.

CRC: Cyclic Redundancy Check Driver

FSL_CRC_DRIVER_VERSION

CRC driver version. Version 2.1.1.

Current version: 2.1.1

Change log:

  • Version 2.0.0

    • initial version

  • Version 2.0.1

    • add explicit type cast when writing to WR_DATA

  • Version 2.0.2

    • Fix MISRA issue

  • Version 2.1.0

    • Add CRC_WriteSeed function

  • Version 2.1.1

    • Fix MISRA issue

enum _crc_polynomial

CRC polynomials to use.

Values:

enumerator kCRC_Polynomial_CRC_CCITT

x^16+x^12+x^5+1

enumerator kCRC_Polynomial_CRC_16

x^16+x^15+x^2+1

enumerator kCRC_Polynomial_CRC_32

x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

typedef enum _crc_polynomial crc_polynomial_t

CRC polynomials to use.

typedef struct _crc_config crc_config_t

CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_Init(CRC_Type *base, const crc_config_t *config)

Enables and configures the CRC peripheral module.

This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures the CRC engine and starts checksum computation by writing the seed.

Parameters:
  • base – CRC peripheral address.

  • config – CRC module configuration structure.

static inline void CRC_Deinit(CRC_Type *base)

Disables the CRC peripheral module.

This functions disables the CRC peripheral clock in the LPC SYSCON block.

Parameters:
  • base – CRC peripheral address.

void CRC_Reset(CRC_Type *base)

resets CRC peripheral module.

Parameters:
  • base – CRC peripheral address.

void CRC_WriteSeed(CRC_Type *base, uint32_t seed)

Write seed to CRC peripheral module.

Parameters:
  • base – CRC peripheral address.

  • seed – CRC Seed value.

void CRC_GetDefaultConfig(crc_config_t *config)

Loads default values to CRC protocol configuration structure.

Loads default values to CRC protocol configuration structure. The default values are:

config->polynomial = kCRC_Polynomial_CRC_CCITT;
config->reverseIn = false;
config->complementIn = false;
config->reverseOut = false;
config->complementOut = false;
config->seed = 0xFFFFU;

Parameters:
  • config – CRC protocol configuration structure

void CRC_GetConfig(CRC_Type *base, crc_config_t *config)

Loads actual values configured in CRC peripheral to CRC protocol configuration structure.

The values, including seed, can be used to resume CRC calculation later.

Parameters:
  • base – CRC peripheral address.

  • config – CRC protocol configuration structure

void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)

Writes data to the CRC module.

Writes input data buffer bytes to CRC data register.

Parameters:
  • base – CRC peripheral address.

  • data – Input data stream, MSByte in data[0].

  • dataSize – Size of the input data buffer in bytes.

static inline uint32_t CRC_Get32bitResult(CRC_Type *base)

Reads 32-bit checksum from the CRC module.

Reads CRC data register.

Parameters:
  • base – CRC peripheral address.

Returns:

final 32-bit checksum, after configured bit reverse and complement operations.

static inline uint16_t CRC_Get16bitResult(CRC_Type *base)

Reads 16-bit checksum from the CRC module.

Reads CRC data register.

Parameters:
  • base – CRC peripheral address.

Returns:

final 16-bit checksum, after configured bit reverse and complement operations.

CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT

Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE as default.

struct _crc_config
#include <fsl_crc.h>

CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members

crc_polynomial_t polynomial

CRC polynomial.

bool reverseIn

Reverse bits on input.

bool complementIn

Perform 1’s complement on input.

bool reverseOut

Reverse bits on output.

bool complementOut

Perform 1’s complement on output.

uint32_t seed

Starting checksum value.

CTIMER: Standard counter/timers

void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)

Ungates the clock and configures the peripheral for basic operation.

Note

This API should be called at the beginning of the application before using the driver.

Parameters:
  • base – Ctimer peripheral base address

  • config – Pointer to the user configuration structure.

void CTIMER_Deinit(CTIMER_Type *base)

Gates the timer clock.

Parameters:
  • base – Ctimer peripheral base address

void CTIMER_GetDefaultConfig(ctimer_config_t *config)

Fills in the timers configuration structure with the default settings.

The default values are:

config->mode = kCTIMER_TimerMode;
config->input = kCTIMER_Capture_0;
config->prescale = 0;

Parameters:
  • config – Pointer to the user configuration structure.

status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint32_t pwmPeriod, uint32_t pulsePeriod, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value and other match parameters to generate a PWM signal. This function can manually assign the specified channel to set the PWM cycle.

Note

When setting PWM output from multiple output pins, all should use the same PWM period

Parameters:
  • base – Ctimer peripheral base address

  • pwmPeriodChannel – Specify the channel to control the PWM period

  • matchChannel – Match pin to be used to output the PWM signal

  • pwmPeriod – PWM period match value

  • pulsePeriod – Pulse width match value

  • enableInt – Enable interrupt when the timer value reaches the match value of the PWM pulse, if it is 0 then no interrupt will be generated.

Returns:

kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeriodChannel; this channel is reserved to set the PWM cycle If PWM pulse width register value is larger than 0xFFFFFFFF.

status_t CTIMER_SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint8_t dutyCyclePercent, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value and other match parameters to generate a PWM signal. This function can manually assign the specified channel to set the PWM cycle.

Note

When setting PWM output from multiple output pins, all should use the same PWM frequency. Please use CTIMER_SetupPwmPeriod to set up the PWM with high resolution.

Parameters:
  • base – Ctimer peripheral base address

  • pwmPeriodChannel – Specify the channel to control the PWM period

  • matchChannel – Match pin to be used to output the PWM signal

  • dutyCyclePercent – PWM pulse width; the value should be between 0 to 100

  • pwmFreq_Hz – PWM signal frequency in Hz

  • srcClock_Hz – Timer counter clock in Hz

  • enableInt – Enable interrupt when the timer value reaches the match value of the PWM pulse, if it is 0 then no interrupt will be generated.

static inline void CTIMER_UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t matchChannel, uint32_t pulsePeriod)

Updates the pulse period of an active PWM signal.

Parameters:
  • base – Ctimer peripheral base address

  • matchChannel – Match pin to be used to output the PWM signal

  • pulsePeriod – New PWM pulse width match value

status_t CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

Note

Please use CTIMER_SetupPwmPeriod to update the PWM with high resolution. This function can manually assign the specified channel to set the PWM cycle.

Parameters:
  • base – Ctimer peripheral base address

  • pwmPeriodChannel – Specify the channel to control the PWM period

  • matchChannel – Match pin to be used to output the PWM signal

  • dutyCyclePercent – New PWM pulse width; the value should be between 0 to 100

Returns:

kStatus_Success on success kStatus_Fail If PWM pulse width register value is larger than 0xFFFFFFFF.

static inline void CTIMER_EnableInterrupts(CTIMER_Type *base, uint32_t mask)

Enables the selected Timer interrupts.

Parameters:
  • base – Ctimer peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration ctimer_interrupt_enable_t

static inline void CTIMER_DisableInterrupts(CTIMER_Type *base, uint32_t mask)

Disables the selected Timer interrupts.

Parameters:
  • base – Ctimer peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetEnabledInterrupts(CTIMER_Type *base)

Gets the enabled Timer interrupts.

Parameters:
  • base – Ctimer peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetStatusFlags(CTIMER_Type *base)

Gets the Timer status flags.

Parameters:
  • base – Ctimer peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration ctimer_status_flags_t

static inline void CTIMER_ClearStatusFlags(CTIMER_Type *base, uint32_t mask)

Clears the Timer status flags.

Parameters:
  • base – Ctimer peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration ctimer_status_flags_t

static inline void CTIMER_StartTimer(CTIMER_Type *base)

Starts the Timer counter.

Parameters:
  • base – Ctimer peripheral base address

static inline void CTIMER_StopTimer(CTIMER_Type *base)

Stops the Timer counter.

Parameters:
  • base – Ctimer peripheral base address

FSL_CTIMER_DRIVER_VERSION

Version 2.3.3

enum _ctimer_capture_channel

List of Timer capture channels.

Values:

enumerator kCTIMER_Capture_0

Timer capture channel 0

enumerator kCTIMER_Capture_1

Timer capture channel 1

enumerator kCTIMER_Capture_3

Timer capture channel 3

enum _ctimer_capture_edge

List of capture edge options.

Values:

enumerator kCTIMER_Capture_RiseEdge

Capture on rising edge

enumerator kCTIMER_Capture_FallEdge

Capture on falling edge

enumerator kCTIMER_Capture_BothEdge

Capture on rising and falling edge

enum _ctimer_match

List of Timer match registers.

Values:

enumerator kCTIMER_Match_0

Timer match register 0

enumerator kCTIMER_Match_1

Timer match register 1

enumerator kCTIMER_Match_2

Timer match register 2

enumerator kCTIMER_Match_3

Timer match register 3

enum _ctimer_external_match

List of external match.

Values:

enumerator kCTIMER_External_Match_0

External match 0

enumerator kCTIMER_External_Match_1

External match 1

enumerator kCTIMER_External_Match_2

External match 2

enumerator kCTIMER_External_Match_3

External match 3

enum _ctimer_match_output_control

List of output control options.

Values:

enumerator kCTIMER_Output_NoAction

No action is taken

enumerator kCTIMER_Output_Clear

Clear the EM bit/output to 0

enumerator kCTIMER_Output_Set

Set the EM bit/output to 1

enumerator kCTIMER_Output_Toggle

Toggle the EM bit/output

enum _ctimer_timer_mode

List of Timer modes.

Values:

enumerator kCTIMER_TimerMode
enumerator kCTIMER_IncreaseOnRiseEdge
enumerator kCTIMER_IncreaseOnFallEdge
enumerator kCTIMER_IncreaseOnBothEdge
enum _ctimer_interrupt_enable

List of Timer interrupts.

Values:

enumerator kCTIMER_Match0InterruptEnable

Match 0 interrupt

enumerator kCTIMER_Match1InterruptEnable

Match 1 interrupt

enumerator kCTIMER_Match2InterruptEnable

Match 2 interrupt

enumerator kCTIMER_Match3InterruptEnable

Match 3 interrupt

enum _ctimer_status_flags

List of Timer flags.

Values:

enumerator kCTIMER_Match0Flag

Match 0 interrupt flag

enumerator kCTIMER_Match1Flag

Match 1 interrupt flag

enumerator kCTIMER_Match2Flag

Match 2 interrupt flag

enumerator kCTIMER_Match3Flag

Match 3 interrupt flag

enum ctimer_callback_type_t

Callback type when registering for a callback. When registering a callback an array of function pointers is passed the size could be 1 or 8, the callback type will tell that.

Values:

enumerator kCTIMER_SingleCallback

Single Callback type where there is only one callback for the timer. based on the status flags different channels needs to be handled differently

enumerator kCTIMER_MultipleCallback

Multiple Callback type where there can be 8 valid callbacks, one per channel. for both match/capture

typedef enum _ctimer_capture_channel ctimer_capture_channel_t

List of Timer capture channels.

typedef enum _ctimer_capture_edge ctimer_capture_edge_t

List of capture edge options.

typedef enum _ctimer_match ctimer_match_t

List of Timer match registers.

typedef enum _ctimer_external_match ctimer_external_match_t

List of external match.

typedef enum _ctimer_match_output_control ctimer_match_output_control_t

List of output control options.

typedef enum _ctimer_timer_mode ctimer_timer_mode_t

List of Timer modes.

typedef enum _ctimer_interrupt_enable ctimer_interrupt_enable_t

List of Timer interrupts.

typedef enum _ctimer_status_flags ctimer_status_flags_t

List of Timer flags.

typedef void (*ctimer_callback_t)(uint32_t flags)
typedef struct _ctimer_match_config ctimer_match_config_t

Match configuration.

This structure holds the configuration settings for each match register.

typedef struct _ctimer_config ctimer_config_t

Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const ctimer_match_config_t *config)

Setup the match register.

User configuration is used to setup the match value and action to be taken when a match occurs.

Parameters:
  • base – Ctimer peripheral base address

  • matchChannel – Match register to configure

  • config – Pointer to the match configuration structure

uint32_t CTIMER_GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)

Get the status of output match.

This function gets the status of output MAT, whether or not this output is connected to a pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 = LOW. 1 = HIGH.

Parameters:
  • base – Ctimer peripheral base address

  • matchChannel – External match channel, user can obtain the status of multiple match channels at the same time by using the logic of “|” enumeration ctimer_external_match_t

Returns:

The mask of external match channel status flags. Users need to use the _ctimer_external_match type to decode the return variables.

void CTIMER_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, ctimer_capture_edge_t edge, bool enableInt)

Setup the capture.

Parameters:
  • base – Ctimer peripheral base address

  • capture – Capture channel to configure

  • edge – Edge on the channel that will trigger a capture

  • enableInt – Flag to enable channel interrupts, if enabled then the registered call back is called upon capture

static inline uint32_t CTIMER_GetTimerCountValue(CTIMER_Type *base)

Get the timer count value from TC register.

Parameters:
  • base – Ctimer peripheral base address.

Returns:

return the timer count value.

void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func, ctimer_callback_type_t cb_type)

Register callback.

Parameters:
  • base – Ctimer peripheral base address

  • cb_func – callback function

  • cb_type – callback function type, singular or multiple

static inline void CTIMER_Reset(CTIMER_Type *base)

Reset the counter.

The timer counter and prescale counter are reset on the next positive edge of the APB clock.

Parameters:
  • base – Ctimer peripheral base address

static inline void CTIMER_SetPrescale(CTIMER_Type *base, uint32_t prescale)

Setup the timer prescale value.

Specifies the maximum value for the Prescale Counter.

Parameters:
  • base – Ctimer peripheral base address

  • prescale – Prescale value

static inline uint32_t CTIMER_GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel_t capture)

Get capture channel value.

Get the counter/timer value on the corresponding capture channel.

Parameters:
  • base – Ctimer peripheral base address

  • capture – Select capture channel

Returns:

The timer count capture value.

static inline void CTIMER_EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t match, bool enable)

Enable reset match channel.

Set the specified match channel reset operation.

Parameters:
  • base – Ctimer peripheral base address

  • match – match channel used

  • enable – Enable match channel reset operation.

static inline void CTIMER_EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t match, bool enable)

Enable stop match channel.

Set the specified match channel stop operation.

Parameters:
  • base – Ctimer peripheral base address.

  • match – match channel used.

  • enable – Enable match channel stop operation.

static inline void CTIMER_EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t match, bool enable)

Enable reload channel falling edge.

Enable the specified match channel reload match shadow value.

Parameters:
  • base – Ctimer peripheral base address.

  • match – match channel used.

  • enable – Enable .

static inline void CTIMER_EnableRisingEdgeCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, bool enable)

Enable capture channel rising edge.

Sets the specified capture channel for rising edge capture.

Parameters:
  • base – Ctimer peripheral base address.

  • capture – capture channel used.

  • enable – Enable rising edge capture.

static inline void CTIMER_EnableFallingEdgeCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, bool enable)

Enable capture channel falling edge.

Sets the specified capture channel for falling edge capture.

Parameters:
  • base – Ctimer peripheral base address.

  • capture – capture channel used.

  • enable – Enable falling edge capture.

static inline void CTIMER_SetShadowValue(CTIMER_Type *base, ctimer_match_t match, uint32_t matchvalue)

Set the specified match shadow channel.

Parameters:
  • base – Ctimer peripheral base address.

  • match – match channel used.

  • matchvalue – Reload the value of the corresponding match register.

struct _ctimer_match_config
#include <fsl_ctimer.h>

Match configuration.

This structure holds the configuration settings for each match register.

Public Members

uint32_t matchValue

This is stored in the match register

bool enableCounterReset

true: Match will reset the counter false: Match will not reser the counter

bool enableCounterStop

true: Match will stop the counter false: Match will not stop the counter

ctimer_match_output_control_t outControl

Action to be taken on a match on the EM bit/output

bool outPinInitState

Initial value of the EM bit/output

bool enableInterrupt

true: Generate interrupt upon match false: Do not generate interrupt on match

struct _ctimer_config
#include <fsl_ctimer.h>

Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

ctimer_timer_mode_t mode

Timer mode

ctimer_capture_channel_t input

Input channel to increment the timer, used only in timer modes that rely on this input signal to increment TC

uint32_t prescale

Prescale value

DMA: Direct Memory Access Controller Driver

void DMA_Init(DMA_Type *base)

Initializes DMA peripheral.

This function enable the DMA clock, set descriptor table and enable DMA peripheral.

Parameters:
  • base – DMA peripheral base address.

void DMA_Deinit(DMA_Type *base)

Deinitializes DMA peripheral.

This function gates the DMA clock.

Parameters:
  • base – DMA peripheral base address.

void DMA_InstallDescriptorMemory(DMA_Type *base, void *addr)

Install DMA descriptor memory.

This function used to register DMA descriptor memory for linked transfer, a typical case is ping pong transfer which will request more than one DMA descriptor memory space, althrough current DMA driver has a default DMA descriptor buffer, but it support one DMA descriptor for one channel only.

Parameters:
  • base – DMA base address.

  • addr – DMA descriptor address

static inline bool DMA_ChannelIsActive(DMA_Type *base, uint32_t channel)

Return whether DMA channel is processing transfer.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

Returns:

True for active state, false otherwise.

static inline bool DMA_ChannelIsBusy(DMA_Type *base, uint32_t channel)

Return whether DMA channel is busy.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

Returns:

True for busy state, false otherwise.

static inline void DMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel)

Enables the interrupt source for the DMA transfer.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel)

Disables the interrupt source for the DMA transfer.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_EnableChannel(DMA_Type *base, uint32_t channel)

Enable DMA channel.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_DisableChannel(DMA_Type *base, uint32_t channel)

Disable DMA channel.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_EnableChannelPeriphRq(DMA_Type *base, uint32_t channel)

Set PERIPHREQEN of channel configuration register.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_DisableChannelPeriphRq(DMA_Type *base, uint32_t channel)

Get PERIPHREQEN value of channel configuration register.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

Returns:

True for enabled PeriphRq, false for disabled.

void DMA_ConfigureChannelTrigger(DMA_Type *base, uint32_t channel, dma_channel_trigger_t *trigger)

Set trigger settings of DMA channel.

Deprecated:

Do not use this function. It has been superceded by DMA_SetChannelConfig.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

  • trigger – trigger configuration.

void DMA_SetChannelConfig(DMA_Type *base, uint32_t channel, dma_channel_trigger_t *trigger, bool isPeriph)

set channel config.

This function provide a interface to configure channel configuration reisters.

Parameters:
  • base – DMA base address.

  • channel – DMA channel number.

  • trigger – channel configurations structure.

  • isPeriph – true is periph request, false is not.

static inline uint32_t DMA_SetChannelXferConfig(bool reload, bool clrTrig, bool intA, bool intB, uint8_t width, uint8_t srcInc, uint8_t dstInc, uint32_t bytes)

DMA channel xfer transfer configurations.

Parameters:
  • reload – true is reload link descriptor after current exhaust, false is not

  • clrTrig – true is clear trigger status, wait software trigger, false is not

  • intA – enable interruptA

  • intB – enable interruptB

  • width – transfer width

  • srcInc – source address interleave size

  • dstInc – destination address interleave size

  • bytes – transfer bytes

Returns:

The vaule of xfer config

uint32_t DMA_GetRemainingBytes(DMA_Type *base, uint32_t channel)

Gets the remaining bytes of the current DMA descriptor transfer.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

Returns:

The number of bytes which have not been transferred yet.

static inline void DMA_SetChannelPriority(DMA_Type *base, uint32_t channel, dma_priority_t priority)

Set priority of channel configuration register.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

  • priority – Channel priority value.

static inline dma_priority_t DMA_GetChannelPriority(DMA_Type *base, uint32_t channel)

Get priority of channel configuration register.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

Returns:

Channel priority value.

static inline void DMA_SetChannelConfigValid(DMA_Type *base, uint32_t channel)

Set channel configuration valid.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_DoChannelSoftwareTrigger(DMA_Type *base, uint32_t channel)

Do software trigger for the channel.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_LoadChannelTransferConfig(DMA_Type *base, uint32_t channel, uint32_t xfer)

Load channel transfer configurations.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

  • xfer – transfer configurations.

void DMA_CreateDescriptor(dma_descriptor_t *desc, dma_xfercfg_t *xfercfg, void *srcAddr, void *dstAddr, void *nextDesc)

Create application specific DMA descriptor to be used in a chain in transfer.

Deprecated:

Do not use this function. It has been superceded by DMA_SetupDescriptor.

Parameters:
  • desc – DMA descriptor address.

  • xfercfg – Transfer configuration for DMA descriptor.

  • srcAddr – Address of last item to transmit

  • dstAddr – Address of last item to receive.

  • nextDesc – Address of next descriptor in chain.

void DMA_SetupDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc)

setup dma descriptor

Note: This function do not support configure wrap descriptor.

Parameters:
  • desc – DMA descriptor address.

  • xfercfg – Transfer configuration for DMA descriptor.

  • srcStartAddr – Start address of source address.

  • dstStartAddr – Start address of destination address.

  • nextDesc – Address of next descriptor in chain.

void DMA_SetupChannelDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc, dma_burst_wrap_t wrapType, uint32_t burstSize)

setup dma channel descriptor

Note: This function support configure wrap descriptor.

Parameters:
  • desc – DMA descriptor address.

  • xfercfg – Transfer configuration for DMA descriptor.

  • srcStartAddr – Start address of source address.

  • dstStartAddr – Start address of destination address.

  • nextDesc – Address of next descriptor in chain.

  • wrapType – burst wrap type.

  • burstSize – burst size, reference _dma_burst_size.

void DMA_LoadChannelDescriptor(DMA_Type *base, uint32_t channel, dma_descriptor_t *descriptor)

load channel transfer decriptor.

This function can be used to load desscriptor to driver internal channel descriptor that is used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful for the case:

  1. for the polling transfer, application can allocate a local descriptor memory table to prepare a descriptor firstly and then call this api to load the configured descriptor to driver descriptor table.

    DMA_Init(DMA0);
    DMA_EnableChannel(DMA0, DEMO_DMA_CHANNEL);
    DMA_SetupDescriptor(desc, xferCfg, s_srcBuffer, &s_destBuffer[0], NULL);
    DMA_LoadChannelDescriptor(DMA0, DEMO_DMA_CHANNEL, (dma_descriptor_t *)desc);
    DMA_DoChannelSoftwareTrigger(DMA0, DEMO_DMA_CHANNEL);
    while(DMA_ChannelIsBusy(DMA0, DEMO_DMA_CHANNEL))
    {}
    

Parameters:
  • base – DMA base address.

  • channel – DMA channel.

  • descriptor – configured DMA descriptor.

void DMA_AbortTransfer(dma_handle_t *handle)

Abort running transfer by handle.

This function aborts DMA transfer specified by handle.

Parameters:
  • handle – DMA handle pointer.

void DMA_CreateHandle(dma_handle_t *handle, DMA_Type *base, uint32_t channel)

Creates the DMA handle.

This function is called if using transaction API for DMA. This function initializes the internal state of DMA handle.

Parameters:
  • handle – DMA handle pointer. The DMA handle stores callback function and parameters.

  • base – DMA peripheral base address.

  • channel – DMA channel number.

void DMA_SetCallback(dma_handle_t *handle, dma_callback callback, void *userData)

Installs a callback function for the DMA transfer.

This callback is called in DMA IRQ handler. Use the callback to do something after the current major loop transfer completes.

Parameters:
  • handle – DMA handle pointer.

  • callback – DMA callback function pointer.

  • userData – Parameter for callback function.

void DMA_PrepareTransfer(dma_transfer_config_t *config, void *srcAddr, void *dstAddr, uint32_t byteWidth, uint32_t transferBytes, dma_transfer_type_t type, void *nextDesc)

Prepares the DMA transfer structure.

Deprecated:

Do not use this function. It has been superceded by DMA_PrepareChannelTransfer. This function prepares the transfer configuration structure according to the user input.

Note

The data address and the data width must be consistent. For example, if the SRC is 4 bytes, so the source address must be 4 bytes aligned, or it shall result in source address error(SAE).

Parameters:
  • config – The user configuration structure of type dma_transfer_t.

  • srcAddr – DMA transfer source address.

  • dstAddr – DMA transfer destination address.

  • byteWidth – DMA transfer destination address width(bytes).

  • transferBytes – DMA transfer bytes to be transferred.

  • type – DMA transfer type.

  • nextDesc – Chain custom descriptor to transfer.

void DMA_PrepareChannelTransfer(dma_channel_config_t *config, void *srcStartAddr, void *dstStartAddr, uint32_t xferCfg, dma_transfer_type_t type, dma_channel_trigger_t *trigger, void *nextDesc)

Prepare channel transfer configurations.

This function used to prepare channel transfer configurations.

Parameters:
  • config – Pointer to DMA channel transfer configuration structure.

  • srcStartAddr – source start address.

  • dstStartAddr – destination start address.

  • xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER about to how to get xferCfg value.

  • type – transfer type.

  • trigger – DMA channel trigger configurations.

  • nextDesc – address of next descriptor.

status_t DMA_SubmitTransfer(dma_handle_t *handle, dma_transfer_config_t *config)

Submits the DMA transfer request.

Deprecated:

Do not use this function. It has been superceded by DMA_SubmitChannelTransfer.

This function submits the DMA transfer request according to the transfer configuration structure. If the user submits the transfer request repeatedly, this function packs an unprocessed request as a TCD and enables scatter/gather feature to process it in the next time.

Parameters:
  • handle – DMA handle pointer.

  • config – Pointer to DMA transfer configuration structure.

Return values:
  • kStatus_DMA_Success – It means submit transfer request succeed.

  • kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer request is not allowed.

  • kStatus_DMA_Busy – It means the given channel is busy, need to submit request later.

void DMA_SubmitChannelTransferParameter(dma_handle_t *handle, uint32_t xferCfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc)

Submit channel transfer paramter directly.

This function used to configue channel head descriptor that is used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful for the case:

  1. for the single transfer, application doesn’t need to allocate descriptor table, the head descriptor can be used for it.

       DMA_SetChannelConfig(base, channel, trigger, isPeriph);
       DMA_CreateHandle(handle, base, channel)
       DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc,
    bytes), srcStartAddr, dstStartAddr, NULL);
       DMA_StartTransfer(handle)
    

  2. for the linked transfer, application should responsible for link descriptor, for example, if 4 transfer is required, then application should prepare three descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.

       define link descriptor table in application with macro
       DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[3]);
    
       DMA_SetupDescriptor(nextDesc0,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc1);
       DMA_SetupDescriptor(nextDesc1,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc2);
       DMA_SetupDescriptor(nextDesc2,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, NULL);
       DMA_SetChannelConfig(base, channel, trigger, isPeriph);
       DMA_CreateHandle(handle, base, channel)
       DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc,
    bytes), srcStartAddr, dstStartAddr, nextDesc0);
       DMA_StartTransfer(handle);
    

Parameters:
  • handle – Pointer to DMA handle.

  • xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER about to how to get xferCfg value.

  • srcStartAddr – source start address.

  • dstStartAddr – destination start address.

  • nextDesc – address of next descriptor.

void DMA_SubmitChannelDescriptor(dma_handle_t *handle, dma_descriptor_t *descriptor)

Submit channel descriptor.

This function used to configue channel head descriptor that is used to start DMA transfer, the head descriptor table is defined in DMA driver, this functiono is typical for the ping pong case:

  1. for the ping pong case, application should responsible for the descriptor, for example, application should prepare two descriptor table with macro.

       define link descriptor table in application with macro
       DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[2]);
    
       DMA_SetupDescriptor(nextDesc0,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc1);
       DMA_SetupDescriptor(nextDesc1,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc0);
       DMA_SetChannelConfig(base, channel, trigger, isPeriph);
       DMA_CreateHandle(handle, base, channel)
       DMA_SubmitChannelDescriptor(handle,  nextDesc0);
       DMA_StartTransfer(handle);
    

Parameters:
  • handle – Pointer to DMA handle.

  • descriptor – descriptor to submit.

status_t DMA_SubmitChannelTransfer(dma_handle_t *handle, dma_channel_config_t *config)

Submits the DMA channel transfer request.

This function submits the DMA transfer request according to the transfer configuration structure. If the user submits the transfer request repeatedly, this function packs an unprocessed request as a TCD and enables scatter/gather feature to process it in the next time. It is used for the case:

  1. for the single transfer, application doesn’t need to allocate descriptor table, the head descriptor can be used for it.

    DMA_CreateHandle(handle, base, channel)
    DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,NULL);
    DMA_SubmitChannelTransfer(handle, config)
    DMA_StartTransfer(handle)
    

  2. for the linked transfer, application should responsible for link descriptor, for example, if 4 transfer is required, then application should prepare three descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.

       define link descriptor table in application with macro
       DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);
       DMA_SetupDescriptor(nextDesc0,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc1);
       DMA_SetupDescriptor(nextDesc1,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc2);
       DMA_SetupDescriptor(nextDesc2,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, NULL);
       DMA_CreateHandle(handle, base, channel)
       DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,nextDesc0);
       DMA_SubmitChannelTransfer(handle, config)
       DMA_StartTransfer(handle)
    

  3. for the ping pong case, application should responsible for link descriptor, for example, application should prepare two descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.

       define link descriptor table in application with macro
       DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);
    
       DMA_SetupDescriptor(nextDesc0,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc1);
       DMA_SetupDescriptor(nextDesc1,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc0);
       DMA_CreateHandle(handle, base, channel)
       DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,nextDesc0);
       DMA_SubmitChannelTransfer(handle, config)
       DMA_StartTransfer(handle)
    

Parameters:
  • handle – DMA handle pointer.

  • config – Pointer to DMA transfer configuration structure.

Return values:
  • kStatus_DMA_Success – It means submit transfer request succeed.

  • kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer request is not allowed.

  • kStatus_DMA_Busy – It means the given channel is busy, need to submit request later.

void DMA_StartTransfer(dma_handle_t *handle)

DMA start transfer.

This function enables the channel request. User can call this function after submitting the transfer request It will trigger transfer start with software trigger only when hardware trigger is not used.

Parameters:
  • handle – DMA handle pointer.

void DMA_IRQHandle(DMA_Type *base)

DMA IRQ handler for descriptor transfer complete.

This function clears the channel major interrupt flag and call the callback function if it is not NULL.

Parameters:
  • base – DMA base address.

FSL_DMA_DRIVER_VERSION

DMA driver version.

Version 2.5.3.

_dma_transfer_status DMA transfer status

Values:

enumerator kStatus_DMA_Busy

Channel is busy and can’t handle the transfer request.

_dma_addr_interleave_size dma address interleave size

Values:

enumerator kDMA_AddressInterleave0xWidth

dma source/destination address no interleave

enumerator kDMA_AddressInterleave1xWidth

dma source/destination address interleave 1xwidth

enumerator kDMA_AddressInterleave2xWidth

dma source/destination address interleave 2xwidth

enumerator kDMA_AddressInterleave4xWidth

dma source/destination address interleave 3xwidth

_dma_transfer_width dma transfer width

Values:

enumerator kDMA_Transfer8BitWidth

dma channel transfer bit width is 8 bit

enumerator kDMA_Transfer16BitWidth

dma channel transfer bit width is 16 bit

enumerator kDMA_Transfer32BitWidth

dma channel transfer bit width is 32 bit

enum _dma_priority

DMA channel priority.

Values:

enumerator kDMA_ChannelPriority0

Highest channel priority - priority 0

enumerator kDMA_ChannelPriority1

Channel priority 1

enumerator kDMA_ChannelPriority2

Channel priority 2

enumerator kDMA_ChannelPriority3

Channel priority 3

enumerator kDMA_ChannelPriority4

Channel priority 4

enumerator kDMA_ChannelPriority5

Channel priority 5

enumerator kDMA_ChannelPriority6

Channel priority 6

enumerator kDMA_ChannelPriority7

Lowest channel priority - priority 7

enum _dma_int

DMA interrupt flags.

Values:

enumerator kDMA_IntA

DMA interrupt flag A

enumerator kDMA_IntB

DMA interrupt flag B

enumerator kDMA_IntError

DMA interrupt flag error

enum _dma_trigger_type

DMA trigger type.

Values:

enumerator kDMA_NoTrigger

Trigger is disabled

enumerator kDMA_LowLevelTrigger

Low level active trigger

enumerator kDMA_HighLevelTrigger

High level active trigger

enumerator kDMA_FallingEdgeTrigger

Falling edge active trigger

enumerator kDMA_RisingEdgeTrigger

Rising edge active trigger

_dma_burst_size DMA burst size

Values:

enumerator kDMA_BurstSize1

burst size 1 transfer

enumerator kDMA_BurstSize2

burst size 2 transfer

enumerator kDMA_BurstSize4

burst size 4 transfer

enumerator kDMA_BurstSize8

burst size 8 transfer

enumerator kDMA_BurstSize16

burst size 16 transfer

enumerator kDMA_BurstSize32

burst size 32 transfer

enumerator kDMA_BurstSize64

burst size 64 transfer

enumerator kDMA_BurstSize128

burst size 128 transfer

enumerator kDMA_BurstSize256

burst size 256 transfer

enumerator kDMA_BurstSize512

burst size 512 transfer

enumerator kDMA_BurstSize1024

burst size 1024 transfer

enum _dma_trigger_burst

DMA trigger burst.

Values:

enumerator kDMA_SingleTransfer

Single transfer

enumerator kDMA_LevelBurstTransfer

Burst transfer driven by level trigger

enumerator kDMA_EdgeBurstTransfer1

Perform 1 transfer by edge trigger

enumerator kDMA_EdgeBurstTransfer2

Perform 2 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer4

Perform 4 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer8

Perform 8 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer16

Perform 16 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer32

Perform 32 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer64

Perform 64 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer128

Perform 128 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer256

Perform 256 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer512

Perform 512 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer1024

Perform 1024 transfers by edge trigger

enum _dma_burst_wrap

DMA burst wrapping.

Values:

enumerator kDMA_NoWrap

Wrapping is disabled

enumerator kDMA_SrcWrap

Wrapping is enabled for source

enumerator kDMA_DstWrap

Wrapping is enabled for destination

enumerator kDMA_SrcAndDstWrap

Wrapping is enabled for source and destination

enum _dma_transfer_type

DMA transfer type.

Values:

enumerator kDMA_MemoryToMemory

Transfer from memory to memory (increment source and destination)

enumerator kDMA_PeripheralToMemory

Transfer from peripheral to memory (increment only destination)

enumerator kDMA_MemoryToPeripheral

Transfer from memory to peripheral (increment only source)

enumerator kDMA_StaticToStatic

Peripheral to static memory (do not increment source or destination)

typedef struct _dma_descriptor dma_descriptor_t

DMA descriptor structure.

typedef struct _dma_xfercfg dma_xfercfg_t

DMA transfer configuration.

typedef enum _dma_priority dma_priority_t

DMA channel priority.

typedef enum _dma_int dma_irq_t

DMA interrupt flags.

typedef enum _dma_trigger_type dma_trigger_type_t

DMA trigger type.

typedef enum _dma_trigger_burst dma_trigger_burst_t

DMA trigger burst.

typedef enum _dma_burst_wrap dma_burst_wrap_t

DMA burst wrapping.

typedef enum _dma_transfer_type dma_transfer_type_t

DMA transfer type.

typedef struct _dma_channel_trigger dma_channel_trigger_t

DMA channel trigger.

typedef struct _dma_channel_config dma_channel_config_t

DMA channel trigger.

typedef struct _dma_transfer_config dma_transfer_config_t

DMA transfer configuration.

typedef void (*dma_callback)(struct _dma_handle *handle, void *userData, bool transferDone, uint32_t intmode)

Define Callback function for DMA.

typedef struct _dma_handle dma_handle_t

DMA transfer handle structure.

DMA_MAX_TRANSFER_COUNT

DMA max transfer size.

FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(x)

DMA channel numbers.

FSL_FEATURE_DMA_MAX_CHANNELS
FSL_FEATURE_DMA_ALL_CHANNELS
FSL_FEATURE_DMA_LINK_DESCRIPTOR_ALIGN_SIZE

DMA head link descriptor table align size.

DMA_ALLOCATE_HEAD_DESCRIPTORS(name, number)

DMA head descriptor table allocate macro To simplify user interface, this macro will help allocate descriptor memory, user just need to provide the name and the number for the allocate descriptor.

Parameters:
  • name – Allocate decriptor name.

  • number – Number of descriptor to be allocated.

DMA_ALLOCATE_HEAD_DESCRIPTORS_AT_NONCACHEABLE(name, number)

DMA head descriptor table allocate macro at noncacheable section To simplify user interface, this macro will help allocate descriptor memory at noncacheable section, user just need to provide the name and the number for the allocate descriptor.

Parameters:
  • name – Allocate decriptor name.

  • number – Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS(name, number)

DMA link descriptor table allocate macro To simplify user interface, this macro will help allocate descriptor memory, user just need to provide the name and the number for the allocate descriptor.

Parameters:
  • name – Allocate decriptor name.

  • number – Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS_AT_NONCACHEABLE(name, number)

DMA link descriptor table allocate macro at noncacheable section To simplify user interface, this macro will help allocate descriptor memory at noncacheable section, user just need to provide the name and the number for the allocate descriptor.

Parameters:
  • name – Allocate decriptor name.

  • number – Number of descriptor to be allocated.

DMA_ALLOCATE_DATA_TRANSFER_BUFFER(name, width)

DMA transfer buffer address need to align with the transfer width.

DMA_CHANNEL_GROUP(channel)
DMA_CHANNEL_INDEX(base, channel)
DMA_COMMON_REG_GET(base, channel, reg)

DMA linked descriptor address algin size.

DMA_COMMON_CONST_REG_GET(base, channel, reg)
DMA_COMMON_REG_SET(base, channel, reg, value)
DMA_DESCRIPTOR_END_ADDRESS(start, inc, bytes, width)

DMA descriptor end address calculate.

Parameters:
  • start – start address

  • inc – address interleave size

  • bytes – transfer bytes

  • width – transfer width

DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes)
struct _dma_descriptor
#include <fsl_dma.h>

DMA descriptor structure.

Public Members

volatile uint32_t xfercfg

Transfer configuration

void *srcEndAddr

Last source address of DMA transfer

void *dstEndAddr

Last destination address of DMA transfer

void *linkToNextDesc

Address of next DMA descriptor in chain

struct _dma_xfercfg
#include <fsl_dma.h>

DMA transfer configuration.

Public Members

bool valid

Descriptor is ready to transfer

bool reload

Reload channel configuration register after current descriptor is exhausted

bool swtrig

Perform software trigger. Transfer if fired when ‘valid’ is set

bool clrtrig

Clear trigger

bool intA

Raises IRQ when transfer is done and set IRQA status register flag

bool intB

Raises IRQ when transfer is done and set IRQB status register flag

uint8_t byteWidth

Byte width of data to transfer

uint8_t srcInc

Increment source address by ‘srcInc’ x ‘byteWidth’

uint8_t dstInc

Increment destination address by ‘dstInc’ x ‘byteWidth’

uint16_t transferCount

Number of transfers

struct _dma_channel_trigger
#include <fsl_dma.h>

DMA channel trigger.

Public Members

dma_trigger_type_t type

Select hardware trigger as edge triggered or level triggered.

dma_trigger_burst_t burst

Select whether hardware triggers cause a single or burst transfer.

dma_burst_wrap_t wrap

Select wrap type, source wrap or dest wrap, or both.

struct _dma_channel_config
#include <fsl_dma.h>

DMA channel trigger.

Public Members

void *srcStartAddr

Source data address

void *dstStartAddr

Destination data address

void *nextDesc

Chain custom descriptor

uint32_t xferCfg

channel transfer configurations

dma_channel_trigger_t *trigger

DMA trigger type

bool isPeriph

select the request type

struct _dma_transfer_config
#include <fsl_dma.h>

DMA transfer configuration.

Public Members

uint8_t *srcAddr

Source data address

uint8_t *dstAddr

Destination data address

uint8_t *nextDesc

Chain custom descriptor

dma_xfercfg_t xfercfg

Transfer options

bool isPeriph

DMA transfer is driven by peripheral

struct _dma_handle
#include <fsl_dma.h>

DMA transfer handle structure.

Public Members

dma_callback callback

Callback function. Invoked when transfer of descriptor with interrupt flag finishes

void *userData

Callback function parameter

DMA_Type *base

DMA peripheral base address

uint8_t channel

DMA channel number

FLASHIAP: Flash In Application Programming Driver

FSL_FLASHIAP_DRIVER_VERSION
enum _flashiap_status

Flashiap status codes.

Values:

enumerator kStatus_FLASHIAP_Success

Api is executed successfully

enumerator kStatus_FLASHIAP_InvalidCommand

Invalid command

enumerator kStatus_FLASHIAP_SrcAddrError

Source address is not on word boundary

enumerator kStatus_FLASHIAP_DstAddrError

Destination address is not on a correct boundary

enumerator kStatus_FLASHIAP_SrcAddrNotMapped

Source address is not mapped in the memory map

enumerator kStatus_FLASHIAP_DstAddrNotMapped

Destination address is not mapped in the memory map

enumerator kStatus_FLASHIAP_CountError

Byte count is not multiple of 4 or is not a permitted value

enumerator kStatus_FLASHIAP_InvalidSector

Sector number is invalid or end sector number is greater than start sector number

enumerator kStatus_FLASHIAP_SectorNotblank

One or more sectors are not blank

enumerator kStatus_FLASHIAP_NotPrepared

Command to prepare sector for write operation was not executed

enumerator kStatus_FLASHIAP_CompareError

Destination and source memory contents do not match

enumerator kStatus_FLASHIAP_Busy

Flash programming hardware interface is busy

enumerator kStatus_FLASHIAP_ParamError

Insufficient number of parameters or invalid parameter

enumerator kStatus_FLASHIAP_AddrError

Address is not on word boundary

enumerator kStatus_FLASHIAP_AddrNotMapped

Address is not mapped in the memory map

enumerator kStatus_FLASHIAP_NoPower

Flash memory block is powered down

enumerator kStatus_FLASHIAP_NoClock

Flash memory block or controller is not clocked

enum _flashiap_commands

Flashiap command codes.

Values:

enumerator kIapCmd_FLASHIAP_PrepareSectorforWrite

Prepare Sector for write

enumerator kIapCmd_FLASHIAP_CopyRamToFlash

Copy RAM to flash

enumerator kIapCmd_FLASHIAP_EraseSector

Erase Sector

enumerator kIapCmd_FLASHIAP_BlankCheckSector

Blank check sector

enumerator kIapCmd_FLASHIAP_ReadPartId

Read part id

enumerator kIapCmd_FLASHIAP_Read_BootromVersion

Read bootrom version

enumerator kIapCmd_FLASHIAP_Compare

Compare

enumerator kIapCmd_FLASHIAP_ReinvokeISP

Reinvoke ISP

enumerator kIapCmd_FLASHIAP_ReadUid

Read Uid isp

enumerator kIapCmd_FLASHIAP_ErasePage

Erase Page

enumerator kIapCmd_FLASHIAP_ReadMisr

Read Misr

enumerator kIapCmd_FLASHIAP_ReinvokeI2cSpiISP

Reinvoke I2C/SPI isp

typedef void (*FLASHIAP_ENTRY_T)(uint32_t cmd[5], uint32_t stat[4])

IAP_ENTRY API function type.

static inline void iap_entry(uint32_t *cmd_param, uint32_t *status_result)

IAP_ENTRY API function type.

Wrapper for rom iap call

Parameters:
  • cmd_param – IAP command and relevant parameter array.

  • status_result – IAP status result array.

Return values:

None. – Status/Result is returned via status_result array.

status_t FLASHIAP_PrepareSectorForWrite(uint32_t startSector, uint32_t endSector)

Prepare sector for write operation.

This function prepares sector(s) for write/erase operation. This function must be called before calling the FLASHIAP_CopyRamToFlash() or FLASHIAP_EraseSector() or FLASHIAP_ErasePage() function. The end sector must be greater than or equal to start sector number.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • startSector – Start sector number.

  • endSector – End sector number.

Return values:
  • kStatus_FLASHIAP_Success – Api was executed successfully.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_InvalidSector – Sector number is invalid or end sector number is greater than start sector number.

  • kStatus_FLASHIAP_Busy – Flash programming hardware interface is busy.

status_t FLASHIAP_CopyRamToFlash(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes, uint32_t systemCoreClock)

Copy RAM to flash.

This function programs the flash memory. Corresponding sectors must be prepared via FLASHIAP_PrepareSectorForWrite before calling calling this function. The addresses should be a 256 byte boundary and the number of bytes should be 256 | 512 | 1024 | 4096.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • dstAddr – Destination flash address where data bytes are to be written.

  • srcAddr – Source ram address from where data bytes are to be read.

  • numOfBytes – Number of bytes to be written.

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function.

Return values:
  • kStatus_FLASHIAP_Success – Api was executed successfully.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_SrcAddrError – Source address is not on word boundary.

  • kStatus_FLASHIAP_DstAddrError – Destination address is not on a correct boundary.

  • kStatus_FLASHIAP_SrcAddrNotMapped – Source address is not mapped in the memory map.

  • kStatus_FLASHIAP_DstAddrNotMapped – Destination address is not mapped in the memory map.

  • kStatus_FLASHIAP_CountError – Byte count is not multiple of 4 or is not a permitted value.

  • kStatus_FLASHIAP_NotPrepared – Command to prepare sector for write operation was not executed.

  • kStatus_FLASHIAP_Busy – Flash programming hardware interface is busy.

status_t FLASHIAP_EraseSector(uint32_t startSector, uint32_t endSector, uint32_t systemCoreClock)

Erase sector.

This function erases sector(s). The end sector must be greater than or equal to start sector number. FLASHIAP_PrepareSectorForWrite must be called before calling this function.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • startSector – Start sector number.

  • endSector – End sector number.

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function.

Return values:
  • kStatus_FLASHIAP_Success – Api was executed successfully.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_InvalidSector – Sector number is invalid or end sector number is greater than start sector number.

  • kStatus_FLASHIAP_NotPrepared – Command to prepare sector for write operation was not executed.

  • kStatus_FLASHIAP_Busy – Flash programming hardware interface is busy.

status_t FLASHIAP_ErasePage(uint32_t startPage, uint32_t endPage, uint32_t systemCoreClock)

This function erases page(s). The end page must be greater than or equal to start page number. Corresponding sectors must be prepared via FLASHIAP_PrepareSectorForWrite before calling calling this function.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • startPage – Start page number

  • endPage – End page number

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function.

Return values:
  • kStatus_FLASHIAP_Success – Api was executed successfully.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_InvalidSector – Page number is invalid or end page number is greater than start page number

  • kStatus_FLASHIAP_NotPrepared – Command to prepare sector for write operation was not executed.

  • kStatus_FLASHIAP_Busy – Flash programming hardware interface is busy.

status_t FLASHIAP_BlankCheckSector(uint32_t startSector, uint32_t endSector)

Blank check sector(s)

Blank check single or multiples sectors of flash memory. The end sector must be greater than or equal to start sector number. It can be used to verify the sector eraseure after FLASHIAP_EraseSector call.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • startSector – : Start sector number. Must be greater than or equal to start sector number

  • endSector – : End sector number

Return values:
  • kStatus_FLASHIAP_Success – One or more sectors are in erased state.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_SectorNotblank – One or more sectors are not blank.

status_t FLASHIAP_Compare(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes)

Compare memory contents of flash with ram.

This function compares the contents of flash and ram. It can be used to verify the flash memory contents after FLASHIAP_CopyRamToFlash call.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • dstAddr – Destination flash address.

  • srcAddr – Source ram address.

  • numOfBytes – Number of bytes to be compared.

Return values:
  • kStatus_FLASHIAP_Success – Contents of flash and ram match.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_AddrError – Address is not on word boundary.

  • kStatus_FLASHIAP_AddrNotMapped – Address is not mapped in the memory map.

  • kStatus_FLASHIAP_CountError – Byte count is not multiple of 4 or is not a permitted value.

  • kStatus_FLASHIAP_CompareError – Destination and source memory contents do not match.

FLEXCOMM: FLEXCOMM Driver

FLEXCOMM Driver

FSL_FLEXCOMM_DRIVER_VERSION

FlexCOMM driver version 2.0.2.

enum FLEXCOMM_PERIPH_T

FLEXCOMM peripheral modes.

Values:

enumerator FLEXCOMM_PERIPH_NONE

No peripheral

enumerator FLEXCOMM_PERIPH_USART

USART peripheral

enumerator FLEXCOMM_PERIPH_SPI

SPI Peripheral

enumerator FLEXCOMM_PERIPH_I2C

I2C Peripheral

enumerator FLEXCOMM_PERIPH_I2S_TX

I2S TX Peripheral

enumerator FLEXCOMM_PERIPH_I2S_RX

I2S RX Peripheral

typedef void (*flexcomm_irq_handler_t)(void *base, void *handle)

Typedef for interrupt handler.

IRQn_Type const kFlexcommIrqs[]

Array with IRQ number for each FLEXCOMM module.

uint32_t FLEXCOMM_GetInstance(void *base)

Returns instance number for FLEXCOMM module with given base address.

status_t FLEXCOMM_Init(void *base, FLEXCOMM_PERIPH_T periph)

Initializes FLEXCOMM and selects peripheral mode according to the second parameter.

void FLEXCOMM_SetIRQHandler(void *base, flexcomm_irq_handler_t handler, void *flexcommHandle)

Sets IRQ handler for given FLEXCOMM module. It is used by drivers register IRQ handler according to FLEXCOMM mode.

FMEAS: Frequency Measure Driver

static inline void FMEAS_StartMeasure(FMEAS_SYSCON_Type *base)

Starts a frequency measurement cycle.

Parameters:
  • base – : SYSCON peripheral base address.

static inline bool FMEAS_IsMeasureComplete(FMEAS_SYSCON_Type *base)

Indicates when a frequency measurement cycle is complete.

Parameters:
  • base – : SYSCON peripheral base address.

Returns:

true if a measurement cycle is active, otherwise false.

uint32_t FMEAS_GetFrequency(FMEAS_SYSCON_Type *base, uint32_t refClockRate)

Returns the computed value for a frequency measurement cycle.

Parameters:
  • base – : SYSCON peripheral base address.

  • refClockRate – : Reference clock rate used during the frequency measurement cycle.

Returns:

Frequency in Hz.

FSL_FMEAS_DRIVER_VERSION

Defines LPC Frequency Measure driver version 2.1.1.

typedef SYSCON_Type FMEAS_SYSCON_Type
FMEAS_SYSCON_FREQMECTRL_CAPVAL_MASK
FMEAS_SYSCON_FREQMECTRL_CAPVAL_SHIFT
FMEAS_SYSCON_FREQMECTRL_CAPVAL
FMEAS_SYSCON_FREQMECTRL_PROG_MASK
FMEAS_SYSCON_FREQMECTRL_PROG_SHIFT
FMEAS_SYSCON_FREQMECTRL_PROG

GINT: Group GPIO Input Interrupt Driver

FSL_GINT_DRIVER_VERSION

Driver version.

enum _gint_comb

GINT combine inputs type.

Values:

enumerator kGINT_CombineOr

A grouped interrupt is generated when any one of the enabled inputs is active

enumerator kGINT_CombineAnd

A grouped interrupt is generated when all enabled inputs are active

enum _gint_trig

GINT trigger type.

Values:

enumerator kGINT_TrigEdge

Edge triggered based on polarity

enumerator kGINT_TrigLevel

Level triggered based on polarity

enum _gint_port

Values:

enumerator kGINT_Port0
enumerator kGINT_Port1
typedef enum _gint_comb gint_comb_t

GINT combine inputs type.

typedef enum _gint_trig gint_trig_t

GINT trigger type.

typedef enum _gint_port gint_port_t
typedef void (*gint_cb_t)(void)

GINT Callback function.

void GINT_Init(GINT_Type *base)

Initialize GINT peripheral.

This function initializes the GINT peripheral and enables the clock.

Parameters:
  • base – Base address of the GINT peripheral.

Return values:

None.

void GINT_SetCtrl(GINT_Type *base, gint_comb_t comb, gint_trig_t trig, gint_cb_t callback)

Setup GINT peripheral control parameters.

This function sets the control parameters of GINT peripheral.

Parameters:
  • base – Base address of the GINT peripheral.

  • comb – Controls if the enabled inputs are logically ORed or ANDed for interrupt generation.

  • trig – Controls if the enabled inputs are level or edge sensitive based on polarity.

  • callback – This function is called when configured group interrupt is generated.

Return values:

None.

void GINT_GetCtrl(GINT_Type *base, gint_comb_t *comb, gint_trig_t *trig, gint_cb_t *callback)

Get GINT peripheral control parameters.

This function returns the control parameters of GINT peripheral.

Parameters:
  • base – Base address of the GINT peripheral.

  • comb – Pointer to store combine input value.

  • trig – Pointer to store trigger value.

  • callback – Pointer to store callback function.

Return values:

None.

void GINT_ConfigPins(GINT_Type *base, gint_port_t port, uint32_t polarityMask, uint32_t enableMask)

Configure GINT peripheral pins.

This function enables and controls the polarity of enabled pin(s) of a given port.

Parameters:
  • base – Base address of the GINT peripheral.

  • port – Port number.

  • polarityMask – Each bit position selects the polarity of the corresponding enabled pin. 0 = The pin is active LOW. 1 = The pin is active HIGH.

  • enableMask – Each bit position selects if the corresponding pin is enabled or not. 0 = The pin is disabled. 1 = The pin is enabled.

Return values:

None.

void GINT_GetConfigPins(GINT_Type *base, gint_port_t port, uint32_t *polarityMask, uint32_t *enableMask)

Get GINT peripheral pin configuration.

This function returns the pin configuration of a given port.

Parameters:
  • base – Base address of the GINT peripheral.

  • port – Port number.

  • polarityMask – Pointer to store the polarity mask Each bit position indicates the polarity of the corresponding enabled pin. 0 = The pin is active LOW. 1 = The pin is active HIGH.

  • enableMask – Pointer to store the enable mask. Each bit position indicates if the corresponding pin is enabled or not. 0 = The pin is disabled. 1 = The pin is enabled.

Return values:

None.

void GINT_EnableCallback(GINT_Type *base)

Enable callback.

This function enables the interrupt for the selected GINT peripheral. Although the pin(s) are monitored as soon as they are enabled, the callback function is not enabled until this function is called.

Parameters:
  • base – Base address of the GINT peripheral.

Return values:

None.

void GINT_DisableCallback(GINT_Type *base)

Disable callback.

This function disables the interrupt for the selected GINT peripheral. Although the pins are still being monitored but the callback function is not called.

Parameters:
  • base – Base address of the peripheral.

Return values:

None.

static inline void GINT_ClrStatus(GINT_Type *base)

Clear GINT status.

This function clears the GINT status bit.

Parameters:
  • base – Base address of the GINT peripheral.

Return values:

None.

static inline uint32_t GINT_GetStatus(GINT_Type *base)

Get GINT status.

This function returns the GINT status.

Parameters:
  • base – Base address of the GINT peripheral.

Return values:

status – = 0 No group interrupt request. = 1 Group interrupt request active.

void GINT_Deinit(GINT_Type *base)

Deinitialize GINT peripheral.

This function disables the GINT clock.

Parameters:
  • base – Base address of the GINT peripheral.

Return values:

None.

I2C: Inter-Integrated Circuit Driver

I2C DMA Driver

void I2C_MasterTransferCreateHandleDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, i2c_master_dma_transfer_callback_t callback, void *userData, dma_handle_t *dmaHandle)

Init the I2C handle which is used in transactional functions.

Parameters:
  • base – I2C peripheral base address

  • handle – pointer to i2c_master_dma_handle_t structure

  • callback – pointer to user callback function

  • userData – user param passed to the callback function

  • dmaHandle – DMA handle pointer

status_t I2C_MasterTransferDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, i2c_master_transfer_t *xfer)

Performs a master dma non-blocking transfer on the I2C bus.

Parameters:
  • base – I2C peripheral base address

  • handle – pointer to i2c_master_dma_handle_t structure

  • xfer – pointer to transfer structure of i2c_master_transfer_t

Return values:
  • kStatus_Success – Sucessully complete the data transmission.

  • kStatus_I2C_Busy – Previous transmission still not finished.

  • kStatus_I2C_Timeout – Transfer error, wait signal timeout.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive Nak during transfer.

status_t I2C_MasterTransferGetCountDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, size_t *count)

Get master transfer status during a dma non-blocking transfer.

Parameters:
  • base – I2C peripheral base address

  • handle – pointer to i2c_master_dma_handle_t structure

  • count – Number of bytes transferred so far by the non-blocking transaction.

void I2C_MasterTransferAbortDMA(I2C_Type *base, i2c_master_dma_handle_t *handle)

Abort a master dma non-blocking transfer in a early time.

Parameters:
  • base – I2C peripheral base address

  • handle – pointer to i2c_master_dma_handle_t structure

FSL_I2C_DMA_DRIVER_VERSION

I2C DMA driver version.

typedef struct _i2c_master_dma_handle i2c_master_dma_handle_t

I2C master dma handle typedef.

typedef void (*i2c_master_dma_transfer_callback_t)(I2C_Type *base, i2c_master_dma_handle_t *handle, status_t status, void *userData)

I2C master dma transfer callback typedef.

typedef void (*flexcomm_i2c_dma_master_irq_handler_t)(I2C_Type *base, i2c_master_dma_handle_t *handle)

Typedef for master dma handler.

I2C_MAX_DMA_TRANSFER_COUNT

Maximum lenght of single DMA transfer (determined by capability of the DMA engine)

struct _i2c_master_dma_handle
#include <fsl_i2c_dma.h>

I2C master dma transfer structure.

Public Members

uint8_t state

Transfer state machine current state.

uint32_t transferCount

Indicates progress of the transfer

uint32_t remainingBytesDMA

Remaining byte count to be transferred using DMA.

uint8_t *buf

Buffer pointer for current state.

bool checkAddrNack

Whether to check the nack signal is detected during addressing.

dma_handle_t *dmaHandle

The DMA handler used.

i2c_master_transfer_t transfer

Copy of the current transfer info.

i2c_master_dma_transfer_callback_t completionCallback

Callback function called after dma transfer finished.

void *userData

Callback parameter passed to callback function.

I2C Driver

FSL_I2C_DRIVER_VERSION

I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy

The master is already performing a transfer.

enumerator kStatus_I2C_Idle

The slave driver is idle.

enumerator kStatus_I2C_Nak

The slave device sent a NAK in response to a byte.

enumerator kStatus_I2C_InvalidParameter

Unable to proceed due to invalid parameter.

enumerator kStatus_I2C_BitError

Transferred bit was not seen on the bus.

enumerator kStatus_I2C_ArbitrationLost

Arbitration lost error.

enumerator kStatus_I2C_NoTransferInProgress

Attempt to abort a transfer when one is not in progress.

enumerator kStatus_I2C_DmaRequestFail

DMA request failed.

enumerator kStatus_I2C_StartStopError

Start and stop error.

enumerator kStatus_I2C_UnexpectedState

Unexpected state.

enumerator kStatus_I2C_Timeout

Timeout when waiting for I2C master/slave pending status to set to continue transfer.

enumerator kStatus_I2C_Addr_Nak

NAK received for Address

enumerator kStatus_I2C_EventTimeout

Timeout waiting for bus event.

enumerator kStatus_I2C_SclLowTimeout

Timeout SCL signal remains low.

enum _i2c_status_flags

I2C status flags.

Note

These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingFlag

The I2C module is waiting for software interaction. bit 0

enumerator kI2C_MasterArbitrationLostFlag

The arbitration of the bus was lost. There was collision on the bus. bit 4

enumerator kI2C_MasterStartStopErrorFlag

There was an error during start or stop phase of the transaction. bit 6

enumerator kI2C_MasterIdleFlag

The I2C master idle status. bit 5

enumerator kI2C_MasterRxReadyFlag

The I2C master rx ready status. bit 1

enumerator kI2C_MasterTxReadyFlag

The I2C master tx ready status. bit 2

enumerator kI2C_MasterAddrNackFlag

The I2C master address nack status. bit 7

enumerator kI2C_MasterDataNackFlag

The I2C master data nack status. bit 3

enumerator kI2C_SlavePendingFlag

The I2C module is waiting for software interaction. bit 8

enumerator kI2C_SlaveNotStretching

Indicates whether the slave is currently stretching clock (0 = yes, 1 = no). bit 11

enumerator kI2C_SlaveSelected

Indicates whether the slave is selected by an address match. bit 14

enumerator kI2C_SaveDeselected

Indicates that slave was previously deselected (deselect event took place, w1c). bit 15

enumerator kI2C_SlaveAddressedFlag

One of the I2C slave’s 4 addresses is matched. bit 22

enumerator kI2C_SlaveReceiveFlag

Slave receive data available. bit 9

enumerator kI2C_SlaveTransmitFlag

Slave data can be transmitted. bit 10

enumerator kI2C_SlaveAddress0MatchFlag

Slave address0 match. bit 20

enumerator kI2C_SlaveAddress1MatchFlag

Slave address1 match. bit 12

enumerator kI2C_SlaveAddress2MatchFlag

Slave address2 match. bit 13

enumerator kI2C_SlaveAddress3MatchFlag

Slave address3 match. bit 21

enumerator kI2C_MonitorReadyFlag

The I2C monitor ready interrupt. bit 16

enumerator kI2C_MonitorOverflowFlag

The monitor data overrun interrupt. bit 17

enumerator kI2C_MonitorActiveFlag

The monitor is active. bit 18

enumerator kI2C_MonitorIdleFlag

The monitor idle interrupt. bit 19

enumerator kI2C_EventTimeoutFlag

The bus event timeout interrupt. bit 24

enumerator kI2C_SclTimeoutFlag

The SCL timeout interrupt. bit 25

enumerator kI2C_MasterAllClearFlags
enumerator kI2C_SlaveAllClearFlags
enumerator kI2C_CommonAllClearFlags
enum _i2c_interrupt_enable

I2C interrupt enable.

Note

These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingInterruptEnable

The I2C master communication pending interrupt.

enumerator kI2C_MasterArbitrationLostInterruptEnable

The I2C master arbitration lost interrupt.

enumerator kI2C_MasterStartStopErrorInterruptEnable

The I2C master start/stop timing error interrupt.

enumerator kI2C_SlavePendingInterruptEnable

The I2C slave communication pending interrupt.

enumerator kI2C_SlaveNotStretchingInterruptEnable

The I2C slave not streching interrupt, deep-sleep mode can be entered only when this interrupt occurs.

enumerator kI2C_SlaveDeselectedInterruptEnable

The I2C slave deselection interrupt.

enumerator kI2C_MonitorReadyInterruptEnable

The I2C monitor ready interrupt.

enumerator kI2C_MonitorOverflowInterruptEnable

The monitor data overrun interrupt.

enumerator kI2C_MonitorIdleInterruptEnable

The monitor idle interrupt.

enumerator kI2C_EventTimeoutInterruptEnable

The bus event timeout interrupt.

enumerator kI2C_SclTimeoutInterruptEnable

The SCL timeout interrupt.

enumerator kI2C_MasterAllInterruptEnable
enumerator kI2C_SlaveAllInterruptEnable
enumerator kI2C_CommonAllInterruptEnable
I2C_RETRY_TIMES

Retry times for waiting flag.

I2C_MASTER_TRANSMIT_IGNORE_LAST_NACK

Whether to ignore the nack signal of the last byte during master transmit.

I2C_STAT_MSTCODE_IDLE

Master Idle State Code

I2C_STAT_MSTCODE_RXREADY

Master Receive Ready State Code

I2C_STAT_MSTCODE_TXREADY

Master Transmit Ready State Code

I2C_STAT_MSTCODE_NACKADR

Master NACK by slave on address State Code

I2C_STAT_MSTCODE_NACKDAT

Master NACK by slave on data State Code

I2C_STAT_SLVST_ADDR
I2C_STAT_SLVST_RX
I2C_STAT_SLVST_TX

I2C Master Driver

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)

Provides a default configuration for the I2C master peripheral.

This function provides the following default configuration for the I2C master peripheral:

masterConfig->enableMaster            = true;
masterConfig->baudRate_Bps            = 100000U;
masterConfig->enableTimeout           = false;

After calling this function, you can override any settings in order to customize the configuration, prior to initializing the master driver with I2C_MasterInit().

Parameters:
  • masterConfig[out] User provided configuration structure for default values. Refer to i2c_master_config_t.

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)

Initializes the I2C master peripheral.

This function enables the peripheral clock and initializes the I2C master peripheral as described by the user provided configuration. A software reset is performed prior to configuration.

Parameters:
  • base – The I2C peripheral base address.

  • masterConfig – User provided peripheral configuration. Use I2C_MasterGetDefaultConfig() to get a set of defaults that you can override.

  • srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to calculate the baud rate divisors, filter widths, and timeout periods.

void I2C_MasterDeinit(I2C_Type *base)

Deinitializes the I2C master peripheral.

This function disables the I2C master peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.

Parameters:
  • base – The I2C peripheral base address.

uint32_t I2C_GetInstance(I2C_Type *base)

Returns an instance number given a base address.

If an invalid base address is passed, debug builds will assert. Release builds will just return instance number 0.

Parameters:
  • base – The I2C peripheral base address.

Returns:

I2C instance number starting from 0.

static inline void I2C_MasterReset(I2C_Type *base)

Performs a software reset.

Restores the I2C master peripheral to reset conditions.

Parameters:
  • base – The I2C peripheral base address.

static inline void I2C_MasterEnable(I2C_Type *base, bool enable)

Enables or disables the I2C module as master.

Parameters:
  • base – The I2C peripheral base address.

  • enable – Pass true to enable or false to disable the specified I2C as master.

uint32_t I2C_GetStatusFlags(I2C_Type *base)

Gets the I2C status flags.

A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.

See also

_i2c_status_flags.

Parameters:
  • base – The I2C peripheral base address.

Returns:

State of the status flags:

  • 1: related status flag is set.

  • 0: related status flag is not set.

static inline void I2C_ClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C status flag state.

Refer to kI2C_CommonAllClearStatusFlags, kI2C_MasterAllClearStatusFlags and kI2C_SlaveAllClearStatusFlags to see the clearable flags. Attempts to clear other flags has no effect.

See also

_i2c_status_flags, _i2c_master_status_flags and _i2c_slave_status_flags.

Parameters:
  • base – The I2C peripheral base address.

  • statusMask – A bitmask of status flags that are to be cleared. The mask is composed of the members in kI2C_CommonAllClearStatusFlags, kI2C_MasterAllClearStatusFlags and kI2C_SlaveAllClearStatusFlags. You may pass the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C master status flag state.

Deprecated:

Do not use this function. It has been superceded by I2C_ClearStatusFlags The following status register flags can be cleared:

  • kI2C_MasterArbitrationLostFlag

  • kI2C_MasterStartStopErrorFlag

Attempts to clear other flags has no effect.

See also

_i2c_status_flags.

Parameters:
  • base – The I2C peripheral base address.

  • statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i2c_status_flags enumerators OR’d together. You may pass the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_EnableInterrupts(I2C_Type *base, uint32_t interruptMask)

Enables the I2C interrupt requests.

Parameters:
  • base – The I2C peripheral base address.

  • interruptMask – Bit mask of interrupts to enable. See _i2c_interrupt_enable for the set of constants that should be OR’d together to form the bit mask.

static inline void I2C_DisableInterrupts(I2C_Type *base, uint32_t interruptMask)

Disables the I2C interrupt requests.

Parameters:
  • base – The I2C peripheral base address.

  • interruptMask – Bit mask of interrupts to disable. See _i2c_interrupt_enable for the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t I2C_GetEnabledInterrupts(I2C_Type *base)

Returns the set of currently enabled I2C interrupt requests.

Parameters:
  • base – The I2C peripheral base address.

Returns:

A bitmask composed of _i2c_interrupt_enable enumerators OR’d together to indicate the set of enabled interrupts.

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)

Sets the I2C bus frequency for master transactions.

The I2C master is automatically disabled and re-enabled as necessary to configure the baud rate. Do not call this function during a transfer, or the transfer is aborted.

Parameters:
  • base – The I2C peripheral base address.

  • srcClock_Hz – I2C functional clock frequency in Hertz.

  • baudRate_Bps – Requested bus frequency in bits per second.

void I2C_MasterSetTimeoutValue(I2C_Type *base, uint8_t timeout_Ms, uint32_t srcClock_Hz)

Sets the I2C bus timeout value.

If the SCL signal remains low or bus does not have event longer than the timeout value, kI2C_SclTimeoutFlag or kI2C_EventTimeoutFlag is set. This can indicete the bus is held by slave or any fault occurs to the I2C module.

Parameters:
  • base – The I2C peripheral base address.

  • timeout_Ms – Timeout value in millisecond.

  • srcClock_Hz – I2C functional clock frequency in Hertz.

static inline bool I2C_MasterGetBusIdleState(I2C_Type *base)

Returns whether the bus is idle.

Requires the master mode to be enabled.

Parameters:
  • base – The I2C peripheral base address.

Return values:
  • true – Bus is busy.

  • false – Bus is idle.

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal. The slave address is sent following the I2C START signal.

Parameters:
  • base – I2C peripheral base pointer

  • address – 7-bit slave device address.

  • direction – Master transfer directions(transmit/receive).

Return values:
  • kStatus_Success – Successfully send the start signal.

  • kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)

Sends a STOP signal on the I2C bus.

Return values:
  • kStatus_Success – Successfully send the stop signal.

  • kStatus_I2C_Timeout – Send stop signal failed, timeout.

static inline status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a REPEATED START on the I2C bus.

Parameters:
  • base – I2C peripheral base pointer

  • address – 7-bit slave device address.

  • direction – Master transfer directions(transmit/receive).

Return values:
  • kStatus_Success – Successfully send the start signal.

  • kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C master.

status_t I2C_MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t flags)

Performs a polling send transfer on the I2C bus.

Sends up to txSize number of bytes to the previously addressed slave device. The slave may reply with a NAK to any byte in order to terminate the transfer early. If this happens, this function returns kStatus_I2C_Nak.

Parameters:
  • base – The I2C peripheral base address.

  • txBuff – The pointer to the data to be transferred.

  • txSize – The length in bytes of the data to be transferred.

  • flags – Transfer control flag to control special behavior like suppressing start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values:
  • kStatus_Success – Data was sent successfully.

  • kStatus_I2C_Busy – Another master is currently utilizing the bus.

  • kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

  • kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)

Performs a polling receive transfer on the I2C bus.

Parameters:
  • base – The I2C peripheral base address.

  • rxBuff – The pointer to the data to be transferred.

  • rxSize – The length in bytes of the data to be transferred.

  • flags – Transfer control flag to control special behavior like suppressing start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values:
  • kStatus_Success – Data was received successfully.

  • kStatus_I2C_Busy – Another master is currently utilizing the bus.

  • kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

  • kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)

Performs a master polling transfer on the I2C bus.

Note

The API does not return until the transfer succeeds or fails due to arbitration lost or receiving a NAK.

Parameters:
  • base – I2C peripheral base address.

  • xfer – Pointer to the transfer structure.

Return values:
  • kStatus_Success – Successfully complete the data transmission.

  • kStatus_I2C_Busy – Previous transmission still not finished.

  • kStatus_I2C_Timeout – Transfer error, wait signal timeout.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

  • kStataus_I2C_Addr_Nak – Transfer error, receive NAK during addressing.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C master non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I2C_MasterTransferAbort() API shall be called.

Parameters:
  • base – The I2C peripheral base address.

  • handle[out] Pointer to the I2C master driver handle.

  • callback – User provided pointer to the asynchronous callback function.

  • userData – User provided pointer to the application callback data.

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)

Performs a non-blocking transaction on the I2C bus.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to the I2C master driver handle.

  • xfer – The pointer to the transfer descriptor.

Return values:
  • kStatus_Success – The transaction was started successfully.

  • kStatus_I2C_Busy – Either another master is currently utilizing the bus, or a non-blocking transaction is already in progress.

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count)

Returns number of bytes transferred so far.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to the I2C master driver handle.

  • count[out] Number of bytes transferred so far by the non-blocking transaction.

Return values:
  • kStatus_Success

  • kStatus_I2C_Busy

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)

Terminates a non-blocking I2C master transmission early.

Note

It is not safe to call this function from an IRQ handler that has a higher priority than the I2C peripheral’s IRQ priority.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to the I2C master driver handle.

Return values:
  • kStatus_Success – A transaction was successfully aborted.

  • kStatus_I2C_Timeout – Timeout during polling for flags.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, i2c_master_handle_t *handle)

Reusable routine to handle master interrupts.

Note

This function does not need to be called unless you are reimplementing the nonblocking API’s interrupt handler routines to add special functionality.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to the I2C master driver handle.

enum _i2c_direction

Direction of master and slave transfers.

Values:

enumerator kI2C_Write

Master transmit.

enumerator kI2C_Read

Master receive.

enum _i2c_master_transfer_flags

Transfer option flags.

Note

These enumerations are intended to be OR’d together to form a bit mask of options for the _i2c_master_transfer::flags field.

Values:

enumerator kI2C_TransferDefaultFlag

Transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag

Don’t send a start condition, address, and sub address

enumerator kI2C_TransferRepeatedStartFlag

Send a repeated start condition

enumerator kI2C_TransferNoStopFlag

Don’t send a stop condition.

enum _i2c_transfer_states

States for the state machine used by transactional APIs.

Values:

enumerator kIdleState
enumerator kTransmitSubaddrState
enumerator kTransmitDataState
enumerator kReceiveDataBeginState
enumerator kReceiveDataState
enumerator kReceiveLastDataState
enumerator kStartState
enumerator kStopState
enumerator kWaitForCompletionState
typedef enum _i2c_direction i2c_direction_t

Direction of master and slave transfers.

typedef struct _i2c_master_config i2c_master_config_t

Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _i2c_master_transfer i2c_master_transfer_t

I2C master transfer typedef.

typedef struct _i2c_master_handle i2c_master_handle_t

I2C master handle typedef.

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle, status_t completionStatus, void *userData)

Master completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you wish to use in the call to I2C_MasterTransferCreateHandle().

Param base:

The I2C peripheral base address.

Param completionStatus:

Either kStatus_Success or an error code describing how the transfer completed.

Param userData:

Arbitrary pointer-sized value passed from the application.

struct _i2c_master_config
#include <fsl_i2c.h>

Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableMaster

Whether to enable master mode.

uint32_t baudRate_Bps

Desired baud rate in bits per second.

bool enableTimeout

Enable internal timeout function.

uint8_t timeout_Ms

Event timeout and SCL low timeout value.

struct _i2c_master_transfer
#include <fsl_i2c.h>

Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the I2C_MasterTransferNonBlocking() API.

Public Members

uint32_t flags

Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.

uint8_t slaveAddress

The 7-bit slave address.

i2c_direction_t direction

Either kI2C_Read or kI2C_Write.

uint32_t subaddress

Sub address. Transferred MSB first.

size_t subaddressSize

Length of sub address to send in bytes. Maximum size is 4 bytes.

void *data

Pointer to data to transfer.

size_t dataSize

Number of bytes to transfer.

struct _i2c_master_handle
#include <fsl_i2c.h>

Driver handle for master non-blocking APIs.

Note

The contents of this structure are private and subject to change.

Public Members

uint8_t state

Transfer state machine current state.

uint32_t transferCount

Indicates progress of the transfer

uint32_t remainingBytes

Remaining byte count in current state.

uint8_t *buf

Buffer pointer for current state.

bool checkAddrNack

Whether to check the nack signal is detected during addressing.

i2c_master_transfer_t transfer

Copy of the current transfer info.

i2c_master_transfer_callback_t completionCallback

Callback function pointer.

void *userData

Application data passed to callback.

I2C Slave Driver

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)

Provides a default configuration for the I2C slave peripheral.

This function provides the following default configuration for the I2C slave peripheral:

slaveConfig->enableSlave = true;
slaveConfig->address0.disable = false;
slaveConfig->address0.address = 0u;
slaveConfig->address1.disable = true;
slaveConfig->address2.disable = true;
slaveConfig->address3.disable = true;
slaveConfig->busSpeed = kI2C_SlaveStandardMode;

After calling this function, override any settings to customize the configuration, prior to initializing the master driver with I2C_SlaveInit(). Be sure to override at least the address0.address member of the configuration structure with the desired slave address.

Parameters:
  • slaveConfig[out] User provided configuration structure that is set to default values. Refer to i2c_slave_config_t.

status_t I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)

Initializes the I2C slave peripheral.

This function enables the peripheral clock and initializes the I2C slave peripheral as described by the user provided configuration.

Parameters:
  • base – The I2C peripheral base address.

  • slaveConfig – User provided peripheral configuration. Use I2C_SlaveGetDefaultConfig() to get a set of defaults that you can override.

  • srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to calculate CLKDIV value to provide enough data setup time for master when slave stretches the clock.

void I2C_SlaveSetAddress(I2C_Type *base, i2c_slave_address_register_t addressRegister, uint8_t address, bool addressDisable)

Configures Slave Address n register.

This function writes new value to Slave Address register.

Parameters:
  • base – The I2C peripheral base address.

  • addressRegister – The module supports multiple address registers. The parameter determines which one shall be changed.

  • address – The slave address to be stored to the address register for matching.

  • addressDisable – Disable matching of the specified address register.

void I2C_SlaveDeinit(I2C_Type *base)

Deinitializes the I2C slave peripheral.

This function disables the I2C slave peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.

Parameters:
  • base – The I2C peripheral base address.

static inline void I2C_SlaveEnable(I2C_Type *base, bool enable)

Enables or disables the I2C module as slave.

Parameters:
  • base – The I2C peripheral base address.

  • enable – True to enable or flase to disable.

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C status flag state.

The following status register flags can be cleared:

  • slave deselected flag

Attempts to clear other flags has no effect.

See also

_i2c_slave_flags.

Parameters:
  • base – The I2C peripheral base address.

  • statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i2c_slave_flags enumerators OR’d together. You may pass the result of a previous call to I2C_SlaveGetStatusFlags().

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)

Performs a polling send transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters:
  • base – The I2C peripheral base address.

  • txBuff – The pointer to the data to be transferred.

  • txSize – The length in bytes of the data to be transferred.

Returns:

kStatus_Success Data has been sent.

Returns:

kStatus_Fail Unexpected slave state (master data write while master read from slave is expected).

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)

Performs a polling receive transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters:
  • base – The I2C peripheral base address.

  • rxBuff – The pointer to the data to be transferred.

  • rxSize – The length in bytes of the data to be transferred.

Returns:

kStatus_Success Data has been received.

Returns:

kStatus_Fail Unexpected slave state (master data read while master write to slave is expected).

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C slave non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I2C_SlaveTransferAbort() API shall be called.

Parameters:
  • base – The I2C peripheral base address.

  • handle[out] Pointer to the I2C slave driver handle.

  • callback – User provided pointer to the asynchronous callback function.

  • userData – User provided pointer to the application callback data.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask)

Starts accepting slave transfers.

Call this API after calling I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start processing transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The callback is always invoked from the interrupt context.

If no slave Tx transfer is busy, a master read from slave request invokes kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to slave request invokes kI2C_SlaveReceiveEvent callback.

The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.

  • eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.

Return values:
  • kStatus_Success – Slave transfers were successfully started.

  • kStatus_I2C_Busy – Slave transfers have already been started on this handle.

status_t I2C_SlaveSetSendBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, const void *txData, size_t txSize, uint32_t eventMask)

Starts accepting master read from slave requests.

The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new slave Tx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters:
  • base – The I2C peripheral base address.

  • transfer – Pointer to i2c_slave_transfer_t structure.

  • txData – Pointer to data to send to master.

  • txSize – Size of txData in bytes.

  • eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.

Return values:
  • kStatus_Success – Slave transfers were successfully started.

  • kStatus_I2C_Busy – Slave transfers have already been started on this handle.

status_t I2C_SlaveSetReceiveBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void *rxData, size_t rxSize, uint32_t eventMask)

Starts accepting master write to slave requests.

The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new slave Rx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters:
  • base – The I2C peripheral base address.

  • transfer – Pointer to i2c_slave_transfer_t structure.

  • rxData – Pointer to data to store data from master.

  • rxSize – Size of rxData in bytes.

  • eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.

Return values:
  • kStatus_Success – Slave transfers were successfully started.

  • kStatus_I2C_Busy – Slave transfers have already been started on this handle.

static inline uint32_t I2C_SlaveGetReceivedAddress(I2C_Type *base, volatile i2c_slave_transfer_t *transfer)

Returns the slave address sent by the I2C master.

This function should only be called from the address match event callback kI2C_SlaveAddressMatchEvent.

Parameters:
  • base – The I2C peripheral base address.

  • transfer – The I2C slave transfer.

Returns:

The 8-bit address matched by the I2C slave. Bit 0 contains the R/w direction bit, and the 7-bit slave address is in the upper 7 bits.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)

Aborts the slave non-blocking transfers.

Note

This API could be called at any time to stop slave for handling the bus events.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.

Return values:
  • kStatus_Success

  • kStatus_I2C_Idle

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)

Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_slave_handle_t structure.

  • count – Number of bytes transferred so far by the non-blocking transaction.

Return values:
  • kStatus_InvalidArgument – count is Invalid.

  • kStatus_Success – Successfully return the count.

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, i2c_slave_handle_t *handle)

Reusable routine to handle slave interrupts.

Note

This function does not need to be called unless you are reimplementing the non blocking API’s interrupt handler routines to add special functionality.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.

enum _i2c_slave_address_register

I2C slave address register.

Values:

enumerator kI2C_SlaveAddressRegister0

Slave Address 0 register.

enumerator kI2C_SlaveAddressRegister1

Slave Address 1 register.

enumerator kI2C_SlaveAddressRegister2

Slave Address 2 register.

enumerator kI2C_SlaveAddressRegister3

Slave Address 3 register.

enum _i2c_slave_address_qual_mode

I2C slave address match options.

Values:

enumerator kI2C_QualModeMask

The SLVQUAL0 field (qualAddress) is used as a logical mask for matching address0.

enumerator kI2C_QualModeExtend

The SLVQUAL0 (qualAddress) field is used to extend address 0 matching in a range of addresses.

enum _i2c_slave_bus_speed

I2C slave bus speed options.

Values:

enumerator kI2C_SlaveStandardMode
enumerator kI2C_SlaveFastMode
enumerator kI2C_SlaveFastModePlus
enumerator kI2C_SlaveHsMode
enum _i2c_slave_transfer_event

Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.

Note

These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent

Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent

Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_SlaveReceiveEvent

Callback is requested to provide a buffer in which to place received data (slave-receiver role).

enumerator kI2C_SlaveCompletionEvent

All data in the active transfer have been consumed.

enumerator kI2C_SlaveDeselectedEvent

The slave function has become deselected (SLVSEL flag changing from 1 to 0.

enumerator kI2C_SlaveAllEvents

Bit mask of all available events.

enum _i2c_slave_fsm

I2C slave software finite state machine states.

Values:

enumerator kI2C_SlaveFsmAddressMatch
enumerator kI2C_SlaveFsmReceive
enumerator kI2C_SlaveFsmTransmit
typedef enum _i2c_slave_address_register i2c_slave_address_register_t

I2C slave address register.

typedef struct _i2c_slave_address i2c_slave_address_t

Data structure with 7-bit Slave address and Slave address disable.

typedef enum _i2c_slave_address_qual_mode i2c_slave_address_qual_mode_t

I2C slave address match options.

typedef enum _i2c_slave_bus_speed i2c_slave_bus_speed_t

I2C slave bus speed options.

typedef struct _i2c_slave_config i2c_slave_config_t

Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t

Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.

Note

These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_slave_handle i2c_slave_handle_t

I2C slave handle typedef.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t

I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void *userData)

Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use the I2C_SlaveSetCallback() function after you have created a handle.

Param base:

Base address for the I2C instance on which the event occurred.

Param transfer:

Pointer to transfer descriptor containing values passed to and/or from the callback.

Param userData:

Arbitrary pointer-sized value passed from the application.

typedef enum _i2c_slave_fsm i2c_slave_fsm_t

I2C slave software finite state machine states.

typedef void (*flexcomm_i2c_master_irq_handler_t)(I2C_Type *base, i2c_master_handle_t *handle)

Typedef for master interrupt handler.

typedef void (*flexcomm_i2c_slave_irq_handler_t)(I2C_Type *base, i2c_slave_handle_t *handle)

Typedef for slave interrupt handler.

struct _i2c_slave_address
#include <fsl_i2c.h>

Data structure with 7-bit Slave address and Slave address disable.

Public Members

uint8_t address

7-bit Slave address SLVADR.

bool addressDisable

Slave address disable SADISABLE.

struct _i2c_slave_config
#include <fsl_i2c.h>

Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

i2c_slave_address_t address0

Slave’s 7-bit address and disable.

i2c_slave_address_t address1

Alternate slave 7-bit address and disable.

i2c_slave_address_t address2

Alternate slave 7-bit address and disable.

i2c_slave_address_t address3

Alternate slave 7-bit address and disable.

i2c_slave_address_qual_mode_t qualMode

Qualify mode for slave address 0.

uint8_t qualAddress

Slave address qualifier for address 0.

i2c_slave_bus_speed_t busSpeed

Slave bus speed mode. If the slave function stretches SCL to allow for software response, it must provide sufficient data setup time to the master before releasing the stretched clock. This is accomplished by inserting one clock time of CLKDIV at that point. The busSpeed value is used to configure CLKDIV such that one clock time is greater than the tSU;DAT value noted in the I2C bus specification for the I2C mode that is being used. If the busSpeed mode is unknown at compile time, use the longest data setup time kI2C_SlaveStandardMode (250 ns)

bool enableSlave

Enable slave mode.

struct _i2c_slave_transfer
#include <fsl_i2c.h>

I2C slave transfer structure.

Public Members

i2c_slave_handle_t *handle

Pointer to handle that contains this transfer.

i2c_slave_transfer_event_t event

Reason the callback is being invoked.

uint8_t receivedAddress

Matching address send by master. 7-bits plus R/nW bit0

uint32_t eventMask

Mask of enabled events.

uint8_t *rxData

Transfer buffer for receive data

const uint8_t *txData

Transfer buffer for transmit data

size_t txSize

Transfer size

size_t rxSize

Transfer size

size_t transferredCount

Number of bytes transferred during this transfer.

status_t completionStatus

Success or error code describing how the transfer completed. Only applies for kI2C_SlaveCompletionEvent.

struct _i2c_slave_handle
#include <fsl_i2c.h>

I2C slave handle structure.

Note

The contents of this structure are private and subject to change.

Public Members

volatile i2c_slave_transfer_t transfer

I2C slave transfer.

volatile bool isBusy

Whether transfer is busy.

volatile i2c_slave_fsm_t slaveFsm

slave transfer state machine.

i2c_slave_transfer_callback_t callback

Callback function called at transfer event.

void *userData

Callback parameter passed to callback.

I2S: I2S Driver

I2S DMA Driver

void I2S_TxTransferCreateHandleDMA(I2S_Type *base, i2s_dma_handle_t *handle, dma_handle_t *dmaHandle, i2s_dma_transfer_callback_t callback, void *userData)

Initializes handle for transfer of audio data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • dmaHandle – pointer to dma handle structure.

  • callback – function to be called back when transfer is done or fails.

  • userData – pointer to data passed to callback.

status_t I2S_TxTransferSendDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t transfer)

Begins or queue sending of the given data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • transfer – data buffer.

Return values:
  • kStatus_Success

  • kStatus_I2S_Busy – if all queue slots are occupied with unsent buffers.

void I2S_TransferAbortDMA(I2S_Type *base, i2s_dma_handle_t *handle)

Aborts transfer of data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

void I2S_RxTransferCreateHandleDMA(I2S_Type *base, i2s_dma_handle_t *handle, dma_handle_t *dmaHandle, i2s_dma_transfer_callback_t callback, void *userData)

Initializes handle for reception of audio data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • dmaHandle – pointer to dma handle structure.

  • callback – function to be called back when transfer is done or fails.

  • userData – pointer to data passed to callback.

status_t I2S_RxTransferReceiveDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t transfer)

Begins or queue reception of data into given buffer.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • transfer – data buffer.

Return values:
  • kStatus_Success

  • kStatus_I2S_Busy – if all queue slots are occupied with buffers which are not full.

void I2S_DMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t tcds)

Invoked from DMA interrupt handler.

Parameters:
  • handle – pointer to DMA handle structure.

  • userData – argument for user callback.

  • transferDone – if transfer was done.

  • tcds

void I2S_TransferInstallLoopDMADescriptorMemory(i2s_dma_handle_t *handle, void *dmaDescriptorAddr, size_t dmaDescriptorNum)

Install DMA descriptor memory for loop transfer only.

This function used to register DMA descriptor memory for the i2s loop dma transfer.

It must be callbed before I2S_TransferSendLoopDMA/I2S_TransferReceiveLoopDMA and after I2S_RxTransferCreateHandleDMA/I2S_TxTransferCreateHandleDMA.

User should be take care about the address of DMA descriptor pool which required align with 16BYTE at least.

Parameters:
  • handle – Pointer to i2s DMA transfer handle.

  • dmaDescriptorAddr – DMA descriptor start address.

  • dmaDescriptorNum – DMA descriptor number.

status_t I2S_TransferSendLoopDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t *xfer, uint32_t loopTransferCount)

Send link transfer data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.

This function support loop transfer, such as A->B->…->A, the loop transfer chain will be converted into a chain of descriptor and submit to dma. Application must be aware of that the more counts of the loop transfer, then more DMA descriptor memory required, user can use function I2S_InstallDMADescriptorMemory to register the dma descriptor memory.

As the DMA support maximum 1024 transfer count, so application must be aware of that this transfer function support maximum 1024 samples in each transfer, otherwise assert error or error status will be returned. Once the loop transfer start, application can use function I2S_TransferAbortDMA to stop the loop transfer.

Parameters:
  • base – I2S peripheral base address.

  • handle – Pointer to usart_dma_handle_t structure.

  • xfer – I2S DMA transfer structure. See i2s_transfer_t.

  • loopTransferCount – loop count

Return values:

kStatus_Success

status_t I2S_TransferReceiveLoopDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t *xfer, uint32_t loopTransferCount)

Receive link transfer data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.

This function support loop transfer, such as A->B->…->A, the loop transfer chain will be converted into a chain of descriptor and submit to dma. Application must be aware of that the more counts of the loop transfer, then more DMA descriptor memory required, user can use function I2S_InstallDMADescriptorMemory to register the dma descriptor memory.

As the DMA support maximum 1024 transfer count, so application must be aware of that this transfer function support maximum 1024 samples in each transfer, otherwise assert error or error status will be returned. Once the loop transfer start, application can use function I2S_TransferAbortDMA to stop the loop transfer.

Parameters:
  • base – I2S peripheral base address.

  • handle – Pointer to usart_dma_handle_t structure.

  • xfer – I2S DMA transfer structure. See i2s_transfer_t.

  • loopTransferCount – loop count

Return values:

kStatus_Success

FSL_I2S_DMA_DRIVER_VERSION

I2S DMA driver version 2.3.3.

typedef struct _i2s_dma_handle i2s_dma_handle_t

Members not to be accessed / modified outside of the driver.

typedef void (*i2s_dma_transfer_callback_t)(I2S_Type *base, i2s_dma_handle_t *handle, status_t completionStatus, void *userData)

Callback function invoked from DMA API on completion.

Param base:

I2S base pointer.

Param handle:

pointer to I2S transaction.

Param completionStatus:

status of the transaction.

Param userData:

optional pointer to user arguments data.

struct _i2s_dma_handle
#include <fsl_i2s_dma.h>

i2s dma handle

Public Members

uint32_t state

Internal state of I2S DMA transfer

uint8_t bytesPerFrame

bytes per frame

i2s_dma_transfer_callback_t completionCallback

Callback function pointer

void *userData

Application data passed to callback

dma_handle_t *dmaHandle

DMA handle

volatile i2s_transfer_t i2sQueue[(4U)]

Transfer queue storing transfer buffers

volatile uint8_t queueUser

Queue index where user’s next transfer will be stored

volatile uint8_t queueDriver

Queue index of buffer actually used by the driver

dma_descriptor_t *i2sLoopDMADescriptor

descriptor pool pointer

size_t i2sLoopDMADescriptorNum

number of descriptor in descriptors pool

I2S Driver

void I2S_TxInit(I2S_Type *base, const i2s_config_t *config)

Initializes the FLEXCOMM peripheral for I2S transmit functionality.

Ungates the FLEXCOMM clock and configures the module for I2S transmission using a configuration structure. The configuration structure can be custom filled or set with default values by I2S_TxGetDefaultConfig().

Note

This API should be called at the beginning of the application to use the I2S driver.

Parameters:
  • base – I2S base pointer.

  • config – pointer to I2S configuration structure.

void I2S_RxInit(I2S_Type *base, const i2s_config_t *config)

Initializes the FLEXCOMM peripheral for I2S receive functionality.

Ungates the FLEXCOMM clock and configures the module for I2S receive using a configuration structure. The configuration structure can be custom filled or set with default values by I2S_RxGetDefaultConfig().

Note

This API should be called at the beginning of the application to use the I2S driver.

Parameters:
  • base – I2S base pointer.

  • config – pointer to I2S configuration structure.

void I2S_TxGetDefaultConfig(i2s_config_t *config)

Sets the I2S Tx configuration structure to default values.

This API initializes the configuration structure for use in I2S_TxInit(). The initialized structure can remain unchanged in I2S_TxInit(), or it can be modified before calling I2S_TxInit(). Example:

i2s_config_t config;
I2S_TxGetDefaultConfig(&config);

Default values:

config->masterSlave = kI2S_MasterSlaveNormalMaster;
config->mode = kI2S_ModeI2sClassic;
config->rightLow = false;
config->leftJust = false;
config->pdmData = false;
config->sckPol = false;
config->wsPol = false;
config->divider = 1;
config->oneChannel = false;
config->dataLength = 16;
config->frameLength = 32;
config->position = 0;
config->watermark = 4;
config->txEmptyZero = true;
config->pack48 = false;

Parameters:
  • config – pointer to I2S configuration structure.

void I2S_RxGetDefaultConfig(i2s_config_t *config)

Sets the I2S Rx configuration structure to default values.

This API initializes the configuration structure for use in I2S_RxInit(). The initialized structure can remain unchanged in I2S_RxInit(), or it can be modified before calling I2S_RxInit(). Example:

i2s_config_t config;
I2S_RxGetDefaultConfig(&config);

Default values:

config->masterSlave = kI2S_MasterSlaveNormalSlave;
config->mode = kI2S_ModeI2sClassic;
config->rightLow = false;
config->leftJust = false;
config->pdmData = false;
config->sckPol = false;
config->wsPol = false;
config->divider = 1;
config->oneChannel = false;
config->dataLength = 16;
config->frameLength = 32;
config->position = 0;
config->watermark = 4;
config->txEmptyZero = false;
config->pack48 = false;

Parameters:
  • config – pointer to I2S configuration structure.

void I2S_Deinit(I2S_Type *base)

De-initializes the I2S peripheral.

This API gates the FLEXCOMM clock. The I2S module can’t operate unless I2S_TxInit or I2S_RxInit is called to enable the clock.

Parameters:
  • base – I2S base pointer.

void I2S_SetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate, uint32_t bitWidth, uint32_t channelNumbers)

Transmitter/Receiver bit clock rate configurations.

Parameters:
  • base – SAI base pointer.

  • sourceClockHz – bit clock source frequency.

  • sampleRate – audio data sample rate.

  • bitWidth – audio data bitWidth.

  • channelNumbers – audio channel numbers.

void I2S_TxTransferCreateHandle(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_callback_t callback, void *userData)

Initializes handle for transfer of audio data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • callback – function to be called back when transfer is done or fails.

  • userData – pointer to data passed to callback.

status_t I2S_TxTransferNonBlocking(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_t transfer)

Begins or queue sending of the given data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • transfer – data buffer.

Return values:
  • kStatus_Success

  • kStatus_I2S_Busy – if all queue slots are occupied with unsent buffers.

void I2S_TxTransferAbort(I2S_Type *base, i2s_handle_t *handle)

Aborts sending of data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

void I2S_RxTransferCreateHandle(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_callback_t callback, void *userData)

Initializes handle for reception of audio data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • callback – function to be called back when transfer is done or fails.

  • userData – pointer to data passed to callback.

status_t I2S_RxTransferNonBlocking(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_t transfer)

Begins or queue reception of data into given buffer.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • transfer – data buffer.

Return values:
  • kStatus_Success

  • kStatus_I2S_Busy – if all queue slots are occupied with buffers which are not full.

void I2S_RxTransferAbort(I2S_Type *base, i2s_handle_t *handle)

Aborts receiving of data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

status_t I2S_TransferGetCount(I2S_Type *base, i2s_handle_t *handle, size_t *count)

Returns number of bytes transferred so far.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • count[out] number of bytes transferred so far by the non-blocking transaction.

Return values:
  • kStatus_Success

  • kStatus_NoTransferInProgress – there is no non-blocking transaction currently in progress.

status_t I2S_TransferGetErrorCount(I2S_Type *base, i2s_handle_t *handle, size_t *count)

Returns number of buffer underruns or overruns.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • count[out] number of transmit errors encountered so far by the non-blocking transaction.

Return values:
  • kStatus_Success

  • kStatus_NoTransferInProgress – there is no non-blocking transaction currently in progress.

static inline void I2S_Enable(I2S_Type *base)

Enables I2S operation.

Parameters:
  • base – I2S base pointer.

void I2S_EnableSecondaryChannel(I2S_Type *base, uint32_t channel, bool oneChannel, uint32_t position)

Enables I2S secondary channel.

Parameters:
  • base – I2S base pointer.

  • channel – seondary channel channel number, reference _i2s_secondary_channel.

  • oneChannel – true is treated as single channel, functionality left channel for this pair.

  • position – define the location within the frame of the data, should not bigger than 0x1FFU.

static inline void I2S_DisableSecondaryChannel(I2S_Type *base, uint32_t channel)

Disables I2S secondary channel.

Parameters:
  • base – I2S base pointer.

  • channel – seondary channel channel number, reference _i2s_secondary_channel.

static inline void I2S_Disable(I2S_Type *base)

Disables I2S operation.

Parameters:
  • base – I2S base pointer.

static inline void I2S_EnableInterrupts(I2S_Type *base, uint32_t interruptMask)

Enables I2S FIFO interrupts.

Parameters:
  • base – I2S base pointer.

  • interruptMask – bit mask of interrupts to enable. See i2s_flags_t for the set of constants that should be OR’d together to form the bit mask.

static inline void I2S_DisableInterrupts(I2S_Type *base, uint32_t interruptMask)

Disables I2S FIFO interrupts.

Parameters:
  • base – I2S base pointer.

  • interruptMask – bit mask of interrupts to enable. See i2s_flags_t for the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t I2S_GetEnabledInterrupts(I2S_Type *base)

Returns the set of currently enabled I2S FIFO interrupts.

Parameters:
  • base – I2S base pointer.

Returns:

A bitmask composed of i2s_flags_t enumerators OR’d together to indicate the set of enabled interrupts.

status_t I2S_EmptyTxFifo(I2S_Type *base)

Flush the valid data in TX fifo.

Parameters:
  • base – I2S base pointer.

Returns:

kStatus_Fail empty TX fifo failed, kStatus_Success empty tx fifo success.

void I2S_TxHandleIRQ(I2S_Type *base, i2s_handle_t *handle)

Invoked from interrupt handler when transmit FIFO level decreases.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

void I2S_RxHandleIRQ(I2S_Type *base, i2s_handle_t *handle)

Invoked from interrupt handler when receive FIFO level decreases.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

FSL_I2S_DRIVER_VERSION

I2S driver version 2.3.2.

_i2s_status I2S status codes.

Values:

enumerator kStatus_I2S_BufferComplete

Transfer from/into a single buffer has completed

enumerator kStatus_I2S_Done

All buffers transfers have completed

enumerator kStatus_I2S_Busy

Already performing a transfer and cannot queue another buffer

enum _i2s_flags

I2S flags.

Note

These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2S_TxErrorFlag

TX error interrupt

enumerator kI2S_TxLevelFlag

TX level interrupt

enumerator kI2S_RxErrorFlag

RX error interrupt

enumerator kI2S_RxLevelFlag

RX level interrupt

enum _i2s_master_slave

Master / slave mode.

Values:

enumerator kI2S_MasterSlaveNormalSlave

Normal slave

enumerator kI2S_MasterSlaveWsSyncMaster

WS synchronized master

enumerator kI2S_MasterSlaveExtSckMaster

Master using existing SCK

enumerator kI2S_MasterSlaveNormalMaster

Normal master

enum _i2s_mode

I2S mode.

Values:

enumerator kI2S_ModeI2sClassic

I2S classic mode

enumerator kI2S_ModeDspWs50

DSP mode, WS having 50% duty cycle

enumerator kI2S_ModeDspWsShort

DSP mode, WS having one clock long pulse

enumerator kI2S_ModeDspWsLong

DSP mode, WS having one data slot long pulse

_i2s_secondary_channel I2S secondary channel.

Values:

enumerator kI2S_SecondaryChannel1

secondary channel 1

enumerator kI2S_SecondaryChannel2

secondary channel 2

enumerator kI2S_SecondaryChannel3

secondary channel 3

typedef enum _i2s_flags i2s_flags_t

I2S flags.

Note

These enums are meant to be OR’d together to form a bit mask.

typedef enum _i2s_master_slave i2s_master_slave_t

Master / slave mode.

typedef enum _i2s_mode i2s_mode_t

I2S mode.

typedef struct _i2s_config i2s_config_t

I2S configuration structure.

typedef struct _i2s_transfer i2s_transfer_t

Buffer to transfer from or receive audio data into.

typedef struct _i2s_handle i2s_handle_t

Transactional state of the intialized transfer or receive I2S operation.

typedef void (*i2s_transfer_callback_t)(I2S_Type *base, i2s_handle_t *handle, status_t completionStatus, void *userData)

Callback function invoked from transactional API on completion of a single buffer transfer.

Param base:

I2S base pointer.

Param handle:

pointer to I2S transaction.

Param completionStatus:

status of the transaction.

Param userData:

optional pointer to user arguments data.

I2S_NUM_BUFFERS

Number of buffers .

struct _i2s_config
#include <fsl_i2s.h>

I2S configuration structure.

Public Members

i2s_master_slave_t masterSlave

Master / slave configuration

i2s_mode_t mode

I2S mode

bool rightLow

Right channel data in low portion of FIFO

bool leftJust

Left justify data in FIFO

bool pdmData

Data source is the D-Mic subsystem

bool sckPol

SCK polarity

bool wsPol

WS polarity

uint16_t divider

Flexcomm function clock divider (1 - 4096)

bool oneChannel

true mono, false stereo

uint8_t dataLength

Data length (4 - 32)

uint16_t frameLength

Frame width (4 - 512)

uint16_t position

Data position in the frame

uint8_t watermark

FIFO trigger level

bool txEmptyZero

Transmit zero when buffer becomes empty or last item

bool pack48

Packing format for 48-bit data (false - 24 bit values, true - alternating 32-bit and 16-bit values)

struct _i2s_transfer
#include <fsl_i2s.h>

Buffer to transfer from or receive audio data into.

Public Members

uint8_t *data

Pointer to data buffer.

size_t dataSize

Buffer size in bytes.

struct _i2s_handle
#include <fsl_i2s.h>

Members not to be accessed / modified outside of the driver.

Public Members

volatile uint32_t state

State of transfer

i2s_transfer_callback_t completionCallback

Callback function pointer

void *userData

Application data passed to callback

bool oneChannel

true mono, false stereo

uint8_t dataLength

Data length (4 - 32)

bool pack48

Packing format for 48-bit data (false - 24 bit values, true - alternating 32-bit and 16-bit values)

uint8_t watermark

FIFO trigger level

bool useFifo48H

When dataLength 17-24: true use FIFOWR48H, false use FIFOWR

volatile i2s_transfer_t i2sQueue[(4U)]

Transfer queue storing transfer buffers

volatile uint8_t queueUser

Queue index where user’s next transfer will be stored

volatile uint8_t queueDriver

Queue index of buffer actually used by the driver

volatile uint32_t errorCount

Number of buffer underruns/overruns

volatile uint32_t transferCount

Number of bytes transferred

IAP: In Application Programming Driver

status_t IAP_ReadPartID(uint32_t *partID)

Read part identification number.

This function is used to read the part identification number.

Parameters:
  • partID – Address to store the part identification number.

Return values:

kStatus_IAP_Success – Api has been executed successfully.

status_t IAP_ReadBootCodeVersion(uint32_t *bootCodeVersion)

Read boot code version number.

This function is used to read the boot code version number.

note Boot code version is two 32-bit words. Word 0 is the major version, word 1 is the minor version.

Parameters:
  • bootCodeVersion – Address to store the boot code version.

Return values:

kStatus_IAP_Success – Api has been executed successfully.

void IAP_ReinvokeISP(uint8_t ispType, uint32_t *status)

Reinvoke ISP.

This function is used to invoke the boot loader in ISP mode. It maps boot vectors and configures the peripherals for ISP.

note The error response will be returned when IAP is disabled or an invalid ISP type selection appears. The call won’t return unless an error occurs, so there can be no status code.

Parameters:
  • ispType – ISP type selection.

  • status – store the possible status.

Return values:

kStatus_IAP_ReinvokeISPConfig – reinvoke configuration error.

status_t IAP_ReadUniqueID(uint32_t *uniqueID)

Read unique identification.

This function is used to read the unique id.

Parameters:
  • uniqueID – store the uniqueID.

Return values:

kStatus_IAP_Success – Api has been executed successfully.

status_t IAP_PrepareSectorForWrite(uint32_t startSector, uint32_t endSector)

Prepare sector for write operation.

This function prepares sector(s) for write/erase operation. This function must be called before calling the IAP_CopyRamToFlash() or IAP_EraseSector() or IAP_ErasePage() function. The end sector number must be greater than or equal to the start sector number.

Parameters:
  • startSector – Start sector number.

  • endSector – End sector number.

Return values:
  • kStatus_IAP_Success – Api has been executed successfully.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_InvalidSector – Sector number is invalid or end sector number is greater than start sector number.

  • kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_CopyRamToFlash(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes, uint32_t systemCoreClock)

Copy RAM to flash.

This function programs the flash memory. Corresponding sectors must be prepared via IAP_PrepareSectorForWrite before calling this function.

Parameters:
  • dstAddr – Destination flash address where data bytes are to be written, the address should be multiples of FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES boundary.

  • srcAddr – Source ram address from where data bytes are to be read.

  • numOfBytes – Number of bytes to be written, it should be multiples of FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES, and ranges from FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES to FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES.

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function. When the flash controller has a fixed reference clock, this parameter is bypassed.

Return values:
  • kStatus_IAP_Success – Api has been executed successfully.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_SrcAddrError – Source address is not on word boundary.

  • kStatus_IAP_DstAddrError – Destination address is not on a correct boundary.

  • kStatus_IAP_SrcAddrNotMapped – Source address is not mapped in the memory map.

  • kStatus_IAP_DstAddrNotMapped – Destination address is not mapped in the memory map.

  • kStatus_IAP_CountError – Byte count is not multiple of 4 or is not a permitted value.

  • kStatus_IAP_NotPrepared – Command to prepare sector for write operation has not been executed.

  • kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_EraseSector(uint32_t startSector, uint32_t endSector, uint32_t systemCoreClock)

Erase sector.

This function erases sector(s). The end sector number must be greater than or equal to the start sector number.

Parameters:
  • startSector – Start sector number.

  • endSector – End sector number.

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function. When the flash controller has a fixed reference clock, this parameter is bypassed.

Return values:
  • kStatus_IAP_Success – Api has been executed successfully.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_InvalidSector – Sector number is invalid or end sector number is greater than start sector number.

  • kStatus_IAP_NotPrepared – Command to prepare sector for write operation has not been executed.

  • kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_ErasePage(uint32_t startPage, uint32_t endPage, uint32_t systemCoreClock)

Erase page.

This function erases page(s). The end page number must be greater than or equal to the start page number.

Parameters:
  • startPage – Start page number.

  • endPage – End page number.

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function. When the flash controller has a fixed reference clock, this parameter is bypassed.

Return values:
  • kStatus_IAP_Success – Api has been executed successfully.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_InvalidSector – Page number is invalid or end page number is greater than start page number.

  • kStatus_IAP_NotPrepared – Command to prepare sector for write operation has not been executed.

  • kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_BlankCheckSector(uint32_t startSector, uint32_t endSector)

Blank check sector(s)

Blank check single or multiples sectors of flash memory. The end sector number must be greater than or equal to the start sector number. It can be used to verify the sector erasure after IAP_EraseSector call.

Parameters:
  • startSector – Start sector number.

  • endSector – End sector number.

Return values:
  • kStatus_IAP_Success – One or more sectors are in erased state.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_SectorNotblank – One or more sectors are not blank.

status_t IAP_Compare(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes)

Compare memory contents of flash with ram.

This function compares the contents of flash and ram. It can be used to verify the flash memory contents after IAP_CopyRamToFlash call.

Parameters:
  • dstAddr – Destination flash address.

  • srcAddr – Source ram address.

  • numOfBytes – Number of bytes to be compared.

Return values:
  • kStatus_IAP_Success – Contents of flash and ram match.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_AddrError – Address is not on word boundary.

  • kStatus_IAP_AddrNotMapped – Address is not mapped in the memory map.

  • kStatus_IAP_CountError – Byte count is not multiple of 4 or is not a permitted value.

  • kStatus_IAP_CompareError – Destination and source memory contents do not match.

status_t IAP_ExtendedFlashSignatureRead(uint32_t startPage, uint32_t endPage, uint32_t numOfStates, uint32_t *signature)

Extended Read signature.

This function calculates the signature value for one or more pages of on-chip flash memory.

Parameters:
  • startPage – Start page number.

  • endPage – End page number.

  • numOfStates – Number of wait states.

  • signature – Address to store the signature value.

Return values:

kStatus_IAP_Success – Api has been executed successfully.

status_t IAP_ReadFlashSignature(uint32_t *signature)

Read flash signature.

This funtion is used to obtain a 32-bit signature value of the entire flash memory.

Parameters:
  • signature – Address to store the 32-bit generated signature value.

Return values:

kStatus_IAP_Success – Api has been executed successfully.

FSL_IAP_DRIVER_VERSION

iap status codes.

Values:

enumerator kStatus_IAP_Success

Api is executed successfully

enumerator kStatus_IAP_InvalidCommand

Invalid command

enumerator kStatus_IAP_SrcAddrError

Source address is not on word boundary

enumerator kStatus_IAP_DstAddrError

Destination address is not on a correct boundary

enumerator kStatus_IAP_SrcAddrNotMapped

Source address is not mapped in the memory map

enumerator kStatus_IAP_DstAddrNotMapped

Destination address is not mapped in the memory map

enumerator kStatus_IAP_CountError

Byte count is not multiple of 4 or is not a permitted value

enumerator kStatus_IAP_InvalidSector

Sector/page number is invalid or end sector/page number is greater than start sector/page number

enumerator kStatus_IAP_SectorNotblank

One or more sectors are not blank

enumerator kStatus_IAP_NotPrepared

Command to prepare sector for write operation has not been executed

enumerator kStatus_IAP_CompareError

Destination and source memory contents do not match

enumerator kStatus_IAP_Busy

Flash programming hardware interface is busy

enumerator kStatus_IAP_ParamError

Insufficient number of parameters or invalid parameter

enumerator kStatus_IAP_AddrError

Address is not on word boundary

enumerator kStatus_IAP_AddrNotMapped

Address is not mapped in the memory map

enumerator kStatus_IAP_NoPower

Flash memory block is powered down

enumerator kStatus_IAP_NoClock

Flash memory block or controller is not clocked

enumerator kStatus_IAP_ReinvokeISPConfig

Reinvoke configuration error

enum _iap_commands

iap command codes.

Values:

enumerator kIapCmd_IAP_ReadFactorySettings

Read the factory settings

enumerator kIapCmd_IAP_PrepareSectorforWrite

Prepare Sector for write

enumerator kIapCmd_IAP_CopyRamToFlash

Copy RAM to flash

enumerator kIapCmd_IAP_EraseSector

Erase Sector

enumerator kIapCmd_IAP_BlankCheckSector

Blank check sector

enumerator kIapCmd_IAP_ReadPartId

Read part id

enumerator kIapCmd_IAP_Read_BootromVersion

Read bootrom version

enumerator kIapCmd_IAP_Compare

Compare

enumerator kIapCmd_IAP_ReinvokeISP

Reinvoke ISP

enumerator kIapCmd_IAP_ReadUid

Read Uid

enumerator kIapCmd_IAP_ErasePage

Erase Page

enumerator kIapCmd_IAP_ReadSignature

Read Signature

enumerator kIapCmd_IAP_ExtendedReadSignature

Extended Read Signature

enumerator kIapCmd_IAP_ReadEEPROMPage

Read EEPROM page

enumerator kIapCmd_IAP_WriteEEPROMPage

Write EEPROM page

enum _flash_access_time

Flash memory access time.

Values:

enumerator kFlash_IAP_OneSystemClockTime
enumerator kFlash_IAP_TwoSystemClockTime

1 system clock flash access time

enumerator kFlash_IAP_ThreeSystemClockTime

2 system clock flash access time

INPUTMUX: Input Multiplexing Driver

FSL_INPUTMUX_DRIVER_VERSION

Group interrupt driver version for SDK.

enum _inputmux_connection_t

INPUTMUX connections type.

Values:

enumerator kINPUTMUX_MainOscToFreqmeas

Frequency measure.

enumerator kINPUTMUX_Fro12MhzToFreqmeas
enumerator kINPUTMUX_WdtOscToFreqmeas
enumerator kINPUTMUX_32KhzOscToFreqmeas
enumerator kINPUTMUX_MainClkToFreqmeas
enumerator kINPUTMUX_GpioPort0Pin4ToFreqmeas
enumerator kINPUTMUX_GpioPort0Pin20ToFreqmeas
enumerator kINPUTMUX_GpioPort0Pin24ToFreqmeas
enumerator kINPUTMUX_GpioPort1Pin4ToFreqmeas

Pin Interrupt.

enumerator kINPUTMUX_GpioPort0Pin0ToPintsel
enumerator kINPUTMUX_GpioPort0Pin1ToPintsel
enumerator kINPUTMUX_GpioPort0Pin2ToPintsel
enumerator kINPUTMUX_GpioPort0Pin3ToPintsel
enumerator kINPUTMUX_GpioPort0Pin4ToPintsel
enumerator kINPUTMUX_GpioPort0Pin5ToPintsel
enumerator kINPUTMUX_GpioPort0Pin6ToPintsel
enumerator kINPUTMUX_GpioPort0Pin7ToPintsel
enumerator kINPUTMUX_GpioPort0Pin8ToPintsel
enumerator kINPUTMUX_GpioPort0Pin9ToPintsel
enumerator kINPUTMUX_GpioPort0Pin10ToPintsel
enumerator kINPUTMUX_GpioPort0Pin11ToPintsel
enumerator kINPUTMUX_GpioPort0Pin12ToPintsel
enumerator kINPUTMUX_GpioPort0Pin13ToPintsel
enumerator kINPUTMUX_GpioPort0Pin14ToPintsel
enumerator kINPUTMUX_GpioPort0Pin15ToPintsel
enumerator kINPUTMUX_GpioPort0Pin16ToPintsel
enumerator kINPUTMUX_GpioPort0Pin17ToPintsel
enumerator kINPUTMUX_GpioPort0Pin18ToPintsel
enumerator kINPUTMUX_GpioPort0Pin19ToPintsel
enumerator kINPUTMUX_GpioPort0Pin20ToPintsel
enumerator kINPUTMUX_GpioPort0Pin21ToPintsel
enumerator kINPUTMUX_GpioPort0Pin22ToPintsel
enumerator kINPUTMUX_GpioPort0Pin23ToPintsel
enumerator kINPUTMUX_GpioPort0Pin24ToPintsel
enumerator kINPUTMUX_GpioPort0Pin25ToPintsel
enumerator kINPUTMUX_GpioPort0Pin26ToPintsel
enumerator kINPUTMUX_GpioPort0Pin27ToPintsel
enumerator kINPUTMUX_GpioPort0Pin28ToPintsel
enumerator kINPUTMUX_GpioPort0Pin29ToPintsel
enumerator kINPUTMUX_GpioPort0Pin30ToPintsel
enumerator kINPUTMUX_GpioPort0Pin31ToPintsel
enumerator kINPUTMUX_GpioPort1Pin0ToPintsel
enumerator kINPUTMUX_GpioPort1Pin1ToPintsel
enumerator kINPUTMUX_GpioPort1Pin2ToPintsel
enumerator kINPUTMUX_GpioPort1Pin3ToPintsel
enumerator kINPUTMUX_GpioPort1Pin4ToPintsel
enumerator kINPUTMUX_GpioPort1Pin5ToPintsel
enumerator kINPUTMUX_GpioPort1Pin6ToPintsel
enumerator kINPUTMUX_GpioPort1Pin7ToPintsel
enumerator kINPUTMUX_GpioPort1Pin8ToPintsel
enumerator kINPUTMUX_GpioPort1Pin9ToPintsel
enumerator kINPUTMUX_GpioPort1Pin10ToPintsel
enumerator kINPUTMUX_GpioPort1Pin11ToPintsel
enumerator kINPUTMUX_GpioPort1Pin12ToPintsel
enumerator kINPUTMUX_GpioPort1Pin13ToPintsel
enumerator kINPUTMUX_GpioPort1Pin14ToPintsel
enumerator kINPUTMUX_GpioPort1Pin15ToPintsel
enumerator kINPUTMUX_GpioPort1Pin16ToPintsel
enumerator kINPUTMUX_GpioPort1Pin17ToPintsel
enumerator kINPUTMUX_GpioPort1Pin18ToPintsel
enumerator kINPUTMUX_GpioPort1Pin19ToPintsel
enumerator kINPUTMUX_GpioPort1Pin20ToPintsel
enumerator kINPUTMUX_GpioPort1Pin21ToPintsel
enumerator kINPUTMUX_GpioPort1Pin22ToPintsel
enumerator kINPUTMUX_GpioPort1Pin23ToPintsel
enumerator kINPUTMUX_GpioPort1Pin24ToPintsel
enumerator kINPUTMUX_GpioPort1Pin25ToPintsel
enumerator kINPUTMUX_GpioPort1Pin26ToPintsel
enumerator kINPUTMUX_GpioPort1Pin27ToPintsel
enumerator kINPUTMUX_GpioPort1Pin28ToPintsel
enumerator kINPUTMUX_GpioPort1Pin29ToPintsel
enumerator kINPUTMUX_GpioPort1Pin30ToPintsel
enumerator kINPUTMUX_GpioPort1Pin31ToPintsel

DMA ITRIG.

enumerator kINPUTMUX_Adc0SeqaIrqToDma
enumerator kINPUTMUX_ADC0SeqbIrqToDma
enumerator kINPUTMUX_Sct0DmaReq0ToDma
enumerator kINPUTMUX_Sct0DmaReq1ToDma
enumerator kINPUTMUX_Ctimer0M0ToDma
enumerator kINPUTMUX_Ctimer0M1ToDma
enumerator kINPUTMUX_Ctimer1M0ToDma
enumerator kINPUTMUX_Ctimer3M0ToDma
enumerator kINPUTMUX_PinInt0ToDma
enumerator kINPUTMUX_PinInt1ToDma
enumerator kINPUTMUX_PinInt2ToDma
enumerator kINPUTMUX_PinInt3ToDma
enumerator kINPUTMUX_Otrig0ToDma
enumerator kINPUTMUX_Otrig1ToDma
enumerator kINPUTMUX_Otrig2ToDma
enumerator kINPUTMUX_Otrig3ToDma

DMA OTRIG.

enumerator kINPUTMUX_DmaFlexcomm0RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm0TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm1RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm1TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm2RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm2TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm3RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm3TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm4RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm4TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm5RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm5TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm6RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm6TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm7RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm7TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaChannel18_TrigoutToTriginChannels
enumerator kINPUTMUX_DmaChannel19_TrigoutToTriginChannels
typedef enum _inputmux_connection_t inputmux_connection_t

INPUTMUX connections type.

void INPUTMUX_Init(INPUTMUX_Type *base)

Initialize INPUTMUX peripheral.

This function enables the INPUTMUX clock.

Parameters:
  • base – Base address of the INPUTMUX peripheral.

Return values:

None.

void INPUTMUX_AttachSignal(INPUTMUX_Type *base, uint16_t index, inputmux_connection_t connection)

Attaches a signal.

This function attaches multiplexed signals from INPUTMUX to target signals. For example, to attach GPIO PORT0 Pin 5 to PINT peripheral, do the following:

INPUTMUX_AttachSignal(INPUTMUX, 2, kINPUTMUX_GpioPort0Pin5ToPintsel);
In this example, INTMUX has 8 registers for PINT, PINT_SEL0~PINT_SEL7. With parameter index specified as 2, this function configures register PINT_SEL2.

Parameters:
  • base – Base address of the INPUTMUX peripheral.

  • index – The serial number of destination register in the group of INPUTMUX registers with same name.

  • connection – Applies signal from source signals collection to target signal.

Return values:

None.

void INPUTMUX_Deinit(INPUTMUX_Type *base)

Deinitialize INPUTMUX peripheral.

This function disables the INPUTMUX clock.

Parameters:
  • base – Base address of the INPUTMUX peripheral.

Return values:

None.

PINTSEL_PMUX_ID

Periphinmux IDs.

DMA_TRIG0_PMUX_ID
DMA_OTRIG_PMUX_ID
FREQMEAS_PMUX_ID
PMUX_SHIFT

Common Driver

FSL_COMMON_DRIVER_VERSION

common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE

No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART

Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART

Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI

Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC

Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM

Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART

Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART

Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART

Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO

Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI

Debug console based on QSCI.

MIN(a, b)

Computes the minimum of a and b.

MAX(a, b)

Computes the maximum of a and b.

UINT16_MAX

Max value of uint16_t type.

UINT32_MAX

Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)

Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)

Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)

Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)

Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)

Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)

For the variable at address address, clear the bits specifiled by clearBits and set the bits specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)

For the variable at address address, check whether the value equal to expected. If value same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)

For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)

Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)

Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)

Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)

Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER
SDK_SIZEALIGN(var, alignbytes)

Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

AT_NONCACHEABLE_SECTION(var)

Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)

Define a variable var, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)

Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)

Define a variable var with initial value, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.

enum _status_groups

Status group numbers.

Values:

enumerator kStatusGroup_Generic

Group number for generic status codes.

enumerator kStatusGroup_FLASH

Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI

Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI

Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI

Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART

Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C

Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C

Group number for LPI2C status codes.

enumerator kStatusGroup_UART

Group number for UART status codes.

enumerator kStatusGroup_I2C

Group number for UART status codes.

enumerator kStatusGroup_LPSCI

Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART

Group number for LPUART status codes.

enumerator kStatusGroup_SPI

Group number for SPI status code.

enumerator kStatusGroup_XRDC

Group number for XRDC status code.

enumerator kStatusGroup_SEMA42

Group number for SEMA42 status code.

enumerator kStatusGroup_SDHC

Group number for SDHC status code

enumerator kStatusGroup_SDMMC

Group number for SDMMC status code

enumerator kStatusGroup_SAI

Group number for SAI status code

enumerator kStatusGroup_MCG

Group number for MCG status codes.

enumerator kStatusGroup_SCG

Group number for SCG status codes.

enumerator kStatusGroup_SDSPI

Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S

Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD

Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP

Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C

Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S

Group number for I2S status codes

enumerator kStatusGroup_IUART

Group number for IUART status codes

enumerator kStatusGroup_CSI

Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI

Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC

Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER

Group number for POWER status codes.

enumerator kStatusGroup_ENET

Group number for ENET status codes.

enumerator kStatusGroup_PHY

Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX

Group number for TRGMUX status codes.

enumerator kStatusGroup_SMARTCARD

Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM

Group number for LMEM status codes.

enumerator kStatusGroup_QSPI

Group number for QSPI status codes.

enumerator kStatusGroup_DMA

Group number for DMA status codes.

enumerator kStatusGroup_EDMA

Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR

Group number for DMAMGR status codes.

enumerator kStatusGroup_FLEXCAN

Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC

Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA

Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI

Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART

Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC

Group number for DMIC status codes.

enumerator kStatusGroup_SDIF

Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI

Group number for SPIFI status codes.

enumerator kStatusGroup_OTP

Group number for OTP status codes.

enumerator kStatusGroup_MCAN

Group number for MCAN status codes.

enumerator kStatusGroup_CAAM

Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI

Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC

Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C

Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP

Group number for DCP status codes.

enumerator kStatusGroup_MSCAN

Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI

Group number for ESAI status codes.

enumerator kStatusGroup_FLEXSPI

Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC

Group number for MMDC status codes.

enumerator kStatusGroup_PDM

Group number for MIC status codes.

enumerator kStatusGroup_SDMA

Group number for SDMA status codes.

enumerator kStatusGroup_ICS

Group number for ICS status codes.

enumerator kStatusGroup_SPDIF

Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI

Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT

Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP

Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C

Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1

Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER

Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole

Group number for debug console status codes.

enumerator kStatusGroup_SEMC

Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart

Starting number for application groups.

enumerator kStatusGroup_IAP

Group number for IAP status codes

enumerator kStatusGroup_SFA

Group number for SFA status codes

enumerator kStatusGroup_SPC

Group number for SPC status codes.

enumerator kStatusGroup_PUF

Group number for PUF status codes.

enumerator kStatusGroup_TOUCH_PANEL

Group number for touch panel status codes

enumerator kStatusGroup_VBAT

Group number for VBAT status codes

enumerator kStatusGroup_XSPI

Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC

Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC

Group number for JPEGDEC status codes

enumerator kStatusGroup_HAL_GPIO

Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART

Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER

Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI

Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C

Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH

Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM

Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG

Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S

Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR

Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER

Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER

Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED

Group number for LED status codes.

enumerator kStatusGroup_BUTTON

Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM

Group number for EXTERN EEPROM status codes.

enumerator kStatusGroup_SHELL

Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER

Group number for MEM MANAGER status codes.

enumerator kStatusGroup_LIST

Group number for List status codes.

enumerator kStatusGroup_OSA

Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK

Group number for Common task status codes.

enumerator kStatusGroup_MSG

Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP

Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR

Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC

Group number for codec status codes.

enumerator kStatusGroup_ASRC

Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD

Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV

Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC

Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS

Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG

Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS

Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI

Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU

Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI

Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER

Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED

Group number for IPED status codes.

enumerator kStatusGroup_ELS_PKC

Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC

Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF

Group number for HOSTIF status codes.

enumerator kStatusGroup_CLIF

Group number for CLIF status codes.

enumerator kStatusGroup_BMA

Group number for BMA status codes.

enumerator kStatusGroup_NETC

Group number for NETC status codes.

enumerator kStatusGroup_ELE

Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY

Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER

Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON

Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3

Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE

Group number for HIPERFACE status codes.

Generic status return codes.

Values:

enumerator kStatus_Success

Generic status for Success.

enumerator kStatus_Fail

Generic status for Fail.

enumerator kStatus_ReadOnly

Generic status for read only failure.

enumerator kStatus_OutOfRange

Generic status for out of range access.

enumerator kStatus_InvalidArgument

Generic status for invalid argument check.

enumerator kStatus_Timeout

Generic status for timeout.

enumerator kStatus_NoTransferInProgress

Generic status for no transfer in progress.

enumerator kStatus_Busy

Generic status for module is busy.

enumerator kStatus_NoData

Generic status for no data is found for the operation.

typedef int32_t status_t

Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)

Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters:
  • size – The length required to malloc.

  • alignbytes – The alignment size.

Return values:

The – allocated memory.

void SDK_Free(void *ptr)

Free memory.

Parameters:
  • ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)

Delay at least for some time. Please note that, this API uses while loop for delay, different run-time environments make the time not precise, if precise delay count was needed, please implement a new delay function with hardware timer.

Parameters:
  • delayTime_us – Delay time in unit of microsecond.

  • coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)

Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ number.

Return values:
  • kStatus_Success – Interrupt enabled successfully

  • kStatus_Fail – Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)

Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ number.

Return values:
  • kStatus_Success – Interrupt disabled successfully

  • kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)

Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ to Enable.

  • priNum – Priority number set to interrupt controller register.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)

Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ to set.

  • priNum – Priority number set to interrupt controller register.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)

Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The flag which IRQ to clear.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)

Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to provided the primask register for the EnableGlobalIRQ().

Returns:

Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)

Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask. The idea is for the convenience of integration of RTOS. some RTOS get its own management mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlobalIRQ() in pair.

Parameters:
  • primask – value of primask register to be restored. The primask value is supposed to be provided by the DisableGlobalIRQ().

void EnableDeepSleepIRQ(IRQn_Type interrupt)

Enable specific interrupt for wake-up from deep-sleep mode.

Enable the interrupt for wake-up from deep sleep mode. Some interrupts are typically used in sleep mode only and will not occur during deep-sleep mode because relevant clocks are stopped. However, it is possible to enable those clocks (significantly increasing power consumption in the reduced power mode), making these wake-ups possible.

Note

This function also enables the interrupt in the NVIC (EnableIRQ() is called internaly).

Parameters:
  • interrupt – The IRQ number.

void DisableDeepSleepIRQ(IRQn_Type interrupt)

Disable specific interrupt for wake-up from deep-sleep mode.

Disable the interrupt for wake-up from deep sleep mode. Some interrupts are typically used in sleep mode only and will not occur during deep-sleep mode because relevant clocks are stopped. However, it is possible to enable those clocks (significantly increasing power consumption in the reduced power mode), making these wake-ups possible.

Note

This function also disables the interrupt in the NVIC (DisableIRQ() is called internaly).

Parameters:
  • interrupt – The IRQ number.

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t newValue)
static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ

Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)

Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)

Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit platforms(such as DSC).

| Unused    || Major Version || Minor Version ||  Bug Fix    |
31        25  24           17  16            9  8            0
ARRAY_SIZE(x)

Computes the number of elements in an array.

UINT64_H(X)

Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)

Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()

For switch case code block, if case section ends without “break;” statement, there wil be fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)

Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)

Convert the register address to the one used in non-secure mode.

ADC: 12-bit SAR Analog-to-Digital Converter Driver

void ADC_Init(ADC_Type *base, const adc_config_t *config)

Initialize the ADC module.

Parameters:
  • base – ADC peripheral base address.

  • config – Pointer to configuration structure, see to adc_config_t.

void ADC_Deinit(ADC_Type *base)

Deinitialize the ADC module.

Parameters:
  • base – ADC peripheral base address.

void ADC_GetDefaultConfig(adc_config_t *config)

Gets an available pre-defined settings for initial configuration.

This function initializes the initial configuration structure with an available settings. The default values are:

config->clockMode = kADC_ClockSynchronousMode;
config->clockDividerNumber = 0U;
config->resolution = kADC_Resolution12bit;
config->enableBypassCalibration = false;
config->sampleTimeNumber = 0U;
config->extendSampleTimeNumber = kADC_ExtendSampleTimeNotUsed;

Parameters:
  • config – Pointer to configuration structure.

bool ADC_DoSelfCalibration(ADC_Type *base)

Do the hardware self-calibration.

Deprecated:

Do not use this function. It has been superceded by ADC_DoOffsetCalibration.

To calibrate the ADC, set the ADC clock to 500 kHz. In order to achieve the specified ADC accuracy, the A/D converter must be recalibrated, at a minimum, following every chip reset before initiating normal ADC operation.

Parameters:
  • base – ADC peripheral base address.

Return values:
  • true – Calibration succeed.

  • false – Calibration failed.

bool ADC_DoOffsetCalibration(ADC_Type *base, uint32_t frequency)

Do the hardware offset-calibration.

To calibrate the ADC, set the ADC clock to no more then 30 MHz. In order to achieve the specified ADC accuracy, the A/D converter must be recalibrated, at a minimum, following every chip reset before initiating normal ADC operation.

Parameters:
  • base – ADC peripheral base address.

  • frequency – The clock frequency that ADC operates at.

Return values:
  • true – Calibration succeed.

  • false – Calibration failed.

static inline void ADC_EnableConvSeqA(ADC_Type *base, bool enable)

Enable the conversion sequence A.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence should be ready before the sequence is ready. when the sequence is disabled, the trigger would be ignored. Also, it is suggested to disable the sequence during changing the sequence’s setting.

Parameters:
  • base – ADC peripheral base address.

  • enable – Switcher to enable the feature or not.

void ADC_SetConvSeqAConfig(ADC_Type *base, const adc_conv_seq_config_t *config)

Configure the conversion sequence A.

Parameters:
  • base – ADC peripheral base address.

  • config – Pointer to configuration structure, see to adc_conv_seq_config_t.

static inline void ADC_DoSoftwareTriggerConvSeqA(ADC_Type *base)

Do trigger the sequence’s conversion by software.

Parameters:
  • base – ADC peripheral base address.

static inline void ADC_EnableConvSeqABurstMode(ADC_Type *base, bool enable)

Enable the burst conversion of sequence A.

Enable the burst mode would cause the conversion sequence to be cntinuously cycled through. Other triggers would be ignored while this mode is enabled. Repeated conversions could be halted by disabling this mode. And the sequence currently in process will be completed before cnversions are terminated. Note that a new sequence could begin just before the burst mode is disabled.

Parameters:
  • base – ADC peripheral base address.

  • enable – Switcher to enable this feature.

static inline void ADC_SetConvSeqAHighPriority(ADC_Type *base)

Set the high priority for conversion sequence A.

Parameters:
  • base – ADC peripheral bass address.

static inline void ADC_EnableConvSeqB(ADC_Type *base, bool enable)

Enable the conversion sequence B.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence should be ready before the sequence is ready. when the sequence is disabled, the trigger would be ignored. Also, it is suggested to disable the sequence during changing the sequence’s setting.

Parameters:
  • base – ADC peripheral base address.

  • enable – Switcher to enable the feature or not.

void ADC_SetConvSeqBConfig(ADC_Type *base, const adc_conv_seq_config_t *config)

Configure the conversion sequence B.

Parameters:
  • base – ADC peripheral base address.

  • config – Pointer to configuration structure, see to adc_conv_seq_config_t.

static inline void ADC_DoSoftwareTriggerConvSeqB(ADC_Type *base)

Do trigger the sequence’s conversion by software.

Parameters:
  • base – ADC peripheral base address.

static inline void ADC_EnableConvSeqBBurstMode(ADC_Type *base, bool enable)

Enable the burst conversion of sequence B.

Enable the burst mode would cause the conversion sequence to be continuously cycled through. Other triggers would be ignored while this mode is enabled. Repeated conversions could be halted by disabling this mode. And the sequence currently in process will be completed before cnversions are terminated. Note that a new sequence could begin just before the burst mode is disabled.

Parameters:
  • base – ADC peripheral base address.

  • enable – Switcher to enable this feature.

static inline void ADC_SetConvSeqBHighPriority(ADC_Type *base)

Set the high priority for conversion sequence B.

Parameters:
  • base – ADC peripheral bass address.

bool ADC_GetConvSeqAGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)

Get the global ADC conversion infomation of sequence A.

Parameters:
  • base – ADC peripheral base address.

  • info – Pointer to information structure, see to adc_result_info_t;

Return values:
  • true – The conversion result is ready.

  • false – The conversion result is not ready yet.

bool ADC_GetConvSeqBGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)

Get the global ADC conversion infomation of sequence B.

Parameters:
  • base – ADC peripheral base address.

  • info – Pointer to information structure, see to adc_result_info_t;

Return values:
  • true – The conversion result is ready.

  • false – The conversion result is not ready yet.

bool ADC_GetChannelConversionResult(ADC_Type *base, uint32_t channel, adc_result_info_t *info)

Get the channel’s ADC conversion completed under each conversion sequence.

Parameters:
  • base – ADC peripheral base address.

  • channel – The indicated channel number.

  • info – Pointer to information structure, see to adc_result_info_t;

Return values:
  • true – The conversion result is ready.

  • false – The conversion result is not ready yet.

static inline void ADC_SetThresholdPair0(ADC_Type *base, uint32_t lowValue, uint32_t highValue)

Set the threshhold pair 0 with low and high value.

Parameters:
  • base – ADC peripheral base address.

  • lowValue – LOW threshold value.

  • highValue – HIGH threshold value.

static inline void ADC_SetThresholdPair1(ADC_Type *base, uint32_t lowValue, uint32_t highValue)

Set the threshhold pair 1 with low and high value.

Parameters:
  • base – ADC peripheral base address.

  • lowValue – LOW threshold value. The available value is with 12-bit.

  • highValue – HIGH threshold value. The available value is with 12-bit.

static inline void ADC_SetChannelWithThresholdPair0(ADC_Type *base, uint32_t channelMask)

Set given channels to apply the threshold pare 0.

Parameters:
  • base – ADC peripheral base address.

  • channelMask – Indicated channels’ mask.

static inline void ADC_SetChannelWithThresholdPair1(ADC_Type *base, uint32_t channelMask)

Set given channels to apply the threshold pare 1.

Parameters:
  • base – ADC peripheral base address.

  • channelMask – Indicated channels’ mask.

static inline void ADC_EnableInterrupts(ADC_Type *base, uint32_t mask)

Enable interrupts for conversion sequences.

Parameters:
  • base – ADC peripheral base address.

  • mask – Mask of interrupt mask value for global block except each channal, see to _adc_interrupt_enable.

static inline void ADC_DisableInterrupts(ADC_Type *base, uint32_t mask)

Disable interrupts for conversion sequence.

Parameters:
  • base – ADC peripheral base address.

  • mask – Mask of interrupt mask value for global block except each channel, see to _adc_interrupt_enable.

static inline void ADC_EnableThresholdCompareInterrupt(ADC_Type *base, uint32_t channel, adc_threshold_interrupt_mode_t mode)

Enable the interrupt of threshold compare event for each channel.

Parameters:
  • base – ADC peripheral base address.

  • channel – Channel number.

  • mode – Interrupt mode for threshold compare event, see to adc_threshold_interrupt_mode_t.

static inline uint32_t ADC_GetStatusFlags(ADC_Type *base)

Get status flags of ADC module.

Parameters:
  • base – ADC peripheral base address.

Returns:

Mask of status flags of module, see to _adc_status_flags.

static inline void ADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)

Clear status flags of ADC module.

Parameters:
  • base – ADC peripheral base address.

  • mask – Mask of status flags of module, see to _adc_status_flags.

FSL_ADC_DRIVER_VERSION

ADC driver version 2.6.0.

enum _adc_status_flags

Flags.

Values:

enumerator kADC_ThresholdCompareFlagOnChn0

Threshold comparison event on Channel 0.

enumerator kADC_ThresholdCompareFlagOnChn1

Threshold comparison event on Channel 1.

enumerator kADC_ThresholdCompareFlagOnChn2

Threshold comparison event on Channel 2.

enumerator kADC_ThresholdCompareFlagOnChn3

Threshold comparison event on Channel 3.

enumerator kADC_ThresholdCompareFlagOnChn4

Threshold comparison event on Channel 4.

enumerator kADC_ThresholdCompareFlagOnChn5

Threshold comparison event on Channel 5.

enumerator kADC_ThresholdCompareFlagOnChn6

Threshold comparison event on Channel 6.

enumerator kADC_ThresholdCompareFlagOnChn7

Threshold comparison event on Channel 7.

enumerator kADC_ThresholdCompareFlagOnChn8

Threshold comparison event on Channel 8.

enumerator kADC_ThresholdCompareFlagOnChn9

Threshold comparison event on Channel 9.

enumerator kADC_ThresholdCompareFlagOnChn10

Threshold comparison event on Channel 10.

enumerator kADC_ThresholdCompareFlagOnChn11

Threshold comparison event on Channel 11.

enumerator kADC_OverrunFlagForChn0

Mirror the OVERRUN status flag from the result register for ADC channel 0.

enumerator kADC_OverrunFlagForChn1

Mirror the OVERRUN status flag from the result register for ADC channel 1.

enumerator kADC_OverrunFlagForChn2

Mirror the OVERRUN status flag from the result register for ADC channel 2.

enumerator kADC_OverrunFlagForChn3

Mirror the OVERRUN status flag from the result register for ADC channel 3.

enumerator kADC_OverrunFlagForChn4

Mirror the OVERRUN status flag from the result register for ADC channel 4.

enumerator kADC_OverrunFlagForChn5

Mirror the OVERRUN status flag from the result register for ADC channel 5.

enumerator kADC_OverrunFlagForChn6

Mirror the OVERRUN status flag from the result register for ADC channel 6.

enumerator kADC_OverrunFlagForChn7

Mirror the OVERRUN status flag from the result register for ADC channel 7.

enumerator kADC_OverrunFlagForChn8

Mirror the OVERRUN status flag from the result register for ADC channel 8.

enumerator kADC_OverrunFlagForChn9

Mirror the OVERRUN status flag from the result register for ADC channel 9.

enumerator kADC_OverrunFlagForChn10

Mirror the OVERRUN status flag from the result register for ADC channel 10.

enumerator kADC_OverrunFlagForChn11

Mirror the OVERRUN status flag from the result register for ADC channel 11.

enumerator kADC_GlobalOverrunFlagForSeqA

Mirror the glabal OVERRUN status flag for conversion sequence A.

enumerator kADC_GlobalOverrunFlagForSeqB

Mirror the global OVERRUN status flag for conversion sequence B.

enumerator kADC_ConvSeqAInterruptFlag

Sequence A interrupt/DMA trigger.

enumerator kADC_ConvSeqBInterruptFlag

Sequence B interrupt/DMA trigger.

enumerator kADC_ThresholdCompareInterruptFlag

Threshold comparision interrupt flag.

enumerator kADC_OverrunInterruptFlag

Overrun interrupt flag.

enum _adc_interrupt_enable

Interrupts.

Note

Not all the interrupt options are listed here

Values:

enumerator kADC_ConvSeqAInterruptEnable

Enable interrupt upon completion of each individual conversion in sequence A, or entire sequence.

enumerator kADC_ConvSeqBInterruptEnable

Enable interrupt upon completion of each individual conversion in sequence B, or entire sequence.

enumerator kADC_OverrunInterruptEnable

Enable the detection of an overrun condition on any of the channel data registers will cause an overrun interrupt/DMA trigger.

enum _adc_clock_mode

Define selection of clock mode.

Values:

enumerator kADC_ClockSynchronousMode

The ADC clock would be derived from the system clock based on “clockDividerNumber”.

enumerator kADC_ClockAsynchronousMode

The ADC clock would be based on the SYSCON block’s divider.

enum _adc_resolution

Define selection of resolution.

Values:

enumerator kADC_Resolution6bit

6-bit resolution.

enumerator kADC_Resolution8bit

8-bit resolution.

enumerator kADC_Resolution10bit

10-bit resolution.

enumerator kADC_Resolution12bit

12-bit resolution.

enum _adc_voltage_range

Definfe range of the analog supply voltage VDDA.

Values:

enumerator kADC_HighVoltageRange
enumerator kADC_LowVoltageRange
enum _adc_trigger_polarity

Define selection of polarity of selected input trigger for conversion sequence.

Values:

enumerator kADC_TriggerPolarityNegativeEdge

A negative edge launches the conversion sequence on the trigger(s).

enumerator kADC_TriggerPolarityPositiveEdge

A positive edge launches the conversion sequence on the trigger(s).

enum _adc_priority

Define selection of conversion sequence’s priority.

Values:

enumerator kADC_PriorityLow

This sequence would be preempted when another sequence is started.

enumerator kADC_PriorityHigh

This sequence would preempt other sequence even when it is started.

enum _adc_seq_interrupt_mode

Define selection of conversion sequence’s interrupt.

Values:

enumerator kADC_InterruptForEachConversion

The sequence interrupt/DMA trigger will be set at the end of each individual ADC conversion inside this conversion sequence.

enumerator kADC_InterruptForEachSequence

The sequence interrupt/DMA trigger will be set when the entire set of this sequence conversions completes.

enum _adc_threshold_compare_status

Define status of threshold compare result.

Values:

enumerator kADC_ThresholdCompareInRange

LOW threshold <= conversion value <= HIGH threshold.

enumerator kADC_ThresholdCompareBelowRange

conversion value < LOW threshold.

enumerator kADC_ThresholdCompareAboveRange

conversion value > HIGH threshold.

enum _adc_threshold_crossing_status

Define status of threshold crossing detection result.

Values:

enumerator kADC_ThresholdCrossingNoDetected

No threshold Crossing detected.

enumerator kADC_ThresholdCrossingDownward

Downward Threshold Crossing detected.

enumerator kADC_ThresholdCrossingUpward

Upward Threshold Crossing Detected.

enum _adc_threshold_interrupt_mode

Define interrupt mode for threshold compare event.

Values:

enumerator kADC_ThresholdInterruptDisabled

Threshold comparison interrupt is disabled.

enumerator kADC_ThresholdInterruptOnOutside

Threshold comparison interrupt is enabled on outside threshold.

enumerator kADC_ThresholdInterruptOnCrossing

Threshold comparison interrupt is enabled on crossing threshold.

enum _adc_inforesultshift

Define the info result mode of different resolution.

Values:

enumerator kADC_Resolution12bitInfoResultShift

Info result shift of Resolution12bit.

enumerator kADC_Resolution10bitInfoResultShift

Info result shift of Resolution10bit.

enumerator kADC_Resolution8bitInfoResultShift

Info result shift of Resolution8bit.

enumerator kADC_Resolution6bitInfoResultShift

Info result shift of Resolution6bit.

enum _adc_tempsensor_common_mode

Define common modes for Temerature sensor.

Values:

enumerator kADC_HighNegativeOffsetAdded

Temperature sensor common mode: high negative offset added.

enumerator kADC_IntermediateNegativeOffsetAdded

Temperature sensor common mode: intermediate negative offset added.

enumerator kADC_NoOffsetAdded

Temperature sensor common mode: no offset added.

enumerator kADC_LowPositiveOffsetAdded

Temperature sensor common mode: low positive offset added.

enum _adc_second_control

Define source impedance modes for GPADC control.

Values:

enumerator kADC_Impedance621Ohm

Extand ADC sampling time according to source impedance 1: 0.621 kOhm.

enumerator kADC_Impedance55kOhm

Extand ADC sampling time according to source impedance 20 (default): 55 kOhm.

enumerator kADC_Impedance87kOhm

Extand ADC sampling time according to source impedance 31: 87 kOhm.

enumerator kADC_NormalFunctionalMode

TEST mode: Normal functional mode.

enumerator kADC_MultiplexeTestMode

TEST mode: Multiplexer test mode.

enumerator kADC_ADCInUnityGainMode

TEST mode: ADC in unity gain mode.

typedef enum _adc_clock_mode adc_clock_mode_t

Define selection of clock mode.

typedef enum _adc_resolution adc_resolution_t

Define selection of resolution.

typedef enum _adc_voltage_range adc_vdda_range_t

Definfe range of the analog supply voltage VDDA.

typedef enum _adc_trigger_polarity adc_trigger_polarity_t

Define selection of polarity of selected input trigger for conversion sequence.

typedef enum _adc_priority adc_priority_t

Define selection of conversion sequence’s priority.

typedef enum _adc_seq_interrupt_mode adc_seq_interrupt_mode_t

Define selection of conversion sequence’s interrupt.

typedef enum _adc_threshold_compare_status adc_threshold_compare_status_t

Define status of threshold compare result.

typedef enum _adc_threshold_crossing_status adc_threshold_crossing_status_t

Define status of threshold crossing detection result.

typedef enum _adc_threshold_interrupt_mode adc_threshold_interrupt_mode_t

Define interrupt mode for threshold compare event.

typedef enum _adc_inforesultshift adc_inforesult_t

Define the info result mode of different resolution.

typedef enum _adc_tempsensor_common_mode adc_tempsensor_common_mode_t

Define common modes for Temerature sensor.

typedef enum _adc_second_control adc_second_control_t

Define source impedance modes for GPADC control.

typedef struct _adc_config adc_config_t

Define structure for configuring the block.

typedef struct _adc_conv_seq_config adc_conv_seq_config_t

Define structure for configuring conversion sequence.

typedef struct _adc_result_info adc_result_info_t

Define structure of keeping conversion result information.

struct _adc_config
#include <fsl_adc.h>

Define structure for configuring the block.

Public Members

adc_clock_mode_t clockMode

Select the clock mode for ADC converter.

uint32_t clockDividerNumber

This field is only available when using kADC_ClockSynchronousMode for “clockMode” field. The divider would be plused by 1 based on the value in this field. The available range is in 8 bits.

adc_resolution_t resolution

Select the conversion bits.

bool enableBypassCalibration

By default, a calibration cycle must be performed each time the chip is powered-up. Re-calibration may be warranted periodically - especially if operating conditions have changed. To enable this option would avoid the need to calibrate if offset error is not a concern in the application.

uint32_t sampleTimeNumber

By default, with value as “0U”, the sample period would be 2.5 ADC clocks. Then, to plus the “sampleTimeNumber” value here. The available value range is in 3 bits.

bool enableLowPowerMode

If disable low-power mode, ADC remains activated even when no conversions are requested. If enable low-power mode, The ADC is automatically powered-down when no conversions are taking place.

adc_vdda_range_t voltageRange

Configure the ADC for the appropriate operating range of the analog supply voltage VDDA. Failure to set the area correctly causes the ADC to return incorrect conversion results.

struct _adc_conv_seq_config
#include <fsl_adc.h>

Define structure for configuring conversion sequence.

Public Members

uint32_t channelMask

Selects which one or more of the ADC channels will be sampled and converted when this sequence is launched. The masked channels would be involved in current conversion sequence, beginning with the lowest-order. The available range is in 12-bit.

uint32_t triggerMask

Selects which one or more of the available hardware trigger sources will cause this conversion sequence to be initiated. The available range is 6-bit.

adc_trigger_polarity_t triggerPolarity

Select the trigger to launch conversion sequence.

bool enableSyncBypass

To enable this feature allows the hardware trigger input to bypass synchronization flip-flop stages and therefore shorten the time between the trigger input signal and the start of a conversion.

bool enableSingleStep

When enabling this feature, a trigger will launch a single conversion on the next channel in the sequence instead of the default response of launching an entire sequence of conversions.

adc_seq_interrupt_mode_t interruptMode

Select the interrpt/DMA trigger mode.

struct _adc_result_info
#include <fsl_adc.h>

Define structure of keeping conversion result information.

Public Members

uint32_t result

Keep the conversion data value.

adc_threshold_compare_status_t thresholdCompareStatus

Keep the threshold compare status.

adc_threshold_crossing_status_t thresholdCorssingStatus

Keep the threshold crossing status.

uint32_t channelNumber

Keep the channel number for this conversion.

bool overrunFlag

Keep the status whether the conversion is overrun or not.

GPIO: General Purpose I/O

void GPIO_PortInit(GPIO_Type *base, uint32_t port)

Initializes the GPIO peripheral.

This function ungates the GPIO clock.

Parameters:
  • base – GPIO peripheral base pointer.

  • port – GPIO port number.

void GPIO_PinInit(GPIO_Type *base, uint32_t port, uint32_t pin, const gpio_pin_config_t *config)

Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, either input or output, in the user file. Then, call the GPIO_PinInit() function.

This is an example to define an input pin or output pin configuration:

Define a digital input pin configuration,
gpio_pin_config_t config =
{
  kGPIO_DigitalInput,
  0,
}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
  kGPIO_DigitalOutput,
  0,
}

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • pin – GPIO pin number

  • config – GPIO pin configuration pointer

static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t port, uint32_t pin, uint8_t output)

Sets the output level of the one GPIO pin to the logic 1 or 0.

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • pin – GPIO pin number

  • output – GPIO pin output logic level.

    • 0: corresponding pin output low-logic level.

    • 1: corresponding pin output high-logic level.

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t port, uint32_t pin)

Reads the current input value of the GPIO PIN.

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • pin – GPIO pin number

Return values:

GPIO – port input value

  • 0: corresponding pin input low-logic level.

  • 1: corresponding pin input high-logic level.

FSL_GPIO_DRIVER_VERSION

LPC GPIO driver version.

enum _gpio_pin_direction

LPC GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput

Set current pin as digital input

enumerator kGPIO_DigitalOutput

Set current pin as digital output

typedef enum _gpio_pin_direction gpio_pin_direction_t

LPC GPIO direction definition.

typedef struct _gpio_pin_config gpio_pin_config_t

The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured as a input pin, then leave the outputConfig unused.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t port, uint32_t mask)

Sets the output level of the multiple GPIO pins to the logic 1.

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • mask – GPIO pin number macro

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t port, uint32_t mask)

Sets the output level of the multiple GPIO pins to the logic 0.

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • mask – GPIO pin number macro

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t port, uint32_t mask)

Reverses current output logic of the multiple GPIO pins.

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • mask – GPIO pin number macro

struct _gpio_pin_config
#include <fsl_gpio.h>

The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured as a input pin, then leave the outputConfig unused.

Public Members

gpio_pin_direction_t pinDirection

GPIO direction, input or output

uint8_t outputLogic

Set default output logic, no use in input

IOCON: I/O pin configuration

FSL_IOCON_DRIVER_VERSION

IOCON driver version.

typedef struct _iocon_group iocon_group_t

Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.

__STATIC_INLINE void IOCON_PinMuxSet (IOCON_Type *base, uint8_t port, uint8_t pin, uint32_t modefunc)

Sets I/O Control pin mux.

Parameters:
  • base – : The base of IOCON peripheral on the chip

  • port – : GPIO port to mux

  • pin – : GPIO pin to mux

  • modefunc – : OR’ed values of type IOCON_*

Returns:

Nothing

__STATIC_INLINE void IOCON_SetPinMuxing (IOCON_Type *base, const iocon_group_t *pinArray, uint32_t arrayLength)

Set all I/O Control pin muxing.

Parameters:
  • base – : The base of IOCON peripheral on the chip

  • pinArray – : Pointer to array of pin mux selections

  • arrayLength – : Number of entries in pinArray

Returns:

Nothing

FSL_COMPONENT_ID
IOCON_FUNC0

IOCON function and mode selection definitions.

Note

See the User Manual for specific modes and functions supported by the various pins. Selects pin function 0

IOCON_FUNC1

Selects pin function 1

IOCON_FUNC2

Selects pin function 2

IOCON_FUNC3

Selects pin function 3

IOCON_FUNC4

Selects pin function 4

IOCON_FUNC5

Selects pin function 5

IOCON_FUNC6

Selects pin function 6

IOCON_FUNC7

Selects pin function 7

struct _iocon_group
#include <fsl_iocon.h>

Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.

MRT: Multi-Rate Timer

void MRT_Init(MRT_Type *base, const mrt_config_t *config)

Ungates the MRT clock and configures the peripheral for basic operation.

Note

This API should be called at the beginning of the application using the MRT driver.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • config – Pointer to user’s MRT config structure. If MRT has MULTITASK bit field in MODCFG reigster, param config is useless.

void MRT_Deinit(MRT_Type *base)

Gate the MRT clock.

Parameters:
  • base – Multi-Rate timer peripheral base address

static inline void MRT_GetDefaultConfig(mrt_config_t *config)

Fill in the MRT config struct with the default settings.

The default values are:

config->enableMultiTask = false;

Parameters:
  • config – Pointer to user’s MRT config structure.

static inline void MRT_SetupChannelMode(MRT_Type *base, mrt_chnl_t channel, const mrt_timer_mode_t mode)

Sets up an MRT channel mode.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Channel that is being configured.

  • mode – Timer mode to use for the channel.

static inline void MRT_EnableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)

Enables the MRT interrupt.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration mrt_interrupt_enable_t

static inline void MRT_DisableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)

Disables the selected MRT interrupt.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

  • mask – The interrupts to disable. This is a logical OR of members of the enumeration mrt_interrupt_enable_t

static inline uint32_t MRT_GetEnabledInterrupts(MRT_Type *base, mrt_chnl_t channel)

Gets the enabled MRT interrupts.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration mrt_interrupt_enable_t

static inline uint32_t MRT_GetStatusFlags(MRT_Type *base, mrt_chnl_t channel)

Gets the MRT status flags.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

Returns:

The status flags. This is the logical OR of members of the enumeration mrt_status_flags_t

static inline void MRT_ClearStatusFlags(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)

Clears the MRT status flags.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

  • mask – The status flags to clear. This is a logical OR of members of the enumeration mrt_status_flags_t

void MRT_UpdateTimerPeriod(MRT_Type *base, mrt_chnl_t channel, uint32_t count, bool immediateLoad)

Used to update the timer period in units of count.

The new value will be immediately loaded or will be loaded at the end of the current time interval. For one-shot interrupt mode the new value will be immediately loaded.

Note

User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

  • count – Timer period in units of ticks

  • immediateLoad – true: Load the new value immediately into the TIMER register; false: Load the new value at the end of current timer interval

static inline uint32_t MRT_GetCurrentTimerCount(MRT_Type *base, mrt_chnl_t channel)

Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note

User can call the utility macros provided in fsl_common.h to convert ticks to usec or msec

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

Returns:

Current timer counting value in ticks

static inline void MRT_StartTimer(MRT_Type *base, mrt_chnl_t channel, uint32_t count)

Starts the timer counting.

After calling this function, timers load period value, counts down to 0 and depending on the timer mode it will either load the respective start value again or stop.

Note

User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number.

  • count – Timer period in units of ticks. Count can contain the LOAD bit, which control the force load feature.

static inline void MRT_StopTimer(MRT_Type *base, mrt_chnl_t channel)

Stops the timer counting.

This function stops the timer from counting.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number.

static inline uint32_t MRT_GetIdleChannel(MRT_Type *base)

Find the available channel.

This function returns the lowest available channel number.

Parameters:
  • base – Multi-Rate timer peripheral base address

static inline void MRT_ReleaseChannel(MRT_Type *base, mrt_chnl_t channel)

Release the channel when the timer is using the multi-task mode.

In multi-task mode, the INUSE flags allow more control over when MRT channels are released for further use. The user can hold on to a channel acquired by calling MRT_GetIdleChannel() for as long as it is needed and release it by calling this function. This removes the need to ask for an available channel for every use.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number.

FSL_MRT_DRIVER_VERSION
enum _mrt_chnl

List of MRT channels.

Values:

enumerator kMRT_Channel_0

MRT channel number 0

enumerator kMRT_Channel_1

MRT channel number 1

enumerator kMRT_Channel_2

MRT channel number 2

enumerator kMRT_Channel_3

MRT channel number 3

enum _mrt_timer_mode

List of MRT timer modes.

Values:

enumerator kMRT_RepeatMode

Repeat Interrupt mode

enumerator kMRT_OneShotMode

One-shot Interrupt mode

enumerator kMRT_OneShotStallMode

One-shot stall mode

enum _mrt_interrupt_enable

List of MRT interrupts.

Values:

enumerator kMRT_TimerInterruptEnable

Timer interrupt enable

enum _mrt_status_flags

List of MRT status flags.

Values:

enumerator kMRT_TimerInterruptFlag

Timer interrupt flag

enumerator kMRT_TimerRunFlag

Indicates state of the timer

typedef enum _mrt_chnl mrt_chnl_t

List of MRT channels.

typedef enum _mrt_timer_mode mrt_timer_mode_t

List of MRT timer modes.

typedef enum _mrt_interrupt_enable mrt_interrupt_enable_t

List of MRT interrupts.

typedef enum _mrt_status_flags mrt_status_flags_t

List of MRT status flags.

typedef struct _mrt_config mrt_config_t

MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

struct _mrt_config
#include <fsl_mrt.h>

MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool enableMultiTask

true: Timers run in multi-task mode; false: Timers run in hardware status mode

PINT: Pin Interrupt and Pattern Match Driver

FSL_PINT_DRIVER_VERSION
enum _pint_pin_enable

PINT Pin Interrupt enable type.

Values:

enumerator kPINT_PinIntEnableNone

Do not generate Pin Interrupt

enumerator kPINT_PinIntEnableRiseEdge

Generate Pin Interrupt on rising edge

enumerator kPINT_PinIntEnableFallEdge

Generate Pin Interrupt on falling edge

enumerator kPINT_PinIntEnableBothEdges

Generate Pin Interrupt on both edges

enumerator kPINT_PinIntEnableLowLevel

Generate Pin Interrupt on low level

enumerator kPINT_PinIntEnableHighLevel

Generate Pin Interrupt on high level

enum _pint_int

PINT Pin Interrupt type.

Values:

enumerator kPINT_PinInt0

Pin Interrupt 0

enum _pint_pmatch_input_src

PINT Pattern Match bit slice input source type.

Values:

enumerator kPINT_PatternMatchInp0Src

Input source 0

enumerator kPINT_PatternMatchInp1Src

Input source 1

enumerator kPINT_PatternMatchInp2Src

Input source 2

enumerator kPINT_PatternMatchInp3Src

Input source 3

enumerator kPINT_PatternMatchInp4Src

Input source 4

enumerator kPINT_PatternMatchInp5Src

Input source 5

enumerator kPINT_PatternMatchInp6Src

Input source 6

enumerator kPINT_PatternMatchInp7Src

Input source 7

enumerator kPINT_SecPatternMatchInp0Src

Input source 0

enumerator kPINT_SecPatternMatchInp1Src

Input source 1

enum _pint_pmatch_bslice

PINT Pattern Match bit slice type.

Values:

enumerator kPINT_PatternMatchBSlice0

Bit slice 0

enum _pint_pmatch_bslice_cfg

PINT Pattern Match configuration type.

Values:

enumerator kPINT_PatternMatchAlways

Always Contributes to product term match

enumerator kPINT_PatternMatchStickyRise

Sticky Rising edge

enumerator kPINT_PatternMatchStickyFall

Sticky Falling edge

enumerator kPINT_PatternMatchStickyBothEdges

Sticky Rising or Falling edge

enumerator kPINT_PatternMatchHigh

High level

enumerator kPINT_PatternMatchLow

Low level

enumerator kPINT_PatternMatchNever

Never contributes to product term match

enumerator kPINT_PatternMatchBothEdges

Either rising or falling edge

typedef enum _pint_pin_enable pint_pin_enable_t

PINT Pin Interrupt enable type.

typedef enum _pint_int pint_pin_int_t

PINT Pin Interrupt type.

typedef enum _pint_pmatch_input_src pint_pmatch_input_src_t

PINT Pattern Match bit slice input source type.

typedef enum _pint_pmatch_bslice pint_pmatch_bslice_t

PINT Pattern Match bit slice type.

typedef enum _pint_pmatch_bslice_cfg pint_pmatch_bslice_cfg_t

PINT Pattern Match configuration type.

typedef void (*pint_cb_t)(pint_pin_int_t pintr, uint32_t pmatch_status)

PINT Callback function.

typedef struct _pint_pmatch_cfg pint_pmatch_cfg_t
void PINT_Init(PINT_Type *base)

Initialize PINT peripheral.

This function initializes the PINT peripheral and enables the clock.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

void PINT_PinInterruptConfig(PINT_Type *base, pint_pin_int_t intr, pint_pin_enable_t enable, pint_cb_t callback)

Configure PINT peripheral pin interrupt.

This function configures a given pin interrupt.

Parameters:
  • base – Base address of the PINT peripheral.

  • intr – Pin interrupt.

  • enable – Selects detection logic.

  • callback – Callback.

Return values:

None.

void PINT_PinInterruptGetConfig(PINT_Type *base, pint_pin_int_t pintr, pint_pin_enable_t *enable, pint_cb_t *callback)

Get PINT peripheral pin interrupt configuration.

This function returns the configuration of a given pin interrupt.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

  • enable – Pointer to store the detection logic.

  • callback – Callback.

Return values:

None.

void PINT_PinInterruptClrStatus(PINT_Type *base, pint_pin_int_t pintr)

Clear Selected pin interrupt status only when the pin was triggered by edge-sensitive.

This function clears the selected pin interrupt status.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetStatus(PINT_Type *base, pint_pin_int_t pintr)

Get Selected pin interrupt status.

This function returns the selected pin interrupt status.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

status – = 0 No pin interrupt request. = 1 Selected Pin interrupt request active.

void PINT_PinInterruptClrStatusAll(PINT_Type *base)

Clear all pin interrupts status only when pins were triggered by edge-sensitive.

This function clears the status of all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetStatusAll(PINT_Type *base)

Get all pin interrupts status.

This function returns the status of all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

status – Each bit position indicates the status of corresponding pin interrupt. = 0 No pin interrupt request. = 1 Pin interrupt request active.

static inline void PINT_PinInterruptClrFallFlag(PINT_Type *base, pint_pin_int_t pintr)

Clear Selected pin interrupt fall flag.

This function clears the selected pin interrupt fall flag.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetFallFlag(PINT_Type *base, pint_pin_int_t pintr)

Get selected pin interrupt fall flag.

This function returns the selected pin interrupt fall flag.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

flag – = 0 Falling edge has not been detected. = 1 Falling edge has been detected.

static inline void PINT_PinInterruptClrFallFlagAll(PINT_Type *base)

Clear all pin interrupt fall flags.

This function clears the fall flag for all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetFallFlagAll(PINT_Type *base)

Get all pin interrupt fall flags.

This function returns the fall flag of all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

flags – Each bit position indicates the falling edge detection of the corresponding pin interrupt. 0 Falling edge has not been detected. = 1 Falling edge has been detected.

static inline void PINT_PinInterruptClrRiseFlag(PINT_Type *base, pint_pin_int_t pintr)

Clear Selected pin interrupt rise flag.

This function clears the selected pin interrupt rise flag.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetRiseFlag(PINT_Type *base, pint_pin_int_t pintr)

Get selected pin interrupt rise flag.

This function returns the selected pin interrupt rise flag.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

flag – = 0 Rising edge has not been detected. = 1 Rising edge has been detected.

static inline void PINT_PinInterruptClrRiseFlagAll(PINT_Type *base)

Clear all pin interrupt rise flags.

This function clears the rise flag for all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetRiseFlagAll(PINT_Type *base)

Get all pin interrupt rise flags.

This function returns the rise flag of all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

flags – Each bit position indicates the rising edge detection of the corresponding pin interrupt. 0 Rising edge has not been detected. = 1 Rising edge has been detected.

void PINT_PatternMatchConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t *cfg)

Configure PINT pattern match.

This function configures a given pattern match bit slice.

Parameters:
  • base – Base address of the PINT peripheral.

  • bslice – Pattern match bit slice number.

  • cfg – Pointer to bit slice configuration.

Return values:

None.

void PINT_PatternMatchGetConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t *cfg)

Get PINT pattern match configuration.

This function returns the configuration of a given pattern match bit slice.

Parameters:
  • base – Base address of the PINT peripheral.

  • bslice – Pattern match bit slice number.

  • cfg – Pointer to bit slice configuration.

Return values:

None.

static inline uint32_t PINT_PatternMatchGetStatus(PINT_Type *base, pint_pmatch_bslice_t bslice)

Get pattern match bit slice status.

This function returns the status of selected bit slice.

Parameters:
  • base – Base address of the PINT peripheral.

  • bslice – Pattern match bit slice number.

Return values:

status – = 0 Match has not been detected. = 1 Match has been detected.

static inline uint32_t PINT_PatternMatchGetStatusAll(PINT_Type *base)

Get status of all pattern match bit slices.

This function returns the status of all bit slices.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

status – Each bit position indicates the match status of corresponding bit slice. = 0 Match has not been detected. = 1 Match has been detected.

uint32_t PINT_PatternMatchResetDetectLogic(PINT_Type *base)

Reset pattern match detection logic.

This function resets the pattern match detection logic if any of the product term is matching.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

pmstatus – Each bit position indicates the match status of corresponding bit slice. = 0 Match was detected. = 1 Match was not detected.

static inline void PINT_PatternMatchEnable(PINT_Type *base)

Enable pattern match function.

This function enables the pattern match function.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline void PINT_PatternMatchDisable(PINT_Type *base)

Disable pattern match function.

This function disables the pattern match function.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline void PINT_PatternMatchEnableRXEV(PINT_Type *base)

Enable RXEV output.

This function enables the pattern match RXEV output.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline void PINT_PatternMatchDisableRXEV(PINT_Type *base)

Disable RXEV output.

This function disables the pattern match RXEV output.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

void PINT_EnableCallback(PINT_Type *base)

Enable callback.

This function enables the interrupt for the selected PINT peripheral. Although the pin(s) are monitored as soon as they are enabled, the callback function is not enabled until this function is called.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

void PINT_DisableCallback(PINT_Type *base)

Disable callback.

This function disables the interrupt for the selected PINT peripheral. Although the pins are still being monitored but the callback function is not called.

Parameters:
  • base – Base address of the peripheral.

Return values:

None.

void PINT_Deinit(PINT_Type *base)

Deinitialize PINT peripheral.

This function disables the PINT clock.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

void PINT_EnableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)

enable callback by pin index.

This function enables callback by pin index instead of enabling all pins.

Parameters:
  • base – Base address of the peripheral.

  • pintIdx – pin index.

Return values:

None.

void PINT_DisableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)

disable callback by pin index.

This function disables callback by pin index instead of disabling all pins.

Parameters:
  • base – Base address of the peripheral.

  • pintIdx – pin index.

Return values:

None.

PININT_BITSLICE_SRC_START
PININT_BITSLICE_SRC_MASK
PININT_BITSLICE_CFG_START
PININT_BITSLICE_CFG_MASK
PININT_BITSLICE_ENDP_MASK
PINT_PIN_INT_LEVEL
PINT_PIN_INT_EDGE
PINT_PIN_INT_FALL_OR_HIGH_LEVEL
PINT_PIN_INT_RISE
PINT_PIN_RISE_EDGE
PINT_PIN_FALL_EDGE
PINT_PIN_BOTH_EDGE
PINT_PIN_LOW_LEVEL
PINT_PIN_HIGH_LEVEL
struct _pint_pmatch_cfg
#include <fsl_pint.h>

Power Driver

enum pd_bits

Values:

enumerator kPDRUNCFG_PD_FRO_EN
enumerator kPDRUNCFG_PD_FLASH
enumerator kPDRUNCFG_PD_TEMPS
enumerator kPDRUNCFG_PD_BOD_RESET
enumerator kPDRUNCFG_PD_BOD_INTR
enumerator kPDRUNCFG_PD_ADC0
enumerator kPDRUNCFG_PD_VDDFLASH
enumerator kPDRUNCFG_LP_VDDFLASH
enumerator kPDRUNCFG_PD_RAM0
enumerator kPDRUNCFG_PD_RAM1
enumerator kPDRUNCFG_PD_RAM2
enumerator kPDRUNCFG_PD_RAMX
enumerator kPDRUNCFG_PD_ROM
enumerator kPDRUNCFG_PD_VDDHV_ENA
enumerator kPDRUNCFG_PD_VD7_ENA
enumerator kPDRUNCFG_PD_WDT_OSC
enumerator kPDRUNCFG_PD_USB0_PHY
enumerator kPDRUNCFG_PD_SYS_PLL0
enumerator kPDRUNCFG_PD_VREFP_SW
enumerator kPDRUNCFG_PD_FLASH_BG
enumerator kPDRUNCFG_PD_ALT_FLASH_IBG
enumerator kPDRUNCFG_SEL_ALT_FLASH_IBG
enumerator kPDRUNCFG_ForceUnsigned
enum _power_mode_config

Values:

enumerator kPmu_Sleep
enumerator kPmu_Deep_Sleep
enumerator kPmu_Deep_PowerDown
enum _power_bod_status

The enumeration of BOD status flags.

Values:

enumerator kBod_ResetStatusFlag

BOD reset has occurred.

enumerator kBod_InterruptStatusFlag

BOD interrupt has occurred

enum _power_bod_reset_level

The enumeration of BOD reset level.

Values:

enumerator kBod_ResetLevel0

Reset Level0: 1.5V.

enumerator kBod_ResetLevel1

Reset Level0: 1.85V.

enumerator kBod_ResetLevel2

Reset Level0: 2.0V.

enumerator kBod_ResetLevel3

Reset Level0: 2.3V.

enum _power_bod_interrupt_level

The enumeration of BOD interrupt level.

Values:

enumerator kBod_InterruptLevel0

Interrupt level: 2.05V.

enumerator kBod_InterruptLevel1

Interrupt level: 2.45V.

enumerator kBod_InterruptLevel2

Interrupt level: 2.75V.

enumerator kBod_InterruptLevel3

Interrupt level: 3.05V.

typedef enum pd_bits pd_bit_t
typedef enum _power_mode_config power_mode_cfg_t
typedef enum _power_bod_status power_bod_status_t

The enumeration of BOD status flags.

typedef enum _power_bod_reset_level power_bod_reset_level_t

The enumeration of BOD reset level.

typedef enum _power_bod_interrupt_level power_bod_interrupt_level_t

The enumeration of BOD interrupt level.

typedef struct _power_bod_config power_bod_config_t

The configuration of power bod, including reset level, interrupt level, and so on.

FSL_POWER_DRIVER_VERSION

power driver version 2.1.0.

MAKE_PD_BITS(reg, slot)
PDRCFG0
PDRCFG1
static inline void POWER_EnablePD(pd_bit_t en)

API to enable PDRUNCFG bit in the Syscon. Note that enabling the bit powers down the peripheral.

Parameters:
  • en – peripheral for which to enable the PDRUNCFG bit

Returns:

none

static inline void POWER_DisablePD(pd_bit_t en)

API to disable PDRUNCFG bit in the Syscon. Note that disabling the bit powers up the peripheral.

Parameters:
  • en – peripheral for which to disable the PDRUNCFG bit

Returns:

none

static inline void POWER_EnableDeepSleep(void)

API to enable deep sleep bit in the ARM Core.

Returns:

none

static inline void POWER_DisableDeepSleep(void)

API to disable deep sleep bit in the ARM Core.

Returns:

none

static inline void POWER_PowerDownFlash(void)

API to power down flash controller.

Returns:

none

static inline void POWER_PowerUpFlash(void)

API to power up flash controller.

Returns:

none

void POWER_EnterPowerMode(power_mode_cfg_t mode, uint64_t exclude_from_pd)

Power Library API to enter different power mode.

Parameters:
  • mode

  • exclude_from_pd – Bit mask of the PDRUNCFG bits that needs to be powered on during deep sleep

Returns:

none

void POWER_EnterSleep(void)

Power Library API to enter sleep mode.

Returns:

none

void POWER_EnterDeepSleep(uint64_t exclude_from_pd)

Power Library API to enter deep sleep mode.

Parameters:
  • exclude_from_pd – Bit mask of the PDRUNCFG bits that needs to be powered on during deep sleep

Returns:

none

void POWER_EnterDeepPowerDown(uint64_t exclude_from_pd)

Power Library API to enter deep power down mode.

Parameters:
  • exclude_from_pd – Bit mask of the PDRUNCFG bits that needs to be powered on during deep power down mode, but this is has no effect as the voltages are cut off.

Returns:

none

void POWER_SetVoltageForFreq(uint32_t freq)

Power Library API to choose normal regulation and set the voltage for the desired operating frequency.

Parameters:
  • freq – - The desired frequency at which the part would like to operate, note that the voltage and flash wait states should be set before changing frequency

Returns:

none

void POWER_SetLowPowerVoltageForFreq(uint32_t freq)

Power Library API to choose low power regulation and set the voltage for the desired operating frequency.

Parameters:
  • freq – - The desired frequency at which the part would like to operate, note only 12MHz and 48Mhz are supported

Returns:

none

uint32_t POWER_GetLibVersion(void)

Power Library API to return the library version.

Returns:

version number of the power library

void POWER_InitBod(const power_bod_config_t *bodConfig)

Initialize BOD, including enabling/disabling BOD interrupt, enabling/disabling BOD reset, setting BOD interrupt level, and reset level.

Parameters:
  • bodConfig – Pointer the the structure power_bod_config_t.

void POWER_GetDefaultBodConfig(power_bod_config_t *bodConfig)

Get default BOD configuration.

bodConfig->enableReset = true;
bodConfig->resetLevel = kBod_ResetLevel0;
bodConfig->enableInterrupt = false;
bodConfig->interruptLevel = kBod_InterruptLevel0;
Parameters:
  • bodConfig – Pointer the the structure power_bod_config_t.

static inline void POWER_DeinitBod(void)

De-initialize BOD.

static inline uint32_t POWER_GetBodStatusFlags(void)

Get Bod status flags.

Returns:

Flags of Bod status.

static inline void POWER_ClearBodStatusFlags(uint32_t mask)

Clear Bod status flags.

Parameters:
  • mask – The mask of status flags to clear, should be the OR’ed value of power_bod_status_t.

bool enableReset

Enable/disable BOD reset function.

power_bod_reset_level_t resetLevel

BOD reset level, please refer to power_bod_reset_level_t.

bool enableInterrupt

Enable/disable BOD interrupt function.

power_bod_interrupt_level_t interruptLevel

BOD interrupt level, please refer to power_bod_interrupt_level_t.

struct _power_bod_config
#include <fsl_power.h>

The configuration of power bod, including reset level, interrupt level, and so on.

Reset Driver

enum _SYSCON_RSTn

Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETCTRL/ASYNCPRESETCTRL registers

Values:

enumerator kRSTn_IpInvalid
enumerator kFLASH_RST_SHIFT_RSTn

Flash controller reset control

enumerator kFMC_RST_SHIFT_RSTn

Flash accelerator reset control

enumerator kMUX_RST_SHIFT_RSTn

Input mux reset control

enumerator kIOCON_RST_SHIFT_RSTn

IOCON reset control

enumerator kGPIO0_RST_SHIFT_RSTn

GPIO0 reset control

enumerator kGPIO1_RST_SHIFT_RSTn

GPIO1 reset control

enumerator kPINT_RST_SHIFT_RSTn

Pin interrupt (PINT) reset control

enumerator kGINT_RST_SHIFT_RSTn

Grouped interrupt (PINT) reset control.

enumerator kDMA_RST_SHIFT_RSTn

DMA reset control

enumerator kCRC_RST_SHIFT_RSTn

CRC reset control

enumerator kWWDT_RST_SHIFT_RSTn

Watchdog timer reset control

enumerator kADC0_RST_SHIFT_RSTn

ADC0 reset control

enumerator kMRT_RST_SHIFT_RSTn

Multi-rate timer (MRT) reset control

enumerator kSCT0_RST_SHIFT_RSTn

SCTimer/PWM 0 (SCT0) reset control

enumerator kUTICK_RST_SHIFT_RSTn

Micro-tick timer reset control

enumerator kFC0_RST_SHIFT_RSTn

Flexcomm Interface 0 reset control

enumerator kFC1_RST_SHIFT_RSTn

Flexcomm Interface 1 reset control

enumerator kFC2_RST_SHIFT_RSTn

Flexcomm Interface 2 reset control

enumerator kFC3_RST_SHIFT_RSTn

Flexcomm Interface 3 reset control

enumerator kFC4_RST_SHIFT_RSTn

Flexcomm Interface 4 reset control

enumerator kFC5_RST_SHIFT_RSTn

Flexcomm Interface 5 reset control

enumerator kFC6_RST_SHIFT_RSTn

Flexcomm Interface 6 reset control

enumerator kFC7_RST_SHIFT_RSTn

Flexcomm Interface 7 reset control

enumerator kUSB_RST_SHIFT_RSTn

USB reset control

enumerator kCTIMER0_RST_SHIFT_RSTn

CTimer0 reset control

enumerator kCTIMER1_RST_SHIFT_RSTn

CTimer1 reset control

enumerator kCTIMER3_RST_SHIFT_RSTn

CTimer3 reset control

typedef enum _SYSCON_RSTn SYSCON_RSTn_t

Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETCTRL/ASYNCPRESETCTRL registers

typedef SYSCON_RSTn_t reset_ip_name_t
void RESET_SetPeripheralReset(reset_ip_name_t peripheral)

Assert reset to peripheral.

Asserts reset signal to specified peripheral module.

Parameters:
  • peripheral – Assert reset to this peripheral. The enum argument contains encoding of reset register and reset bit position in the reset register.

void RESET_ClearPeripheralReset(reset_ip_name_t peripheral)

Clear reset to peripheral.

Clears reset signal to specified peripheral module, allows it to operate.

Parameters:
  • peripheral – Clear reset to this peripheral. The enum argument contains encoding of reset register and reset bit position in the reset register.

void RESET_PeripheralReset(reset_ip_name_t peripheral)

Reset peripheral module.

Reset peripheral module.

Parameters:
  • peripheral – Peripheral to reset. The enum argument contains encoding of reset register and reset bit position in the reset register.

static inline void RESET_ReleasePeripheralReset(reset_ip_name_t peripheral)

Release peripheral module.

Release peripheral module.

Parameters:
  • peripheral – Peripheral to release. The enum argument contains encoding of reset register and reset bit position in the reset register.

FSL_RESET_DRIVER_VERSION

reset driver version 2.4.0

ADC_RSTS

Array initializers with peripheral reset bits

CRC_RSTS
DMA_RSTS_N
FLEXCOMM_RSTS
GINT_RSTS
GPIO_RSTS_N
INPUTMUX_RSTS
IOCON_RSTS
FLASH_RSTS
MRT_RSTS
PINT_RSTS
SCT_RSTS
CTIMER_RSTS
USB_RSTS
UTICK_RSTS
WWDT_RSTS

RTC: Real Time Clock

void RTC_Init(RTC_Type *base)

Un-gate the RTC clock and enable the RTC oscillator.

Note

This API should be called at the beginning of the application using the RTC driver.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_Deinit(RTC_Type *base)

Stop the timer and gate the RTC clock.

Parameters:
  • base – RTC peripheral base address

status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)

Set the RTC date and time according to the given time structure.

The RTC counter must be stopped prior to calling this function as writes to the RTC seconds register will fail if the RTC counter is running.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to structure where the date and time details to set are stored

Returns:

kStatus_Success: Success in setting the time and starting the RTC kStatus_InvalidArgument: Error because the datetime format is incorrect

void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)

Get the RTC time and stores it in the given time structure.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to structure where the date and time details are stored.

status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)

Set the RTC alarm time.

The function checks whether the specified alarm time is greater than the present time. If not, the function does not set the alarm and returns an error.

Parameters:
  • base – RTC peripheral base address

  • alarmTime – Pointer to structure where the alarm time is stored.

Returns:

kStatus_Success: success in setting the RTC alarm kStatus_InvalidArgument: Error because the alarm datetime format is incorrect kStatus_Fail: Error because the alarm time has already passed

void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)

Return the RTC alarm time.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to structure where the alarm date and time details are stored.

static inline void RTC_EnableWakeupTimer(RTC_Type *base, bool enable)

Enable the RTC wake-up timer (1KHZ).

After calling this function, the RTC driver will use/un-use the RTC wake-up (1KHZ) at the same time.

Parameters:
  • base – RTC peripheral base address

  • enable – Use/Un-use the RTC wake-up timer.

    • true: Use RTC wake-up timer at the same time.

    • false: Un-use RTC wake-up timer, RTC only use the normal seconds timer by default.

static inline uint32_t RTC_GetEnabledWakeupTimer(RTC_Type *base)

Get the enabled status of the RTC wake-up timer (1KHZ).

Parameters:
  • base – RTC peripheral base address

Returns:

The enabled status of RTC wake-up timer (1KHZ).

static inline void RTC_EnableWakeUpTimerInterruptFromDPD(RTC_Type *base, bool enable)

Enable the wake-up timer interrupt from deep power down mode.

Parameters:
  • base – RTC peripheral base address

  • enable – Enable/Disable wake-up timer interrupt from deep power down mode.

    • true: Enable wake-up timer interrupt from deep power down mode.

    • false: Disable wake-up timer interrupt from deep power down mode.

static inline void RTC_EnableAlarmTimerInterruptFromDPD(RTC_Type *base, bool enable)

Enable the alarm timer interrupt from deep power down mode.

Parameters:
  • base – RTC peripheral base address

  • enable – Enable/Disable alarm timer interrupt from deep power down mode.

    • true: Enable alarm timer interrupt from deep power down mode.

    • false: Disable alarm timer interrupt from deep power down mode.

static inline void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)

Enables the selected RTC interrupts.

Deprecated:

Do not use this function. It has been superceded by RTC_EnableAlarmTimerInterruptFromDPD and RTC_EnableWakeUpTimerInterruptFromDPD

Parameters:
  • base – RTC peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t

static inline void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)

Disables the selected RTC interrupts.

Deprecated:

Do not use this function. It has been superceded by RTC_EnableAlarmTimerInterruptFromDPD and RTC_EnableWakeUpTimerInterruptFromDPD

Parameters:
  • base – RTC peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t

static inline uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)

Get the enabled RTC interrupts.

Deprecated:

Do not use this function. It will be deleted in next release version.

Parameters:
  • base – RTC peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration rtc_interrupt_enable_t

static inline uint32_t RTC_GetStatusFlags(RTC_Type *base)

Get the RTC status flags.

Parameters:
  • base – RTC peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration rtc_status_flags_t

static inline void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)

Clear the RTC status flags.

Parameters:
  • base – RTC peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration rtc_status_flags_t

static inline void RTC_EnableTimer(RTC_Type *base, bool enable)

Enable the RTC timer counter.

After calling this function, the RTC inner counter increments once a second when only using the RTC seconds timer (1hz), while the RTC inner wake-up timer countdown once a millisecond when using RTC wake-up timer (1KHZ) at the same time. RTC timer contain two timers, one is the RTC normal seconds timer, the other one is the RTC wake-up timer, the RTC enable bit is the master switch for the whole RTC timer, so user can use the RTC seconds (1HZ) timer independly, but they can’t use the RTC wake-up timer (1KHZ) independently.

Parameters:
  • base – RTC peripheral base address

  • enable – Enable/Disable RTC Timer counter.

    • true: Enable RTC Timer counter.

    • false: Disable RTC Timer counter.

static inline void RTC_StartTimer(RTC_Type *base)

Starts the RTC time counter.

Deprecated:

Do not use this function. It has been superceded by RTC_EnableTimer

After calling this function, the timer counter increments once a second provided SR[TOF] or SR[TIF] are not set.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_StopTimer(RTC_Type *base)

Stops the RTC time counter.

Deprecated:

Do not use this function. It has been superceded by RTC_EnableTimer

RTC’s seconds register can be written to only when the timer is stopped.

Parameters:
  • base – RTC peripheral base address

FSL_RTC_DRIVER_VERSION

Version 2.2.0

enum _rtc_interrupt_enable

List of RTC interrupts.

Values:

enumerator kRTC_AlarmInterruptEnable

Alarm interrupt.

enumerator kRTC_WakeupInterruptEnable

Wake-up interrupt.

enum _rtc_status_flags

List of RTC flags.

Values:

enumerator kRTC_AlarmFlag

Alarm flag

enumerator kRTC_WakeupFlag

1kHz wake-up timer flag

typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t

List of RTC interrupts.

typedef enum _rtc_status_flags rtc_status_flags_t

List of RTC flags.

typedef struct _rtc_datetime rtc_datetime_t

Structure is used to hold the date and time.

static inline void RTC_SetSecondsTimerMatch(RTC_Type *base, uint32_t matchValue)

Set the RTC seconds timer (1HZ) MATCH value.

Parameters:
  • base – RTC peripheral base address

  • matchValue – The value to be set into the RTC MATCH register

static inline uint32_t RTC_GetSecondsTimerMatch(RTC_Type *base)

Read actual RTC seconds timer (1HZ) MATCH value.

Parameters:
  • base – RTC peripheral base address

Returns:

The actual RTC seconds timer (1HZ) MATCH value.

static inline void RTC_SetSecondsTimerCount(RTC_Type *base, uint32_t countValue)

Set the RTC seconds timer (1HZ) COUNT value.

Parameters:
  • base – RTC peripheral base address

  • countValue – The value to be loaded into the RTC COUNT register

static inline uint32_t RTC_GetSecondsTimerCount(RTC_Type *base)

Read the actual RTC seconds timer (1HZ) COUNT value.

Parameters:
  • base – RTC peripheral base address

Returns:

The actual RTC seconds timer (1HZ) COUNT value.

static inline void RTC_SetWakeupCount(RTC_Type *base, uint16_t wakeupValue)

Enable the RTC wake-up timer (1KHZ) and set countdown value to the RTC WAKE register.

Parameters:
  • base – RTC peripheral base address

  • wakeupValue – The value to be loaded into the WAKE register in RTC wake-up timer (1KHZ).

static inline uint16_t RTC_GetWakeupCount(RTC_Type *base)

Read the actual value from the WAKE register value in RTC wake-up timer (1KHZ)

Read the WAKE register twice and compare the result, if the value match,the time can be used.

Parameters:
  • base – RTC peripheral base address

Returns:

The actual value of the WAKE register value in RTC wake-up timer (1KHZ).

static inline void RTC_Reset(RTC_Type *base)

Perform a software reset on the RTC module.

This resets all RTC registers to their reset value. The bit is cleared by software explicitly clearing it.

Parameters:
  • base – RTC peripheral base address

struct _rtc_datetime
#include <fsl_rtc.h>

Structure is used to hold the date and time.

Public Members

uint16_t year

Range from 1970 to 2099.

uint8_t month

Range from 1 to 12.

uint8_t day

Range from 1 to 31 (depending on month).

uint8_t hour

Range from 0 to 23.

uint8_t minute

Range from 0 to 59.

uint8_t second

Range from 0 to 59.

SCTimer: SCTimer/PWM (SCT)

status_t SCTIMER_Init(SCT_Type *base, const sctimer_config_t *config)

Ungates the SCTimer clock and configures the peripheral for basic operation.

Note

This API should be called at the beginning of the application using the SCTimer driver.

Parameters:
  • base – SCTimer peripheral base address

  • config – Pointer to the user configuration structure.

Returns:

kStatus_Success indicates success; Else indicates failure.

void SCTIMER_Deinit(SCT_Type *base)

Gates the SCTimer clock.

Parameters:
  • base – SCTimer peripheral base address

void SCTIMER_GetDefaultConfig(sctimer_config_t *config)

Fills in the SCTimer configuration structure with the default settings.

The default values are:

config->enableCounterUnify = true;
config->clockMode = kSCTIMER_System_ClockMode;
config->clockSelect = kSCTIMER_Clock_On_Rise_Input_0;
config->enableBidirection_l = false;
config->enableBidirection_h = false;
config->prescale_l = 0U;
config->prescale_h = 0U;
config->outInitState = 0U;
config->inputsync  = 0xFU;

Parameters:
  • config – Pointer to the user configuration structure.

status_t SCTIMER_SetupPwm(SCT_Type *base, const sctimer_pwm_signal_param_t *pwmParams, sctimer_pwm_mode_t mode, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz, uint32_t *event)

Configures the PWM signal parameters.

Call this function to configure the PWM signal period, mode, duty cycle, and edge. This function will create 2 events; one of the events will trigger on match with the pulse value and the other will trigger when the counter matches the PWM period. The PWM period event is also used as a limit event to reset the counter or change direction. Both events are enabled for the same state. The state number can be retrieved by calling the function SCTIMER_GetCurrentStateNumber(). The counter is set to operate as one 32-bit counter (unify bit is set to 1). The counter operates in bi-directional mode when generating a center-aligned PWM.

Note

When setting PWM output from multiple output pins, they all should use the same PWM mode i.e all PWM’s should be either edge-aligned or center-aligned. When using this API, the PWM signal frequency of all the initialized channels must be the same. Otherwise all the initialized channels’ PWM signal frequency is equal to the last call to the API’s pwmFreq_Hz.

Parameters:
  • base – SCTimer peripheral base address

  • pwmParams – PWM parameters to configure the output

  • mode – PWM operation mode, options available in enumeration sctimer_pwm_mode_t

  • pwmFreq_Hz – PWM signal frequency in Hz

  • srcClock_Hz – SCTimer counter clock in Hz

  • event – Pointer to a variable where the PWM period event number is stored

Returns:

kStatus_Success on success kStatus_Fail If we have hit the limit in terms of number of events created or if an incorrect PWM dutycylce is passed in.

void SCTIMER_UpdatePwmDutycycle(SCT_Type *base, sctimer_out_t output, uint8_t dutyCyclePercent, uint32_t event)

Updates the duty cycle of an active PWM signal.

Before calling this function, the counter is set to operate as one 32-bit counter (unify bit is set to 1).

Parameters:
  • base – SCTimer peripheral base address

  • output – The output to configure

  • dutyCyclePercent – New PWM pulse width; the value should be between 1 to 100

  • event – Event number associated with this PWM signal. This was returned to the user by the function SCTIMER_SetupPwm().

static inline void SCTIMER_EnableInterrupts(SCT_Type *base, uint32_t mask)

Enables the selected SCTimer interrupts.

Parameters:
  • base – SCTimer peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration sctimer_interrupt_enable_t

static inline void SCTIMER_DisableInterrupts(SCT_Type *base, uint32_t mask)

Disables the selected SCTimer interrupts.

Parameters:
  • base – SCTimer peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration sctimer_interrupt_enable_t

static inline uint32_t SCTIMER_GetEnabledInterrupts(SCT_Type *base)

Gets the enabled SCTimer interrupts.

Parameters:
  • base – SCTimer peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration sctimer_interrupt_enable_t

static inline uint32_t SCTIMER_GetStatusFlags(SCT_Type *base)

Gets the SCTimer status flags.

Parameters:
  • base – SCTimer peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration sctimer_status_flags_t

static inline void SCTIMER_ClearStatusFlags(SCT_Type *base, uint32_t mask)

Clears the SCTimer status flags.

Parameters:
  • base – SCTimer peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration sctimer_status_flags_t

static inline void SCTIMER_StartTimer(SCT_Type *base, uint32_t countertoStart)

Starts the SCTimer counter.

Note

In 16-bit mode, we can enable both Counter_L and Counter_H, In 32-bit mode, we only can select Counter_U.

Parameters:
  • base – SCTimer peripheral base address

  • countertoStart – The SCTimer counters to enable. This is a logical OR of members of the enumeration sctimer_counter_t.

static inline void SCTIMER_StopTimer(SCT_Type *base, uint32_t countertoStop)

Halts the SCTimer counter.

Parameters:
  • base – SCTimer peripheral base address

  • countertoStop – The SCTimer counters to stop. This is a logical OR of members of the enumeration sctimer_counter_t.

status_t SCTIMER_CreateAndScheduleEvent(SCT_Type *base, sctimer_event_t howToMonitor, uint32_t matchValue, uint32_t whichIO, sctimer_counter_t whichCounter, uint32_t *event)

Create an event that is triggered on a match or IO and schedule in current state.

This function will configure an event using the options provided by the user. If the event type uses the counter match, then the function will set the user provided match value into a match register and put this match register number into the event control register. The event is enabled for the current state and the event number is increased by one at the end. The function returns the event number; this event number can be used to configure actions to be done when this event is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • howToMonitor – Event type; options are available in the enumeration sctimer_interrupt_enable_t

  • matchValue – The match value that will be programmed to a match register

  • whichIO – The input or output that will be involved in event triggering. This field is ignored if the event type is “match only”

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • event – Pointer to a variable where the new event number is stored

Returns:

kStatus_Success on success kStatus_Error if we have hit the limit in terms of number of events created or if we have reached the limit in terms of number of match registers

void SCTIMER_ScheduleEvent(SCT_Type *base, uint32_t event)

Enable an event in the current state.

This function will allow the event passed in to trigger in the current state. The event must be created earlier by either calling the function SCTIMER_SetupPwm() or function SCTIMER_CreateAndScheduleEvent() .

Parameters:
  • base – SCTimer peripheral base address

  • event – Event number to enable in the current state

status_t SCTIMER_IncreaseState(SCT_Type *base)

Increase the state by 1.

All future events created by calling the function SCTIMER_ScheduleEvent() will be enabled in this new state.

Parameters:
  • base – SCTimer peripheral base address

Returns:

kStatus_Success on success kStatus_Error if we have hit the limit in terms of states used

uint32_t SCTIMER_GetCurrentState(SCT_Type *base)

Provides the current state.

User can use this to set the next state by calling the function SCTIMER_SetupNextStateAction().

Parameters:
  • base – SCTimer peripheral base address

Returns:

The current state

static inline void SCTIMER_SetCounterState(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t state)

Set the counter current state.

The function is to set the state variable bit field of STATE register. Writing to the STATE_L, STATE_H, or unified register is only allowed when the corresponding counter is halted (HALT bits are set to 1 in the CTRL register).

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • state – The counter current state number (only support range from 0~31).

static inline uint16_t SCTIMER_GetCounterState(SCT_Type *base, sctimer_counter_t whichCounter)

Get the counter current state value.

The function is to get the state variable bit field of STATE register.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns:

The the counter current state value.

status_t SCTIMER_SetupCaptureAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t *captureRegister, uint32_t event)

Setup capture of the counter value on trigger of a selected event.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • captureRegister – Pointer to a variable where the capture register number will be returned. User can read the captured value from this register when the specified event is triggered.

  • event – Event number that will trigger the capture

Returns:

kStatus_Success on success kStatus_Error if we have hit the limit in terms of number of match/capture registers available

void SCTIMER_SetCallback(SCT_Type *base, sctimer_event_callback_t callback, uint32_t event)

Receive noticification when the event trigger an interrupt.

If the interrupt for the event is enabled by the user, then a callback can be registered which will be invoked when the event is triggered

Parameters:
  • base – SCTimer peripheral base address

  • event – Event number that will trigger the interrupt

  • callback – Function to invoke when the event is triggered

static inline void SCTIMER_SetupStateLdMethodAction(SCT_Type *base, uint32_t event, bool fgLoad)

Change the load method of transition to the specified state.

Change the load method of transition, it will be triggered by the event number that is passed in by the user.

Parameters:
  • base – SCTimer peripheral base address

  • event – Event number that will change the method to trigger the state transition

  • fgLoad – The method to load highest-numbered event occurring for that state to the STATE register.

    • true: Load the STATEV value to STATE when the event occurs to be the next state.

    • false: Add the STATEV value to STATE when the event occurs to be the next state.

static inline void SCTIMER_SetupNextStateActionwithLdMethod(SCT_Type *base, uint32_t nextState, uint32_t event, bool fgLoad)

Transition to the specified state with Load method.

This transition will be triggered by the event number that is passed in by the user, the method decide how to load the highest-numbered event occurring for that state to the STATE register.

Parameters:
  • base – SCTimer peripheral base address

  • nextState – The next state SCTimer will transition to

  • event – Event number that will trigger the state transition

  • fgLoad – The method to load the highest-numbered event occurring for that state to the STATE register.

    • true: Load the STATEV value to STATE when the event occurs to be the next state.

    • false: Add the STATEV value to STATE when the event occurs to be the next state.

static inline void SCTIMER_SetupNextStateAction(SCT_Type *base, uint32_t nextState, uint32_t event)

Transition to the specified state.

Deprecated:

Do not use this function. It has been superceded by SCTIMER_SetupNextStateActionwithLdMethod

This transition will be triggered by the event number that is passed in by the user.

Parameters:
  • base – SCTimer peripheral base address

  • nextState – The next state SCTimer will transition to

  • event – Event number that will trigger the state transition

static inline void SCTIMER_SetupEventActiveDirection(SCT_Type *base, sctimer_event_active_direction_t activeDirection, uint32_t event)

Setup event active direction when the counters are operating in BIDIR mode.

Parameters:
  • base – SCTimer peripheral base address

  • activeDirection – Event generation active direction, see sctimer_event_active_direction_t.

  • event – Event number that need setup the active direction.

static inline void SCTIMER_SetupOutputSetAction(SCT_Type *base, uint32_t whichIO, uint32_t event)

Set the Output.

This output will be set when the event number that is passed in by the user is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • whichIO – The output to set

  • event – Event number that will trigger the output change

static inline void SCTIMER_SetupOutputClearAction(SCT_Type *base, uint32_t whichIO, uint32_t event)

Clear the Output.

This output will be cleared when the event number that is passed in by the user is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • whichIO – The output to clear

  • event – Event number that will trigger the output change

void SCTIMER_SetupOutputToggleAction(SCT_Type *base, uint32_t whichIO, uint32_t event)

Toggle the output level.

This change in the output level is triggered by the event number that is passed in by the user.

Parameters:
  • base – SCTimer peripheral base address

  • whichIO – The output to toggle

  • event – Event number that will trigger the output change

static inline void SCTIMER_SetupCounterLimitAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)

Limit the running counter.

The counter is limited when the event number that is passed in by the user is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • event – Event number that will trigger the counter to be limited

static inline void SCTIMER_SetupCounterStopAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)

Stop the running counter.

The counter is stopped when the event number that is passed in by the user is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • event – Event number that will trigger the counter to be stopped

static inline void SCTIMER_SetupCounterStartAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)

Re-start the stopped counter.

The counter will re-start when the event number that is passed in by the user is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • event – Event number that will trigger the counter to re-start

static inline void SCTIMER_SetupCounterHaltAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)

Halt the running counter.

The counter is disabled (halted) when the event number that is passed in by the user is triggered. When the counter is halted, all further events are disabled. The HALT condition can only be removed by calling the SCTIMER_StartTimer() function.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • event – Event number that will trigger the counter to be halted

static inline void SCTIMER_SetupDmaTriggerAction(SCT_Type *base, uint32_t dmaNumber, uint32_t event)

Generate a DMA request.

DMA request will be triggered by the event number that is passed in by the user.

Parameters:
  • base – SCTimer peripheral base address

  • dmaNumber – The DMA request to generate

  • event – Event number that will trigger the DMA request

static inline void SCTIMER_SetCOUNTValue(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t value)

Set the value of counter.

The function is to set the value of Count register, Writing to the COUNT_L, COUNT_H, or unified register is only allowed when the corresponding counter is halted (HALT bits are set to 1 in the CTRL register).

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • value – the counter value update to the COUNT register.

static inline uint32_t SCTIMER_GetCOUNTValue(SCT_Type *base, sctimer_counter_t whichCounter)

Get the value of counter.

The function is to read the value of Count register, software can read the counter registers at any time..

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns:

The value of counter selected.

static inline void SCTIMER_SetEventInState(SCT_Type *base, uint32_t event, uint32_t state)

Set the state mask bit field of EV_STATE register.

Parameters:
  • base – SCTimer peripheral base address

  • event – The EV_STATE register be set.

  • state – The state value in which the event is enabled to occur.

static inline void SCTIMER_ClearEventInState(SCT_Type *base, uint32_t event, uint32_t state)

Clear the state mask bit field of EV_STATE register.

Parameters:
  • base – SCTimer peripheral base address

  • event – The EV_STATE register be clear.

  • state – The state value in which the event is disabled to occur.

static inline bool SCTIMER_GetEventInState(SCT_Type *base, uint32_t event, uint32_t state)

Get the state mask bit field of EV_STATE register.

Note

This function is to check whether the event is enabled in a specific state.

Parameters:
  • base – SCTimer peripheral base address

  • event – The EV_STATE register be read.

  • state – The state value.

Returns:

The the state mask bit field of EV_STATE register.

  • true: The event is enable in state.

  • false: The event is disable in state.

static inline uint32_t SCTIMER_GetCaptureValue(SCT_Type *base, sctimer_counter_t whichCounter, uint8_t capChannel)

Get the value of capture register.

This function returns the captured value upon occurrence of the events selected by the corresponding Capture Control registers occurred.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • capChannel – SCTimer capture register of capture channel.

Returns:

The SCTimer counter value at which this register was last captured.

void SCTIMER_EventHandleIRQ(SCT_Type *base)

SCTimer interrupt handler.

Parameters:
  • base – SCTimer peripheral base address.

FSL_SCTIMER_DRIVER_VERSION

Version

enum _sctimer_pwm_mode

SCTimer PWM operation modes.

Values:

enumerator kSCTIMER_EdgeAlignedPwm

Edge-aligned PWM

enumerator kSCTIMER_CenterAlignedPwm

Center-aligned PWM

enum _sctimer_counter

SCTimer counters type.

Values:

enumerator kSCTIMER_Counter_L

16-bit Low counter.

enumerator kSCTIMER_Counter_H

16-bit High counter.

enumerator kSCTIMER_Counter_U

32-bit Unified counter.

enum _sctimer_input

List of SCTimer input pins.

Values:

enumerator kSCTIMER_Input_0

SCTIMER input 0

enumerator kSCTIMER_Input_1

SCTIMER input 1

enumerator kSCTIMER_Input_2

SCTIMER input 2

enumerator kSCTIMER_Input_3

SCTIMER input 3

enumerator kSCTIMER_Input_4

SCTIMER input 4

enumerator kSCTIMER_Input_5

SCTIMER input 5

enumerator kSCTIMER_Input_6

SCTIMER input 6

enumerator kSCTIMER_Input_7

SCTIMER input 7

enum _sctimer_out

List of SCTimer output pins.

Values:

enumerator kSCTIMER_Out_0

SCTIMER output 0

enumerator kSCTIMER_Out_1

SCTIMER output 1

enumerator kSCTIMER_Out_2

SCTIMER output 2

enumerator kSCTIMER_Out_3

SCTIMER output 3

enumerator kSCTIMER_Out_4

SCTIMER output 4

enumerator kSCTIMER_Out_5

SCTIMER output 5

enumerator kSCTIMER_Out_6

SCTIMER output 6

enumerator kSCTIMER_Out_7

SCTIMER output 7

enumerator kSCTIMER_Out_8

SCTIMER output 8

enumerator kSCTIMER_Out_9

SCTIMER output 9

enum _sctimer_pwm_level_select

SCTimer PWM output pulse mode: high-true, low-true or no output.

Values:

enumerator kSCTIMER_LowTrue

Low true pulses

enumerator kSCTIMER_HighTrue

High true pulses

enum _sctimer_clock_mode

SCTimer clock mode options.

Values:

enumerator kSCTIMER_System_ClockMode

System Clock Mode

enumerator kSCTIMER_Sampled_ClockMode

Sampled System Clock Mode

enumerator kSCTIMER_Input_ClockMode

SCT Input Clock Mode

enumerator kSCTIMER_Asynchronous_ClockMode

Asynchronous Mode

enum _sctimer_clock_select

SCTimer clock select options.

Values:

enumerator kSCTIMER_Clock_On_Rise_Input_0

Rising edges on input 0

enumerator kSCTIMER_Clock_On_Fall_Input_0

Falling edges on input 0

enumerator kSCTIMER_Clock_On_Rise_Input_1

Rising edges on input 1

enumerator kSCTIMER_Clock_On_Fall_Input_1

Falling edges on input 1

enumerator kSCTIMER_Clock_On_Rise_Input_2

Rising edges on input 2

enumerator kSCTIMER_Clock_On_Fall_Input_2

Falling edges on input 2

enumerator kSCTIMER_Clock_On_Rise_Input_3

Rising edges on input 3

enumerator kSCTIMER_Clock_On_Fall_Input_3

Falling edges on input 3

enumerator kSCTIMER_Clock_On_Rise_Input_4

Rising edges on input 4

enumerator kSCTIMER_Clock_On_Fall_Input_4

Falling edges on input 4

enumerator kSCTIMER_Clock_On_Rise_Input_5

Rising edges on input 5

enumerator kSCTIMER_Clock_On_Fall_Input_5

Falling edges on input 5

enumerator kSCTIMER_Clock_On_Rise_Input_6

Rising edges on input 6

enumerator kSCTIMER_Clock_On_Fall_Input_6

Falling edges on input 6

enumerator kSCTIMER_Clock_On_Rise_Input_7

Rising edges on input 7

enumerator kSCTIMER_Clock_On_Fall_Input_7

Falling edges on input 7

enum _sctimer_conflict_resolution

SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should be both set and cleared at the same time

Values:

enumerator kSCTIMER_ResolveNone

No change

enumerator kSCTIMER_ResolveSet

Set output

enumerator kSCTIMER_ResolveClear

Clear output

enumerator kSCTIMER_ResolveToggle

Toggle output

enum _sctimer_event_active_direction

List of SCTimer event generation active direction when the counters are operating in BIDIR mode.

Values:

enumerator kSCTIMER_ActiveIndependent

This event is triggered regardless of the count direction.

enumerator kSCTIMER_ActiveInCountUp

This event is triggered only during up-counting when BIDIR = 1.

enumerator kSCTIMER_ActiveInCountDown

This event is triggered only during down-counting when BIDIR = 1.

enum _sctimer_event

List of SCTimer event types.

Values:

enumerator kSCTIMER_InputLowOrMatchEvent
enumerator kSCTIMER_InputRiseOrMatchEvent
enumerator kSCTIMER_InputFallOrMatchEvent
enumerator kSCTIMER_InputHighOrMatchEvent
enumerator kSCTIMER_MatchEventOnly
enumerator kSCTIMER_InputLowEvent
enumerator kSCTIMER_InputRiseEvent
enumerator kSCTIMER_InputFallEvent
enumerator kSCTIMER_InputHighEvent
enumerator kSCTIMER_InputLowAndMatchEvent
enumerator kSCTIMER_InputRiseAndMatchEvent
enumerator kSCTIMER_InputFallAndMatchEvent
enumerator kSCTIMER_InputHighAndMatchEvent
enumerator kSCTIMER_OutputLowOrMatchEvent
enumerator kSCTIMER_OutputRiseOrMatchEvent
enumerator kSCTIMER_OutputFallOrMatchEvent
enumerator kSCTIMER_OutputHighOrMatchEvent
enumerator kSCTIMER_OutputLowEvent
enumerator kSCTIMER_OutputRiseEvent
enumerator kSCTIMER_OutputFallEvent
enumerator kSCTIMER_OutputHighEvent
enumerator kSCTIMER_OutputLowAndMatchEvent
enumerator kSCTIMER_OutputRiseAndMatchEvent
enumerator kSCTIMER_OutputFallAndMatchEvent
enumerator kSCTIMER_OutputHighAndMatchEvent
enum _sctimer_interrupt_enable

List of SCTimer interrupts.

Values:

enumerator kSCTIMER_Event0InterruptEnable

Event 0 interrupt

enumerator kSCTIMER_Event1InterruptEnable

Event 1 interrupt

enumerator kSCTIMER_Event2InterruptEnable

Event 2 interrupt

enumerator kSCTIMER_Event3InterruptEnable

Event 3 interrupt

enumerator kSCTIMER_Event4InterruptEnable

Event 4 interrupt

enumerator kSCTIMER_Event5InterruptEnable

Event 5 interrupt

enumerator kSCTIMER_Event6InterruptEnable

Event 6 interrupt

enumerator kSCTIMER_Event7InterruptEnable

Event 7 interrupt

enumerator kSCTIMER_Event8InterruptEnable

Event 8 interrupt

enumerator kSCTIMER_Event9InterruptEnable

Event 9 interrupt

enumerator kSCTIMER_Event10InterruptEnable

Event 10 interrupt

enumerator kSCTIMER_Event11InterruptEnable

Event 11 interrupt

enumerator kSCTIMER_Event12InterruptEnable

Event 12 interrupt

enum _sctimer_status_flags

List of SCTimer flags.

Values:

enumerator kSCTIMER_Event0Flag

Event 0 Flag

enumerator kSCTIMER_Event1Flag

Event 1 Flag

enumerator kSCTIMER_Event2Flag

Event 2 Flag

enumerator kSCTIMER_Event3Flag

Event 3 Flag

enumerator kSCTIMER_Event4Flag

Event 4 Flag

enumerator kSCTIMER_Event5Flag

Event 5 Flag

enumerator kSCTIMER_Event6Flag

Event 6 Flag

enumerator kSCTIMER_Event7Flag

Event 7 Flag

enumerator kSCTIMER_Event8Flag

Event 8 Flag

enumerator kSCTIMER_Event9Flag

Event 9 Flag

enumerator kSCTIMER_Event10Flag

Event 10 Flag

enumerator kSCTIMER_Event11Flag

Event 11 Flag

enumerator kSCTIMER_Event12Flag

Event 12 Flag

enumerator kSCTIMER_BusErrorLFlag

Bus error due to write when L counter was not halted

enumerator kSCTIMER_BusErrorHFlag

Bus error due to write when H counter was not halted

typedef enum _sctimer_pwm_mode sctimer_pwm_mode_t

SCTimer PWM operation modes.

typedef enum _sctimer_counter sctimer_counter_t

SCTimer counters type.

typedef enum _sctimer_input sctimer_input_t

List of SCTimer input pins.

typedef enum _sctimer_out sctimer_out_t

List of SCTimer output pins.

typedef enum _sctimer_pwm_level_select sctimer_pwm_level_select_t

SCTimer PWM output pulse mode: high-true, low-true or no output.

typedef struct _sctimer_pwm_signal_param sctimer_pwm_signal_param_t

Options to configure a SCTimer PWM signal.

typedef enum _sctimer_clock_mode sctimer_clock_mode_t

SCTimer clock mode options.

typedef enum _sctimer_clock_select sctimer_clock_select_t

SCTimer clock select options.

typedef enum _sctimer_conflict_resolution sctimer_conflict_resolution_t

SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should be both set and cleared at the same time

typedef enum _sctimer_event_active_direction sctimer_event_active_direction_t

List of SCTimer event generation active direction when the counters are operating in BIDIR mode.

typedef enum _sctimer_event sctimer_event_t

List of SCTimer event types.

typedef void (*sctimer_event_callback_t)(void)

SCTimer callback typedef.

typedef enum _sctimer_interrupt_enable sctimer_interrupt_enable_t

List of SCTimer interrupts.

typedef enum _sctimer_status_flags sctimer_status_flags_t

List of SCTimer flags.

typedef struct _sctimer_config sctimer_config_t

SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

SCT_EV_STATE_STATEMSKn(x)
struct _sctimer_pwm_signal_param
#include <fsl_sctimer.h>

Options to configure a SCTimer PWM signal.

Public Members

sctimer_out_t output

The output pin to use to generate the PWM signal

sctimer_pwm_level_select_t level

PWM output active level select.

uint8_t dutyCyclePercent

PWM pulse width, value should be between 0 to 100 0 = always inactive signal (0% duty cycle) 100 = always active signal (100% duty cycle).

struct _sctimer_config
#include <fsl_sctimer.h>

SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

bool enableCounterUnify

true: SCT operates as a unified 32-bit counter; false: SCT operates as two 16-bit counters. User can use the 16-bit low counter and the 16-bit high counters at the same time; for Hardware limit, user can not use unified 32-bit counter and any 16-bit low/high counter at the same time.

sctimer_clock_mode_t clockMode

SCT clock mode value

sctimer_clock_select_t clockSelect

SCT clock select value

bool enableBidirection_l

true: Up-down count mode for the L or unified counter false: Up count mode only for the L or unified counter

bool enableBidirection_h

true: Up-down count mode for the H or unified counter false: Up count mode only for the H or unified counter. This field is used only if the enableCounterUnify is set to false

uint8_t prescale_l

Prescale value to produce the L or unified counter clock

uint8_t prescale_h

Prescale value to produce the H counter clock. This field is used only if the enableCounterUnify is set to false

uint8_t outInitState

Defines the initial output value

uint8_t inputsync

SCT INSYNC value, INSYNC field in the CONFIG register, from bit9 to bit 16. it is used to define synchronization for input N: bit 9 = input 0 bit 10 = input 1 bit 11 = input 2 bit 12 = input 3 All other bits are reserved (bit13 ~bit 16). How User to set the the value for the member inputsync. IE: delay for input0, and input 1, bypasses for input 2 and input 3 MACRO definition in user level. #define INPUTSYNC0 (0U) #define INPUTSYNC1 (1U) #define INPUTSYNC2 (2U) #define INPUTSYNC3 (3U) User Code. sctimerInfo.inputsync = (1 << INPUTSYNC2) | (1 << INPUTSYNC3);

SPI: Serial Peripheral Interface Driver

SPI DMA Driver

status_t SPI_MasterTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_dma_callback_t callback, void *userData, dma_handle_t *txHandle, dma_handle_t *rxHandle)

Initialize the SPI master DMA handle.

This function initializes the SPI master DMA handle which can be used for other SPI master transactional APIs. Usually, for a specified SPI instance, user need only call this API once to get the initialized handle.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI handle pointer.

  • callback – User callback function called at the end of a transfer.

  • userData – User data for callback.

  • txHandle – DMA handle pointer for SPI Tx, the handle shall be static allocated by users.

  • rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allocated by users.

status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)

Perform a non-blocking SPI transfer using DMA.

Note

This interface returned immediately after transfer initiates, users should call SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI DMA handle pointer.

  • xfer – Pointer to dma transfer structure.

Return values:
  • kStatus_Success – Successfully start a transfer.

  • kStatus_InvalidArgument – Input argument is invalid.

  • kStatus_SPI_Busy – SPI is not idle, is running another transfer.

status_t SPI_MasterHalfDuplexTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_half_duplex_transfer_t *xfer)

Transfers a block of data using a DMA method.

This function using polling way to do the first half transimission and using DMA way to do the srcond half transimission, the transfer mechanism is half-duplex. When do the second half transimission, code will return right away. When all data is transferred, the callback function is called.

Parameters:
  • base – SPI base pointer

  • handle – A pointer to the spi_master_dma_handle_t structure which stores the transfer state.

  • xfer – A pointer to the spi_half_duplex_transfer_t structure.

Returns:

status of status_t.

static inline status_t SPI_SlaveTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_dma_callback_t callback, void *userData, dma_handle_t *txHandle, dma_handle_t *rxHandle)

Initialize the SPI slave DMA handle.

This function initializes the SPI slave DMA handle which can be used for other SPI master transactional APIs. Usually, for a specified SPI instance, user need only call this API once to get the initialized handle.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI handle pointer.

  • callback – User callback function called at the end of a transfer.

  • userData – User data for callback.

  • txHandle – DMA handle pointer for SPI Tx, the handle shall be static allocated by users.

  • rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allocated by users.

static inline status_t SPI_SlaveTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)

Perform a non-blocking SPI transfer using DMA.

Note

This interface returned immediately after transfer initiates, users should call SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI DMA handle pointer.

  • xfer – Pointer to dma transfer structure.

Return values:
  • kStatus_Success – Successfully start a transfer.

  • kStatus_InvalidArgument – Input argument is invalid.

  • kStatus_SPI_Busy – SPI is not idle, is running another transfer.

void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)

Abort a SPI transfer using DMA.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI DMA handle pointer.

status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)

Gets the master DMA transfer remaining bytes.

This function gets the master DMA transfer remaining bytes.

Parameters:
  • base – SPI peripheral base address.

  • handle – A pointer to the spi_dma_handle_t structure which stores the transfer state.

  • count – A number of bytes transferred by the non-blocking transaction.

Returns:

status of status_t.

static inline void SPI_SlaveTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)

Abort a SPI transfer using DMA.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI DMA handle pointer.

static inline status_t SPI_SlaveTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)

Gets the slave DMA transfer remaining bytes.

This function gets the slave DMA transfer remaining bytes.

Parameters:
  • base – SPI peripheral base address.

  • handle – A pointer to the spi_dma_handle_t structure which stores the transfer state.

  • count – A number of bytes transferred by the non-blocking transaction.

Returns:

status of status_t.

FSL_SPI_DMA_DRIVER_VERSION

SPI DMA driver version 2.1.1.

typedef struct _spi_dma_handle spi_dma_handle_t
typedef void (*spi_dma_callback_t)(SPI_Type *base, spi_dma_handle_t *handle, status_t status, void *userData)

SPI DMA callback called at the end of transfer.

struct _spi_dma_handle
#include <fsl_spi_dma.h>

SPI DMA transfer handle, users should not touch the content of the handle.

Public Members

volatile bool txInProgress

Send transfer finished

volatile bool rxInProgress

Receive transfer finished

uint8_t bytesPerFrame

Bytes in a frame for SPI transfer

uint8_t lastwordBytes

The Bytes of lastword for master

dma_handle_t *txHandle

DMA handler for SPI send

dma_handle_t *rxHandle

DMA handler for SPI receive

spi_dma_callback_t callback

Callback for SPI DMA transfer

void *userData

User Data for SPI DMA callback

uint32_t state

Internal state of SPI DMA transfer

size_t transferSize

Bytes need to be transfer

uint32_t instance

Index of SPI instance

const uint8_t *txNextData

The pointer of next time tx data

const uint8_t *txEndData

The pointer of end of data

uint8_t *rxNextData

The pointer of next time rx data

uint8_t *rxEndData

The pointer of end of rx data

uint32_t dataBytesEveryTime

Bytes in a time for DMA transfer, default is DMA_MAX_TRANSFER_COUNT

SPI Driver

FSL_SPI_DRIVER_VERSION

SPI driver version.

enum _spi_xfer_option

SPI transfer option.

Values:

enumerator kSPI_FrameDelay

A delay may be inserted, defined in the DLY register.

enumerator kSPI_FrameAssert

SSEL will be deasserted at the end of a transfer

enum _spi_shift_direction

SPI data shifter direction options.

Values:

enumerator kSPI_MsbFirst

Data transfers start with most significant bit.

enumerator kSPI_LsbFirst

Data transfers start with least significant bit.

enum _spi_clock_polarity

SPI clock polarity configuration.

Values:

enumerator kSPI_ClockPolarityActiveHigh

Active-high SPI clock (idles low).

enumerator kSPI_ClockPolarityActiveLow

Active-low SPI clock (idles high).

enum _spi_clock_phase

SPI clock phase configuration.

Values:

enumerator kSPI_ClockPhaseFirstEdge

First edge on SCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ClockPhaseSecondEdge

First edge on SCK occurs at the start of the first cycle of a data transfer.

enum _spi_txfifo_watermark

txFIFO watermark values

Values:

enumerator kSPI_TxFifo0

SPI tx watermark is empty

enumerator kSPI_TxFifo1

SPI tx watermark at 1 item

enumerator kSPI_TxFifo2

SPI tx watermark at 2 items

enumerator kSPI_TxFifo3

SPI tx watermark at 3 items

enumerator kSPI_TxFifo4

SPI tx watermark at 4 items

enumerator kSPI_TxFifo5

SPI tx watermark at 5 items

enumerator kSPI_TxFifo6

SPI tx watermark at 6 items

enumerator kSPI_TxFifo7

SPI tx watermark at 7 items

enum _spi_rxfifo_watermark

rxFIFO watermark values

Values:

enumerator kSPI_RxFifo1

SPI rx watermark at 1 item

enumerator kSPI_RxFifo2

SPI rx watermark at 2 items

enumerator kSPI_RxFifo3

SPI rx watermark at 3 items

enumerator kSPI_RxFifo4

SPI rx watermark at 4 items

enumerator kSPI_RxFifo5

SPI rx watermark at 5 items

enumerator kSPI_RxFifo6

SPI rx watermark at 6 items

enumerator kSPI_RxFifo7

SPI rx watermark at 7 items

enumerator kSPI_RxFifo8

SPI rx watermark at 8 items

enum _spi_data_width

Transfer data width.

Values:

enumerator kSPI_Data4Bits

4 bits data width

enumerator kSPI_Data5Bits

5 bits data width

enumerator kSPI_Data6Bits

6 bits data width

enumerator kSPI_Data7Bits

7 bits data width

enumerator kSPI_Data8Bits

8 bits data width

enumerator kSPI_Data9Bits

9 bits data width

enumerator kSPI_Data10Bits

10 bits data width

enumerator kSPI_Data11Bits

11 bits data width

enumerator kSPI_Data12Bits

12 bits data width

enumerator kSPI_Data13Bits

13 bits data width

enumerator kSPI_Data14Bits

14 bits data width

enumerator kSPI_Data15Bits

15 bits data width

enumerator kSPI_Data16Bits

16 bits data width

enum _spi_ssel

Slave select.

Values:

enumerator kSPI_Ssel0

Slave select 0

enumerator kSPI_Ssel1

Slave select 1

enumerator kSPI_Ssel2

Slave select 2

enumerator kSPI_Ssel3

Slave select 3

enum _spi_spol

ssel polarity

Values:

enumerator kSPI_Spol0ActiveHigh
enumerator kSPI_Spol1ActiveHigh
enumerator kSPI_Spol3ActiveHigh
enumerator kSPI_SpolActiveAllHigh
enumerator kSPI_SpolActiveAllLow

SPI transfer status.

Values:

enumerator kStatus_SPI_Busy

SPI bus is busy

enumerator kStatus_SPI_Idle

SPI is idle

enumerator kStatus_SPI_Error

SPI error

enumerator kStatus_SPI_BaudrateNotSupport

Baudrate is not support in current clock source

enumerator kStatus_SPI_Timeout

SPI timeout polling status flags.

enum _spi_interrupt_enable

SPI interrupt sources.

Values:

enumerator kSPI_RxLvlIrq

Rx level interrupt

enumerator kSPI_TxLvlIrq

Tx level interrupt

enum _spi_statusflags

SPI status flags.

Values:

enumerator kSPI_TxEmptyFlag

txFifo is empty

enumerator kSPI_TxNotFullFlag

txFifo is not full

enumerator kSPI_RxNotEmptyFlag

rxFIFO is not empty

enumerator kSPI_RxFullFlag

rxFIFO is full

typedef enum _spi_xfer_option spi_xfer_option_t

SPI transfer option.

typedef enum _spi_shift_direction spi_shift_direction_t

SPI data shifter direction options.

typedef enum _spi_clock_polarity spi_clock_polarity_t

SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_clock_phase_t

SPI clock phase configuration.

typedef enum _spi_txfifo_watermark spi_txfifo_watermark_t

txFIFO watermark values

typedef enum _spi_rxfifo_watermark spi_rxfifo_watermark_t

rxFIFO watermark values

typedef enum _spi_data_width spi_data_width_t

Transfer data width.

typedef enum _spi_ssel spi_ssel_t

Slave select.

typedef enum _spi_spol spi_spol_t

ssel polarity

typedef struct _spi_delay_config spi_delay_config_t

SPI delay time configure structure. Note: The DLY register controls several programmable delays related to SPI signalling, it stands for how many SPI clock time will be inserted. The maxinun value of these delay time is 15.

typedef struct _spi_master_config spi_master_config_t

SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t

SPI slave user configure structure.

typedef struct _spi_transfer spi_transfer_t

SPI transfer structure.

typedef struct _spi_half_duplex_transfer spi_half_duplex_transfer_t

SPI half-duplex(master only) transfer structure.

typedef struct _spi_config spi_config_t

Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.

typedef struct _spi_master_handle spi_master_handle_t

Master handle type.

typedef spi_master_handle_t spi_slave_handle_t

Slave handle type.

typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t status, void *userData)

SPI master callback for finished transmit.

typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status, void *userData)

SPI slave callback for finished transmit.

typedef void (*flexcomm_spi_master_irq_handler_t)(SPI_Type *base, spi_master_handle_t *handle)

Typedef for master interrupt handler.

typedef void (*flexcomm_spi_slave_irq_handler_t)(SPI_Type *base, spi_slave_handle_t *handle)

Typedef for slave interrupt handler.

volatile uint8_t s_dummyData[]

SPI default SSEL COUNT.

Global variable for dummy data value setting.

SPI_DUMMYDATA

SPI dummy transfer data, the data is sent while txBuff is NULL.

SPI_RETRY_TIMES

Retry times for waiting flag.

SPI_DATA(n)
SPI_CTRLMASK
SPI_ASSERTNUM_SSEL(n)
SPI_DEASSERTNUM_SSEL(n)
SPI_DEASSERT_ALL
SPI_FIFOWR_FLAGS_MASK
SPI_FIFOTRIG_TXLVL_GET(base)
SPI_FIFOTRIG_RXLVL_GET(base)
struct _spi_delay_config
#include <fsl_spi.h>

SPI delay time configure structure. Note: The DLY register controls several programmable delays related to SPI signalling, it stands for how many SPI clock time will be inserted. The maxinun value of these delay time is 15.

Public Members

uint8_t preDelay

Delay between SSEL assertion and the beginning of transfer.

uint8_t postDelay

Delay between the end of transfer and SSEL deassertion.

uint8_t frameDelay

Delay between frame to frame.

uint8_t transferDelay

Delay between transfer to transfer.

struct _spi_master_config
#include <fsl_spi.h>

SPI master user configure structure.

Public Members

bool enableLoopback

Enable loopback for test purpose

bool enableMaster

Enable SPI at initialization time

spi_clock_polarity_t polarity

Clock polarity

spi_clock_phase_t phase

Clock phase

spi_shift_direction_t direction

MSB or LSB

uint32_t baudRate_Bps

Baud Rate for SPI in Hz

spi_data_width_t dataWidth

Width of the data

spi_ssel_t sselNum

Slave select number

spi_spol_t sselPol

Configure active CS polarity

uint8_t txWatermark

txFIFO watermark

uint8_t rxWatermark

rxFIFO watermark

spi_delay_config_t delayConfig

Delay configuration.

struct _spi_slave_config
#include <fsl_spi.h>

SPI slave user configure structure.

Public Members

bool enableSlave

Enable SPI at initialization time

spi_clock_polarity_t polarity

Clock polarity

spi_clock_phase_t phase

Clock phase

spi_shift_direction_t direction

MSB or LSB

spi_data_width_t dataWidth

Width of the data

spi_spol_t sselPol

Configure active CS polarity

uint8_t txWatermark

txFIFO watermark

uint8_t rxWatermark

rxFIFO watermark

struct _spi_transfer
#include <fsl_spi.h>

SPI transfer structure.

Public Members

const uint8_t *txData

Send buffer

uint8_t *rxData

Receive buffer

uint32_t configFlags

Additional option to control transfer, spi_xfer_option_t.

size_t dataSize

Transfer bytes

struct _spi_half_duplex_transfer
#include <fsl_spi.h>

SPI half-duplex(master only) transfer structure.

Public Members

const uint8_t *txData

Send buffer

uint8_t *rxData

Receive buffer

size_t txDataSize

Transfer bytes for transmit

size_t rxDataSize

Transfer bytes

uint32_t configFlags

Transfer configuration flags, spi_xfer_option_t.

bool isPcsAssertInTransfer

If PCS pin keep assert between transmit and receive. true for assert and false for deassert.

bool isTransmitFirst

True for transmit first and false for receive first.

struct _spi_config
#include <fsl_spi.h>

Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.

struct _spi_master_handle
#include <fsl_spi.h>

SPI transfer handle structure.

Public Members

const uint8_t *volatile txData

Transfer buffer

uint8_t *volatile rxData

Receive buffer

volatile size_t txRemainingBytes

Number of data to be transmitted [in bytes]

volatile size_t rxRemainingBytes

Number of data to be received [in bytes]

volatile int8_t toReceiveCount

The number of data expected to receive in data width. Since the received count and sent count should be the same to complete the transfer, if the sent count is x and the received count is y, toReceiveCount is x-y.

size_t totalByteCount

A number of transfer bytes

volatile uint32_t state

SPI internal state

spi_master_callback_t callback

SPI callback

void *userData

Callback parameter

uint8_t dataWidth

Width of the data [Valid values: 1 to 16]

uint8_t sselNum

Slave select number to be asserted when transferring data [Valid values: 0 to 3]

uint32_t configFlags

Additional option to control transfer

uint8_t txWatermark

txFIFO watermark

uint8_t rxWatermark

rxFIFO watermark

USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver

USART DMA Driver

status_t USART_TransferCreateHandleDMA(USART_Type *base, usart_dma_handle_t *handle, usart_dma_transfer_callback_t callback, void *userData, dma_handle_t *txDmaHandle, dma_handle_t *rxDmaHandle)

Initializes the USART handle which is used in transactional functions.

Parameters:
  • base – USART peripheral base address.

  • handle – Pointer to usart_dma_handle_t structure.

  • callback – Callback function.

  • userData – User data.

  • txDmaHandle – User-requested DMA handle for TX DMA transfer.

  • rxDmaHandle – User-requested DMA handle for RX DMA transfer.

status_t USART_TransferSendDMA(USART_Type *base, usart_dma_handle_t *handle, usart_transfer_t *xfer)

Sends data using DMA.

This function sends data using DMA. This is a non-blocking function, which returns right away. When all data is sent, the send callback function is called.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • xfer – USART DMA transfer structure. See usart_transfer_t.

Return values:
  • kStatus_Success – if succeed, others failed.

  • kStatus_USART_TxBusy – Previous transfer on going.

  • kStatus_InvalidArgument – Invalid argument.

status_t USART_TransferReceiveDMA(USART_Type *base, usart_dma_handle_t *handle, usart_transfer_t *xfer)

Receives data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.

Parameters:
  • base – USART peripheral base address.

  • handle – Pointer to usart_dma_handle_t structure.

  • xfer – USART DMA transfer structure. See usart_transfer_t.

Return values:
  • kStatus_Success – if succeed, others failed.

  • kStatus_USART_RxBusy – Previous transfer on going.

  • kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortSendDMA(USART_Type *base, usart_dma_handle_t *handle)

Aborts the sent data using DMA.

This function aborts send data using DMA.

Parameters:
  • base – USART peripheral base address

  • handle – Pointer to usart_dma_handle_t structure

void USART_TransferAbortReceiveDMA(USART_Type *base, usart_dma_handle_t *handle)

Aborts the received data using DMA.

This function aborts the received data using DMA.

Parameters:
  • base – USART peripheral base address

  • handle – Pointer to usart_dma_handle_t structure

status_t USART_TransferGetReceiveCountDMA(USART_Type *base, usart_dma_handle_t *handle, uint32_t *count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • count – Receive bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

status_t USART_TransferGetSendCountDMA(USART_Type *base, usart_dma_handle_t *handle, uint32_t *count)

Get the number of bytes that have been sent.

This function gets the number of bytes that have been sent.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • count – Sent bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

FSL_USART_DMA_DRIVER_VERSION

USART dma driver version.

typedef struct _usart_dma_handle usart_dma_handle_t
typedef void (*usart_dma_transfer_callback_t)(USART_Type *base, usart_dma_handle_t *handle, status_t status, void *userData)

UART transfer callback function.

struct _usart_dma_handle
#include <fsl_usart_dma.h>

UART DMA handle.

Public Members

USART_Type *base

UART peripheral base address.

usart_dma_transfer_callback_t callback

Callback function.

void *userData

UART callback function parameter.

size_t rxDataSizeAll

Size of the data to receive.

size_t txDataSizeAll

Size of the data to send out.

dma_handle_t *txDmaHandle

The DMA TX channel used.

dma_handle_t *rxDmaHandle

The DMA RX channel used.

volatile uint8_t txState

TX transfer state.

volatile uint8_t rxState

RX transfer state

USART Driver

status_t USART_Init(USART_Type *base, const usart_config_t *config, uint32_t srcClock_Hz)

Initializes a USART instance with user configuration structure and peripheral clock.

This function configures the USART module with the user-defined settings. The user can configure the configuration structure and also get the default configuration by using the USART_GetDefaultConfig() function. Example below shows how to use this API to configure USART.

usart_config_t usartConfig;
usartConfig.baudRate_Bps = 115200U;
usartConfig.parityMode = kUSART_ParityDisabled;
usartConfig.stopBitCount = kUSART_OneStopBit;
USART_Init(USART1, &usartConfig, 20000000U);

Parameters:
  • base – USART peripheral base address.

  • config – Pointer to user-defined configuration structure.

  • srcClock_Hz – USART clock source frequency in HZ.

Return values:
  • kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.

  • kStatus_InvalidArgument – USART base address is not valid

  • kStatus_Success – Status USART initialize succeed

void USART_Deinit(USART_Type *base)

Deinitializes a USART instance.

This function waits for TX complete, disables TX and RX, and disables the USART clock.

Parameters:
  • base – USART peripheral base address.

void USART_GetDefaultConfig(usart_config_t *config)

Gets the default configuration structure.

This function initializes the USART configuration structure to a default value. The default values are: usartConfig->baudRate_Bps = 115200U; usartConfig->parityMode = kUSART_ParityDisabled; usartConfig->stopBitCount = kUSART_OneStopBit; usartConfig->bitCountPerChar = kUSART_8BitsPerChar; usartConfig->loopback = false; usartConfig->enableTx = false; usartConfig->enableRx = false;

Parameters:
  • config – Pointer to configuration structure.

status_t USART_SetBaudRate(USART_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)

Sets the USART instance baud rate.

This function configures the USART module baud rate. This function is used to update the USART module baud rate after the USART module is initialized by the USART_Init.

USART_SetBaudRate(USART1, 115200U, 20000000U);

Parameters:
  • base – USART peripheral base address.

  • baudrate_Bps – USART baudrate to be set.

  • srcClock_Hz – USART clock source frequency in HZ.

Return values:
  • kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.

  • kStatus_Success – Set baudrate succeed.

  • kStatus_InvalidArgument – One or more arguments are invalid.

status_t USART_Enable32kMode(USART_Type *base, uint32_t baudRate_Bps, bool enableMode32k, uint32_t srcClock_Hz)

Enable 32 kHz mode which USART uses clock from the RTC oscillator as the clock source.

Please note that in order to use a 32 kHz clock to operate USART properly, the RTC oscillator and its 32 kHz output must be manully enabled by user, by calling RTC_Init and setting SYSCON_RTCOSCCTRL_EN bit to 1. And in 32kHz clocking mode the USART can only work at 9600 baudrate or at the baudrate that 9600 can evenly divide, eg: 4800, 3200.

Parameters:
  • base – USART peripheral base address.

  • baudRate_Bps – USART baudrate to be set..

  • enableMode32k – true is 32k mode, false is normal mode.

  • srcClock_Hz – USART clock source frequency in HZ.

Return values:
  • kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.

  • kStatus_Success – Set baudrate succeed.

  • kStatus_InvalidArgument – One or more arguments are invalid.

void USART_Enable9bitMode(USART_Type *base, bool enable)

Enable 9-bit data mode for USART.

This function set the 9-bit mode for USART module. The 9th bit is not used for parity thus can be modified by user.

Parameters:
  • base – USART peripheral base address.

  • enable – true to enable, false to disable.

static inline void USART_SetMatchAddress(USART_Type *base, uint8_t address)

Set the USART slave address.

This function configures the address for USART module that works as slave in 9-bit data mode. When the address detection is enabled, the frame it receices with MSB being 1 is considered as an address frame, otherwise it is considered as data frame. Once the address frame matches slave’s own addresses, this slave is addressed. This address frame and its following data frames are stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave, just send an address frame with unmatched address.

Note

Any USART instance joined in the multi-slave system can work as slave. The position of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit data formats.

Parameters:
  • base – USART peripheral base address.

  • address – USART slave address.

static inline void USART_EnableMatchAddress(USART_Type *base, bool match)

Enable the USART match address feature.

Parameters:
  • base – USART peripheral base address.

  • match – true to enable match address, false to disable.

static inline uint32_t USART_GetStatusFlags(USART_Type *base)

Get USART status flags.

This function get all USART status flags, the flags are returned as the logical OR value of the enumerators _usart_flags. To check a specific status, compare the return value with enumerators in _usart_flags. For example, to check whether the TX is empty:

if (kUSART_TxFifoNotFullFlag & USART_GetStatusFlags(USART1))
{
    ...
}

Parameters:
  • base – USART peripheral base address.

Returns:

USART status flags which are ORed by the enumerators in the _usart_flags.

static inline void USART_ClearStatusFlags(USART_Type *base, uint32_t mask)

Clear USART status flags.

This function clear supported USART status flags. The mask is a logical OR of enumeration members. See kUSART_AllClearFlags. For example:

USART_ClearStatusFlags(USART1, kUSART_TxError | kUSART_RxError)

Parameters:
  • base – USART peripheral base address.

  • mask – status flags to be cleared.

static inline void USART_EnableInterrupts(USART_Type *base, uint32_t mask)

Enables USART interrupts according to the provided mask.

This function enables the USART interrupts according to the provided mask. The mask is a logical OR of enumeration members. See _usart_interrupt_enable. For example, to enable TX empty interrupt and RX full interrupt:

USART_EnableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_RxLevelInterruptEnable);

Parameters:
  • base – USART peripheral base address.

  • mask – The interrupts to enable. Logical OR of _usart_interrupt_enable.

static inline void USART_DisableInterrupts(USART_Type *base, uint32_t mask)

Disables USART interrupts according to a provided mask.

This function disables the USART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See _usart_interrupt_enable. This example shows how to disable the TX empty interrupt and RX full interrupt:

USART_DisableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_RxLevelInterruptEnable);

Parameters:
  • base – USART peripheral base address.

  • mask – The interrupts to disable. Logical OR of _usart_interrupt_enable.

static inline uint32_t USART_GetEnabledInterrupts(USART_Type *base)

Returns enabled USART interrupts.

This function returns the enabled USART interrupts.

Parameters:
  • base – USART peripheral base address.

static inline void USART_EnableTxDMA(USART_Type *base, bool enable)

Enable DMA for Tx.

static inline void USART_EnableRxDMA(USART_Type *base, bool enable)

Enable DMA for Rx.

static inline void USART_EnableCTS(USART_Type *base, bool enable)

Enable CTS. This function will determine whether CTS is used for flow control.

Parameters:
  • base – USART peripheral base address.

  • enable – Enable CTS or not, true for enable and false for disable.

static inline void USART_EnableContinuousSCLK(USART_Type *base, bool enable)

Continuous Clock generation. By default, SCLK is only output while data is being transmitted in synchronous mode. Enable this funciton, SCLK will run continuously in synchronous mode, allowing characters to be received on Un_RxD independently from transmission on Un_TXD).

Parameters:
  • base – USART peripheral base address.

  • enable – Enable Continuous Clock generation mode or not, true for enable and false for disable.

static inline void USART_EnableAutoClearSCLK(USART_Type *base, bool enable)

Enable Continuous Clock generation bit auto clear. While enable this cuntion, the Continuous Clock bit is automatically cleared when a complete character has been received. This bit is cleared at the same time.

Parameters:
  • base – USART peripheral base address.

  • enable – Enable auto clear or not, true for enable and false for disable.

static inline void USART_SetRxFifoWatermark(USART_Type *base, uint8_t water)

Sets the rx FIFO watermark.

Parameters:
  • base – USART peripheral base address.

  • water – Rx FIFO watermark.

static inline void USART_SetTxFifoWatermark(USART_Type *base, uint8_t water)

Sets the tx FIFO watermark.

Parameters:
  • base – USART peripheral base address.

  • water – Tx FIFO watermark.

static inline void USART_WriteByte(USART_Type *base, uint8_t data)

Writes to the FIFOWR register.

This function writes data to the txFIFO directly. The upper layer must ensure that txFIFO has space for data to write before calling this function.

Parameters:
  • base – USART peripheral base address.

  • data – The byte to write.

static inline uint8_t USART_ReadByte(USART_Type *base)

Reads the FIFORD register directly.

This function reads data from the rxFIFO directly. The upper layer must ensure that the rxFIFO is not empty before calling this function.

Parameters:
  • base – USART peripheral base address.

Returns:

The byte read from USART data register.

static inline uint8_t USART_GetRxFifoCount(USART_Type *base)

Gets the rx FIFO data count.

Parameters:
  • base – USART peripheral base address.

Returns:

rx FIFO data count.

static inline uint8_t USART_GetTxFifoCount(USART_Type *base)

Gets the tx FIFO data count.

Parameters:
  • base – USART peripheral base address.

Returns:

tx FIFO data count.

void USART_SendAddress(USART_Type *base, uint8_t address)

Transmit an address frame in 9-bit data mode.

Parameters:
  • base – USART peripheral base address.

  • address – USART slave address.

status_t USART_WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)

Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty or for the TX FIFO to have room and writes data to the TX buffer.

Parameters:
  • base – USART peripheral base address.

  • data – Start address of the data to write.

  • length – Size of the data to write.

Return values:
  • kStatus_USART_Timeout – Transmission timed out and was aborted.

  • kStatus_InvalidArgument – Invalid argument.

  • kStatus_Success – Successfully wrote all data.

status_t USART_ReadBlocking(USART_Type *base, uint8_t *data, size_t length)

Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full or for RX FIFO to have data and read data from the TX register.

Parameters:
  • base – USART peripheral base address.

  • data – Start address of the buffer to store the received data.

  • length – Size of the buffer.

Return values:
  • kStatus_USART_FramingError – Receiver overrun happened while receiving data.

  • kStatus_USART_ParityError – Noise error happened while receiving data.

  • kStatus_USART_NoiseError – Framing error happened while receiving data.

  • kStatus_USART_RxError – Overflow or underflow rxFIFO happened.

  • kStatus_USART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully received all data.

status_t USART_TransferCreateHandle(USART_Type *base, usart_handle_t *handle, usart_transfer_callback_t callback, void *userData)

Initializes the USART handle.

This function initializes the USART handle which can be used for other USART transactional APIs. Usually, for a specified USART instance, call this API once to get the initialized handle.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • callback – The callback function.

  • userData – The parameter of the callback function.

status_t USART_TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle, usart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data to be written to the TX register. When all data is written to the TX register in the IRQ handler, the USART driver calls the callback function and passes the kStatus_USART_TxIdle as status parameter.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • xfer – USART transfer structure. See usart_transfer_t.

Return values:
  • kStatus_Success – Successfully start the data transmission.

  • kStatus_USART_TxBusy – Previous transmission still not finished, data not all written to TX register yet.

  • kStatus_InvalidArgument – Invalid argument.

void USART_TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific USART handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when the user doesn’t call the USART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly.

Note

When using the RX ring buffer, one byte is reserved for internal use. In other words, if ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • ringBuffer – Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer.

  • ringBufferSize – size of the ring buffer.

void USART_TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)

Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

size_t USART_TransferGetRxRingBufferLength(usart_handle_t *handle)

Get the length of received data in RX ring buffer.

Parameters:
  • handle – USART handle pointer.

Returns:

Length of received data in RX ring buffer.

void USART_TransferAbortSend(USART_Type *base, usart_handle_t *handle)

Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out how many bytes are still not sent out.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

status_t USART_TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t *count)

Get the number of bytes that have been sent out to bus.

This function gets the number of bytes that have been sent out to bus by interrupt method.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • count – Send bytes count.

Return values:
  • kStatus_NoTransferInProgress – No send in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

status_t USART_TransferReceiveNonBlocking(USART_Type *base, usart_handle_t *handle, usart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function, which returns without waiting for all data to be received. If the RX ring buffer is used and not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is not enough to read, the receive request is saved by the USART driver. When the new data arrives, the receive request is serviced first. When all data is received, the USART driver notifies the upper layer through a callback function and passes the status parameter kStatus_USART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns with the parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to the xfer->data. When all data is received, the upper layer is notified.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • xfer – USART transfer structure, see usart_transfer_t.

  • receivedBytes – Bytes received from the ring buffer directly.

Return values:
  • kStatus_Success – Successfully queue the transfer into transmit queue.

  • kStatus_USART_RxBusy – Previous receive request is not finished.

  • kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortReceive(USART_Type *base, usart_handle_t *handle)

Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out how many bytes not received yet.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

status_t USART_TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t *count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • count – Receive bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

void USART_TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)

USART IRQ handle function.

This function handles the USART transmit and receive IRQ request.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

FSL_USART_DRIVER_VERSION

USART driver version.

Error codes for the USART driver.

Values:

enumerator kStatus_USART_TxBusy

Transmitter is busy.

enumerator kStatus_USART_RxBusy

Receiver is busy.

enumerator kStatus_USART_TxIdle

USART transmitter is idle.

enumerator kStatus_USART_RxIdle

USART receiver is idle.

enumerator kStatus_USART_TxError

Error happens on txFIFO.

enumerator kStatus_USART_RxError

Error happens on rxFIFO.

enumerator kStatus_USART_RxRingBufferOverrun

Error happens on rx ring buffer

enumerator kStatus_USART_NoiseError

USART noise error.

enumerator kStatus_USART_FramingError

USART framing error.

enumerator kStatus_USART_ParityError

USART parity error.

enumerator kStatus_USART_BaudrateNotSupport

Baudrate is not support in current clock source

enum _usart_sync_mode

USART synchronous mode.

Values:

enumerator kUSART_SyncModeDisabled

Asynchronous mode.

enumerator kUSART_SyncModeSlave

Synchronous slave mode.

enumerator kUSART_SyncModeMaster

Synchronous master mode.

enum _usart_parity_mode

USART parity mode.

Values:

enumerator kUSART_ParityDisabled

Parity disabled

enumerator kUSART_ParityEven

Parity enabled, type even, bit setting: PE|PT = 10

enumerator kUSART_ParityOdd

Parity enabled, type odd, bit setting: PE|PT = 11

enum _usart_stop_bit_count

USART stop bit count.

Values:

enumerator kUSART_OneStopBit

One stop bit

enumerator kUSART_TwoStopBit

Two stop bits

enum _usart_data_len

USART data size.

Values:

enumerator kUSART_7BitsPerChar

Seven bit mode

enumerator kUSART_8BitsPerChar

Eight bit mode

enum _usart_clock_polarity

USART clock polarity configuration, used in sync mode.

Values:

enumerator kUSART_RxSampleOnFallingEdge

Un_RXD is sampled on the falling edge of SCLK.

enumerator kUSART_RxSampleOnRisingEdge

Un_RXD is sampled on the rising edge of SCLK.

enum _usart_txfifo_watermark

txFIFO watermark values

Values:

enumerator kUSART_TxFifo0

USART tx watermark is empty

enumerator kUSART_TxFifo1

USART tx watermark at 1 item

enumerator kUSART_TxFifo2

USART tx watermark at 2 items

enumerator kUSART_TxFifo3

USART tx watermark at 3 items

enumerator kUSART_TxFifo4

USART tx watermark at 4 items

enumerator kUSART_TxFifo5

USART tx watermark at 5 items

enumerator kUSART_TxFifo6

USART tx watermark at 6 items

enumerator kUSART_TxFifo7

USART tx watermark at 7 items

enum _usart_rxfifo_watermark

rxFIFO watermark values

Values:

enumerator kUSART_RxFifo1

USART rx watermark at 1 item

enumerator kUSART_RxFifo2

USART rx watermark at 2 items

enumerator kUSART_RxFifo3

USART rx watermark at 3 items

enumerator kUSART_RxFifo4

USART rx watermark at 4 items

enumerator kUSART_RxFifo5

USART rx watermark at 5 items

enumerator kUSART_RxFifo6

USART rx watermark at 6 items

enumerator kUSART_RxFifo7

USART rx watermark at 7 items

enumerator kUSART_RxFifo8

USART rx watermark at 8 items

enum _usart_interrupt_enable

USART interrupt configuration structure, default settings all disabled.

Values:

enumerator kUSART_TxErrorInterruptEnable
enumerator kUSART_RxErrorInterruptEnable
enumerator kUSART_TxLevelInterruptEnable
enumerator kUSART_RxLevelInterruptEnable
enumerator kUSART_TxIdleInterruptEnable

Transmitter idle.

enumerator kUSART_CtsChangeInterruptEnable

Change in the state of the CTS input.

enumerator kUSART_RxBreakChangeInterruptEnable

Break condition asserted or deasserted.

enumerator kUSART_RxStartInterruptEnable

Rx start bit detected.

enumerator kUSART_FramingErrorInterruptEnable

Framing error detected.

enumerator kUSART_ParityErrorInterruptEnable

Parity error detected.

enumerator kUSART_NoiseErrorInterruptEnable

Noise error detected.

enumerator kUSART_AutoBaudErrorInterruptEnable

Auto baudrate error detected.

enumerator kUSART_AllInterruptEnables
enum _usart_flags

USART status flags.

This provides constants for the USART status flags for use in the USART functions.

Values:

enumerator kUSART_TxError

TXERR bit, sets if TX buffer is error

enumerator kUSART_RxError

RXERR bit, sets if RX buffer is error

enumerator kUSART_TxFifoEmptyFlag

TXEMPTY bit, sets if TX buffer is empty

enumerator kUSART_TxFifoNotFullFlag

TXNOTFULL bit, sets if TX buffer is not full

enumerator kUSART_RxFifoNotEmptyFlag

RXNOEMPTY bit, sets if RX buffer is not empty

enumerator kUSART_RxFifoFullFlag

RXFULL bit, sets if RX buffer is full

enumerator kUSART_RxIdleFlag

Receiver idle.

enumerator kUSART_TxIdleFlag

Transmitter idle.

enumerator kUSART_CtsAssertFlag

CTS signal high.

enumerator kUSART_CtsChangeFlag

CTS signal changed interrupt status.

enumerator kUSART_BreakDetectFlag

Break detected. Self cleared when rx pin goes high again.

enumerator kUSART_BreakDetectChangeFlag

Break detect change interrupt flag. A change in the state of receiver break detection.

enumerator kUSART_RxStartFlag

Rx start bit detected interrupt flag.

enumerator kUSART_FramingErrorFlag

Framing error interrupt flag.

enumerator kUSART_ParityErrorFlag

parity error interrupt flag.

enumerator kUSART_NoiseErrorFlag

Noise error interrupt flag.

enumerator kUSART_AutobaudErrorFlag

Auto baudrate error interrupt flag, caused by the baudrate counter timeout before the end of start bit.

enumerator kUSART_AllClearFlags
typedef enum _usart_sync_mode usart_sync_mode_t

USART synchronous mode.

typedef enum _usart_parity_mode usart_parity_mode_t

USART parity mode.

typedef enum _usart_stop_bit_count usart_stop_bit_count_t

USART stop bit count.

typedef enum _usart_data_len usart_data_len_t

USART data size.

typedef enum _usart_clock_polarity usart_clock_polarity_t

USART clock polarity configuration, used in sync mode.

typedef enum _usart_txfifo_watermark usart_txfifo_watermark_t

txFIFO watermark values

typedef enum _usart_rxfifo_watermark usart_rxfifo_watermark_t

rxFIFO watermark values

typedef struct _usart_config usart_config_t

USART configuration structure.

typedef struct _usart_transfer usart_transfer_t

USART transfer structure.

typedef struct _usart_handle usart_handle_t
typedef void (*usart_transfer_callback_t)(USART_Type *base, usart_handle_t *handle, status_t status, void *userData)

USART transfer callback function.

typedef void (*flexcomm_usart_irq_handler_t)(USART_Type *base, usart_handle_t *handle)

Typedef for usart interrupt handler.

uint32_t USART_GetInstance(USART_Type *base)

Returns instance number for USART peripheral base address.

USART_FIFOTRIG_TXLVL_GET(base)
USART_FIFOTRIG_RXLVL_GET(base)
UART_RETRY_TIMES

Retry times for waiting flag.

Defining to zero means to keep waiting for the flag until it is assert/deassert in blocking transfer, otherwise the program will wait until the UART_RETRY_TIMES counts down to 0, if the flag still remains unchanged then program will return kStatus_USART_Timeout. It is not advised to use this macro in formal application to prevent any hardware error because the actual wait period is affected by the compiler and optimization.

struct _usart_config
#include <fsl_usart.h>

USART configuration structure.

Public Members

uint32_t baudRate_Bps

USART baud rate

usart_parity_mode_t parityMode

Parity mode, disabled (default), even, odd

usart_stop_bit_count_t stopBitCount

Number of stop bits, 1 stop bit (default) or 2 stop bits

usart_data_len_t bitCountPerChar

Data length - 7 bit, 8 bit

bool loopback

Enable peripheral loopback

bool enableRx

Enable RX

bool enableTx

Enable TX

bool enableContinuousSCLK

USART continuous Clock generation enable in synchronous master mode.

bool enableMode32k

USART uses 32 kHz clock from the RTC oscillator as the clock source.

bool enableHardwareFlowControl

Enable hardware control RTS/CTS

usart_txfifo_watermark_t txWatermark

txFIFO watermark

usart_rxfifo_watermark_t rxWatermark

rxFIFO watermark

usart_sync_mode_t syncMode

Transfer mode select - asynchronous, synchronous master, synchronous slave.

usart_clock_polarity_t clockPolarity

Selects the clock polarity and sampling edge in synchronous mode.

struct _usart_transfer
#include <fsl_usart.h>

USART transfer structure.

Public Members

size_t dataSize

The byte count to be transfer.

struct _usart_handle
#include <fsl_usart.h>

USART handle structure.

Public Members

const uint8_t *volatile txData

Address of remaining data to send.

volatile size_t txDataSize

Size of the remaining data to send.

size_t txDataSizeAll

Size of the data to send out.

uint8_t *volatile rxData

Address of remaining data to receive.

volatile size_t rxDataSize

Size of the remaining data to receive.

size_t rxDataSizeAll

Size of the data to receive.

uint8_t *rxRingBuffer

Start address of the receiver ring buffer.

size_t rxRingBufferSize

Size of the ring buffer.

volatile uint16_t rxRingBufferHead

Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail

Index for the user to get data from the ring buffer.

usart_transfer_callback_t callback

Callback function.

void *userData

USART callback function parameter.

volatile uint8_t txState

TX transfer state.

volatile uint8_t rxState

RX transfer state

uint8_t txWatermark

txFIFO watermark

uint8_t rxWatermark

rxFIFO watermark

union __unnamed12__

Public Members

uint8_t *data

The buffer of data to be transfer.

uint8_t *rxData

The buffer to receive data.

const uint8_t *txData

The buffer of data to be sent.

UTICK: MictoTick Timer Driver

void UTICK_Init(UTICK_Type *base)

Initializes an UTICK by turning its bus clock on.

void UTICK_Deinit(UTICK_Type *base)

Deinitializes a UTICK instance.

This function shuts down Utick bus clock

Parameters:
  • base – UTICK peripheral base address.

uint32_t UTICK_GetStatusFlags(UTICK_Type *base)

Get Status Flags.

This returns the status flag

Parameters:
  • base – UTICK peripheral base address.

Returns:

status register value

void UTICK_ClearStatusFlags(UTICK_Type *base)

Clear Status Interrupt Flags.

This clears intr status flag

Parameters:
  • base – UTICK peripheral base address.

Returns:

none

void UTICK_SetTick(UTICK_Type *base, utick_mode_t mode, uint32_t count, utick_callback_t cb)

Starts UTICK.

This function starts a repeat/onetime countdown with an optional callback

Parameters:
  • base – UTICK peripheral base address.

  • mode – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)

  • count – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)

  • cb – UTICK callback (can be left as NULL if none, otherwise should be a void func(void))

Returns:

none

void UTICK_HandleIRQ(UTICK_Type *base, utick_callback_t cb)

UTICK Interrupt Service Handler.

This function handles the interrupt and refers to the callback array in the driver to callback user (as per request in UTICK_SetTick()). if no user callback is scheduled, the interrupt will simply be cleared.

Parameters:
  • base – UTICK peripheral base address.

  • cb – callback scheduled for this instance of UTICK

Returns:

none

FSL_UTICK_DRIVER_VERSION

UTICK driver version 2.0.5.

enum _utick_mode

UTICK timer operational mode.

Values:

enumerator kUTICK_Onetime

Trigger once

enumerator kUTICK_Repeat

Trigger repeatedly

typedef enum _utick_mode utick_mode_t

UTICK timer operational mode.

typedef void (*utick_callback_t)(void)

UTICK callback function.

WWDT: Windowed Watchdog Timer Driver

void WWDT_GetDefaultConfig(wwdt_config_t *config)

Initializes WWDT configure structure.

This function initializes the WWDT configure structure to default value. The default value are:

config->enableWwdt = true;
config->enableWatchdogReset = false;
config->enableWatchdogProtect = false;
config->enableLockOscillator = false;
config->windowValue = 0xFFFFFFU;
config->timeoutValue = 0xFFFFFFU;
config->warningValue = 0;

See also

wwdt_config_t

Parameters:
  • config – Pointer to WWDT config structure.

void WWDT_Init(WWDT_Type *base, const wwdt_config_t *config)

Initializes the WWDT.

This function initializes the WWDT. When called, the WWDT runs according to the configuration.

Example:

wwdt_config_t config;
WWDT_GetDefaultConfig(&config);
config.timeoutValue = 0x7ffU;
WWDT_Init(wwdt_base,&config);

Parameters:
  • base – WWDT peripheral base address

  • config – The configuration of WWDT

void WWDT_Deinit(WWDT_Type *base)

Shuts down the WWDT.

This function shuts down the WWDT.

Parameters:
  • base – WWDT peripheral base address

static inline void WWDT_Enable(WWDT_Type *base)

Enables the WWDT module.

This function write value into WWDT_MOD register to enable the WWDT, it is a write-once bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will run permanently.

Parameters:
  • base – WWDT peripheral base address

static inline void WWDT_Disable(WWDT_Type *base)

Disables the WWDT module.

Deprecated:

Do not use this function. It will be deleted in next release version, for once the bit field of WDEN written with a 1, it can not be re-written with a 0.

This function write value into WWDT_MOD register to disable the WWDT.

Parameters:
  • base – WWDT peripheral base address

static inline uint32_t WWDT_GetStatusFlags(WWDT_Type *base)

Gets all WWDT status flags.

This function gets all status flags.

Example for getting Timeout Flag:

uint32_t status;
status = WWDT_GetStatusFlags(wwdt_base) & kWWDT_TimeoutFlag;

Parameters:
  • base – WWDT peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration _wwdt_status_flags_t

void WWDT_ClearStatusFlags(WWDT_Type *base, uint32_t mask)

Clear WWDT flag.

This function clears WWDT status flag.

Example for clearing warning flag:

WWDT_ClearStatusFlags(wwdt_base, kWWDT_WarningFlag);

Parameters:
  • base – WWDT peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration _wwdt_status_flags_t

static inline void WWDT_SetWarningValue(WWDT_Type *base, uint32_t warningValue)

Set the WWDT warning value.

The WDWARNINT register determines the watchdog timer counter value that will generate a watchdog interrupt. When the watchdog timer counter is no longer greater than the value defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.

Parameters:
  • base – WWDT peripheral base address

  • warningValue – WWDT warning value.

static inline void WWDT_SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)

Set the WWDT timeout value.

This function sets the timeout value. Every time a feed sequence occurs the value in the TC register is loaded into the Watchdog timer. Writing a value below 0xFF will cause 0xFF to be loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If enableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change the timeout value before the watchdog counter is below the warning and window values will cause a watchdog reset and set the WDTOF flag.

Parameters:
  • base – WWDT peripheral base address

  • timeoutCount – WWDT timeout value, count of WWDT clock tick.

static inline void WWDT_SetWindowValue(WWDT_Type *base, uint32_t windowValue)

Sets the WWDT window value.

The WINDOW register determines the highest TV value allowed when a watchdog feed is performed. If a feed sequence occurs when timer value is greater than the value in WINDOW, a watchdog event will occur. To disable windowing, set windowValue to 0xFFFFFF (maximum possible timer value) so windowing is not in effect.

Parameters:
  • base – WWDT peripheral base address

  • windowValue – WWDT window value.

void WWDT_Refresh(WWDT_Type *base)

Refreshes the WWDT timer.

This function feeds the WWDT. This function should be called before WWDT timer is in timeout. Otherwise, a reset is asserted.

Parameters:
  • base – WWDT peripheral base address

FSL_WWDT_DRIVER_VERSION

Defines WWDT driver version.

WWDT_FIRST_WORD_OF_REFRESH

First word of refresh sequence

WWDT_SECOND_WORD_OF_REFRESH

Second word of refresh sequence

enum _wwdt_status_flags_t

WWDT status flags.

This structure contains the WWDT status flags for use in the WWDT functions.

Values:

enumerator kWWDT_TimeoutFlag

Time-out flag, set when the timer times out

enumerator kWWDT_WarningFlag

Warning interrupt flag, set when timer is below the value WDWARNINT

typedef struct _wwdt_config wwdt_config_t

Describes WWDT configuration structure.

struct _wwdt_config
#include <fsl_wwdt.h>

Describes WWDT configuration structure.

Public Members

bool enableWwdt

Enables or disables WWDT

bool enableWatchdogReset

true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause a chip reset

bool enableWatchdogProtect

true: Enable watchdog protect i.e timeout value can only be changed after counter is below warning & window values false: Disable watchdog protect; timeout value can be changed at any time

bool enableLockOscillator

true: Disabling or powering down the watchdog oscillator is prevented Once set, this bit can only be cleared by a reset false: Do not lock oscillator

uint32_t windowValue

Window value, set this to 0xFFFFFF if windowing is not in effect

uint32_t timeoutValue

Timeout value

uint32_t warningValue

Watchdog time counter value that will generate a warning interrupt. Set this to 0 for no warning

uint32_t clockFreq_Hz

Watchdog clock source frequency.