LPC55S28
ANACTRL: Analog Control Driver
-
void ANACTRL_Init(ANACTRL_Type *base)
Initializes the ANACTRL mode, the module’s clock will be enabled by invoking this function.
- Parameters:
base – ANACTRL peripheral base address.
-
void ANACTRL_Deinit(ANACTRL_Type *base)
De-initializes ANACTRL module, the module’s clock will be disabled by invoking this function.
- Parameters:
base – ANACTRL peripheral base address.
-
void ANACTRL_SetFro192M(ANACTRL_Type *base, const anactrl_fro192M_config_t *config)
Configs the on-chip high-speed Free Running Oscillator(FRO192M), such as enabling/disabling 12 MHZ clock output and enable/disable 96MHZ clock output.
- Parameters:
base – ANACTRL peripheral base address.
config – Pointer to FRO192M configuration structure. Refer to anactrl_fro192M_config_t structure.
-
void ANACTRL_GetDefaultFro192MConfig(anactrl_fro192M_config_t *config)
Gets the default configuration of FRO192M. The default values are:
config->enable12MHzClk = true; config->enable96MHzClk = false;
- Parameters:
config – Pointer to FRO192M configuration structure. Refer to anactrl_fro192M_config_t structure.
-
void ANACTRL_SetXo32M(ANACTRL_Type *base, const anactrl_xo32M_config_t *config)
Configs the 32 MHz Crystal oscillator(High-speed crystal oscillator), such as enable/disable output to CPU system, and so on.
- Parameters:
base – ANACTRL peripheral base address.
config – Pointer to XO32M configuration structure. Refer to anactrl_xo32M_config_t structure.
-
void ANACTRL_GetDefaultXo32MConfig(anactrl_xo32M_config_t *config)
Gets the default configuration of XO32M. The default values are:
config->enableSysCLkOutput = false; config->enableACBufferBypass = false;
- Parameters:
config – Pointer to XO32M configuration structure. Refer to anactrl_xo32M_config_t structure.
-
uint32_t ANACTRL_MeasureFrequency(ANACTRL_Type *base, uint8_t scale, uint32_t refClkFreq)
Measures the frequency of the target clock source.
This function measures target frequency according to a accurate reference frequency.The formula is: Ftarget = (CAPVAL * Freference) / ((1<<SCALE)-1)
Note
Both tartget and reference clocks are selectable by programming the target clock select FREQMEAS_TARGET register in INPUTMUX and reference clock select FREQMEAS_REF register in INPUTMUX.
- Parameters:
base – ANACTRL peripheral base address.
scale – Define the power of 2 count that ref counter counts to during measurement, ranges from 2 to 31.
refClkFreq – frequency of the reference clock.
- Returns:
frequency of the target clock.
-
static inline void ANACTRL_EnableInterrupts(ANACTRL_Type *base, uint32_t mask)
Enables the ANACTRL interrupts.
- Parameters:
base – ANACTRL peripheral base address.
mask – The interrupt mask. Refer to “_anactrl_interrupt” enumeration.
-
static inline void ANACTRL_DisableInterrupts(ANACTRL_Type *base, uint32_t mask)
Disables the ANACTRL interrupts.
- Parameters:
base – ANACTRL peripheral base address.
mask – The interrupt mask. Refer to “_anactrl_interrupt” enumeration.
-
static inline void ANACTRL_ClearInterrupts(ANACTRL_Type *base, uint32_t mask)
Clears the ANACTRL interrupts.
- Parameters:
base – ANACTRL peripheral base address.
mask – The interrupt mask. Refer to “_anactrl_interrupt” enumeration.
-
static inline uint32_t ANACTRL_GetStatusFlags(ANACTRL_Type *base)
Gets ANACTRL status flags.
This function gets Analog control status flags. The flags are returned as the logical OR value of the enumerators _anactrl_flags. To check for a specific status, compare the return value with enumerators in the _anactrl_flags. For example, to check whether the flash is in power down mode:
if (kANACTRL_FlashPowerDownFlag & ANACTRL_ANACTRL_GetStatusFlags(ANACTRL)) { ... }
- Parameters:
base – ANACTRL peripheral base address.
- Returns:
ANACTRL status flags which are given in the enumerators in the _anactrl_flags.
-
static inline uint32_t ANACTRL_GetOscStatusFlags(ANACTRL_Type *base)
Gets ANACTRL oscillators status flags.
This function gets Anactrl oscillators status flags. The flags are returned as the logical OR value of the enumerators _anactrl_osc_flags. To check for a specific status, compare the return value with enumerators in the _anactrl_osc_flags. For example, to check whether the FRO192M clock output is valid:
if (kANACTRL_OutputClkValidFlag & ANACTRL_ANACTRL_GetOscStatusFlags(ANACTRL)) { ... }
- Parameters:
base – ANACTRL peripheral base address.
- Returns:
ANACTRL oscillators status flags which are given in the enumerators in the _anactrl_osc_flags.
-
static inline uint32_t ANACTRL_GetInterruptStatusFlags(ANACTRL_Type *base)
Gets ANACTRL interrupt status flags.
This function gets Anactrl interrupt status flags. The flags are returned as the logical OR value of the enumerators _anactrl_interrupt_flags. To check for a specific status, compare the return value with enumerators in the _anactrl_interrupt_flags. For example, to check whether the VBAT voltage level is above the threshold:
if (kANACTRL_BodVbatPowerFlag & ANACTRL_ANACTRL_GetInterruptStatusFlags(ANACTRL)) { ... }
- Parameters:
base – ANACTRL peripheral base address.
- Returns:
ANACTRL oscillators status flags which are given in the enumerators in the _anactrl_osc_flags.
-
static inline void ANACTRL_EnableVref1V(ANACTRL_Type *base, bool enable)
Aux_Bias Control Interfaces.
Enables/disabless 1V reference voltage buffer.
- Parameters:
base – ANACTRL peripheral base address.
enable – Used to enable or disable 1V reference voltage buffer.
-
enum _anactrl_interrupt_flags
ANACTRL interrupt flags.
Values:
-
enumerator kANACTRL_BodVbatFlag
BOD VBAT Interrupt status before Interrupt Enable.
-
enumerator kANACTRL_BodVbatInterruptFlag
BOD VBAT Interrupt status after Interrupt Enable.
-
enumerator kANACTRL_BodVbatPowerFlag
Current value of BOD VBAT power status output.
-
enumerator kANACTRL_BodCoreFlag
BOD CORE Interrupt status before Interrupt Enable.
-
enumerator kANACTRL_BodCoreInterruptFlag
BOD CORE Interrupt status after Interrupt Enable.
-
enumerator kANACTRL_BodCorePowerFlag
Current value of BOD CORE power status output.
-
enumerator kANACTRL_DcdcFlag
DCDC Interrupt status before Interrupt Enable.
-
enumerator kANACTRL_DcdcInterruptFlag
DCDC Interrupt status after Interrupt Enable.
-
enumerator kANACTRL_DcdcPowerFlag
Current value of DCDC power status output.
-
enumerator kANACTRL_BodVbatFlag
-
enum _anactrl_interrupt
ANACTRL interrupt control.
Values:
-
enumerator kANACTRL_BodVbatInterruptEnable
BOD VBAT interrupt control.
-
enumerator kANACTRL_BodCoreInterruptEnable
BOD CORE interrupt control.
-
enumerator kANACTRL_DcdcInterruptEnable
DCDC interrupt control.
-
enumerator kANACTRL_BodVbatInterruptEnable
-
enum _anactrl_flags
ANACTRL status flags.
Values:
-
enumerator kANACTRL_FlashPowerDownFlag
Flash power-down status.
-
enumerator kANACTRL_FlashInitErrorFlag
Flash initialization error status.
-
enumerator kANACTRL_FlashPowerDownFlag
-
enum _anactrl_osc_flags
ANACTRL FRO192M and XO32M status flags.
Values:
-
enumerator kANACTRL_OutputClkValidFlag
Output clock valid signal.
-
enumerator kANACTRL_CCOThresholdVoltageFlag
CCO threshold voltage detector output (signal vcco_ok).
-
enumerator kANACTRL_XO32MOutputReadyFlag
Indicates XO out frequency statibilty.
-
enumerator kANACTRL_OutputClkValidFlag
-
typedef struct _anactrl_fro192M_config anactrl_fro192M_config_t
Configuration for FRO192M.
This structure holds the configuration settings for the on-chip high-speed Free Running Oscillator. To initialize this structure to reasonable defaults, call the ANACTRL_GetDefaultFro192MConfig() function and pass a pointer to your config structure instance.
-
typedef struct _anactrl_xo32M_config anactrl_xo32M_config_t
Configuration for XO32M.
This structure holds the configuration settings for the 32 MHz crystal oscillator. To initialize this structure to reasonable defaults, call the ANACTRL_GetDefaultXo32MConfig() function and pass a pointer to your config structure instance.
-
FSL_ANACTRL_DRIVER_VERSION
ANACTRL driver version.
-
struct _anactrl_fro192M_config
- #include <fsl_anactrl.h>
Configuration for FRO192M.
This structure holds the configuration settings for the on-chip high-speed Free Running Oscillator. To initialize this structure to reasonable defaults, call the ANACTRL_GetDefaultFro192MConfig() function and pass a pointer to your config structure instance.
Public Members
-
bool enable12MHzClk
Enable 12MHz clock.
-
bool enable96MHzClk
Enable 96MHz clock.
-
bool enable12MHzClk
-
struct _anactrl_xo32M_config
- #include <fsl_anactrl.h>
Configuration for XO32M.
This structure holds the configuration settings for the 32 MHz crystal oscillator. To initialize this structure to reasonable defaults, call the ANACTRL_GetDefaultXo32MConfig() function and pass a pointer to your config structure instance.
Public Members
-
bool enableACBufferBypass
Enable XO AC buffer bypass in pll and top level.
-
bool enableSysCLkOutput
Enable XO 32 MHz output to CPU system, SCT, and CLKOUT
-
bool enableADCOutput
Enable High speed crystal oscillator output to ADC.
-
bool enableACBufferBypass
CASPER: The Cryptographic Accelerator and Signal Processing Engine with RAM sharing
casper_driver
-
FSL_CASPER_DRIVER_VERSION
CASPER driver version. Version 2.2.4.
Current version: 2.2.4
Change log:
Version 2.0.0
Initial version
Version 2.0.1
Bug fix KPSDK-24531 double_scalar_multiplication() result may be all zeroes for some specific input
Version 2.0.2
Bug fix KPSDK-25015 CASPER_MEMCPY hard-fault on LPC55xx when both source and destination buffers are outside of CASPER_RAM
Version 2.0.3
Bug fix KPSDK-28107 RSUB, FILL and ZERO operations not implemented in enum _casper_operation.
Version 2.0.4
For GCC compiler, enforce O1 optimize level, specifically to remove strict-aliasing option. This driver is very specific and requires -fno-strict-aliasing.
Version 2.0.5
Fix sign-compare warning.
Version 2.0.6
Fix IAR Pa082 warning.
Version 2.0.7
Fix MISRA-C 2012 issue.
Version 2.0.8
Add feature macro for CASPER_RAM_OFFSET.
Version 2.0.9
Remove unused function Jac_oncurve().
Fix ECC384 build.
Version 2.0.10
Fix MISRA-C 2012 issue.
Version 2.1.0
Add ECC NIST P-521 elliptic curve.
Version 2.2.0
Rework driver to support multiple curves at once.
Version 2.2.1
Fix MISRA-C 2012 issue.
Version 2.2.2
Enable hardware interleaving to RAMX0 and RAMX1 for CASPER by feature macro FSL_FEATURE_CASPER_RAM_HW_INTERLEAVE
Version 2.2.3
Added macro into CASPER_Init and CASPER_Deinit to support devices without clock and reset control.
Version 2.2.4
Fix MISRA-C 2012 issue.
-
enum _casper_operation
CASPER operation.
Values:
-
enumerator kCASPER_OpMul6464NoSum
-
enumerator kCASPER_OpMul6464Sum
Walking 1 or more of J loop, doing r=a*b using 64x64=128
-
enumerator kCASPER_OpMul6464FullSum
Walking 1 or more of J loop, doing c,r=r+a*b using 64x64=128, but assume inner j loop
-
enumerator kCASPER_OpMul6464Reduce
Walking 1 or more of J loop, doing c,r=r+a*b using 64x64=128, but sum all of w.
-
enumerator kCASPER_OpAdd64
Walking 1 or more of J loop, doing c,r[-1]=r+a*b using 64x64=128, but skip 1st write
-
enumerator kCASPER_OpSub64
Walking add with off_AB, and in/out off_RES doing c,r=r+a+c using 64+64=65
-
enumerator kCASPER_OpDouble64
Walking subtract with off_AB, and in/out off_RES doing r=r-a using 64-64=64, with last borrow implicit if any
-
enumerator kCASPER_OpXor64
Walking add to self with off_RES doing c,r=r+r+c using 64+64=65
-
enumerator kCASPER_OpRSub64
Walking XOR with off_AB, and in/out off_RES doing r=r^a using 64^64=64
-
enumerator kCASPER_OpShiftLeft32
Walking subtract with off_AB, and in/out off_RES using r=a-r
-
enumerator kCASPER_OpShiftRight32
Walking shift left doing r1,r=(b*D)|r1, where D is 2^amt and is loaded by app (off_CD not used)
-
enumerator kCASPER_OpCopy
Walking shift right doing r,r1=(b*D)|r1, where D is 2^(32-amt) and is loaded by app (off_CD not used) and off_RES starts at MSW
-
enumerator kCASPER_OpRemask
Copy from ABoff to resoff, 64b at a time
-
enumerator kCASPER_OpFill
Copy and mask from ABoff to resoff, 64b at a time
-
enumerator kCASPER_OpZero
Fill RESOFF using 64 bits at a time with value in A and B
-
enumerator kCASPER_OpCompare
Fill RESOFF using 64 bits at a time of 0s
-
enumerator kCASPER_OpCompareFast
Compare two arrays, running all the way to the end
-
enumerator kCASPER_OpMul6464NoSum
-
enum _casper_algo_t
Algorithm used for CASPER operation.
Values:
-
enumerator kCASPER_ECC_P256
ECC_P256
-
enumerator kCASPER_ECC_P384
ECC_P384
-
enumerator kCASPER_ECC_P521
ECC_P521
-
enumerator kCASPER_ECC_P256
Values:
-
enumerator kCASPER_RamOffset_Result
-
enumerator kCASPER_RamOffset_Base
-
enumerator kCASPER_RamOffset_TempBase
-
enumerator kCASPER_RamOffset_Modulus
-
enumerator kCASPER_RamOffset_M64
-
enumerator kCASPER_RamOffset_Result
-
typedef enum _casper_operation casper_operation_t
CASPER operation.
-
typedef enum _casper_algo_t casper_algo_t
Algorithm used for CASPER operation.
-
void CASPER_Init(CASPER_Type *base)
Enables clock and disables reset for CASPER peripheral.
Enable clock and disable reset for CASPER.
- Parameters:
base – CASPER base address
-
void CASPER_Deinit(CASPER_Type *base)
Disables clock for CASPER peripheral.
Disable clock and enable reset.
- Parameters:
base – CASPER base address
-
CASPER_CP
-
CASPER_CP_CTRL0
-
CASPER_CP_CTRL1
-
CASPER_CP_LOADER
-
CASPER_CP_STATUS
-
CASPER_CP_INTENSET
-
CASPER_CP_INTENCLR
-
CASPER_CP_INTSTAT
-
CASPER_CP_AREG
-
CASPER_CP_BREG
-
CASPER_CP_CREG
-
CASPER_CP_DREG
-
CASPER_CP_RES0
-
CASPER_CP_RES1
-
CASPER_CP_RES2
-
CASPER_CP_RES3
-
CASPER_CP_MASK
-
CASPER_CP_REMASK
-
CASPER_CP_LOCK
-
CASPER_CP_ID
-
CASPER_Wr32b(value, off)
-
CASPER_Wr64b(value, off)
-
CASPER_Rd32b(off)
-
N_wordlen_max
casper_driver_pkha
-
void CASPER_ModExp(CASPER_Type *base, const uint8_t *signature, const uint8_t *pubN, size_t wordLen, uint32_t pubE, uint8_t *plaintext)
Performs modular exponentiation - (A^E) mod N.
This function performs modular exponentiation.
- Parameters:
base – CASPER base address
signature – first addend (in little endian format)
pubN – modulus (in little endian format)
wordLen – Size of pubN in bytes
pubE – exponent
plaintext – [out] Output array to store result of operation (in little endian format)
-
void CASPER_ecc_init(casper_algo_t curve)
Initialize prime modulus mod in Casper memory .
Set the prime modulus mod in Casper memory and set N_wordlen according to selected algorithm.
- Parameters:
curve – elliptic curve algoritm
-
void CASPER_ECC_SECP256R1_Mul(CASPER_Type *base, uint32_t resX[8], uint32_t resY[8], uint32_t X[8], uint32_t Y[8], uint32_t scalar[8])
Performs ECC secp256r1 point single scalar multiplication.
This function performs ECC secp256r1 point single scalar multiplication [resX; resY] = scalar * [X; Y] Coordinates are affine in normal form, little endian. Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only to enforce the 32-bit alignment (0-mod-4 address).
- Parameters:
base – CASPER base address
resX – [out] Output X affine coordinate in normal form, little endian.
resY – [out] Output Y affine coordinate in normal form, little endian.
X – Input X affine coordinate in normal form, little endian.
Y – Input Y affine coordinate in normal form, little endian.
scalar – Input scalar integer, in normal form, little endian.
-
void CASPER_ECC_SECP256R1_MulAdd(CASPER_Type *base, uint32_t resX[8], uint32_t resY[8], uint32_t X1[8], uint32_t Y1[8], uint32_t scalar1[8], uint32_t X2[8], uint32_t Y2[8], uint32_t scalar2[8])
Performs ECC secp256r1 point double scalar multiplication.
This function performs ECC secp256r1 point double scalar multiplication [resX; resY] = scalar1 * [X1; Y1] + scalar2 * [X2; Y2] Coordinates are affine in normal form, little endian. Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only to enforce the 32-bit alignment (0-mod-4 address).
- Parameters:
base – CASPER base address
resX – [out] Output X affine coordinate.
resY – [out] Output Y affine coordinate.
X1 – Input X1 affine coordinate.
Y1 – Input Y1 affine coordinate.
scalar1 – Input scalar1 integer.
X2 – Input X2 affine coordinate.
Y2 – Input Y2 affine coordinate.
scalar2 – Input scalar2 integer.
-
void CASPER_ECC_SECP384R1_Mul(CASPER_Type *base, uint32_t resX[12], uint32_t resY[12], uint32_t X[12], uint32_t Y[12], uint32_t scalar[12])
Performs ECC secp384r1 point single scalar multiplication.
This function performs ECC secp384r1 point single scalar multiplication [resX; resY] = scalar * [X; Y] Coordinates are affine in normal form, little endian. Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only to enforce the 32-bit alignment (0-mod-4 address).
- Parameters:
base – CASPER base address
resX – [out] Output X affine coordinate in normal form, little endian.
resY – [out] Output Y affine coordinate in normal form, little endian.
X – Input X affine coordinate in normal form, little endian.
Y – Input Y affine coordinate in normal form, little endian.
scalar – Input scalar integer, in normal form, little endian.
-
void CASPER_ECC_SECP384R1_MulAdd(CASPER_Type *base, uint32_t resX[12], uint32_t resY[12], uint32_t X1[12], uint32_t Y1[12], uint32_t scalar1[12], uint32_t X2[12], uint32_t Y2[12], uint32_t scalar2[12])
Performs ECC secp384r1 point double scalar multiplication.
This function performs ECC secp384r1 point double scalar multiplication [resX; resY] = scalar1 * [X1; Y1] + scalar2 * [X2; Y2] Coordinates are affine in normal form, little endian. Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only to enforce the 32-bit alignment (0-mod-4 address).
- Parameters:
base – CASPER base address
resX – [out] Output X affine coordinate.
resY – [out] Output Y affine coordinate.
X1 – Input X1 affine coordinate.
Y1 – Input Y1 affine coordinate.
scalar1 – Input scalar1 integer.
X2 – Input X2 affine coordinate.
Y2 – Input Y2 affine coordinate.
scalar2 – Input scalar2 integer.
-
void CASPER_ECC_SECP521R1_Mul(CASPER_Type *base, uint32_t resX[18], uint32_t resY[18], uint32_t X[18], uint32_t Y[18], uint32_t scalar[18])
Performs ECC secp521r1 point single scalar multiplication.
This function performs ECC secp521r1 point single scalar multiplication [resX; resY] = scalar * [X; Y] Coordinates are affine in normal form, little endian. Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only to enforce the 32-bit alignment (0-mod-4 address).
- Parameters:
base – CASPER base address
resX – [out] Output X affine coordinate in normal form, little endian.
resY – [out] Output Y affine coordinate in normal form, little endian.
X – Input X affine coordinate in normal form, little endian.
Y – Input Y affine coordinate in normal form, little endian.
scalar – Input scalar integer, in normal form, little endian.
-
void CASPER_ECC_SECP521R1_MulAdd(CASPER_Type *base, uint32_t resX[18], uint32_t resY[18], uint32_t X1[18], uint32_t Y1[18], uint32_t scalar1[18], uint32_t X2[18], uint32_t Y2[18], uint32_t scalar2[18])
Performs ECC secp521r1 point double scalar multiplication.
This function performs ECC secp521r1 point double scalar multiplication [resX; resY] = scalar1 * [X1; Y1] + scalar2 * [X2; Y2] Coordinates are affine in normal form, little endian. Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only to enforce the 32-bit alignment (0-mod-4 address).
- Parameters:
base – CASPER base address
resX – [out] Output X affine coordinate.
resY – [out] Output Y affine coordinate.
X1 – Input X1 affine coordinate.
Y1 – Input Y1 affine coordinate.
scalar1 – Input scalar1 integer.
X2 – Input X2 affine coordinate.
Y2 – Input Y2 affine coordinate.
scalar2 – Input scalar2 integer.
-
void CASPER_ECC_equal(int *res, uint32_t *op1, uint32_t *op2)
-
void CASPER_ECC_equal_to_zero(int *res, uint32_t *op1)
CMP: Analog Comparator Driver
-
void CMP_Init(const cmp_config_t *config)
CMP initialization.
This function enables the CMP module and do necessary settings.
- Parameters:
config – Pointer to the configuration structure.
-
void CMP_Deinit(void)
CMP deinitialization.
This function gates the clock for CMP module.
-
void CMP_GetDefaultConfig(cmp_config_t *config)
Initializes the CMP user configuration structure.
This function initializes the user configuration structure to these default values.
config->enableHysteresis = true; config->enableLowPower = true; config->filterClockDivider = kCMP_FilterClockDivide1; config->filterSampleMode = kCMP_FilterSampleMode0;
- Parameters:
config – Pointer to the configuration structure.
-
static inline void CMP_SetInputChannels(uint8_t positiveChannel, uint8_t negativeChannel)
-
void CMP_SetVREF(const cmp_vref_config_t *config)
Configures the VREFINPUT.
- Parameters:
config – Pointer to the configuration structure.
-
static inline bool CMP_GetOutput(void)
Get CMP compare output.
- Returns:
The output result. true: voltage on positive side is greater than negative side. false: voltage on positive side is lower than negative side.
-
static inline void CMP_EnableInterrupt(uint32_t type)
CMP enable interrupt.
- Parameters:
type – CMP interrupt type. See “_cmp_interrupt_type”.
-
static inline void CMP_DisableInterrupt(void)
CMP disable interrupt.
-
static inline void CMP_ClearInterrupt(void)
CMP clear interrupt.
-
static inline void CMP_EnableFilteredInterruptSource(bool enable)
Select which Analog comparator output (filtered or un-filtered) is used for interrupt detection.
Note
: When CMP is configured as the wakeup source in power down mode, this function must use the raw output as the interupt source, that is, call this function and set parameter enable to false.
- Parameters:
enable – false: Select Analog Comparator raw output (unfiltered) as input for interrupt detection. true: Select Analog Comparator filtered output as input for interrupt detection.
-
static inline bool CMP_GetPreviousInterruptStatus(void)
Get CMP interrupt status before interupt enable.
- Returns:
Interrupt status. true: interrupt pending, false: no interrupt pending.
-
static inline bool CMP_GetInterruptStatus(void)
Get CMP interrupt status after interupt enable.
- Returns:
Interrupt status. true: interrupt pending, false: no interrupt pending.
-
static inline void CMP_FilterSampleConfig(cmp_filtercgf_samplemode_t filterSampleMode, cmp_filtercgf_clkdiv_t filterClockDivider)
CMP Filter Sample Config.
This function allows the users to configure the sampling mode and clock divider of the CMP Filter.
- Parameters:
filterSampleMode – CMP Select filter sample mode
filterClockDivider – CMP Set fileter clock divider
-
FSL_CMP_DRIVER_VERSION
Driver version 2.2.1.
-
enum _cmp_input_mux
CMP input mux for positive and negative sides.
Values:
-
enumerator kCMP_InputVREF
Cmp input from VREF.
-
enumerator kCMP_Input1
Cmp input source 1.
-
enumerator kCMP_Input2
Cmp input source 2.
-
enumerator kCMP_Input3
Cmp input source 3.
-
enumerator kCMP_Input4
Cmp input source 4.
-
enumerator kCMP_Input5
Cmp input source 5.
-
enumerator kCMP_InputVREF
-
enum _cmp_interrupt_type
CMP interrupt type.
Values:
-
enumerator kCMP_EdgeDisable
Disable edge interupt.
-
enumerator kCMP_EdgeRising
Interrupt on falling edge.
-
enumerator kCMP_EdgeFalling
Interrupt on rising edge.
-
enumerator kCMP_EdgeRisingFalling
Interrupt on both rising and falling edges.
-
enumerator kCMP_LevelDisable
Disable level interupt.
-
enumerator kCMP_LevelHigh
Interrupt on high level.
-
enumerator kCMP_LevelLow
Interrupt on low level.
-
enumerator kCMP_EdgeDisable
-
enum _cmp_vref_source
CMP Voltage Reference source.
Values:
-
enumerator KCMP_VREFSourceVDDA
Select VDDA as VREF.
-
enumerator KCMP_VREFSourceInternalVREF
Select internal VREF as VREF.
-
enumerator KCMP_VREFSourceVDDA
-
enum _cmp_filtercgf_samplemode
CMP Filter sample mode.
Values:
-
enumerator kCMP_FilterSampleMode0
Bypass mode. Filtering is disabled.
-
enumerator kCMP_FilterSampleMode1
Filter 1 clock period.
-
enumerator kCMP_FilterSampleMode2
Filter 2 clock period.
-
enumerator kCMP_FilterSampleMode3
Filter 3 clock period.
-
enumerator kCMP_FilterSampleMode0
-
enum _cmp_filtercgf_clkdiv
CMP Filter clock divider.
Values:
-
enumerator kCMP_FilterClockDivide1
Filter clock period duration equals 1 analog comparator clock period.
-
enumerator kCMP_FilterClockDivide2
Filter clock period duration equals 2 analog comparator clock period.
-
enumerator kCMP_FilterClockDivide4
Filter clock period duration equals 4 analog comparator clock period.
-
enumerator kCMP_FilterClockDivide8
Filter clock period duration equals 8 analog comparator clock period.
-
enumerator kCMP_FilterClockDivide16
Filter clock period duration equals 16 analog comparator clock period.
-
enumerator kCMP_FilterClockDivide32
Filter clock period duration equals 32 analog comparator clock period.
-
enumerator kCMP_FilterClockDivide64
Filter clock period duration equals 64 analog comparator clock period.
-
enumerator kCMP_FilterClockDivide1
-
typedef enum _cmp_vref_source cmp_vref_source_t
CMP Voltage Reference source.
-
typedef struct _cmp_vref_config cmp_vref_config_t
-
typedef enum _cmp_filtercgf_samplemode cmp_filtercgf_samplemode_t
CMP Filter sample mode.
-
typedef enum _cmp_filtercgf_clkdiv cmp_filtercgf_clkdiv_t
CMP Filter clock divider.
-
typedef struct _cmp_config cmp_config_t
CMP configuration structure.
-
struct _cmp_vref_config
- #include <fsl_cmp.h>
Public Members
-
cmp_vref_source_t vrefSource
Reference voltage source.
-
uint8_t vrefValue
Reference voltage step. Available range is 0-31. Per step equals to VREFINPUT/31.
-
cmp_vref_source_t vrefSource
-
struct _cmp_config
- #include <fsl_cmp.h>
CMP configuration structure.
Public Members
-
bool enableHysteresis
Enable hysteresis.
-
bool enableLowPower
Enable low power mode.
-
bool enableHysteresis
CRC: Cyclic Redundancy Check Driver
-
FSL_CRC_DRIVER_VERSION
CRC driver version. Version 2.1.1.
Current version: 2.1.1
Change log:
Version 2.0.0
initial version
Version 2.0.1
add explicit type cast when writing to WR_DATA
Version 2.0.2
Fix MISRA issue
Version 2.1.0
Add CRC_WriteSeed function
Version 2.1.1
Fix MISRA issue
-
enum _crc_polynomial
CRC polynomials to use.
Values:
-
enumerator kCRC_Polynomial_CRC_CCITT
x^16+x^12+x^5+1
-
enumerator kCRC_Polynomial_CRC_16
x^16+x^15+x^2+1
-
enumerator kCRC_Polynomial_CRC_32
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1
-
enumerator kCRC_Polynomial_CRC_CCITT
-
typedef enum _crc_polynomial crc_polynomial_t
CRC polynomials to use.
-
typedef struct _crc_config crc_config_t
CRC protocol configuration.
This structure holds the configuration for the CRC protocol.
-
void CRC_Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.
This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures the CRC engine and starts checksum computation by writing the seed.
- Parameters:
base – CRC peripheral address.
config – CRC module configuration structure.
-
static inline void CRC_Deinit(CRC_Type *base)
Disables the CRC peripheral module.
This functions disables the CRC peripheral clock in the LPC SYSCON block.
- Parameters:
base – CRC peripheral address.
-
void CRC_Reset(CRC_Type *base)
resets CRC peripheral module.
- Parameters:
base – CRC peripheral address.
-
void CRC_WriteSeed(CRC_Type *base, uint32_t seed)
Write seed to CRC peripheral module.
- Parameters:
base – CRC peripheral address.
seed – CRC Seed value.
-
void CRC_GetDefaultConfig(crc_config_t *config)
Loads default values to CRC protocol configuration structure.
Loads default values to CRC protocol configuration structure. The default values are:
config->polynomial = kCRC_Polynomial_CRC_CCITT; config->reverseIn = false; config->complementIn = false; config->reverseOut = false; config->complementOut = false; config->seed = 0xFFFFU;
- Parameters:
config – CRC protocol configuration structure
-
void CRC_GetConfig(CRC_Type *base, crc_config_t *config)
Loads actual values configured in CRC peripheral to CRC protocol configuration structure.
The values, including seed, can be used to resume CRC calculation later.
- Parameters:
base – CRC peripheral address.
config – CRC protocol configuration structure
-
void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.
Writes input data buffer bytes to CRC data register.
- Parameters:
base – CRC peripheral address.
data – Input data stream, MSByte in data[0].
dataSize – Size of the input data buffer in bytes.
-
static inline uint32_t CRC_Get32bitResult(CRC_Type *base)
Reads 32-bit checksum from the CRC module.
Reads CRC data register.
- Parameters:
base – CRC peripheral address.
- Returns:
final 32-bit checksum, after configured bit reverse and complement operations.
-
static inline uint16_t CRC_Get16bitResult(CRC_Type *base)
Reads 16-bit checksum from the CRC module.
Reads CRC data register.
- Parameters:
base – CRC peripheral address.
- Returns:
final 16-bit checksum, after configured bit reverse and complement operations.
-
CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT
Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE as default.
-
struct _crc_config
- #include <fsl_crc.h>
CRC protocol configuration.
This structure holds the configuration for the CRC protocol.
Public Members
-
crc_polynomial_t polynomial
CRC polynomial.
-
bool reverseIn
Reverse bits on input.
-
bool complementIn
Perform 1’s complement on input.
-
bool reverseOut
Reverse bits on output.
-
bool complementOut
Perform 1’s complement on output.
-
uint32_t seed
Starting checksum value.
-
crc_polynomial_t polynomial
CTIMER: Standard counter/timers
-
void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)
Ungates the clock and configures the peripheral for basic operation.
Note
This API should be called at the beginning of the application before using the driver.
- Parameters:
base – Ctimer peripheral base address
config – Pointer to the user configuration structure.
-
void CTIMER_Deinit(CTIMER_Type *base)
Gates the timer clock.
- Parameters:
base – Ctimer peripheral base address
-
void CTIMER_GetDefaultConfig(ctimer_config_t *config)
Fills in the timers configuration structure with the default settings.
The default values are:
config->mode = kCTIMER_TimerMode; config->input = kCTIMER_Capture_0; config->prescale = 0;
- Parameters:
config – Pointer to the user configuration structure.
-
status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint32_t pwmPeriod, uint32_t pulsePeriod, bool enableInt)
Configures the PWM signal parameters.
Enables PWM mode on the match channel passed in and will then setup the match value and other match parameters to generate a PWM signal. This function can manually assign the specified channel to set the PWM cycle.
Note
When setting PWM output from multiple output pins, all should use the same PWM period
- Parameters:
base – Ctimer peripheral base address
pwmPeriodChannel – Specify the channel to control the PWM period
matchChannel – Match pin to be used to output the PWM signal
pwmPeriod – PWM period match value
pulsePeriod – Pulse width match value
enableInt – Enable interrupt when the timer value reaches the match value of the PWM pulse, if it is 0 then no interrupt will be generated.
- Returns:
kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeriodChannel; this channel is reserved to set the PWM cycle If PWM pulse width register value is larger than 0xFFFFFFFF.
-
status_t CTIMER_SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint8_t dutyCyclePercent, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz, bool enableInt)
Configures the PWM signal parameters.
Enables PWM mode on the match channel passed in and will then setup the match value and other match parameters to generate a PWM signal. This function can manually assign the specified channel to set the PWM cycle.
Note
When setting PWM output from multiple output pins, all should use the same PWM frequency. Please use CTIMER_SetupPwmPeriod to set up the PWM with high resolution.
- Parameters:
base – Ctimer peripheral base address
pwmPeriodChannel – Specify the channel to control the PWM period
matchChannel – Match pin to be used to output the PWM signal
dutyCyclePercent – PWM pulse width; the value should be between 0 to 100
pwmFreq_Hz – PWM signal frequency in Hz
srcClock_Hz – Timer counter clock in Hz
enableInt – Enable interrupt when the timer value reaches the match value of the PWM pulse, if it is 0 then no interrupt will be generated.
-
static inline void CTIMER_UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t matchChannel, uint32_t pulsePeriod)
Updates the pulse period of an active PWM signal.
- Parameters:
base – Ctimer peripheral base address
matchChannel – Match pin to be used to output the PWM signal
pulsePeriod – New PWM pulse width match value
-
status_t CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint8_t dutyCyclePercent)
Updates the duty cycle of an active PWM signal.
Note
Please use CTIMER_SetupPwmPeriod to update the PWM with high resolution. This function can manually assign the specified channel to set the PWM cycle.
- Parameters:
base – Ctimer peripheral base address
pwmPeriodChannel – Specify the channel to control the PWM period
matchChannel – Match pin to be used to output the PWM signal
dutyCyclePercent – New PWM pulse width; the value should be between 0 to 100
- Returns:
kStatus_Success on success kStatus_Fail If PWM pulse width register value is larger than 0xFFFFFFFF.
-
static inline void CTIMER_EnableInterrupts(CTIMER_Type *base, uint32_t mask)
Enables the selected Timer interrupts.
- Parameters:
base – Ctimer peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration ctimer_interrupt_enable_t
-
static inline void CTIMER_DisableInterrupts(CTIMER_Type *base, uint32_t mask)
Disables the selected Timer interrupts.
- Parameters:
base – Ctimer peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration ctimer_interrupt_enable_t
-
static inline uint32_t CTIMER_GetEnabledInterrupts(CTIMER_Type *base)
Gets the enabled Timer interrupts.
- Parameters:
base – Ctimer peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration ctimer_interrupt_enable_t
-
static inline uint32_t CTIMER_GetStatusFlags(CTIMER_Type *base)
Gets the Timer status flags.
- Parameters:
base – Ctimer peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration ctimer_status_flags_t
-
static inline void CTIMER_ClearStatusFlags(CTIMER_Type *base, uint32_t mask)
Clears the Timer status flags.
- Parameters:
base – Ctimer peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration ctimer_status_flags_t
-
static inline void CTIMER_StartTimer(CTIMER_Type *base)
Starts the Timer counter.
- Parameters:
base – Ctimer peripheral base address
-
static inline void CTIMER_StopTimer(CTIMER_Type *base)
Stops the Timer counter.
- Parameters:
base – Ctimer peripheral base address
-
FSL_CTIMER_DRIVER_VERSION
Version 2.3.3
-
enum _ctimer_capture_channel
List of Timer capture channels.
Values:
-
enumerator kCTIMER_Capture_0
Timer capture channel 0
-
enumerator kCTIMER_Capture_1
Timer capture channel 1
-
enumerator kCTIMER_Capture_3
Timer capture channel 3
-
enumerator kCTIMER_Capture_0
-
enum _ctimer_capture_edge
List of capture edge options.
Values:
-
enumerator kCTIMER_Capture_RiseEdge
Capture on rising edge
-
enumerator kCTIMER_Capture_FallEdge
Capture on falling edge
-
enumerator kCTIMER_Capture_BothEdge
Capture on rising and falling edge
-
enumerator kCTIMER_Capture_RiseEdge
-
enum _ctimer_match
List of Timer match registers.
Values:
-
enumerator kCTIMER_Match_0
Timer match register 0
-
enumerator kCTIMER_Match_1
Timer match register 1
-
enumerator kCTIMER_Match_2
Timer match register 2
-
enumerator kCTIMER_Match_3
Timer match register 3
-
enumerator kCTIMER_Match_0
-
enum _ctimer_external_match
List of external match.
Values:
-
enumerator kCTIMER_External_Match_0
External match 0
-
enumerator kCTIMER_External_Match_1
External match 1
-
enumerator kCTIMER_External_Match_2
External match 2
-
enumerator kCTIMER_External_Match_3
External match 3
-
enumerator kCTIMER_External_Match_0
-
enum _ctimer_match_output_control
List of output control options.
Values:
-
enumerator kCTIMER_Output_NoAction
No action is taken
-
enumerator kCTIMER_Output_Clear
Clear the EM bit/output to 0
-
enumerator kCTIMER_Output_Set
Set the EM bit/output to 1
-
enumerator kCTIMER_Output_Toggle
Toggle the EM bit/output
-
enumerator kCTIMER_Output_NoAction
-
enum _ctimer_timer_mode
List of Timer modes.
Values:
-
enumerator kCTIMER_TimerMode
-
enumerator kCTIMER_IncreaseOnRiseEdge
-
enumerator kCTIMER_IncreaseOnFallEdge
-
enumerator kCTIMER_IncreaseOnBothEdge
-
enumerator kCTIMER_TimerMode
-
enum _ctimer_interrupt_enable
List of Timer interrupts.
Values:
-
enumerator kCTIMER_Match0InterruptEnable
Match 0 interrupt
-
enumerator kCTIMER_Match1InterruptEnable
Match 1 interrupt
-
enumerator kCTIMER_Match2InterruptEnable
Match 2 interrupt
-
enumerator kCTIMER_Match3InterruptEnable
Match 3 interrupt
-
enumerator kCTIMER_Match0InterruptEnable
-
enum _ctimer_status_flags
List of Timer flags.
Values:
-
enumerator kCTIMER_Match0Flag
Match 0 interrupt flag
-
enumerator kCTIMER_Match1Flag
Match 1 interrupt flag
-
enumerator kCTIMER_Match2Flag
Match 2 interrupt flag
-
enumerator kCTIMER_Match3Flag
Match 3 interrupt flag
-
enumerator kCTIMER_Match0Flag
-
enum ctimer_callback_type_t
Callback type when registering for a callback. When registering a callback an array of function pointers is passed the size could be 1 or 8, the callback type will tell that.
Values:
-
enumerator kCTIMER_SingleCallback
Single Callback type where there is only one callback for the timer. based on the status flags different channels needs to be handled differently
-
enumerator kCTIMER_MultipleCallback
Multiple Callback type where there can be 8 valid callbacks, one per channel. for both match/capture
-
enumerator kCTIMER_SingleCallback
-
typedef enum _ctimer_capture_channel ctimer_capture_channel_t
List of Timer capture channels.
-
typedef enum _ctimer_capture_edge ctimer_capture_edge_t
List of capture edge options.
-
typedef enum _ctimer_match ctimer_match_t
List of Timer match registers.
-
typedef enum _ctimer_external_match ctimer_external_match_t
List of external match.
-
typedef enum _ctimer_match_output_control ctimer_match_output_control_t
List of output control options.
-
typedef enum _ctimer_timer_mode ctimer_timer_mode_t
List of Timer modes.
-
typedef enum _ctimer_interrupt_enable ctimer_interrupt_enable_t
List of Timer interrupts.
-
typedef enum _ctimer_status_flags ctimer_status_flags_t
List of Timer flags.
-
typedef void (*ctimer_callback_t)(uint32_t flags)
-
typedef struct _ctimer_match_config ctimer_match_config_t
Match configuration.
This structure holds the configuration settings for each match register.
-
typedef struct _ctimer_config ctimer_config_t
Timer configuration structure.
This structure holds the configuration settings for the Timer peripheral. To initialize this structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.
The configuration structure can be made constant so as to reside in flash.
-
void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const ctimer_match_config_t *config)
Setup the match register.
User configuration is used to setup the match value and action to be taken when a match occurs.
- Parameters:
base – Ctimer peripheral base address
matchChannel – Match register to configure
config – Pointer to the match configuration structure
-
uint32_t CTIMER_GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
Get the status of output match.
This function gets the status of output MAT, whether or not this output is connected to a pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 = LOW. 1 = HIGH.
- Parameters:
base – Ctimer peripheral base address
matchChannel – External match channel, user can obtain the status of multiple match channels at the same time by using the logic of “|” enumeration ctimer_external_match_t
- Returns:
The mask of external match channel status flags. Users need to use the _ctimer_external_match type to decode the return variables.
-
void CTIMER_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, ctimer_capture_edge_t edge, bool enableInt)
Setup the capture.
- Parameters:
base – Ctimer peripheral base address
capture – Capture channel to configure
edge – Edge on the channel that will trigger a capture
enableInt – Flag to enable channel interrupts, if enabled then the registered call back is called upon capture
-
static inline uint32_t CTIMER_GetTimerCountValue(CTIMER_Type *base)
Get the timer count value from TC register.
- Parameters:
base – Ctimer peripheral base address.
- Returns:
return the timer count value.
-
void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func, ctimer_callback_type_t cb_type)
Register callback.
- Parameters:
base – Ctimer peripheral base address
cb_func – callback function
cb_type – callback function type, singular or multiple
-
static inline void CTIMER_Reset(CTIMER_Type *base)
Reset the counter.
The timer counter and prescale counter are reset on the next positive edge of the APB clock.
- Parameters:
base – Ctimer peripheral base address
-
static inline void CTIMER_SetPrescale(CTIMER_Type *base, uint32_t prescale)
Setup the timer prescale value.
Specifies the maximum value for the Prescale Counter.
- Parameters:
base – Ctimer peripheral base address
prescale – Prescale value
-
static inline uint32_t CTIMER_GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel_t capture)
Get capture channel value.
Get the counter/timer value on the corresponding capture channel.
- Parameters:
base – Ctimer peripheral base address
capture – Select capture channel
- Returns:
The timer count capture value.
-
static inline void CTIMER_EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t match, bool enable)
Enable reset match channel.
Set the specified match channel reset operation.
- Parameters:
base – Ctimer peripheral base address
match – match channel used
enable – Enable match channel reset operation.
-
static inline void CTIMER_EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t match, bool enable)
Enable stop match channel.
Set the specified match channel stop operation.
- Parameters:
base – Ctimer peripheral base address.
match – match channel used.
enable – Enable match channel stop operation.
-
static inline void CTIMER_EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t match, bool enable)
Enable reload channel falling edge.
Enable the specified match channel reload match shadow value.
- Parameters:
base – Ctimer peripheral base address.
match – match channel used.
enable – Enable .
-
static inline void CTIMER_EnableRisingEdgeCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, bool enable)
Enable capture channel rising edge.
Sets the specified capture channel for rising edge capture.
- Parameters:
base – Ctimer peripheral base address.
capture – capture channel used.
enable – Enable rising edge capture.
-
static inline void CTIMER_EnableFallingEdgeCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, bool enable)
Enable capture channel falling edge.
Sets the specified capture channel for falling edge capture.
- Parameters:
base – Ctimer peripheral base address.
capture – capture channel used.
enable – Enable falling edge capture.
-
static inline void CTIMER_SetShadowValue(CTIMER_Type *base, ctimer_match_t match, uint32_t matchvalue)
Set the specified match shadow channel.
- Parameters:
base – Ctimer peripheral base address.
match – match channel used.
matchvalue – Reload the value of the corresponding match register.
-
struct _ctimer_match_config
- #include <fsl_ctimer.h>
Match configuration.
This structure holds the configuration settings for each match register.
Public Members
-
uint32_t matchValue
This is stored in the match register
-
bool enableCounterReset
true: Match will reset the counter false: Match will not reser the counter
-
bool enableCounterStop
true: Match will stop the counter false: Match will not stop the counter
-
ctimer_match_output_control_t outControl
Action to be taken on a match on the EM bit/output
-
bool outPinInitState
Initial value of the EM bit/output
-
bool enableInterrupt
true: Generate interrupt upon match false: Do not generate interrupt on match
-
uint32_t matchValue
-
struct _ctimer_config
- #include <fsl_ctimer.h>
Timer configuration structure.
This structure holds the configuration settings for the Timer peripheral. To initialize this structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.
The configuration structure can be made constant so as to reside in flash.
Public Members
-
ctimer_timer_mode_t mode
Timer mode
-
ctimer_capture_channel_t input
Input channel to increment the timer, used only in timer modes that rely on this input signal to increment TC
-
uint32_t prescale
Prescale value
-
ctimer_timer_mode_t mode
DMA: Direct Memory Access Controller Driver
-
void DMA_Init(DMA_Type *base)
Initializes DMA peripheral.
This function enable the DMA clock, set descriptor table and enable DMA peripheral.
- Parameters:
base – DMA peripheral base address.
-
void DMA_Deinit(DMA_Type *base)
Deinitializes DMA peripheral.
This function gates the DMA clock.
- Parameters:
base – DMA peripheral base address.
-
void DMA_InstallDescriptorMemory(DMA_Type *base, void *addr)
Install DMA descriptor memory.
This function used to register DMA descriptor memory for linked transfer, a typical case is ping pong transfer which will request more than one DMA descriptor memory space, althrough current DMA driver has a default DMA descriptor buffer, but it support one DMA descriptor for one channel only.
- Parameters:
base – DMA base address.
addr – DMA descriptor address
-
static inline bool DMA_ChannelIsActive(DMA_Type *base, uint32_t channel)
Return whether DMA channel is processing transfer.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
- Returns:
True for active state, false otherwise.
-
static inline bool DMA_ChannelIsBusy(DMA_Type *base, uint32_t channel)
Return whether DMA channel is busy.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
- Returns:
True for busy state, false otherwise.
-
static inline void DMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel)
Enables the interrupt source for the DMA transfer.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
-
static inline void DMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel)
Disables the interrupt source for the DMA transfer.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
-
static inline void DMA_EnableChannel(DMA_Type *base, uint32_t channel)
Enable DMA channel.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
-
static inline void DMA_DisableChannel(DMA_Type *base, uint32_t channel)
Disable DMA channel.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
-
static inline void DMA_EnableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Set PERIPHREQEN of channel configuration register.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
-
static inline void DMA_DisableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Get PERIPHREQEN value of channel configuration register.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
- Returns:
True for enabled PeriphRq, false for disabled.
-
void DMA_ConfigureChannelTrigger(DMA_Type *base, uint32_t channel, dma_channel_trigger_t *trigger)
Set trigger settings of DMA channel.
- Deprecated:
Do not use this function. It has been superceded by DMA_SetChannelConfig.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
trigger – trigger configuration.
-
void DMA_SetChannelConfig(DMA_Type *base, uint32_t channel, dma_channel_trigger_t *trigger, bool isPeriph)
set channel config.
This function provide a interface to configure channel configuration reisters.
- Parameters:
base – DMA base address.
channel – DMA channel number.
trigger – channel configurations structure.
isPeriph – true is periph request, false is not.
-
static inline uint32_t DMA_SetChannelXferConfig(bool reload, bool clrTrig, bool intA, bool intB, uint8_t width, uint8_t srcInc, uint8_t dstInc, uint32_t bytes)
DMA channel xfer transfer configurations.
- Parameters:
reload – true is reload link descriptor after current exhaust, false is not
clrTrig – true is clear trigger status, wait software trigger, false is not
intA – enable interruptA
intB – enable interruptB
width – transfer width
srcInc – source address interleave size
dstInc – destination address interleave size
bytes – transfer bytes
- Returns:
The vaule of xfer config
-
uint32_t DMA_GetRemainingBytes(DMA_Type *base, uint32_t channel)
Gets the remaining bytes of the current DMA descriptor transfer.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
- Returns:
The number of bytes which have not been transferred yet.
-
static inline void DMA_SetChannelPriority(DMA_Type *base, uint32_t channel, dma_priority_t priority)
Set priority of channel configuration register.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
priority – Channel priority value.
-
static inline dma_priority_t DMA_GetChannelPriority(DMA_Type *base, uint32_t channel)
Get priority of channel configuration register.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
- Returns:
Channel priority value.
-
static inline void DMA_SetChannelConfigValid(DMA_Type *base, uint32_t channel)
Set channel configuration valid.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
-
static inline void DMA_DoChannelSoftwareTrigger(DMA_Type *base, uint32_t channel)
Do software trigger for the channel.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
-
static inline void DMA_LoadChannelTransferConfig(DMA_Type *base, uint32_t channel, uint32_t xfer)
Load channel transfer configurations.
- Parameters:
base – DMA peripheral base address.
channel – DMA channel number.
xfer – transfer configurations.
-
void DMA_CreateDescriptor(dma_descriptor_t *desc, dma_xfercfg_t *xfercfg, void *srcAddr, void *dstAddr, void *nextDesc)
Create application specific DMA descriptor to be used in a chain in transfer.
- Deprecated:
Do not use this function. It has been superceded by DMA_SetupDescriptor.
- Parameters:
desc – DMA descriptor address.
xfercfg – Transfer configuration for DMA descriptor.
srcAddr – Address of last item to transmit
dstAddr – Address of last item to receive.
nextDesc – Address of next descriptor in chain.
-
void DMA_SetupDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc)
setup dma descriptor
Note: This function do not support configure wrap descriptor.
- Parameters:
desc – DMA descriptor address.
xfercfg – Transfer configuration for DMA descriptor.
srcStartAddr – Start address of source address.
dstStartAddr – Start address of destination address.
nextDesc – Address of next descriptor in chain.
-
void DMA_SetupChannelDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc, dma_burst_wrap_t wrapType, uint32_t burstSize)
setup dma channel descriptor
Note: This function support configure wrap descriptor.
- Parameters:
desc – DMA descriptor address.
xfercfg – Transfer configuration for DMA descriptor.
srcStartAddr – Start address of source address.
dstStartAddr – Start address of destination address.
nextDesc – Address of next descriptor in chain.
wrapType – burst wrap type.
burstSize – burst size, reference _dma_burst_size.
-
void DMA_LoadChannelDescriptor(DMA_Type *base, uint32_t channel, dma_descriptor_t *descriptor)
load channel transfer decriptor.
This function can be used to load desscriptor to driver internal channel descriptor that is used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful for the case:
for the polling transfer, application can allocate a local descriptor memory table to prepare a descriptor firstly and then call this api to load the configured descriptor to driver descriptor table.
DMA_Init(DMA0); DMA_EnableChannel(DMA0, DEMO_DMA_CHANNEL); DMA_SetupDescriptor(desc, xferCfg, s_srcBuffer, &s_destBuffer[0], NULL); DMA_LoadChannelDescriptor(DMA0, DEMO_DMA_CHANNEL, (dma_descriptor_t *)desc); DMA_DoChannelSoftwareTrigger(DMA0, DEMO_DMA_CHANNEL); while(DMA_ChannelIsBusy(DMA0, DEMO_DMA_CHANNEL)) {}
- Parameters:
base – DMA base address.
channel – DMA channel.
descriptor – configured DMA descriptor.
-
void DMA_AbortTransfer(dma_handle_t *handle)
Abort running transfer by handle.
This function aborts DMA transfer specified by handle.
- Parameters:
handle – DMA handle pointer.
-
void DMA_CreateHandle(dma_handle_t *handle, DMA_Type *base, uint32_t channel)
Creates the DMA handle.
This function is called if using transaction API for DMA. This function initializes the internal state of DMA handle.
- Parameters:
handle – DMA handle pointer. The DMA handle stores callback function and parameters.
base – DMA peripheral base address.
channel – DMA channel number.
-
void DMA_SetCallback(dma_handle_t *handle, dma_callback callback, void *userData)
Installs a callback function for the DMA transfer.
This callback is called in DMA IRQ handler. Use the callback to do something after the current major loop transfer completes.
- Parameters:
handle – DMA handle pointer.
callback – DMA callback function pointer.
userData – Parameter for callback function.
-
void DMA_PrepareTransfer(dma_transfer_config_t *config, void *srcAddr, void *dstAddr, uint32_t byteWidth, uint32_t transferBytes, dma_transfer_type_t type, void *nextDesc)
Prepares the DMA transfer structure.
- Deprecated:
Do not use this function. It has been superceded by DMA_PrepareChannelTransfer. This function prepares the transfer configuration structure according to the user input.
Note
The data address and the data width must be consistent. For example, if the SRC is 4 bytes, so the source address must be 4 bytes aligned, or it shall result in source address error(SAE).
- Parameters:
config – The user configuration structure of type dma_transfer_t.
srcAddr – DMA transfer source address.
dstAddr – DMA transfer destination address.
byteWidth – DMA transfer destination address width(bytes).
transferBytes – DMA transfer bytes to be transferred.
type – DMA transfer type.
nextDesc – Chain custom descriptor to transfer.
-
void DMA_PrepareChannelTransfer(dma_channel_config_t *config, void *srcStartAddr, void *dstStartAddr, uint32_t xferCfg, dma_transfer_type_t type, dma_channel_trigger_t *trigger, void *nextDesc)
Prepare channel transfer configurations.
This function used to prepare channel transfer configurations.
- Parameters:
config – Pointer to DMA channel transfer configuration structure.
srcStartAddr – source start address.
dstStartAddr – destination start address.
xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER about to how to get xferCfg value.
type – transfer type.
trigger – DMA channel trigger configurations.
nextDesc – address of next descriptor.
-
status_t DMA_SubmitTransfer(dma_handle_t *handle, dma_transfer_config_t *config)
Submits the DMA transfer request.
- Deprecated:
Do not use this function. It has been superceded by DMA_SubmitChannelTransfer.
This function submits the DMA transfer request according to the transfer configuration structure. If the user submits the transfer request repeatedly, this function packs an unprocessed request as a TCD and enables scatter/gather feature to process it in the next time.
- Parameters:
handle – DMA handle pointer.
config – Pointer to DMA transfer configuration structure.
- Return values:
kStatus_DMA_Success – It means submit transfer request succeed.
kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer request is not allowed.
kStatus_DMA_Busy – It means the given channel is busy, need to submit request later.
-
void DMA_SubmitChannelTransferParameter(dma_handle_t *handle, uint32_t xferCfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc)
Submit channel transfer paramter directly.
This function used to configue channel head descriptor that is used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful for the case:
for the single transfer, application doesn’t need to allocate descriptor table, the head descriptor can be used for it.
DMA_SetChannelConfig(base, channel, trigger, isPeriph); DMA_CreateHandle(handle, base, channel) DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, NULL); DMA_StartTransfer(handle)
for the linked transfer, application should responsible for link descriptor, for example, if 4 transfer is required, then application should prepare three descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.
define link descriptor table in application with macro DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[3]); DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, nextDesc1); DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, nextDesc2); DMA_SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, NULL); DMA_SetChannelConfig(base, channel, trigger, isPeriph); DMA_CreateHandle(handle, base, channel) DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, nextDesc0); DMA_StartTransfer(handle);
- Parameters:
handle – Pointer to DMA handle.
xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER about to how to get xferCfg value.
srcStartAddr – source start address.
dstStartAddr – destination start address.
nextDesc – address of next descriptor.
-
void DMA_SubmitChannelDescriptor(dma_handle_t *handle, dma_descriptor_t *descriptor)
Submit channel descriptor.
This function used to configue channel head descriptor that is used to start DMA transfer, the head descriptor table is defined in DMA driver, this functiono is typical for the ping pong case:
for the ping pong case, application should responsible for the descriptor, for example, application should prepare two descriptor table with macro.
define link descriptor table in application with macro DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[2]); DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, nextDesc1); DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, nextDesc0); DMA_SetChannelConfig(base, channel, trigger, isPeriph); DMA_CreateHandle(handle, base, channel) DMA_SubmitChannelDescriptor(handle, nextDesc0); DMA_StartTransfer(handle);
- Parameters:
handle – Pointer to DMA handle.
descriptor – descriptor to submit.
-
status_t DMA_SubmitChannelTransfer(dma_handle_t *handle, dma_channel_config_t *config)
Submits the DMA channel transfer request.
This function submits the DMA transfer request according to the transfer configuration structure. If the user submits the transfer request repeatedly, this function packs an unprocessed request as a TCD and enables scatter/gather feature to process it in the next time. It is used for the case:
for the single transfer, application doesn’t need to allocate descriptor table, the head descriptor can be used for it.
DMA_CreateHandle(handle, base, channel) DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,NULL); DMA_SubmitChannelTransfer(handle, config) DMA_StartTransfer(handle)
for the linked transfer, application should responsible for link descriptor, for example, if 4 transfer is required, then application should prepare three descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.
define link descriptor table in application with macro DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc); DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, nextDesc1); DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, nextDesc2); DMA_SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, NULL); DMA_CreateHandle(handle, base, channel) DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,nextDesc0); DMA_SubmitChannelTransfer(handle, config) DMA_StartTransfer(handle)
for the ping pong case, application should responsible for link descriptor, for example, application should prepare two descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.
define link descriptor table in application with macro DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc); DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, nextDesc1); DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes), srcStartAddr, dstStartAddr, nextDesc0); DMA_CreateHandle(handle, base, channel) DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,nextDesc0); DMA_SubmitChannelTransfer(handle, config) DMA_StartTransfer(handle)
- Parameters:
handle – DMA handle pointer.
config – Pointer to DMA transfer configuration structure.
- Return values:
kStatus_DMA_Success – It means submit transfer request succeed.
kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer request is not allowed.
kStatus_DMA_Busy – It means the given channel is busy, need to submit request later.
-
void DMA_StartTransfer(dma_handle_t *handle)
DMA start transfer.
This function enables the channel request. User can call this function after submitting the transfer request It will trigger transfer start with software trigger only when hardware trigger is not used.
- Parameters:
handle – DMA handle pointer.
-
void DMA_IRQHandle(DMA_Type *base)
DMA IRQ handler for descriptor transfer complete.
This function clears the channel major interrupt flag and call the callback function if it is not NULL.
- Parameters:
base – DMA base address.
-
FSL_DMA_DRIVER_VERSION
DMA driver version.
Version 2.5.3.
_dma_transfer_status DMA transfer status
Values:
-
enumerator kStatus_DMA_Busy
Channel is busy and can’t handle the transfer request.
-
enumerator kStatus_DMA_Busy
_dma_addr_interleave_size dma address interleave size
Values:
-
enumerator kDMA_AddressInterleave0xWidth
dma source/destination address no interleave
-
enumerator kDMA_AddressInterleave1xWidth
dma source/destination address interleave 1xwidth
-
enumerator kDMA_AddressInterleave2xWidth
dma source/destination address interleave 2xwidth
-
enumerator kDMA_AddressInterleave4xWidth
dma source/destination address interleave 3xwidth
-
enumerator kDMA_AddressInterleave0xWidth
_dma_transfer_width dma transfer width
Values:
-
enumerator kDMA_Transfer8BitWidth
dma channel transfer bit width is 8 bit
-
enumerator kDMA_Transfer16BitWidth
dma channel transfer bit width is 16 bit
-
enumerator kDMA_Transfer32BitWidth
dma channel transfer bit width is 32 bit
-
enumerator kDMA_Transfer8BitWidth
-
enum _dma_priority
DMA channel priority.
Values:
-
enumerator kDMA_ChannelPriority0
Highest channel priority - priority 0
-
enumerator kDMA_ChannelPriority1
Channel priority 1
-
enumerator kDMA_ChannelPriority2
Channel priority 2
-
enumerator kDMA_ChannelPriority3
Channel priority 3
-
enumerator kDMA_ChannelPriority4
Channel priority 4
-
enumerator kDMA_ChannelPriority5
Channel priority 5
-
enumerator kDMA_ChannelPriority6
Channel priority 6
-
enumerator kDMA_ChannelPriority7
Lowest channel priority - priority 7
-
enumerator kDMA_ChannelPriority0
-
enum _dma_int
DMA interrupt flags.
Values:
-
enumerator kDMA_IntA
DMA interrupt flag A
-
enumerator kDMA_IntB
DMA interrupt flag B
-
enumerator kDMA_IntError
DMA interrupt flag error
-
enumerator kDMA_IntA
-
enum _dma_trigger_type
DMA trigger type.
Values:
-
enumerator kDMA_NoTrigger
Trigger is disabled
-
enumerator kDMA_LowLevelTrigger
Low level active trigger
-
enumerator kDMA_HighLevelTrigger
High level active trigger
-
enumerator kDMA_FallingEdgeTrigger
Falling edge active trigger
-
enumerator kDMA_RisingEdgeTrigger
Rising edge active trigger
-
enumerator kDMA_NoTrigger
_dma_burst_size DMA burst size
Values:
-
enumerator kDMA_BurstSize1
burst size 1 transfer
-
enumerator kDMA_BurstSize2
burst size 2 transfer
-
enumerator kDMA_BurstSize4
burst size 4 transfer
-
enumerator kDMA_BurstSize8
burst size 8 transfer
-
enumerator kDMA_BurstSize16
burst size 16 transfer
-
enumerator kDMA_BurstSize32
burst size 32 transfer
-
enumerator kDMA_BurstSize64
burst size 64 transfer
-
enumerator kDMA_BurstSize128
burst size 128 transfer
-
enumerator kDMA_BurstSize256
burst size 256 transfer
-
enumerator kDMA_BurstSize512
burst size 512 transfer
-
enumerator kDMA_BurstSize1024
burst size 1024 transfer
-
enumerator kDMA_BurstSize1
-
enum _dma_trigger_burst
DMA trigger burst.
Values:
-
enumerator kDMA_SingleTransfer
Single transfer
-
enumerator kDMA_LevelBurstTransfer
Burst transfer driven by level trigger
-
enumerator kDMA_EdgeBurstTransfer1
Perform 1 transfer by edge trigger
-
enumerator kDMA_EdgeBurstTransfer2
Perform 2 transfers by edge trigger
-
enumerator kDMA_EdgeBurstTransfer4
Perform 4 transfers by edge trigger
-
enumerator kDMA_EdgeBurstTransfer8
Perform 8 transfers by edge trigger
-
enumerator kDMA_EdgeBurstTransfer16
Perform 16 transfers by edge trigger
-
enumerator kDMA_EdgeBurstTransfer32
Perform 32 transfers by edge trigger
-
enumerator kDMA_EdgeBurstTransfer64
Perform 64 transfers by edge trigger
-
enumerator kDMA_EdgeBurstTransfer128
Perform 128 transfers by edge trigger
-
enumerator kDMA_EdgeBurstTransfer256
Perform 256 transfers by edge trigger
-
enumerator kDMA_EdgeBurstTransfer512
Perform 512 transfers by edge trigger
-
enumerator kDMA_EdgeBurstTransfer1024
Perform 1024 transfers by edge trigger
-
enumerator kDMA_SingleTransfer
-
enum _dma_burst_wrap
DMA burst wrapping.
Values:
-
enumerator kDMA_NoWrap
Wrapping is disabled
-
enumerator kDMA_SrcWrap
Wrapping is enabled for source
-
enumerator kDMA_DstWrap
Wrapping is enabled for destination
-
enumerator kDMA_SrcAndDstWrap
Wrapping is enabled for source and destination
-
enumerator kDMA_NoWrap
-
enum _dma_transfer_type
DMA transfer type.
Values:
-
enumerator kDMA_MemoryToMemory
Transfer from memory to memory (increment source and destination)
-
enumerator kDMA_PeripheralToMemory
Transfer from peripheral to memory (increment only destination)
-
enumerator kDMA_MemoryToPeripheral
Transfer from memory to peripheral (increment only source)
-
enumerator kDMA_StaticToStatic
Peripheral to static memory (do not increment source or destination)
-
enumerator kDMA_MemoryToMemory
-
typedef struct _dma_descriptor dma_descriptor_t
DMA descriptor structure.
-
typedef struct _dma_xfercfg dma_xfercfg_t
DMA transfer configuration.
-
typedef enum _dma_priority dma_priority_t
DMA channel priority.
-
typedef enum _dma_int dma_irq_t
DMA interrupt flags.
-
typedef enum _dma_trigger_type dma_trigger_type_t
DMA trigger type.
-
typedef enum _dma_trigger_burst dma_trigger_burst_t
DMA trigger burst.
-
typedef enum _dma_burst_wrap dma_burst_wrap_t
DMA burst wrapping.
-
typedef enum _dma_transfer_type dma_transfer_type_t
DMA transfer type.
-
typedef struct _dma_channel_trigger dma_channel_trigger_t
DMA channel trigger.
-
typedef struct _dma_channel_config dma_channel_config_t
DMA channel trigger.
-
typedef struct _dma_transfer_config dma_transfer_config_t
DMA transfer configuration.
-
typedef void (*dma_callback)(struct _dma_handle *handle, void *userData, bool transferDone, uint32_t intmode)
Define Callback function for DMA.
-
typedef struct _dma_handle dma_handle_t
DMA transfer handle structure.
-
DMA_MAX_TRANSFER_COUNT
DMA max transfer size.
-
FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(x)
DMA channel numbers.
-
FSL_FEATURE_DMA_MAX_CHANNELS
-
FSL_FEATURE_DMA_ALL_CHANNELS
-
FSL_FEATURE_DMA_LINK_DESCRIPTOR_ALIGN_SIZE
DMA head link descriptor table align size.
-
DMA_ALLOCATE_HEAD_DESCRIPTORS(name, number)
DMA head descriptor table allocate macro To simplify user interface, this macro will help allocate descriptor memory, user just need to provide the name and the number for the allocate descriptor.
- Parameters:
name – Allocate decriptor name.
number – Number of descriptor to be allocated.
-
DMA_ALLOCATE_HEAD_DESCRIPTORS_AT_NONCACHEABLE(name, number)
DMA head descriptor table allocate macro at noncacheable section To simplify user interface, this macro will help allocate descriptor memory at noncacheable section, user just need to provide the name and the number for the allocate descriptor.
- Parameters:
name – Allocate decriptor name.
number – Number of descriptor to be allocated.
-
DMA_ALLOCATE_LINK_DESCRIPTORS(name, number)
DMA link descriptor table allocate macro To simplify user interface, this macro will help allocate descriptor memory, user just need to provide the name and the number for the allocate descriptor.
- Parameters:
name – Allocate decriptor name.
number – Number of descriptor to be allocated.
-
DMA_ALLOCATE_LINK_DESCRIPTORS_AT_NONCACHEABLE(name, number)
DMA link descriptor table allocate macro at noncacheable section To simplify user interface, this macro will help allocate descriptor memory at noncacheable section, user just need to provide the name and the number for the allocate descriptor.
- Parameters:
name – Allocate decriptor name.
number – Number of descriptor to be allocated.
-
DMA_ALLOCATE_DATA_TRANSFER_BUFFER(name, width)
DMA transfer buffer address need to align with the transfer width.
-
DMA_CHANNEL_GROUP(channel)
-
DMA_CHANNEL_INDEX(base, channel)
-
DMA_COMMON_REG_GET(base, channel, reg)
DMA linked descriptor address algin size.
-
DMA_COMMON_CONST_REG_GET(base, channel, reg)
-
DMA_COMMON_REG_SET(base, channel, reg, value)
-
DMA_DESCRIPTOR_END_ADDRESS(start, inc, bytes, width)
DMA descriptor end address calculate.
- Parameters:
start – start address
inc – address interleave size
bytes – transfer bytes
width – transfer width
-
DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes)
-
struct _dma_descriptor
- #include <fsl_dma.h>
DMA descriptor structure.
Public Members
-
volatile uint32_t xfercfg
Transfer configuration
-
void *srcEndAddr
Last source address of DMA transfer
-
void *dstEndAddr
Last destination address of DMA transfer
-
void *linkToNextDesc
Address of next DMA descriptor in chain
-
volatile uint32_t xfercfg
-
struct _dma_xfercfg
- #include <fsl_dma.h>
DMA transfer configuration.
Public Members
-
bool valid
Descriptor is ready to transfer
-
bool reload
Reload channel configuration register after current descriptor is exhausted
-
bool swtrig
Perform software trigger. Transfer if fired when ‘valid’ is set
-
bool clrtrig
Clear trigger
-
bool intA
Raises IRQ when transfer is done and set IRQA status register flag
-
bool intB
Raises IRQ when transfer is done and set IRQB status register flag
-
uint8_t byteWidth
Byte width of data to transfer
-
uint8_t srcInc
Increment source address by ‘srcInc’ x ‘byteWidth’
-
uint8_t dstInc
Increment destination address by ‘dstInc’ x ‘byteWidth’
-
uint16_t transferCount
Number of transfers
-
bool valid
-
struct _dma_channel_trigger
- #include <fsl_dma.h>
DMA channel trigger.
Public Members
-
dma_trigger_type_t type
Select hardware trigger as edge triggered or level triggered.
-
dma_trigger_burst_t burst
Select whether hardware triggers cause a single or burst transfer.
-
dma_burst_wrap_t wrap
Select wrap type, source wrap or dest wrap, or both.
-
dma_trigger_type_t type
-
struct _dma_channel_config
- #include <fsl_dma.h>
DMA channel trigger.
Public Members
-
void *srcStartAddr
Source data address
-
void *dstStartAddr
Destination data address
-
void *nextDesc
Chain custom descriptor
-
uint32_t xferCfg
channel transfer configurations
-
dma_channel_trigger_t *trigger
DMA trigger type
-
bool isPeriph
select the request type
-
void *srcStartAddr
-
struct _dma_transfer_config
- #include <fsl_dma.h>
DMA transfer configuration.
Public Members
-
uint8_t *srcAddr
Source data address
-
uint8_t *dstAddr
Destination data address
-
uint8_t *nextDesc
Chain custom descriptor
-
dma_xfercfg_t xfercfg
Transfer options
-
bool isPeriph
DMA transfer is driven by peripheral
-
uint8_t *srcAddr
-
struct _dma_handle
- #include <fsl_dma.h>
DMA transfer handle structure.
Public Members
-
dma_callback callback
Callback function. Invoked when transfer of descriptor with interrupt flag finishes
-
void *userData
Callback function parameter
-
DMA_Type *base
DMA peripheral base address
-
uint8_t channel
DMA channel number
-
dma_callback callback
IAP: In Application Programming Driver
-
enum _flash_driver_version_constants
Flash driver version for ROM.
Values:
-
enumerator kFLASH_DriverVersionName
Flash driver version name.
-
enumerator kFLASH_DriverVersionMajor
Major flash driver version.
-
enumerator kFLASH_DriverVersionMinor
Minor flash driver version.
-
enumerator kFLASH_DriverVersionBugfix
Bugfix for flash driver version.
-
enumerator kFLASH_DriverVersionName
-
MAKE_VERSION(major, minor, bugfix)
Constructs the version number for drivers.
-
FSL_FLASH_DRIVER_VERSION
Flash driver version for SDK.
Version 2.1.5.
-
enum _flash_status
Flash driver status codes.
Values:
-
enumerator kStatus_FLASH_Success
API is executed successfully
-
enumerator kStatus_FLASH_InvalidArgument
Invalid argument
-
enumerator kStatus_FLASH_SizeError
Error size
-
enumerator kStatus_FLASH_AlignmentError
Parameter is not aligned with the specified baseline
-
enumerator kStatus_FLASH_AddressError
Address is out of range
-
enumerator kStatus_FLASH_AccessError
Invalid instruction codes and out-of bound addresses
-
enumerator kStatus_FLASH_ProtectionViolation
The program/erase operation is requested to execute on protected areas
-
enumerator kStatus_FLASH_CommandFailure
Run-time error during command execution.
-
enumerator kStatus_FLASH_UnknownProperty
Unknown property.
-
enumerator kStatus_FLASH_EraseKeyError
API erase key is invalid.
-
enumerator kStatus_FLASH_RegionExecuteOnly
The current region is execute-only.
-
enumerator kStatus_FLASH_ExecuteInRamFunctionNotReady
Execute-in-RAM function is not available.
-
enumerator kStatus_FLASH_CommandNotSupported
Flash API is not supported.
-
enumerator kStatus_FLASH_ReadOnlyProperty
The flash property is read-only.
-
enumerator kStatus_FLASH_InvalidPropertyValue
The flash property value is out of range.
-
enumerator kStatus_FLASH_InvalidSpeculationOption
The option of flash prefetch speculation is invalid.
-
enumerator kStatus_FLASH_EccError
A correctable or uncorrectable error during command execution.
-
enumerator kStatus_FLASH_CompareError
Destination and source memory contents do not match.
-
enumerator kStatus_FLASH_RegulationLoss
A loss of regulation during read.
-
enumerator kStatus_FLASH_InvalidWaitStateCycles
The wait state cycle set to r/w mode is invalid.
-
enumerator kStatus_FLASH_OutOfDateCfpaPage
CFPA page version is out of date.
-
enumerator kStatus_FLASH_BlankIfrPageData
Blank page cannnot be read.
-
enumerator kStatus_FLASH_EncryptedRegionsEraseNotDoneAtOnce
Encrypted flash subregions are not erased at once.
-
enumerator kStatus_FLASH_ProgramVerificationNotAllowed
Program verification is not allowed when the encryption is enabled.
-
enumerator kStatus_FLASH_HashCheckError
Hash check of page data is failed.
-
enumerator kStatus_FLASH_SealedFfrRegion
The FFR region is sealed.
-
enumerator kStatus_FLASH_FfrRegionWriteBroken
The FFR Spec region is not allowed to be written discontinuously.
-
enumerator kStatus_FLASH_NmpaAccessNotAllowed
The NMPA region is not allowed to be read/written/erased.
-
enumerator kStatus_FLASH_CmpaCfgDirectEraseNotAllowed
The CMPA Cfg region is not allowed to be erased directly.
-
enumerator kStatus_FLASH_FfrBankIsLocked
The FFR bank region is locked.
-
enumerator kStatus_FLASH_EraseFrequencyError
Core frequency is over 100MHZ.
-
enumerator kStatus_FLASH_ProgramFrequencyError
Core frequency is over 100MHZ.
-
enumerator kStatus_FLASH_Success
-
kStatusGroupGeneric
Flash driver status group.
-
kStatusGroupFlashDriver
-
MAKE_STATUS(group, code)
Constructs a status code value from a group and a code number.
-
enum _flash_driver_api_keys
Enumeration for Flash driver API keys.
Note
The resulting value is built with a byte order such that the string being readable in expected order when viewed in a hex editor, if the value is treated as a 32-bit little endian value.
Values:
-
enumerator kFLASH_ApiEraseKey
Key value used to validate all flash erase APIs.
-
enumerator kFLASH_ApiEraseKey
-
FOUR_CHAR_CODE(a, b, c, d)
Constructs the four character code for the Flash driver API key.
-
status_t FLASH_Init(flash_config_t *config)
Initializes the global flash properties structure members.
This function checks and initializes the Flash module for the other Flash APIs.
- Parameters:
config – Pointer to the storage for the driver runtime state.
- Return values:
kStatus_FLASH_Success – API was executed successfully.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
kStatus_FLASH_CommandFailure – Run-time error during the command execution.
kStatus_FLASH_CommandNotSupported – Flash API is not supported.
kStatus_FLASH_EccError – A correctable or uncorrectable error during command execution.
-
status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)
Erases the flash sectors encompassed by parameters passed into function.
This function erases the appropriate number of flash sectors based on the desired start address and length.
- Parameters:
config – The pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be erased. The start address need to be 512bytes-aligned.
lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be 512bytes-aligned.
key – The value used to validate all flash erase APIs.
- Return values:
kStatus_FLASH_Success – API was executed successfully; the appropriate number of flash sectors based on the desired start address and length were erased successfully.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
kStatus_FLASH_AlignmentError – The parameter is not aligned with the specified baseline.
kStatus_FLASH_AddressError – The address is out of range.
kStatus_FLASH_EraseKeyError – The API erase key is invalid.
kStatus_FLASH_CommandFailure – Run-time error during the command execution.
kStatus_FLASH_CommandNotSupported – Flash API is not supported.
kStatus_FLASH_EccError – A correctable or uncorrectable error during command execution.
-
status_t FLASH_Program(flash_config_t *config, uint32_t start, const uint8_t *src, uint32_t lengthInBytes)
Programs flash with data at locations passed in through parameters.
This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be programmed. Must be 512bytes-aligned.
src – A pointer to the source buffer of data that is to be programmed into the flash.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be 512bytes-aligned.
- Return values:
kStatus_FLASH_Success – API was executed successfully; the desired data were programed successfully into flash based on desired start address and length.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
kStatus_FLASH_AlignmentError – Parameter is not aligned with the specified baseline.
kStatus_FLASH_AddressError – Address is out of range.
kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FLASH_CommandFailure – Run-time error during the command execution.
kStatus_FLASH_CommandFailure – Run-time error during the command execution.
kStatus_FLASH_CommandNotSupported – Flash API is not supported.
kStatus_FLASH_EccError – A correctable or uncorrectable error during command execution.
-
status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes)
Verifies an erasure of the desired flash area at a specified margin level.
This function checks the appropriate number of flash sectors based on the desired start address and length to check whether the flash is erased to the specified read margin level.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be verified. The start address need to be 512bytes-aligned.
lengthInBytes – The length, given in bytes (not words or long-words), to be verified. Must be 512bytes-aligned.
- Return values:
kStatus_FLASH_Success – API was executed successfully; the specified FLASH region has been erased.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
kStatus_FLASH_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FLASH_AddressError – Address is out of range.
kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FLASH_CommandFailure – Run-time error during the command execution.
kStatus_FLASH_CommandFailure – Run-time error during the command execution.
kStatus_FLASH_CommandNotSupported – Flash API is not supported.
kStatus_FLASH_EccError – A correctable or uncorrectable error during command execution.
-
status_t FLASH_VerifyProgram(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, uint32_t *failedAddress, uint32_t *failedData)
Verifies programming of the desired flash area at a specified margin level.
This function verifies the data programed in the flash memory using the Flash Program Check Command and compares it to the expected data for a given flash area as determined by the start address and length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be verified. need be 512bytes-aligned.
lengthInBytes – The length, given in bytes (not words or long-words), to be verified. need be 512bytes-aligned.
expectedData – A pointer to the expected data that is to be verified against.
failedAddress – A pointer to the returned failing address.
failedData – A pointer to the returned failing data. Some derivatives do not include failed data as part of the FCCOBx registers. In this case, zeros are returned upon failure.
- Return values:
kStatus_FLASH_Success – API was executed successfully; the desired data have been successfully programed into specified FLASH region.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
kStatus_FLASH_AlignmentError – Parameter is not aligned with specified baseline.
kStatus_FLASH_AddressError – Address is out of range.
kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FLASH_CommandFailure – Run-time error during the command execution.
kStatus_FLASH_CommandFailure – Run-time error during the command execution.
kStatus_FLASH_CommandNotSupported – Flash API is not supported.
kStatus_FLASH_EccError – A correctable or uncorrectable error during command execution.
-
status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t *value)
Returns the desired flash property.
- Parameters:
config – A pointer to the storage for the driver runtime state.
whichProperty – The desired property from the list of properties in enum flash_property_tag_t
value – A pointer to the value returned for the desired flash property.
- Return values:
kStatus_FLASH_Success – API was executed successfully; the flash property was stored to value.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
kStatus_FLASH_UnknownProperty – An unknown property tag.
-
void BOOTLOADER_UserEntry(void *arg)
Run the Bootloader API to force into the ISP mode base on the user arg.
- Parameters:
arg – Indicates API prototype fields definition. Refer to the above user_app_boot_invoke_option_t structure
-
FSL_FEATURE_FLASH_IP_IS_C040HD_ATFC
Flash IP Type.
-
FSL_FEATURE_FLASH_IP_IS_C040HD_FC
-
enum _flash_property_tag
Enumeration for various flash properties.
Values:
-
enumerator kFLASH_PropertyPflashSectorSize
Pflash sector size property.
-
enumerator kFLASH_PropertyPflashTotalSize
Pflash total size property.
-
enumerator kFLASH_PropertyPflashBlockSize
Pflash block size property.
-
enumerator kFLASH_PropertyPflashBlockCount
Pflash block count property.
-
enumerator kFLASH_PropertyPflashBlockBaseAddr
Pflash block base address property.
-
enumerator kFLASH_PropertyPflashPageSize
Pflash page size property.
-
enumerator kFLASH_PropertyPflashSystemFreq
System Frequency System Frequency.
-
enumerator kFLASH_PropertyFfrSectorSize
FFR sector size property.
-
enumerator kFLASH_PropertyFfrTotalSize
FFR total size property.
-
enumerator kFLASH_PropertyFfrBlockBaseAddr
FFR block base address property.
-
enumerator kFLASH_PropertyFfrPageSize
FFR page size property.
-
enumerator kFLASH_PropertyPflashSectorSize
-
enum _flash_max_erase_page_value
Enumeration for flash max pages to erase.
Values:
-
enumerator kFLASH_MaxPagesToErase
The max value in pages to erase.
-
enumerator kFLASH_MaxPagesToErase
-
enum _flash_alignment_property
Enumeration for flash alignment property.
Values:
-
enumerator kFLASH_AlignementUnitVerifyErase
The alignment unit in bytes used for verify erase operation.
-
enumerator kFLASH_AlignementUnitProgram
The alignment unit in bytes used for program operation.
-
enumerator kFLASH_AlignementUnitSingleWordRead
The alignment unit in bytes used for verify program operation. The alignment unit in bytes used for SingleWordRead command.
-
enumerator kFLASH_AlignementUnitVerifyErase
-
enum _flash_read_ecc_option
Enumeration for flash read ecc option.
Values:
-
enumerator kFLASH_ReadWithEccOn
-
enumerator kFLASH_ReadWithEccOff
ECC is on
-
enumerator kFLASH_ReadWithEccOn
-
enum _flash_freq_tag
Values:
-
enumerator kSysToFlashFreq_lowInMHz
-
enumerator kSysToFlashFreq_defaultInMHz
-
enumerator kSysToFlashFreq_lowInMHz
-
enum _flash_read_margin_option
Enumeration for flash read margin option.
Values:
-
enumerator kFLASH_ReadMarginNormal
Normal read
-
enumerator kFLASH_ReadMarginVsProgram
Margin vs. program
-
enumerator kFLASH_ReadMarginVsErase
Margin vs. erase
-
enumerator kFLASH_ReadMarginIllegalBitCombination
Illegal bit combination
-
enumerator kFLASH_ReadMarginNormal
-
enum _flash_read_dmacc_option
Enumeration for flash read dmacc option.
Values:
-
enumerator kFLASH_ReadDmaccDisabled
Memory word
-
enumerator kFLASH_ReadDmaccEnabled
DMACC word
-
enumerator kFLASH_ReadDmaccDisabled
-
enum _flash_ramp_control_option
Enumeration for flash ramp control option.
Values:
-
enumerator kFLASH_RampControlDivisionFactorReserved
Reserved
-
enumerator kFLASH_RampControlDivisionFactor256
clk48mhz / 256 = 187.5KHz
-
enumerator kFLASH_RampControlDivisionFactor128
clk48mhz / 128 = 375KHz
-
enumerator kFLASH_RampControlDivisionFactor64
clk48mhz / 64 = 750KHz
-
enumerator kFLASH_RampControlDivisionFactorReserved
-
typedef enum _flash_property_tag flash_property_tag_t
Enumeration for various flash properties.
-
typedef struct _flash_ecc_log flash_ecc_log_t
Flash ECC log info.
-
typedef struct _flash_mode_config flash_mode_config_t
Flash controller paramter config.
-
typedef struct _flash_ffr_config flash_ffr_config_t
Flash controller paramter config.
-
typedef struct _flash_config flash_config_t
Flash driver state information.
An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.
-
status_t FLASH_Read(flash_config_t *config, uint32_t start, uint8_t *dest, uint32_t lengthInBytes)
Reads flash at locations passed in through parameters.
This function read the flash memory from a given flash area as determined by the start address and the length.
- Parameters:
config – A pointer to the storage for the driver runtime state.
start – The start address of the desired flash memory to be read.
dest – A pointer to the dest buffer of data that is to be read from the flash.
lengthInBytes – The length, given in bytes (not words or long-words), to be read.
- Return values:
kStatus_FLASH_Success – API was executed successfully.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
kStatus_FLASH_AlignmentError – Parameter is not aligned with the specified baseline.
kStatus_FLASH_AddressError – Address is out of range.
kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds addresses.
kStatus_FLASH_CommandFailure – Run-time error during the command execution.
kStatus_FLASH_CommandFailure – Run-time error during the command execution.
kStatus_FLASH_CommandNotSupported – Flash API is not supported.
kStatus_FLASH_EccError – A correctable or uncorrectable error during command execution.
-
struct _flash_ecc_log
- #include <fsl_iap.h>
Flash ECC log info.
-
struct _flash_mode_config
- #include <fsl_iap.h>
Flash controller paramter config.
-
struct _flash_ffr_config
- #include <fsl_iap.h>
Flash controller paramter config.
-
struct _flash_config
- #include <fsl_iap.h>
Flash driver state information.
An instance of this structure is allocated by the user of the flash driver and passed into each of the driver APIs.
Public Members
-
uint32_t PFlashBlockBase
A base address of the first PFlash block
-
uint32_t PFlashTotalSize
The size of the combined PFlash block.
-
uint32_t PFlashBlockCount
A number of PFlash blocks.
-
uint32_t PFlashPageSize
The size in bytes of a page of PFlash.
-
uint32_t PFlashSectorSize
The size in bytes of a sector of PFlash.
-
uint32_t PFlashBlockBase
-
struct user_app_boot_invoke_option_t
- #include <fsl_iap.h>
-
struct readSingleWord
-
struct setWriteMode
-
struct setReadMode
-
union option
-
struct B
IAP_FFR Driver
-
status_t FFR_Init(flash_config_t *config)
Initializes the global FFR properties structure members.
- Parameters:
config – A pointer to the storage for the driver runtime state.
- Return values:
kStatus_FLASH_Success – API was executed successfully.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
-
status_t FFR_Lock_All(flash_config_t *config)
Enable firewall for all flash banks.
CFPA, CMPA, and NMPA flash areas region will be locked, After this function executed; Unless the board is reset again.
- Parameters:
config – A pointer to the storage for the driver runtime state.
- Return values:
kStatus_FLASH_Success – An invalid argument is provided.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
-
status_t FFR_InfieldPageWrite(flash_config_t *config, uint8_t *page_data, uint32_t valid_len)
APIs to access CFPA pages.
This routine will erase CFPA and program the CFPA page with passed data.
- Parameters:
config – A pointer to the storage for the driver runtime state.
page_data – A pointer to the source buffer of data that is to be programmed into the CFPA.
valid_len – The length, given in bytes, to be programmed.
- Return values:
kStatus_FLASH_Success – The desire page-data were programed successfully into CFPA.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FLASH_FfrBankIsLocked – The CFPA was locked.
kStatus_FLASH_OutOfDateCfpaPage – It is not newest CFPA page.
-
status_t FFR_GetCustomerInfieldData(flash_config_t *config, uint8_t *pData, uint32_t offset, uint32_t len)
APIs to access CFPA pages.
Generic read function, used by customer to read data stored in ‘Customer In-field Page’.
- Parameters:
config – A pointer to the storage for the driver runtime state.
pData – A pointer to the dest buffer of data that is to be read from ‘Customer In-field Page’.
offset – An offset from the ‘Customer In-field Page’ start address.
len – The length, given in bytes, to be read.
- Return values:
kStatus_FLASH_Success – Get data from ‘Customer In-field Page’.
kStatus_FLASH_InvalidArgument – An invalid argument is provided.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FLASH_CommandFailure – access error.
-
status_t FFR_CustFactoryPageWrite(flash_config_t *config, uint8_t *page_data, bool seal_part)
APIs to access CMPA pages.
This routine will erase “customer factory page” and program the page with passed data. If ‘seal_part’ parameter is TRUE then the routine will compute SHA256 hash of the page contents and then programs the pages. 1.During development customer code uses this API with ‘seal_part’ set to FALSE. 2.During manufacturing this parameter should be set to TRUE to seal the part from further modifications 3.This routine checks if the page is sealed or not. A page is said to be sealed if the SHA256 value in the page has non-zero value. On boot ROM locks the firewall for the region if hash is programmed anyways. So, write/erase commands will fail eventually.
- Parameters:
config – A pointer to the storage for the driver runtime state.
page_data – A pointer to the source buffer of data that is to be programmed into the “customer factory page”.
seal_part – Set fasle for During development customer code.
- Return values:
kStatus_FLASH_Success – The desire page-data were programed successfully into CMPA.
kStatus_FLASH_InvalidArgument – Parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FLASH_CommandFailure – access error.
-
status_t FFR_GetCustomerData(flash_config_t *config, uint8_t *pData, uint32_t offset, uint32_t len)
APIs to access CMPA page.
Read data stored in ‘Customer Factory CFG Page’.
- Parameters:
config – A pointer to the storage for the driver runtime state.
pData – A pointer to the dest buffer of data that is to be read from the Customer Factory CFG Page.
offset – Address offset relative to the CMPA area.
len – The length, given in bytes to be read.
- Return values:
kStatus_FLASH_Success – Get data from ‘Customer Factory CFG Page’.
kStatus_FLASH_InvalidArgument – Parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FLASH_CommandFailure – access error.
-
status_t FFR_GetUUID(flash_config_t *config, uint8_t *uuid)
APIs to access CMPA page.
1.SW should use this API routine to get the UUID of the chip. 2.Calling routine should pass a pointer to buffer which can hold 128-bit value.
-
status_t FFR_KeystoreWrite(flash_config_t *config, ffr_key_store_t *pKeyStore)
This routine writes the 3 pages allocated for Key store data,.
1.Used during manufacturing. Should write pages when ‘customer factory page’ is not in sealed state. 2.Optional routines to set individual data members (activation code, key codes etc) to construct the key store structure in RAM before committing it to IFR/FFR.
- Parameters:
config – A pointer to the storage for the driver runtime state.
pKeyStore – A Pointer to the 3 pages allocated for Key store data. that will be written to ‘customer factory page’.
- Return values:
kStatus_FLASH_Success – The key were programed successfully into FFR.
kStatus_FLASH_InvalidArgument – Parameter is not aligned with the specified baseline.
kStatus_FTFx_AddressError – Address is out of range.
kStatus_FLASH_CommandFailure – access error.
-
status_t FFR_KeystoreGetAC(flash_config_t *config, uint8_t *pActivationCode)
Get/Read Key store code routines.
Calling code should pass buffer pointer which can hold activation code 1192 bytes.
Check if flash aperture is small or regular and read the data appropriately.
-
status_t FFR_KeystoreGetKC(flash_config_t *config, uint8_t *pKeyCode, ffr_key_type_t keyIndex)
Get/Read Key store code routines.
Calling code should pass buffer pointer which can hold key code 52 bytes.
Check if flash aperture is small or regular and read the data appropriately.
keyIndex specifies which key code is read.
-
FSL_FLASH_IFR_DRIVER_VERSION
Flash IFR driver version for SDK.
Version 2.1.0.
-
enum _flash_ffr_page_offset
flash ffr page offset.
Values:
-
enumerator kFfrPageOffset_CFPA
Customer In-Field programmed area
-
enumerator kFfrPageOffset_CFPA_Scratch
CFPA Scratch page
-
enumerator kFfrPageOffset_CFPA_Cfg
CFPA Configuration area (Ping page)
-
enumerator kFfrPageOffset_CFPA_CfgPong
Same as CFPA page (Pong page)
-
enumerator kFfrPageOffset_CMPA
Customer Manufacturing programmed area
-
enumerator kFfrPageOffset_CMPA_Cfg
CMPA Configuration area (Part of CMPA)
-
enumerator kFfrPageOffset_CMPA_Key
Key Store area (Part of CMPA)
-
enumerator kFfrPageOffset_NMPA
NXP Manufacturing programmed area
-
enumerator kFfrPageOffset_NMPA_Romcp
ROM patch area (Part of NMPA)
-
enumerator kFfrPageOffset_NMPA_Repair
Repair area (Part of NMPA)
-
enumerator kFfrPageOffset_NMPA_Cfg
NMPA configuration area (Part of NMPA)
-
enumerator kFfrPageOffset_NMPA_End
Reserved (Part of NMPA)
-
enumerator kFfrPageOffset_CFPA
-
enum _flash_ffr_page_num
flash ffr page number.
Values:
-
enumerator kFfrPageNum_CFPA
Customer In-Field programmed area
-
enumerator kFfrPageNum_CMPA
Customer Manufacturing programmed area
-
enumerator kFfrPageNum_NMPA
NXP Manufacturing programmed area
-
enumerator kFfrPageNum_CMPA_Cfg
-
enumerator kFfrPageNum_CMPA_Key
-
enumerator kFfrPageNum_NMPA_Romcp
-
enumerator kFfrPageNum_SpecArea
-
enumerator kFfrPageNum_Total
-
enumerator kFfrPageNum_CFPA
-
enum _flash_ffr_block_size
Values:
-
enumerator kFfrBlockSize_Key
-
enumerator kFfrBlockSize_ActivationCode
-
enumerator kFfrBlockSize_Key
-
enum _cfpa_cfg_cmpa_prog_process
Values:
-
enumerator kFfrCmpaProgProcess_Pre
-
enumerator kFfrCmpaProgProcess_Post
-
enumerator kFfrCmpaProgProcess_Pre
-
enum _ffr_key_type
Values:
-
enumerator kFFR_KeyTypeSbkek
-
enumerator kFFR_KeyTypeUser
-
enumerator kFFR_KeyTypeUds
-
enumerator kFFR_KeyTypePrinceRegion0
-
enumerator kFFR_KeyTypePrinceRegion1
-
enumerator kFFR_KeyTypePrinceRegion2
-
enumerator kFFR_KeyTypeSbkek
-
enum _ffr_bank_type
Values:
-
enumerator kFFR_BankTypeBank0_NMPA
-
enumerator kFFR_BankTypeBank1_CMPA
-
enumerator kFFR_BankTypeBank2_CFPA
-
enumerator kFFR_BankTypeBank0_NMPA
-
typedef enum _cfpa_cfg_cmpa_prog_process cmpa_prog_process_t
-
typedef struct _cfpa_cfg_iv_code cfpa_cfg_iv_code_t
-
typedef struct _cfpa_cfg_info cfpa_cfg_info_t
-
typedef struct _cmpa_cfg_info cmpa_cfg_info_t
-
typedef struct _cmpa_key_store_header cmpa_key_store_header_t
-
typedef struct _nmpa_cfg_info nmpa_cfg_info_t
-
typedef struct _ffr_key_store ffr_key_store_t
-
typedef enum _ffr_key_type ffr_key_type_t
-
typedef enum _ffr_bank_type ffr_bank_type_t
-
ALIGN_DOWN(x, a)
Alignment(down) utility.
-
ALIGN_UP(x, a)
Alignment(up) utility.
-
FLASH_FFR_MAX_PAGE_SIZE
-
FLASH_FFR_HASH_DIGEST_SIZE
-
FLASH_FFR_IV_CODE_SIZE
-
FFR_BOOTCFG_BOOTSPEED_MASK
-
FFR_BOOTCFG_BOOTSPEED_SHIFT
-
FFR_BOOTCFG_BOOTSPEED_48MHZ
-
FFR_BOOTCFG_BOOTSPEED_96MHZ
-
FFR_USBID_VENDORID_MASK
-
FFR_USBID_VENDORID_SHIFT
-
FFR_USBID_PRODUCTID_MASK
-
FFR_USBID_PRODUCTID_SHIFT
-
FFR_SYSTEM_SPEED_CODE_MASK
-
FFR_SYSTEM_SPEED_CODE_SHIFT
-
FFR_SYSTEM_SPEED_CODE_FRO12MHZ_12MHZ
-
FFR_SYSTEM_SPEED_CODE_FROHF96MHZ_24MHZ
-
FFR_SYSTEM_SPEED_CODE_FROHF96MHZ_48MHZ
-
FFR_SYSTEM_SPEED_CODE_FROHF96MHZ_96MHZ
-
FFR_PERIPHERALCFG_PERI_MASK
-
FFR_PERIPHERALCFG_PERI_SHIFT
-
FFR_PERIPHERALCFG_COREEN_MASK
-
FFR_PERIPHERALCFG_COREEN_SHIFT
-
struct _cfpa_cfg_iv_code
- #include <fsl_iap_ffr.h>
-
struct _cfpa_cfg_info
- #include <fsl_iap_ffr.h>
Public Members
-
uint32_t header
[0x000-0x003]
-
uint32_t version
[0x004-0x007
-
uint32_t secureFwVersion
[0x008-0x00b
-
uint32_t nsFwVersion
[0x00c-0x00f]
-
uint32_t imageKeyRevoke
[0x010-0x013]
-
uint8_t reserved0[4]
[0x014-0x017]
-
uint32_t rotkhRevoke
[0x018-0x01b]
-
uint32_t vendorUsage
[0x01c-0x01f]
-
uint32_t dcfgNsPin
[0x020-0x013]
-
uint32_t dcfgNsDflt
[0x024-0x017]
-
uint32_t enableFaMode
[0x028-0x02b]
-
uint8_t reserved1[4]
[0x02c-0x02f]
-
cfpa_cfg_iv_code_t ivCodePrinceRegion[3]
[0x030-0x0d7]
-
uint8_t reserved2[264]
[0x0d8-0x1df]
-
uint8_t sha256[32]
[0x1e0-0x1ff]
-
uint32_t header
-
struct _cmpa_cfg_info
- #include <fsl_iap_ffr.h>
Public Members
-
uint32_t bootCfg
[0x000-0x003]
-
uint32_t spiFlashCfg
[0x004-0x007]
-
struct _cmpa_cfg_info usbId
[0x008-0x00b]
-
uint32_t sdioCfg
[0x00c-0x00f]
-
uint32_t dcfgPin
[0x010-0x013]
-
uint32_t dcfgDflt
[0x014-0x017]
-
uint32_t dapVendorUsage
[0x018-0x01b]
-
uint32_t secureBootCfg
[0x01c-0x01f]
-
uint32_t princeBaseAddr
[0x020-0x023]
-
uint32_t princeSr[3]
[0x024-0x02f]
-
uint8_t reserved0[32]
[0x030-0x04f]
-
uint32_t rotkh[8]
[0x050-0x06f]
-
uint8_t reserved1[368]
[0x070-0x1df]
-
uint8_t sha256[32]
[0x1e0-0x1ff]
-
uint32_t bootCfg
-
struct _cmpa_key_store_header
- #include <fsl_iap_ffr.h>
-
struct _nmpa_cfg_info
- #include <fsl_iap_ffr.h>
Public Members
-
uint16_t fro32kCfg
[0x000-0x001]
-
uint8_t reserved0[6]
[0x002-0x007]
-
uint8_t sysCfg
[0x008-0x008]
-
uint8_t reserved1[7]
[0x009-0x00f]
-
struct _nmpa_cfg_info GpoInitData[3]
[0x010-0x03f]
-
uint32_t GpoDataChecksum[4]
[0x040-0x04f]
-
uint32_t finalTestBatchId[4]
[0x050-0x05f]
-
uint32_t deviceType
[0x060-0x063]
-
uint32_t finalTestProgVersion
[0x064-0x067]
-
uint32_t finalTestDate
[0x068-0x06b]
-
uint32_t finalTestTime
[0x06c-0x06f]
-
uint32_t uuid[4]
[0x070-0x07f]
-
uint8_t reserved2[32]
[0x080-0x09f]
-
uint32_t peripheralCfg
[0x0a0-0x0a3]
-
uint32_t ramSizeCfg
[0x0a4-0x0a7]
-
uint32_t flashSizeCfg
[0x0a8-0x0ab]
-
uint8_t reserved3[36]
[0x0ac-0x0cf]
-
uint8_t fro1mCfg
[0x0d0-0x0d0]
-
uint8_t reserved4[15]
[0x0d1-0x0df]
-
uint32_t dcdc[4]
[0x0e0-0x0ef]
-
uint32_t bod
[0x0f0-0x0f3]
-
uint8_t reserved5[12]
[0x0f4-0x0ff]
-
uint8_t calcHashReserved[192]
[0x100-0x1bf]
-
uint8_t sha256[32]
[0x1c0-0x1df]
-
uint32_t ecidBackup[4]
[0x1e0-0x1ef]
-
uint32_t pageChecksum[4]
[0x1f0-0x1ff]
-
uint16_t fro32kCfg
-
struct _ffr_key_store
- #include <fsl_iap_ffr.h>
-
struct usbId
-
struct GpoInitData
FLEXCOMM: FLEXCOMM Driver
FLEXCOMM Driver
-
FSL_FLEXCOMM_DRIVER_VERSION
FlexCOMM driver version 2.0.2.
-
enum FLEXCOMM_PERIPH_T
FLEXCOMM peripheral modes.
Values:
-
enumerator FLEXCOMM_PERIPH_NONE
No peripheral
-
enumerator FLEXCOMM_PERIPH_USART
USART peripheral
-
enumerator FLEXCOMM_PERIPH_SPI
SPI Peripheral
-
enumerator FLEXCOMM_PERIPH_I2C
I2C Peripheral
-
enumerator FLEXCOMM_PERIPH_I2S_TX
I2S TX Peripheral
-
enumerator FLEXCOMM_PERIPH_I2S_RX
I2S RX Peripheral
-
enumerator FLEXCOMM_PERIPH_NONE
-
typedef void (*flexcomm_irq_handler_t)(void *base, void *handle)
Typedef for interrupt handler.
-
IRQn_Type const kFlexcommIrqs[]
Array with IRQ number for each FLEXCOMM module.
-
uint32_t FLEXCOMM_GetInstance(void *base)
Returns instance number for FLEXCOMM module with given base address.
-
status_t FLEXCOMM_Init(void *base, FLEXCOMM_PERIPH_T periph)
Initializes FLEXCOMM and selects peripheral mode according to the second parameter.
-
void FLEXCOMM_SetIRQHandler(void *base, flexcomm_irq_handler_t handler, void *flexcommHandle)
Sets IRQ handler for given FLEXCOMM module. It is used by drivers register IRQ handler according to FLEXCOMM mode.
GINT: Group GPIO Input Interrupt Driver
-
FSL_GINT_DRIVER_VERSION
Driver version.
-
enum _gint_comb
GINT combine inputs type.
Values:
-
enumerator kGINT_CombineOr
A grouped interrupt is generated when any one of the enabled inputs is active
-
enumerator kGINT_CombineAnd
A grouped interrupt is generated when all enabled inputs are active
-
enumerator kGINT_CombineOr
-
enum _gint_trig
GINT trigger type.
Values:
-
enumerator kGINT_TrigEdge
Edge triggered based on polarity
-
enumerator kGINT_TrigLevel
Level triggered based on polarity
-
enumerator kGINT_TrigEdge
-
enum _gint_port
Values:
-
enumerator kGINT_Port0
-
enumerator kGINT_Port0
-
typedef enum _gint_comb gint_comb_t
GINT combine inputs type.
-
typedef enum _gint_trig gint_trig_t
GINT trigger type.
-
typedef enum _gint_port gint_port_t
-
typedef void (*gint_cb_t)(void)
GINT Callback function.
-
void GINT_Init(GINT_Type *base)
Initialize GINT peripheral.
This function initializes the GINT peripheral and enables the clock.
- Parameters:
base – Base address of the GINT peripheral.
- Return values:
None. –
-
void GINT_SetCtrl(GINT_Type *base, gint_comb_t comb, gint_trig_t trig, gint_cb_t callback)
Setup GINT peripheral control parameters.
This function sets the control parameters of GINT peripheral.
- Parameters:
base – Base address of the GINT peripheral.
comb – Controls if the enabled inputs are logically ORed or ANDed for interrupt generation.
trig – Controls if the enabled inputs are level or edge sensitive based on polarity.
callback – This function is called when configured group interrupt is generated.
- Return values:
None. –
-
void GINT_GetCtrl(GINT_Type *base, gint_comb_t *comb, gint_trig_t *trig, gint_cb_t *callback)
Get GINT peripheral control parameters.
This function returns the control parameters of GINT peripheral.
- Parameters:
base – Base address of the GINT peripheral.
comb – Pointer to store combine input value.
trig – Pointer to store trigger value.
callback – Pointer to store callback function.
- Return values:
None. –
-
void GINT_ConfigPins(GINT_Type *base, gint_port_t port, uint32_t polarityMask, uint32_t enableMask)
Configure GINT peripheral pins.
This function enables and controls the polarity of enabled pin(s) of a given port.
- Parameters:
base – Base address of the GINT peripheral.
port – Port number.
polarityMask – Each bit position selects the polarity of the corresponding enabled pin. 0 = The pin is active LOW. 1 = The pin is active HIGH.
enableMask – Each bit position selects if the corresponding pin is enabled or not. 0 = The pin is disabled. 1 = The pin is enabled.
- Return values:
None. –
-
void GINT_GetConfigPins(GINT_Type *base, gint_port_t port, uint32_t *polarityMask, uint32_t *enableMask)
Get GINT peripheral pin configuration.
This function returns the pin configuration of a given port.
- Parameters:
base – Base address of the GINT peripheral.
port – Port number.
polarityMask – Pointer to store the polarity mask Each bit position indicates the polarity of the corresponding enabled pin. 0 = The pin is active LOW. 1 = The pin is active HIGH.
enableMask – Pointer to store the enable mask. Each bit position indicates if the corresponding pin is enabled or not. 0 = The pin is disabled. 1 = The pin is enabled.
- Return values:
None. –
-
void GINT_EnableCallback(GINT_Type *base)
Enable callback.
This function enables the interrupt for the selected GINT peripheral. Although the pin(s) are monitored as soon as they are enabled, the callback function is not enabled until this function is called.
- Parameters:
base – Base address of the GINT peripheral.
- Return values:
None. –
-
void GINT_DisableCallback(GINT_Type *base)
Disable callback.
This function disables the interrupt for the selected GINT peripheral. Although the pins are still being monitored but the callback function is not called.
- Parameters:
base – Base address of the peripheral.
- Return values:
None. –
-
static inline void GINT_ClrStatus(GINT_Type *base)
Clear GINT status.
This function clears the GINT status bit.
- Parameters:
base – Base address of the GINT peripheral.
- Return values:
None. –
-
static inline uint32_t GINT_GetStatus(GINT_Type *base)
Get GINT status.
This function returns the GINT status.
- Parameters:
base – Base address of the GINT peripheral.
- Return values:
status – = 0 No group interrupt request. = 1 Group interrupt request active.
-
void GINT_Deinit(GINT_Type *base)
Deinitialize GINT peripheral.
This function disables the GINT clock.
- Parameters:
base – Base address of the GINT peripheral.
- Return values:
None. –
Hashcrypt: The Cryptographic Accelerator
Hashcrypt Background HASH
-
void HASHCRYPT_SHA_SetCallback(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx, hashcrypt_callback_t callback, void *userData)
Initializes the HASHCRYPT handle for background hashing.
This function initializes the hash context for background hashing (Non-blocking) APIs. This is less typical interface to hash function, but can be used for parallel processing, when main CPU has something else to do. Example is digital signature RSASSA-PKCS1-V1_5-VERIFY((n,e),M,S) algorithm, where background hashing of M can be started, then CPU can compute S^e mod n (in parallel with background hashing) and once the digest becomes available, CPU can proceed to comparison of EM with EM’.
- Parameters:
base – HASHCRYPT peripheral base address.
ctx – [out] Hash context.
callback – Callback function.
userData – User data (to be passed as an argument to callback function, once callback is invoked from isr).
-
status_t HASHCRYPT_SHA_UpdateNonBlocking(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)
Create running hash on given data.
Configures the HASHCRYPT to compute new running hash as AHB master and returns immediately. HASHCRYPT AHB Master mode supports only aligned
input
address and can be called only once per continuous block of data. Every call to this function must be preceded with HASHCRYPT_SHA_Init() and finished with HASHCRYPT_SHA_Finish(). Once callback function is invoked by HASHCRYPT isr, it should set a flag for the main application to finalize the hashing (padding) and to read out the final digest by calling HASHCRYPT_SHA_Finish().- Parameters:
base – HASHCRYPT peripheral base address
ctx – Specifies callback. Last incomplete 512-bit block of the input is copied into clear buffer for padding.
input – 32-bit word aligned pointer to Input data.
inputSize – Size of input data in bytes (must be word aligned)
- Returns:
Status of the hash update operation.
Hashcrypt common functions
-
FSL_HASHCRYPT_DRIVER_VERSION
HASHCRYPT driver version. Version 2.2.16.
Current version: 2.2.16
Change log:
Version 2.0.0
Initial version
Version 2.0.1
Support loading AES key from unaligned address
Version 2.0.2
Support loading AES key from unaligned address for different compiler and core variants
Version 2.0.3
Remove SHA512 and AES ICB algorithm definitions
Version 2.0.4
Add SHA context switch support
Version 2.1.0
Update the register name and macro to align with new header.
Version 2.1.1
Fix MISRA C-2012.
Version 2.1.2
Support loading AES input data from unaligned address.
Version 2.1.3
Fix MISRA C-2012.
Version 2.1.4
Fix context switch cannot work when switching from AES.
Version 2.1.5
Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() to prevent possible optimization issue.
Version 2.2.0
Add AES-OFB and AES-CFB mixed IP/SW modes.
Version 2.2.1
Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() prevent compiler from reordering memory write when -O2 or higher is used.
Version 2.2.2
Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() to fix optimization issue
Version 2.2.3
Added check for size in hashcrypt_aes_one_block to prevent overflowing COUNT field in MEMCTRL register, if its bigger than COUNT field do a multiple runs.
Version 2.2.4
In all HASHCRYPT_AES_xx functions have been added setting CTRL_MODE bitfield to 0 after processing data, which decreases power consumption.
Version 2.2.5
Add data synchronization barrier and instruction synchronization barrier inside hashcrypt_sha_process_message_data() to fix optimization issue
Version 2.2.6
Add data synchronization barrier inside HASHCRYPT_SHA_Update() and hashcrypt_get_data() function to fix optimization issue on MDK and ARMGCC release targets
Version 2.2.7
Add data synchronization barrier inside HASHCRYPT_SHA_Update() to fix optimization issue on MCUX IDE release target
Version 2.2.8
Unify hashcrypt hashing behavior between aligned and unaligned input data
Version 2.2.9
Add handling of set ERROR bit in the STATUS register
Version 2.2.10
Fix missing error statement in hashcrypt_save_running_hash()
Version 2.2.11
Fix incorrect SHA-256 calculation for long messages with reload
Version 2.2.12
Fix hardfault issue on the Keil compiler due to unaligned memcpy() input on some optimization levels
Version 2.2.13
Added function hashcrypt_seed_prng() which loading random number into PRNG_SEED register before AES operation for SCA protection
Version 2.2.14
Modify function hashcrypt_get_data() to prevent issue with unaligned access
Version 2.2.15
Add wait on DIGEST BIT inside hashcrypt_sha_one_block() to fix issues with some optimization flags
Version 2.2.16
Add DSB instruction inside hashcrypt_sha_ldm_stm_16_words() to fix issues with some optimization flags
-
enum _hashcrypt_algo_t
Algorithm used for Hashcrypt operation.
Values:
-
enumerator kHASHCRYPT_Sha1
SHA_1
-
enumerator kHASHCRYPT_Sha256
SHA_256
-
enumerator kHASHCRYPT_Aes
AES
-
enumerator kHASHCRYPT_Sha1
-
typedef enum _hashcrypt_algo_t hashcrypt_algo_t
Algorithm used for Hashcrypt operation.
-
void HASHCRYPT_Init(HASHCRYPT_Type *base)
Enables clock and disables reset for HASHCRYPT peripheral.
Enable clock and disable reset for HASHCRYPT.
- Parameters:
base – HASHCRYPT base address
-
void HASHCRYPT_Deinit(HASHCRYPT_Type *base)
Disables clock for HASHCRYPT peripheral.
Disable clock and enable reset.
- Parameters:
base – HASHCRYPT base address
-
HASHCRYPT_MODE_SHA1
Algorithm definitions correspond with the values for Mode field in Control register !
-
HASHCRYPT_MODE_SHA256
-
HASHCRYPT_MODE_AES
Hashcrypt AES
-
enum _hashcrypt_aes_mode_t
AES mode.
Values:
-
enumerator kHASHCRYPT_AesEcb
AES ECB mode
-
enumerator kHASHCRYPT_AesCbc
AES CBC mode
-
enumerator kHASHCRYPT_AesCtr
AES CTR mode
-
enumerator kHASHCRYPT_AesEcb
-
enum _hashcrypt_aes_keysize_t
Size of AES key.
Values:
-
enumerator kHASHCRYPT_Aes128
AES 128 bit key
-
enumerator kHASHCRYPT_Aes192
AES 192 bit key
-
enumerator kHASHCRYPT_Aes256
AES 256 bit key
-
enumerator kHASHCRYPT_InvalidKey
AES invalid key
-
enumerator kHASHCRYPT_Aes128
-
enum _hashcrypt_key
HASHCRYPT key source selection.
Values:
-
enumerator kHASHCRYPT_UserKey
HASHCRYPT user key
-
enumerator kHASHCRYPT_SecretKey
HASHCRYPT secret key (dedicated hw bus from PUF)
-
enumerator kHASHCRYPT_UserKey
-
typedef enum _hashcrypt_aes_mode_t hashcrypt_aes_mode_t
AES mode.
-
typedef enum _hashcrypt_aes_keysize_t hashcrypt_aes_keysize_t
Size of AES key.
-
typedef enum _hashcrypt_key hashcrypt_key_t
HASHCRYPT key source selection.
-
typedef struct _hashcrypt_handle hashcrypt_handle_t
- struct _hashcrypt_handle __attribute__ ((aligned))
-
status_t HASHCRYPT_AES_SetKey(HASHCRYPT_Type *base, hashcrypt_handle_t *handle, const uint8_t *key, size_t keySize)
Set AES key to hashcrypt_handle_t struct and optionally to HASHCRYPT.
Sets the AES key for encryption/decryption with the hashcrypt_handle_t structure. The hashcrypt_handle_t input argument specifies key source.
- Parameters:
base – HASHCRYPT peripheral base address.
handle – Handle used for the request.
key – 0-mod-4 aligned pointer to AES key.
keySize – AES key size in bytes. Shall equal 16, 24 or 32.
- Returns:
status from set key operation
-
status_t HASHCRYPT_AES_EncryptEcb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle, const uint8_t *plaintext, uint8_t *ciphertext, size_t size)
Encrypts AES on one or multiple 128-bit block(s).
Encrypts AES. The source plaintext and destination ciphertext can overlap in system memory.
- Parameters:
base – HASHCRYPT peripheral base address
handle – Handle used for this request.
plaintext – Input plain text to encrypt
ciphertext – [out] Output cipher text
size – Size of input and output data in bytes. Must be multiple of 16 bytes.
- Returns:
Status from encrypt operation
-
status_t HASHCRYPT_AES_DecryptEcb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle, const uint8_t *ciphertext, uint8_t *plaintext, size_t size)
Decrypts AES on one or multiple 128-bit block(s).
Decrypts AES. The source ciphertext and destination plaintext can overlap in system memory.
- Parameters:
base – HASHCRYPT peripheral base address
handle – Handle used for this request.
ciphertext – Input plain text to encrypt
plaintext – [out] Output cipher text
size – Size of input and output data in bytes. Must be multiple of 16 bytes.
- Returns:
Status from decrypt operation
-
status_t HASHCRYPT_AES_EncryptCbc(HASHCRYPT_Type *base, hashcrypt_handle_t *handle, const uint8_t *plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[16])
Encrypts AES using CBC block mode.
- Parameters:
base – HASHCRYPT peripheral base address
handle – Handle used for this request.
plaintext – Input plain text to encrypt
ciphertext – [out] Output cipher text
size – Size of input and output data in bytes. Must be multiple of 16 bytes.
iv – Input initial vector to combine with the first input block.
- Returns:
Status from encrypt operation
-
status_t HASHCRYPT_AES_DecryptCbc(HASHCRYPT_Type *base, hashcrypt_handle_t *handle, const uint8_t *ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[16])
Decrypts AES using CBC block mode.
- Parameters:
base – HASHCRYPT peripheral base address
handle – Handle used for this request.
ciphertext – Input cipher text to decrypt
plaintext – [out] Output plain text
size – Size of input and output data in bytes. Must be multiple of 16 bytes.
iv – Input initial vector to combine with the first input block.
- Returns:
Status from decrypt operation
-
status_t HASHCRYPT_AES_CryptCtr(HASHCRYPT_Type *base, hashcrypt_handle_t *handle, const uint8_t *input, uint8_t *output, size_t size, uint8_t counter[16U], uint8_t counterlast[16U], size_t *szLeft)
Encrypts or decrypts AES using CTR block mode.
Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES cipher and same algorithm for encryption and decryption. The only difference between encryption and decryption is that, for encryption, the input argument is plain text and the output argument is cipher text. For decryption, the input argument is cipher text and the output argument is plain text.
- Parameters:
base – HASHCRYPT peripheral base address
handle – Handle used for this request.
input – Input data for CTR block mode
output – [out] Output data for CTR block mode
size – Size of input and output data in bytes
counter – [inout] Input counter (updates on return)
counterlast – [out] Output cipher of last counter, for chained CTR calls (statefull encryption). NULL can be passed if chained calls are not used.
szLeft – [out] Output number of bytes in left unused in counterlast block. NULL can be passed if chained calls are not used.
- Returns:
Status from encrypt operation
-
status_t HASHCRYPT_AES_CryptOfb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle, const uint8_t *input, uint8_t *output, size_t size, const uint8_t iv[16U])
Encrypts or decrypts AES using OFB block mode.
Encrypts or decrypts AES using OFB block mode. AES OFB mode uses only forward AES cipher and same algorithm for encryption and decryption. The only difference between encryption and decryption is that, for encryption, the input argument is plain text and the output argument is cipher text. For decryption, the input argument is cipher text and the output argument is plain text.
- Parameters:
base – HASHCRYPT peripheral base address
handle – Handle used for this request.
input – Input data for OFB block mode
output – [out] Output data for OFB block mode
size – Size of input and output data in bytes
iv – Input initial vector to combine with the first input block.
- Returns:
Status from encrypt operation
-
status_t HASHCRYPT_AES_EncryptCfb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle, const uint8_t *plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[16])
Encrypts AES using CFB block mode.
- Parameters:
base – HASHCRYPT peripheral base address
handle – Handle used for this request.
plaintext – Input plain text to encrypt
ciphertext – [out] Output cipher text
size – Size of input and output data in bytes. Must be multiple of 16 bytes.
iv – Input initial vector to combine with the first input block.
- Returns:
Status from encrypt operation
-
status_t HASHCRYPT_AES_DecryptCfb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle, const uint8_t *ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[16])
Decrypts AES using CFB block mode.
- Parameters:
base – HASHCRYPT peripheral base address
handle – Handle used for this request.
ciphertext – Input cipher text to decrypt
plaintext – [out] Output plaintext text
size – Size of input and output data in bytes. Must be multiple of 16 bytes.
iv – Input initial vector to combine with the first input block.
- Returns:
Status from encrypt operation
-
HASHCRYPT_AES_BLOCK_SIZE
AES block size in bytes
-
AES_ENCRYPT
-
AES_DECRYPT
-
struct _hashcrypt_handle
- #include <fsl_hashcrypt.h>
Specify HASHCRYPT’s key resource.
Public Members
-
uint32_t keyWord[8]
Copy of user key (set by HASHCRYPT_AES_SetKey().
-
hashcrypt_key_t keyType
For operations with key (such as AES encryption/decryption), specify key type.
-
uint32_t keyWord[8]
Hashcrypt HASH
-
typedef struct _hashcrypt_hash_ctx_t hashcrypt_hash_ctx_t
Storage type used to save hash context.
-
typedef void (*hashcrypt_callback_t)(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx, status_t status, void *userData)
HASHCRYPT background hash callback function.
-
status_t HASHCRYPT_SHA(HASHCRYPT_Type *base, hashcrypt_algo_t algo, const uint8_t *input, size_t inputSize, uint8_t *output, size_t *outputSize)
Create HASH on given data.
Perform the full SHA in one function call. The function is blocking.
- Parameters:
base – HASHCRYPT peripheral base address
algo – Underlaying algorithm to use for hash computation.
input – Input data
inputSize – Size of input data in bytes
output – [out] Output hash data
outputSize – [out] Output parameter storing the size of the output hash in bytes
- Returns:
Status of the one call hash operation.
-
status_t HASHCRYPT_SHA_Init(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx, hashcrypt_algo_t algo)
Initialize HASH context.
This function initializes the HASH.
- Parameters:
base – HASHCRYPT peripheral base address
ctx – [out] Output hash context
algo – Underlaying algorithm to use for hash computation.
- Returns:
Status of initialization
-
status_t HASHCRYPT_SHA_Update(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)
Add data to current HASH.
Add data to current HASH. This can be called repeatedly with an arbitrary amount of data to be hashed. The functions blocks. If it returns kStatus_Success, the running hash has been updated (HASHCRYPT has processed the input data), so the memory at
input
pointer can be released back to system. The HASHCRYPT context buffer is updated with the running hash and with all necessary information to support possible context switch.- Parameters:
base – HASHCRYPT peripheral base address
ctx – [inout] HASH context
input – Input data
inputSize – Size of input data in bytes
- Returns:
Status of the hash update operation
-
status_t HASHCRYPT_SHA_Finish(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx, uint8_t *output, size_t *outputSize)
Finalize hashing.
Outputs the final hash (computed by HASHCRYPT_HASH_Update()) and erases the context.
- Parameters:
base – HASHCRYPT peripheral base address
ctx – [inout] Input hash context
output – [out] Output hash data
outputSize – [inout] Optional parameter (can be passed as NULL). On function entry, it specifies the size of output[] buffer. On function return, it stores the number of updated output bytes.
- Returns:
Status of the hash finish operation
-
HASHCRYPT_HASH_CTX_SIZE
HASHCRYPT HASH Context size.
-
struct _hashcrypt_hash_ctx_t
- #include <fsl_hashcrypt.h>
Storage type used to save hash context.
Public Members
-
uint32_t x[22]
storage
-
uint32_t x[22]
I2C: Inter-Integrated Circuit Driver
I2C DMA Driver
-
void I2C_MasterTransferCreateHandleDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, i2c_master_dma_transfer_callback_t callback, void *userData, dma_handle_t *dmaHandle)
Init the I2C handle which is used in transactional functions.
- Parameters:
base – I2C peripheral base address
handle – pointer to i2c_master_dma_handle_t structure
callback – pointer to user callback function
userData – user param passed to the callback function
dmaHandle – DMA handle pointer
-
status_t I2C_MasterTransferDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, i2c_master_transfer_t *xfer)
Performs a master dma non-blocking transfer on the I2C bus.
- Parameters:
base – I2C peripheral base address
handle – pointer to i2c_master_dma_handle_t structure
xfer – pointer to transfer structure of i2c_master_transfer_t
- Return values:
kStatus_Success – Sucessully complete the data transmission.
kStatus_I2C_Busy – Previous transmission still not finished.
kStatus_I2C_Timeout – Transfer error, wait signal timeout.
kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.
kStataus_I2C_Nak – Transfer error, receive Nak during transfer.
-
status_t I2C_MasterTransferGetCountDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, size_t *count)
Get master transfer status during a dma non-blocking transfer.
- Parameters:
base – I2C peripheral base address
handle – pointer to i2c_master_dma_handle_t structure
count – Number of bytes transferred so far by the non-blocking transaction.
-
void I2C_MasterTransferAbortDMA(I2C_Type *base, i2c_master_dma_handle_t *handle)
Abort a master dma non-blocking transfer in a early time.
- Parameters:
base – I2C peripheral base address
handle – pointer to i2c_master_dma_handle_t structure
-
FSL_I2C_DMA_DRIVER_VERSION
I2C DMA driver version.
-
typedef struct _i2c_master_dma_handle i2c_master_dma_handle_t
I2C master dma handle typedef.
-
typedef void (*i2c_master_dma_transfer_callback_t)(I2C_Type *base, i2c_master_dma_handle_t *handle, status_t status, void *userData)
I2C master dma transfer callback typedef.
-
typedef void (*flexcomm_i2c_dma_master_irq_handler_t)(I2C_Type *base, i2c_master_dma_handle_t *handle)
Typedef for master dma handler.
-
I2C_MAX_DMA_TRANSFER_COUNT
Maximum lenght of single DMA transfer (determined by capability of the DMA engine)
-
struct _i2c_master_dma_handle
- #include <fsl_i2c_dma.h>
I2C master dma transfer structure.
Public Members
-
uint8_t state
Transfer state machine current state.
-
uint32_t transferCount
Indicates progress of the transfer
-
uint32_t remainingBytesDMA
Remaining byte count to be transferred using DMA.
-
uint8_t *buf
Buffer pointer for current state.
-
bool checkAddrNack
Whether to check the nack signal is detected during addressing.
-
dma_handle_t *dmaHandle
The DMA handler used.
-
i2c_master_transfer_t transfer
Copy of the current transfer info.
-
i2c_master_dma_transfer_callback_t completionCallback
Callback function called after dma transfer finished.
-
void *userData
Callback parameter passed to callback function.
-
uint8_t state
I2C Driver
-
FSL_I2C_DRIVER_VERSION
I2C driver version.
I2C status return codes.
Values:
-
enumerator kStatus_I2C_Busy
The master is already performing a transfer.
-
enumerator kStatus_I2C_Idle
The slave driver is idle.
-
enumerator kStatus_I2C_Nak
The slave device sent a NAK in response to a byte.
-
enumerator kStatus_I2C_InvalidParameter
Unable to proceed due to invalid parameter.
-
enumerator kStatus_I2C_BitError
Transferred bit was not seen on the bus.
-
enumerator kStatus_I2C_ArbitrationLost
Arbitration lost error.
-
enumerator kStatus_I2C_NoTransferInProgress
Attempt to abort a transfer when one is not in progress.
-
enumerator kStatus_I2C_DmaRequestFail
DMA request failed.
-
enumerator kStatus_I2C_StartStopError
Start and stop error.
-
enumerator kStatus_I2C_UnexpectedState
Unexpected state.
-
enumerator kStatus_I2C_Timeout
Timeout when waiting for I2C master/slave pending status to set to continue transfer.
-
enumerator kStatus_I2C_Addr_Nak
NAK received for Address
-
enumerator kStatus_I2C_EventTimeout
Timeout waiting for bus event.
-
enumerator kStatus_I2C_SclLowTimeout
Timeout SCL signal remains low.
-
enumerator kStatus_I2C_Busy
-
enum _i2c_status_flags
I2C status flags.
Note
These enums are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI2C_MasterPendingFlag
The I2C module is waiting for software interaction. bit 0
-
enumerator kI2C_MasterArbitrationLostFlag
The arbitration of the bus was lost. There was collision on the bus. bit 4
-
enumerator kI2C_MasterStartStopErrorFlag
There was an error during start or stop phase of the transaction. bit 6
-
enumerator kI2C_MasterIdleFlag
The I2C master idle status. bit 5
-
enumerator kI2C_MasterRxReadyFlag
The I2C master rx ready status. bit 1
-
enumerator kI2C_MasterTxReadyFlag
The I2C master tx ready status. bit 2
-
enumerator kI2C_MasterAddrNackFlag
The I2C master address nack status. bit 7
-
enumerator kI2C_MasterDataNackFlag
The I2C master data nack status. bit 3
-
enumerator kI2C_SlavePendingFlag
The I2C module is waiting for software interaction. bit 8
-
enumerator kI2C_SlaveNotStretching
Indicates whether the slave is currently stretching clock (0 = yes, 1 = no). bit 11
-
enumerator kI2C_SlaveSelected
Indicates whether the slave is selected by an address match. bit 14
-
enumerator kI2C_SaveDeselected
Indicates that slave was previously deselected (deselect event took place, w1c). bit 15
-
enumerator kI2C_SlaveAddressedFlag
One of the I2C slave’s 4 addresses is matched. bit 22
-
enumerator kI2C_SlaveReceiveFlag
Slave receive data available. bit 9
-
enumerator kI2C_SlaveTransmitFlag
Slave data can be transmitted. bit 10
-
enumerator kI2C_SlaveAddress0MatchFlag
Slave address0 match. bit 20
-
enumerator kI2C_SlaveAddress1MatchFlag
Slave address1 match. bit 12
-
enumerator kI2C_SlaveAddress2MatchFlag
Slave address2 match. bit 13
-
enumerator kI2C_SlaveAddress3MatchFlag
Slave address3 match. bit 21
-
enumerator kI2C_MonitorReadyFlag
The I2C monitor ready interrupt. bit 16
-
enumerator kI2C_MonitorOverflowFlag
The monitor data overrun interrupt. bit 17
-
enumerator kI2C_MonitorActiveFlag
The monitor is active. bit 18
-
enumerator kI2C_MonitorIdleFlag
The monitor idle interrupt. bit 19
-
enumerator kI2C_EventTimeoutFlag
The bus event timeout interrupt. bit 24
-
enumerator kI2C_SclTimeoutFlag
The SCL timeout interrupt. bit 25
-
enumerator kI2C_MasterAllClearFlags
-
enumerator kI2C_SlaveAllClearFlags
-
enumerator kI2C_CommonAllClearFlags
-
enumerator kI2C_MasterPendingFlag
-
enum _i2c_interrupt_enable
I2C interrupt enable.
Note
These enums are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI2C_MasterPendingInterruptEnable
The I2C master communication pending interrupt.
-
enumerator kI2C_MasterArbitrationLostInterruptEnable
The I2C master arbitration lost interrupt.
-
enumerator kI2C_MasterStartStopErrorInterruptEnable
The I2C master start/stop timing error interrupt.
-
enumerator kI2C_SlavePendingInterruptEnable
The I2C slave communication pending interrupt.
-
enumerator kI2C_SlaveNotStretchingInterruptEnable
The I2C slave not streching interrupt, deep-sleep mode can be entered only when this interrupt occurs.
-
enumerator kI2C_SlaveDeselectedInterruptEnable
The I2C slave deselection interrupt.
-
enumerator kI2C_MonitorReadyInterruptEnable
The I2C monitor ready interrupt.
-
enumerator kI2C_MonitorOverflowInterruptEnable
The monitor data overrun interrupt.
-
enumerator kI2C_MonitorIdleInterruptEnable
The monitor idle interrupt.
-
enumerator kI2C_EventTimeoutInterruptEnable
The bus event timeout interrupt.
-
enumerator kI2C_SclTimeoutInterruptEnable
The SCL timeout interrupt.
-
enumerator kI2C_MasterAllInterruptEnable
-
enumerator kI2C_SlaveAllInterruptEnable
-
enumerator kI2C_CommonAllInterruptEnable
-
enumerator kI2C_MasterPendingInterruptEnable
-
I2C_RETRY_TIMES
Retry times for waiting flag.
-
I2C_MASTER_TRANSMIT_IGNORE_LAST_NACK
Whether to ignore the nack signal of the last byte during master transmit.
-
I2C_STAT_MSTCODE_IDLE
Master Idle State Code
-
I2C_STAT_MSTCODE_RXREADY
Master Receive Ready State Code
-
I2C_STAT_MSTCODE_TXREADY
Master Transmit Ready State Code
-
I2C_STAT_MSTCODE_NACKADR
Master NACK by slave on address State Code
-
I2C_STAT_MSTCODE_NACKDAT
Master NACK by slave on data State Code
-
I2C_STAT_SLVST_ADDR
-
I2C_STAT_SLVST_RX
-
I2C_STAT_SLVST_TX
I2C Master Driver
-
void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Provides a default configuration for the I2C master peripheral.
This function provides the following default configuration for the I2C master peripheral:
masterConfig->enableMaster = true; masterConfig->baudRate_Bps = 100000U; masterConfig->enableTimeout = false;
After calling this function, you can override any settings in order to customize the configuration, prior to initializing the master driver with I2C_MasterInit().
- Parameters:
masterConfig – [out] User provided configuration structure for default values. Refer to i2c_master_config_t.
-
void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)
Initializes the I2C master peripheral.
This function enables the peripheral clock and initializes the I2C master peripheral as described by the user provided configuration. A software reset is performed prior to configuration.
- Parameters:
base – The I2C peripheral base address.
masterConfig – User provided peripheral configuration. Use I2C_MasterGetDefaultConfig() to get a set of defaults that you can override.
srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to calculate the baud rate divisors, filter widths, and timeout periods.
-
void I2C_MasterDeinit(I2C_Type *base)
Deinitializes the I2C master peripheral.
This function disables the I2C master peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.
- Parameters:
base – The I2C peripheral base address.
-
uint32_t I2C_GetInstance(I2C_Type *base)
Returns an instance number given a base address.
If an invalid base address is passed, debug builds will assert. Release builds will just return instance number 0.
- Parameters:
base – The I2C peripheral base address.
- Returns:
I2C instance number starting from 0.
-
static inline void I2C_MasterReset(I2C_Type *base)
Performs a software reset.
Restores the I2C master peripheral to reset conditions.
- Parameters:
base – The I2C peripheral base address.
-
static inline void I2C_MasterEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as master.
- Parameters:
base – The I2C peripheral base address.
enable – Pass true to enable or false to disable the specified I2C as master.
-
uint32_t I2C_GetStatusFlags(I2C_Type *base)
Gets the I2C status flags.
A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.
See also
_i2c_status_flags.
- Parameters:
base – The I2C peripheral base address.
- Returns:
State of the status flags:
1: related status flag is set.
0: related status flag is not set.
-
static inline void I2C_ClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.
Refer to kI2C_CommonAllClearStatusFlags, kI2C_MasterAllClearStatusFlags and kI2C_SlaveAllClearStatusFlags to see the clearable flags. Attempts to clear other flags has no effect.
See also
_i2c_status_flags, _i2c_master_status_flags and _i2c_slave_status_flags.
- Parameters:
base – The I2C peripheral base address.
statusMask – A bitmask of status flags that are to be cleared. The mask is composed of the members in kI2C_CommonAllClearStatusFlags, kI2C_MasterAllClearStatusFlags and kI2C_SlaveAllClearStatusFlags. You may pass the result of a previous call to I2C_GetStatusFlags().
-
static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C master status flag state.
- Deprecated:
Do not use this function. It has been superceded by I2C_ClearStatusFlags The following status register flags can be cleared:
kI2C_MasterArbitrationLostFlag
kI2C_MasterStartStopErrorFlag
Attempts to clear other flags has no effect.
See also
_i2c_status_flags.
- Parameters:
base – The I2C peripheral base address.
statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i2c_status_flags enumerators OR’d together. You may pass the result of a previous call to I2C_GetStatusFlags().
-
static inline void I2C_EnableInterrupts(I2C_Type *base, uint32_t interruptMask)
Enables the I2C interrupt requests.
- Parameters:
base – The I2C peripheral base address.
interruptMask – Bit mask of interrupts to enable. See _i2c_interrupt_enable for the set of constants that should be OR’d together to form the bit mask.
-
static inline void I2C_DisableInterrupts(I2C_Type *base, uint32_t interruptMask)
Disables the I2C interrupt requests.
- Parameters:
base – The I2C peripheral base address.
interruptMask – Bit mask of interrupts to disable. See _i2c_interrupt_enable for the set of constants that should be OR’d together to form the bit mask.
-
static inline uint32_t I2C_GetEnabledInterrupts(I2C_Type *base)
Returns the set of currently enabled I2C interrupt requests.
- Parameters:
base – The I2C peripheral base address.
- Returns:
A bitmask composed of _i2c_interrupt_enable enumerators OR’d together to indicate the set of enabled interrupts.
-
void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C bus frequency for master transactions.
The I2C master is automatically disabled and re-enabled as necessary to configure the baud rate. Do not call this function during a transfer, or the transfer is aborted.
- Parameters:
base – The I2C peripheral base address.
srcClock_Hz – I2C functional clock frequency in Hertz.
baudRate_Bps – Requested bus frequency in bits per second.
-
void I2C_MasterSetTimeoutValue(I2C_Type *base, uint8_t timeout_Ms, uint32_t srcClock_Hz)
Sets the I2C bus timeout value.
If the SCL signal remains low or bus does not have event longer than the timeout value, kI2C_SclTimeoutFlag or kI2C_EventTimeoutFlag is set. This can indicete the bus is held by slave or any fault occurs to the I2C module.
- Parameters:
base – The I2C peripheral base address.
timeout_Ms – Timeout value in millisecond.
srcClock_Hz – I2C functional clock frequency in Hertz.
-
static inline bool I2C_MasterGetBusIdleState(I2C_Type *base)
Returns whether the bus is idle.
Requires the master mode to be enabled.
- Parameters:
base – The I2C peripheral base address.
- Return values:
true – Bus is busy.
false – Bus is idle.
-
status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.
This function is used to initiate a new master mode transfer by sending the START signal. The slave address is sent following the I2C START signal.
- Parameters:
base – I2C peripheral base pointer
address – 7-bit slave device address.
direction – Master transfer directions(transmit/receive).
- Return values:
kStatus_Success – Successfully send the start signal.
kStatus_I2C_Busy – Current bus is busy.
-
status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.
- Return values:
kStatus_Success – Successfully send the stop signal.
kStatus_I2C_Timeout – Send stop signal failed, timeout.
-
static inline status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a REPEATED START on the I2C bus.
- Parameters:
base – I2C peripheral base pointer
address – 7-bit slave device address.
direction – Master transfer directions(transmit/receive).
- Return values:
kStatus_Success – Successfully send the start signal.
kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C master.
-
status_t I2C_MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t flags)
Performs a polling send transfer on the I2C bus.
Sends up to txSize number of bytes to the previously addressed slave device. The slave may reply with a NAK to any byte in order to terminate the transfer early. If this happens, this function returns kStatus_I2C_Nak.
- Parameters:
base – The I2C peripheral base address.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
flags – Transfer control flag to control special behavior like suppressing start or stop, for normal transfers use kI2C_TransferDefaultFlag
- Return values:
kStatus_Success – Data was sent successfully.
kStatus_I2C_Busy – Another master is currently utilizing the bus.
kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.
kStatus_I2C_ArbitrationLost – Arbitration lost error.
-
status_t I2C_MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transfer on the I2C bus.
- Parameters:
base – The I2C peripheral base address.
rxBuff – The pointer to the data to be transferred.
rxSize – The length in bytes of the data to be transferred.
flags – Transfer control flag to control special behavior like suppressing start or stop, for normal transfers use kI2C_TransferDefaultFlag
- Return values:
kStatus_Success – Data was received successfully.
kStatus_I2C_Busy – Another master is currently utilizing the bus.
kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.
kStatus_I2C_ArbitrationLost – Arbitration lost error.
-
status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.
Note
The API does not return until the transfer succeeds or fails due to arbitration lost or receiving a NAK.
- Parameters:
base – I2C peripheral base address.
xfer – Pointer to the transfer structure.
- Return values:
kStatus_Success – Successfully complete the data transmission.
kStatus_I2C_Busy – Previous transmission still not finished.
kStatus_I2C_Timeout – Transfer error, wait signal timeout.
kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.
kStataus_I2C_Nak – Transfer error, receive NAK during transfer.
kStataus_I2C_Addr_Nak – Transfer error, receive NAK during addressing.
-
void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_callback_t callback, void *userData)
Creates a new handle for the I2C master non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I2C_MasterTransferAbort() API shall be called.
- Parameters:
base – The I2C peripheral base address.
handle – [out] Pointer to the I2C master driver handle.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
-
status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)
Performs a non-blocking transaction on the I2C bus.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to the I2C master driver handle.
xfer – The pointer to the transfer descriptor.
- Return values:
kStatus_Success – The transaction was started successfully.
kStatus_I2C_Busy – Either another master is currently utilizing the bus, or a non-blocking transaction is already in progress.
-
status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count)
Returns number of bytes transferred so far.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to the I2C master driver handle.
count – [out] Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_Success –
kStatus_I2C_Busy –
-
status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Terminates a non-blocking I2C master transmission early.
Note
It is not safe to call this function from an IRQ handler that has a higher priority than the I2C peripheral’s IRQ priority.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to the I2C master driver handle.
- Return values:
kStatus_Success – A transaction was successfully aborted.
kStatus_I2C_Timeout – Timeout during polling for flags.
-
void I2C_MasterTransferHandleIRQ(I2C_Type *base, i2c_master_handle_t *handle)
Reusable routine to handle master interrupts.
Note
This function does not need to be called unless you are reimplementing the nonblocking API’s interrupt handler routines to add special functionality.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to the I2C master driver handle.
-
enum _i2c_direction
Direction of master and slave transfers.
Values:
-
enumerator kI2C_Write
Master transmit.
-
enumerator kI2C_Read
Master receive.
-
enumerator kI2C_Write
-
enum _i2c_master_transfer_flags
Transfer option flags.
Note
These enumerations are intended to be OR’d together to form a bit mask of options for the _i2c_master_transfer::flags field.
Values:
-
enumerator kI2C_TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.
-
enumerator kI2C_TransferNoStartFlag
Don’t send a start condition, address, and sub address
-
enumerator kI2C_TransferRepeatedStartFlag
Send a repeated start condition
-
enumerator kI2C_TransferNoStopFlag
Don’t send a stop condition.
-
enumerator kI2C_TransferDefaultFlag
-
enum _i2c_transfer_states
States for the state machine used by transactional APIs.
Values:
-
enumerator kIdleState
-
enumerator kTransmitSubaddrState
-
enumerator kTransmitDataState
-
enumerator kReceiveDataBeginState
-
enumerator kReceiveDataState
-
enumerator kReceiveLastDataState
-
enumerator kStartState
-
enumerator kStopState
-
enumerator kWaitForCompletionState
-
enumerator kIdleState
-
typedef enum _i2c_direction i2c_direction_t
Direction of master and slave transfers.
-
typedef struct _i2c_master_config i2c_master_config_t
Structure with settings to initialize the I2C master module.
This structure holds configuration settings for the I2C peripheral. To initialize this structure to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
-
typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer typedef.
-
typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.
-
typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle, status_t completionStatus, void *userData)
Master completion callback function pointer type.
This callback is used only for the non-blocking master transfer API. Specify the callback you wish to use in the call to I2C_MasterTransferCreateHandle().
- Param base:
The I2C peripheral base address.
- Param completionStatus:
Either kStatus_Success or an error code describing how the transfer completed.
- Param userData:
Arbitrary pointer-sized value passed from the application.
-
struct _i2c_master_config
- #include <fsl_i2c.h>
Structure with settings to initialize the I2C master module.
This structure holds configuration settings for the I2C peripheral. To initialize this structure to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
Public Members
-
bool enableMaster
Whether to enable master mode.
-
uint32_t baudRate_Bps
Desired baud rate in bits per second.
-
bool enableTimeout
Enable internal timeout function.
-
uint8_t timeout_Ms
Event timeout and SCL low timeout value.
-
bool enableMaster
-
struct _i2c_master_transfer
- #include <fsl_i2c.h>
Non-blocking transfer descriptor structure.
This structure is used to pass transaction parameters to the I2C_MasterTransferNonBlocking() API.
Public Members
-
uint32_t flags
Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.
-
uint8_t slaveAddress
The 7-bit slave address.
-
i2c_direction_t direction
Either kI2C_Read or kI2C_Write.
-
uint32_t subaddress
Sub address. Transferred MSB first.
-
size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.
-
void *data
Pointer to data to transfer.
-
size_t dataSize
Number of bytes to transfer.
-
uint32_t flags
-
struct _i2c_master_handle
- #include <fsl_i2c.h>
Driver handle for master non-blocking APIs.
Note
The contents of this structure are private and subject to change.
Public Members
-
uint8_t state
Transfer state machine current state.
-
uint32_t transferCount
Indicates progress of the transfer
-
uint32_t remainingBytes
Remaining byte count in current state.
-
uint8_t *buf
Buffer pointer for current state.
-
bool checkAddrNack
Whether to check the nack signal is detected during addressing.
-
i2c_master_transfer_t transfer
Copy of the current transfer info.
-
i2c_master_transfer_callback_t completionCallback
Callback function pointer.
-
void *userData
Application data passed to callback.
-
uint8_t state
I2C Slave Driver
-
void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Provides a default configuration for the I2C slave peripheral.
This function provides the following default configuration for the I2C slave peripheral:
slaveConfig->enableSlave = true; slaveConfig->address0.disable = false; slaveConfig->address0.address = 0u; slaveConfig->address1.disable = true; slaveConfig->address2.disable = true; slaveConfig->address3.disable = true; slaveConfig->busSpeed = kI2C_SlaveStandardMode;
After calling this function, override any settings to customize the configuration, prior to initializing the master driver with I2C_SlaveInit(). Be sure to override at least the address0.address member of the configuration structure with the desired slave address.
- Parameters:
slaveConfig – [out] User provided configuration structure that is set to default values. Refer to i2c_slave_config_t.
-
status_t I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)
Initializes the I2C slave peripheral.
This function enables the peripheral clock and initializes the I2C slave peripheral as described by the user provided configuration.
- Parameters:
base – The I2C peripheral base address.
slaveConfig – User provided peripheral configuration. Use I2C_SlaveGetDefaultConfig() to get a set of defaults that you can override.
srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to calculate CLKDIV value to provide enough data setup time for master when slave stretches the clock.
-
void I2C_SlaveSetAddress(I2C_Type *base, i2c_slave_address_register_t addressRegister, uint8_t address, bool addressDisable)
Configures Slave Address n register.
This function writes new value to Slave Address register.
- Parameters:
base – The I2C peripheral base address.
addressRegister – The module supports multiple address registers. The parameter determines which one shall be changed.
address – The slave address to be stored to the address register for matching.
addressDisable – Disable matching of the specified address register.
-
void I2C_SlaveDeinit(I2C_Type *base)
Deinitializes the I2C slave peripheral.
This function disables the I2C slave peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.
- Parameters:
base – The I2C peripheral base address.
-
static inline void I2C_SlaveEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as slave.
- Parameters:
base – The I2C peripheral base address.
enable – True to enable or flase to disable.
-
static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.
The following status register flags can be cleared:
slave deselected flag
Attempts to clear other flags has no effect.
See also
_i2c_slave_flags.
- Parameters:
base – The I2C peripheral base address.
statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i2c_slave_flags enumerators OR’d together. You may pass the result of a previous call to I2C_SlaveGetStatusFlags().
-
status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transfer on the I2C bus.
The function executes blocking address phase and blocking data phase.
- Parameters:
base – The I2C peripheral base address.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
- Returns:
kStatus_Success Data has been sent.
- Returns:
kStatus_Fail Unexpected slave state (master data write while master read from slave is expected).
-
status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I2C bus.
The function executes blocking address phase and blocking data phase.
- Parameters:
base – The I2C peripheral base address.
rxBuff – The pointer to the data to be transferred.
rxSize – The length in bytes of the data to be transferred.
- Returns:
kStatus_Success Data has been received.
- Returns:
kStatus_Fail Unexpected slave state (master data read while master write to slave is expected).
-
void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_callback_t callback, void *userData)
Creates a new handle for the I2C slave non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I2C_SlaveTransferAbort() API shall be called.
- Parameters:
base – The I2C peripheral base address.
handle – [out] Pointer to the I2C slave driver handle.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
-
status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask)
Starts accepting slave transfers.
Call this API after calling I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start processing transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The callback is always invoked from the interrupt context.
If no slave Tx transfer is busy, a master read from slave request invokes kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to slave request invokes kI2C_SlaveReceiveEvent callback.
The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.
eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.
- Return values:
kStatus_Success – Slave transfers were successfully started.
kStatus_I2C_Busy – Slave transfers have already been started on this handle.
-
status_t I2C_SlaveSetSendBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, const void *txData, size_t txSize, uint32_t eventMask)
Starts accepting master read from slave requests.
The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new slave Tx transfer from within the transfer callback.
The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.
- Parameters:
base – The I2C peripheral base address.
transfer – Pointer to i2c_slave_transfer_t structure.
txData – Pointer to data to send to master.
txSize – Size of txData in bytes.
eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.
- Return values:
kStatus_Success – Slave transfers were successfully started.
kStatus_I2C_Busy – Slave transfers have already been started on this handle.
-
status_t I2C_SlaveSetReceiveBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void *rxData, size_t rxSize, uint32_t eventMask)
Starts accepting master write to slave requests.
The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new slave Rx transfer from within the transfer callback.
The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.
- Parameters:
base – The I2C peripheral base address.
transfer – Pointer to i2c_slave_transfer_t structure.
rxData – Pointer to data to store data from master.
rxSize – Size of rxData in bytes.
eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.
- Return values:
kStatus_Success – Slave transfers were successfully started.
kStatus_I2C_Busy – Slave transfers have already been started on this handle.
-
static inline uint32_t I2C_SlaveGetReceivedAddress(I2C_Type *base, volatile i2c_slave_transfer_t *transfer)
Returns the slave address sent by the I2C master.
This function should only be called from the address match event callback kI2C_SlaveAddressMatchEvent.
- Parameters:
base – The I2C peripheral base address.
transfer – The I2C slave transfer.
- Returns:
The 8-bit address matched by the I2C slave. Bit 0 contains the R/w direction bit, and the 7-bit slave address is in the upper 7 bits.
-
void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.
Note
This API could be called at any time to stop slave for handling the bus events.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.
- Return values:
kStatus_Success –
kStatus_I2C_Idle –
-
status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_slave_handle_t structure.
count – Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
void I2C_SlaveTransferHandleIRQ(I2C_Type *base, i2c_slave_handle_t *handle)
Reusable routine to handle slave interrupts.
Note
This function does not need to be called unless you are reimplementing the non blocking API’s interrupt handler routines to add special functionality.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.
-
enum _i2c_slave_address_register
I2C slave address register.
Values:
-
enumerator kI2C_SlaveAddressRegister0
Slave Address 0 register.
-
enumerator kI2C_SlaveAddressRegister1
Slave Address 1 register.
-
enumerator kI2C_SlaveAddressRegister2
Slave Address 2 register.
-
enumerator kI2C_SlaveAddressRegister3
Slave Address 3 register.
-
enumerator kI2C_SlaveAddressRegister0
-
enum _i2c_slave_address_qual_mode
I2C slave address match options.
Values:
-
enumerator kI2C_QualModeMask
The SLVQUAL0 field (qualAddress) is used as a logical mask for matching address0.
-
enumerator kI2C_QualModeExtend
The SLVQUAL0 (qualAddress) field is used to extend address 0 matching in a range of addresses.
-
enumerator kI2C_QualModeMask
-
enum _i2c_slave_bus_speed
I2C slave bus speed options.
Values:
-
enumerator kI2C_SlaveStandardMode
-
enumerator kI2C_SlaveFastMode
-
enumerator kI2C_SlaveFastModePlus
-
enumerator kI2C_SlaveHsMode
-
enumerator kI2C_SlaveStandardMode
-
enum _i2c_slave_transfer_event
Set of events sent to the callback for non blocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
Values:
-
enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.
-
enumerator kI2C_SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).
-
enumerator kI2C_SlaveReceiveEvent
Callback is requested to provide a buffer in which to place received data (slave-receiver role).
-
enumerator kI2C_SlaveCompletionEvent
All data in the active transfer have been consumed.
-
enumerator kI2C_SlaveDeselectedEvent
The slave function has become deselected (SLVSEL flag changing from 1 to 0.
-
enumerator kI2C_SlaveAllEvents
Bit mask of all available events.
-
enumerator kI2C_SlaveAddressMatchEvent
-
enum _i2c_slave_fsm
I2C slave software finite state machine states.
Values:
-
enumerator kI2C_SlaveFsmAddressMatch
-
enumerator kI2C_SlaveFsmReceive
-
enumerator kI2C_SlaveFsmTransmit
-
enumerator kI2C_SlaveFsmAddressMatch
-
typedef enum _i2c_slave_address_register i2c_slave_address_register_t
I2C slave address register.
-
typedef struct _i2c_slave_address i2c_slave_address_t
Data structure with 7-bit Slave address and Slave address disable.
-
typedef enum _i2c_slave_address_qual_mode i2c_slave_address_qual_mode_t
I2C slave address match options.
-
typedef enum _i2c_slave_bus_speed i2c_slave_bus_speed_t
I2C slave bus speed options.
-
typedef struct _i2c_slave_config i2c_slave_config_t
Structure with settings to initialize the I2C slave module.
This structure holds configuration settings for the I2C slave peripheral. To initialize this structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
-
typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
-
typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.
-
typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.
-
typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void *userData)
Slave event callback function pointer type.
This callback is used only for the slave non-blocking transfer API. To install a callback, use the I2C_SlaveSetCallback() function after you have created a handle.
- Param base:
Base address for the I2C instance on which the event occurred.
- Param transfer:
Pointer to transfer descriptor containing values passed to and/or from the callback.
- Param userData:
Arbitrary pointer-sized value passed from the application.
-
typedef enum _i2c_slave_fsm i2c_slave_fsm_t
I2C slave software finite state machine states.
-
typedef void (*flexcomm_i2c_master_irq_handler_t)(I2C_Type *base, i2c_master_handle_t *handle)
Typedef for master interrupt handler.
-
typedef void (*flexcomm_i2c_slave_irq_handler_t)(I2C_Type *base, i2c_slave_handle_t *handle)
Typedef for slave interrupt handler.
-
struct _i2c_slave_address
- #include <fsl_i2c.h>
Data structure with 7-bit Slave address and Slave address disable.
Public Members
-
uint8_t address
7-bit Slave address SLVADR.
-
bool addressDisable
Slave address disable SADISABLE.
-
uint8_t address
-
struct _i2c_slave_config
- #include <fsl_i2c.h>
Structure with settings to initialize the I2C slave module.
This structure holds configuration settings for the I2C slave peripheral. To initialize this structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
Public Members
-
i2c_slave_address_t address0
Slave’s 7-bit address and disable.
-
i2c_slave_address_t address1
Alternate slave 7-bit address and disable.
-
i2c_slave_address_t address2
Alternate slave 7-bit address and disable.
-
i2c_slave_address_t address3
Alternate slave 7-bit address and disable.
-
i2c_slave_address_qual_mode_t qualMode
Qualify mode for slave address 0.
-
uint8_t qualAddress
Slave address qualifier for address 0.
-
i2c_slave_bus_speed_t busSpeed
Slave bus speed mode. If the slave function stretches SCL to allow for software response, it must provide sufficient data setup time to the master before releasing the stretched clock. This is accomplished by inserting one clock time of CLKDIV at that point. The busSpeed value is used to configure CLKDIV such that one clock time is greater than the tSU;DAT value noted in the I2C bus specification for the I2C mode that is being used. If the busSpeed mode is unknown at compile time, use the longest data setup time kI2C_SlaveStandardMode (250 ns)
-
bool enableSlave
Enable slave mode.
-
i2c_slave_address_t address0
-
struct _i2c_slave_transfer
- #include <fsl_i2c.h>
I2C slave transfer structure.
Public Members
-
i2c_slave_handle_t *handle
Pointer to handle that contains this transfer.
-
i2c_slave_transfer_event_t event
Reason the callback is being invoked.
-
uint8_t receivedAddress
Matching address send by master. 7-bits plus R/nW bit0
-
uint32_t eventMask
Mask of enabled events.
-
uint8_t *rxData
Transfer buffer for receive data
-
const uint8_t *txData
Transfer buffer for transmit data
-
size_t txSize
Transfer size
-
size_t rxSize
Transfer size
-
size_t transferredCount
Number of bytes transferred during this transfer.
-
status_t completionStatus
Success or error code describing how the transfer completed. Only applies for kI2C_SlaveCompletionEvent.
-
i2c_slave_handle_t *handle
-
struct _i2c_slave_handle
- #include <fsl_i2c.h>
I2C slave handle structure.
Note
The contents of this structure are private and subject to change.
Public Members
-
volatile i2c_slave_transfer_t transfer
I2C slave transfer.
-
volatile bool isBusy
Whether transfer is busy.
-
volatile i2c_slave_fsm_t slaveFsm
slave transfer state machine.
-
i2c_slave_transfer_callback_t callback
Callback function called at transfer event.
-
void *userData
Callback parameter passed to callback.
-
volatile i2c_slave_transfer_t transfer
I2S: I2S Driver
I2S DMA Driver
-
void I2S_TxTransferCreateHandleDMA(I2S_Type *base, i2s_dma_handle_t *handle, dma_handle_t *dmaHandle, i2s_dma_transfer_callback_t callback, void *userData)
Initializes handle for transfer of audio data.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
dmaHandle – pointer to dma handle structure.
callback – function to be called back when transfer is done or fails.
userData – pointer to data passed to callback.
-
status_t I2S_TxTransferSendDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t transfer)
Begins or queue sending of the given data.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
transfer – data buffer.
- Return values:
kStatus_Success –
kStatus_I2S_Busy – if all queue slots are occupied with unsent buffers.
-
void I2S_TransferAbortDMA(I2S_Type *base, i2s_dma_handle_t *handle)
Aborts transfer of data.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
-
void I2S_RxTransferCreateHandleDMA(I2S_Type *base, i2s_dma_handle_t *handle, dma_handle_t *dmaHandle, i2s_dma_transfer_callback_t callback, void *userData)
Initializes handle for reception of audio data.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
dmaHandle – pointer to dma handle structure.
callback – function to be called back when transfer is done or fails.
userData – pointer to data passed to callback.
-
status_t I2S_RxTransferReceiveDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t transfer)
Begins or queue reception of data into given buffer.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
transfer – data buffer.
- Return values:
kStatus_Success –
kStatus_I2S_Busy – if all queue slots are occupied with buffers which are not full.
-
void I2S_DMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t tcds)
Invoked from DMA interrupt handler.
- Parameters:
handle – pointer to DMA handle structure.
userData – argument for user callback.
transferDone – if transfer was done.
tcds –
-
void I2S_TransferInstallLoopDMADescriptorMemory(i2s_dma_handle_t *handle, void *dmaDescriptorAddr, size_t dmaDescriptorNum)
Install DMA descriptor memory for loop transfer only.
This function used to register DMA descriptor memory for the i2s loop dma transfer.
It must be callbed before I2S_TransferSendLoopDMA/I2S_TransferReceiveLoopDMA and after I2S_RxTransferCreateHandleDMA/I2S_TxTransferCreateHandleDMA.
User should be take care about the address of DMA descriptor pool which required align with 16BYTE at least.
- Parameters:
handle – Pointer to i2s DMA transfer handle.
dmaDescriptorAddr – DMA descriptor start address.
dmaDescriptorNum – DMA descriptor number.
-
status_t I2S_TransferSendLoopDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t *xfer, uint32_t loopTransferCount)
Send link transfer data using DMA.
This function receives data using DMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.
This function support loop transfer, such as A->B->…->A, the loop transfer chain will be converted into a chain of descriptor and submit to dma. Application must be aware of that the more counts of the loop transfer, then more DMA descriptor memory required, user can use function I2S_InstallDMADescriptorMemory to register the dma descriptor memory.
As the DMA support maximum 1024 transfer count, so application must be aware of that this transfer function support maximum 1024 samples in each transfer, otherwise assert error or error status will be returned. Once the loop transfer start, application can use function I2S_TransferAbortDMA to stop the loop transfer.
- Parameters:
base – I2S peripheral base address.
handle – Pointer to usart_dma_handle_t structure.
xfer – I2S DMA transfer structure. See i2s_transfer_t.
loopTransferCount – loop count
- Return values:
kStatus_Success –
-
status_t I2S_TransferReceiveLoopDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t *xfer, uint32_t loopTransferCount)
Receive link transfer data using DMA.
This function receives data using DMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.
This function support loop transfer, such as A->B->…->A, the loop transfer chain will be converted into a chain of descriptor and submit to dma. Application must be aware of that the more counts of the loop transfer, then more DMA descriptor memory required, user can use function I2S_InstallDMADescriptorMemory to register the dma descriptor memory.
As the DMA support maximum 1024 transfer count, so application must be aware of that this transfer function support maximum 1024 samples in each transfer, otherwise assert error or error status will be returned. Once the loop transfer start, application can use function I2S_TransferAbortDMA to stop the loop transfer.
- Parameters:
base – I2S peripheral base address.
handle – Pointer to usart_dma_handle_t structure.
xfer – I2S DMA transfer structure. See i2s_transfer_t.
loopTransferCount – loop count
- Return values:
kStatus_Success –
-
FSL_I2S_DMA_DRIVER_VERSION
I2S DMA driver version 2.3.3.
-
typedef struct _i2s_dma_handle i2s_dma_handle_t
Members not to be accessed / modified outside of the driver.
-
typedef void (*i2s_dma_transfer_callback_t)(I2S_Type *base, i2s_dma_handle_t *handle, status_t completionStatus, void *userData)
Callback function invoked from DMA API on completion.
- Param base:
I2S base pointer.
- Param handle:
pointer to I2S transaction.
- Param completionStatus:
status of the transaction.
- Param userData:
optional pointer to user arguments data.
-
struct _i2s_dma_handle
- #include <fsl_i2s_dma.h>
i2s dma handle
Public Members
-
uint32_t state
Internal state of I2S DMA transfer
-
uint8_t bytesPerFrame
bytes per frame
-
i2s_dma_transfer_callback_t completionCallback
Callback function pointer
-
void *userData
Application data passed to callback
-
dma_handle_t *dmaHandle
DMA handle
-
volatile i2s_transfer_t i2sQueue[(4U)]
Transfer queue storing transfer buffers
-
volatile uint8_t queueUser
Queue index where user’s next transfer will be stored
-
volatile uint8_t queueDriver
Queue index of buffer actually used by the driver
-
dma_descriptor_t *i2sLoopDMADescriptor
descriptor pool pointer
-
size_t i2sLoopDMADescriptorNum
number of descriptor in descriptors pool
-
uint32_t state
I2S Driver
-
void I2S_TxInit(I2S_Type *base, const i2s_config_t *config)
Initializes the FLEXCOMM peripheral for I2S transmit functionality.
Ungates the FLEXCOMM clock and configures the module for I2S transmission using a configuration structure. The configuration structure can be custom filled or set with default values by I2S_TxGetDefaultConfig().
Note
This API should be called at the beginning of the application to use the I2S driver.
- Parameters:
base – I2S base pointer.
config – pointer to I2S configuration structure.
-
void I2S_RxInit(I2S_Type *base, const i2s_config_t *config)
Initializes the FLEXCOMM peripheral for I2S receive functionality.
Ungates the FLEXCOMM clock and configures the module for I2S receive using a configuration structure. The configuration structure can be custom filled or set with default values by I2S_RxGetDefaultConfig().
Note
This API should be called at the beginning of the application to use the I2S driver.
- Parameters:
base – I2S base pointer.
config – pointer to I2S configuration structure.
-
void I2S_TxGetDefaultConfig(i2s_config_t *config)
Sets the I2S Tx configuration structure to default values.
This API initializes the configuration structure for use in I2S_TxInit(). The initialized structure can remain unchanged in I2S_TxInit(), or it can be modified before calling I2S_TxInit(). Example:
i2s_config_t config; I2S_TxGetDefaultConfig(&config);
Default values:
config->masterSlave = kI2S_MasterSlaveNormalMaster; config->mode = kI2S_ModeI2sClassic; config->rightLow = false; config->leftJust = false; config->pdmData = false; config->sckPol = false; config->wsPol = false; config->divider = 1; config->oneChannel = false; config->dataLength = 16; config->frameLength = 32; config->position = 0; config->watermark = 4; config->txEmptyZero = true; config->pack48 = false;
- Parameters:
config – pointer to I2S configuration structure.
-
void I2S_RxGetDefaultConfig(i2s_config_t *config)
Sets the I2S Rx configuration structure to default values.
This API initializes the configuration structure for use in I2S_RxInit(). The initialized structure can remain unchanged in I2S_RxInit(), or it can be modified before calling I2S_RxInit(). Example:
i2s_config_t config; I2S_RxGetDefaultConfig(&config);
Default values:
config->masterSlave = kI2S_MasterSlaveNormalSlave; config->mode = kI2S_ModeI2sClassic; config->rightLow = false; config->leftJust = false; config->pdmData = false; config->sckPol = false; config->wsPol = false; config->divider = 1; config->oneChannel = false; config->dataLength = 16; config->frameLength = 32; config->position = 0; config->watermark = 4; config->txEmptyZero = false; config->pack48 = false;
- Parameters:
config – pointer to I2S configuration structure.
-
void I2S_Deinit(I2S_Type *base)
De-initializes the I2S peripheral.
This API gates the FLEXCOMM clock. The I2S module can’t operate unless I2S_TxInit or I2S_RxInit is called to enable the clock.
- Parameters:
base – I2S base pointer.
-
void I2S_SetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate, uint32_t bitWidth, uint32_t channelNumbers)
Transmitter/Receiver bit clock rate configurations.
- Parameters:
base – SAI base pointer.
sourceClockHz – bit clock source frequency.
sampleRate – audio data sample rate.
bitWidth – audio data bitWidth.
channelNumbers – audio channel numbers.
-
void I2S_TxTransferCreateHandle(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_callback_t callback, void *userData)
Initializes handle for transfer of audio data.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
callback – function to be called back when transfer is done or fails.
userData – pointer to data passed to callback.
-
status_t I2S_TxTransferNonBlocking(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_t transfer)
Begins or queue sending of the given data.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
transfer – data buffer.
- Return values:
kStatus_Success –
kStatus_I2S_Busy – if all queue slots are occupied with unsent buffers.
-
void I2S_TxTransferAbort(I2S_Type *base, i2s_handle_t *handle)
Aborts sending of data.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
-
void I2S_RxTransferCreateHandle(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_callback_t callback, void *userData)
Initializes handle for reception of audio data.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
callback – function to be called back when transfer is done or fails.
userData – pointer to data passed to callback.
-
status_t I2S_RxTransferNonBlocking(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_t transfer)
Begins or queue reception of data into given buffer.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
transfer – data buffer.
- Return values:
kStatus_Success –
kStatus_I2S_Busy – if all queue slots are occupied with buffers which are not full.
-
void I2S_RxTransferAbort(I2S_Type *base, i2s_handle_t *handle)
Aborts receiving of data.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
-
status_t I2S_TransferGetCount(I2S_Type *base, i2s_handle_t *handle, size_t *count)
Returns number of bytes transferred so far.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
count – [out] number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_Success –
kStatus_NoTransferInProgress – there is no non-blocking transaction currently in progress.
-
status_t I2S_TransferGetErrorCount(I2S_Type *base, i2s_handle_t *handle, size_t *count)
Returns number of buffer underruns or overruns.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
count – [out] number of transmit errors encountered so far by the non-blocking transaction.
- Return values:
kStatus_Success –
kStatus_NoTransferInProgress – there is no non-blocking transaction currently in progress.
-
static inline void I2S_Enable(I2S_Type *base)
Enables I2S operation.
- Parameters:
base – I2S base pointer.
-
void I2S_EnableSecondaryChannel(I2S_Type *base, uint32_t channel, bool oneChannel, uint32_t position)
Enables I2S secondary channel.
- Parameters:
base – I2S base pointer.
channel – seondary channel channel number, reference _i2s_secondary_channel.
oneChannel – true is treated as single channel, functionality left channel for this pair.
position – define the location within the frame of the data, should not bigger than 0x1FFU.
-
static inline void I2S_DisableSecondaryChannel(I2S_Type *base, uint32_t channel)
Disables I2S secondary channel.
- Parameters:
base – I2S base pointer.
channel – seondary channel channel number, reference _i2s_secondary_channel.
-
static inline void I2S_Disable(I2S_Type *base)
Disables I2S operation.
- Parameters:
base – I2S base pointer.
-
static inline void I2S_EnableInterrupts(I2S_Type *base, uint32_t interruptMask)
Enables I2S FIFO interrupts.
- Parameters:
base – I2S base pointer.
interruptMask – bit mask of interrupts to enable. See i2s_flags_t for the set of constants that should be OR’d together to form the bit mask.
-
static inline void I2S_DisableInterrupts(I2S_Type *base, uint32_t interruptMask)
Disables I2S FIFO interrupts.
- Parameters:
base – I2S base pointer.
interruptMask – bit mask of interrupts to enable. See i2s_flags_t for the set of constants that should be OR’d together to form the bit mask.
-
static inline uint32_t I2S_GetEnabledInterrupts(I2S_Type *base)
Returns the set of currently enabled I2S FIFO interrupts.
- Parameters:
base – I2S base pointer.
- Returns:
A bitmask composed of i2s_flags_t enumerators OR’d together to indicate the set of enabled interrupts.
-
status_t I2S_EmptyTxFifo(I2S_Type *base)
Flush the valid data in TX fifo.
- Parameters:
base – I2S base pointer.
- Returns:
kStatus_Fail empty TX fifo failed, kStatus_Success empty tx fifo success.
-
void I2S_TxHandleIRQ(I2S_Type *base, i2s_handle_t *handle)
Invoked from interrupt handler when transmit FIFO level decreases.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
-
void I2S_RxHandleIRQ(I2S_Type *base, i2s_handle_t *handle)
Invoked from interrupt handler when receive FIFO level decreases.
- Parameters:
base – I2S base pointer.
handle – pointer to handle structure.
-
FSL_I2S_DRIVER_VERSION
I2S driver version 2.3.2.
_i2s_status I2S status codes.
Values:
-
enumerator kStatus_I2S_BufferComplete
Transfer from/into a single buffer has completed
-
enumerator kStatus_I2S_Done
All buffers transfers have completed
-
enumerator kStatus_I2S_Busy
Already performing a transfer and cannot queue another buffer
-
enumerator kStatus_I2S_BufferComplete
-
enum _i2s_flags
I2S flags.
Note
These enums are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI2S_TxErrorFlag
TX error interrupt
-
enumerator kI2S_TxLevelFlag
TX level interrupt
-
enumerator kI2S_RxErrorFlag
RX error interrupt
-
enumerator kI2S_RxLevelFlag
RX level interrupt
-
enumerator kI2S_TxErrorFlag
-
enum _i2s_master_slave
Master / slave mode.
Values:
-
enumerator kI2S_MasterSlaveNormalSlave
Normal slave
-
enumerator kI2S_MasterSlaveWsSyncMaster
WS synchronized master
-
enumerator kI2S_MasterSlaveExtSckMaster
Master using existing SCK
-
enumerator kI2S_MasterSlaveNormalMaster
Normal master
-
enumerator kI2S_MasterSlaveNormalSlave
-
enum _i2s_mode
I2S mode.
Values:
-
enumerator kI2S_ModeI2sClassic
I2S classic mode
-
enumerator kI2S_ModeDspWs50
DSP mode, WS having 50% duty cycle
-
enumerator kI2S_ModeDspWsShort
DSP mode, WS having one clock long pulse
-
enumerator kI2S_ModeDspWsLong
DSP mode, WS having one data slot long pulse
-
enumerator kI2S_ModeI2sClassic
_i2s_secondary_channel I2S secondary channel.
Values:
-
enumerator kI2S_SecondaryChannel1
secondary channel 1
-
enumerator kI2S_SecondaryChannel2
secondary channel 2
-
enumerator kI2S_SecondaryChannel3
secondary channel 3
-
enumerator kI2S_SecondaryChannel1
-
typedef enum _i2s_flags i2s_flags_t
I2S flags.
Note
These enums are meant to be OR’d together to form a bit mask.
-
typedef enum _i2s_master_slave i2s_master_slave_t
Master / slave mode.
-
typedef enum _i2s_mode i2s_mode_t
I2S mode.
-
typedef struct _i2s_config i2s_config_t
I2S configuration structure.
-
typedef struct _i2s_transfer i2s_transfer_t
Buffer to transfer from or receive audio data into.
-
typedef struct _i2s_handle i2s_handle_t
Transactional state of the intialized transfer or receive I2S operation.
-
typedef void (*i2s_transfer_callback_t)(I2S_Type *base, i2s_handle_t *handle, status_t completionStatus, void *userData)
Callback function invoked from transactional API on completion of a single buffer transfer.
- Param base:
I2S base pointer.
- Param handle:
pointer to I2S transaction.
- Param completionStatus:
status of the transaction.
- Param userData:
optional pointer to user arguments data.
-
I2S_NUM_BUFFERS
Number of buffers .
-
struct _i2s_config
- #include <fsl_i2s.h>
I2S configuration structure.
Public Members
-
i2s_master_slave_t masterSlave
Master / slave configuration
-
i2s_mode_t mode
I2S mode
-
bool rightLow
Right channel data in low portion of FIFO
-
bool leftJust
Left justify data in FIFO
-
bool pdmData
Data source is the D-Mic subsystem
-
bool sckPol
SCK polarity
-
bool wsPol
WS polarity
-
uint16_t divider
Flexcomm function clock divider (1 - 4096)
-
bool oneChannel
true mono, false stereo
-
uint8_t dataLength
Data length (4 - 32)
-
uint16_t frameLength
Frame width (4 - 512)
-
uint16_t position
Data position in the frame
-
uint8_t watermark
FIFO trigger level
-
bool txEmptyZero
Transmit zero when buffer becomes empty or last item
-
bool pack48
Packing format for 48-bit data (false - 24 bit values, true - alternating 32-bit and 16-bit values)
-
i2s_master_slave_t masterSlave
-
struct _i2s_transfer
- #include <fsl_i2s.h>
Buffer to transfer from or receive audio data into.
Public Members
-
uint8_t *data
Pointer to data buffer.
-
size_t dataSize
Buffer size in bytes.
-
uint8_t *data
-
struct _i2s_handle
- #include <fsl_i2s.h>
Members not to be accessed / modified outside of the driver.
Public Members
-
volatile uint32_t state
State of transfer
-
i2s_transfer_callback_t completionCallback
Callback function pointer
-
void *userData
Application data passed to callback
-
bool oneChannel
true mono, false stereo
-
uint8_t dataLength
Data length (4 - 32)
-
bool pack48
Packing format for 48-bit data (false - 24 bit values, true - alternating 32-bit and 16-bit values)
-
uint8_t watermark
FIFO trigger level
-
bool useFifo48H
When dataLength 17-24: true use FIFOWR48H, false use FIFOWR
-
volatile i2s_transfer_t i2sQueue[(4U)]
Transfer queue storing transfer buffers
-
volatile uint8_t queueUser
Queue index where user’s next transfer will be stored
-
volatile uint8_t queueDriver
Queue index of buffer actually used by the driver
-
volatile uint32_t errorCount
Number of buffer underruns/overruns
-
volatile uint32_t transferCount
Number of bytes transferred
-
volatile uint32_t state
INPUTMUX: Input Multiplexing Driver
-
FSL_INPUTMUX_DRIVER_VERSION
Group interrupt driver version for SDK.
-
void INPUTMUX_Init(INPUTMUX_Type *base)
Initialize INPUTMUX peripheral.
This function enables the INPUTMUX clock.
- Parameters:
base – Base address of the INPUTMUX peripheral.
- Return values:
None. –
-
void INPUTMUX_AttachSignal(INPUTMUX_Type *base, uint16_t index, inputmux_connection_t connection)
Attaches a signal.
This function attaches multiplexed signals from INPUTMUX to target signals. For example, to attach GPIO PORT0 Pin 5 to PINT peripheral, do the following:
In this example, INTMUX has 8 registers for PINT, PINT_SEL0~PINT_SEL7. With parameterINPUTMUX_AttachSignal(INPUTMUX, 2, kINPUTMUX_GpioPort0Pin5ToPintsel);
index
specified as 2, this function configures register PINT_SEL2.- Parameters:
base – Base address of the INPUTMUX peripheral.
index – The serial number of destination register in the group of INPUTMUX registers with same name.
connection – Applies signal from source signals collection to target signal.
- Return values:
None. –
-
void INPUTMUX_EnableSignal(INPUTMUX_Type *base, inputmux_signal_t signal, bool enable)
Enable/disable a signal.
This function gates the INPUTPMUX clock.
- Parameters:
base – Base address of the INPUTMUX peripheral.
signal – Enable signal register id and bit offset.
enable – Selects enable or disable.
- Return values:
None. –
-
void INPUTMUX_Deinit(INPUTMUX_Type *base)
Deinitialize INPUTMUX peripheral.
This function disables the INPUTMUX clock.
- Parameters:
base – Base address of the INPUTMUX peripheral.
- Return values:
None. –
IAP_KBP Driver
ROM API status codes.
Values:
-
enumerator kStatus_RomApiExecuteCompleted
ROM successfully process the whole sb file/boot image.
-
enumerator kStatus_RomApiNeedMoreData
ROM needs more data to continue processing the boot image.
-
enumerator kStatus_RomApiBufferSizeNotEnough
The user buffer is not enough for use by Kboot during execution of the operation.
-
enumerator kStatus_RomApiInvalidBuffer
The user buffer is not ok for sbloader or authentication.
-
enumerator kStatus_RomApiExecuteCompleted
-
enum _kb_operation
Details of the operation to be performed by the ROM.
The kRomAuthenticateImage operation requires the entire signed image to be available to the application.
Values:
-
enumerator kRomAuthenticateImage
Authenticate a signed image.
-
enumerator kRomLoadImage
Load SB file.
-
enumerator kRomOperationCount
-
enumerator kRomAuthenticateImage
-
enum _kb_security_profile
Security constraint flags, Security profile flags.
Values:
-
enumerator kKbootMinRSA4096
-
enumerator kKbootMinRSA4096
-
typedef enum _kb_operation kb_operation_t
Details of the operation to be performed by the ROM.
The kRomAuthenticateImage operation requires the entire signed image to be available to the application.
-
typedef struct _kb_region kb_region_t
Memory region definition.
-
typedef struct _kb_load_sb kb_load_sb_t
User-provided options passed into kb_init().
The buffer field is a pointer to memory provided by the caller for use by Kboot during execution of the operation. Minimum size is the size of each certificate in the chain plus 432 bytes additional per certificate.
The profile field is a mask that specifies which features are required in the SB file or image being processed. This includes the minimum AES and RSA key sizes. See the _kb_security_profile enum for profile mask constants. The image being loaded or authenticated must match the profile or an error will be returned.
minBuildNumber is an optional field that can be used to prevent version rollback. The API will check the build number of the image, and if it is less than minBuildNumber will fail with an error.
maxImageLength is used to verify the offsetToCertificateBlockHeaderInBytes value at the beginning of a signed image. It should be set to the length of the SB file. If verifying an image in flash, it can be set to the internal flash size or a large number like 0x10000000.
userRHK can optionally be used by the user to override the RHK in IFR. If userRHK is not NULL, it points to a 32-byte array containing the SHA-256 of the root certificate’s RSA public key.
The regions field points to an array of memory regions that the SB file being loaded is allowed to access. If regions is NULL, then all memory is accessible by the SB file. This feature is required to prevent a malicious image from erasing good code or RAM contents while it is being loaded, only for us to find that the image is inauthentic when we hit the end of the section.
overrideSBBootSectionID lets the caller override the default section of the SB file that is processed during a kKbootLoadSB operation. By default, the section specified in the firstBootableSectionID field of the SB header is loaded. If overrideSBBootSectionID is non-zero, then the section with the given ID will be loaded instead.
The userSBKEK field lets a user provide their own AES-256 key for unwrapping keys in an SB file during the kKbootLoadSB operation. userSBKEK should point to a 32-byte AES-256 key. If userSBKEK is NULL then the IFR SBKEK will be used. After kb_init() returns, the caller should zero out the data pointed to by userSBKEK, as the API will have installed the key in the CAU3.
-
typedef struct _kb_authenticate kb_authenticate_t
-
typedef struct _kb_options kb_options_t
-
typedef struct _memory_region_interface memory_region_interface_t
Interface to memory operations for one region of memory.
-
typedef struct _memory_map_entry memory_map_entry_t
Structure of a memory map entry.
-
typedef struct _kb_opaque_session_ref kb_session_ref_t
-
status_t kb_init(kb_session_ref_t **session, const kb_options_t *options)
Initialize ROM API for a given operation.
Inits the ROM API based on the options provided by the application in the second argument. Every call to rom_init() should be paired with a call to rom_deinit().
- Return values:
kStatus_Success – API was executed successfully.
kStatus_InvalidArgument – An invalid argument is provided.
kStatus_RomApiBufferSizeNotEnough – The user buffer is not enough for use by Kboot during execution of the operation.
kStatus_RomApiInvalidBuffer – The user buffer is not ok for sbloader or authentication.
kStatus_SKBOOT_Fail – Return the failed status of secure boot.
kStatus_SKBOOT_KeyStoreMarkerInvalid – The key code for the particular PRINCE region is not present in the keystore
kStatus_SKBOOT_Success – Return the successful status of secure boot.
-
status_t kb_deinit(kb_session_ref_t *session)
Cleans up the ROM API context.
After this call, the context parameter can be reused for another operation by calling rom_init() again.
- Return values:
kStatus_Success – API was executed successfully
-
status_t kb_execute(kb_session_ref_t *session, const uint8_t *data, uint32_t dataLength)
Perform the operation configured during init.
This application must call this API repeatedly, passing in sequential chunks of data from the boot image (SB file) that is to be processed. The ROM will perform the selected operation on this data and return. The application may call this function with as much or as little data as it wishes, which can be used to select the granularity of time given to the application in between executing the operation.
- Parameters:
session – Current ROM context pointer.
data – Buffer of boot image data provided to the ROM by the application.
dataLength – Length in bytes of the data in the buffer provided to the ROM.
- Return values:
kStatus_Success – ROM successfully process the part of sb file/boot image.
kStatus_RomApiExecuteCompleted – ROM successfully process the whole sb file/boot image.
kStatus_Fail – An error occurred while executing the operation.
kStatus_RomApiNeedMoreData – No error occurred, but the ROM needs more data to continue processing the boot image.
kStatus_RomApiBufferSizeNotEnough – user buffer is not enough for use by Kboot during execution of the operation.
-
kStatusGroup_RomApi
ROM API status group number.
-
struct _kb_region
- #include <fsl_iap_kbp.h>
Memory region definition.
-
struct _kb_load_sb
- #include <fsl_iap_kbp.h>
User-provided options passed into kb_init().
The buffer field is a pointer to memory provided by the caller for use by Kboot during execution of the operation. Minimum size is the size of each certificate in the chain plus 432 bytes additional per certificate.
The profile field is a mask that specifies which features are required in the SB file or image being processed. This includes the minimum AES and RSA key sizes. See the _kb_security_profile enum for profile mask constants. The image being loaded or authenticated must match the profile or an error will be returned.
minBuildNumber is an optional field that can be used to prevent version rollback. The API will check the build number of the image, and if it is less than minBuildNumber will fail with an error.
maxImageLength is used to verify the offsetToCertificateBlockHeaderInBytes value at the beginning of a signed image. It should be set to the length of the SB file. If verifying an image in flash, it can be set to the internal flash size or a large number like 0x10000000.
userRHK can optionally be used by the user to override the RHK in IFR. If userRHK is not NULL, it points to a 32-byte array containing the SHA-256 of the root certificate’s RSA public key.
The regions field points to an array of memory regions that the SB file being loaded is allowed to access. If regions is NULL, then all memory is accessible by the SB file. This feature is required to prevent a malicious image from erasing good code or RAM contents while it is being loaded, only for us to find that the image is inauthentic when we hit the end of the section.
overrideSBBootSectionID lets the caller override the default section of the SB file that is processed during a kKbootLoadSB operation. By default, the section specified in the firstBootableSectionID field of the SB header is loaded. If overrideSBBootSectionID is non-zero, then the section with the given ID will be loaded instead.
The userSBKEK field lets a user provide their own AES-256 key for unwrapping keys in an SB file during the kKbootLoadSB operation. userSBKEK should point to a 32-byte AES-256 key. If userSBKEK is NULL then the IFR SBKEK will be used. After kb_init() returns, the caller should zero out the data pointed to by userSBKEK, as the API will have installed the key in the CAU3.
-
struct _kb_authenticate
- #include <fsl_iap_kbp.h>
-
struct _kb_options
- #include <fsl_iap_kbp.h>
Public Members
-
uint32_t version
Should be set to kKbootApiVersion.
-
uint8_t *buffer
Caller-provided buffer used by Kboot.
-
uint32_t version
-
struct _memory_region_interface
- #include <fsl_iap_kbp.h>
Interface to memory operations for one region of memory.
-
struct _memory_map_entry
- #include <fsl_iap_kbp.h>
Structure of a memory map entry.
-
struct _kb_opaque_session_ref
- #include <fsl_iap_kbp.h>
-
union __unnamed11__
Public Members
-
kb_authenticate_t authenticate
-
kb_load_sb_t loadSB
Settings for kKbootAuthenticate operation.
-
kb_authenticate_t authenticate
Common Driver
-
FSL_COMMON_DRIVER_VERSION
common driver version.
-
DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.
-
DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.
-
DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.
-
DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.
-
DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.
-
DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.
-
DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.
-
DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.
-
DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.
-
DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.
-
DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.
-
MIN(a, b)
Computes the minimum of a and b.
-
MAX(a, b)
Computes the maximum of a and b.
-
UINT16_MAX
Max value of uint16_t type.
-
UINT32_MAX
Max value of uint32_t type.
-
SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.
-
SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.
-
SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits specifiled by setBits.
-
SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value same as expected then update newValue to address and return true , else return false .
-
SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.
-
USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value
-
COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond
-
MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value
-
COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond
-
SDK_ISR_EXIT_BARRIER
-
SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment
Macro to define a variable with L2 cache line size alignment
Macro to change a value to a given size aligned value
-
AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.
-
AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.
-
AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.
-
AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.
-
enum _status_groups
Status group numbers.
Values:
-
enumerator kStatusGroup_Generic
Group number for generic status codes.
-
enumerator kStatusGroup_FLASH
Group number for FLASH status codes.
-
enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.
-
enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.
-
enumerator kStatusGroup_DSPI
Group number for DSPI status codes.
-
enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.
-
enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.
-
enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.
-
enumerator kStatusGroup_UART
Group number for UART status codes.
-
enumerator kStatusGroup_I2C
Group number for UART status codes.
-
enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.
-
enumerator kStatusGroup_LPUART
Group number for LPUART status codes.
-
enumerator kStatusGroup_SPI
Group number for SPI status code.
-
enumerator kStatusGroup_XRDC
Group number for XRDC status code.
-
enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.
-
enumerator kStatusGroup_SDHC
Group number for SDHC status code
-
enumerator kStatusGroup_SDMMC
Group number for SDMMC status code
-
enumerator kStatusGroup_SAI
Group number for SAI status code
-
enumerator kStatusGroup_MCG
Group number for MCG status codes.
-
enumerator kStatusGroup_SCG
Group number for SCG status codes.
-
enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.
-
enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes
-
enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes
-
enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes
-
enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes
-
enumerator kStatusGroup_I2S
Group number for I2S status codes
-
enumerator kStatusGroup_IUART
Group number for IUART status codes
-
enumerator kStatusGroup_CSI
Group number for CSI status codes
-
enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes
-
enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.
-
enumerator kStatusGroup_POWER
Group number for POWER status codes.
-
enumerator kStatusGroup_ENET
Group number for ENET status codes.
-
enumerator kStatusGroup_PHY
Group number for PHY status codes.
-
enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.
-
enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.
-
enumerator kStatusGroup_LMEM
Group number for LMEM status codes.
-
enumerator kStatusGroup_QSPI
Group number for QSPI status codes.
-
enumerator kStatusGroup_DMA
Group number for DMA status codes.
-
enumerator kStatusGroup_EDMA
Group number for EDMA status codes.
-
enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.
-
enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.
-
enumerator kStatusGroup_LTC
Group number for LTC status codes.
-
enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.
-
enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.
-
enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.
-
enumerator kStatusGroup_DMIC
Group number for DMIC status codes.
-
enumerator kStatusGroup_SDIF
Group number for SDIF status codes.
-
enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.
-
enumerator kStatusGroup_OTP
Group number for OTP status codes.
-
enumerator kStatusGroup_MCAN
Group number for MCAN status codes.
-
enumerator kStatusGroup_CAAM
Group number for CAAM status codes.
-
enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.
-
enumerator kStatusGroup_USDHC
Group number for USDHC status codes.
-
enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.
-
enumerator kStatusGroup_DCP
Group number for DCP status codes.
-
enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.
-
enumerator kStatusGroup_ESAI
Group number for ESAI status codes.
-
enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.
-
enumerator kStatusGroup_MMDC
Group number for MMDC status codes.
-
enumerator kStatusGroup_PDM
Group number for MIC status codes.
-
enumerator kStatusGroup_SDMA
Group number for SDMA status codes.
-
enumerator kStatusGroup_ICS
Group number for ICS status codes.
-
enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.
-
enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.
-
enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes
-
enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.
-
enumerator kStatusGroup_I3C
Group number for I3C status codes
-
enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.
-
enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.
-
enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.
-
enumerator kStatusGroup_SEMC
Group number for SEMC status codes.
-
enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.
-
enumerator kStatusGroup_IAP
Group number for IAP status codes
-
enumerator kStatusGroup_SFA
Group number for SFA status codes
-
enumerator kStatusGroup_SPC
Group number for SPC status codes.
-
enumerator kStatusGroup_PUF
Group number for PUF status codes.
-
enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes
-
enumerator kStatusGroup_VBAT
Group number for VBAT status codes
-
enumerator kStatusGroup_XSPI
Group number for XSPI status codes
-
enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes
-
enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes
-
enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.
-
enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.
-
enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.
-
enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.
-
enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.
-
enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.
-
enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.
-
enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.
-
enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.
-
enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.
-
enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.
-
enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.
-
enumerator kStatusGroup_LED
Group number for LED status codes.
-
enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.
-
enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.
-
enumerator kStatusGroup_SHELL
Group number for SHELL status codes.
-
enumerator kStatusGroup_MEM_MANAGER
Group number for MEM MANAGER status codes.
-
enumerator kStatusGroup_LIST
Group number for List status codes.
-
enumerator kStatusGroup_OSA
Group number for OSA status codes.
-
enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.
-
enumerator kStatusGroup_MSG
Group number for messaging status codes.
-
enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.
-
enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.
-
enumerator kStatusGroup_CODEC
Group number for codec status codes.
-
enumerator kStatusGroup_ASRC
Group number for codec status ASRC.
-
enumerator kStatusGroup_OTFAD
Group number for codec status codes.
-
enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.
-
enumerator kStatusGroup_MECC
Group number for MECC status codes.
-
enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.
-
enumerator kStatusGroup_LOG
Group number for LOG status codes.
-
enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.
-
enumerator kStatusGroup_QSCI
Group number for QSCI status codes.
-
enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.
-
enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.
-
enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.
-
enumerator kStatusGroup_IPED
Group number for IPED status codes.
-
enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.
-
enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.
-
enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.
-
enumerator kStatusGroup_CLIF
Group number for CLIF status codes.
-
enumerator kStatusGroup_BMA
Group number for BMA status codes.
-
enumerator kStatusGroup_NETC
Group number for NETC status codes.
-
enumerator kStatusGroup_ELE
Group number for ELE status codes.
-
enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.
-
enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.
-
enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.
-
enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.
-
enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.
-
enumerator kStatusGroup_Generic
Generic status return codes.
Values:
-
enumerator kStatus_Success
Generic status for Success.
-
enumerator kStatus_Fail
Generic status for Fail.
-
enumerator kStatus_ReadOnly
Generic status for read only failure.
-
enumerator kStatus_OutOfRange
Generic status for out of range access.
-
enumerator kStatus_InvalidArgument
Generic status for invalid argument check.
-
enumerator kStatus_Timeout
Generic status for timeout.
-
enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.
-
enumerator kStatus_Busy
Generic status for module is busy.
-
enumerator kStatus_NoData
Generic status for no data is found for the operation.
-
enumerator kStatus_Success
-
typedef int32_t status_t
Type used for all status and error return values.
-
void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.
This is provided to support the dynamically allocated memory used in cache-able region.
- Parameters:
size – The length required to malloc.
alignbytes – The alignment size.
- Return values:
The – allocated memory.
-
void SDK_Free(void *ptr)
Free memory.
- Parameters:
ptr – The memory to be release.
-
void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different run-time environments make the time not precise, if precise delay count was needed, please implement a new delay function with hardware timer.
- Parameters:
delayTime_us – Delay time in unit of microsecond.
coreClock_Hz – Core clock frequency with Hz.
-
static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.
Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ number.
- Return values:
kStatus_Success – Interrupt enabled successfully
kStatus_Fail – Failed to enable the interrupt
-
static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.
Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ number.
- Return values:
kStatus_Success – Interrupt disabled successfully
kStatus_Fail – Failed to disable the interrupt
-
static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ to Enable.
priNum – Priority number set to interrupt controller register.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ to set.
priNum – Priority number set to interrupt controller register.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The flag which IRQ to clear.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.
Disable the global interrupt and return the current primask register. User is required to provided the primask register for the EnableGlobalIRQ().
- Returns:
Current primask value.
-
static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.
Set the primask register with the provided primask value but not just enable the primask. The idea is for the convenience of integration of RTOS. some RTOS get its own management mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlobalIRQ() in pair.
- Parameters:
primask – value of primask register to be restored. The primask value is supposed to be provided by the DisableGlobalIRQ().
-
static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t newValue)
-
static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
-
FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.
-
MAKE_STATUS(group, code)
Construct a status code value from a group and code number.
-
MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.
The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit platforms(such as DSC).
| Unused || Major Version || Minor Version || Bug Fix | 31 25 24 17 16 9 8 0
-
ARRAY_SIZE(x)
Computes the number of elements in an array.
-
UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value
-
UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value
-
SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be added at the end of each case section which misses “break;”statement.
-
MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.
-
MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.
LPADC: 12-bit SAR Analog-to-Digital Converter Driver
-
void LPADC_Init(ADC_Type *base, const lpadc_config_t *config)
Initializes the LPADC module.
- Parameters:
base – LPADC peripheral base address.
config – Pointer to configuration structure. See “lpadc_config_t”.
-
void LPADC_GetDefaultConfig(lpadc_config_t *config)
Gets an available pre-defined settings for initial configuration.
This function initializes the converter configuration structure with an available settings. The default values are:
config->enableInDozeMode = true; config->enableAnalogPreliminary = false; config->powerUpDelay = 0x80; config->referenceVoltageSource = kLPADC_ReferenceVoltageAlt1; config->powerLevelMode = kLPADC_PowerLevelAlt1; config->triggerPriorityPolicy = kLPADC_TriggerPriorityPreemptImmediately; config->enableConvPause = false; config->convPauseDelay = 0U; config->FIFOWatermark = 0U;
- Parameters:
config – Pointer to configuration structure.
-
void LPADC_Deinit(ADC_Type *base)
De-initializes the LPADC module.
- Parameters:
base – LPADC peripheral base address.
-
static inline void LPADC_Enable(ADC_Type *base, bool enable)
Switch on/off the LPADC module.
- Parameters:
base – LPADC peripheral base address.
enable – switcher to the module.
-
static inline void LPADC_DoResetFIFO(ADC_Type *base)
Do reset the conversion FIFO.
- Parameters:
base – LPADC peripheral base address.
-
static inline void LPADC_DoResetConfig(ADC_Type *base)
Do reset the module’s configuration.
Reset all ADC internal logic and registers, except the Control Register (ADCx_CTRL).
- Parameters:
base – LPADC peripheral base address.
-
static inline uint32_t LPADC_GetStatusFlags(ADC_Type *base)
Get status flags.
- Parameters:
base – LPADC peripheral base address.
- Returns:
status flags’ mask. See to _lpadc_status_flags.
-
static inline void LPADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clear status flags.
Only the flags can be cleared by writing ADCx_STATUS register would be cleared by this API.
- Parameters:
base – LPADC peripheral base address.
mask – Mask value for flags to be cleared. See to _lpadc_status_flags.
-
static inline uint32_t LPADC_GetTriggerStatusFlags(ADC_Type *base)
Get trigger status flags to indicate which trigger sequences have been completed or interrupted by a high priority trigger exception.
- Parameters:
base – LPADC peripheral base address.
- Returns:
The OR’ed value of _lpadc_trigger_status_flags.
-
static inline void LPADC_ClearTriggerStatusFlags(ADC_Type *base, uint32_t mask)
Clear trigger status flags.
- Parameters:
base – LPADC peripheral base address.
mask – The mask of trigger status flags to be cleared, should be the OR’ed value of _lpadc_trigger_status_flags.
-
static inline void LPADC_EnableInterrupts(ADC_Type *base, uint32_t mask)
Enable interrupts.
- Parameters:
base – LPADC peripheral base address.
mask – Mask value for interrupt events. See to _lpadc_interrupt_enable.
-
static inline void LPADC_DisableInterrupts(ADC_Type *base, uint32_t mask)
Disable interrupts.
- Parameters:
base – LPADC peripheral base address.
mask – Mask value for interrupt events. See to _lpadc_interrupt_enable.
-
static inline void LPADC_EnableFIFOWatermarkDMA(ADC_Type *base, bool enable)
Switch on/off the DMA trigger for FIFO watermark event.
- Parameters:
base – LPADC peripheral base address.
enable – Switcher to the event.
-
static inline uint32_t LPADC_GetConvResultCount(ADC_Type *base)
Get the count of result kept in conversion FIFO.
- Parameters:
base – LPADC peripheral base address.
- Returns:
The count of result kept in conversion FIFO.
-
bool LPADC_GetConvResult(ADC_Type *base, lpadc_conv_result_t *result)
Get the result in conversion FIFO.
- Parameters:
base – LPADC peripheral base address.
result – Pointer to structure variable that keeps the conversion result in conversion FIFO.
- Returns:
Status whether FIFO entry is valid.
-
void LPADC_GetConvResultBlocking(ADC_Type *base, lpadc_conv_result_t *result)
Get the result in conversion FIFO using blocking method.
- Parameters:
base – LPADC peripheral base address.
result – Pointer to structure variable that keeps the conversion result in conversion FIFO.
-
void LPADC_SetConvTriggerConfig(ADC_Type *base, uint32_t triggerId, const lpadc_conv_trigger_config_t *config)
Configure the conversion trigger source.
Each programmable trigger can launch the conversion command in command buffer.
- Parameters:
base – LPADC peripheral base address.
triggerId – ID for each trigger. Typically, the available value range is from 0.
config – Pointer to configuration structure. See to lpadc_conv_trigger_config_t.
-
void LPADC_GetDefaultConvTriggerConfig(lpadc_conv_trigger_config_t *config)
Gets an available pre-defined settings for trigger’s configuration.
This function initializes the trigger’s configuration structure with an available settings. The default values are:
config->targetCommandId = 0U; config->delayPower = 0U; config->priority = 0U; config->channelAFIFOSelect = 0U; config->channelBFIFOSelect = 0U; config->enableHardwareTrigger = false;
- Parameters:
config – Pointer to configuration structure.
-
static inline void LPADC_DoSoftwareTrigger(ADC_Type *base, uint32_t triggerIdMask)
Do software trigger to conversion command.
- Parameters:
base – LPADC peripheral base address.
triggerIdMask – Mask value for software trigger indexes, which count from zero.
-
void LPADC_SetConvCommandConfig(ADC_Type *base, uint32_t commandId, const lpadc_conv_command_config_t *config)
Configure conversion command.
Note
The number of compare value register on different chips is different, that is mean in some chips, some command buffers do not have the compare functionality.
- Parameters:
base – LPADC peripheral base address.
commandId – ID for command in command buffer. Typically, the available value range is 1 - 15.
config – Pointer to configuration structure. See to lpadc_conv_command_config_t.
-
void LPADC_GetDefaultConvCommandConfig(lpadc_conv_command_config_t *config)
Gets an available pre-defined settings for conversion command’s configuration.
This function initializes the conversion command’s configuration structure with an available settings. The default values are:
config->sampleScaleMode = kLPADC_SampleFullScale; config->channelBScaleMode = kLPADC_SampleFullScale; config->sampleChannelMode = kLPADC_SampleChannelSingleEndSideA; config->channelNumber = 0U; config->channelBNumber = 0U; config->chainedNextCommandNumber = 0U; config->enableAutoChannelIncrement = false; config->loopCount = 0U; config->hardwareAverageMode = kLPADC_HardwareAverageCount1; config->sampleTimeMode = kLPADC_SampleTimeADCK3; config->hardwareCompareMode = kLPADC_HardwareCompareDisabled; config->hardwareCompareValueHigh = 0U; config->hardwareCompareValueLow = 0U; config->conversionResolutionMode = kLPADC_ConversionResolutionStandard; config->enableWaitTrigger = false; config->enableChannelB = false;
- Parameters:
config – Pointer to configuration structure.
-
void LPADC_EnableCalibration(ADC_Type *base, bool enable)
Enable the calibration function.
When CALOFS is set, the ADC is configured to perform a calibration function anytime the ADC executes a conversion. Any channel selected is ignored and the value returned in the RESFIFO is a signed value between -31 and 31. -32 is not a valid and is never a returned value. Software should copy the lower 6- bits of the conversion result stored in the RESFIFO after a completed calibration conversion to the OFSTRIM field. The OFSTRIM field is used in normal operation for offset correction.
- Parameters:
base – LPADC peripheral base address.
enable – switcher to the calibration function.
-
static inline void LPADC_SetOffsetValue(ADC_Type *base, uint32_t value)
Set proper offset value to trim ADC.
To minimize the offset during normal operation, software should read the conversion result from the RESFIFO calibration operation and write the lower 6 bits to the OFSTRIM register.
- Parameters:
base – LPADC peripheral base address.
value – Setting offset value.
-
void LPADC_DoAutoCalibration(ADC_Type *base)
Do auto calibration.
Calibration function should be executed before using converter in application. It used the software trigger and a dummy conversion, get the offset and write them into the OFSTRIM register. It called some of functional API including: -LPADC_EnableCalibration(…) -LPADC_LPADC_SetOffsetValue(…) -LPADC_SetConvCommandConfig(…) -LPADC_SetConvTriggerConfig(…)
- Parameters:
base – LPADC peripheral base address.
base – LPADC peripheral base address.
-
static inline void LPADC_SetOffsetValue(ADC_Type *base, int16_t value)
Set trim value for offset.
Note
For 16-bit conversions, each increment is 1/2 LSB resulting in a programmable offset range of -256 LSB to 255.5 LSB; For 12-bit conversions, each increment is 1/32 LSB resulting in a programmable offset range of -16 LSB to 15.96875 LSB.
- Parameters:
base – LPADC peripheral base address.
value – Offset trim value, is a 10-bit signed value between -512 and 511.
-
static inline void LPADC_GetOffsetValue(ADC_Type *base, int16_t *pValue)
Get trim value of offset.
- Parameters:
base – LPADC peripheral base address.
pValue – Pointer to the variable in type of int16_t to store offset value.
-
static inline void LPADC_EnableOffsetCalibration(ADC_Type *base, bool enable)
Enable the offset calibration function.
- Parameters:
base – LPADC peripheral base address.
enable – switcher to the calibration function.
-
static inline void LPADC_SetOffsetCalibrationMode(ADC_Type *base, lpadc_offset_calibration_mode_t mode)
Set offset calibration mode.
- Parameters:
base – LPADC peripheral base address.
mode – set offset calibration mode.see to lpadc_offset_calibration_mode_t .
-
void LPADC_DoOffsetCalibration(ADC_Type *base)
Do offset calibration.
- Parameters:
base – LPADC peripheral base address.
-
void LPADC_PrepareAutoCalibration(ADC_Type *base)
Prepare auto calibration, LPADC_FinishAutoCalibration has to be called before using the LPADC. LPADC_DoAutoCalibration has been split in two API to avoid to be stuck too long in the function.
- Parameters:
base – LPADC peripheral base address.
-
void LPADC_FinishAutoCalibration(ADC_Type *base)
Finish auto calibration start with LPADC_PrepareAutoCalibration.
Note
This feature is used for LPADC with CTRL[CALOFSMODE].
- Parameters:
base – LPADC peripheral base address.
-
void LPADC_GetCalibrationValue(ADC_Type *base, lpadc_calibration_value_t *ptrCalibrationValue)
Get calibration value into the memory which is defined by invoker.
Note
Please note the ADC will be disabled temporary.
Note
This function should be used after finish calibration.
- Parameters:
base – LPADC peripheral base address.
ptrCalibrationValue – Pointer to lpadc_calibration_value_t structure, this memory block should be always powered on even in low power modes.
-
void LPADC_SetCalibrationValue(ADC_Type *base, const lpadc_calibration_value_t *ptrCalibrationValue)
Set calibration value into ADC calibration registers.
Note
Please note the ADC will be disabled temporary.
- Parameters:
base – LPADC peripheral base address.
ptrCalibrationValue – Pointer to lpadc_calibration_value_t structure which contains ADC’s calibration value.
-
FSL_LPADC_DRIVER_VERSION
LPADC driver version 2.9.1.
-
enum _lpadc_status_flags
Define hardware flags of the module.
Values:
-
enumerator kLPADC_ResultFIFO0OverflowFlag
Indicates that more data has been written to the Result FIFO 0 than it can hold.
-
enumerator kLPADC_ResultFIFO0ReadyFlag
Indicates when the number of valid datawords in the result FIFO 0 is greater than the setting watermark level.
-
enumerator kLPADC_TriggerExceptionFlag
Indicates that a trigger exception event has occurred.
-
enumerator kLPADC_TriggerCompletionFlag
Indicates that a trigger completion event has occurred.
-
enumerator kLPADC_CalibrationReadyFlag
Indicates that the calibration process is done.
-
enumerator kLPADC_ActiveFlag
Indicates that the ADC is in active state.
-
enumerator kLPADC_ResultFIFOOverflowFlag
To compilitable with old version, do not recommend using this, please use kLPADC_ResultFIFO0OverflowFlag as instead.
-
enumerator kLPADC_ResultFIFOReadyFlag
To compilitable with old version, do not recommend using this, please use kLPADC_ResultFIFO0ReadyFlag as instead.
-
enumerator kLPADC_ResultFIFO0OverflowFlag
-
enum _lpadc_interrupt_enable
Define interrupt switchers of the module.
Note: LPADC of different chips supports different number of trigger sources, please check the Reference Manual for details.
Values:
-
enumerator kLPADC_ResultFIFO0OverflowInterruptEnable
Configures ADC to generate overflow interrupt requests when FOF0 flag is asserted.
-
enumerator kLPADC_FIFO0WatermarkInterruptEnable
Configures ADC to generate watermark interrupt requests when RDY0 flag is asserted.
-
enumerator kLPADC_ResultFIFOOverflowInterruptEnable
To compilitable with old version, do not recommend using this, please use kLPADC_ResultFIFO0OverflowInterruptEnable as instead.
-
enumerator kLPADC_FIFOWatermarkInterruptEnable
To compilitable with old version, do not recommend using this, please use kLPADC_FIFO0WatermarkInterruptEnable as instead.
-
enumerator kLPADC_TriggerExceptionInterruptEnable
Configures ADC to generate trigger exception interrupt.
-
enumerator kLPADC_Trigger0CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 0 completion.
-
enumerator kLPADC_Trigger1CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 1 completion.
-
enumerator kLPADC_Trigger2CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 2 completion.
-
enumerator kLPADC_Trigger3CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 3 completion.
-
enumerator kLPADC_Trigger4CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 4 completion.
-
enumerator kLPADC_Trigger5CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 5 completion.
-
enumerator kLPADC_Trigger6CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 6 completion.
-
enumerator kLPADC_Trigger7CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 7 completion.
-
enumerator kLPADC_Trigger8CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 8 completion.
-
enumerator kLPADC_Trigger9CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 9 completion.
-
enumerator kLPADC_Trigger10CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 10 completion.
-
enumerator kLPADC_Trigger11CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 11 completion.
-
enumerator kLPADC_Trigger12CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 12 completion.
-
enumerator kLPADC_Trigger13CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 13 completion.
-
enumerator kLPADC_Trigger14CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 14 completion.
-
enumerator kLPADC_Trigger15CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 15 completion.
-
enumerator kLPADC_ResultFIFO0OverflowInterruptEnable
-
enum _lpadc_trigger_status_flags
The enumerator of lpadc trigger status flags, including interrupted flags and completed flags.
Note: LPADC of different chips supports different number of trigger sources, please check the Reference Manual for details.
Values:
-
enumerator kLPADC_Trigger0InterruptedFlag
Trigger 0 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger1InterruptedFlag
Trigger 1 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger2InterruptedFlag
Trigger 2 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger3InterruptedFlag
Trigger 3 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger4InterruptedFlag
Trigger 4 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger5InterruptedFlag
Trigger 5 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger6InterruptedFlag
Trigger 6 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger7InterruptedFlag
Trigger 7 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger8InterruptedFlag
Trigger 8 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger9InterruptedFlag
Trigger 9 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger10InterruptedFlag
Trigger 10 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger11InterruptedFlag
Trigger 11 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger12InterruptedFlag
Trigger 12 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger13InterruptedFlag
Trigger 13 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger14InterruptedFlag
Trigger 14 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger15InterruptedFlag
Trigger 15 is interrupted by a high priority exception.
-
enumerator kLPADC_Trigger0CompletedFlag
Trigger 0 is completed and trigger 0 has enabled completion interrupts.
-
enumerator kLPADC_Trigger1CompletedFlag
Trigger 1 is completed and trigger 1 has enabled completion interrupts.
-
enumerator kLPADC_Trigger2CompletedFlag
Trigger 2 is completed and trigger 2 has enabled completion interrupts.
-
enumerator kLPADC_Trigger3CompletedFlag
Trigger 3 is completed and trigger 3 has enabled completion interrupts.
-
enumerator kLPADC_Trigger4CompletedFlag
Trigger 4 is completed and trigger 4 has enabled completion interrupts.
-
enumerator kLPADC_Trigger5CompletedFlag
Trigger 5 is completed and trigger 5 has enabled completion interrupts.
-
enumerator kLPADC_Trigger6CompletedFlag
Trigger 6 is completed and trigger 6 has enabled completion interrupts.
-
enumerator kLPADC_Trigger7CompletedFlag
Trigger 7 is completed and trigger 7 has enabled completion interrupts.
-
enumerator kLPADC_Trigger8CompletedFlag
Trigger 8 is completed and trigger 8 has enabled completion interrupts.
-
enumerator kLPADC_Trigger9CompletedFlag
Trigger 9 is completed and trigger 9 has enabled completion interrupts.
-
enumerator kLPADC_Trigger10CompletedFlag
Trigger 10 is completed and trigger 10 has enabled completion interrupts.
-
enumerator kLPADC_Trigger11CompletedFlag
Trigger 11 is completed and trigger 11 has enabled completion interrupts.
-
enumerator kLPADC_Trigger12CompletedFlag
Trigger 12 is completed and trigger 12 has enabled completion interrupts.
-
enumerator kLPADC_Trigger13CompletedFlag
Trigger 13 is completed and trigger 13 has enabled completion interrupts.
-
enumerator kLPADC_Trigger14CompletedFlag
Trigger 14 is completed and trigger 14 has enabled completion interrupts.
-
enumerator kLPADC_Trigger15CompletedFlag
Trigger 15 is completed and trigger 15 has enabled completion interrupts.
-
enumerator kLPADC_Trigger0InterruptedFlag
-
enum _lpadc_sample_scale_mode
Define enumeration of sample scale mode.
The sample scale mode is used to reduce the selected ADC analog channel input voltage level by a factor. The maximum possible voltage on the ADC channel input should be considered when selecting a scale mode to ensure that the reducing factor always results voltage level at or below the VREFH reference. This reducing capability allows conversion of analog inputs higher than VREFH. A-side and B-side channel inputs are both scaled using the scale mode.
Values:
-
enumerator kLPADC_SamplePartScale
Use divided input voltage signal. (For scale select,please refer to the reference manual).
-
enumerator kLPADC_SampleFullScale
Full scale (Factor of 1).
-
enumerator kLPADC_SamplePartScale
-
enum _lpadc_sample_channel_mode
Define enumeration of channel sample mode.
The channel sample mode configures the channel with single-end/differential/dual-single-end, side A/B.
Values:
-
enumerator kLPADC_SampleChannelSingleEndSideA
Single-end mode, only A-side channel is converted.
-
enumerator kLPADC_SampleChannelSingleEndSideB
Single-end mode, only B-side channel is converted.
-
enumerator kLPADC_SampleChannelDiffBothSideAB
Differential mode, the ADC result is (CHnA-CHnB).
-
enumerator kLPADC_SampleChannelDiffBothSideBA
Differential mode, the ADC result is (CHnB-CHnA).
-
enumerator kLPADC_SampleChannelDiffBothSide
Differential mode, the ADC result is (CHnA-CHnB).
-
enumerator kLPADC_SampleChannelDualSingleEndBothSide
Dual-Single-Ended Mode. Both A side and B side channels are converted independently.
-
enumerator kLPADC_SampleChannelSingleEndSideA
-
enum _lpadc_hardware_average_mode
Define enumeration of hardware average selection.
It Selects how many ADC conversions are averaged to create the ADC result. An internal storage buffer is used to capture temporary results while the averaging iterations are executed.
Note
Some enumerator values are not available on some devices, mainly depends on the size of AVGS field in CMDH register.
Values:
-
enumerator kLPADC_HardwareAverageCount1
Single conversion.
-
enumerator kLPADC_HardwareAverageCount2
2 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount4
4 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount8
8 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount16
16 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount32
32 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount64
64 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount128
128 conversions averaged.
-
enumerator kLPADC_HardwareAverageCount1
-
enum _lpadc_sample_time_mode
Define enumeration of sample time selection.
The shortest sample time maximizes conversion speed for lower impedance inputs. Extending sample time allows higher impedance inputs to be accurately sampled. Longer sample times can also be used to lower overall power consumption when command looping and sequencing is configured and high conversion rates are not required.
Values:
-
enumerator kLPADC_SampleTimeADCK3
3 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK5
5 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK7
7 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK11
11 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK19
19 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK35
35 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK67
69 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK131
131 ADCK cycles total sample time.
-
enumerator kLPADC_SampleTimeADCK3
-
enum _lpadc_hardware_compare_mode
Define enumeration of hardware compare mode.
After an ADC channel input is sampled and converted and any averaging iterations are performed, this mode setting guides operation of the automatic compare function to optionally only store when the compare operation is true. When compare is enabled, the conversion result is compared to the compare values.
Values:
-
enumerator kLPADC_HardwareCompareDisabled
Compare disabled.
-
enumerator kLPADC_HardwareCompareStoreOnTrue
Compare enabled. Store on true.
-
enumerator kLPADC_HardwareCompareRepeatUntilTrue
Compare enabled. Repeat channel acquisition until true.
-
enumerator kLPADC_HardwareCompareDisabled
-
enum _lpadc_conversion_resolution_mode
Define enumeration of conversion resolution mode.
Configure the resolution bit in specific conversion type. For detailed resolution accuracy, see to lpadc_sample_channel_mode_t
Values:
-
enumerator kLPADC_ConversionResolutionStandard
Standard resolution. Single-ended 12-bit conversion, Differential 13-bit conversion with 2’s complement output.
-
enumerator kLPADC_ConversionResolutionHigh
High resolution. Single-ended 16-bit conversion; Differential 16-bit conversion with 2’s complement output.
-
enumerator kLPADC_ConversionResolutionStandard
-
enum _lpadc_conversion_average_mode
Define enumeration of conversion averages mode.
Configure the converion average number for auto-calibration.
Note
Some enumerator values are not available on some devices, mainly depends on the size of CAL_AVGS field in CTRL register.
Values:
-
enumerator kLPADC_ConversionAverage1
Single conversion.
-
enumerator kLPADC_ConversionAverage2
2 conversions averaged.
-
enumerator kLPADC_ConversionAverage4
4 conversions averaged.
-
enumerator kLPADC_ConversionAverage8
8 conversions averaged.
-
enumerator kLPADC_ConversionAverage16
16 conversions averaged.
-
enumerator kLPADC_ConversionAverage32
32 conversions averaged.
-
enumerator kLPADC_ConversionAverage64
64 conversions averaged.
-
enumerator kLPADC_ConversionAverage128
128 conversions averaged.
-
enumerator kLPADC_ConversionAverage1
-
enum _lpadc_reference_voltage_mode
Define enumeration of reference voltage source.
For detail information, need to check the SoC’s specification.
Values:
-
enumerator kLPADC_ReferenceVoltageAlt1
Option 1 setting.
-
enumerator kLPADC_ReferenceVoltageAlt2
Option 2 setting.
-
enumerator kLPADC_ReferenceVoltageAlt3
Option 3 setting.
-
enumerator kLPADC_ReferenceVoltageAlt1
-
enum _lpadc_power_level_mode
Define enumeration of power configuration.
Configures the ADC for power and performance. In the highest power setting the highest conversion rates will be possible. Refer to the device data sheet for power and performance capabilities for each setting.
Values:
-
enumerator kLPADC_PowerLevelAlt1
Lowest power setting.
-
enumerator kLPADC_PowerLevelAlt2
Next lowest power setting.
-
enumerator kLPADC_PowerLevelAlt3
…
-
enumerator kLPADC_PowerLevelAlt4
Highest power setting.
-
enumerator kLPADC_PowerLevelAlt1
-
enum _lpadc_offset_calibration_mode
Define enumeration of offset calibration mode.
Values:
-
enumerator kLPADC_OffsetCalibration12bitMode
12 bit offset calibration mode.
-
enumerator kLPADC_OffsetCalibration16bitMode
16 bit offset calibration mode.
-
enumerator kLPADC_OffsetCalibration12bitMode
-
enum _lpadc_trigger_priority_policy
Define enumeration of trigger priority policy.
This selection controls how higher priority triggers are handled.
Note
kLPADC_TriggerPriorityPreemptSubsequently is not available on some devices, mainly depends on the size of TPRICTRL field in CFG register.
Values:
-
enumerator kLPADC_ConvPreemptImmediatelyNotAutoResumed
If a higher priority trigger is detected during command processing, the current conversion is aborted and the new command specified by the trigger is started, when higher priority conversion finishes, the preempted conversion is not automatically resumed or restarted.
-
enumerator kLPADC_ConvPreemptSoftlyNotAutoResumed
If a higher priority trigger is received during command processing, the current conversion is completed (including averaging iterations and compare function if enabled) and stored to the result FIFO before the higher priority trigger/command is initiated, when higher priority conversion finishes, the preempted conversion is not resumed or restarted.
-
enumerator kLPADC_ConvPreemptImmediatelyAutoRestarted
If a higher priority trigger is detected during command processing, the current conversion is aborted and the new command specified by the trigger is started, when higher priority conversion finishes, the preempted conversion will automatically be restarted.
-
enumerator kLPADC_ConvPreemptSoftlyAutoRestarted
If a higher priority trigger is received during command processing, the current conversion is completed (including averaging iterations and compare function if enabled) and stored to the result FIFO before the higher priority trigger/command is initiated, when higher priority conversion finishes, the preempted conversion will automatically be restarted.
-
enumerator kLPADC_ConvPreemptImmediatelyAutoResumed
If a higher priority trigger is detected during command processing, the current conversion is aborted and the new command specified by the trigger is started, when higher priority conversion finishes, the preempted conversion will automatically be resumed.
-
enumerator kLPADC_ConvPreemptSoftlyAutoResumed
If a higher priority trigger is received during command processing, the current conversion is completed (including averaging iterations and compare function if enabled) and stored to the result FIFO before the higher priority trigger/command is initiated, when higher priority conversion finishes, the preempted conversion will be automatically be resumed.
-
enumerator kLPADC_TriggerPriorityPreemptImmediately
Legacy support is not recommended as it only ensures compatibility with older versions.
-
enumerator kLPADC_TriggerPriorityPreemptSoftly
Legacy support is not recommended as it only ensures compatibility with older versions.
-
enumerator kLPADC_TriggerPriorityExceptionDisabled
High priority trigger exception disabled.
-
enumerator kLPADC_ConvPreemptImmediatelyNotAutoResumed
-
typedef enum _lpadc_sample_scale_mode lpadc_sample_scale_mode_t
Define enumeration of sample scale mode.
The sample scale mode is used to reduce the selected ADC analog channel input voltage level by a factor. The maximum possible voltage on the ADC channel input should be considered when selecting a scale mode to ensure that the reducing factor always results voltage level at or below the VREFH reference. This reducing capability allows conversion of analog inputs higher than VREFH. A-side and B-side channel inputs are both scaled using the scale mode.
-
typedef enum _lpadc_sample_channel_mode lpadc_sample_channel_mode_t
Define enumeration of channel sample mode.
The channel sample mode configures the channel with single-end/differential/dual-single-end, side A/B.
-
typedef enum _lpadc_hardware_average_mode lpadc_hardware_average_mode_t
Define enumeration of hardware average selection.
It Selects how many ADC conversions are averaged to create the ADC result. An internal storage buffer is used to capture temporary results while the averaging iterations are executed.
Note
Some enumerator values are not available on some devices, mainly depends on the size of AVGS field in CMDH register.
-
typedef enum _lpadc_sample_time_mode lpadc_sample_time_mode_t
Define enumeration of sample time selection.
The shortest sample time maximizes conversion speed for lower impedance inputs. Extending sample time allows higher impedance inputs to be accurately sampled. Longer sample times can also be used to lower overall power consumption when command looping and sequencing is configured and high conversion rates are not required.
-
typedef enum _lpadc_hardware_compare_mode lpadc_hardware_compare_mode_t
Define enumeration of hardware compare mode.
After an ADC channel input is sampled and converted and any averaging iterations are performed, this mode setting guides operation of the automatic compare function to optionally only store when the compare operation is true. When compare is enabled, the conversion result is compared to the compare values.
-
typedef enum _lpadc_conversion_resolution_mode lpadc_conversion_resolution_mode_t
Define enumeration of conversion resolution mode.
Configure the resolution bit in specific conversion type. For detailed resolution accuracy, see to lpadc_sample_channel_mode_t
-
typedef enum _lpadc_conversion_average_mode lpadc_conversion_average_mode_t
Define enumeration of conversion averages mode.
Configure the converion average number for auto-calibration.
Note
Some enumerator values are not available on some devices, mainly depends on the size of CAL_AVGS field in CTRL register.
-
typedef enum _lpadc_reference_voltage_mode lpadc_reference_voltage_source_t
Define enumeration of reference voltage source.
For detail information, need to check the SoC’s specification.
-
typedef enum _lpadc_power_level_mode lpadc_power_level_mode_t
Define enumeration of power configuration.
Configures the ADC for power and performance. In the highest power setting the highest conversion rates will be possible. Refer to the device data sheet for power and performance capabilities for each setting.
-
typedef enum _lpadc_offset_calibration_mode lpadc_offset_calibration_mode_t
Define enumeration of offset calibration mode.
-
typedef enum _lpadc_trigger_priority_policy lpadc_trigger_priority_policy_t
Define enumeration of trigger priority policy.
This selection controls how higher priority triggers are handled.
Note
kLPADC_TriggerPriorityPreemptSubsequently is not available on some devices, mainly depends on the size of TPRICTRL field in CFG register.
-
typedef struct _lpadc_calibration_value lpadc_calibration_value_t
A structure of calibration value.
-
ADC_OFSTRIM_OFSTRIM_MAX
-
ADC_OFSTRIM_OFSTRIM_SIGN
-
LPADC_GET_ACTIVE_COMMAND_STATUS(statusVal)
Define the MACRO function to get command status from status value.
The statusVal is the return value from LPADC_GetStatusFlags().
-
LPADC_GET_ACTIVE_TRIGGER_STATUE(statusVal)
Define the MACRO function to get trigger status from status value.
The statusVal is the return value from LPADC_GetStatusFlags().
-
struct lpadc_config_t
- #include <fsl_lpadc.h>
LPADC global configuration.
This structure would used to keep the settings for initialization.
Public Members
-
bool enableInternalClock
Enables the internally generated clock source. The clock source is used in clock selection logic at the chip level and is optionally used for the ADC clock source.
-
bool enableVref1LowVoltage
If voltage reference option1 input is below 1.8V, it should be “true”. If voltage reference option1 input is above 1.8V, it should be “false”.
-
bool enableInDozeMode
Control system transition to Stop and Wait power modes while ADC is converting. When enabled in Doze mode, immediate entries to Wait or Stop are allowed. When disabled, the ADC will wait for the current averaging iteration/FIFO storage to complete before acknowledging stop or wait mode entry.
-
lpadc_conversion_average_mode_t conversionAverageMode
Auto-Calibration Averages.
-
bool enableAnalogPreliminary
ADC analog circuits are pre-enabled and ready to execute conversions without startup delays(at the cost of higher DC current consumption).
-
uint32_t powerUpDelay
When the analog circuits are not pre-enabled, the ADC analog circuits are only powered while the ADC is active and there is a counted delay defined by this field after an initial trigger transitions the ADC from its Idle state to allow time for the analog circuits to stabilize. The startup delay count of (powerUpDelay * 4) ADCK cycles must result in a longer delay than the analog startup time.
-
lpadc_reference_voltage_source_t referenceVoltageSource
Selects the voltage reference high used for conversions.
-
lpadc_power_level_mode_t powerLevelMode
Power Configuration Selection.
-
lpadc_trigger_priority_policy_t triggerPriorityPolicy
Control how higher priority triggers are handled, see to lpadc_trigger_priority_policy_t.
-
bool enableConvPause
Enables the ADC pausing function. When enabled, a programmable delay is inserted during command execution sequencing between LOOP iterations, between commands in a sequence, and between conversions when command is executing in “Compare Until True” configuration.
-
uint32_t convPauseDelay
Controls the duration of pausing during command execution sequencing. The pause delay is a count of (convPauseDelay*4) ADCK cycles. Only available when ADC pausing function is enabled. The available value range is in 9-bit.
-
uint32_t FIFOWatermark
FIFOWatermark is a programmable threshold setting. When the number of datawords stored in the ADC Result FIFO is greater than the value in this field, the ready flag would be asserted to indicate stored data has reached the programmable threshold.
-
bool enableInternalClock
-
struct lpadc_conv_command_config_t
- #include <fsl_lpadc.h>
Define structure to keep the configuration for conversion command.
Public Members
-
lpadc_sample_scale_mode_t sampleScaleMode
Sample scale mode.
-
lpadc_sample_scale_mode_t channelBScaleMode
Alternate channe B Scale mode.
-
lpadc_sample_channel_mode_t sampleChannelMode
Channel sample mode.
-
uint32_t channelNumber
Channel number, select the channel or channel pair.
-
uint32_t channelBNumber
Alternate Channel B number, select the channel.
-
uint32_t chainedNextCommandNumber
Selects the next command to be executed after this command completes. 1-15 is available, 0 is to terminate the chain after this command.
-
bool enableAutoChannelIncrement
Loop with increment: when disabled, the “loopCount” field selects the number of times the selected channel is converted consecutively; when enabled, the “loopCount” field defines how many consecutive channels are converted as part of the command execution.
-
uint32_t loopCount
Selects how many times this command executes before finish and transition to the next command or Idle state. Command executes LOOP+1 times. 0-15 is available.
-
lpadc_hardware_average_mode_t hardwareAverageMode
Hardware average selection.
-
lpadc_sample_time_mode_t sampleTimeMode
Sample time selection.
-
lpadc_hardware_compare_mode_t hardwareCompareMode
Hardware compare selection.
-
uint32_t hardwareCompareValueHigh
Compare Value High. The available value range is in 16-bit.
-
uint32_t hardwareCompareValueLow
Compare Value Low. The available value range is in 16-bit.
-
lpadc_conversion_resolution_mode_t conversionResolutionMode
Conversion resolution mode.
-
bool enableWaitTrigger
Wait for trigger assertion before execution: when disabled, this command will be automatically executed; when enabled, the active trigger must be asserted again before executing this command.
-
lpadc_sample_scale_mode_t sampleScaleMode
-
struct lpadc_conv_trigger_config_t
- #include <fsl_lpadc.h>
Define structure to keep the configuration for conversion trigger.
Public Members
-
uint32_t targetCommandId
Select the command from command buffer to execute upon detect of the associated trigger event.
-
uint32_t delayPower
Select the trigger delay duration to wait at the start of servicing a trigger event. When this field is clear, then no delay is incurred. When this field is set to a non-zero value, the duration for the delay is 2^delayPower ADCK cycles. The available value range is 4-bit.
-
uint32_t priority
Sets the priority of the associated trigger source. If two or more triggers have the same priority level setting, the lower order trigger event has the higher priority. The lower value for this field is for the higher priority, the available value range is 1-bit.
-
bool enableHardwareTrigger
Enable hardware trigger source to initiate conversion on the rising edge of the input trigger source or not. THe software trigger is always available.
-
uint32_t targetCommandId
-
struct lpadc_conv_result_t
- #include <fsl_lpadc.h>
Define the structure to keep the conversion result.
Public Members
-
uint32_t commandIdSource
Indicate the command buffer being executed that generated this result.
-
uint32_t loopCountIndex
Indicate the loop count value during command execution that generated this result.
-
uint32_t triggerIdSource
Indicate the trigger source that initiated a conversion and generated this result.
-
uint16_t convValue
Data result.
-
uint32_t commandIdSource
-
struct _lpadc_calibration_value
- #include <fsl_lpadc.h>
A structure of calibration value.
GPIO: General Purpose I/O
-
void GPIO_PortInit(GPIO_Type *base, uint32_t port)
Initializes the GPIO peripheral.
This function ungates the GPIO clock.
- Parameters:
base – GPIO peripheral base pointer.
port – GPIO port number.
-
void GPIO_PinInit(GPIO_Type *base, uint32_t port, uint32_t pin, const gpio_pin_config_t *config)
Initializes a GPIO pin used by the board.
To initialize the GPIO, define a pin configuration, either input or output, in the user file. Then, call the GPIO_PinInit() function.
This is an example to define an input pin or output pin configuration:
Define a digital input pin configuration, gpio_pin_config_t config = { kGPIO_DigitalInput, 0, } Define a digital output pin configuration, gpio_pin_config_t config = { kGPIO_DigitalOutput, 0, }
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
pin – GPIO pin number
config – GPIO pin configuration pointer
-
static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t port, uint32_t pin, uint8_t output)
Sets the output level of the one GPIO pin to the logic 1 or 0.
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
pin – GPIO pin number
output – GPIO pin output logic level.
0: corresponding pin output low-logic level.
1: corresponding pin output high-logic level.
-
static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t port, uint32_t pin)
Reads the current input value of the GPIO PIN.
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
pin – GPIO pin number
- Return values:
GPIO – port input value
0: corresponding pin input low-logic level.
1: corresponding pin input high-logic level.
-
FSL_GPIO_DRIVER_VERSION
LPC GPIO driver version.
-
enum _gpio_pin_direction
LPC GPIO direction definition.
Values:
-
enumerator kGPIO_DigitalInput
Set current pin as digital input
-
enumerator kGPIO_DigitalOutput
Set current pin as digital output
-
enumerator kGPIO_DigitalInput
-
typedef enum _gpio_pin_direction gpio_pin_direction_t
LPC GPIO direction definition.
-
typedef struct _gpio_pin_config gpio_pin_config_t
The GPIO pin configuration structure.
Every pin can only be configured as either output pin or input pin at a time. If configured as a input pin, then leave the outputConfig unused.
-
static inline void GPIO_PortSet(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
mask – GPIO pin number macro
-
static inline void GPIO_PortClear(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
mask – GPIO pin number macro
-
static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t port, uint32_t mask)
Reverses current output logic of the multiple GPIO pins.
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
mask – GPIO pin number macro
-
struct _gpio_pin_config
- #include <fsl_gpio.h>
The GPIO pin configuration structure.
Every pin can only be configured as either output pin or input pin at a time. If configured as a input pin, then leave the outputConfig unused.
Public Members
-
gpio_pin_direction_t pinDirection
GPIO direction, input or output
-
uint8_t outputLogic
Set default output logic, no use in input
-
gpio_pin_direction_t pinDirection
IOCON: I/O pin configuration
-
FSL_IOCON_DRIVER_VERSION
IOCON driver version.
-
typedef struct _iocon_group iocon_group_t
Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.
- __STATIC_INLINE void IOCON_PinMuxSet (IOCON_Type *base, uint8_t port, uint8_t pin, uint32_t modefunc)
Sets I/O Control pin mux.
- Parameters:
base – : The base of IOCON peripheral on the chip
port – : GPIO port to mux
pin – : GPIO pin to mux
modefunc – : OR’ed values of type IOCON_*
- Returns:
Nothing
- __STATIC_INLINE void IOCON_SetPinMuxing (IOCON_Type *base, const iocon_group_t *pinArray, uint32_t arrayLength)
Set all I/O Control pin muxing.
- Parameters:
base – : The base of IOCON peripheral on the chip
pinArray – : Pointer to array of pin mux selections
arrayLength – : Number of entries in pinArray
- Returns:
Nothing
-
FSL_COMPONENT_ID
-
IOCON_FUNC0
IOCON function and mode selection definitions.
Note
See the User Manual for specific modes and functions supported by the various pins. Selects pin function 0
-
IOCON_FUNC1
Selects pin function 1
-
IOCON_FUNC2
Selects pin function 2
-
IOCON_FUNC3
Selects pin function 3
-
IOCON_FUNC4
Selects pin function 4
-
IOCON_FUNC5
Selects pin function 5
-
IOCON_FUNC6
Selects pin function 6
-
IOCON_FUNC7
Selects pin function 7
-
struct _iocon_group
- #include <fsl_iocon.h>
Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.
MRT: Multi-Rate Timer
-
void MRT_Init(MRT_Type *base, const mrt_config_t *config)
Ungates the MRT clock and configures the peripheral for basic operation.
Note
This API should be called at the beginning of the application using the MRT driver.
- Parameters:
base – Multi-Rate timer peripheral base address
config – Pointer to user’s MRT config structure. If MRT has MULTITASK bit field in MODCFG reigster, param config is useless.
-
void MRT_Deinit(MRT_Type *base)
Gate the MRT clock.
- Parameters:
base – Multi-Rate timer peripheral base address
-
static inline void MRT_GetDefaultConfig(mrt_config_t *config)
Fill in the MRT config struct with the default settings.
The default values are:
config->enableMultiTask = false;
- Parameters:
config – Pointer to user’s MRT config structure.
-
static inline void MRT_SetupChannelMode(MRT_Type *base, mrt_chnl_t channel, const mrt_timer_mode_t mode)
Sets up an MRT channel mode.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Channel that is being configured.
mode – Timer mode to use for the channel.
-
static inline void MRT_EnableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Enables the MRT interrupt.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
mask – The interrupts to enable. This is a logical OR of members of the enumeration mrt_interrupt_enable_t
-
static inline void MRT_DisableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Disables the selected MRT interrupt.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
mask – The interrupts to disable. This is a logical OR of members of the enumeration mrt_interrupt_enable_t
-
static inline uint32_t MRT_GetEnabledInterrupts(MRT_Type *base, mrt_chnl_t channel)
Gets the enabled MRT interrupts.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration mrt_interrupt_enable_t
-
static inline uint32_t MRT_GetStatusFlags(MRT_Type *base, mrt_chnl_t channel)
Gets the MRT status flags.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
- Returns:
The status flags. This is the logical OR of members of the enumeration mrt_status_flags_t
-
static inline void MRT_ClearStatusFlags(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Clears the MRT status flags.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
mask – The status flags to clear. This is a logical OR of members of the enumeration mrt_status_flags_t
-
void MRT_UpdateTimerPeriod(MRT_Type *base, mrt_chnl_t channel, uint32_t count, bool immediateLoad)
Used to update the timer period in units of count.
The new value will be immediately loaded or will be loaded at the end of the current time interval. For one-shot interrupt mode the new value will be immediately loaded.
Note
User can call the utility macros provided in fsl_common.h to convert to ticks
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
count – Timer period in units of ticks
immediateLoad – true: Load the new value immediately into the TIMER register; false: Load the new value at the end of current timer interval
-
static inline uint32_t MRT_GetCurrentTimerCount(MRT_Type *base, mrt_chnl_t channel)
Reads the current timer counting value.
This function returns the real-time timer counting value, in a range from 0 to a timer period.
Note
User can call the utility macros provided in fsl_common.h to convert ticks to usec or msec
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
- Returns:
Current timer counting value in ticks
-
static inline void MRT_StartTimer(MRT_Type *base, mrt_chnl_t channel, uint32_t count)
Starts the timer counting.
After calling this function, timers load period value, counts down to 0 and depending on the timer mode it will either load the respective start value again or stop.
Note
User can call the utility macros provided in fsl_common.h to convert to ticks
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number.
count – Timer period in units of ticks. Count can contain the LOAD bit, which control the force load feature.
-
static inline void MRT_StopTimer(MRT_Type *base, mrt_chnl_t channel)
Stops the timer counting.
This function stops the timer from counting.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number.
-
static inline uint32_t MRT_GetIdleChannel(MRT_Type *base)
Find the available channel.
This function returns the lowest available channel number.
- Parameters:
base – Multi-Rate timer peripheral base address
-
static inline void MRT_ReleaseChannel(MRT_Type *base, mrt_chnl_t channel)
Release the channel when the timer is using the multi-task mode.
In multi-task mode, the INUSE flags allow more control over when MRT channels are released for further use. The user can hold on to a channel acquired by calling MRT_GetIdleChannel() for as long as it is needed and release it by calling this function. This removes the need to ask for an available channel for every use.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number.
-
FSL_MRT_DRIVER_VERSION
-
enum _mrt_chnl
List of MRT channels.
Values:
-
enumerator kMRT_Channel_0
MRT channel number 0
-
enumerator kMRT_Channel_1
MRT channel number 1
-
enumerator kMRT_Channel_2
MRT channel number 2
-
enumerator kMRT_Channel_3
MRT channel number 3
-
enumerator kMRT_Channel_0
-
enum _mrt_timer_mode
List of MRT timer modes.
Values:
-
enumerator kMRT_RepeatMode
Repeat Interrupt mode
-
enumerator kMRT_OneShotMode
One-shot Interrupt mode
-
enumerator kMRT_OneShotStallMode
One-shot stall mode
-
enumerator kMRT_RepeatMode
-
enum _mrt_interrupt_enable
List of MRT interrupts.
Values:
-
enumerator kMRT_TimerInterruptEnable
Timer interrupt enable
-
enumerator kMRT_TimerInterruptEnable
-
enum _mrt_status_flags
List of MRT status flags.
Values:
-
enumerator kMRT_TimerInterruptFlag
Timer interrupt flag
-
enumerator kMRT_TimerRunFlag
Indicates state of the timer
-
enumerator kMRT_TimerInterruptFlag
-
typedef enum _mrt_chnl mrt_chnl_t
List of MRT channels.
-
typedef enum _mrt_timer_mode mrt_timer_mode_t
List of MRT timer modes.
-
typedef enum _mrt_interrupt_enable mrt_interrupt_enable_t
List of MRT interrupts.
-
typedef enum _mrt_status_flags mrt_status_flags_t
List of MRT status flags.
-
typedef struct _mrt_config mrt_config_t
MRT configuration structure.
This structure holds the configuration settings for the MRT peripheral. To initialize this structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a pointer to your config structure instance.
The config struct can be made const so it resides in flash
-
struct _mrt_config
- #include <fsl_mrt.h>
MRT configuration structure.
This structure holds the configuration settings for the MRT peripheral. To initialize this structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a pointer to your config structure instance.
The config struct can be made const so it resides in flash
Public Members
-
bool enableMultiTask
true: Timers run in multi-task mode; false: Timers run in hardware status mode
-
bool enableMultiTask
OSTIMER: OS Event Timer Driver
-
void OSTIMER_Init(OSTIMER_Type *base)
Initializes an OSTIMER by turning its bus clock on.
-
void OSTIMER_Deinit(OSTIMER_Type *base)
Deinitializes a OSTIMER instance.
This function shuts down OSTIMER bus clock
- Parameters:
base – OSTIMER peripheral base address.
-
uint64_t OSTIMER_GrayToDecimal(uint64_t gray)
Translate the value from gray-code to decimal.
- Parameters:
gray – The gray value input.
- Returns:
The decimal value.
-
static inline uint64_t OSTIMER_DecimalToGray(uint64_t dec)
Translate the value from decimal to gray-code.
- Parameters:
dec – The decimal value.
- Returns:
The gray code of the input value.
-
uint32_t OSTIMER_GetStatusFlags(OSTIMER_Type *base)
Get OSTIMER status Flags.
This returns the status flag. Currently, only match interrupt flag can be got.
- Parameters:
base – OSTIMER peripheral base address.
- Returns:
status register value
-
void OSTIMER_ClearStatusFlags(OSTIMER_Type *base, uint32_t mask)
Clear Status Interrupt Flags.
This clears intrrupt status flag. Currently, only match interrupt flag can be cleared.
- Parameters:
base – OSTIMER peripheral base address.
mask – Clear bit mask.
- Returns:
none
-
status_t OSTIMER_SetMatchRawValue(OSTIMER_Type *base, uint64_t count, ostimer_callback_t cb)
Set the match raw value for OSTIMER.
This function will set a match value for OSTIMER with an optional callback. And this callback will be called while the data in dedicated pair match register is equals to the value of central EVTIMER. Please note that, the data format is gray-code, if decimal data was desired, please using OSTIMER_SetMatchValue().
- Parameters:
base – OSTIMER peripheral base address.
count – OSTIMER timer match value.(Value is gray-code format)
cb – OSTIMER callback (can be left as NULL if none, otherwise should be a void func(void)).
- Return values:
kStatus_Success – - Set match raw value and enable interrupt Successfully.
kStatus_Fail – - Set match raw value fail.
-
status_t OSTIMER_SetMatchValue(OSTIMER_Type *base, uint64_t count, ostimer_callback_t cb)
Set the match value for OSTIMER.
This function will set a match value for OSTIMER with an optional callback. And this callback will be called while the data in dedicated pair match register is equals to the value of central OS TIMER.
- Parameters:
base – OSTIMER peripheral base address.
count – OSTIMER timer match value.(Value is decimal format, and this value will be translate to Gray code internally.)
cb – OSTIMER callback (can be left as NULL if none, otherwise should be a void func(void)).
- Return values:
kStatus_Success – - Set match value and enable interrupt Successfully.
kStatus_Fail – - Set match value fail.
-
static inline void OSTIMER_SetMatchRegister(OSTIMER_Type *base, uint64_t value)
Set value to OSTIMER MATCH register directly.
This function writes the input value to OSTIMER MATCH register directly, it does not touch any other registers. Note that, the data format is gray-code. The function OSTIMER_DecimalToGray could convert decimal value to gray code.
- Parameters:
base – OSTIMER peripheral base address.
value – OSTIMER timer match value (Value is gray-code format).
-
static inline void OSTIMER_EnableMatchInterrupt(OSTIMER_Type *base)
Enable the OSTIMER counter match interrupt.
Enable the timer counter match interrupt. The interrupt happens when OSTIMER counter matches the value in MATCH registers.
- Parameters:
base – OSTIMER peripheral base address.
-
static inline void OSTIMER_DisableMatchInterrupt(OSTIMER_Type *base)
Disable the OSTIMER counter match interrupt.
Disable the timer counter match interrupt. The interrupt happens when OSTIMER counter matches the value in MATCH registers.
- Parameters:
base – OSTIMER peripheral base address.
-
static inline uint64_t OSTIMER_GetCurrentTimerRawValue(OSTIMER_Type *base)
Get current timer raw count value from OSTIMER.
This function will get a gray code type timer count value from OS timer register. The raw value of timer count is gray code format.
- Parameters:
base – OSTIMER peripheral base address.
- Returns:
Raw value of OSTIMER, gray code format.
-
uint64_t OSTIMER_GetCurrentTimerValue(OSTIMER_Type *base)
Get current timer count value from OSTIMER.
This function will get a decimal timer count value. The RAW value of timer count is gray code format, will be translated to decimal data internally.
- Parameters:
base – OSTIMER peripheral base address.
- Returns:
Value of OSTIMER which will be formated to decimal value.
-
static inline uint64_t OSTIMER_GetCaptureRawValue(OSTIMER_Type *base)
Get the capture value from OSTIMER.
This function will get a captured gray-code value from OSTIMER. The Raw value of timer capture is gray code format.
- Parameters:
base – OSTIMER peripheral base address.
- Returns:
Raw value of capture register, data format is gray code.
-
uint64_t OSTIMER_GetCaptureValue(OSTIMER_Type *base)
Get the capture value from OSTIMER.
This function will get a capture decimal-value from OSTIMER. The RAW value of timer capture is gray code format, will be translated to decimal data internally.
- Parameters:
base – OSTIMER peripheral base address.
- Returns:
Value of capture register, data format is decimal.
-
void OSTIMER_HandleIRQ(OSTIMER_Type *base, ostimer_callback_t cb)
OS timer interrupt Service Handler.
This function handles the interrupt and refers to the callback array in the driver to callback user (as per request in OSTIMER_SetMatchValue()). if no user callback is scheduled, the interrupt will simply be cleared.
- Parameters:
base – OS timer peripheral base address.
cb – callback scheduled for this instance of OS timer
- Returns:
none
-
FSL_OSTIMER_DRIVER_VERSION
OSTIMER driver version.
-
enum _ostimer_flags
OSTIMER status flags.
Values:
-
enumerator kOSTIMER_MatchInterruptFlag
Match interrupt flag bit, sets if the match value was reached.
-
enumerator kOSTIMER_MatchInterruptFlag
-
typedef void (*ostimer_callback_t)(void)
ostimer callback function.
PINT: Pin Interrupt and Pattern Match Driver
-
FSL_PINT_DRIVER_VERSION
-
enum _pint_pin_enable
PINT Pin Interrupt enable type.
Values:
-
enumerator kPINT_PinIntEnableNone
Do not generate Pin Interrupt
-
enumerator kPINT_PinIntEnableRiseEdge
Generate Pin Interrupt on rising edge
-
enumerator kPINT_PinIntEnableFallEdge
Generate Pin Interrupt on falling edge
-
enumerator kPINT_PinIntEnableBothEdges
Generate Pin Interrupt on both edges
-
enumerator kPINT_PinIntEnableLowLevel
Generate Pin Interrupt on low level
-
enumerator kPINT_PinIntEnableHighLevel
Generate Pin Interrupt on high level
-
enumerator kPINT_PinIntEnableNone
-
enum _pint_int
PINT Pin Interrupt type.
Values:
-
enumerator kPINT_PinInt0
Pin Interrupt 0
-
enumerator kPINT_SecPinInt0
Secure Pin Interrupt 0
-
enumerator kPINT_PinInt0
-
enum _pint_pmatch_input_src
PINT Pattern Match bit slice input source type.
Values:
-
enumerator kPINT_PatternMatchInp0Src
Input source 0
-
enumerator kPINT_PatternMatchInp1Src
Input source 1
-
enumerator kPINT_PatternMatchInp2Src
Input source 2
-
enumerator kPINT_PatternMatchInp3Src
Input source 3
-
enumerator kPINT_PatternMatchInp4Src
Input source 4
-
enumerator kPINT_PatternMatchInp5Src
Input source 5
-
enumerator kPINT_PatternMatchInp6Src
Input source 6
-
enumerator kPINT_PatternMatchInp7Src
Input source 7
-
enumerator kPINT_SecPatternMatchInp0Src
Input source 0
-
enumerator kPINT_SecPatternMatchInp1Src
Input source 1
-
enumerator kPINT_PatternMatchInp0Src
-
enum _pint_pmatch_bslice
PINT Pattern Match bit slice type.
Values:
-
enumerator kPINT_PatternMatchBSlice0
Bit slice 0
-
enumerator kPINT_SecPatternMatchBSlice0
Bit slice 0
-
enumerator kPINT_PatternMatchBSlice0
-
enum _pint_pmatch_bslice_cfg
PINT Pattern Match configuration type.
Values:
-
enumerator kPINT_PatternMatchAlways
Always Contributes to product term match
-
enumerator kPINT_PatternMatchStickyRise
Sticky Rising edge
-
enumerator kPINT_PatternMatchStickyFall
Sticky Falling edge
-
enumerator kPINT_PatternMatchStickyBothEdges
Sticky Rising or Falling edge
-
enumerator kPINT_PatternMatchHigh
High level
-
enumerator kPINT_PatternMatchLow
Low level
-
enumerator kPINT_PatternMatchNever
Never contributes to product term match
-
enumerator kPINT_PatternMatchBothEdges
Either rising or falling edge
-
enumerator kPINT_PatternMatchAlways
-
typedef enum _pint_pin_enable pint_pin_enable_t
PINT Pin Interrupt enable type.
-
typedef enum _pint_int pint_pin_int_t
PINT Pin Interrupt type.
-
typedef enum _pint_pmatch_input_src pint_pmatch_input_src_t
PINT Pattern Match bit slice input source type.
-
typedef enum _pint_pmatch_bslice pint_pmatch_bslice_t
PINT Pattern Match bit slice type.
-
typedef enum _pint_pmatch_bslice_cfg pint_pmatch_bslice_cfg_t
PINT Pattern Match configuration type.
-
typedef void (*pint_cb_t)(pint_pin_int_t pintr, uint32_t pmatch_status)
PINT Callback function.
-
typedef struct _pint_pmatch_cfg pint_pmatch_cfg_t
-
void PINT_Init(PINT_Type *base)
Initialize PINT peripheral.
This function initializes the PINT peripheral and enables the clock.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
void PINT_PinInterruptConfig(PINT_Type *base, pint_pin_int_t intr, pint_pin_enable_t enable, pint_cb_t callback)
Configure PINT peripheral pin interrupt.
This function configures a given pin interrupt.
- Parameters:
base – Base address of the PINT peripheral.
intr – Pin interrupt.
enable – Selects detection logic.
callback – Callback.
- Return values:
None. –
-
void PINT_PinInterruptGetConfig(PINT_Type *base, pint_pin_int_t pintr, pint_pin_enable_t *enable, pint_cb_t *callback)
Get PINT peripheral pin interrupt configuration.
This function returns the configuration of a given pin interrupt.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
enable – Pointer to store the detection logic.
callback – Callback.
- Return values:
None. –
-
void PINT_PinInterruptClrStatus(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt status only when the pin was triggered by edge-sensitive.
This function clears the selected pin interrupt status.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetStatus(PINT_Type *base, pint_pin_int_t pintr)
Get Selected pin interrupt status.
This function returns the selected pin interrupt status.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
status – = 0 No pin interrupt request. = 1 Selected Pin interrupt request active.
-
void PINT_PinInterruptClrStatusAll(PINT_Type *base)
Clear all pin interrupts status only when pins were triggered by edge-sensitive.
This function clears the status of all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetStatusAll(PINT_Type *base)
Get all pin interrupts status.
This function returns the status of all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
status – Each bit position indicates the status of corresponding pin interrupt. = 0 No pin interrupt request. = 1 Pin interrupt request active.
-
static inline void PINT_PinInterruptClrFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt fall flag.
This function clears the selected pin interrupt fall flag.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt fall flag.
This function returns the selected pin interrupt fall flag.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
flag – = 0 Falling edge has not been detected. = 1 Falling edge has been detected.
-
static inline void PINT_PinInterruptClrFallFlagAll(PINT_Type *base)
Clear all pin interrupt fall flags.
This function clears the fall flag for all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetFallFlagAll(PINT_Type *base)
Get all pin interrupt fall flags.
This function returns the fall flag of all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
flags – Each bit position indicates the falling edge detection of the corresponding pin interrupt. 0 Falling edge has not been detected. = 1 Falling edge has been detected.
-
static inline void PINT_PinInterruptClrRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt rise flag.
This function clears the selected pin interrupt rise flag.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt rise flag.
This function returns the selected pin interrupt rise flag.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
flag – = 0 Rising edge has not been detected. = 1 Rising edge has been detected.
-
static inline void PINT_PinInterruptClrRiseFlagAll(PINT_Type *base)
Clear all pin interrupt rise flags.
This function clears the rise flag for all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetRiseFlagAll(PINT_Type *base)
Get all pin interrupt rise flags.
This function returns the rise flag of all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
flags – Each bit position indicates the rising edge detection of the corresponding pin interrupt. 0 Rising edge has not been detected. = 1 Rising edge has been detected.
-
void PINT_PatternMatchConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t *cfg)
Configure PINT pattern match.
This function configures a given pattern match bit slice.
- Parameters:
base – Base address of the PINT peripheral.
bslice – Pattern match bit slice number.
cfg – Pointer to bit slice configuration.
- Return values:
None. –
-
void PINT_PatternMatchGetConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t *cfg)
Get PINT pattern match configuration.
This function returns the configuration of a given pattern match bit slice.
- Parameters:
base – Base address of the PINT peripheral.
bslice – Pattern match bit slice number.
cfg – Pointer to bit slice configuration.
- Return values:
None. –
-
static inline uint32_t PINT_PatternMatchGetStatus(PINT_Type *base, pint_pmatch_bslice_t bslice)
Get pattern match bit slice status.
This function returns the status of selected bit slice.
- Parameters:
base – Base address of the PINT peripheral.
bslice – Pattern match bit slice number.
- Return values:
status – = 0 Match has not been detected. = 1 Match has been detected.
-
static inline uint32_t PINT_PatternMatchGetStatusAll(PINT_Type *base)
Get status of all pattern match bit slices.
This function returns the status of all bit slices.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
status – Each bit position indicates the match status of corresponding bit slice. = 0 Match has not been detected. = 1 Match has been detected.
-
uint32_t PINT_PatternMatchResetDetectLogic(PINT_Type *base)
Reset pattern match detection logic.
This function resets the pattern match detection logic if any of the product term is matching.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
pmstatus – Each bit position indicates the match status of corresponding bit slice. = 0 Match was detected. = 1 Match was not detected.
-
static inline void PINT_PatternMatchEnable(PINT_Type *base)
Enable pattern match function.
This function enables the pattern match function.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline void PINT_PatternMatchDisable(PINT_Type *base)
Disable pattern match function.
This function disables the pattern match function.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline void PINT_PatternMatchEnableRXEV(PINT_Type *base)
Enable RXEV output.
This function enables the pattern match RXEV output.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline void PINT_PatternMatchDisableRXEV(PINT_Type *base)
Disable RXEV output.
This function disables the pattern match RXEV output.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
void PINT_EnableCallback(PINT_Type *base)
Enable callback.
This function enables the interrupt for the selected PINT peripheral. Although the pin(s) are monitored as soon as they are enabled, the callback function is not enabled until this function is called.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
void PINT_DisableCallback(PINT_Type *base)
Disable callback.
This function disables the interrupt for the selected PINT peripheral. Although the pins are still being monitored but the callback function is not called.
- Parameters:
base – Base address of the peripheral.
- Return values:
None. –
-
void PINT_Deinit(PINT_Type *base)
Deinitialize PINT peripheral.
This function disables the PINT clock.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
void PINT_EnableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
enable callback by pin index.
This function enables callback by pin index instead of enabling all pins.
- Parameters:
base – Base address of the peripheral.
pintIdx – pin index.
- Return values:
None. –
-
void PINT_DisableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
disable callback by pin index.
This function disables callback by pin index instead of disabling all pins.
- Parameters:
base – Base address of the peripheral.
pintIdx – pin index.
- Return values:
None. –
-
PININT_BITSLICE_SRC_START
-
PININT_BITSLICE_SRC_MASK
-
PININT_BITSLICE_CFG_START
-
PININT_BITSLICE_CFG_MASK
-
PININT_BITSLICE_ENDP_MASK
-
PINT_PIN_INT_LEVEL
-
PINT_PIN_INT_EDGE
-
PINT_PIN_INT_FALL_OR_HIGH_LEVEL
-
PINT_PIN_INT_RISE
-
PINT_PIN_RISE_EDGE
-
PINT_PIN_FALL_EDGE
-
PINT_PIN_BOTH_EDGE
-
PINT_PIN_LOW_LEVEL
-
PINT_PIN_HIGH_LEVEL
-
struct _pint_pmatch_cfg
- #include <fsl_pint.h>
PLU: Programmable Logic Unit
-
void PLU_Init(PLU_Type *base)
Enable the PLU clock and reset the module.
Note
This API should be called at the beginning of the application using the PLU driver.
- Parameters:
base – PLU peripheral base address
-
void PLU_Deinit(PLU_Type *base)
Gate the PLU clock.
- Parameters:
base – PLU peripheral base address
-
static inline void PLU_SetLutInputSource(PLU_Type *base, plu_lut_index_t lutIndex, plu_lut_in_index_t lutInIndex, plu_lut_input_source_t inputSrc)
Set Input source of LUT.
Note: An external clock must be applied to the PLU_CLKIN input when using FFs. For each LUT, the slot associated with the output from LUTn itself is tied low.
- Parameters:
base – PLU peripheral base address.
lutIndex – LUT index (see plu_lut_index_t typedef enumeration).
lutInIndex – LUT input index (see plu_lut_in_index_t typedef enumeration).
inputSrc – LUT input source (see plu_lut_input_source_t typedef enumeration).
-
static inline void PLU_SetOutputSource(PLU_Type *base, plu_output_index_t outputIndex, plu_output_source_t outputSrc)
Set Output source of PLU.
Note: An external clock must be applied to the PLU_CLKIN input when using FFs.
- Parameters:
base – PLU peripheral base address.
outputIndex – PLU output index (see plu_output_index_t typedef enumeration).
outputSrc – PLU output source (see plu_output_source_t typedef enumeration).
-
static inline void PLU_SetLutTruthTable(PLU_Type *base, plu_lut_index_t lutIndex, uint32_t truthTable)
Set Truth Table of LUT.
- Parameters:
base – PLU peripheral base address.
lutIndex – LUT index (see plu_lut_index_t typedef enumeration).
truthTable – Truth Table value.
-
static inline uint32_t PLU_ReadOutputState(PLU_Type *base)
Read the current state of the 8 designated PLU Outputs.
Note: The PLU bus clock must be re-enabled prior to reading the Outpus Register if PLU bus clock is shut-off.
- Parameters:
base – PLU peripheral base address.
- Returns:
Current PLU output state value.
-
void PLU_GetDefaultWakeIntConfig(plu_wakeint_config_t *config)
Gets an available pre-defined settings for wakeup/interrupt control.
This function initializes the initial configuration structure with an available settings. The default values are:
config->filterMode = kPLU_WAKEINT_FILTER_MODE_BYPASS; config->clockSource = kPLU_WAKEINT_FILTER_CLK_SRC_1MHZ_LPOSC;
- Parameters:
config – Pointer to configuration structure.
-
void PLU_EnableWakeIntRequest(PLU_Type *base, uint32_t interruptMask, const plu_wakeint_config_t *config)
Enable PLU outputs wakeup/interrupt request.
This function enables Any of the eight selected PLU outputs to contribute to an asynchronous wake-up or an interrupt request.
Note: If a PLU_CLKIN is provided, the raw wake-up/interrupt request will be set on the rising-edge of the PLU_CLKIN whenever the raw request signal is high. This registered signal will be glitch-free and just use the default wakeint config by PLU_GetDefaultWakeIntConfig(). If not, have to specify the filter mode and clock source to eliminate the glitches caused by long and widely disparate delays through the network of LUTs making up the PLU. This way may increase power consumption in low-power operating modes and inject delay before the wake-up/interrupt request is generated.
- Parameters:
base – PLU peripheral base address.
interruptMask – PLU interrupt mask (see _plu_interrupt_mask enumeration).
config – Pointer to configuration structure (see plu_wakeint_config_t typedef enumeration)
-
static inline void PLU_LatchInterrupt(PLU_Type *base)
Latch an interrupt.
This function latches the interrupt and then it can be cleared with PLU_ClearLatchedInterrupt().
Note: This mode is not compatible with use of the glitch filter. If this bit is set, the FILTER MODE should be set to kPLU_WAKEINT_FILTER_MODE_BYPASS (Bypass Mode) and PLU_CLKIN should be provided. If this bit is set, the wake-up/interrupt request will be set on the rising-edge of PLU_CLKIN whenever the raw wake-up/interrupt signal is high. The request must be cleared by software.
- Parameters:
base – PLU peripheral base address.
-
void PLU_ClearLatchedInterrupt(PLU_Type *base)
Clear the latched interrupt.
This function clears the wake-up/interrupt request flag latched by PLU_LatchInterrupt()
Note: It is not necessary for the PLU bus clock to be enabled in order to write-to or read-back this bit.
- Parameters:
base – PLU peripheral base address.
-
FSL_PLU_DRIVER_VERSION
Version 2.2.1
-
enum _plu_lut_index
Index of LUT.
Values:
-
enumerator kPLU_LUT_0
5-input Look-up Table 0
-
enumerator kPLU_LUT_1
5-input Look-up Table 1
-
enumerator kPLU_LUT_2
5-input Look-up Table 2
-
enumerator kPLU_LUT_3
5-input Look-up Table 3
-
enumerator kPLU_LUT_4
5-input Look-up Table 4
-
enumerator kPLU_LUT_5
5-input Look-up Table 5
-
enumerator kPLU_LUT_6
5-input Look-up Table 6
-
enumerator kPLU_LUT_7
5-input Look-up Table 7
-
enumerator kPLU_LUT_8
5-input Look-up Table 8
-
enumerator kPLU_LUT_9
5-input Look-up Table 9
-
enumerator kPLU_LUT_10
5-input Look-up Table 10
-
enumerator kPLU_LUT_11
5-input Look-up Table 11
-
enumerator kPLU_LUT_12
5-input Look-up Table 12
-
enumerator kPLU_LUT_13
5-input Look-up Table 13
-
enumerator kPLU_LUT_14
5-input Look-up Table 14
-
enumerator kPLU_LUT_15
5-input Look-up Table 15
-
enumerator kPLU_LUT_16
5-input Look-up Table 16
-
enumerator kPLU_LUT_17
5-input Look-up Table 17
-
enumerator kPLU_LUT_18
5-input Look-up Table 18
-
enumerator kPLU_LUT_19
5-input Look-up Table 19
-
enumerator kPLU_LUT_20
5-input Look-up Table 20
-
enumerator kPLU_LUT_21
5-input Look-up Table 21
-
enumerator kPLU_LUT_22
5-input Look-up Table 22
-
enumerator kPLU_LUT_23
5-input Look-up Table 23
-
enumerator kPLU_LUT_24
5-input Look-up Table 24
-
enumerator kPLU_LUT_25
5-input Look-up Table 25
-
enumerator kPLU_LUT_0
-
enum _plu_lut_in_index
Inputs of LUT. 5 input present for each LUT.
Values:
-
enumerator kPLU_LUT_IN_0
LUT input 0
-
enumerator kPLU_LUT_IN_1
LUT input 1
-
enumerator kPLU_LUT_IN_2
LUT input 2
-
enumerator kPLU_LUT_IN_3
LUT input 3
-
enumerator kPLU_LUT_IN_4
LUT input 4
-
enumerator kPLU_LUT_IN_0
-
enum _plu_lut_input_source
Available sources of LUT input.
Values:
-
enumerator kPLU_LUT_IN_SRC_PLU_IN_0
Select PLU input 0 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_PLU_IN_1
Select PLU input 1 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_PLU_IN_2
Select PLU input 2 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_PLU_IN_3
Select PLU input 3 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_PLU_IN_4
Select PLU input 4 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_PLU_IN_5
Select PLU input 5 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_0
Select LUT output 0 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_1
Select LUT output 1 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_2
Select LUT output 2 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_3
Select LUT output 3 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_4
Select LUT output 4 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_5
Select LUT output 5 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_6
Select LUT output 6 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_7
Select LUT output 7 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_8
Select LUT output 8 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_9
Select LUT output 9 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_10
Select LUT output 10 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_11
Select LUT output 11 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_12
Select LUT output 12 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_13
Select LUT output 13 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_14
Select LUT output 14 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_15
Select LUT output 15 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_16
Select LUT output 16 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_17
Select LUT output 17 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_18
Select LUT output 18 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_19
Select LUT output 19 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_20
Select LUT output 20 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_21
Select LUT output 21 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_22
Select LUT output 22 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_23
Select LUT output 23 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_24
Select LUT output 24 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_LUT_OUT_25
Select LUT output 25 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_FLIPFLOP_0
Select Flip-Flops state 0 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_FLIPFLOP_1
Select Flip-Flops state 1 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_FLIPFLOP_2
Select Flip-Flops state 2 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_FLIPFLOP_3
Select Flip-Flops state 3 to be connected to LUTn Input x
-
enumerator kPLU_LUT_IN_SRC_PLU_IN_0
-
enum _plu_output_index
PLU output multiplexer registers.
Values:
-
enumerator kPLU_OUTPUT_0
PLU OUTPUT 0
-
enumerator kPLU_OUTPUT_1
PLU OUTPUT 1
-
enumerator kPLU_OUTPUT_2
PLU OUTPUT 2
-
enumerator kPLU_OUTPUT_3
PLU OUTPUT 3
-
enumerator kPLU_OUTPUT_4
PLU OUTPUT 4
-
enumerator kPLU_OUTPUT_5
PLU OUTPUT 5
-
enumerator kPLU_OUTPUT_6
PLU OUTPUT 6
-
enumerator kPLU_OUTPUT_7
PLU OUTPUT 7
-
enumerator kPLU_OUTPUT_0
-
enum _plu_output_source
Available sources of PLU output.
Values:
-
enumerator kPLU_OUT_SRC_LUT_0
Select LUT0 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_1
Select LUT1 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_2
Select LUT2 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_3
Select LUT3 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_4
Select LUT4 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_5
Select LUT5 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_6
Select LUT6 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_7
Select LUT7 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_8
Select LUT8 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_9
Select LUT9 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_10
Select LUT10 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_11
Select LUT11 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_12
Select LUT12 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_13
Select LUT13 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_14
Select LUT14 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_15
Select LUT15 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_16
Select LUT16 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_17
Select LUT17 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_18
Select LUT18 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_19
Select LUT19 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_20
Select LUT20 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_21
Select LUT21 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_22
Select LUT22 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_23
Select LUT23 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_24
Select LUT24 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_25
Select LUT25 output to be connected to PLU output
-
enumerator kPLU_OUT_SRC_FLIPFLOP_0
Select Flip-Flops state(0) to be connected to PLU output
-
enumerator kPLU_OUT_SRC_FLIPFLOP_1
Select Flip-Flops state(1) to be connected to PLU output
-
enumerator kPLU_OUT_SRC_FLIPFLOP_2
Select Flip-Flops state(2) to be connected to PLU output
-
enumerator kPLU_OUT_SRC_FLIPFLOP_3
Select Flip-Flops state(3) to be connected to PLU output
-
enumerator kPLU_OUT_SRC_LUT_0
-
enum _plu_interrupt_mask
The enumerator of PLU Interrupt.
Values:
-
enumerator kPLU_OUTPUT_0_INTERRUPT_MASK
Select PLU output 0 contribute to interrupt/wake-up generation
-
enumerator kPLU_OUTPUT_1_INTERRUPT_MASK
Select PLU output 1 contribute to interrupt/wake-up generation
-
enumerator kPLU_OUTPUT_2_INTERRUPT_MASK
Select PLU output 2 contribute to interrupt/wake-up generation
-
enumerator kPLU_OUTPUT_3_INTERRUPT_MASK
Select PLU output 3 contribute to interrupt/wake-up generation
-
enumerator kPLU_OUTPUT_4_INTERRUPT_MASK
Select PLU output 4 contribute to interrupt/wake-up generation
-
enumerator kPLU_OUTPUT_5_INTERRUPT_MASK
Select PLU output 5 contribute to interrupt/wake-up generation
-
enumerator kPLU_OUTPUT_6_INTERRUPT_MASK
Select PLU output 6 contribute to interrupt/wake-up generation
-
enumerator kPLU_OUTPUT_7_INTERRUPT_MASK
Select PLU output 7 contribute to interrupt/wake-up generation
-
enumerator kPLU_OUTPUT_0_INTERRUPT_MASK
-
enum _plu_wakeint_filter_mode
Control input of the PLU, add filtering for glitch.
Values:
-
enumerator kPLU_WAKEINT_FILTER_MODE_BYPASS
Select Bypass mode
-
enumerator kPLU_WAKEINT_FILTER_MODE_1_CLK_PERIOD
Filter 1 clock period
-
enumerator kPLU_WAKEINT_FILTER_MODE_2_CLK_PERIOD
Filter 2 clock period
-
enumerator kPLU_WAKEINT_FILTER_MODE_3_CLK_PERIOD
Filter 3 clock period
-
enumerator kPLU_WAKEINT_FILTER_MODE_BYPASS
-
enum _plu_wakeint_filter_clock_source
Clock source for filter mode.
Values:
-
enumerator kPLU_WAKEINT_FILTER_CLK_SRC_1MHZ_LPOSC
Select the 1MHz low-power oscillator as the filter clock
-
enumerator kPLU_WAKEINT_FILTER_CLK_SRC_12MHZ_FRO
Select the 12MHz FRO as the filer clock
-
enumerator kPLU_WAKEINT_FILTER_CLK_SRC_ALT
Select a third clock source
-
enumerator kPLU_WAKEINT_FILTER_CLK_SRC_1MHZ_LPOSC
-
typedef enum _plu_lut_index plu_lut_index_t
Index of LUT.
-
typedef enum _plu_lut_in_index plu_lut_in_index_t
Inputs of LUT. 5 input present for each LUT.
-
typedef enum _plu_lut_input_source plu_lut_input_source_t
Available sources of LUT input.
-
typedef enum _plu_output_index plu_output_index_t
PLU output multiplexer registers.
-
typedef enum _plu_output_source plu_output_source_t
Available sources of PLU output.
-
typedef enum _plu_wakeint_filter_mode plu_wakeint_filter_mode_t
Control input of the PLU, add filtering for glitch.
-
typedef enum _plu_wakeint_filter_clock_source plu_wakeint_filter_clock_source_t
Clock source for filter mode.
-
typedef struct _plu_wakeint_config plu_wakeint_config_t
Wake configuration.
-
struct _plu_wakeint_config
- #include <fsl_plu.h>
Wake configuration.
Public Members
-
plu_wakeint_filter_mode_t filterMode
Filter Mode.
-
plu_wakeint_filter_clock_source_t clockSource
The clock source for filter mode.
-
plu_wakeint_filter_mode_t filterMode
PRINCE: PRINCE bus crypto engine
-
FSL_PRINCE_DRIVER_VERSION
PRINCE driver version 2.6.0.
Current version: 2.6.0
Change log:
Version 2.0.0
Initial version.
Version 2.1.0
Update for the A1 rev. of LPC55Sxx serie.
Version 2.2.0
Add runtime checking of the A0 and A1 rev. of LPC55Sxx serie to support both silicone revisions.
Version 2.3.0
Add support for LPC55S1x and LPC55S2x series
Version 2.3.0
Fix MISRA-2012 issues.
Version 2.3.1
Add support for LPC55S0x series
Version 2.3.2
Fix documentation of enumeration. Extend PRINCE example.
Version 2.4.0
Add support for LPC55S3x series
Version 2.5.0
Add PRINCE_Config() and PRINCE_Reconfig() features.
Version 2.5.1
Fix build error due to renamed symbols
Version 2.6.0
Renamed CSS to ELS
-
enum _skboot_status
Secure status enumeration.
Values:
-
enumerator kStatus_SKBOOT_Success
PRINCE Success
-
enumerator kStatus_SKBOOT_Fail
PRINCE Fail
-
enumerator kStatus_SKBOOT_InvalidArgument
PRINCE Invalid argument
-
enumerator kStatus_SKBOOT_KeyStoreMarkerInvalid
PRINCE Invalid marker
-
enumerator kStatus_SKBOOT_Success
-
enum _secure_bool
Secure boolean enumeration.
Values:
-
enumerator kSECURE_TRUE
PRINCE true
-
enumerator kSECURE_FALSE
PRINCE false
-
enumerator kSECURE_TRUE
-
enum _prince_region
Prince region.
Values:
-
enumerator kPRINCE_Region0
PRINCE region 0
-
enumerator kPRINCE_Region1
PRINCE region 1
-
enumerator kPRINCE_Region2
PRINCE region 2
-
enumerator kPRINCE_Region0
-
enum _prince_lock
Prince lock.
Values:
-
enumerator kPRINCE_Region0Lock
PRINCE region 0 lock
-
enumerator kPRINCE_Region1Lock
PRINCE region 1 lock
-
enumerator kPRINCE_Region2Lock
PRINCE region 2 lock
-
enumerator kPRINCE_MaskLock
PRINCE mask register lock
-
enumerator kPRINCE_Region0Lock
-
enum _prince_flags
Prince flag.
Values:
-
enumerator kPRINCE_Flag_None
PRINCE Flag None
-
enumerator kPRINCE_Flag_EraseCheck
PRINCE Flag Erase check
-
enumerator kPRINCE_Flag_WriteCheck
PRINCE Flag Write check
-
enumerator kPRINCE_Flag_None
-
typedef enum _skboot_status skboot_status_t
Secure status enumeration.
-
typedef enum _secure_bool secure_bool_t
Secure boolean enumeration.
-
typedef enum _prince_region prince_region_t
Prince region.
-
typedef enum _prince_lock prince_lock_t
Prince lock.
-
typedef enum _prince_flags prince_flags_t
Prince flag.
-
static inline void PRINCE_EncryptEnable(PRINCE_Type *base)
Enable data encryption.
This function enables PRINCE on-the-fly data encryption.
- Parameters:
base – PRINCE peripheral address.
-
static inline void PRINCE_EncryptDisable(PRINCE_Type *base)
Disable data encryption.
This function disables PRINCE on-the-fly data encryption.
- Parameters:
base – PRINCE peripheral address.
-
static inline bool PRINCE_IsEncryptEnable(PRINCE_Type *base)
Is Enable data encryption.
This function test if PRINCE on-the-fly data encryption is enabled.
- Parameters:
base – PRINCE peripheral address.
- Returns:
true if enabled, false if not
-
static inline void PRINCE_SetMask(PRINCE_Type *base, uint64_t mask)
Sets PRINCE data mask.
This function sets the PRINCE mask that is used to mask decrypted data.
- Parameters:
base – PRINCE peripheral address.
mask – 64-bit data mask value.
-
static inline void PRINCE_SetLock(PRINCE_Type *base, uint32_t lock)
Locks access for specified region registers or data mask register.
This function sets lock on specified region registers or mask register.
- Parameters:
base – PRINCE peripheral address.
lock – registers to lock. This is a logical OR of members of the enumeration prince_lock_t
-
status_t PRINCE_GenNewIV(prince_region_t region, uint8_t *iv_code, bool store, flash_config_t *flash_context)
Generate new IV code.
This function generates new IV code and stores it into the persistent memory. Ensure about 800 bytes free space on the stack when calling this routine with the store parameter set to true!
- Parameters:
region – PRINCE region index.
iv_code – IV code pointer used for storing the newly generated 52 bytes long IV code.
store – flag to allow storing the newly generated IV code into the persistent memory (FFR).
flash_context – pointer to the flash driver context structure.
- Returns:
kStatus_Success upon success
- Returns:
kStatus_Fail otherwise, kStatus_Fail is also returned if the key code for the particular PRINCE region is not present in the keystore (though new IV code has been provided)
-
status_t PRINCE_LoadIV(prince_region_t region, uint8_t *iv_code)
Load IV code.
This function enables IV code loading into the PRINCE bus encryption engine.
- Parameters:
region – PRINCE region index.
iv_code – IV code pointer used for passing the IV code.
- Returns:
kStatus_Success upon success
- Returns:
kStatus_Fail otherwise
-
status_t PRINCE_SetEncryptForAddressRange(prince_region_t region, uint32_t start_address, uint32_t length, flash_config_t *flash_context, bool regenerate_iv)
Allow encryption/decryption for specified address range.
This function sets the encryption/decryption for specified address range. The SR mask value for the selected Prince region is calculated from provided start_address and length parameters. This calculated value is OR’ed with the actual SR mask value and stored into the PRINCE SR_ENABLE register and also into the persistent memory (FFR) to be used after the device reset. It is possible to define several nonadjacent encrypted areas within one Prince region when calling this function repeatedly. If the length parameter is set to 0, the SR mask value is set to 0 and thus the encryption/decryption for the whole selected Prince region is disabled. Ensure about 800 bytes free space on the stack when calling this routine!
- Parameters:
region – PRINCE region index.
start_address – start address of the area to be encrypted/decrypted.
length – length of the area to be encrypted/decrypted.
flash_context – pointer to the flash driver context structure.
regenerate_iv – flag to allow IV code regenerating, storing into the persistent memory (FFR) and loading into the PRINCE engine
- Returns:
kStatus_Success upon success
- Returns:
kStatus_Fail otherwise
-
status_t PRINCE_GetRegionSREnable(PRINCE_Type *base, prince_region_t region, uint32_t *sr_enable)
Gets the PRINCE Sub-Region Enable register.
This function gets PRINCE SR_ENABLE register.
- Parameters:
base – PRINCE peripheral address.
region – PRINCE region index.
sr_enable – Sub-Region Enable register pointer.
- Returns:
kStatus_Success upon success
- Returns:
kStatus_InvalidArgument
-
status_t PRINCE_GetRegionBaseAddress(PRINCE_Type *base, prince_region_t region, uint32_t *region_base_addr)
Gets the PRINCE region base address register.
This function gets PRINCE BASE_ADDR register.
- Parameters:
base – PRINCE peripheral address.
region – PRINCE region index.
region_base_addr – Region base address pointer.
- Returns:
kStatus_Success upon success
- Returns:
kStatus_InvalidArgument
-
status_t PRINCE_SetRegionIV(PRINCE_Type *base, prince_region_t region, const uint8_t iv[8])
Sets the PRINCE region IV.
This function sets specified AES IV for the given region.
- Parameters:
base – PRINCE peripheral address.
region – Selection of the PRINCE region to be configured.
iv – 64-bit AES IV in little-endian byte order.
-
status_t PRINCE_SetRegionBaseAddress(PRINCE_Type *base, prince_region_t region, uint32_t region_base_addr)
Sets the PRINCE region base address.
This function configures PRINCE region base address.
- Parameters:
base – PRINCE peripheral address.
region – Selection of the PRINCE region to be configured.
region_base_addr – Base Address for region.
-
status_t PRINCE_SetRegionSREnable(PRINCE_Type *base, prince_region_t region, uint32_t sr_enable)
Sets the PRINCE Sub-Region Enable register.
This function configures PRINCE SR_ENABLE register.
- Parameters:
base – PRINCE peripheral address.
region – Selection of the PRINCE region to be configured.
sr_enable – Sub-Region Enable register value.
-
status_t PRINCE_FlashEraseWithChecker(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)
Erases the flash sectors encompassed by parameters passed into function.
This function erases the appropriate number of flash sectors based on the desired start address and length. It deals with the flash erase function complenentary to the standard erase API of the IAP1 driver. This implementation additionally checks if the whole encrypted PRINCE subregions are erased at once to avoid secrets revealing. The checker implementation is limited to one contiguous PRINCE-controlled memory area.
- Parameters:
config – The pointer to the flash driver context structure.
start – The start address of the desired flash memory to be erased. The start address needs to be prince-sburegion-aligned.
lengthInBytes – The length, given in bytes (not words or long-words) to be erased. Must be prince-sburegion-size-aligned.
key – The value used to validate all flash erase APIs.
- Returns:
kStatus_FLASH_Success API was executed successfully.
- Returns:
kStatus_FLASH_InvalidArgument An invalid argument is provided.
- Returns:
kStatus_FLASH_AlignmentError The parameter is not aligned with the specified baseline.
- Returns:
kStatus_FLASH_AddressError The address is out of range.
- Returns:
kStatus_FLASH_EraseKeyError The API erase key is invalid.
- Returns:
kStatus_FLASH_CommandFailure Run-time error during the command execution.
- Returns:
kStatus_FLASH_CommandNotSupported Flash API is not supported.
- Returns:
kStatus_FLASH_EccError A correctable or uncorrectable error during command execution.
- Returns:
kStatus_FLASH_EncryptedRegionsEraseNotDoneAtOnce Encrypted flash subregions are not erased at once.
-
status_t PRINCE_FlashProgramWithChecker(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)
Programs flash with data at locations passed in through parameters.
This function programs the flash memory with the desired data for a given flash area as determined by the start address and the length. It deals with the flash program function complenentary to the standard program API of the IAP1 driver. This implementation additionally checks if the whole PRINCE subregions are programmed at once to avoid secrets revealing. The checker implementation is limited to one contiguous PRINCE-controlled memory area.
- Parameters:
config – The pointer to the flash driver context structure.
start – The start address of the desired flash memory to be programmed. Must be prince-sburegion-aligned.
src – A pointer to the source buffer of data that is to be programmed into the flash.
lengthInBytes – The length, given in bytes (not words or long-words), to be programmed. Must be prince-sburegion-size-aligned.
- Returns:
kStatus_FLASH_Success API was executed successfully.
- Returns:
kStatus_FLASH_InvalidArgument An invalid argument is provided.
- Returns:
kStatus_FLASH_AlignmentError Parameter is not aligned with the specified baseline.
- Returns:
kStatus_FLASH_AddressError Address is out of range.
- Returns:
kStatus_FLASH_AccessError Invalid instruction codes and out-of bounds addresses.
- Returns:
kStatus_FLASH_CommandFailure Run-time error during the command execution.
- Returns:
kStatus_FLASH_CommandFailure Run-time error during the command execution.
- Returns:
kStatus_FLASH_CommandNotSupported Flash API is not supported.
- Returns:
kStatus_FLASH_EccError A correctable or uncorrectable error during command execution.
- Returns:
kStatus_FLASH_SizeError Encrypted flash subregions are not programmed at once.
-
FSL_PRINCE_DRIVER_SUBREGION_SIZE_IN_KB
-
FSL_PRINCE_DRIVER_MAX_FLASH_ADDR
-
ALIGN_DOWN(x, a)
PUF: Physical Unclonable Function
-
FSL_PUF_DRIVER_VERSION
PUF driver version. Version 2.1.6.
Current version: 2.1.6
Change log:
2.0.0
Initial version.
2.0.1
Fixed puf_wait_usec function optimization issue.
2.0.2
Add PUF configuration structure and support for PUF SRAM controller. Remove magic constants.
2.0.3
Fix MISRA C-2012 issue.
2.1.0
Align driver with PUF SRAM controller registers on LPCXpresso55s16.
Update initizalition logic .
2.1.1
Fix ARMGCC build warning .
2.1.2
Update: Add automatic big to little endian swap for user (pre-shared) keys destinated to secret hardware bus (PUF key index 0).
2.1.3
Fix MISRA C-2012 issue.
2.1.4
Replace register uint32_t ticksCount with volatile uint32_t ticksCount in puf_wait_usec() to prevent optimization out delay loop.
2.1.5
Use common SDK delay in puf_wait_usec()
2.1.6
Changed wait time in PUF_Init(), when initialization fails it will try PUF_Powercycle() with shorter time. If this shorter time will also fail, initialization will be tried with worst case time as before.
-
enum _puf_key_index_register
Values:
-
enumerator kPUF_KeyIndex_00
-
enumerator kPUF_KeyIndex_01
-
enumerator kPUF_KeyIndex_02
-
enumerator kPUF_KeyIndex_03
-
enumerator kPUF_KeyIndex_04
-
enumerator kPUF_KeyIndex_05
-
enumerator kPUF_KeyIndex_06
-
enumerator kPUF_KeyIndex_07
-
enumerator kPUF_KeyIndex_08
-
enumerator kPUF_KeyIndex_09
-
enumerator kPUF_KeyIndex_10
-
enumerator kPUF_KeyIndex_11
-
enumerator kPUF_KeyIndex_12
-
enumerator kPUF_KeyIndex_13
-
enumerator kPUF_KeyIndex_14
-
enumerator kPUF_KeyIndex_15
-
enumerator kPUF_KeyIndex_00
-
enum _puf_min_max
Values:
-
enumerator kPUF_KeySizeMin
-
enumerator kPUF_KeySizeMax
-
enumerator kPUF_KeyIndexMax
-
enumerator kPUF_KeySizeMin
-
enum _puf_key_slot
PUF key slot.
Values:
-
enumerator kPUF_KeySlot0
PUF key slot 0
-
enumerator kPUF_KeySlot1
PUF key slot 1
-
enumerator kPUF_KeySlot0
PUF status return codes.
Values:
-
enumerator kStatus_EnrollNotAllowed
-
enumerator kStatus_StartNotAllowed
-
enumerator kStatus_EnrollNotAllowed
-
typedef enum _puf_key_index_register puf_key_index_register_t
-
typedef enum _puf_min_max puf_min_max_t
-
typedef enum _puf_key_slot puf_key_slot_t
PUF key slot.
-
PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(x)
Get Key Code size in bytes from key size in bytes at compile time.
-
PUF_MIN_KEY_CODE_SIZE
-
PUF_ACTIVATION_CODE_SIZE
-
KEYSTORE_PUF_DISCHARGE_TIME_FIRST_TRY_MS
-
KEYSTORE_PUF_DISCHARGE_TIME_MAX_MS
-
struct puf_config_t
- #include <fsl_puf.h>
RNG: Random Number Generator
-
FSL_RNG_DRIVER_VERSION
RNG driver version. Version 2.0.3.
Current version: 2.0.3
Change log:
Version 2.0.0
Initial version
Version 2.0.1
Fix MISRA C-2012 issue.
Version 2.0.2
Add RESET_PeripheralReset function inside RNG_Init and RNG_Deinit functions.
Version 2.0.3
Modified RNG_Init and RNG_GetRandomData functions, added rng_accumulateEntropy and rng_readEntropy functions.
These changes are reflecting recommended usage of RNG according to device UM.
-
void RNG_Init(RNG_Type *base)
Initializes the RNG.
This function initializes the RNG. When called, the RNG module and ring oscillator is enabled.
- Parameters:
base – RNG base address
- Returns:
If successful, returns the kStatus_RNG_Success. Otherwise, it returns an error.
-
void RNG_Deinit(RNG_Type *base)
Shuts down the RNG.
This function shuts down the RNG.
- Parameters:
base – RNG base address.
-
status_t RNG_GetRandomData(RNG_Type *base, void *data, size_t dataSize)
Gets random data.
This function gets random data from the RNG.
- Parameters:
base – RNG base address.
data – Pointer address used to store random data.
dataSize – Size of the buffer pointed by the data parameter.
- Returns:
random data
-
static inline uint32_t RNG_GetRandomWord(RNG_Type *base)
Returns random 32-bit number.
This function gets random number from the RNG.
- Parameters:
base – RNG base address.
- Returns:
random number
RTC: Real Time Clock
-
void RTC_Init(RTC_Type *base)
Un-gate the RTC clock and enable the RTC oscillator.
Note
This API should be called at the beginning of the application using the RTC driver.
- Parameters:
base – RTC peripheral base address
-
static inline void RTC_Deinit(RTC_Type *base)
Stop the timer and gate the RTC clock.
- Parameters:
base – RTC peripheral base address
-
status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)
Set the RTC date and time according to the given time structure.
The RTC counter must be stopped prior to calling this function as writes to the RTC seconds register will fail if the RTC counter is running.
- Parameters:
base – RTC peripheral base address
datetime – Pointer to structure where the date and time details to set are stored
- Returns:
kStatus_Success: Success in setting the time and starting the RTC kStatus_InvalidArgument: Error because the datetime format is incorrect
-
void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)
Get the RTC time and stores it in the given time structure.
- Parameters:
base – RTC peripheral base address
datetime – Pointer to structure where the date and time details are stored.
-
status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)
Set the RTC alarm time.
The function checks whether the specified alarm time is greater than the present time. If not, the function does not set the alarm and returns an error.
- Parameters:
base – RTC peripheral base address
alarmTime – Pointer to structure where the alarm time is stored.
- Returns:
kStatus_Success: success in setting the RTC alarm kStatus_InvalidArgument: Error because the alarm datetime format is incorrect kStatus_Fail: Error because the alarm time has already passed
-
void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)
Return the RTC alarm time.
- Parameters:
base – RTC peripheral base address
datetime – Pointer to structure where the alarm date and time details are stored.
-
static inline void RTC_EnableWakeupTimer(RTC_Type *base, bool enable)
Enable the RTC wake-up timer (1KHZ).
After calling this function, the RTC driver will use/un-use the RTC wake-up (1KHZ) at the same time.
- Parameters:
base – RTC peripheral base address
enable – Use/Un-use the RTC wake-up timer.
true: Use RTC wake-up timer at the same time.
false: Un-use RTC wake-up timer, RTC only use the normal seconds timer by default.
-
static inline uint32_t RTC_GetEnabledWakeupTimer(RTC_Type *base)
Get the enabled status of the RTC wake-up timer (1KHZ).
- Parameters:
base – RTC peripheral base address
- Returns:
The enabled status of RTC wake-up timer (1KHZ).
-
static inline void RTC_EnableSubsecCounter(RTC_Type *base, bool enable)
Enable the RTC Sub-second counter (32KHZ).
Note
Only enable sub-second counter after RTC_ENA bit has been set to 1.
- Parameters:
base – RTC peripheral base address
enable – Enable/Disable RTC sub-second counter.
true: Enable RTC sub-second counter.
false: Disable RTC sub-second counter.
-
static inline uint32_t RTC_GetSubsecValue(const RTC_Type *base)
A read of 32KHZ sub-seconds counter.
- Parameters:
base – RTC peripheral base address
- Returns:
Current value of the SUBSEC register
-
static inline void RTC_EnableWakeUpTimerInterruptFromDPD(RTC_Type *base, bool enable)
Enable the wake-up timer interrupt from deep power down mode.
- Parameters:
base – RTC peripheral base address
enable – Enable/Disable wake-up timer interrupt from deep power down mode.
true: Enable wake-up timer interrupt from deep power down mode.
false: Disable wake-up timer interrupt from deep power down mode.
-
static inline void RTC_EnableAlarmTimerInterruptFromDPD(RTC_Type *base, bool enable)
Enable the alarm timer interrupt from deep power down mode.
- Parameters:
base – RTC peripheral base address
enable – Enable/Disable alarm timer interrupt from deep power down mode.
true: Enable alarm timer interrupt from deep power down mode.
false: Disable alarm timer interrupt from deep power down mode.
-
static inline void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)
Enables the selected RTC interrupts.
- Deprecated:
Do not use this function. It has been superceded by RTC_EnableAlarmTimerInterruptFromDPD and RTC_EnableWakeUpTimerInterruptFromDPD
- Parameters:
base – RTC peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t
-
static inline void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)
Disables the selected RTC interrupts.
- Deprecated:
Do not use this function. It has been superceded by RTC_EnableAlarmTimerInterruptFromDPD and RTC_EnableWakeUpTimerInterruptFromDPD
- Parameters:
base – RTC peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t
-
static inline uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)
Get the enabled RTC interrupts.
- Deprecated:
Do not use this function. It will be deleted in next release version.
- Parameters:
base – RTC peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration rtc_interrupt_enable_t
-
static inline uint32_t RTC_GetStatusFlags(RTC_Type *base)
Get the RTC status flags.
- Parameters:
base – RTC peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration rtc_status_flags_t
-
static inline void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)
Clear the RTC status flags.
- Parameters:
base – RTC peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration rtc_status_flags_t
-
static inline void RTC_EnableTimer(RTC_Type *base, bool enable)
Enable the RTC timer counter.
After calling this function, the RTC inner counter increments once a second when only using the RTC seconds timer (1hz), while the RTC inner wake-up timer countdown once a millisecond when using RTC wake-up timer (1KHZ) at the same time. RTC timer contain two timers, one is the RTC normal seconds timer, the other one is the RTC wake-up timer, the RTC enable bit is the master switch for the whole RTC timer, so user can use the RTC seconds (1HZ) timer independly, but they can’t use the RTC wake-up timer (1KHZ) independently.
- Parameters:
base – RTC peripheral base address
enable – Enable/Disable RTC Timer counter.
true: Enable RTC Timer counter.
false: Disable RTC Timer counter.
-
static inline void RTC_StartTimer(RTC_Type *base)
Starts the RTC time counter.
- Deprecated:
Do not use this function. It has been superceded by RTC_EnableTimer
After calling this function, the timer counter increments once a second provided SR[TOF] or SR[TIF] are not set.
- Parameters:
base – RTC peripheral base address
-
static inline void RTC_StopTimer(RTC_Type *base)
Stops the RTC time counter.
- Deprecated:
Do not use this function. It has been superceded by RTC_EnableTimer
RTC’s seconds register can be written to only when the timer is stopped.
- Parameters:
base – RTC peripheral base address
-
FSL_RTC_DRIVER_VERSION
Version 2.2.0
-
enum _rtc_interrupt_enable
List of RTC interrupts.
Values:
-
enumerator kRTC_AlarmInterruptEnable
Alarm interrupt.
-
enumerator kRTC_WakeupInterruptEnable
Wake-up interrupt.
-
enumerator kRTC_AlarmInterruptEnable
-
enum _rtc_status_flags
List of RTC flags.
Values:
-
enumerator kRTC_AlarmFlag
Alarm flag
-
enumerator kRTC_WakeupFlag
1kHz wake-up timer flag
-
enumerator kRTC_AlarmFlag
-
typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t
List of RTC interrupts.
-
typedef enum _rtc_status_flags rtc_status_flags_t
List of RTC flags.
-
typedef struct _rtc_datetime rtc_datetime_t
Structure is used to hold the date and time.
-
static inline void RTC_SetSecondsTimerMatch(RTC_Type *base, uint32_t matchValue)
Set the RTC seconds timer (1HZ) MATCH value.
- Parameters:
base – RTC peripheral base address
matchValue – The value to be set into the RTC MATCH register
-
static inline uint32_t RTC_GetSecondsTimerMatch(RTC_Type *base)
Read actual RTC seconds timer (1HZ) MATCH value.
- Parameters:
base – RTC peripheral base address
- Returns:
The actual RTC seconds timer (1HZ) MATCH value.
-
static inline void RTC_SetSecondsTimerCount(RTC_Type *base, uint32_t countValue)
Set the RTC seconds timer (1HZ) COUNT value.
- Parameters:
base – RTC peripheral base address
countValue – The value to be loaded into the RTC COUNT register
-
static inline uint32_t RTC_GetSecondsTimerCount(RTC_Type *base)
Read the actual RTC seconds timer (1HZ) COUNT value.
- Parameters:
base – RTC peripheral base address
- Returns:
The actual RTC seconds timer (1HZ) COUNT value.
-
static inline void RTC_SetWakeupCount(RTC_Type *base, uint16_t wakeupValue)
Enable the RTC wake-up timer (1KHZ) and set countdown value to the RTC WAKE register.
- Parameters:
base – RTC peripheral base address
wakeupValue – The value to be loaded into the WAKE register in RTC wake-up timer (1KHZ).
-
static inline uint16_t RTC_GetWakeupCount(RTC_Type *base)
Read the actual value from the WAKE register value in RTC wake-up timer (1KHZ)
Read the WAKE register twice and compare the result, if the value match,the time can be used.
- Parameters:
base – RTC peripheral base address
- Returns:
The actual value of the WAKE register value in RTC wake-up timer (1KHZ).
-
static inline void RTC_Reset(RTC_Type *base)
Perform a software reset on the RTC module.
This resets all RTC registers to their reset value. The bit is cleared by software explicitly clearing it.
- Parameters:
base – RTC peripheral base address
-
struct _rtc_datetime
- #include <fsl_rtc.h>
Structure is used to hold the date and time.
Public Members
-
uint16_t year
Range from 1970 to 2099.
-
uint8_t month
Range from 1 to 12.
-
uint8_t day
Range from 1 to 31 (depending on month).
-
uint8_t hour
Range from 0 to 23.
-
uint8_t minute
Range from 0 to 59.
-
uint8_t second
Range from 0 to 59.
-
uint16_t year
SCTimer: SCTimer/PWM (SCT)
-
status_t SCTIMER_Init(SCT_Type *base, const sctimer_config_t *config)
Ungates the SCTimer clock and configures the peripheral for basic operation.
Note
This API should be called at the beginning of the application using the SCTimer driver.
- Parameters:
base – SCTimer peripheral base address
config – Pointer to the user configuration structure.
- Returns:
kStatus_Success indicates success; Else indicates failure.
-
void SCTIMER_Deinit(SCT_Type *base)
Gates the SCTimer clock.
- Parameters:
base – SCTimer peripheral base address
-
void SCTIMER_GetDefaultConfig(sctimer_config_t *config)
Fills in the SCTimer configuration structure with the default settings.
The default values are:
config->enableCounterUnify = true; config->clockMode = kSCTIMER_System_ClockMode; config->clockSelect = kSCTIMER_Clock_On_Rise_Input_0; config->enableBidirection_l = false; config->enableBidirection_h = false; config->prescale_l = 0U; config->prescale_h = 0U; config->outInitState = 0U; config->inputsync = 0xFU;
- Parameters:
config – Pointer to the user configuration structure.
-
status_t SCTIMER_SetupPwm(SCT_Type *base, const sctimer_pwm_signal_param_t *pwmParams, sctimer_pwm_mode_t mode, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz, uint32_t *event)
Configures the PWM signal parameters.
Call this function to configure the PWM signal period, mode, duty cycle, and edge. This function will create 2 events; one of the events will trigger on match with the pulse value and the other will trigger when the counter matches the PWM period. The PWM period event is also used as a limit event to reset the counter or change direction. Both events are enabled for the same state. The state number can be retrieved by calling the function SCTIMER_GetCurrentStateNumber(). The counter is set to operate as one 32-bit counter (unify bit is set to 1). The counter operates in bi-directional mode when generating a center-aligned PWM.
Note
When setting PWM output from multiple output pins, they all should use the same PWM mode i.e all PWM’s should be either edge-aligned or center-aligned. When using this API, the PWM signal frequency of all the initialized channels must be the same. Otherwise all the initialized channels’ PWM signal frequency is equal to the last call to the API’s pwmFreq_Hz.
- Parameters:
base – SCTimer peripheral base address
pwmParams – PWM parameters to configure the output
mode – PWM operation mode, options available in enumeration sctimer_pwm_mode_t
pwmFreq_Hz – PWM signal frequency in Hz
srcClock_Hz – SCTimer counter clock in Hz
event – Pointer to a variable where the PWM period event number is stored
- Returns:
kStatus_Success on success kStatus_Fail If we have hit the limit in terms of number of events created or if an incorrect PWM dutycylce is passed in.
-
void SCTIMER_UpdatePwmDutycycle(SCT_Type *base, sctimer_out_t output, uint8_t dutyCyclePercent, uint32_t event)
Updates the duty cycle of an active PWM signal.
Before calling this function, the counter is set to operate as one 32-bit counter (unify bit is set to 1).
- Parameters:
base – SCTimer peripheral base address
output – The output to configure
dutyCyclePercent – New PWM pulse width; the value should be between 1 to 100
event – Event number associated with this PWM signal. This was returned to the user by the function SCTIMER_SetupPwm().
-
static inline void SCTIMER_EnableInterrupts(SCT_Type *base, uint32_t mask)
Enables the selected SCTimer interrupts.
- Parameters:
base – SCTimer peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration sctimer_interrupt_enable_t
-
static inline void SCTIMER_DisableInterrupts(SCT_Type *base, uint32_t mask)
Disables the selected SCTimer interrupts.
- Parameters:
base – SCTimer peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration sctimer_interrupt_enable_t
-
static inline uint32_t SCTIMER_GetEnabledInterrupts(SCT_Type *base)
Gets the enabled SCTimer interrupts.
- Parameters:
base – SCTimer peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration sctimer_interrupt_enable_t
-
static inline uint32_t SCTIMER_GetStatusFlags(SCT_Type *base)
Gets the SCTimer status flags.
- Parameters:
base – SCTimer peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration sctimer_status_flags_t
-
static inline void SCTIMER_ClearStatusFlags(SCT_Type *base, uint32_t mask)
Clears the SCTimer status flags.
- Parameters:
base – SCTimer peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration sctimer_status_flags_t
-
static inline void SCTIMER_StartTimer(SCT_Type *base, uint32_t countertoStart)
Starts the SCTimer counter.
Note
In 16-bit mode, we can enable both Counter_L and Counter_H, In 32-bit mode, we only can select Counter_U.
- Parameters:
base – SCTimer peripheral base address
countertoStart – The SCTimer counters to enable. This is a logical OR of members of the enumeration sctimer_counter_t.
-
static inline void SCTIMER_StopTimer(SCT_Type *base, uint32_t countertoStop)
Halts the SCTimer counter.
- Parameters:
base – SCTimer peripheral base address
countertoStop – The SCTimer counters to stop. This is a logical OR of members of the enumeration sctimer_counter_t.
-
status_t SCTIMER_CreateAndScheduleEvent(SCT_Type *base, sctimer_event_t howToMonitor, uint32_t matchValue, uint32_t whichIO, sctimer_counter_t whichCounter, uint32_t *event)
Create an event that is triggered on a match or IO and schedule in current state.
This function will configure an event using the options provided by the user. If the event type uses the counter match, then the function will set the user provided match value into a match register and put this match register number into the event control register. The event is enabled for the current state and the event number is increased by one at the end. The function returns the event number; this event number can be used to configure actions to be done when this event is triggered.
- Parameters:
base – SCTimer peripheral base address
howToMonitor – Event type; options are available in the enumeration sctimer_interrupt_enable_t
matchValue – The match value that will be programmed to a match register
whichIO – The input or output that will be involved in event triggering. This field is ignored if the event type is “match only”
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
event – Pointer to a variable where the new event number is stored
- Returns:
kStatus_Success on success kStatus_Error if we have hit the limit in terms of number of events created or if we have reached the limit in terms of number of match registers
-
void SCTIMER_ScheduleEvent(SCT_Type *base, uint32_t event)
Enable an event in the current state.
This function will allow the event passed in to trigger in the current state. The event must be created earlier by either calling the function SCTIMER_SetupPwm() or function SCTIMER_CreateAndScheduleEvent() .
- Parameters:
base – SCTimer peripheral base address
event – Event number to enable in the current state
-
status_t SCTIMER_IncreaseState(SCT_Type *base)
Increase the state by 1.
All future events created by calling the function SCTIMER_ScheduleEvent() will be enabled in this new state.
- Parameters:
base – SCTimer peripheral base address
- Returns:
kStatus_Success on success kStatus_Error if we have hit the limit in terms of states used
-
uint32_t SCTIMER_GetCurrentState(SCT_Type *base)
Provides the current state.
User can use this to set the next state by calling the function SCTIMER_SetupNextStateAction().
- Parameters:
base – SCTimer peripheral base address
- Returns:
The current state
-
static inline void SCTIMER_SetCounterState(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t state)
Set the counter current state.
The function is to set the state variable bit field of STATE register. Writing to the STATE_L, STATE_H, or unified register is only allowed when the corresponding counter is halted (HALT bits are set to 1 in the CTRL register).
- Parameters:
base – SCTimer peripheral base address
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
state – The counter current state number (only support range from 0~31).
-
static inline uint16_t SCTIMER_GetCounterState(SCT_Type *base, sctimer_counter_t whichCounter)
Get the counter current state value.
The function is to get the state variable bit field of STATE register.
- Parameters:
base – SCTimer peripheral base address
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
- Returns:
The the counter current state value.
-
status_t SCTIMER_SetupCaptureAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t *captureRegister, uint32_t event)
Setup capture of the counter value on trigger of a selected event.
- Parameters:
base – SCTimer peripheral base address
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
captureRegister – Pointer to a variable where the capture register number will be returned. User can read the captured value from this register when the specified event is triggered.
event – Event number that will trigger the capture
- Returns:
kStatus_Success on success kStatus_Error if we have hit the limit in terms of number of match/capture registers available
-
void SCTIMER_SetCallback(SCT_Type *base, sctimer_event_callback_t callback, uint32_t event)
Receive noticification when the event trigger an interrupt.
If the interrupt for the event is enabled by the user, then a callback can be registered which will be invoked when the event is triggered
- Parameters:
base – SCTimer peripheral base address
event – Event number that will trigger the interrupt
callback – Function to invoke when the event is triggered
-
static inline void SCTIMER_SetupStateLdMethodAction(SCT_Type *base, uint32_t event, bool fgLoad)
Change the load method of transition to the specified state.
Change the load method of transition, it will be triggered by the event number that is passed in by the user.
- Parameters:
base – SCTimer peripheral base address
event – Event number that will change the method to trigger the state transition
fgLoad – The method to load highest-numbered event occurring for that state to the STATE register.
true: Load the STATEV value to STATE when the event occurs to be the next state.
false: Add the STATEV value to STATE when the event occurs to be the next state.
-
static inline void SCTIMER_SetupNextStateActionwithLdMethod(SCT_Type *base, uint32_t nextState, uint32_t event, bool fgLoad)
Transition to the specified state with Load method.
This transition will be triggered by the event number that is passed in by the user, the method decide how to load the highest-numbered event occurring for that state to the STATE register.
- Parameters:
base – SCTimer peripheral base address
nextState – The next state SCTimer will transition to
event – Event number that will trigger the state transition
fgLoad – The method to load the highest-numbered event occurring for that state to the STATE register.
true: Load the STATEV value to STATE when the event occurs to be the next state.
false: Add the STATEV value to STATE when the event occurs to be the next state.
-
static inline void SCTIMER_SetupNextStateAction(SCT_Type *base, uint32_t nextState, uint32_t event)
Transition to the specified state.
- Deprecated:
Do not use this function. It has been superceded by SCTIMER_SetupNextStateActionwithLdMethod
This transition will be triggered by the event number that is passed in by the user.
- Parameters:
base – SCTimer peripheral base address
nextState – The next state SCTimer will transition to
event – Event number that will trigger the state transition
-
static inline void SCTIMER_SetupEventActiveDirection(SCT_Type *base, sctimer_event_active_direction_t activeDirection, uint32_t event)
Setup event active direction when the counters are operating in BIDIR mode.
- Parameters:
base – SCTimer peripheral base address
activeDirection – Event generation active direction, see sctimer_event_active_direction_t.
event – Event number that need setup the active direction.
-
static inline void SCTIMER_SetupOutputSetAction(SCT_Type *base, uint32_t whichIO, uint32_t event)
Set the Output.
This output will be set when the event number that is passed in by the user is triggered.
- Parameters:
base – SCTimer peripheral base address
whichIO – The output to set
event – Event number that will trigger the output change
-
static inline void SCTIMER_SetupOutputClearAction(SCT_Type *base, uint32_t whichIO, uint32_t event)
Clear the Output.
This output will be cleared when the event number that is passed in by the user is triggered.
- Parameters:
base – SCTimer peripheral base address
whichIO – The output to clear
event – Event number that will trigger the output change
-
void SCTIMER_SetupOutputToggleAction(SCT_Type *base, uint32_t whichIO, uint32_t event)
Toggle the output level.
This change in the output level is triggered by the event number that is passed in by the user.
- Parameters:
base – SCTimer peripheral base address
whichIO – The output to toggle
event – Event number that will trigger the output change
-
static inline void SCTIMER_SetupCounterLimitAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)
Limit the running counter.
The counter is limited when the event number that is passed in by the user is triggered.
- Parameters:
base – SCTimer peripheral base address
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
event – Event number that will trigger the counter to be limited
-
static inline void SCTIMER_SetupCounterStopAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)
Stop the running counter.
The counter is stopped when the event number that is passed in by the user is triggered.
- Parameters:
base – SCTimer peripheral base address
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
event – Event number that will trigger the counter to be stopped
-
static inline void SCTIMER_SetupCounterStartAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)
Re-start the stopped counter.
The counter will re-start when the event number that is passed in by the user is triggered.
- Parameters:
base – SCTimer peripheral base address
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
event – Event number that will trigger the counter to re-start
-
static inline void SCTIMER_SetupCounterHaltAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)
Halt the running counter.
The counter is disabled (halted) when the event number that is passed in by the user is triggered. When the counter is halted, all further events are disabled. The HALT condition can only be removed by calling the SCTIMER_StartTimer() function.
- Parameters:
base – SCTimer peripheral base address
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
event – Event number that will trigger the counter to be halted
-
static inline void SCTIMER_SetupDmaTriggerAction(SCT_Type *base, uint32_t dmaNumber, uint32_t event)
Generate a DMA request.
DMA request will be triggered by the event number that is passed in by the user.
- Parameters:
base – SCTimer peripheral base address
dmaNumber – The DMA request to generate
event – Event number that will trigger the DMA request
-
static inline void SCTIMER_SetCOUNTValue(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t value)
Set the value of counter.
The function is to set the value of Count register, Writing to the COUNT_L, COUNT_H, or unified register is only allowed when the corresponding counter is halted (HALT bits are set to 1 in the CTRL register).
- Parameters:
base – SCTimer peripheral base address
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
value – the counter value update to the COUNT register.
-
static inline uint32_t SCTIMER_GetCOUNTValue(SCT_Type *base, sctimer_counter_t whichCounter)
Get the value of counter.
The function is to read the value of Count register, software can read the counter registers at any time..
- Parameters:
base – SCTimer peripheral base address
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
- Returns:
The value of counter selected.
-
static inline void SCTIMER_SetEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Set the state mask bit field of EV_STATE register.
- Parameters:
base – SCTimer peripheral base address
event – The EV_STATE register be set.
state – The state value in which the event is enabled to occur.
-
static inline void SCTIMER_ClearEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Clear the state mask bit field of EV_STATE register.
- Parameters:
base – SCTimer peripheral base address
event – The EV_STATE register be clear.
state – The state value in which the event is disabled to occur.
-
static inline bool SCTIMER_GetEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Get the state mask bit field of EV_STATE register.
Note
This function is to check whether the event is enabled in a specific state.
- Parameters:
base – SCTimer peripheral base address
event – The EV_STATE register be read.
state – The state value.
- Returns:
The the state mask bit field of EV_STATE register.
true: The event is enable in state.
false: The event is disable in state.
-
static inline uint32_t SCTIMER_GetCaptureValue(SCT_Type *base, sctimer_counter_t whichCounter, uint8_t capChannel)
Get the value of capture register.
This function returns the captured value upon occurrence of the events selected by the corresponding Capture Control registers occurred.
- Parameters:
base – SCTimer peripheral base address
whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.
capChannel – SCTimer capture register of capture channel.
- Returns:
The SCTimer counter value at which this register was last captured.
-
void SCTIMER_EventHandleIRQ(SCT_Type *base)
SCTimer interrupt handler.
- Parameters:
base – SCTimer peripheral base address.
-
FSL_SCTIMER_DRIVER_VERSION
Version
-
enum _sctimer_pwm_mode
SCTimer PWM operation modes.
Values:
-
enumerator kSCTIMER_EdgeAlignedPwm
Edge-aligned PWM
-
enumerator kSCTIMER_CenterAlignedPwm
Center-aligned PWM
-
enumerator kSCTIMER_EdgeAlignedPwm
-
enum _sctimer_counter
SCTimer counters type.
Values:
-
enumerator kSCTIMER_Counter_L
16-bit Low counter.
-
enumerator kSCTIMER_Counter_H
16-bit High counter.
-
enumerator kSCTIMER_Counter_U
32-bit Unified counter.
-
enumerator kSCTIMER_Counter_L
-
enum _sctimer_input
List of SCTimer input pins.
Values:
-
enumerator kSCTIMER_Input_0
SCTIMER input 0
-
enumerator kSCTIMER_Input_1
SCTIMER input 1
-
enumerator kSCTIMER_Input_2
SCTIMER input 2
-
enumerator kSCTIMER_Input_3
SCTIMER input 3
-
enumerator kSCTIMER_Input_4
SCTIMER input 4
-
enumerator kSCTIMER_Input_5
SCTIMER input 5
-
enumerator kSCTIMER_Input_6
SCTIMER input 6
-
enumerator kSCTIMER_Input_7
SCTIMER input 7
-
enumerator kSCTIMER_Input_0
-
enum _sctimer_out
List of SCTimer output pins.
Values:
-
enumerator kSCTIMER_Out_0
SCTIMER output 0
-
enumerator kSCTIMER_Out_1
SCTIMER output 1
-
enumerator kSCTIMER_Out_2
SCTIMER output 2
-
enumerator kSCTIMER_Out_3
SCTIMER output 3
-
enumerator kSCTIMER_Out_4
SCTIMER output 4
-
enumerator kSCTIMER_Out_5
SCTIMER output 5
-
enumerator kSCTIMER_Out_6
SCTIMER output 6
-
enumerator kSCTIMER_Out_7
SCTIMER output 7
-
enumerator kSCTIMER_Out_8
SCTIMER output 8
-
enumerator kSCTIMER_Out_9
SCTIMER output 9
-
enumerator kSCTIMER_Out_0
-
enum _sctimer_pwm_level_select
SCTimer PWM output pulse mode: high-true, low-true or no output.
Values:
-
enumerator kSCTIMER_LowTrue
Low true pulses
-
enumerator kSCTIMER_HighTrue
High true pulses
-
enumerator kSCTIMER_LowTrue
-
enum _sctimer_clock_mode
SCTimer clock mode options.
Values:
-
enumerator kSCTIMER_System_ClockMode
System Clock Mode
-
enumerator kSCTIMER_Sampled_ClockMode
Sampled System Clock Mode
-
enumerator kSCTIMER_Input_ClockMode
SCT Input Clock Mode
-
enumerator kSCTIMER_Asynchronous_ClockMode
Asynchronous Mode
-
enumerator kSCTIMER_System_ClockMode
-
enum _sctimer_clock_select
SCTimer clock select options.
Values:
-
enumerator kSCTIMER_Clock_On_Rise_Input_0
Rising edges on input 0
-
enumerator kSCTIMER_Clock_On_Fall_Input_0
Falling edges on input 0
-
enumerator kSCTIMER_Clock_On_Rise_Input_1
Rising edges on input 1
-
enumerator kSCTIMER_Clock_On_Fall_Input_1
Falling edges on input 1
-
enumerator kSCTIMER_Clock_On_Rise_Input_2
Rising edges on input 2
-
enumerator kSCTIMER_Clock_On_Fall_Input_2
Falling edges on input 2
-
enumerator kSCTIMER_Clock_On_Rise_Input_3
Rising edges on input 3
-
enumerator kSCTIMER_Clock_On_Fall_Input_3
Falling edges on input 3
-
enumerator kSCTIMER_Clock_On_Rise_Input_4
Rising edges on input 4
-
enumerator kSCTIMER_Clock_On_Fall_Input_4
Falling edges on input 4
-
enumerator kSCTIMER_Clock_On_Rise_Input_5
Rising edges on input 5
-
enumerator kSCTIMER_Clock_On_Fall_Input_5
Falling edges on input 5
-
enumerator kSCTIMER_Clock_On_Rise_Input_6
Rising edges on input 6
-
enumerator kSCTIMER_Clock_On_Fall_Input_6
Falling edges on input 6
-
enumerator kSCTIMER_Clock_On_Rise_Input_7
Rising edges on input 7
-
enumerator kSCTIMER_Clock_On_Fall_Input_7
Falling edges on input 7
-
enumerator kSCTIMER_Clock_On_Rise_Input_0
-
enum _sctimer_conflict_resolution
SCTimer output conflict resolution options.
Specifies what action should be taken if multiple events dictate that a given output should be both set and cleared at the same time
Values:
-
enumerator kSCTIMER_ResolveNone
No change
-
enumerator kSCTIMER_ResolveSet
Set output
-
enumerator kSCTIMER_ResolveClear
Clear output
-
enumerator kSCTIMER_ResolveToggle
Toggle output
-
enumerator kSCTIMER_ResolveNone
-
enum _sctimer_event_active_direction
List of SCTimer event generation active direction when the counters are operating in BIDIR mode.
Values:
-
enumerator kSCTIMER_ActiveIndependent
This event is triggered regardless of the count direction.
-
enumerator kSCTIMER_ActiveInCountUp
This event is triggered only during up-counting when BIDIR = 1.
-
enumerator kSCTIMER_ActiveInCountDown
This event is triggered only during down-counting when BIDIR = 1.
-
enumerator kSCTIMER_ActiveIndependent
-
enum _sctimer_event
List of SCTimer event types.
Values:
-
enumerator kSCTIMER_InputLowOrMatchEvent
-
enumerator kSCTIMER_InputRiseOrMatchEvent
-
enumerator kSCTIMER_InputFallOrMatchEvent
-
enumerator kSCTIMER_InputHighOrMatchEvent
-
enumerator kSCTIMER_MatchEventOnly
-
enumerator kSCTIMER_InputLowEvent
-
enumerator kSCTIMER_InputRiseEvent
-
enumerator kSCTIMER_InputFallEvent
-
enumerator kSCTIMER_InputHighEvent
-
enumerator kSCTIMER_InputLowAndMatchEvent
-
enumerator kSCTIMER_InputRiseAndMatchEvent
-
enumerator kSCTIMER_InputFallAndMatchEvent
-
enumerator kSCTIMER_InputHighAndMatchEvent
-
enumerator kSCTIMER_OutputLowOrMatchEvent
-
enumerator kSCTIMER_OutputRiseOrMatchEvent
-
enumerator kSCTIMER_OutputFallOrMatchEvent
-
enumerator kSCTIMER_OutputHighOrMatchEvent
-
enumerator kSCTIMER_OutputLowEvent
-
enumerator kSCTIMER_OutputRiseEvent
-
enumerator kSCTIMER_OutputFallEvent
-
enumerator kSCTIMER_OutputHighEvent
-
enumerator kSCTIMER_OutputLowAndMatchEvent
-
enumerator kSCTIMER_OutputRiseAndMatchEvent
-
enumerator kSCTIMER_OutputFallAndMatchEvent
-
enumerator kSCTIMER_OutputHighAndMatchEvent
-
enumerator kSCTIMER_InputLowOrMatchEvent
-
enum _sctimer_interrupt_enable
List of SCTimer interrupts.
Values:
-
enumerator kSCTIMER_Event0InterruptEnable
Event 0 interrupt
-
enumerator kSCTIMER_Event1InterruptEnable
Event 1 interrupt
-
enumerator kSCTIMER_Event2InterruptEnable
Event 2 interrupt
-
enumerator kSCTIMER_Event3InterruptEnable
Event 3 interrupt
-
enumerator kSCTIMER_Event4InterruptEnable
Event 4 interrupt
-
enumerator kSCTIMER_Event5InterruptEnable
Event 5 interrupt
-
enumerator kSCTIMER_Event6InterruptEnable
Event 6 interrupt
-
enumerator kSCTIMER_Event7InterruptEnable
Event 7 interrupt
-
enumerator kSCTIMER_Event8InterruptEnable
Event 8 interrupt
-
enumerator kSCTIMER_Event9InterruptEnable
Event 9 interrupt
-
enumerator kSCTIMER_Event10InterruptEnable
Event 10 interrupt
-
enumerator kSCTIMER_Event11InterruptEnable
Event 11 interrupt
-
enumerator kSCTIMER_Event12InterruptEnable
Event 12 interrupt
-
enumerator kSCTIMER_Event0InterruptEnable
-
enum _sctimer_status_flags
List of SCTimer flags.
Values:
-
enumerator kSCTIMER_Event0Flag
Event 0 Flag
-
enumerator kSCTIMER_Event1Flag
Event 1 Flag
-
enumerator kSCTIMER_Event2Flag
Event 2 Flag
-
enumerator kSCTIMER_Event3Flag
Event 3 Flag
-
enumerator kSCTIMER_Event4Flag
Event 4 Flag
-
enumerator kSCTIMER_Event5Flag
Event 5 Flag
-
enumerator kSCTIMER_Event6Flag
Event 6 Flag
-
enumerator kSCTIMER_Event7Flag
Event 7 Flag
-
enumerator kSCTIMER_Event8Flag
Event 8 Flag
-
enumerator kSCTIMER_Event9Flag
Event 9 Flag
-
enumerator kSCTIMER_Event10Flag
Event 10 Flag
-
enumerator kSCTIMER_Event11Flag
Event 11 Flag
-
enumerator kSCTIMER_Event12Flag
Event 12 Flag
-
enumerator kSCTIMER_BusErrorLFlag
Bus error due to write when L counter was not halted
-
enumerator kSCTIMER_BusErrorHFlag
Bus error due to write when H counter was not halted
-
enumerator kSCTIMER_Event0Flag
-
typedef enum _sctimer_pwm_mode sctimer_pwm_mode_t
SCTimer PWM operation modes.
-
typedef enum _sctimer_counter sctimer_counter_t
SCTimer counters type.
-
typedef enum _sctimer_input sctimer_input_t
List of SCTimer input pins.
-
typedef enum _sctimer_out sctimer_out_t
List of SCTimer output pins.
-
typedef enum _sctimer_pwm_level_select sctimer_pwm_level_select_t
SCTimer PWM output pulse mode: high-true, low-true or no output.
-
typedef struct _sctimer_pwm_signal_param sctimer_pwm_signal_param_t
Options to configure a SCTimer PWM signal.
-
typedef enum _sctimer_clock_mode sctimer_clock_mode_t
SCTimer clock mode options.
-
typedef enum _sctimer_clock_select sctimer_clock_select_t
SCTimer clock select options.
-
typedef enum _sctimer_conflict_resolution sctimer_conflict_resolution_t
SCTimer output conflict resolution options.
Specifies what action should be taken if multiple events dictate that a given output should be both set and cleared at the same time
-
typedef enum _sctimer_event_active_direction sctimer_event_active_direction_t
List of SCTimer event generation active direction when the counters are operating in BIDIR mode.
-
typedef enum _sctimer_event sctimer_event_t
List of SCTimer event types.
-
typedef void (*sctimer_event_callback_t)(void)
SCTimer callback typedef.
-
typedef enum _sctimer_interrupt_enable sctimer_interrupt_enable_t
List of SCTimer interrupts.
-
typedef enum _sctimer_status_flags sctimer_status_flags_t
List of SCTimer flags.
-
typedef struct _sctimer_config sctimer_config_t
SCTimer configuration structure.
This structure holds the configuration settings for the SCTimer peripheral. To initialize this structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a pointer to the configuration structure instance.
The configuration structure can be made constant so as to reside in flash.
-
SCT_EV_STATE_STATEMSKn(x)
-
struct _sctimer_pwm_signal_param
- #include <fsl_sctimer.h>
Options to configure a SCTimer PWM signal.
Public Members
-
sctimer_out_t output
The output pin to use to generate the PWM signal
-
sctimer_pwm_level_select_t level
PWM output active level select.
-
uint8_t dutyCyclePercent
PWM pulse width, value should be between 0 to 100 0 = always inactive signal (0% duty cycle) 100 = always active signal (100% duty cycle).
-
sctimer_out_t output
-
struct _sctimer_config
- #include <fsl_sctimer.h>
SCTimer configuration structure.
This structure holds the configuration settings for the SCTimer peripheral. To initialize this structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a pointer to the configuration structure instance.
The configuration structure can be made constant so as to reside in flash.
Public Members
-
bool enableCounterUnify
true: SCT operates as a unified 32-bit counter; false: SCT operates as two 16-bit counters. User can use the 16-bit low counter and the 16-bit high counters at the same time; for Hardware limit, user can not use unified 32-bit counter and any 16-bit low/high counter at the same time.
-
sctimer_clock_mode_t clockMode
SCT clock mode value
-
sctimer_clock_select_t clockSelect
SCT clock select value
-
bool enableBidirection_l
true: Up-down count mode for the L or unified counter false: Up count mode only for the L or unified counter
-
bool enableBidirection_h
true: Up-down count mode for the H or unified counter false: Up count mode only for the H or unified counter. This field is used only if the enableCounterUnify is set to false
-
uint8_t prescale_l
Prescale value to produce the L or unified counter clock
-
uint8_t prescale_h
Prescale value to produce the H counter clock. This field is used only if the enableCounterUnify is set to false
-
uint8_t outInitState
Defines the initial output value
-
uint8_t inputsync
SCT INSYNC value, INSYNC field in the CONFIG register, from bit9 to bit 16. it is used to define synchronization for input N: bit 9 = input 0 bit 10 = input 1 bit 11 = input 2 bit 12 = input 3 All other bits are reserved (bit13 ~bit 16). How User to set the the value for the member inputsync. IE: delay for input0, and input 1, bypasses for input 2 and input 3 MACRO definition in user level. #define INPUTSYNC0 (0U) #define INPUTSYNC1 (1U) #define INPUTSYNC2 (2U) #define INPUTSYNC3 (3U) User Code. sctimerInfo.inputsync = (1 << INPUTSYNC2) | (1 << INPUTSYNC3);
-
bool enableCounterUnify
SDIF: SD/MMC/SDIO card interface
-
FSL_SDIF_DRIVER_VERSION
Driver version 2.0.15.
_sdif_status SDIF status
Values:
-
enumerator kStatus_SDIF_DescriptorBufferLenError
Set DMA descriptor failed
-
enumerator kStatus_SDIF_InvalidArgument
invalid argument status
-
enumerator kStatus_SDIF_SyncCmdTimeout
sync command to CIU timeout status
-
enumerator kStatus_SDIF_SendCmdFail
send command to card fail
-
enumerator kStatus_SDIF_SendCmdErrorBufferFull
send command to card fail, due to command buffer full user need to resend this command
-
enumerator kStatus_SDIF_DMATransferFailWithFBE
DMA transfer data fail with fatal bus error , to do with this error :issue a hard reset/controller reset
-
enumerator kStatus_SDIF_DMATransferDescriptorUnavailable
DMA descriptor unavailable
-
enumerator kStatus_SDIF_DataTransferFail
transfer data fail
-
enumerator kStatus_SDIF_ResponseError
response error
-
enumerator kStatus_SDIF_DMAAddrNotAlign
DMA address not align
-
enumerator kStatus_SDIF_BusyTransferring
SDIF transfer busy status
-
enumerator kStatus_SDIF_DataTransferSuccess
transfer data success
-
enumerator kStatus_SDIF_SendCmdSuccess
transfer command success
-
enumerator kStatus_SDIF_DescriptorBufferLenError
_sdif_capability_flag Host controller capabilities flag mask
Values:
-
enumerator kSDIF_SupportHighSpeedFlag
Support high-speed
-
enumerator kSDIF_SupportDmaFlag
Support DMA
-
enumerator kSDIF_SupportSuspendResumeFlag
Support suspend/resume
-
enumerator kSDIF_SupportV330Flag
Support voltage 3.3V
-
enumerator kSDIF_Support4BitFlag
Support 4 bit mode
-
enumerator kSDIF_Support8BitFlag
Support 8 bit mode
-
enumerator kSDIF_SupportHighSpeedFlag
_sdif_reset_type define the reset type
Values:
-
enumerator kSDIF_ResetController
reset controller,will reset: BIU/CIU interface CIU and state machine,ABORT_READ_DATA,SEND_IRQ_RESPONSE and READ_WAIT bits of control register,START_CMD bit of the command register
-
enumerator kSDIF_ResetFIFO
reset data FIFO
-
enumerator kSDIF_ResetDMAInterface
reset DMA interface
-
enumerator kSDIF_ResetAll
reset all
-
enumerator kSDIF_ResetController
-
enum _sdif_bus_width
define the card bus width type
Values:
-
enumerator kSDIF_Bus1BitWidth
1bit bus width, 1bit mode and 4bit mode share one register bit
-
enumerator kSDIF_Bus4BitWidth
4bit mode mask
-
enumerator kSDIF_Bus8BitWidth
support 8 bit mode
-
enumerator kSDIF_Bus1BitWidth
_sdif_command_flags define the command flags
Values:
-
enumerator kSDIF_CmdResponseExpect
command request response
-
enumerator kSDIF_CmdResponseLengthLong
command response length long
-
enumerator kSDIF_CmdCheckResponseCRC
request check command response CRC
-
enumerator kSDIF_DataExpect
request data transfer,either read/write
-
enumerator kSDIF_DataWriteToCard
data transfer direction
-
enumerator kSDIF_DataStreamTransfer
data transfer mode :stream/block transfer command
-
enumerator kSDIF_DataTransferAutoStop
data transfer with auto stop at the end of
-
enumerator kSDIF_WaitPreTransferComplete
wait pre transfer complete before sending this cmd
-
enumerator kSDIF_TransferStopAbort
when host issue stop or abort cmd to stop data transfer ,this bit should set so that cmd/data state-machines of CIU can return to idle correctly
-
enumerator kSDIF_SendInitialization
send initialization 80 clocks for SD card after power on
-
enumerator kSDIF_CmdUpdateClockRegisterOnly
send cmd update the CIU clock register only
-
enumerator kSDIF_CmdtoReadCEATADevice
host is perform read access to CE-ATA device
-
enumerator kSDIF_CmdExpectCCS
command expect command completion signal signal
-
enumerator kSDIF_BootModeEnable
this bit should only be set for mandatory boot mode
-
enumerator kSDIF_BootModeExpectAck
boot mode expect ack
-
enumerator kSDIF_BootModeDisable
when software set this bit along with START_CMD, CIU terminates the boot operation
-
enumerator kSDIF_BootModeAlternate
select boot mode ,alternate or mandatory
-
enumerator kSDIF_CmdVoltageSwitch
this bit set for CMD11 only
-
enumerator kSDIF_CmdDataUseHoldReg
cmd and data send to card through the HOLD register
-
enumerator kSDIF_CmdResponseExpect
_sdif_command_type The command type
Values:
-
enumerator kCARD_CommandTypeNormal
Normal command
-
enumerator kCARD_CommandTypeSuspend
Suspend command
-
enumerator kCARD_CommandTypeResume
Resume command
-
enumerator kCARD_CommandTypeAbort
Abort command
-
enumerator kCARD_CommandTypeNormal
_sdif_response_type The command response type.
Define the command response type from card to host controller.
Values:
-
enumerator kCARD_ResponseTypeNone
Response type: none
-
enumerator kCARD_ResponseTypeR1
Response type: R1
-
enumerator kCARD_ResponseTypeR1b
Response type: R1b
-
enumerator kCARD_ResponseTypeR2
Response type: R2
-
enumerator kCARD_ResponseTypeR3
Response type: R3
-
enumerator kCARD_ResponseTypeR4
Response type: R4
-
enumerator kCARD_ResponseTypeR5
Response type: R5
-
enumerator kCARD_ResponseTypeR5b
Response type: R5b
-
enumerator kCARD_ResponseTypeR6
Response type: R6
-
enumerator kCARD_ResponseTypeR7
Response type: R7
-
enumerator kCARD_ResponseTypeNone
_sdif_interrupt_mask define the interrupt mask flags
Values:
-
enumerator kSDIF_CardDetect
mask for card detect
-
enumerator kSDIF_ResponseError
command response error
-
enumerator kSDIF_CommandDone
command transfer over
-
enumerator kSDIF_DataTransferOver
data transfer over flag
-
enumerator kSDIF_WriteFIFORequest
write FIFO request
-
enumerator kSDIF_ReadFIFORequest
read FIFO request
-
enumerator kSDIF_ResponseCRCError
response CRC error
-
enumerator kSDIF_DataCRCError
data CRC error
-
enumerator kSDIF_ResponseTimeout
response timeout
-
enumerator kSDIF_DataReadTimeout
read data timeout
-
enumerator kSDIF_DataStarvationByHostTimeout
data starvation by host time out
-
enumerator kSDIF_FIFOError
indicate the FIFO under run or overrun error
-
enumerator kSDIF_HardwareLockError
hardware lock write error
-
enumerator kSDIF_DataStartBitError
start bit error
-
enumerator kSDIF_AutoCmdDone
indicate the auto command done
-
enumerator kSDIF_DataEndBitError
end bit error
-
enumerator kSDIF_SDIOInterrupt
interrupt from the SDIO card
-
enumerator kSDIF_CommandTransferStatus
command transfer status collection
-
enumerator kSDIF_DataTransferStatus
data transfer status collection
-
enumerator kSDIF_DataTransferError
-
enumerator kSDIF_AllInterruptStatus
all interrupt mask
-
enumerator kSDIF_CardDetect
_sdif_dma_status define the internal DMA status flags
Values:
-
enumerator kSDIF_DMATransFinishOneDescriptor
DMA transfer finished for one DMA descriptor
-
enumerator kSDIF_DMARecvFinishOneDescriptor
DMA receive finished for one DMA descriptor
-
enumerator kSDIF_DMAFatalBusError
DMA fatal bus error
-
enumerator kSDIF_DMADescriptorUnavailable
DMA descriptor unavailable
-
enumerator kSDIF_DMACardErrorSummary
card error summary
-
enumerator kSDIF_NormalInterruptSummary
normal interrupt summary
-
enumerator kSDIF_AbnormalInterruptSummary
abnormal interrupt summary
-
enumerator kSDIF_DMAAllStatus
-
enumerator kSDIF_DMATransFinishOneDescriptor
_sdif_dma_descriptor_flag define the internal DMA descriptor flag
- Deprecated:
Do not use this enum anymore, please use SDIF_DMA_DESCRIPTOR_XXX_FLAG instead.
Values:
-
enumerator kSDIF_DisableCompleteInterrupt
disable the complete interrupt flag for the ends in the buffer pointed to by this descriptor
-
enumerator kSDIF_DMADescriptorDataBufferEnd
indicate this descriptor contain the last data buffer of data
-
enumerator kSDIF_DMADescriptorDataBufferStart
indicate this descriptor contain the first data buffer of data,if first buffer size is 0,next descriptor contain the begin of the data
-
enumerator kSDIF_DMASecondAddrChained
indicate that the second addr in the descriptor is the next descriptor addr not the data buffer
-
enumerator kSDIF_DMADescriptorEnd
indicate that the descriptor list reached its final descriptor
-
enumerator kSDIF_DMADescriptorOwnByDMA
indicate the descriptor is own by SD/MMC DMA
-
enum _sdif_dma_mode
define the internal DMA mode
Values:
-
enumerator kSDIF_ChainDMAMode
-
enumerator kSDIF_DualDMAMode
-
enumerator kSDIF_ChainDMAMode
-
typedef enum _sdif_bus_width sdif_bus_width_t
define the card bus width type
-
typedef enum _sdif_dma_mode sdif_dma_mode_t
define the internal DMA mode
-
typedef struct _sdif_dma_descriptor sdif_dma_descriptor_t
define the internal DMA descriptor
-
typedef struct _sdif_dma_config sdif_dma_config_t
Defines the internal DMA configure structure.
-
typedef struct _sdif_data sdif_data_t
Card data descriptor.
-
typedef struct _sdif_command sdif_command_t
Card command descriptor.
Define card command-related attribute.
-
typedef struct _sdif_transfer sdif_transfer_t
Transfer state.
-
typedef struct _sdif_config sdif_config_t
Data structure to initialize the sdif.
-
typedef struct _sdif_capability sdif_capability_t
SDIF capability information. Defines a structure to get the capability information of SDIF.
-
typedef struct _sdif_transfer_callback sdif_transfer_callback_t
sdif callback functions.
-
typedef struct _sdif_handle sdif_handle_t
sdif handle
Defines the structure to save the sdif state information and callback function. The detail interrupt status when send command or transfer data can be obtained from interruptFlags field by using mask defined in sdif_interrupt_flag_t;
Note
All the fields except interruptFlags and transferredWords must be allocated by the user.
-
typedef status_t (*sdif_transfer_function_t)(SDIF_Type *base, sdif_transfer_t *content)
sdif transfer function.
-
typedef struct _sdif_host sdif_host_t
sdif host descriptor
-
void SDIF_Init(SDIF_Type *base, sdif_config_t *config)
SDIF module initialization function.
Configures the SDIF according to the user configuration.
- Parameters:
base – SDIF peripheral base address.
config – SDIF configuration information.
-
void SDIF_Deinit(SDIF_Type *base)
SDIF module deinit function. user should call this function follow with IP reset.
- Parameters:
base – SDIF peripheral base address.
-
bool SDIF_SendCardActive(SDIF_Type *base, uint32_t timeout)
SDIF send initialize 80 clocks for SD card after initial.
- Parameters:
base – SDIF peripheral base address.
timeout – timeout value
-
static inline void SDIF_EnableCardClock(SDIF_Type *base, bool enable)
SDIF module enable/disable card0 clock.
- Parameters:
base – SDIF peripheral base address.
enable – enable/disable flag
-
static inline void SDIF_EnableCard1Clock(SDIF_Type *base, bool enable)
SDIF module enable/disable card1 clock.
- Parameters:
base – SDIF peripheral base address.
enable – enable/disable flag
-
static inline void SDIF_EnableLowPowerMode(SDIF_Type *base, bool enable)
SDIF module enable/disable module disable the card clock to enter low power mode when card is idle,for SDIF cards, if interrupts must be detected, clock should not be stopped.
- Parameters:
base – SDIF peripheral base address.
enable – enable/disable flag
-
static inline void SDIF_EnableCard1LowPowerMode(SDIF_Type *base, bool enable)
SDIF module enable/disable module disable the card clock to enter low power mode when card is idle,for SDIF cards, if interrupts must be detected, clock should not be stopped.
- Parameters:
base – SDIF peripheral base address.
enable – enable/disable flag
-
static inline void SDIF_EnableCardPower(SDIF_Type *base, bool enable)
enable/disable the card0 power. once turn power on, software should wait for regulator/switch ramp-up time before trying to initialize card.
- Parameters:
base – SDIF peripheral base address.
enable – enable/disable flag.
-
static inline void SDIF_EnableCard1Power(SDIF_Type *base, bool enable)
enable/disable the card1 power. once turn power on, software should wait for regulator/switch ramp-up time before trying to initialize card.
- Parameters:
base – SDIF peripheral base address.
enable – enable/disable flag.
-
void SDIF_SetCardBusWidth(SDIF_Type *base, sdif_bus_width_t type)
set card0 data bus width
- Parameters:
base – SDIF peripheral base address.
type – data bus width type
-
void SDIF_SetCard1BusWidth(SDIF_Type *base, sdif_bus_width_t type)
set card1 data bus width
- Parameters:
base – SDIF peripheral base address.
type – data bus width type
-
static inline uint32_t SDIF_DetectCardInsert(SDIF_Type *base, bool data3)
SDIF module detect card0 insert status function.
- Parameters:
base – SDIF peripheral base address.
data3 – indicate use data3 as card insert detect pin
- Return values:
1 – card is inserted 0 card is removed
-
static inline uint32_t SDIF_DetectCard1Insert(SDIF_Type *base, bool data3)
SDIF module detect card1 insert status function.
- Parameters:
base – SDIF peripheral base address.
data3 – indicate use data3 as card insert detect pin
- Return values:
1 – card is inserted 0 card is removed
-
uint32_t SDIF_SetCardClock(SDIF_Type *base, uint32_t srcClock_Hz, uint32_t target_HZ)
Sets the card bus clock frequency.
- Parameters:
base – SDIF peripheral base address.
srcClock_Hz – SDIF source clock frequency united in Hz.
target_HZ – card bus clock frequency united in Hz.
- Returns:
The nearest frequency of busClock_Hz configured to SD bus.
-
bool SDIF_Reset(SDIF_Type *base, uint32_t mask, uint32_t timeout)
reset the different block of the interface.
- Parameters:
base – SDIF peripheral base address.
mask – indicate which block to reset.
timeout – timeout value,set to wait the bit self clear
- Returns:
reset result.
-
static inline uint32_t SDIF_GetCardWriteProtect(SDIF_Type *base)
get the card write protect status
- Parameters:
base – SDIF peripheral base address.
-
static inline void SDIF_AssertHardwareReset(SDIF_Type *base)
toggle state on hardware reset PIN This is used which card has a reset PIN typically.
- Parameters:
base – SDIF peripheral base address.
-
status_t SDIF_SendCommand(SDIF_Type *base, sdif_command_t *cmd, uint32_t timeout)
send command to the card
This api include polling the status of the bit START_COMMAND, if 0 used as timeout value, then this function will return directly without polling the START_CMD status.
- Parameters:
base – SDIF peripheral base address.
cmd – configuration collection
timeout – the timeout value of polling START_CMD auto clear status.
- Returns:
command excute status
-
static inline void SDIF_EnableGlobalInterrupt(SDIF_Type *base, bool enable)
SDIF enable/disable global interrupt.
- Parameters:
base – SDIF peripheral base address.
enable – enable/disable flag
-
static inline void SDIF_EnableInterrupt(SDIF_Type *base, uint32_t mask)
SDIF enable interrupt.
- Parameters:
base – SDIF peripheral base address.
mask – mask
-
static inline void SDIF_DisableInterrupt(SDIF_Type *base, uint32_t mask)
SDIF disable interrupt.
- Parameters:
base – SDIF peripheral base address.
mask – mask
-
static inline uint32_t SDIF_GetInterruptStatus(SDIF_Type *base)
SDIF get interrupt status.
- Parameters:
base – SDIF peripheral base address.
-
static inline uint32_t SDIF_GetEnabledInterruptStatus(SDIF_Type *base)
SDIF get enabled interrupt status.
- Parameters:
base – SDIF peripheral base address.
-
static inline void SDIF_ClearInterruptStatus(SDIF_Type *base, uint32_t mask)
SDIF clear interrupt status.
- Parameters:
base – SDIF peripheral base address.
mask – mask to clear
-
void SDIF_TransferCreateHandle(SDIF_Type *base, sdif_handle_t *handle, sdif_transfer_callback_t *callback, void *userData)
Creates the SDIF handle. register call back function for interrupt and enable the interrupt.
- Parameters:
base – SDIF peripheral base address.
handle – SDIF handle pointer.
callback – Structure pointer to contain all callback functions.
userData – Callback function parameter.
-
static inline void SDIF_EnableDmaInterrupt(SDIF_Type *base, uint32_t mask)
SDIF enable DMA interrupt.
- Parameters:
base – SDIF peripheral base address.
mask – mask to set
-
static inline void SDIF_DisableDmaInterrupt(SDIF_Type *base, uint32_t mask)
SDIF disable DMA interrupt.
- Parameters:
base – SDIF peripheral base address.
mask – mask to clear
-
static inline uint32_t SDIF_GetInternalDMAStatus(SDIF_Type *base)
SDIF get internal DMA status.
- Parameters:
base – SDIF peripheral base address.
- Returns:
the internal DMA status register
-
static inline uint32_t SDIF_GetEnabledDMAInterruptStatus(SDIF_Type *base)
SDIF get enabled internal DMA interrupt status.
- Parameters:
base – SDIF peripheral base address.
- Returns:
the internal DMA status register
-
static inline void SDIF_ClearInternalDMAStatus(SDIF_Type *base, uint32_t mask)
SDIF clear internal DMA status.
- Parameters:
base – SDIF peripheral base address.
mask – mask to clear
-
status_t SDIF_InternalDMAConfig(SDIF_Type *base, sdif_dma_config_t *config, const uint32_t *data, uint32_t dataSize)
SDIF internal DMA config function.
- Parameters:
base – SDIF peripheral base address.
config – DMA configuration collection
data – buffer pointer
dataSize – buffer size
-
static inline void SDIF_EnableInternalDMA(SDIF_Type *base, bool enable)
SDIF internal DMA enable.
- Parameters:
base – SDIF peripheral base address.
enable – internal DMA enable or disable flag.
-
static inline void SDIF_SendReadWait(SDIF_Type *base)
SDIF send read wait to SDIF card function.
- Parameters:
base – SDIF peripheral base address.
-
bool SDIF_AbortReadData(SDIF_Type *base, uint32_t timeout)
SDIF abort the read data when SDIF card is in suspend state Once assert this bit,data state machine will be reset which is waiting for the next blocking data,used in SDIO card suspend sequence,should call after suspend cmd send.
- Parameters:
base – SDIF peripheral base address.
timeout – timeout value to wait this bit self clear which indicate the data machine reset to idle
-
static inline void SDIF_EnableCEATAInterrupt(SDIF_Type *base, bool enable)
SDIF enable/disable CE-ATA card interrupt this bit should set together with the card register.
- Parameters:
base – SDIF peripheral base address.
enable – enable/disable flag
-
status_t SDIF_TransferNonBlocking(SDIF_Type *base, sdif_handle_t *handle, sdif_dma_config_t *dmaConfig, sdif_transfer_t *transfer)
SDIF transfer function data/cmd in a non-blocking way this API should be use in interrupt mode, when use this API user must call SDIF_TransferCreateHandle first, all status check through interrupt.
- Parameters:
base – SDIF peripheral base address.
handle – handle
dmaConfig – config structure This parameter can be config as:
NULL In this condition, polling transfer mode is selected
avaliable DMA config In this condition, DMA transfer mode is selected
transfer – transfer configuration collection
-
status_t SDIF_TransferBlocking(SDIF_Type *base, sdif_dma_config_t *dmaConfig, sdif_transfer_t *transfer)
SDIF transfer function data/cmd in a blocking way.
- Parameters:
base – SDIF peripheral base address.
dmaConfig – config structure
NULL In this condition, polling transfer mode is selected
avaliable DMA config In this condition, DMA transfer mode is selected
transfer – transfer configuration collection
-
status_t SDIF_ReleaseDMADescriptor(SDIF_Type *base, sdif_dma_config_t *dmaConfig)
SDIF release the DMA descriptor to DMA engine this function should be called when DMA descriptor unavailable status occurs.
- Parameters:
base – SDIF peripheral base address.
dmaConfig – DMA config pointer
-
void SDIF_GetCapability(SDIF_Type *base, sdif_capability_t *capability)
SDIF return the controller capability.
- Parameters:
base – SDIF peripheral base address.
capability – capability pointer
-
static inline uint32_t SDIF_GetControllerStatus(SDIF_Type *base)
SDIF return the controller status.
- Parameters:
base – SDIF peripheral base address.
-
static inline void SDIF_SendCCSD(SDIF_Type *base, bool withAutoStop)
SDIF send command complete signal disable to CE-ATA card.
- Parameters:
base – SDIF peripheral base address.
withAutoStop – auto stop flag
-
void SDIF_ConfigClockDelay(uint32_t target_HZ, uint32_t divider)
SDIF config the clock delay This function is used to config the cclk_in delay to sample and driver the data ,should meet the min setup time and hold time, and user need to config this parameter according to your board setting.
- Parameters:
target_HZ – freq work mode
divider – not used in this function anymore, use DELAY value instead of phase directly.
-
SDIF_CLOCK_RANGE_NEED_DELAY
SDIOCLKCTRL setting Below clock delay setting should depend on specific platform, so it can be redefined when timing mismatch issue occur. Such as: response error/CRC error and so on.
clock range value which need to add delay to avoid timing issue
-
SDIF_HIGHSPEED_SAMPLE_DELAY
High speed mode clk_sample fixed delay.
12 * 250ps = 3ns
-
SDIF_HIGHSPEED_DRV_DELAY
High speed mode clk_drv fixed delay.
31 * 250ps = 7.75ns
-
SDIF_HIGHSPEED_SAMPLE_PHASE_SHIFT
High speed mode clk_sample phase shift.
-
SDIF_HIGHSPEED_DRV_PHASE_SHIFT
High speed mode clk_drv phase shift.
-
SDIF_DEFAULT_MODE_SAMPLE_DELAY
default mode sample fixed delay
12 * 250ps = 3ns
-
SDIF_DEFAULT_MODE_DRV_DELAY
31 * 250ps = 7.75ns
-
SDIF_INTERNAL_DMA_ADDR_ALIGN
SDIF internal DMA descriptor address and the data buffer address align.
-
SDIF_DMA_DESCRIPTOR_DISABLE_COMPLETE_INT_FLAG
SDIF DMA descriptor flag.
-
SDIF_DMA_DESCRIPTOR_DATA_BUFFER_END_FLAG
-
SDIF_DMA_DESCRIPTOR_DATA_BUFFER_START_FLAG
-
SDIF_DMA_DESCRIPTOR_SECOND_ADDR_CHAIN_FLAG
-
SDIF_DMA_DESCRIPTOR_DESCRIPTOR_END_FLAG
-
SDIF_DMA_DESCRIPTOR_OWN_BY_DMA_FLAG
-
struct _sdif_dma_descriptor
- #include <fsl_sdif.h>
define the internal DMA descriptor
Public Members
-
uint32_t dmaDesAttribute
internal DMA attribute control and status
-
uint32_t dmaDataBufferSize
internal DMA transfer buffer size control
-
const uint32_t *dmaDataBufferAddr0
internal DMA buffer 0 addr ,the buffer size must be 32bit aligned
-
const uint32_t *dmaDataBufferAddr1
internal DMA buffer 1 addr ,the buffer size must be 32bit aligned
-
uint32_t dmaDesAttribute
-
struct _sdif_dma_config
- #include <fsl_sdif.h>
Defines the internal DMA configure structure.
Public Members
-
bool enableFixBurstLen
fix burst len enable/disable flag,When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of normal burst transfers. When reset, the AHB will use SINGLE and INCR burst transfer operations
-
sdif_dma_mode_t mode
define the DMA mode
-
uint8_t dmaDesSkipLen
define the descriptor skip length ,the length between two descriptor this field is special for dual DMA mode
-
uint32_t *dmaDesBufferStartAddr
internal DMA descriptor start address
-
uint32_t dmaDesBufferLen
internal DMA buffer descriptor buffer len ,user need to pay attention to the dma descriptor buffer length if it is bigger enough for your transfer
-
bool enableFixBurstLen
-
struct _sdif_data
- #include <fsl_sdif.h>
Card data descriptor.
Public Members
-
bool streamTransfer
indicate this is a stream data transfer command
-
bool enableAutoCommand12
indicate if auto stop will send when data transfer over
-
bool enableIgnoreError
indicate if enable ignore error when transfer data
-
size_t blockSize
Block size, take care when configure this parameter
-
uint32_t blockCount
Block count
-
uint32_t *rxData
data buffer to receive
-
const uint32_t *txData
data buffer to transfer
-
bool streamTransfer
-
struct _sdif_command
- #include <fsl_sdif.h>
Card command descriptor.
Define card command-related attribute.
Public Members
-
uint32_t index
Command index
-
uint32_t argument
Command argument
-
uint32_t response[4U]
Response for this command
-
uint32_t type
define the command type
-
uint32_t responseType
Command response type
-
uint32_t flags
Cmd flags
-
uint32_t responseErrorFlags
response error flags, need to check the flags when receive the cmd response
-
uint32_t index
-
struct _sdif_transfer
- #include <fsl_sdif.h>
Transfer state.
-
struct _sdif_config
- #include <fsl_sdif.h>
Data structure to initialize the sdif.
Public Members
-
uint8_t responseTimeout
command response timeout value
-
uint32_t cardDetDebounce_Clock
define the debounce clock count which will used in card detect logic,typical value is 5-25ms
-
uint32_t dataTimeout
data timeout value
-
uint8_t responseTimeout
-
struct _sdif_capability
- #include <fsl_sdif.h>
SDIF capability information. Defines a structure to get the capability information of SDIF.
Public Members
-
uint32_t sdVersion
support SD card/sdio version
-
uint32_t mmcVersion
support emmc card version
-
uint32_t maxBlockLength
Maximum block length united as byte
-
uint32_t maxBlockCount
Maximum byte count can be transfered
-
uint32_t flags
Capability flags to indicate the support information
-
uint32_t sdVersion
-
struct _sdif_transfer_callback
- #include <fsl_sdif.h>
sdif callback functions.
Public Members
-
void (*cardInserted)(SDIF_Type *base, void *userData)
card insert call back
-
void (*cardRemoved)(SDIF_Type *base, void *userData)
card remove call back
-
void (*SDIOInterrupt)(SDIF_Type *base, void *userData)
SDIO card interrupt occurs
-
void (*DMADesUnavailable)(SDIF_Type *base, void *userData)
DMA descriptor unavailable
-
void (*CommandReload)(SDIF_Type *base, void *userData)
command buffer full,need re-load
-
void (*TransferComplete)(SDIF_Type *base, void *handle, status_t status, void *userData)
Transfer complete callback
-
void (*cardInserted)(SDIF_Type *base, void *userData)
-
struct _sdif_handle
- #include <fsl_sdif.h>
sdif handle
Defines the structure to save the sdif state information and callback function. The detail interrupt status when send command or transfer data can be obtained from interruptFlags field by using mask defined in sdif_interrupt_flag_t;
Note
All the fields except interruptFlags and transferredWords must be allocated by the user.
Public Members
-
sdif_data_t *volatile data
Data to transfer
-
sdif_command_t *volatile command
Command to send
-
volatile uint32_t transferredWords
Words transferred by polling way
-
sdif_transfer_callback_t callback
Callback function
-
void *userData
Parameter for transfer complete callback
-
sdif_data_t *volatile data
-
struct _sdif_host
- #include <fsl_sdif.h>
sdif host descriptor
Public Members
-
SDIF_Type *base
sdif peripheral base address
-
uint32_t sourceClock_Hz
sdif source clock frequency united in Hz
-
sdif_config_t config
sdif configuration
-
sdif_transfer_function_t transfer
sdif transfer function
-
sdif_capability_t capability
sdif capability information
-
SDIF_Type *base
skboot_authenticate
-
enum _skboot_status
SKBOOT return status.
Values:
-
enumerator kStatus_SKBOOT_Success
SKBOOT return success status.
-
enumerator kStatus_SKBOOT_Fail
SKBOOT return fail status.
-
enumerator kStatus_SKBOOT_InvalidArgument
SKBOOT return invalid argument status.
-
enumerator kStatus_SKBOOT_KeyStoreMarkerInvalid
SKBOOT return Keystore invalid Marker status.
-
enumerator kStatus_SKBOOT_HashcryptFinishedWithStatusSuccess
SKBOOT return Hashcrypt finished with the success status.
-
enumerator kStatus_SKBOOT_HashcryptFinishedWithStatusFail
SKBOOT return Hashcrypt finished with the fail status.
-
enumerator kStatus_SKBOOT_Success
-
enum _secure_bool
Secure bool flag.
Values:
-
enumerator kSECURE_TRUE
Secure true flag.
-
enumerator kSECURE_FALSE
Secure false flag.
-
enumerator kSECURE_CALLPROTECT_SECURITY_FLAGS
Secure call protect the security flag.
-
enumerator kSECURE_CALLPROTECT_IS_APP_READY
Secure call protect the app is ready flag.
-
enumerator kSECURE_TRACKER_VERIFIED
Secure tracker verified flag.
-
enumerator kSECURE_TRUE
-
typedef enum _skboot_status skboot_status_t
SKBOOT return status.
-
typedef enum _secure_bool secure_bool_t
Secure bool flag.
-
skboot_status_t skboot_authenticate(const uint8_t *imageStartAddr, secure_bool_t *isSignVerified)
Authenticate entry function with ARENA allocator init.
This is called by ROM boot or by ROM API g_skbootAuthenticateInterface
-
void HASH_IRQHandler(void)
Interface for image authentication API.
SPI: Serial Peripheral Interface Driver
SPI DMA Driver
-
status_t SPI_MasterTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_dma_callback_t callback, void *userData, dma_handle_t *txHandle, dma_handle_t *rxHandle)
Initialize the SPI master DMA handle.
This function initializes the SPI master DMA handle which can be used for other SPI master transactional APIs. Usually, for a specified SPI instance, user need only call this API once to get the initialized handle.
- Parameters:
base – SPI peripheral base address.
handle – SPI handle pointer.
callback – User callback function called at the end of a transfer.
userData – User data for callback.
txHandle – DMA handle pointer for SPI Tx, the handle shall be static allocated by users.
rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allocated by users.
-
status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)
Perform a non-blocking SPI transfer using DMA.
Note
This interface returned immediately after transfer initiates, users should call SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.
- Parameters:
base – SPI peripheral base address.
handle – SPI DMA handle pointer.
xfer – Pointer to dma transfer structure.
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_SPI_Busy – SPI is not idle, is running another transfer.
-
status_t SPI_MasterHalfDuplexTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_half_duplex_transfer_t *xfer)
Transfers a block of data using a DMA method.
This function using polling way to do the first half transimission and using DMA way to do the srcond half transimission, the transfer mechanism is half-duplex. When do the second half transimission, code will return right away. When all data is transferred, the callback function is called.
- Parameters:
base – SPI base pointer
handle – A pointer to the spi_master_dma_handle_t structure which stores the transfer state.
xfer – A pointer to the spi_half_duplex_transfer_t structure.
- Returns:
status of status_t.
-
static inline status_t SPI_SlaveTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_dma_callback_t callback, void *userData, dma_handle_t *txHandle, dma_handle_t *rxHandle)
Initialize the SPI slave DMA handle.
This function initializes the SPI slave DMA handle which can be used for other SPI master transactional APIs. Usually, for a specified SPI instance, user need only call this API once to get the initialized handle.
- Parameters:
base – SPI peripheral base address.
handle – SPI handle pointer.
callback – User callback function called at the end of a transfer.
userData – User data for callback.
txHandle – DMA handle pointer for SPI Tx, the handle shall be static allocated by users.
rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allocated by users.
-
static inline status_t SPI_SlaveTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)
Perform a non-blocking SPI transfer using DMA.
Note
This interface returned immediately after transfer initiates, users should call SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.
- Parameters:
base – SPI peripheral base address.
handle – SPI DMA handle pointer.
xfer – Pointer to dma transfer structure.
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_SPI_Busy – SPI is not idle, is running another transfer.
-
void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
Abort a SPI transfer using DMA.
- Parameters:
base – SPI peripheral base address.
handle – SPI DMA handle pointer.
-
status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)
Gets the master DMA transfer remaining bytes.
This function gets the master DMA transfer remaining bytes.
- Parameters:
base – SPI peripheral base address.
handle – A pointer to the spi_dma_handle_t structure which stores the transfer state.
count – A number of bytes transferred by the non-blocking transaction.
- Returns:
status of status_t.
-
static inline void SPI_SlaveTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
Abort a SPI transfer using DMA.
- Parameters:
base – SPI peripheral base address.
handle – SPI DMA handle pointer.
-
static inline status_t SPI_SlaveTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)
Gets the slave DMA transfer remaining bytes.
This function gets the slave DMA transfer remaining bytes.
- Parameters:
base – SPI peripheral base address.
handle – A pointer to the spi_dma_handle_t structure which stores the transfer state.
count – A number of bytes transferred by the non-blocking transaction.
- Returns:
status of status_t.
-
FSL_SPI_DMA_DRIVER_VERSION
SPI DMA driver version 2.1.1.
-
typedef struct _spi_dma_handle spi_dma_handle_t
-
typedef void (*spi_dma_callback_t)(SPI_Type *base, spi_dma_handle_t *handle, status_t status, void *userData)
SPI DMA callback called at the end of transfer.
-
struct _spi_dma_handle
- #include <fsl_spi_dma.h>
SPI DMA transfer handle, users should not touch the content of the handle.
Public Members
-
volatile bool txInProgress
Send transfer finished
-
volatile bool rxInProgress
Receive transfer finished
-
uint8_t bytesPerFrame
Bytes in a frame for SPI transfer
-
uint8_t lastwordBytes
The Bytes of lastword for master
-
dma_handle_t *txHandle
DMA handler for SPI send
-
dma_handle_t *rxHandle
DMA handler for SPI receive
-
spi_dma_callback_t callback
Callback for SPI DMA transfer
-
void *userData
User Data for SPI DMA callback
-
uint32_t state
Internal state of SPI DMA transfer
-
size_t transferSize
Bytes need to be transfer
-
uint32_t instance
Index of SPI instance
-
const uint8_t *txNextData
The pointer of next time tx data
-
const uint8_t *txEndData
The pointer of end of data
-
uint8_t *rxNextData
The pointer of next time rx data
-
uint8_t *rxEndData
The pointer of end of rx data
-
uint32_t dataBytesEveryTime
Bytes in a time for DMA transfer, default is DMA_MAX_TRANSFER_COUNT
-
volatile bool txInProgress
SPI Driver
-
FSL_SPI_DRIVER_VERSION
SPI driver version.
-
enum _spi_xfer_option
SPI transfer option.
Values:
-
enumerator kSPI_FrameDelay
A delay may be inserted, defined in the DLY register.
-
enumerator kSPI_FrameAssert
SSEL will be deasserted at the end of a transfer
-
enumerator kSPI_FrameDelay
-
enum _spi_shift_direction
SPI data shifter direction options.
Values:
-
enumerator kSPI_MsbFirst
Data transfers start with most significant bit.
-
enumerator kSPI_LsbFirst
Data transfers start with least significant bit.
-
enumerator kSPI_MsbFirst
-
enum _spi_clock_polarity
SPI clock polarity configuration.
Values:
-
enumerator kSPI_ClockPolarityActiveHigh
Active-high SPI clock (idles low).
-
enumerator kSPI_ClockPolarityActiveLow
Active-low SPI clock (idles high).
-
enumerator kSPI_ClockPolarityActiveHigh
-
enum _spi_clock_phase
SPI clock phase configuration.
Values:
-
enumerator kSPI_ClockPhaseFirstEdge
First edge on SCK occurs at the middle of the first cycle of a data transfer.
-
enumerator kSPI_ClockPhaseSecondEdge
First edge on SCK occurs at the start of the first cycle of a data transfer.
-
enumerator kSPI_ClockPhaseFirstEdge
-
enum _spi_txfifo_watermark
txFIFO watermark values
Values:
-
enumerator kSPI_TxFifo0
SPI tx watermark is empty
-
enumerator kSPI_TxFifo1
SPI tx watermark at 1 item
-
enumerator kSPI_TxFifo2
SPI tx watermark at 2 items
-
enumerator kSPI_TxFifo3
SPI tx watermark at 3 items
-
enumerator kSPI_TxFifo4
SPI tx watermark at 4 items
-
enumerator kSPI_TxFifo5
SPI tx watermark at 5 items
-
enumerator kSPI_TxFifo6
SPI tx watermark at 6 items
-
enumerator kSPI_TxFifo7
SPI tx watermark at 7 items
-
enumerator kSPI_TxFifo0
-
enum _spi_rxfifo_watermark
rxFIFO watermark values
Values:
-
enumerator kSPI_RxFifo1
SPI rx watermark at 1 item
-
enumerator kSPI_RxFifo2
SPI rx watermark at 2 items
-
enumerator kSPI_RxFifo3
SPI rx watermark at 3 items
-
enumerator kSPI_RxFifo4
SPI rx watermark at 4 items
-
enumerator kSPI_RxFifo5
SPI rx watermark at 5 items
-
enumerator kSPI_RxFifo6
SPI rx watermark at 6 items
-
enumerator kSPI_RxFifo7
SPI rx watermark at 7 items
-
enumerator kSPI_RxFifo8
SPI rx watermark at 8 items
-
enumerator kSPI_RxFifo1
-
enum _spi_data_width
Transfer data width.
Values:
-
enumerator kSPI_Data4Bits
4 bits data width
-
enumerator kSPI_Data5Bits
5 bits data width
-
enumerator kSPI_Data6Bits
6 bits data width
-
enumerator kSPI_Data7Bits
7 bits data width
-
enumerator kSPI_Data8Bits
8 bits data width
-
enumerator kSPI_Data9Bits
9 bits data width
-
enumerator kSPI_Data10Bits
10 bits data width
-
enumerator kSPI_Data11Bits
11 bits data width
-
enumerator kSPI_Data12Bits
12 bits data width
-
enumerator kSPI_Data13Bits
13 bits data width
-
enumerator kSPI_Data14Bits
14 bits data width
-
enumerator kSPI_Data15Bits
15 bits data width
-
enumerator kSPI_Data16Bits
16 bits data width
-
enumerator kSPI_Data4Bits
-
enum _spi_ssel
Slave select.
Values:
-
enumerator kSPI_Ssel0
Slave select 0
-
enumerator kSPI_Ssel1
Slave select 1
-
enumerator kSPI_Ssel2
Slave select 2
-
enumerator kSPI_Ssel3
Slave select 3
-
enumerator kSPI_Ssel0
-
enum _spi_spol
ssel polarity
Values:
-
enumerator kSPI_Spol0ActiveHigh
-
enumerator kSPI_Spol1ActiveHigh
-
enumerator kSPI_Spol3ActiveHigh
-
enumerator kSPI_SpolActiveAllHigh
-
enumerator kSPI_SpolActiveAllLow
-
enumerator kSPI_Spol0ActiveHigh
SPI transfer status.
Values:
-
enumerator kStatus_SPI_Busy
SPI bus is busy
-
enumerator kStatus_SPI_Idle
SPI is idle
-
enumerator kStatus_SPI_Error
SPI error
-
enumerator kStatus_SPI_BaudrateNotSupport
Baudrate is not support in current clock source
-
enumerator kStatus_SPI_Timeout
SPI timeout polling status flags.
-
enumerator kStatus_SPI_Busy
-
enum _spi_interrupt_enable
SPI interrupt sources.
Values:
-
enumerator kSPI_RxLvlIrq
Rx level interrupt
-
enumerator kSPI_TxLvlIrq
Tx level interrupt
-
enumerator kSPI_RxLvlIrq
-
enum _spi_statusflags
SPI status flags.
Values:
-
enumerator kSPI_TxEmptyFlag
txFifo is empty
-
enumerator kSPI_TxNotFullFlag
txFifo is not full
-
enumerator kSPI_RxNotEmptyFlag
rxFIFO is not empty
-
enumerator kSPI_RxFullFlag
rxFIFO is full
-
enumerator kSPI_TxEmptyFlag
-
typedef enum _spi_xfer_option spi_xfer_option_t
SPI transfer option.
-
typedef enum _spi_shift_direction spi_shift_direction_t
SPI data shifter direction options.
-
typedef enum _spi_clock_polarity spi_clock_polarity_t
SPI clock polarity configuration.
-
typedef enum _spi_clock_phase spi_clock_phase_t
SPI clock phase configuration.
-
typedef enum _spi_txfifo_watermark spi_txfifo_watermark_t
txFIFO watermark values
-
typedef enum _spi_rxfifo_watermark spi_rxfifo_watermark_t
rxFIFO watermark values
-
typedef enum _spi_data_width spi_data_width_t
Transfer data width.
-
typedef enum _spi_ssel spi_ssel_t
Slave select.
-
typedef enum _spi_spol spi_spol_t
ssel polarity
-
typedef struct _spi_delay_config spi_delay_config_t
SPI delay time configure structure. Note: The DLY register controls several programmable delays related to SPI signalling, it stands for how many SPI clock time will be inserted. The maxinun value of these delay time is 15.
-
typedef struct _spi_master_config spi_master_config_t
SPI master user configure structure.
-
typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.
-
typedef struct _spi_transfer spi_transfer_t
SPI transfer structure.
-
typedef struct _spi_half_duplex_transfer spi_half_duplex_transfer_t
SPI half-duplex(master only) transfer structure.
-
typedef struct _spi_config spi_config_t
Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.
-
typedef struct _spi_master_handle spi_master_handle_t
Master handle type.
-
typedef spi_master_handle_t spi_slave_handle_t
Slave handle type.
-
typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t status, void *userData)
SPI master callback for finished transmit.
-
typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status, void *userData)
SPI slave callback for finished transmit.
-
typedef void (*flexcomm_spi_master_irq_handler_t)(SPI_Type *base, spi_master_handle_t *handle)
Typedef for master interrupt handler.
-
typedef void (*flexcomm_spi_slave_irq_handler_t)(SPI_Type *base, spi_slave_handle_t *handle)
Typedef for slave interrupt handler.
-
volatile uint8_t s_dummyData[]
SPI default SSEL COUNT.
Global variable for dummy data value setting.
-
SPI_DUMMYDATA
SPI dummy transfer data, the data is sent while txBuff is NULL.
-
SPI_RETRY_TIMES
Retry times for waiting flag.
-
SPI_DATA(n)
-
SPI_CTRLMASK
-
SPI_ASSERTNUM_SSEL(n)
-
SPI_DEASSERTNUM_SSEL(n)
-
SPI_DEASSERT_ALL
-
SPI_FIFOWR_FLAGS_MASK
-
SPI_FIFOTRIG_TXLVL_GET(base)
-
SPI_FIFOTRIG_RXLVL_GET(base)
-
struct _spi_delay_config
- #include <fsl_spi.h>
SPI delay time configure structure. Note: The DLY register controls several programmable delays related to SPI signalling, it stands for how many SPI clock time will be inserted. The maxinun value of these delay time is 15.
Public Members
-
uint8_t preDelay
Delay between SSEL assertion and the beginning of transfer.
-
uint8_t postDelay
Delay between the end of transfer and SSEL deassertion.
-
uint8_t frameDelay
Delay between frame to frame.
-
uint8_t transferDelay
Delay between transfer to transfer.
-
uint8_t preDelay
-
struct _spi_master_config
- #include <fsl_spi.h>
SPI master user configure structure.
Public Members
-
bool enableLoopback
Enable loopback for test purpose
-
bool enableMaster
Enable SPI at initialization time
-
spi_clock_polarity_t polarity
Clock polarity
-
spi_clock_phase_t phase
Clock phase
-
spi_shift_direction_t direction
MSB or LSB
-
uint32_t baudRate_Bps
Baud Rate for SPI in Hz
-
spi_data_width_t dataWidth
Width of the data
-
spi_ssel_t sselNum
Slave select number
-
spi_spol_t sselPol
Configure active CS polarity
-
uint8_t txWatermark
txFIFO watermark
-
uint8_t rxWatermark
rxFIFO watermark
-
spi_delay_config_t delayConfig
Delay configuration.
-
bool enableLoopback
-
struct _spi_slave_config
- #include <fsl_spi.h>
SPI slave user configure structure.
Public Members
-
bool enableSlave
Enable SPI at initialization time
-
spi_clock_polarity_t polarity
Clock polarity
-
spi_clock_phase_t phase
Clock phase
-
spi_shift_direction_t direction
MSB or LSB
-
spi_data_width_t dataWidth
Width of the data
-
spi_spol_t sselPol
Configure active CS polarity
-
uint8_t txWatermark
txFIFO watermark
-
uint8_t rxWatermark
rxFIFO watermark
-
bool enableSlave
-
struct _spi_transfer
- #include <fsl_spi.h>
SPI transfer structure.
Public Members
-
const uint8_t *txData
Send buffer
-
uint8_t *rxData
Receive buffer
-
uint32_t configFlags
Additional option to control transfer, spi_xfer_option_t.
-
size_t dataSize
Transfer bytes
-
const uint8_t *txData
-
struct _spi_half_duplex_transfer
- #include <fsl_spi.h>
SPI half-duplex(master only) transfer structure.
Public Members
-
const uint8_t *txData
Send buffer
-
uint8_t *rxData
Receive buffer
-
size_t txDataSize
Transfer bytes for transmit
-
size_t rxDataSize
Transfer bytes
-
uint32_t configFlags
Transfer configuration flags, spi_xfer_option_t.
-
bool isPcsAssertInTransfer
If PCS pin keep assert between transmit and receive. true for assert and false for deassert.
-
bool isTransmitFirst
True for transmit first and false for receive first.
-
const uint8_t *txData
-
struct _spi_config
- #include <fsl_spi.h>
Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.
-
struct _spi_master_handle
- #include <fsl_spi.h>
SPI transfer handle structure.
Public Members
-
const uint8_t *volatile txData
Transfer buffer
-
uint8_t *volatile rxData
Receive buffer
-
volatile size_t txRemainingBytes
Number of data to be transmitted [in bytes]
-
volatile size_t rxRemainingBytes
Number of data to be received [in bytes]
-
volatile int8_t toReceiveCount
The number of data expected to receive in data width. Since the received count and sent count should be the same to complete the transfer, if the sent count is x and the received count is y, toReceiveCount is x-y.
-
size_t totalByteCount
A number of transfer bytes
-
volatile uint32_t state
SPI internal state
-
spi_master_callback_t callback
SPI callback
-
void *userData
Callback parameter
-
uint8_t dataWidth
Width of the data [Valid values: 1 to 16]
-
uint8_t sselNum
Slave select number to be asserted when transferring data [Valid values: 0 to 3]
-
uint32_t configFlags
Additional option to control transfer
-
uint8_t txWatermark
txFIFO watermark
-
uint8_t rxWatermark
rxFIFO watermark
-
const uint8_t *volatile txData
SYSCTL: I2S bridging and signal sharing Configuration
-
void SYSCTL_Init(SYSCTL_Type *base)
SYSCTL initial.
- Parameters:
base – Base address of the SYSCTL peripheral.
-
void SYSCTL_Deinit(SYSCTL_Type *base)
SYSCTL deinit.
- Parameters:
base – Base address of the SYSCTL peripheral.
-
void SYSCTL_SetFlexcommShareSet(SYSCTL_Type *base, uint32_t flexCommIndex, uint32_t sckSet, uint32_t wsSet, uint32_t dataInSet, uint32_t dataOutSet)
SYSCTL share set configure for flexcomm.
- Parameters:
base – Base address of the SYSCTL peripheral.
flexCommIndex – index of flexcomm, reference _sysctl_share_src
sckSet – share set for sck,reference _sysctl_share_set_index
wsSet – share set for ws, reference _sysctl_share_set_index
dataInSet – share set for data in, reference _sysctl_share_set_index
dataOutSet – share set for data out, reference _sysctl_dataout_mask
-
void SYSCTL_SetShareSet(SYSCTL_Type *base, uint32_t flexCommIndex, sysctl_fcctrlsel_signal_t signal, uint32_t set)
SYSCTL share set configure for separate signal.
- Parameters:
base – Base address of the SYSCTL peripheral
flexCommIndex – index of flexcomm,reference _sysctl_share_src
signal – FCCTRLSEL signal shift
set – share set for sck, reference _sysctl_share_set_index
-
void SYSCTL_SetShareSetSrc(SYSCTL_Type *base, uint32_t setIndex, uint32_t sckShareSrc, uint32_t wsShareSrc, uint32_t dataInShareSrc, uint32_t dataOutShareSrc)
SYSCTL share set source configure.
- Parameters:
base – Base address of the SYSCTL peripheral
setIndex – index of share set, reference _sysctl_share_set_index
sckShareSrc – sck source for this share set,reference _sysctl_share_src
wsShareSrc – ws source for this share set,reference _sysctl_share_src
dataInShareSrc – data in source for this share set,reference _sysctl_share_src
dataOutShareSrc – data out source for this share set,reference _sysctl_dataout_mask
-
void SYSCTL_SetShareSignalSrc(SYSCTL_Type *base, uint32_t setIndex, sysctl_sharedctrlset_signal_t signal, uint32_t shareSrc)
SYSCTL sck source configure.
- Parameters:
base – Base address of the SYSCTL peripheral
setIndex – index of share set, reference _sysctl_share_set_index
signal – FCCTRLSEL signal shift
shareSrc – sck source fro this share set,reference _sysctl_share_src
-
FSL_SYSCTL_DRIVER_VERSION
Group sysctl driver version for SDK.
Version 2.0.5.
-
enum _sysctl_share_set_index
SYSCTL share set.
Values:
-
enumerator kSYSCTL_ShareSet0
share set 0
-
enumerator kSYSCTL_ShareSet1
share set 1
-
enumerator kSYSCTL_ShareSet0
-
enum _sysctl_fcctrlsel_signal
SYSCTL flexcomm signal.
Values:
-
enumerator kSYSCTL_FlexcommSignalSCK
SCK signal
-
enumerator kSYSCTL_FlexcommSignalWS
WS signal
-
enumerator kSYSCTL_FlexcommSignalDataIn
Data in signal
-
enumerator kSYSCTL_FlexcommSignalDataOut
Data out signal
-
enumerator kSYSCTL_FlexcommSignalSCK
-
enum _sysctl_share_src
SYSCTL flexcomm index.
Values:
-
enumerator kSYSCTL_Flexcomm0
share set 0
-
enumerator kSYSCTL_Flexcomm1
share set 1
-
enumerator kSYSCTL_Flexcomm2
share set 2
-
enumerator kSYSCTL_Flexcomm4
share set 4
-
enumerator kSYSCTL_Flexcomm5
share set 5
-
enumerator kSYSCTL_Flexcomm6
share set 6
-
enumerator kSYSCTL_Flexcomm7
share set 7
-
enumerator kSYSCTL_Flexcomm0
-
enum _sysctl_dataout_mask
SYSCTL shared data out mask.
Values:
-
enumerator kSYSCTL_Flexcomm0DataOut
share set 0
-
enumerator kSYSCTL_Flexcomm1DataOut
share set 1
-
enumerator kSYSCTL_Flexcomm2DataOut
share set 2
-
enumerator kSYSCTL_Flexcomm4DataOut
share set 4
-
enumerator kSYSCTL_Flexcomm5DataOut
share set 5
-
enumerator kSYSCTL_Flexcomm6DataOut
share set 6
-
enumerator kSYSCTL_Flexcomm7DataOut
share set 7
-
enumerator kSYSCTL_Flexcomm0DataOut
-
enum _sysctl_sharedctrlset_signal
SYSCTL flexcomm signal.
Values:
-
enumerator kSYSCTL_SharedCtrlSignalSCK
SCK signal
-
enumerator kSYSCTL_SharedCtrlSignalWS
WS signal
-
enumerator kSYSCTL_SharedCtrlSignalDataIn
Data in signal
-
enumerator kSYSCTL_SharedCtrlSignalDataOut
Data out signal
-
enumerator kSYSCTL_SharedCtrlSignalSCK
-
typedef enum _sysctl_fcctrlsel_signal sysctl_fcctrlsel_signal_t
SYSCTL flexcomm signal.
-
typedef enum _sysctl_sharedctrlset_signal sysctl_sharedctrlset_signal_t
SYSCTL flexcomm signal.
USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver
USART DMA Driver
-
status_t USART_TransferCreateHandleDMA(USART_Type *base, usart_dma_handle_t *handle, usart_dma_transfer_callback_t callback, void *userData, dma_handle_t *txDmaHandle, dma_handle_t *rxDmaHandle)
Initializes the USART handle which is used in transactional functions.
- Parameters:
base – USART peripheral base address.
handle – Pointer to usart_dma_handle_t structure.
callback – Callback function.
userData – User data.
txDmaHandle – User-requested DMA handle for TX DMA transfer.
rxDmaHandle – User-requested DMA handle for RX DMA transfer.
-
status_t USART_TransferSendDMA(USART_Type *base, usart_dma_handle_t *handle, usart_transfer_t *xfer)
Sends data using DMA.
This function sends data using DMA. This is a non-blocking function, which returns right away. When all data is sent, the send callback function is called.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
xfer – USART DMA transfer structure. See usart_transfer_t.
- Return values:
kStatus_Success – if succeed, others failed.
kStatus_USART_TxBusy – Previous transfer on going.
kStatus_InvalidArgument – Invalid argument.
-
status_t USART_TransferReceiveDMA(USART_Type *base, usart_dma_handle_t *handle, usart_transfer_t *xfer)
Receives data using DMA.
This function receives data using DMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.
- Parameters:
base – USART peripheral base address.
handle – Pointer to usart_dma_handle_t structure.
xfer – USART DMA transfer structure. See usart_transfer_t.
- Return values:
kStatus_Success – if succeed, others failed.
kStatus_USART_RxBusy – Previous transfer on going.
kStatus_InvalidArgument – Invalid argument.
-
void USART_TransferAbortSendDMA(USART_Type *base, usart_dma_handle_t *handle)
Aborts the sent data using DMA.
This function aborts send data using DMA.
- Parameters:
base – USART peripheral base address
handle – Pointer to usart_dma_handle_t structure
-
void USART_TransferAbortReceiveDMA(USART_Type *base, usart_dma_handle_t *handle)
Aborts the received data using DMA.
This function aborts the received data using DMA.
- Parameters:
base – USART peripheral base address
handle – Pointer to usart_dma_handle_t structure
-
status_t USART_TransferGetReceiveCountDMA(USART_Type *base, usart_dma_handle_t *handle, uint32_t *count)
Get the number of bytes that have been received.
This function gets the number of bytes that have been received.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
count – Receive bytes count.
- Return values:
kStatus_NoTransferInProgress – No receive in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
status_t USART_TransferGetSendCountDMA(USART_Type *base, usart_dma_handle_t *handle, uint32_t *count)
Get the number of bytes that have been sent.
This function gets the number of bytes that have been sent.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
count – Sent bytes count.
- Return values:
kStatus_NoTransferInProgress – No receive in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
FSL_USART_DMA_DRIVER_VERSION
USART dma driver version.
-
typedef struct _usart_dma_handle usart_dma_handle_t
-
typedef void (*usart_dma_transfer_callback_t)(USART_Type *base, usart_dma_handle_t *handle, status_t status, void *userData)
UART transfer callback function.
-
struct _usart_dma_handle
- #include <fsl_usart_dma.h>
UART DMA handle.
Public Members
-
USART_Type *base
UART peripheral base address.
-
usart_dma_transfer_callback_t callback
Callback function.
-
void *userData
UART callback function parameter.
-
size_t rxDataSizeAll
Size of the data to receive.
-
size_t txDataSizeAll
Size of the data to send out.
-
dma_handle_t *txDmaHandle
The DMA TX channel used.
-
dma_handle_t *rxDmaHandle
The DMA RX channel used.
-
volatile uint8_t txState
TX transfer state.
-
volatile uint8_t rxState
RX transfer state
-
USART_Type *base
USART Driver
-
status_t USART_Init(USART_Type *base, const usart_config_t *config, uint32_t srcClock_Hz)
Initializes a USART instance with user configuration structure and peripheral clock.
This function configures the USART module with the user-defined settings. The user can configure the configuration structure and also get the default configuration by using the USART_GetDefaultConfig() function. Example below shows how to use this API to configure USART.
usart_config_t usartConfig; usartConfig.baudRate_Bps = 115200U; usartConfig.parityMode = kUSART_ParityDisabled; usartConfig.stopBitCount = kUSART_OneStopBit; USART_Init(USART1, &usartConfig, 20000000U);
- Parameters:
base – USART peripheral base address.
config – Pointer to user-defined configuration structure.
srcClock_Hz – USART clock source frequency in HZ.
- Return values:
kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.
kStatus_InvalidArgument – USART base address is not valid
kStatus_Success – Status USART initialize succeed
-
void USART_Deinit(USART_Type *base)
Deinitializes a USART instance.
This function waits for TX complete, disables TX and RX, and disables the USART clock.
- Parameters:
base – USART peripheral base address.
-
void USART_GetDefaultConfig(usart_config_t *config)
Gets the default configuration structure.
This function initializes the USART configuration structure to a default value. The default values are: usartConfig->baudRate_Bps = 115200U; usartConfig->parityMode = kUSART_ParityDisabled; usartConfig->stopBitCount = kUSART_OneStopBit; usartConfig->bitCountPerChar = kUSART_8BitsPerChar; usartConfig->loopback = false; usartConfig->enableTx = false; usartConfig->enableRx = false;
- Parameters:
config – Pointer to configuration structure.
-
status_t USART_SetBaudRate(USART_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the USART instance baud rate.
This function configures the USART module baud rate. This function is used to update the USART module baud rate after the USART module is initialized by the USART_Init.
USART_SetBaudRate(USART1, 115200U, 20000000U);
- Parameters:
base – USART peripheral base address.
baudrate_Bps – USART baudrate to be set.
srcClock_Hz – USART clock source frequency in HZ.
- Return values:
kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.
kStatus_Success – Set baudrate succeed.
kStatus_InvalidArgument – One or more arguments are invalid.
-
status_t USART_Enable32kMode(USART_Type *base, uint32_t baudRate_Bps, bool enableMode32k, uint32_t srcClock_Hz)
Enable 32 kHz mode which USART uses clock from the RTC oscillator as the clock source.
Please note that in order to use a 32 kHz clock to operate USART properly, the RTC oscillator and its 32 kHz output must be manully enabled by user, by calling RTC_Init and setting SYSCON_RTCOSCCTRL_EN bit to 1. And in 32kHz clocking mode the USART can only work at 9600 baudrate or at the baudrate that 9600 can evenly divide, eg: 4800, 3200.
- Parameters:
base – USART peripheral base address.
baudRate_Bps – USART baudrate to be set..
enableMode32k – true is 32k mode, false is normal mode.
srcClock_Hz – USART clock source frequency in HZ.
- Return values:
kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.
kStatus_Success – Set baudrate succeed.
kStatus_InvalidArgument – One or more arguments are invalid.
-
void USART_Enable9bitMode(USART_Type *base, bool enable)
Enable 9-bit data mode for USART.
This function set the 9-bit mode for USART module. The 9th bit is not used for parity thus can be modified by user.
- Parameters:
base – USART peripheral base address.
enable – true to enable, false to disable.
-
static inline void USART_SetMatchAddress(USART_Type *base, uint8_t address)
Set the USART slave address.
This function configures the address for USART module that works as slave in 9-bit data mode. When the address detection is enabled, the frame it receices with MSB being 1 is considered as an address frame, otherwise it is considered as data frame. Once the address frame matches slave’s own addresses, this slave is addressed. This address frame and its following data frames are stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave, just send an address frame with unmatched address.
Note
Any USART instance joined in the multi-slave system can work as slave. The position of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit data formats.
- Parameters:
base – USART peripheral base address.
address – USART slave address.
-
static inline void USART_EnableMatchAddress(USART_Type *base, bool match)
Enable the USART match address feature.
- Parameters:
base – USART peripheral base address.
match – true to enable match address, false to disable.
-
static inline uint32_t USART_GetStatusFlags(USART_Type *base)
Get USART status flags.
This function get all USART status flags, the flags are returned as the logical OR value of the enumerators _usart_flags. To check a specific status, compare the return value with enumerators in _usart_flags. For example, to check whether the TX is empty:
if (kUSART_TxFifoNotFullFlag & USART_GetStatusFlags(USART1)) { ... }
- Parameters:
base – USART peripheral base address.
- Returns:
USART status flags which are ORed by the enumerators in the _usart_flags.
-
static inline void USART_ClearStatusFlags(USART_Type *base, uint32_t mask)
Clear USART status flags.
This function clear supported USART status flags. The mask is a logical OR of enumeration members. See kUSART_AllClearFlags. For example:
USART_ClearStatusFlags(USART1, kUSART_TxError | kUSART_RxError)
- Parameters:
base – USART peripheral base address.
mask – status flags to be cleared.
-
static inline void USART_EnableInterrupts(USART_Type *base, uint32_t mask)
Enables USART interrupts according to the provided mask.
This function enables the USART interrupts according to the provided mask. The mask is a logical OR of enumeration members. See _usart_interrupt_enable. For example, to enable TX empty interrupt and RX full interrupt:
USART_EnableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_RxLevelInterruptEnable);
- Parameters:
base – USART peripheral base address.
mask – The interrupts to enable. Logical OR of _usart_interrupt_enable.
-
static inline void USART_DisableInterrupts(USART_Type *base, uint32_t mask)
Disables USART interrupts according to a provided mask.
This function disables the USART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See _usart_interrupt_enable. This example shows how to disable the TX empty interrupt and RX full interrupt:
USART_DisableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_RxLevelInterruptEnable);
- Parameters:
base – USART peripheral base address.
mask – The interrupts to disable. Logical OR of _usart_interrupt_enable.
-
static inline uint32_t USART_GetEnabledInterrupts(USART_Type *base)
Returns enabled USART interrupts.
This function returns the enabled USART interrupts.
- Parameters:
base – USART peripheral base address.
-
static inline void USART_EnableTxDMA(USART_Type *base, bool enable)
Enable DMA for Tx.
-
static inline void USART_EnableRxDMA(USART_Type *base, bool enable)
Enable DMA for Rx.
-
static inline void USART_EnableCTS(USART_Type *base, bool enable)
Enable CTS. This function will determine whether CTS is used for flow control.
- Parameters:
base – USART peripheral base address.
enable – Enable CTS or not, true for enable and false for disable.
-
static inline void USART_EnableContinuousSCLK(USART_Type *base, bool enable)
Continuous Clock generation. By default, SCLK is only output while data is being transmitted in synchronous mode. Enable this funciton, SCLK will run continuously in synchronous mode, allowing characters to be received on Un_RxD independently from transmission on Un_TXD).
- Parameters:
base – USART peripheral base address.
enable – Enable Continuous Clock generation mode or not, true for enable and false for disable.
-
static inline void USART_EnableAutoClearSCLK(USART_Type *base, bool enable)
Enable Continuous Clock generation bit auto clear. While enable this cuntion, the Continuous Clock bit is automatically cleared when a complete character has been received. This bit is cleared at the same time.
- Parameters:
base – USART peripheral base address.
enable – Enable auto clear or not, true for enable and false for disable.
-
static inline void USART_SetRxFifoWatermark(USART_Type *base, uint8_t water)
Sets the rx FIFO watermark.
- Parameters:
base – USART peripheral base address.
water – Rx FIFO watermark.
-
static inline void USART_SetTxFifoWatermark(USART_Type *base, uint8_t water)
Sets the tx FIFO watermark.
- Parameters:
base – USART peripheral base address.
water – Tx FIFO watermark.
-
static inline void USART_WriteByte(USART_Type *base, uint8_t data)
Writes to the FIFOWR register.
This function writes data to the txFIFO directly. The upper layer must ensure that txFIFO has space for data to write before calling this function.
- Parameters:
base – USART peripheral base address.
data – The byte to write.
-
static inline uint8_t USART_ReadByte(USART_Type *base)
Reads the FIFORD register directly.
This function reads data from the rxFIFO directly. The upper layer must ensure that the rxFIFO is not empty before calling this function.
- Parameters:
base – USART peripheral base address.
- Returns:
The byte read from USART data register.
-
static inline uint8_t USART_GetRxFifoCount(USART_Type *base)
Gets the rx FIFO data count.
- Parameters:
base – USART peripheral base address.
- Returns:
rx FIFO data count.
-
static inline uint8_t USART_GetTxFifoCount(USART_Type *base)
Gets the tx FIFO data count.
- Parameters:
base – USART peripheral base address.
- Returns:
tx FIFO data count.
-
void USART_SendAddress(USART_Type *base, uint8_t address)
Transmit an address frame in 9-bit data mode.
- Parameters:
base – USART peripheral base address.
address – USART slave address.
-
status_t USART_WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.
This function polls the TX register, waits for the TX register to be empty or for the TX FIFO to have room and writes data to the TX buffer.
- Parameters:
base – USART peripheral base address.
data – Start address of the data to write.
length – Size of the data to write.
- Return values:
kStatus_USART_Timeout – Transmission timed out and was aborted.
kStatus_InvalidArgument – Invalid argument.
kStatus_Success – Successfully wrote all data.
-
status_t USART_ReadBlocking(USART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.
This function polls the RX register, waits for the RX register to be full or for RX FIFO to have data and read data from the TX register.
- Parameters:
base – USART peripheral base address.
data – Start address of the buffer to store the received data.
length – Size of the buffer.
- Return values:
kStatus_USART_FramingError – Receiver overrun happened while receiving data.
kStatus_USART_ParityError – Noise error happened while receiving data.
kStatus_USART_NoiseError – Framing error happened while receiving data.
kStatus_USART_RxError – Overflow or underflow rxFIFO happened.
kStatus_USART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully received all data.
-
status_t USART_TransferCreateHandle(USART_Type *base, usart_handle_t *handle, usart_transfer_callback_t callback, void *userData)
Initializes the USART handle.
This function initializes the USART handle which can be used for other USART transactional APIs. Usually, for a specified USART instance, call this API once to get the initialized handle.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
callback – The callback function.
userData – The parameter of the callback function.
-
status_t USART_TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle, usart_transfer_t *xfer)
Transmits a buffer of data using the interrupt method.
This function sends data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data to be written to the TX register. When all data is written to the TX register in the IRQ handler, the USART driver calls the callback function and passes the kStatus_USART_TxIdle as status parameter.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
xfer – USART transfer structure. See usart_transfer_t.
- Return values:
kStatus_Success – Successfully start the data transmission.
kStatus_USART_TxBusy – Previous transmission still not finished, data not all written to TX register yet.
kStatus_InvalidArgument – Invalid argument.
-
void USART_TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)
Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific USART handle.
When the RX ring buffer is used, data received are stored into the ring buffer even when the user doesn’t call the USART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly.
Note
When using the RX ring buffer, one byte is reserved for internal use. In other words, if
ringBufferSize
is 32, then only 31 bytes are used for saving data.- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
ringBuffer – Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer.
ringBufferSize – size of the ring buffer.
-
void USART_TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.
This function aborts the background transfer and uninstalls the ring buffer.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
-
size_t USART_TransferGetRxRingBufferLength(usart_handle_t *handle)
Get the length of received data in RX ring buffer.
- Parameters:
handle – USART handle pointer.
- Returns:
Length of received data in RX ring buffer.
-
void USART_TransferAbortSend(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data transmit.
This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out how many bytes are still not sent out.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
-
status_t USART_TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t *count)
Get the number of bytes that have been sent out to bus.
This function gets the number of bytes that have been sent out to bus by interrupt method.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
count – Send bytes count.
- Return values:
kStatus_NoTransferInProgress – No send in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
status_t USART_TransferReceiveNonBlocking(USART_Type *base, usart_handle_t *handle, usart_transfer_t *xfer, size_t *receivedBytes)
Receives a buffer of data using an interrupt method.
This function receives data using an interrupt method. This is a non-blocking function, which returns without waiting for all data to be received. If the RX ring buffer is used and not empty, the data in the ring buffer is copied and the parameter
receivedBytes
shows how many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is not enough to read, the receive request is saved by the USART driver. When the new data arrives, the receive request is serviced first. When all data is received, the USART driver notifies the upper layer through a callback function and passes the status parameter kStatus_USART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns with the parameterreceivedBytes
set to 5. For the left 5 bytes, newly arrived data is saved from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to the xfer->data. When all data is received, the upper layer is notified.- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
xfer – USART transfer structure, see usart_transfer_t.
receivedBytes – Bytes received from the ring buffer directly.
- Return values:
kStatus_Success – Successfully queue the transfer into transmit queue.
kStatus_USART_RxBusy – Previous receive request is not finished.
kStatus_InvalidArgument – Invalid argument.
-
void USART_TransferAbortReceive(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data receiving.
This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out how many bytes not received yet.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
-
status_t USART_TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t *count)
Get the number of bytes that have been received.
This function gets the number of bytes that have been received.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
count – Receive bytes count.
- Return values:
kStatus_NoTransferInProgress – No receive in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
void USART_TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)
USART IRQ handle function.
This function handles the USART transmit and receive IRQ request.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
-
FSL_USART_DRIVER_VERSION
USART driver version.
Error codes for the USART driver.
Values:
-
enumerator kStatus_USART_TxBusy
Transmitter is busy.
-
enumerator kStatus_USART_RxBusy
Receiver is busy.
-
enumerator kStatus_USART_TxIdle
USART transmitter is idle.
-
enumerator kStatus_USART_RxIdle
USART receiver is idle.
-
enumerator kStatus_USART_TxError
Error happens on txFIFO.
-
enumerator kStatus_USART_RxError
Error happens on rxFIFO.
-
enumerator kStatus_USART_RxRingBufferOverrun
Error happens on rx ring buffer
-
enumerator kStatus_USART_NoiseError
USART noise error.
-
enumerator kStatus_USART_FramingError
USART framing error.
-
enumerator kStatus_USART_ParityError
USART parity error.
-
enumerator kStatus_USART_BaudrateNotSupport
Baudrate is not support in current clock source
-
enumerator kStatus_USART_TxBusy
-
enum _usart_sync_mode
USART synchronous mode.
Values:
-
enumerator kUSART_SyncModeDisabled
Asynchronous mode.
-
enumerator kUSART_SyncModeSlave
Synchronous slave mode.
-
enumerator kUSART_SyncModeMaster
Synchronous master mode.
-
enumerator kUSART_SyncModeDisabled
-
enum _usart_parity_mode
USART parity mode.
Values:
-
enumerator kUSART_ParityDisabled
Parity disabled
-
enumerator kUSART_ParityEven
Parity enabled, type even, bit setting: PE|PT = 10
-
enumerator kUSART_ParityOdd
Parity enabled, type odd, bit setting: PE|PT = 11
-
enumerator kUSART_ParityDisabled
-
enum _usart_stop_bit_count
USART stop bit count.
Values:
-
enumerator kUSART_OneStopBit
One stop bit
-
enumerator kUSART_TwoStopBit
Two stop bits
-
enumerator kUSART_OneStopBit
-
enum _usart_data_len
USART data size.
Values:
-
enumerator kUSART_7BitsPerChar
Seven bit mode
-
enumerator kUSART_8BitsPerChar
Eight bit mode
-
enumerator kUSART_7BitsPerChar
-
enum _usart_clock_polarity
USART clock polarity configuration, used in sync mode.
Values:
-
enumerator kUSART_RxSampleOnFallingEdge
Un_RXD is sampled on the falling edge of SCLK.
-
enumerator kUSART_RxSampleOnRisingEdge
Un_RXD is sampled on the rising edge of SCLK.
-
enumerator kUSART_RxSampleOnFallingEdge
-
enum _usart_txfifo_watermark
txFIFO watermark values
Values:
-
enumerator kUSART_TxFifo0
USART tx watermark is empty
-
enumerator kUSART_TxFifo1
USART tx watermark at 1 item
-
enumerator kUSART_TxFifo2
USART tx watermark at 2 items
-
enumerator kUSART_TxFifo3
USART tx watermark at 3 items
-
enumerator kUSART_TxFifo4
USART tx watermark at 4 items
-
enumerator kUSART_TxFifo5
USART tx watermark at 5 items
-
enumerator kUSART_TxFifo6
USART tx watermark at 6 items
-
enumerator kUSART_TxFifo7
USART tx watermark at 7 items
-
enumerator kUSART_TxFifo0
-
enum _usart_rxfifo_watermark
rxFIFO watermark values
Values:
-
enumerator kUSART_RxFifo1
USART rx watermark at 1 item
-
enumerator kUSART_RxFifo2
USART rx watermark at 2 items
-
enumerator kUSART_RxFifo3
USART rx watermark at 3 items
-
enumerator kUSART_RxFifo4
USART rx watermark at 4 items
-
enumerator kUSART_RxFifo5
USART rx watermark at 5 items
-
enumerator kUSART_RxFifo6
USART rx watermark at 6 items
-
enumerator kUSART_RxFifo7
USART rx watermark at 7 items
-
enumerator kUSART_RxFifo8
USART rx watermark at 8 items
-
enumerator kUSART_RxFifo1
-
enum _usart_interrupt_enable
USART interrupt configuration structure, default settings all disabled.
Values:
-
enumerator kUSART_TxErrorInterruptEnable
-
enumerator kUSART_RxErrorInterruptEnable
-
enumerator kUSART_TxLevelInterruptEnable
-
enumerator kUSART_RxLevelInterruptEnable
-
enumerator kUSART_TxIdleInterruptEnable
Transmitter idle.
-
enumerator kUSART_CtsChangeInterruptEnable
Change in the state of the CTS input.
-
enumerator kUSART_RxBreakChangeInterruptEnable
Break condition asserted or deasserted.
-
enumerator kUSART_RxStartInterruptEnable
Rx start bit detected.
-
enumerator kUSART_FramingErrorInterruptEnable
Framing error detected.
-
enumerator kUSART_ParityErrorInterruptEnable
Parity error detected.
-
enumerator kUSART_NoiseErrorInterruptEnable
Noise error detected.
-
enumerator kUSART_AutoBaudErrorInterruptEnable
Auto baudrate error detected.
-
enumerator kUSART_AllInterruptEnables
-
enumerator kUSART_TxErrorInterruptEnable
-
enum _usart_flags
USART status flags.
This provides constants for the USART status flags for use in the USART functions.
Values:
-
enumerator kUSART_TxError
TXERR bit, sets if TX buffer is error
-
enumerator kUSART_RxError
RXERR bit, sets if RX buffer is error
-
enumerator kUSART_TxFifoEmptyFlag
TXEMPTY bit, sets if TX buffer is empty
-
enumerator kUSART_TxFifoNotFullFlag
TXNOTFULL bit, sets if TX buffer is not full
-
enumerator kUSART_RxFifoNotEmptyFlag
RXNOEMPTY bit, sets if RX buffer is not empty
-
enumerator kUSART_RxFifoFullFlag
RXFULL bit, sets if RX buffer is full
-
enumerator kUSART_RxIdleFlag
Receiver idle.
-
enumerator kUSART_TxIdleFlag
Transmitter idle.
-
enumerator kUSART_CtsAssertFlag
CTS signal high.
-
enumerator kUSART_CtsChangeFlag
CTS signal changed interrupt status.
-
enumerator kUSART_BreakDetectFlag
Break detected. Self cleared when rx pin goes high again.
-
enumerator kUSART_BreakDetectChangeFlag
Break detect change interrupt flag. A change in the state of receiver break detection.
-
enumerator kUSART_RxStartFlag
Rx start bit detected interrupt flag.
-
enumerator kUSART_FramingErrorFlag
Framing error interrupt flag.
-
enumerator kUSART_ParityErrorFlag
parity error interrupt flag.
-
enumerator kUSART_NoiseErrorFlag
Noise error interrupt flag.
-
enumerator kUSART_AutobaudErrorFlag
Auto baudrate error interrupt flag, caused by the baudrate counter timeout before the end of start bit.
-
enumerator kUSART_AllClearFlags
-
enumerator kUSART_TxError
-
typedef enum _usart_sync_mode usart_sync_mode_t
USART synchronous mode.
-
typedef enum _usart_parity_mode usart_parity_mode_t
USART parity mode.
-
typedef enum _usart_stop_bit_count usart_stop_bit_count_t
USART stop bit count.
-
typedef enum _usart_data_len usart_data_len_t
USART data size.
-
typedef enum _usart_clock_polarity usart_clock_polarity_t
USART clock polarity configuration, used in sync mode.
-
typedef enum _usart_txfifo_watermark usart_txfifo_watermark_t
txFIFO watermark values
-
typedef enum _usart_rxfifo_watermark usart_rxfifo_watermark_t
rxFIFO watermark values
-
typedef struct _usart_config usart_config_t
USART configuration structure.
-
typedef struct _usart_transfer usart_transfer_t
USART transfer structure.
-
typedef struct _usart_handle usart_handle_t
-
typedef void (*usart_transfer_callback_t)(USART_Type *base, usart_handle_t *handle, status_t status, void *userData)
USART transfer callback function.
-
typedef void (*flexcomm_usart_irq_handler_t)(USART_Type *base, usart_handle_t *handle)
Typedef for usart interrupt handler.
-
uint32_t USART_GetInstance(USART_Type *base)
Returns instance number for USART peripheral base address.
-
USART_FIFOTRIG_TXLVL_GET(base)
-
USART_FIFOTRIG_RXLVL_GET(base)
-
UART_RETRY_TIMES
Retry times for waiting flag.
Defining to zero means to keep waiting for the flag until it is assert/deassert in blocking transfer, otherwise the program will wait until the UART_RETRY_TIMES counts down to 0, if the flag still remains unchanged then program will return kStatus_USART_Timeout. It is not advised to use this macro in formal application to prevent any hardware error because the actual wait period is affected by the compiler and optimization.
-
struct _usart_config
- #include <fsl_usart.h>
USART configuration structure.
Public Members
-
uint32_t baudRate_Bps
USART baud rate
-
usart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd
-
usart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits
-
usart_data_len_t bitCountPerChar
Data length - 7 bit, 8 bit
-
bool loopback
Enable peripheral loopback
-
bool enableRx
Enable RX
-
bool enableTx
Enable TX
-
bool enableContinuousSCLK
USART continuous Clock generation enable in synchronous master mode.
-
bool enableMode32k
USART uses 32 kHz clock from the RTC oscillator as the clock source.
-
bool enableHardwareFlowControl
Enable hardware control RTS/CTS
-
usart_txfifo_watermark_t txWatermark
txFIFO watermark
-
usart_rxfifo_watermark_t rxWatermark
rxFIFO watermark
-
usart_sync_mode_t syncMode
Transfer mode select - asynchronous, synchronous master, synchronous slave.
-
usart_clock_polarity_t clockPolarity
Selects the clock polarity and sampling edge in synchronous mode.
-
uint32_t baudRate_Bps
-
struct _usart_transfer
- #include <fsl_usart.h>
USART transfer structure.
Public Members
-
size_t dataSize
The byte count to be transfer.
-
size_t dataSize
-
struct _usart_handle
- #include <fsl_usart.h>
USART handle structure.
Public Members
-
const uint8_t *volatile txData
Address of remaining data to send.
-
volatile size_t txDataSize
Size of the remaining data to send.
-
size_t txDataSizeAll
Size of the data to send out.
-
uint8_t *volatile rxData
Address of remaining data to receive.
-
volatile size_t rxDataSize
Size of the remaining data to receive.
-
size_t rxDataSizeAll
Size of the data to receive.
-
uint8_t *rxRingBuffer
Start address of the receiver ring buffer.
-
size_t rxRingBufferSize
Size of the ring buffer.
-
volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.
-
volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.
-
usart_transfer_callback_t callback
Callback function.
-
void *userData
USART callback function parameter.
-
volatile uint8_t txState
TX transfer state.
-
volatile uint8_t rxState
RX transfer state
-
uint8_t txWatermark
txFIFO watermark
-
uint8_t rxWatermark
rxFIFO watermark
-
const uint8_t *volatile txData
-
union __unnamed32__
Public Members
-
uint8_t *data
The buffer of data to be transfer.
-
uint8_t *rxData
The buffer to receive data.
-
const uint8_t *txData
The buffer of data to be sent.
-
uint8_t *data
UTICK: MictoTick Timer Driver
-
void UTICK_Init(UTICK_Type *base)
Initializes an UTICK by turning its bus clock on.
-
void UTICK_Deinit(UTICK_Type *base)
Deinitializes a UTICK instance.
This function shuts down Utick bus clock
- Parameters:
base – UTICK peripheral base address.
-
uint32_t UTICK_GetStatusFlags(UTICK_Type *base)
Get Status Flags.
This returns the status flag
- Parameters:
base – UTICK peripheral base address.
- Returns:
status register value
-
void UTICK_ClearStatusFlags(UTICK_Type *base)
Clear Status Interrupt Flags.
This clears intr status flag
- Parameters:
base – UTICK peripheral base address.
- Returns:
none
-
void UTICK_SetTick(UTICK_Type *base, utick_mode_t mode, uint32_t count, utick_callback_t cb)
Starts UTICK.
This function starts a repeat/onetime countdown with an optional callback
- Parameters:
base – UTICK peripheral base address.
mode – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)
count – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)
cb – UTICK callback (can be left as NULL if none, otherwise should be a void func(void))
- Returns:
none
-
void UTICK_HandleIRQ(UTICK_Type *base, utick_callback_t cb)
UTICK Interrupt Service Handler.
This function handles the interrupt and refers to the callback array in the driver to callback user (as per request in UTICK_SetTick()). if no user callback is scheduled, the interrupt will simply be cleared.
- Parameters:
base – UTICK peripheral base address.
cb – callback scheduled for this instance of UTICK
- Returns:
none
-
FSL_UTICK_DRIVER_VERSION
UTICK driver version 2.0.5.
-
enum _utick_mode
UTICK timer operational mode.
Values:
-
enumerator kUTICK_Onetime
Trigger once
-
enumerator kUTICK_Repeat
Trigger repeatedly
-
enumerator kUTICK_Onetime
-
typedef enum _utick_mode utick_mode_t
UTICK timer operational mode.
-
typedef void (*utick_callback_t)(void)
UTICK callback function.
WWDT: Windowed Watchdog Timer Driver
-
void WWDT_GetDefaultConfig(wwdt_config_t *config)
Initializes WWDT configure structure.
This function initializes the WWDT configure structure to default value. The default value are:
config->enableWwdt = true; config->enableWatchdogReset = false; config->enableWatchdogProtect = false; config->enableLockOscillator = false; config->windowValue = 0xFFFFFFU; config->timeoutValue = 0xFFFFFFU; config->warningValue = 0;
See also
wwdt_config_t
- Parameters:
config – Pointer to WWDT config structure.
-
void WWDT_Init(WWDT_Type *base, const wwdt_config_t *config)
Initializes the WWDT.
This function initializes the WWDT. When called, the WWDT runs according to the configuration.
Example:
wwdt_config_t config; WWDT_GetDefaultConfig(&config); config.timeoutValue = 0x7ffU; WWDT_Init(wwdt_base,&config);
- Parameters:
base – WWDT peripheral base address
config – The configuration of WWDT
-
void WWDT_Deinit(WWDT_Type *base)
Shuts down the WWDT.
This function shuts down the WWDT.
- Parameters:
base – WWDT peripheral base address
-
static inline void WWDT_Enable(WWDT_Type *base)
Enables the WWDT module.
This function write value into WWDT_MOD register to enable the WWDT, it is a write-once bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will run permanently.
- Parameters:
base – WWDT peripheral base address
-
static inline void WWDT_Disable(WWDT_Type *base)
Disables the WWDT module.
- Deprecated:
Do not use this function. It will be deleted in next release version, for once the bit field of WDEN written with a 1, it can not be re-written with a 0.
This function write value into WWDT_MOD register to disable the WWDT.
- Parameters:
base – WWDT peripheral base address
-
static inline uint32_t WWDT_GetStatusFlags(WWDT_Type *base)
Gets all WWDT status flags.
This function gets all status flags.
Example for getting Timeout Flag:
uint32_t status; status = WWDT_GetStatusFlags(wwdt_base) & kWWDT_TimeoutFlag;
- Parameters:
base – WWDT peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration _wwdt_status_flags_t
-
void WWDT_ClearStatusFlags(WWDT_Type *base, uint32_t mask)
Clear WWDT flag.
This function clears WWDT status flag.
Example for clearing warning flag:
WWDT_ClearStatusFlags(wwdt_base, kWWDT_WarningFlag);
- Parameters:
base – WWDT peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration _wwdt_status_flags_t
-
static inline void WWDT_SetWarningValue(WWDT_Type *base, uint32_t warningValue)
Set the WWDT warning value.
The WDWARNINT register determines the watchdog timer counter value that will generate a watchdog interrupt. When the watchdog timer counter is no longer greater than the value defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.
- Parameters:
base – WWDT peripheral base address
warningValue – WWDT warning value.
-
static inline void WWDT_SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)
Set the WWDT timeout value.
This function sets the timeout value. Every time a feed sequence occurs the value in the TC register is loaded into the Watchdog timer. Writing a value below 0xFF will cause 0xFF to be loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If enableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change the timeout value before the watchdog counter is below the warning and window values will cause a watchdog reset and set the WDTOF flag.
- Parameters:
base – WWDT peripheral base address
timeoutCount – WWDT timeout value, count of WWDT clock tick.
-
static inline void WWDT_SetWindowValue(WWDT_Type *base, uint32_t windowValue)
Sets the WWDT window value.
The WINDOW register determines the highest TV value allowed when a watchdog feed is performed. If a feed sequence occurs when timer value is greater than the value in WINDOW, a watchdog event will occur. To disable windowing, set windowValue to 0xFFFFFF (maximum possible timer value) so windowing is not in effect.
- Parameters:
base – WWDT peripheral base address
windowValue – WWDT window value.
-
void WWDT_Refresh(WWDT_Type *base)
Refreshes the WWDT timer.
This function feeds the WWDT. This function should be called before WWDT timer is in timeout. Otherwise, a reset is asserted.
- Parameters:
base – WWDT peripheral base address
-
FSL_WWDT_DRIVER_VERSION
Defines WWDT driver version.
-
WWDT_FIRST_WORD_OF_REFRESH
First word of refresh sequence
-
WWDT_SECOND_WORD_OF_REFRESH
Second word of refresh sequence
-
enum _wwdt_status_flags_t
WWDT status flags.
This structure contains the WWDT status flags for use in the WWDT functions.
Values:
-
enumerator kWWDT_TimeoutFlag
Time-out flag, set when the timer times out
-
enumerator kWWDT_WarningFlag
Warning interrupt flag, set when timer is below the value WDWARNINT
-
enumerator kWWDT_TimeoutFlag
-
typedef struct _wwdt_config wwdt_config_t
Describes WWDT configuration structure.
-
struct _wwdt_config
- #include <fsl_wwdt.h>
Describes WWDT configuration structure.
Public Members
-
bool enableWwdt
Enables or disables WWDT
-
bool enableWatchdogReset
true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause a chip reset
-
bool enableWatchdogProtect
true: Enable watchdog protect i.e timeout value can only be changed after counter is below warning & window values false: Disable watchdog protect; timeout value can be changed at any time
-
uint32_t windowValue
Window value, set this to 0xFFFFFF if windowing is not in effect
-
uint32_t timeoutValue
Timeout value
-
uint32_t warningValue
Watchdog time counter value that will generate a warning interrupt. Set this to 0 for no warning
-
uint32_t clockFreq_Hz
Watchdog clock source frequency.
-
bool enableWwdt