LPC802
Clock Driver
-
enum _clock_ip_name
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.
Values:
-
enumerator kCLOCK_IpInvalid
Invalid Ip Name.
-
enumerator kCLOCK_Rom
Clock gate name: Rom.
-
enumerator kCLOCK_Ram0
Clock gate name: Ram0.
-
enumerator kCLOCK_Flash
Clock gate name: Flash.
-
enumerator kCLOCK_I2c0
Clock gate name: I2c0.
-
enumerator kCLOCK_Gpio0
Clock gate name: Gpio0.
-
enumerator kCLOCK_Swm
Clock gate name: Swm.
-
enumerator kCLOCK_Wkt
Clock gate name: Wkt.
-
enumerator kCLOCK_Mrt
Clock gate name: Mrt.
-
enumerator kCLOCK_Spi0
Clock gate name: Spi0.
-
enumerator kCLOCK_Crc
Clock gate name: Crc.
-
enumerator kCLOCK_Uart0
Clock gate name: Uart0.
-
enumerator kCLOCK_Uart1
Clock gate name: Uart1.
-
enumerator kCLOCK_Wwdt
Clock gate name: Wwdt.
-
enumerator kCLOCK_Iocon
Clock gate name: Iocon.
-
enumerator kCLOCK_Acmp
Clock gate name: Acmp.
-
enumerator kCLOCK_Adc
Clock gate name: Adc.
-
enumerator kCLOCK_Ctimer0
Clock gate name: Ctimer0.
-
enumerator kCLOCK_GpioInt
Clock gate name: GpioInt.
-
enumerator kCLOCK_IpInvalid
-
enum _clock_name
Clock name used to get clock frequency.
Values:
-
enumerator kCLOCK_CoreSysClk
Cpu/AHB/AHB matrix/Memories,etc
-
enumerator kCLOCK_MainClk
Main clock
-
enumerator kCLOCK_Fro
FRO18/24/30
-
enumerator kCLOCK_FroDiv
FRO div clock
-
enumerator kCLOCK_ExtClk
External Clock
-
enumerator kCLOCK_LPOsc
Low power Oscillator
-
enumerator kCLOCK_Frg
fractional rate0
-
enumerator kCLOCK_CoreSysClk
-
enum _clock_select
Clock Mux Switches CLK_MUX_DEFINE(reg, mux) reg is used to define the mux register mux is used to define the mux value.
Values:
-
enumerator kADC_Clk_From_Fro
Mux ADC_Clk from Fro.
-
enumerator kADC_Clk_From_ClkIn
Mux ADC_Clk from ClkIn.
-
enumerator kUART0_Clk_From_Fro
Mux UART0_Clk from Fro.
-
enumerator kUART0_Clk_From_MainClk
Mux UART0_Clk from MainClk.
-
enumerator kUART0_Clk_From_Frg0Clk
Mux UART0_Clk from Frg0Clk.
-
enumerator kUART0_Clk_From_Fro_Div
Mux UART0_Clk from Fro_Div.
-
enumerator kUART1_Clk_From_Fro
Mux UART1_Clk from Fro.
-
enumerator kUART1_Clk_From_MainClk
Mux UART1_Clk from MainClk.
-
enumerator kUART1_Clk_From_Frg0Clk
Mux UART1_Clk from Frg0Clk.
-
enumerator kUART1_Clk_From_Fro_Div
Mux UART1_Clk from Fro_Div.
-
enumerator kI2C_Clk_From_Fro
Mux I2C_Clk from Fro.
-
enumerator kI2C_Clk_From_MainClk
Mux I2C_Clk from MainClk.
-
enumerator kI2C_Clk_From_Frg0Clk
Mux I2C_Clk from Frg0Clk.
-
enumerator kI2C_Clk_From_Fro_Div
Mux I2C_Clk from Fro_Div.
-
enumerator kSPI_Clk_From_Fro
Mux SPI_Clk from Fro.
-
enumerator kSPI_Clk_From_MainClk
Mux SPI_Clk from MainClk.
-
enumerator kSPI_Clk_From_Frg0Clk
Mux SPI_Clk from Frg0Clk.
-
enumerator kSPI_Clk_From_Fro_Div
Mux SPI_Clk from Fro_Div.
-
enumerator kFRG0_Clk_From_Fro
Mux FRG0_Clk from Fro.
-
enumerator kFRG0_Clk_From_MainClk
Mux FRG0_Clk from MainClk.
-
enumerator kCLKOUT_From_Fro
Mux CLKOUT from Fro.
-
enumerator kCLKOUT_From_MainClk
Mux CLKOUT from MainClk.
-
enumerator kCLKOUT_From_ExtClk
Mux CLKOUT from ExtClk.
-
enumerator kCLKOUT_From_WdtOsc
Mux clock out from WdtOsc.
-
enumerator kADC_Clk_From_Fro
-
enum _clock_divider
Clock divider.
Values:
-
enumerator kCLOCK_DivAdcClk
Adc Clock Divider.
-
enumerator kCLOCK_DivClkOut
Clock out divider.
-
enumerator kCLOCK_DivAdcClk
-
enum _clock_fro_src
fro output frequency source definition
Values:
-
enumerator kCLOCK_FroSrcLpwrBootValue
fro source from the fro oscillator divided by low power boot value
-
enumerator kCLOCK_FroSrcLpwrBootValue
-
enum _clock_fro_osc_freq
fro oscillator output frequency value definition
Values:
-
enumerator kCLOCK_FroOscOut18M
FRO oscillator output 18M
-
enumerator kCLOCK_FroOscOut24M
FRO oscillator output 24M
-
enumerator kCLOCK_FroOscOut30M
FRO oscillator output 30M
-
enumerator kCLOCK_FroOscOut18M
-
enum _clock_main_clk_src
Main clock source definition.
Values:
-
enumerator kCLOCK_MainClkSrcFro
main clock source from FRO
-
enumerator kCLOCK_MainClkSrcExtClk
main clock source from Ext clock
-
enumerator kCLOCK_MainClkSrcLPOsc
main clock source from watchdog oscillator
-
enumerator kCLOCK_MainClkSrcFroDiv
main clock source from FRO Div
-
enumerator kCLOCK_MainClkSrcFro
-
typedef enum _clock_ip_name clock_ip_name_t
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.
-
typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.
-
typedef enum _clock_select clock_select_t
Clock Mux Switches CLK_MUX_DEFINE(reg, mux) reg is used to define the mux register mux is used to define the mux value.
-
typedef enum _clock_divider clock_divider_t
Clock divider.
-
typedef enum _clock_fro_src clock_fro_src_t
fro output frequency source definition
-
typedef enum _clock_fro_osc_freq clock_fro_osc_freq_t
fro oscillator output frequency value definition
-
typedef enum _clock_main_clk_src clock_main_clk_src_t
Main clock source definition.
-
volatile uint32_t g_Wdt_Osc_Freq
watchdog oscilltor clock frequency.
This variable is used to store the watchdog oscillator frequency which is set by CLOCK_InitWdtOsc, and it is returned by CLOCK_GetWdtOscFreq.
-
volatile uint32_t g_Ext_Clk_Freq
external clock frequency.
This variable is used to store the external clock frequency which is include external oscillator clock and external clk in clock frequency value, it is set by CLOCK_InitExtClkin when CLK IN is used as external clock or by CLOCK_InitSysOsc when external oscillator is used as external clock ,and it is returned by CLOCK_GetExtClkFreq.
-
FSL_CLOCK_DRIVER_VERSION
CLOCK driver version 2.3.4.
-
SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
-
CLOCK_FRO_SETTING_API_ROM_ADDRESS
FRO clock setting API address in ROM.
-
CLOCK_FAIM_BASE
FAIM base address.
-
ADC_CLOCKS
Clock ip name array for ADC.
-
ACMP_CLOCKS
Clock ip name array for ACMP.
-
DAC_CLOCKS
Clock ip name array for DAC.
-
SWM_CLOCKS
Clock ip name array for SWM.
-
ROM_CLOCKS
Clock ip name array for ROM.
-
SRAM_CLOCKS
Clock ip name array for SRAM.
-
IOCON_CLOCKS
Clock ip name array for IOCON.
-
GPIO_CLOCKS
Clock ip name array for GPIO.
-
GPIO_INT_CLOCKS
Clock ip name array for GPIO_INT.
-
DMA_CLOCKS
Clock ip name array for DMA.
-
CRC_CLOCKS
Clock ip name array for CRC.
-
WWDT_CLOCKS
Clock ip name array for WWDT.
-
SCT_CLOCKS
Clock ip name array for SCT0.
-
I2C_CLOCKS
Clock ip name array for I2C.
-
USART_CLOCKS
Clock ip name array for I2C.
-
SPI_CLOCKS
Clock ip name array for SPI.
-
CAPT_CLOCKS
Clock ip name array for CAPT.
-
CTIMER_CLOCKS
Clock ip name array for CTIMER.
-
MTB_CLOCKS
Clock ip name array for MTB.
-
MRT_CLOCKS
Clock ip name array for MRT.
-
WKT_CLOCKS
Clock ip name array for WKT.
-
CLK_GATE_DEFINE(reg, bit)
Internal used Clock definition only.
-
CLK_GATE_GET_REG(x)
-
CLK_GATE_GET_BITS_SHIFT(x)
-
CLK_MUX_DEFINE(reg, mux)
-
CLK_MUX_GET_REG(x)
-
CLK_MUX_GET_MUX(x)
-
CLK_MAIN_CLK_MUX_DEFINE(preMux, mux)
-
CLK_MAIN_CLK_MUX_GET_PRE_MUX(x)
-
CLK_MAIN_CLK_MUX_GET_MUX(x)
-
CLK_DIV_DEFINE(reg)
-
CLK_DIV_GET_REG(x)
-
CLK_WDT_OSC_DEFINE(freq, regValue)
-
CLK_WDT_OSC_GET_FREQ(x)
-
CLK_WDT_OSC_GET_REG(x)
-
CLK_FRG_DIV_REG_MAP(base)
-
CLK_FRG_MUL_REG_MAP(base)
-
CLK_FRG_SEL_REG_MAP(base)
-
SYS_AHB_CLK_CTRL0
-
static inline void CLOCK_EnableClock(clock_ip_name_t clk)
-
static inline void CLOCK_DisableClock(clock_ip_name_t clk)
-
static inline void CLOCK_Select(clock_select_t sel)
-
static inline void CLOCK_SetClkDivider(clock_divider_t name, uint32_t value)
-
static inline uint32_t CLOCK_GetClkDivider(clock_divider_t name)
-
static inline void CLOCK_SetCoreSysClkDiv(uint32_t value)
-
void CLOCK_SetMainClkSrc(clock_main_clk_src_t src)
Set main clock reference source.
- Parameters:
src – Reference clock_main_clk_src_t to set the main clock source.
-
static inline void CLOCK_SetFRGClkMul(uint32_t *base, uint32_t mul)
-
uint32_t CLOCK_GetFRGClkFreq(void)
Return Frequency of FRG0 Clock.
- Returns:
Frequency of FRG0 Clock.
-
uint32_t CLOCK_GetMainClkFreq(void)
Return Frequency of Main Clock.
- Returns:
Frequency of Main Clock.
-
uint32_t CLOCK_GetFroFreq(void)
Return Frequency of FRO.
- Returns:
Frequency of FRO.
-
static inline uint32_t CLOCK_GetCoreSysClkFreq(void)
Return Frequency of core.
- Returns:
Frequency of core.
-
uint32_t CLOCK_GetClockOutClkFreq(void)
Return Frequency of ClockOut.
- Returns:
Frequency of ClockOut
-
uint32_t CLOCK_GetUart0ClkFreq(void)
Get UART0 frequency.
- Return values:
UART0 – frequency value.
-
uint32_t CLOCK_GetUart1ClkFreq(void)
Get UART1 frequency.
- Return values:
UART1 – frequency value.
-
uint32_t CLOCK_GetFreq(clock_name_t clockName)
Return Frequency of selected clock.
- Returns:
Frequency of selected clock
-
static inline uint32_t CLOCK_GetLPOscFreq(void)
Get watch dog OSC frequency.
- Return values:
watch – dog OSC frequency value.
-
static inline uint32_t CLOCK_GetExtClkFreq(void)
Get external clock frequency.
- Return values:
external – clock frequency value.
-
bool CLOCK_SetFRGClkFreq(uint32_t freq)
Set FRG0 output frequency.
- Parameters:
target (freq,) – output frequency,freq < input and (input / freq) < 2 should be satisfy.
- Return values:
true – - successfully, false - input argument is invalid.
-
void CLOCK_InitExtClkin(uint32_t clkInFreq)
Init external CLK IN, select the CLKIN as the external clock source.
- Parameters:
clkInFreq – external clock in frequency.
-
static inline void CLOCK_DeinitLPOsc(void)
Deinit watch dog OSC.
- Parameters:
config – oscillator configuration.
-
void CLOCK_SetFroOscFreq(clock_fro_osc_freq_t freq)
Set FRO oscillator output frequency. Initialize the FRO clock to given frequency (18, 24 or 30 MHz).
- Parameters:
please (freq,) – reference clock_fro_osc_freq_t definition, frequency must be one of 18000, 24000 or 30000 KHz.
CRC: Cyclic Redundancy Check Driver
-
FSL_CRC_DRIVER_VERSION
CRC driver version. Version 2.1.1.
Current version: 2.1.1
Change log:
Version 2.0.0
initial version
Version 2.0.1
add explicit type cast when writing to WR_DATA
Version 2.0.2
Fix MISRA issue
Version 2.1.0
Add CRC_WriteSeed function
Version 2.1.1
Fix MISRA issue
-
enum _crc_polynomial
CRC polynomials to use.
Values:
-
enumerator kCRC_Polynomial_CRC_CCITT
x^16+x^12+x^5+1
-
enumerator kCRC_Polynomial_CRC_16
x^16+x^15+x^2+1
-
enumerator kCRC_Polynomial_CRC_32
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1
-
enumerator kCRC_Polynomial_CRC_CCITT
-
typedef enum _crc_polynomial crc_polynomial_t
CRC polynomials to use.
-
typedef struct _crc_config crc_config_t
CRC protocol configuration.
This structure holds the configuration for the CRC protocol.
-
void CRC_Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.
This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures the CRC engine and starts checksum computation by writing the seed.
- Parameters:
base – CRC peripheral address.
config – CRC module configuration structure.
-
static inline void CRC_Deinit(CRC_Type *base)
Disables the CRC peripheral module.
This functions disables the CRC peripheral clock in the LPC SYSCON block.
- Parameters:
base – CRC peripheral address.
-
void CRC_Reset(CRC_Type *base)
resets CRC peripheral module.
- Parameters:
base – CRC peripheral address.
-
void CRC_WriteSeed(CRC_Type *base, uint32_t seed)
Write seed to CRC peripheral module.
- Parameters:
base – CRC peripheral address.
seed – CRC Seed value.
-
void CRC_GetDefaultConfig(crc_config_t *config)
Loads default values to CRC protocol configuration structure.
Loads default values to CRC protocol configuration structure. The default values are:
config->polynomial = kCRC_Polynomial_CRC_CCITT; config->reverseIn = false; config->complementIn = false; config->reverseOut = false; config->complementOut = false; config->seed = 0xFFFFU;
- Parameters:
config – CRC protocol configuration structure
-
void CRC_GetConfig(CRC_Type *base, crc_config_t *config)
Loads actual values configured in CRC peripheral to CRC protocol configuration structure.
The values, including seed, can be used to resume CRC calculation later.
- Parameters:
base – CRC peripheral address.
config – CRC protocol configuration structure
-
void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.
Writes input data buffer bytes to CRC data register.
- Parameters:
base – CRC peripheral address.
data – Input data stream, MSByte in data[0].
dataSize – Size of the input data buffer in bytes.
-
static inline uint32_t CRC_Get32bitResult(CRC_Type *base)
Reads 32-bit checksum from the CRC module.
Reads CRC data register.
- Parameters:
base – CRC peripheral address.
- Returns:
final 32-bit checksum, after configured bit reverse and complement operations.
-
static inline uint16_t CRC_Get16bitResult(CRC_Type *base)
Reads 16-bit checksum from the CRC module.
Reads CRC data register.
- Parameters:
base – CRC peripheral address.
- Returns:
final 16-bit checksum, after configured bit reverse and complement operations.
-
CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT
Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE as default.
-
struct _crc_config
- #include <fsl_crc.h>
CRC protocol configuration.
This structure holds the configuration for the CRC protocol.
Public Members
-
crc_polynomial_t polynomial
CRC polynomial.
-
bool reverseIn
Reverse bits on input.
-
bool complementIn
Perform 1’s complement on input.
-
bool reverseOut
Reverse bits on output.
-
bool complementOut
Perform 1’s complement on output.
-
uint32_t seed
Starting checksum value.
-
crc_polynomial_t polynomial
CTIMER: Standard counter/timers
-
void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)
Ungates the clock and configures the peripheral for basic operation.
Note
This API should be called at the beginning of the application before using the driver.
- Parameters:
base – Ctimer peripheral base address
config – Pointer to the user configuration structure.
-
void CTIMER_Deinit(CTIMER_Type *base)
Gates the timer clock.
- Parameters:
base – Ctimer peripheral base address
-
void CTIMER_GetDefaultConfig(ctimer_config_t *config)
Fills in the timers configuration structure with the default settings.
The default values are:
config->mode = kCTIMER_TimerMode; config->input = kCTIMER_Capture_0; config->prescale = 0;
- Parameters:
config – Pointer to the user configuration structure.
-
status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint32_t pwmPeriod, uint32_t pulsePeriod, bool enableInt)
Configures the PWM signal parameters.
Enables PWM mode on the match channel passed in and will then setup the match value and other match parameters to generate a PWM signal. This function can manually assign the specified channel to set the PWM cycle.
Note
When setting PWM output from multiple output pins, all should use the same PWM period
- Parameters:
base – Ctimer peripheral base address
pwmPeriodChannel – Specify the channel to control the PWM period
matchChannel – Match pin to be used to output the PWM signal
pwmPeriod – PWM period match value
pulsePeriod – Pulse width match value
enableInt – Enable interrupt when the timer value reaches the match value of the PWM pulse, if it is 0 then no interrupt will be generated.
- Returns:
kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeriodChannel; this channel is reserved to set the PWM cycle If PWM pulse width register value is larger than 0xFFFFFFFF.
-
status_t CTIMER_SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint8_t dutyCyclePercent, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz, bool enableInt)
Configures the PWM signal parameters.
Enables PWM mode on the match channel passed in and will then setup the match value and other match parameters to generate a PWM signal. This function can manually assign the specified channel to set the PWM cycle.
Note
When setting PWM output from multiple output pins, all should use the same PWM frequency. Please use CTIMER_SetupPwmPeriod to set up the PWM with high resolution.
- Parameters:
base – Ctimer peripheral base address
pwmPeriodChannel – Specify the channel to control the PWM period
matchChannel – Match pin to be used to output the PWM signal
dutyCyclePercent – PWM pulse width; the value should be between 0 to 100
pwmFreq_Hz – PWM signal frequency in Hz
srcClock_Hz – Timer counter clock in Hz
enableInt – Enable interrupt when the timer value reaches the match value of the PWM pulse, if it is 0 then no interrupt will be generated.
-
static inline void CTIMER_UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t matchChannel, uint32_t pulsePeriod)
Updates the pulse period of an active PWM signal.
- Parameters:
base – Ctimer peripheral base address
matchChannel – Match pin to be used to output the PWM signal
pulsePeriod – New PWM pulse width match value
-
status_t CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint8_t dutyCyclePercent)
Updates the duty cycle of an active PWM signal.
Note
Please use CTIMER_SetupPwmPeriod to update the PWM with high resolution. This function can manually assign the specified channel to set the PWM cycle.
- Parameters:
base – Ctimer peripheral base address
pwmPeriodChannel – Specify the channel to control the PWM period
matchChannel – Match pin to be used to output the PWM signal
dutyCyclePercent – New PWM pulse width; the value should be between 0 to 100
- Returns:
kStatus_Success on success kStatus_Fail If PWM pulse width register value is larger than 0xFFFFFFFF.
-
static inline void CTIMER_EnableInterrupts(CTIMER_Type *base, uint32_t mask)
Enables the selected Timer interrupts.
- Parameters:
base – Ctimer peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration ctimer_interrupt_enable_t
-
static inline void CTIMER_DisableInterrupts(CTIMER_Type *base, uint32_t mask)
Disables the selected Timer interrupts.
- Parameters:
base – Ctimer peripheral base address
mask – The interrupts to enable. This is a logical OR of members of the enumeration ctimer_interrupt_enable_t
-
static inline uint32_t CTIMER_GetEnabledInterrupts(CTIMER_Type *base)
Gets the enabled Timer interrupts.
- Parameters:
base – Ctimer peripheral base address
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration ctimer_interrupt_enable_t
-
static inline uint32_t CTIMER_GetStatusFlags(CTIMER_Type *base)
Gets the Timer status flags.
- Parameters:
base – Ctimer peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration ctimer_status_flags_t
-
static inline void CTIMER_ClearStatusFlags(CTIMER_Type *base, uint32_t mask)
Clears the Timer status flags.
- Parameters:
base – Ctimer peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration ctimer_status_flags_t
-
static inline void CTIMER_StartTimer(CTIMER_Type *base)
Starts the Timer counter.
- Parameters:
base – Ctimer peripheral base address
-
static inline void CTIMER_StopTimer(CTIMER_Type *base)
Stops the Timer counter.
- Parameters:
base – Ctimer peripheral base address
-
FSL_CTIMER_DRIVER_VERSION
Version 2.3.3
-
enum _ctimer_capture_channel
List of Timer capture channels.
Values:
-
enumerator kCTIMER_Capture_0
Timer capture channel 0
-
enumerator kCTIMER_Capture_1
Timer capture channel 1
-
enumerator kCTIMER_Capture_3
Timer capture channel 3
-
enumerator kCTIMER_Capture_0
-
enum _ctimer_capture_edge
List of capture edge options.
Values:
-
enumerator kCTIMER_Capture_RiseEdge
Capture on rising edge
-
enumerator kCTIMER_Capture_FallEdge
Capture on falling edge
-
enumerator kCTIMER_Capture_BothEdge
Capture on rising and falling edge
-
enumerator kCTIMER_Capture_RiseEdge
-
enum _ctimer_match
List of Timer match registers.
Values:
-
enumerator kCTIMER_Match_0
Timer match register 0
-
enumerator kCTIMER_Match_1
Timer match register 1
-
enumerator kCTIMER_Match_2
Timer match register 2
-
enumerator kCTIMER_Match_3
Timer match register 3
-
enumerator kCTIMER_Match_0
-
enum _ctimer_external_match
List of external match.
Values:
-
enumerator kCTIMER_External_Match_0
External match 0
-
enumerator kCTIMER_External_Match_1
External match 1
-
enumerator kCTIMER_External_Match_2
External match 2
-
enumerator kCTIMER_External_Match_3
External match 3
-
enumerator kCTIMER_External_Match_0
-
enum _ctimer_match_output_control
List of output control options.
Values:
-
enumerator kCTIMER_Output_NoAction
No action is taken
-
enumerator kCTIMER_Output_Clear
Clear the EM bit/output to 0
-
enumerator kCTIMER_Output_Set
Set the EM bit/output to 1
-
enumerator kCTIMER_Output_Toggle
Toggle the EM bit/output
-
enumerator kCTIMER_Output_NoAction
-
enum _ctimer_timer_mode
List of Timer modes.
Values:
-
enumerator kCTIMER_TimerMode
-
enumerator kCTIMER_IncreaseOnRiseEdge
-
enumerator kCTIMER_IncreaseOnFallEdge
-
enumerator kCTIMER_IncreaseOnBothEdge
-
enumerator kCTIMER_TimerMode
-
enum _ctimer_interrupt_enable
List of Timer interrupts.
Values:
-
enumerator kCTIMER_Match0InterruptEnable
Match 0 interrupt
-
enumerator kCTIMER_Match1InterruptEnable
Match 1 interrupt
-
enumerator kCTIMER_Match2InterruptEnable
Match 2 interrupt
-
enumerator kCTIMER_Match3InterruptEnable
Match 3 interrupt
-
enumerator kCTIMER_Match0InterruptEnable
-
enum _ctimer_status_flags
List of Timer flags.
Values:
-
enumerator kCTIMER_Match0Flag
Match 0 interrupt flag
-
enumerator kCTIMER_Match1Flag
Match 1 interrupt flag
-
enumerator kCTIMER_Match2Flag
Match 2 interrupt flag
-
enumerator kCTIMER_Match3Flag
Match 3 interrupt flag
-
enumerator kCTIMER_Match0Flag
-
enum ctimer_callback_type_t
Callback type when registering for a callback. When registering a callback an array of function pointers is passed the size could be 1 or 8, the callback type will tell that.
Values:
-
enumerator kCTIMER_SingleCallback
Single Callback type where there is only one callback for the timer. based on the status flags different channels needs to be handled differently
-
enumerator kCTIMER_MultipleCallback
Multiple Callback type where there can be 8 valid callbacks, one per channel. for both match/capture
-
enumerator kCTIMER_SingleCallback
-
typedef enum _ctimer_capture_channel ctimer_capture_channel_t
List of Timer capture channels.
-
typedef enum _ctimer_capture_edge ctimer_capture_edge_t
List of capture edge options.
-
typedef enum _ctimer_match ctimer_match_t
List of Timer match registers.
-
typedef enum _ctimer_external_match ctimer_external_match_t
List of external match.
-
typedef enum _ctimer_match_output_control ctimer_match_output_control_t
List of output control options.
-
typedef enum _ctimer_timer_mode ctimer_timer_mode_t
List of Timer modes.
-
typedef enum _ctimer_interrupt_enable ctimer_interrupt_enable_t
List of Timer interrupts.
-
typedef enum _ctimer_status_flags ctimer_status_flags_t
List of Timer flags.
-
typedef void (*ctimer_callback_t)(uint32_t flags)
-
typedef struct _ctimer_match_config ctimer_match_config_t
Match configuration.
This structure holds the configuration settings for each match register.
-
typedef struct _ctimer_config ctimer_config_t
Timer configuration structure.
This structure holds the configuration settings for the Timer peripheral. To initialize this structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.
The configuration structure can be made constant so as to reside in flash.
-
void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const ctimer_match_config_t *config)
Setup the match register.
User configuration is used to setup the match value and action to be taken when a match occurs.
- Parameters:
base – Ctimer peripheral base address
matchChannel – Match register to configure
config – Pointer to the match configuration structure
-
uint32_t CTIMER_GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
Get the status of output match.
This function gets the status of output MAT, whether or not this output is connected to a pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 = LOW. 1 = HIGH.
- Parameters:
base – Ctimer peripheral base address
matchChannel – External match channel, user can obtain the status of multiple match channels at the same time by using the logic of “|” enumeration ctimer_external_match_t
- Returns:
The mask of external match channel status flags. Users need to use the _ctimer_external_match type to decode the return variables.
-
void CTIMER_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, ctimer_capture_edge_t edge, bool enableInt)
Setup the capture.
- Parameters:
base – Ctimer peripheral base address
capture – Capture channel to configure
edge – Edge on the channel that will trigger a capture
enableInt – Flag to enable channel interrupts, if enabled then the registered call back is called upon capture
-
static inline uint32_t CTIMER_GetTimerCountValue(CTIMER_Type *base)
Get the timer count value from TC register.
- Parameters:
base – Ctimer peripheral base address.
- Returns:
return the timer count value.
-
void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func, ctimer_callback_type_t cb_type)
Register callback.
- Parameters:
base – Ctimer peripheral base address
cb_func – callback function
cb_type – callback function type, singular or multiple
-
static inline void CTIMER_Reset(CTIMER_Type *base)
Reset the counter.
The timer counter and prescale counter are reset on the next positive edge of the APB clock.
- Parameters:
base – Ctimer peripheral base address
-
static inline void CTIMER_SetPrescale(CTIMER_Type *base, uint32_t prescale)
Setup the timer prescale value.
Specifies the maximum value for the Prescale Counter.
- Parameters:
base – Ctimer peripheral base address
prescale – Prescale value
-
static inline uint32_t CTIMER_GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel_t capture)
Get capture channel value.
Get the counter/timer value on the corresponding capture channel.
- Parameters:
base – Ctimer peripheral base address
capture – Select capture channel
- Returns:
The timer count capture value.
-
static inline void CTIMER_EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t match, bool enable)
Enable reset match channel.
Set the specified match channel reset operation.
- Parameters:
base – Ctimer peripheral base address
match – match channel used
enable – Enable match channel reset operation.
-
static inline void CTIMER_EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t match, bool enable)
Enable stop match channel.
Set the specified match channel stop operation.
- Parameters:
base – Ctimer peripheral base address.
match – match channel used.
enable – Enable match channel stop operation.
-
static inline void CTIMER_EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t match, bool enable)
Enable reload channel falling edge.
Enable the specified match channel reload match shadow value.
- Parameters:
base – Ctimer peripheral base address.
match – match channel used.
enable – Enable .
-
static inline void CTIMER_EnableRisingEdgeCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, bool enable)
Enable capture channel rising edge.
Sets the specified capture channel for rising edge capture.
- Parameters:
base – Ctimer peripheral base address.
capture – capture channel used.
enable – Enable rising edge capture.
-
static inline void CTIMER_EnableFallingEdgeCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, bool enable)
Enable capture channel falling edge.
Sets the specified capture channel for falling edge capture.
- Parameters:
base – Ctimer peripheral base address.
capture – capture channel used.
enable – Enable falling edge capture.
-
static inline void CTIMER_SetShadowValue(CTIMER_Type *base, ctimer_match_t match, uint32_t matchvalue)
Set the specified match shadow channel.
- Parameters:
base – Ctimer peripheral base address.
match – match channel used.
matchvalue – Reload the value of the corresponding match register.
-
struct _ctimer_match_config
- #include <fsl_ctimer.h>
Match configuration.
This structure holds the configuration settings for each match register.
Public Members
-
uint32_t matchValue
This is stored in the match register
-
bool enableCounterReset
true: Match will reset the counter false: Match will not reser the counter
-
bool enableCounterStop
true: Match will stop the counter false: Match will not stop the counter
-
ctimer_match_output_control_t outControl
Action to be taken on a match on the EM bit/output
-
bool outPinInitState
Initial value of the EM bit/output
-
bool enableInterrupt
true: Generate interrupt upon match false: Do not generate interrupt on match
-
uint32_t matchValue
-
struct _ctimer_config
- #include <fsl_ctimer.h>
Timer configuration structure.
This structure holds the configuration settings for the Timer peripheral. To initialize this structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.
The configuration structure can be made constant so as to reside in flash.
Public Members
-
ctimer_timer_mode_t mode
Timer mode
-
ctimer_capture_channel_t input
Input channel to increment the timer, used only in timer modes that rely on this input signal to increment TC
-
uint32_t prescale
Prescale value
-
ctimer_timer_mode_t mode
I2C: Inter-Integrated Circuit Driver
I2C Driver
-
FSL_I2C_DRIVER_VERSION
I2C driver version.
I2C status return codes.
Values:
-
enumerator kStatus_I2C_Busy
The master is already performing a transfer.
-
enumerator kStatus_I2C_Idle
The slave driver is idle.
-
enumerator kStatus_I2C_Nak
The slave device sent a NAK in response to a byte.
-
enumerator kStatus_I2C_InvalidParameter
Unable to proceed due to invalid parameter.
-
enumerator kStatus_I2C_BitError
Transferred bit was not seen on the bus.
-
enumerator kStatus_I2C_ArbitrationLost
Arbitration lost error.
-
enumerator kStatus_I2C_NoTransferInProgress
Attempt to abort a transfer when one is not in progress.
-
enumerator kStatus_I2C_DmaRequestFail
DMA request failed.
-
enumerator kStatus_I2C_StartStopError
Start and stop error.
-
enumerator kStatus_I2C_UnexpectedState
Unexpected state.
-
enumerator kStatus_I2C_Addr_Nak
NAK received during the address probe.
-
enumerator kStatus_I2C_Timeout
Timeout polling status flags.
-
enumerator kStatus_I2C_Busy
-
I2C_RETRY_TIMES
Retry times for waiting flag.
-
I2C_STAT_MSTCODE_IDLE
Master Idle State Code
-
I2C_STAT_MSTCODE_RXREADY
Master Receive Ready State Code
-
I2C_STAT_MSTCODE_TXREADY
Master Transmit Ready State Code
-
I2C_STAT_MSTCODE_NACKADR
Master NACK by slave on address State Code
-
I2C_STAT_MSTCODE_NACKDAT
Master NACK by slave on data State Code
-
I2C_STAT_SLVST_ADDR
-
I2C_STAT_SLVST_RX
-
I2C_STAT_SLVST_TX
I2C Master Driver
-
void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Provides a default configuration for the I2C master peripheral.
This function provides the following default configuration for the I2C master peripheral:
masterConfig->enableMaster = true; masterConfig->baudRate_Bps = 100000U; masterConfig->enableTimeout = false;
After calling this function, you can override any settings in order to customize the configuration, prior to initializing the master driver with I2C_MasterInit().
- Parameters:
masterConfig – [out] User provided configuration structure for default values. Refer to i2c_master_config_t.
-
void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)
Initializes the I2C master peripheral.
This function enables the peripheral clock and initializes the I2C master peripheral as described by the user provided configuration. A software reset is performed prior to configuration.
- Parameters:
base – The I2C peripheral base address.
masterConfig – User provided peripheral configuration. Use I2C_MasterGetDefaultConfig() to get a set of defaults that you can override.
srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to calculate the baud rate divisors, filter widths, and timeout periods.
-
void I2C_MasterDeinit(I2C_Type *base)
Deinitializes the I2C master peripheral.
This function disables the I2C master peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.
- Parameters:
base – The I2C peripheral base address.
-
uint32_t I2C_GetInstance(I2C_Type *base)
Returns an instance number given a base address.
If an invalid base address is passed, debug builds will assert. Release builds will just return instance number 0.
- Parameters:
base – The I2C peripheral base address.
- Returns:
I2C instance number starting from 0.
-
static inline void I2C_MasterReset(I2C_Type *base)
Performs a software reset.
Restores the I2C master peripheral to reset conditions.
- Parameters:
base – The I2C peripheral base address.
-
static inline void I2C_MasterEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as master.
- Parameters:
base – The I2C peripheral base address.
enable – Pass true to enable or false to disable the specified I2C as master.
-
static inline uint32_t I2C_GetStatusFlags(I2C_Type *base)
Gets the I2C status flags.
A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.
See also
_i2c_master_flags
- Parameters:
base – The I2C peripheral base address.
- Returns:
State of the status flags:
1: related status flag is set.
0: related status flag is not set.
-
static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C master status flag state.
The following status register flags can be cleared:
kI2C_MasterArbitrationLostFlag
kI2C_MasterStartStopErrorFlag
Attempts to clear other flags has no effect.
See also
_i2c_master_flags.
- Parameters:
base – The I2C peripheral base address.
statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i2c_master_flags enumerators OR’d together. You may pass the result of a previous call to I2C_GetStatusFlags().
-
static inline void I2C_EnableInterrupts(I2C_Type *base, uint32_t interruptMask)
Enables the I2C master interrupt requests.
- Parameters:
base – The I2C peripheral base address.
interruptMask – Bit mask of interrupts to enable. See _i2c_master_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline void I2C_DisableInterrupts(I2C_Type *base, uint32_t interruptMask)
Disables the I2C master interrupt requests.
- Parameters:
base – The I2C peripheral base address.
interruptMask – Bit mask of interrupts to disable. See _i2c_master_flags for the set of constants that should be OR’d together to form the bit mask.
-
static inline uint32_t I2C_GetEnabledInterrupts(I2C_Type *base)
Returns the set of currently enabled I2C master interrupt requests.
- Parameters:
base – The I2C peripheral base address.
- Returns:
A bitmask composed of _i2c_master_flags enumerators OR’d together to indicate the set of enabled interrupts.
-
void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C bus frequency for master transactions.
The I2C master is automatically disabled and re-enabled as necessary to configure the baud rate. Do not call this function during a transfer, or the transfer is aborted.
- Parameters:
base – The I2C peripheral base address.
srcClock_Hz – I2C functional clock frequency in Hertz.
baudRate_Bps – Requested bus frequency in bits per second.
-
static inline bool I2C_MasterGetBusIdleState(I2C_Type *base)
Returns whether the bus is idle.
Requires the master mode to be enabled.
- Parameters:
base – The I2C peripheral base address.
- Return values:
true – Bus is busy.
false – Bus is idle.
-
status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.
This function is used to initiate a new master mode transfer by sending the START signal. The slave address is sent following the I2C START signal.
- Parameters:
base – I2C peripheral base pointer
address – 7-bit slave device address.
direction – Master transfer directions(transmit/receive).
- Return values:
kStatus_Success – Successfully send the start signal.
kStatus_I2C_Busy – Current bus is busy.
-
status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.
- Return values:
kStatus_Success – Successfully send the stop signal.
kStatus_I2C_Timeout – Send stop signal failed, timeout.
-
static inline status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a REPEATED START on the I2C bus.
- Parameters:
base – I2C peripheral base pointer
address – 7-bit slave device address.
direction – Master transfer directions(transmit/receive).
- Return values:
kStatus_Success – Successfully send the start signal.
kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C master.
-
status_t I2C_MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t flags)
Performs a polling send transfer on the I2C bus.
Sends up to txSize number of bytes to the previously addressed slave device. The slave may reply with a NAK to any byte in order to terminate the transfer early. If this happens, this function returns kStatus_I2C_Nak.
- Parameters:
base – The I2C peripheral base address.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
flags – Transfer control flag to control special behavior like suppressing start or stop, for normal transfers use kI2C_TransferDefaultFlag
- Return values:
kStatus_Success – Data was sent successfully.
kStatus_I2C_Busy – Another master is currently utilizing the bus.
kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.
kStatus_I2C_ArbitrationLost – Arbitration lost error.
-
status_t I2C_MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transfer on the I2C bus.
- Parameters:
base – The I2C peripheral base address.
rxBuff – The pointer to the data to be transferred.
rxSize – The length in bytes of the data to be transferred.
flags – Transfer control flag to control special behavior like suppressing start or stop, for normal transfers use kI2C_TransferDefaultFlag
- Return values:
kStatus_Success – Data was received successfully.
kStatus_I2C_Busy – Another master is currently utilizing the bus.
kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.
kStatus_I2C_ArbitrationLost – Arbitration lost error.
-
status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.
Note
The API does not return until the transfer succeeds or fails due to arbitration lost or receiving a NAK.
- Parameters:
base – I2C peripheral base address.
xfer – Pointer to the transfer structure.
- Return values:
kStatus_Success – Successfully complete the data transmission.
kStatus_I2C_Busy – Previous transmission still not finished.
kStatus_I2C_Timeout – Transfer error, wait signal timeout.
kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.
kStataus_I2C_Nak – Transfer error, receive NAK during transfer.
-
void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_callback_t callback, void *userData)
Creates a new handle for the I2C master non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I2C_MasterTransferAbort() API shall be called.
- Parameters:
base – The I2C peripheral base address.
handle – [out] Pointer to the I2C master driver handle.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
-
status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)
Performs a non-blocking transaction on the I2C bus.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to the I2C master driver handle.
xfer – The pointer to the transfer descriptor.
- Return values:
kStatus_Success – The transaction was started successfully.
kStatus_I2C_Busy – Either another master is currently utilizing the bus, or a non-blocking transaction is already in progress.
-
status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count)
Returns number of bytes transferred so far.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to the I2C master driver handle.
count – [out] Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_Success –
kStatus_I2C_Busy –
-
status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Terminates a non-blocking I2C master transmission early.
Note
It is not safe to call this function from an IRQ handler that has a higher priority than the I2C peripheral’s IRQ priority.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to the I2C master driver handle.
- Return values:
kStatus_Success – A transaction was successfully aborted.
kStatus_I2C_Timeout – Abort failure due to flags polling timeout.
-
void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Reusable routine to handle master interrupts.
Note
This function does not need to be called unless you are reimplementing the nonblocking API’s interrupt handler routines to add special functionality.
- Parameters:
base – The I2C peripheral base address.
i2cHandle – Pointer to the I2C master driver handle i2c_master_handle_t.
-
enum _i2c_master_flags
I2C master peripheral flags.
Note
These enums are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI2C_MasterPendingFlag
The I2C module is waiting for software interaction.
-
enumerator kI2C_MasterArbitrationLostFlag
The arbitration of the bus was lost. There was collision on the bus
-
enumerator kI2C_MasterStartStopErrorFlag
There was an error during start or stop phase of the transaction.
-
enumerator kI2C_MasterPendingFlag
-
enum _i2c_direction
Direction of master and slave transfers.
Values:
-
enumerator kI2C_Write
Master transmit.
-
enumerator kI2C_Read
Master receive.
-
enumerator kI2C_Write
-
enum _i2c_master_transfer_flags
Transfer option flags.
Note
These enumerations are intended to be OR’d together to form a bit mask of options for the _i2c_master_transfer::flags field.
Values:
-
enumerator kI2C_TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.
-
enumerator kI2C_TransferNoStartFlag
Don’t send a start condition, address, and sub address
-
enumerator kI2C_TransferRepeatedStartFlag
Send a repeated start condition
-
enumerator kI2C_TransferNoStopFlag
Don’t send a stop condition.
-
enumerator kI2C_TransferDefaultFlag
-
enum _i2c_transfer_states
States for the state machine used by transactional APIs.
Values:
-
enumerator kIdleState
-
enumerator kTransmitSubaddrState
-
enumerator kTransmitDataState
-
enumerator kReceiveDataBeginState
-
enumerator kReceiveDataState
-
enumerator kReceiveLastDataState
-
enumerator kStartState
-
enumerator kStopState
-
enumerator kWaitForCompletionState
-
enumerator kIdleState
-
typedef enum _i2c_direction i2c_direction_t
Direction of master and slave transfers.
-
typedef struct _i2c_master_config i2c_master_config_t
Structure with settings to initialize the I2C master module.
This structure holds configuration settings for the I2C peripheral. To initialize this structure to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
-
typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer typedef.
-
typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.
-
typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle, status_t completionStatus, void *userData)
Master completion callback function pointer type.
This callback is used only for the non-blocking master transfer API. Specify the callback you wish to use in the call to I2C_MasterTransferCreateHandle().
- Param base:
The I2C peripheral base address.
- Param completionStatus:
Either kStatus_Success or an error code describing how the transfer completed.
- Param userData:
Arbitrary pointer-sized value passed from the application.
-
struct _i2c_master_config
- #include <fsl_i2c.h>
Structure with settings to initialize the I2C master module.
This structure holds configuration settings for the I2C peripheral. To initialize this structure to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
Public Members
-
bool enableMaster
Whether to enable master mode.
-
uint32_t baudRate_Bps
Desired baud rate in bits per second.
-
bool enableTimeout
Enable internal timeout function.
-
bool enableMaster
-
struct _i2c_master_transfer
- #include <fsl_i2c.h>
Non-blocking transfer descriptor structure.
This structure is used to pass transaction parameters to the I2C_MasterTransferNonBlocking() API.
Public Members
-
uint32_t flags
Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.
-
uint16_t slaveAddress
The 7-bit slave address.
-
i2c_direction_t direction
Either kI2C_Read or kI2C_Write.
-
uint32_t subaddress
Sub address. Transferred MSB first.
-
size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.
-
void *data
Pointer to data to transfer.
-
size_t dataSize
Number of bytes to transfer.
-
uint32_t flags
-
struct _i2c_master_handle
- #include <fsl_i2c.h>
Driver handle for master non-blocking APIs.
Note
The contents of this structure are private and subject to change.
Public Members
-
uint8_t state
Transfer state machine current state.
-
uint32_t transferCount
Indicates progress of the transfer
-
uint32_t remainingBytes
Remaining byte count in current state.
-
uint8_t *buf
Buffer pointer for current state.
-
i2c_master_transfer_t transfer
Copy of the current transfer info.
-
i2c_master_transfer_callback_t completionCallback
Callback function pointer.
-
void *userData
Application data passed to callback.
-
uint8_t state
I2C Slave Driver
-
void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Provides a default configuration for the I2C slave peripheral.
This function provides the following default configuration for the I2C slave peripheral:
slaveConfig->enableSlave = true; slaveConfig->address0.disable = false; slaveConfig->address0.address = 0u; slaveConfig->address1.disable = true; slaveConfig->address2.disable = true; slaveConfig->address3.disable = true; slaveConfig->busSpeed = kI2C_SlaveStandardMode;
After calling this function, override any settings to customize the configuration, prior to initializing the master driver with I2C_SlaveInit(). Be sure to override at least the address0.address member of the configuration structure with the desired slave address.
- Parameters:
slaveConfig – [out] User provided configuration structure that is set to default values. Refer to i2c_slave_config_t.
-
status_t I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)
Initializes the I2C slave peripheral.
This function enables the peripheral clock and initializes the I2C slave peripheral as described by the user provided configuration.
- Parameters:
base – The I2C peripheral base address.
slaveConfig – User provided peripheral configuration. Use I2C_SlaveGetDefaultConfig() to get a set of defaults that you can override.
srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to calculate CLKDIV value to provide enough data setup time for master when slave stretches the clock.
-
void I2C_SlaveSetAddress(I2C_Type *base, i2c_slave_address_register_t addressRegister, uint8_t address, bool addressDisable)
Configures Slave Address n register.
This function writes new value to Slave Address register.
- Parameters:
base – The I2C peripheral base address.
addressRegister – The module supports multiple address registers. The parameter determines which one shall be changed.
address – The slave address to be stored to the address register for matching.
addressDisable – Disable matching of the specified address register.
-
void I2C_SlaveDeinit(I2C_Type *base)
Deinitializes the I2C slave peripheral.
This function disables the I2C slave peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.
- Parameters:
base – The I2C peripheral base address.
-
static inline void I2C_SlaveEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as slave.
- Parameters:
base – The I2C peripheral base address.
enable – True to enable or flase to disable.
-
static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.
The following status register flags can be cleared:
slave deselected flag
Attempts to clear other flags has no effect.
See also
_i2c_slave_flags.
- Parameters:
base – The I2C peripheral base address.
statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i2c_slave_flags enumerators OR’d together. You may pass the result of a previous call to I2C_SlaveGetStatusFlags().
-
status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transfer on the I2C bus.
The function executes blocking address phase and blocking data phase.
- Parameters:
base – The I2C peripheral base address.
txBuff – The pointer to the data to be transferred.
txSize – The length in bytes of the data to be transferred.
- Returns:
kStatus_Success Data has been sent.
- Returns:
kStatus_Fail Unexpected slave state (master data write while master read from slave is expected).
-
status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I2C bus.
The function executes blocking address phase and blocking data phase.
- Parameters:
base – The I2C peripheral base address.
rxBuff – The pointer to the data to be transferred.
rxSize – The length in bytes of the data to be transferred.
- Returns:
kStatus_Success Data has been received.
- Returns:
kStatus_Fail Unexpected slave state (master data read while master write to slave is expected).
-
void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_callback_t callback, void *userData)
Creates a new handle for the I2C slave non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I2C_SlaveTransferAbort() API shall be called.
- Parameters:
base – The I2C peripheral base address.
handle – [out] Pointer to the I2C slave driver handle.
callback – User provided pointer to the asynchronous callback function.
userData – User provided pointer to the application callback data.
-
status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask)
Starts accepting slave transfers.
Call this API after calling I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start processing transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The callback is always invoked from the interrupt context.
If no slave Tx transfer is busy, a master read from slave request invokes kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to slave request invokes kI2C_SlaveReceiveEvent callback.
The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.
eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.
- Return values:
kStatus_Success – Slave transfers were successfully started.
kStatus_I2C_Busy – Slave transfers have already been started on this handle.
-
status_t I2C_SlaveSetSendBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, const void *txData, size_t txSize, uint32_t eventMask)
Starts accepting master read from slave requests.
The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new slave Tx transfer from within the transfer callback.
The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.
- Parameters:
base – The I2C peripheral base address.
transfer – Pointer to i2c_slave_transfer_t structure.
txData – Pointer to data to send to master.
txSize – Size of txData in bytes.
eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.
- Return values:
kStatus_Success – Slave transfers were successfully started.
kStatus_I2C_Busy – Slave transfers have already been started on this handle.
-
status_t I2C_SlaveSetReceiveBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void *rxData, size_t rxSize, uint32_t eventMask)
Starts accepting master write to slave requests.
The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new slave Rx transfer from within the transfer callback.
The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.
- Parameters:
base – The I2C peripheral base address.
transfer – Pointer to i2c_slave_transfer_t structure.
rxData – Pointer to data to store data from master.
rxSize – Size of rxData in bytes.
eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.
- Return values:
kStatus_Success – Slave transfers were successfully started.
kStatus_I2C_Busy – Slave transfers have already been started on this handle.
-
static inline uint32_t I2C_SlaveGetReceivedAddress(I2C_Type *base, volatile i2c_slave_transfer_t *transfer)
Returns the slave address sent by the I2C master.
This function should only be called from the address match event callback kI2C_SlaveAddressMatchEvent.
- Parameters:
base – The I2C peripheral base address.
transfer – The I2C slave transfer.
- Returns:
The 8-bit address matched by the I2C slave. Bit 0 contains the R/w direction bit, and the 7-bit slave address is in the upper 7 bits.
-
void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.
Note
This API could be called at any time to stop slave for handling the bus events.
- Parameters:
base – The I2C peripheral base address.
handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.
- Return values:
kStatus_Success –
kStatus_I2C_Idle –
-
status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.
- Parameters:
base – I2C base pointer.
handle – pointer to i2c_slave_handle_t structure.
count – Number of bytes transferred so far by the non-blocking transaction.
- Return values:
kStatus_InvalidArgument – count is Invalid.
kStatus_Success – Successfully return the count.
-
void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Reusable routine to handle slave interrupts.
Note
This function does not need to be called unless you are reimplementing the non blocking API’s interrupt handler routines to add special functionality.
- Parameters:
base – The I2C peripheral base address.
i2cHandle – Pointer to i2c_slave_handle_t structure which stores the transfer state.
-
enum _i2c_slave_flags
I2C slave peripheral flags.
Note
These enums are meant to be OR’d together to form a bit mask.
Values:
-
enumerator kI2C_SlavePendingFlag
The I2C module is waiting for software interaction.
-
enumerator kI2C_SlaveNotStretching
Indicates whether the slave is currently stretching clock (0 = yes, 1 = no).
-
enumerator kI2C_SlaveSelected
Indicates whether the slave is selected by an address match.
-
enumerator kI2C_SaveDeselected
Indicates that slave was previously deselected (deselect event took place, w1c).
-
enumerator kI2C_SlavePendingFlag
-
enum _i2c_slave_address_register
I2C slave address register.
Values:
-
enumerator kI2C_SlaveAddressRegister0
Slave Address 0 register.
-
enumerator kI2C_SlaveAddressRegister1
Slave Address 1 register.
-
enumerator kI2C_SlaveAddressRegister2
Slave Address 2 register.
-
enumerator kI2C_SlaveAddressRegister3
Slave Address 3 register.
-
enumerator kI2C_SlaveAddressRegister0
-
enum _i2c_slave_address_qual_mode
I2C slave address match options.
Values:
-
enumerator kI2C_QualModeMask
The SLVQUAL0 field (qualAddress) is used as a logical mask for matching address0.
-
enumerator kI2C_QualModeExtend
The SLVQUAL0 (qualAddress) field is used to extend address 0 matching in a range of addresses.
-
enumerator kI2C_QualModeMask
-
enum _i2c_slave_bus_speed
I2C slave bus speed options.
Values:
-
enumerator kI2C_SlaveStandardMode
-
enumerator kI2C_SlaveFastMode
-
enumerator kI2C_SlaveFastModePlus
-
enumerator kI2C_SlaveHsMode
-
enumerator kI2C_SlaveStandardMode
-
enum _i2c_slave_transfer_event
Set of events sent to the callback for non blocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
Values:
-
enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.
-
enumerator kI2C_SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).
-
enumerator kI2C_SlaveReceiveEvent
Callback is requested to provide a buffer in which to place received data (slave-receiver role).
-
enumerator kI2C_SlaveCompletionEvent
All data in the active transfer have been consumed.
-
enumerator kI2C_SlaveDeselectedEvent
The slave function has become deselected (SLVSEL flag changing from 1 to 0.
-
enumerator kI2C_SlaveAllEvents
Bit mask of all available events.
-
enumerator kI2C_SlaveAddressMatchEvent
-
enum _i2c_slave_fsm
I2C slave software finite state machine states.
Values:
-
enumerator kI2C_SlaveFsmAddressMatch
-
enumerator kI2C_SlaveFsmReceive
-
enumerator kI2C_SlaveFsmTransmit
-
enumerator kI2C_SlaveFsmAddressMatch
-
typedef enum _i2c_slave_address_register i2c_slave_address_register_t
I2C slave address register.
-
typedef struct _i2c_slave_address i2c_slave_address_t
Data structure with 7-bit Slave address and Slave address disable.
-
typedef enum _i2c_slave_address_qual_mode i2c_slave_address_qual_mode_t
I2C slave address match options.
-
typedef enum _i2c_slave_bus_speed i2c_slave_bus_speed_t
I2C slave bus speed options.
-
typedef struct _i2c_slave_config i2c_slave_config_t
Structure with settings to initialize the I2C slave module.
This structure holds configuration settings for the I2C slave peripheral. To initialize this structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
-
typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.
Note
These enumerations are meant to be OR’d together to form a bit mask of events.
-
typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.
-
typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.
-
typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void *userData)
Slave event callback function pointer type.
This callback is used only for the slave non-blocking transfer API. To install a callback, use the I2C_SlaveSetCallback() function after you have created a handle.
- Param base:
Base address for the I2C instance on which the event occurred.
- Param transfer:
Pointer to transfer descriptor containing values passed to and/or from the callback.
- Param userData:
Arbitrary pointer-sized value passed from the application.
-
typedef enum _i2c_slave_fsm i2c_slave_fsm_t
I2C slave software finite state machine states.
-
typedef void (*i2c_isr_t)(I2C_Type *base, void *i2cHandle)
Typedef for interrupt handler.
-
struct _i2c_slave_address
- #include <fsl_i2c.h>
Data structure with 7-bit Slave address and Slave address disable.
Public Members
-
uint8_t address
7-bit Slave address SLVADR.
-
bool addressDisable
Slave address disable SADISABLE.
-
uint8_t address
-
struct _i2c_slave_config
- #include <fsl_i2c.h>
Structure with settings to initialize the I2C slave module.
This structure holds configuration settings for the I2C slave peripheral. To initialize this structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.
The configuration structure can be made constant so it resides in flash.
Public Members
-
i2c_slave_address_t address0
Slave’s 7-bit address and disable.
-
i2c_slave_address_t address1
Alternate slave 7-bit address and disable.
-
i2c_slave_address_t address2
Alternate slave 7-bit address and disable.
-
i2c_slave_address_t address3
Alternate slave 7-bit address and disable.
-
i2c_slave_address_qual_mode_t qualMode
Qualify mode for slave address 0.
-
uint8_t qualAddress
Slave address qualifier for address 0.
-
i2c_slave_bus_speed_t busSpeed
Slave bus speed mode. If the slave function stretches SCL to allow for software response, it must provide sufficient data setup time to the master before releasing the stretched clock. This is accomplished by inserting one clock time of CLKDIV at that point. The busSpeed value is used to configure CLKDIV such that one clock time is greater than the tSU;DAT value noted in the I2C bus specification for the I2C mode that is being used. If the busSpeed mode is unknown at compile time, use the longest data setup time kI2C_SlaveStandardMode (250 ns)
-
bool enableSlave
Enable slave mode.
-
i2c_slave_address_t address0
-
struct _i2c_slave_transfer
- #include <fsl_i2c.h>
I2C slave transfer structure.
Public Members
-
i2c_slave_handle_t *handle
Pointer to handle that contains this transfer.
-
i2c_slave_transfer_event_t event
Reason the callback is being invoked.
-
uint8_t receivedAddress
Matching address send by master. 7-bits plus R/nW bit0
-
uint32_t eventMask
Mask of enabled events.
-
uint8_t *rxData
Transfer buffer for receive data
-
const uint8_t *txData
Transfer buffer for transmit data
-
size_t txSize
Transfer size
-
size_t rxSize
Transfer size
-
size_t transferredCount
Number of bytes transferred during this transfer.
-
status_t completionStatus
Success or error code describing how the transfer completed. Only applies for kI2C_SlaveCompletionEvent.
-
i2c_slave_handle_t *handle
-
struct _i2c_slave_handle
- #include <fsl_i2c.h>
I2C slave handle structure.
Note
The contents of this structure are private and subject to change.
Public Members
-
volatile i2c_slave_transfer_t transfer
I2C slave transfer.
-
volatile bool isBusy
Whether transfer is busy.
-
volatile i2c_slave_fsm_t slaveFsm
slave transfer state machine.
-
i2c_slave_transfer_callback_t callback
Callback function called at transfer event.
-
void *userData
Callback parameter passed to callback.
-
volatile i2c_slave_transfer_t transfer
IAP: In Application Programming Driver
-
status_t IAP_ReadPartID(uint32_t *partID)
Read part identification number.
This function is used to read the part identification number.
- Parameters:
partID – Address to store the part identification number.
- Return values:
kStatus_IAP_Success – Api has been executed successfully.
-
status_t IAP_ReadBootCodeVersion(uint32_t *bootCodeVersion)
Read boot code version number.
This function is used to read the boot code version number.
note Boot code version is two 32-bit words. Word 0 is the major version, word 1 is the minor version.
- Parameters:
bootCodeVersion – Address to store the boot code version.
- Return values:
kStatus_IAP_Success – Api has been executed successfully.
-
void IAP_ReinvokeISP(uint8_t ispType, uint32_t *status)
Reinvoke ISP.
This function is used to invoke the boot loader in ISP mode. It maps boot vectors and configures the peripherals for ISP.
note The error response will be returned when IAP is disabled or an invalid ISP type selection appears. The call won’t return unless an error occurs, so there can be no status code.
- Parameters:
ispType – ISP type selection.
status – store the possible status.
- Return values:
kStatus_IAP_ReinvokeISPConfig – reinvoke configuration error.
-
status_t IAP_ReadUniqueID(uint32_t *uniqueID)
Read unique identification.
This function is used to read the unique id.
- Parameters:
uniqueID – store the uniqueID.
- Return values:
kStatus_IAP_Success – Api has been executed successfully.
-
status_t IAP_PrepareSectorForWrite(uint32_t startSector, uint32_t endSector)
Prepare sector for write operation.
This function prepares sector(s) for write/erase operation. This function must be called before calling the IAP_CopyRamToFlash() or IAP_EraseSector() or IAP_ErasePage() function. The end sector number must be greater than or equal to the start sector number.
- Parameters:
startSector – Start sector number.
endSector – End sector number.
- Return values:
kStatus_IAP_Success – Api has been executed successfully.
kStatus_IAP_NoPower – Flash memory block is powered down.
kStatus_IAP_NoClock – Flash memory block or controller is not clocked.
kStatus_IAP_InvalidSector – Sector number is invalid or end sector number is greater than start sector number.
kStatus_IAP_Busy – Flash programming hardware interface is busy.
-
status_t IAP_CopyRamToFlash(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes, uint32_t systemCoreClock)
Copy RAM to flash.
This function programs the flash memory. Corresponding sectors must be prepared via IAP_PrepareSectorForWrite before calling this function.
- Parameters:
dstAddr – Destination flash address where data bytes are to be written, the address should be multiples of FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES boundary.
srcAddr – Source ram address from where data bytes are to be read.
numOfBytes – Number of bytes to be written, it should be multiples of FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES, and ranges from FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES to FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES.
systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function. When the flash controller has a fixed reference clock, this parameter is bypassed.
- Return values:
kStatus_IAP_Success – Api has been executed successfully.
kStatus_IAP_NoPower – Flash memory block is powered down.
kStatus_IAP_NoClock – Flash memory block or controller is not clocked.
kStatus_IAP_SrcAddrError – Source address is not on word boundary.
kStatus_IAP_DstAddrError – Destination address is not on a correct boundary.
kStatus_IAP_SrcAddrNotMapped – Source address is not mapped in the memory map.
kStatus_IAP_DstAddrNotMapped – Destination address is not mapped in the memory map.
kStatus_IAP_CountError – Byte count is not multiple of 4 or is not a permitted value.
kStatus_IAP_NotPrepared – Command to prepare sector for write operation has not been executed.
kStatus_IAP_Busy – Flash programming hardware interface is busy.
-
status_t IAP_EraseSector(uint32_t startSector, uint32_t endSector, uint32_t systemCoreClock)
Erase sector.
This function erases sector(s). The end sector number must be greater than or equal to the start sector number.
- Parameters:
startSector – Start sector number.
endSector – End sector number.
systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function. When the flash controller has a fixed reference clock, this parameter is bypassed.
- Return values:
kStatus_IAP_Success – Api has been executed successfully.
kStatus_IAP_NoPower – Flash memory block is powered down.
kStatus_IAP_NoClock – Flash memory block or controller is not clocked.
kStatus_IAP_InvalidSector – Sector number is invalid or end sector number is greater than start sector number.
kStatus_IAP_NotPrepared – Command to prepare sector for write operation has not been executed.
kStatus_IAP_Busy – Flash programming hardware interface is busy.
-
status_t IAP_ErasePage(uint32_t startPage, uint32_t endPage, uint32_t systemCoreClock)
Erase page.
This function erases page(s). The end page number must be greater than or equal to the start page number.
- Parameters:
startPage – Start page number.
endPage – End page number.
systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function. When the flash controller has a fixed reference clock, this parameter is bypassed.
- Return values:
kStatus_IAP_Success – Api has been executed successfully.
kStatus_IAP_NoPower – Flash memory block is powered down.
kStatus_IAP_NoClock – Flash memory block or controller is not clocked.
kStatus_IAP_InvalidSector – Page number is invalid or end page number is greater than start page number.
kStatus_IAP_NotPrepared – Command to prepare sector for write operation has not been executed.
kStatus_IAP_Busy – Flash programming hardware interface is busy.
-
status_t IAP_BlankCheckSector(uint32_t startSector, uint32_t endSector)
Blank check sector(s)
Blank check single or multiples sectors of flash memory. The end sector number must be greater than or equal to the start sector number. It can be used to verify the sector erasure after IAP_EraseSector call.
- Parameters:
startSector – Start sector number.
endSector – End sector number.
- Return values:
kStatus_IAP_Success – One or more sectors are in erased state.
kStatus_IAP_NoPower – Flash memory block is powered down.
kStatus_IAP_NoClock – Flash memory block or controller is not clocked.
kStatus_IAP_SectorNotblank – One or more sectors are not blank.
-
status_t IAP_Compare(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes)
Compare memory contents of flash with ram.
This function compares the contents of flash and ram. It can be used to verify the flash memory contents after IAP_CopyRamToFlash call.
- Parameters:
dstAddr – Destination flash address.
srcAddr – Source ram address.
numOfBytes – Number of bytes to be compared.
- Return values:
kStatus_IAP_Success – Contents of flash and ram match.
kStatus_IAP_NoPower – Flash memory block is powered down.
kStatus_IAP_NoClock – Flash memory block or controller is not clocked.
kStatus_IAP_AddrError – Address is not on word boundary.
kStatus_IAP_AddrNotMapped – Address is not mapped in the memory map.
kStatus_IAP_CountError – Byte count is not multiple of 4 or is not a permitted value.
kStatus_IAP_CompareError – Destination and source memory contents do not match.
-
FSL_IAP_DRIVER_VERSION
iap status codes.
Values:
-
enumerator kStatus_IAP_Success
Api is executed successfully
-
enumerator kStatus_IAP_InvalidCommand
Invalid command
-
enumerator kStatus_IAP_SrcAddrError
Source address is not on word boundary
-
enumerator kStatus_IAP_DstAddrError
Destination address is not on a correct boundary
-
enumerator kStatus_IAP_SrcAddrNotMapped
Source address is not mapped in the memory map
-
enumerator kStatus_IAP_DstAddrNotMapped
Destination address is not mapped in the memory map
-
enumerator kStatus_IAP_CountError
Byte count is not multiple of 4 or is not a permitted value
-
enumerator kStatus_IAP_InvalidSector
Sector/page number is invalid or end sector/page number is greater than start sector/page number
-
enumerator kStatus_IAP_SectorNotblank
One or more sectors are not blank
-
enumerator kStatus_IAP_NotPrepared
Command to prepare sector for write operation has not been executed
-
enumerator kStatus_IAP_CompareError
Destination and source memory contents do not match
-
enumerator kStatus_IAP_Busy
Flash programming hardware interface is busy
-
enumerator kStatus_IAP_ParamError
Insufficient number of parameters or invalid parameter
-
enumerator kStatus_IAP_AddrError
Address is not on word boundary
-
enumerator kStatus_IAP_AddrNotMapped
Address is not mapped in the memory map
-
enumerator kStatus_IAP_NoPower
Flash memory block is powered down
-
enumerator kStatus_IAP_NoClock
Flash memory block or controller is not clocked
-
enumerator kStatus_IAP_ReinvokeISPConfig
Reinvoke configuration error
-
enumerator kStatus_IAP_Success
-
enum _iap_commands
iap command codes.
Values:
-
enumerator kIapCmd_IAP_ReadFactorySettings
Read the factory settings
-
enumerator kIapCmd_IAP_PrepareSectorforWrite
Prepare Sector for write
-
enumerator kIapCmd_IAP_CopyRamToFlash
Copy RAM to flash
-
enumerator kIapCmd_IAP_EraseSector
Erase Sector
-
enumerator kIapCmd_IAP_BlankCheckSector
Blank check sector
-
enumerator kIapCmd_IAP_ReadPartId
Read part id
-
enumerator kIapCmd_IAP_Read_BootromVersion
Read bootrom version
-
enumerator kIapCmd_IAP_Compare
Compare
-
enumerator kIapCmd_IAP_ReinvokeISP
Reinvoke ISP
-
enumerator kIapCmd_IAP_ReadUid
Read Uid
-
enumerator kIapCmd_IAP_ErasePage
Erase Page
-
enumerator kIapCmd_IAP_ReadSignature
Read Signature
-
enumerator kIapCmd_IAP_ExtendedReadSignature
Extended Read Signature
-
enumerator kIapCmd_IAP_ReadEEPROMPage
Read EEPROM page
-
enumerator kIapCmd_IAP_WriteEEPROMPage
Write EEPROM page
-
enumerator kIapCmd_IAP_ReadFactorySettings
-
enum _flash_access_time
Flash memory access time.
Values:
-
enumerator kFlash_IAP_OneSystemClockTime
-
enumerator kFlash_IAP_TwoSystemClockTime
1 system clock flash access time
-
enumerator kFlash_IAP_ThreeSystemClockTime
2 system clock flash access time
-
enumerator kFlash_IAP_OneSystemClockTime
Common Driver
-
FSL_COMMON_DRIVER_VERSION
common driver version.
-
DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.
-
DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.
-
DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.
-
DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.
-
DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.
-
DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.
-
DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.
-
DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.
-
DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.
-
DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.
-
DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.
-
MIN(a, b)
Computes the minimum of a and b.
-
MAX(a, b)
Computes the maximum of a and b.
-
UINT16_MAX
Max value of uint16_t type.
-
UINT32_MAX
Max value of uint32_t type.
-
SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.
-
SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.
-
SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.
-
SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits specifiled by setBits.
-
SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value same as expected then update newValue to address and return true , else return false .
-
SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.
-
USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value
-
COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond
-
MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value
-
COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond
-
SDK_ISR_EXIT_BARRIER
-
SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment
Macro to define a variable with L2 cache line size alignment
Macro to change a value to a given size aligned value
-
AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.
-
AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.
-
AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.
-
AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.
-
enum _status_groups
Status group numbers.
Values:
-
enumerator kStatusGroup_Generic
Group number for generic status codes.
-
enumerator kStatusGroup_FLASH
Group number for FLASH status codes.
-
enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.
-
enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.
-
enumerator kStatusGroup_DSPI
Group number for DSPI status codes.
-
enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.
-
enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.
-
enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.
-
enumerator kStatusGroup_UART
Group number for UART status codes.
-
enumerator kStatusGroup_I2C
Group number for UART status codes.
-
enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.
-
enumerator kStatusGroup_LPUART
Group number for LPUART status codes.
-
enumerator kStatusGroup_SPI
Group number for SPI status code.
-
enumerator kStatusGroup_XRDC
Group number for XRDC status code.
-
enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.
-
enumerator kStatusGroup_SDHC
Group number for SDHC status code
-
enumerator kStatusGroup_SDMMC
Group number for SDMMC status code
-
enumerator kStatusGroup_SAI
Group number for SAI status code
-
enumerator kStatusGroup_MCG
Group number for MCG status codes.
-
enumerator kStatusGroup_SCG
Group number for SCG status codes.
-
enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.
-
enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes
-
enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes
-
enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes
-
enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes
-
enumerator kStatusGroup_I2S
Group number for I2S status codes
-
enumerator kStatusGroup_IUART
Group number for IUART status codes
-
enumerator kStatusGroup_CSI
Group number for CSI status codes
-
enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes
-
enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.
-
enumerator kStatusGroup_POWER
Group number for POWER status codes.
-
enumerator kStatusGroup_ENET
Group number for ENET status codes.
-
enumerator kStatusGroup_PHY
Group number for PHY status codes.
-
enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.
-
enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.
-
enumerator kStatusGroup_LMEM
Group number for LMEM status codes.
-
enumerator kStatusGroup_QSPI
Group number for QSPI status codes.
-
enumerator kStatusGroup_DMA
Group number for DMA status codes.
-
enumerator kStatusGroup_EDMA
Group number for EDMA status codes.
-
enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.
-
enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.
-
enumerator kStatusGroup_LTC
Group number for LTC status codes.
-
enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.
-
enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.
-
enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.
-
enumerator kStatusGroup_DMIC
Group number for DMIC status codes.
-
enumerator kStatusGroup_SDIF
Group number for SDIF status codes.
-
enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.
-
enumerator kStatusGroup_OTP
Group number for OTP status codes.
-
enumerator kStatusGroup_MCAN
Group number for MCAN status codes.
-
enumerator kStatusGroup_CAAM
Group number for CAAM status codes.
-
enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.
-
enumerator kStatusGroup_USDHC
Group number for USDHC status codes.
-
enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.
-
enumerator kStatusGroup_DCP
Group number for DCP status codes.
-
enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.
-
enumerator kStatusGroup_ESAI
Group number for ESAI status codes.
-
enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.
-
enumerator kStatusGroup_MMDC
Group number for MMDC status codes.
-
enumerator kStatusGroup_PDM
Group number for MIC status codes.
-
enumerator kStatusGroup_SDMA
Group number for SDMA status codes.
-
enumerator kStatusGroup_ICS
Group number for ICS status codes.
-
enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.
-
enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.
-
enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes
-
enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.
-
enumerator kStatusGroup_I3C
Group number for I3C status codes
-
enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.
-
enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.
-
enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.
-
enumerator kStatusGroup_SEMC
Group number for SEMC status codes.
-
enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.
-
enumerator kStatusGroup_IAP
Group number for IAP status codes
-
enumerator kStatusGroup_SFA
Group number for SFA status codes
-
enumerator kStatusGroup_SPC
Group number for SPC status codes.
-
enumerator kStatusGroup_PUF
Group number for PUF status codes.
-
enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes
-
enumerator kStatusGroup_VBAT
Group number for VBAT status codes
-
enumerator kStatusGroup_XSPI
Group number for XSPI status codes
-
enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes
-
enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes
-
enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.
-
enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.
-
enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.
-
enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.
-
enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.
-
enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.
-
enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.
-
enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.
-
enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.
-
enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.
-
enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.
-
enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.
-
enumerator kStatusGroup_LED
Group number for LED status codes.
-
enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.
-
enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.
-
enumerator kStatusGroup_SHELL
Group number for SHELL status codes.
-
enumerator kStatusGroup_MEM_MANAGER
Group number for MEM MANAGER status codes.
-
enumerator kStatusGroup_LIST
Group number for List status codes.
-
enumerator kStatusGroup_OSA
Group number for OSA status codes.
-
enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.
-
enumerator kStatusGroup_MSG
Group number for messaging status codes.
-
enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.
-
enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.
-
enumerator kStatusGroup_CODEC
Group number for codec status codes.
-
enumerator kStatusGroup_ASRC
Group number for codec status ASRC.
-
enumerator kStatusGroup_OTFAD
Group number for codec status codes.
-
enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.
-
enumerator kStatusGroup_MECC
Group number for MECC status codes.
-
enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.
-
enumerator kStatusGroup_LOG
Group number for LOG status codes.
-
enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.
-
enumerator kStatusGroup_QSCI
Group number for QSCI status codes.
-
enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.
-
enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.
-
enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.
-
enumerator kStatusGroup_IPED
Group number for IPED status codes.
-
enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.
-
enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.
-
enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.
-
enumerator kStatusGroup_CLIF
Group number for CLIF status codes.
-
enumerator kStatusGroup_BMA
Group number for BMA status codes.
-
enumerator kStatusGroup_NETC
Group number for NETC status codes.
-
enumerator kStatusGroup_ELE
Group number for ELE status codes.
-
enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.
-
enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.
-
enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.
-
enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.
-
enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.
-
enumerator kStatusGroup_Generic
Generic status return codes.
Values:
-
enumerator kStatus_Success
Generic status for Success.
-
enumerator kStatus_Fail
Generic status for Fail.
-
enumerator kStatus_ReadOnly
Generic status for read only failure.
-
enumerator kStatus_OutOfRange
Generic status for out of range access.
-
enumerator kStatus_InvalidArgument
Generic status for invalid argument check.
-
enumerator kStatus_Timeout
Generic status for timeout.
-
enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.
-
enumerator kStatus_Busy
Generic status for module is busy.
-
enumerator kStatus_NoData
Generic status for no data is found for the operation.
-
enumerator kStatus_Success
-
typedef int32_t status_t
Type used for all status and error return values.
-
void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.
This is provided to support the dynamically allocated memory used in cache-able region.
- Parameters:
size – The length required to malloc.
alignbytes – The alignment size.
- Return values:
The – allocated memory.
-
void SDK_Free(void *ptr)
Free memory.
- Parameters:
ptr – The memory to be release.
-
void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different run-time environments make the time not precise, if precise delay count was needed, please implement a new delay function with hardware timer.
- Parameters:
delayTime_us – Delay time in unit of microsecond.
coreClock_Hz – Core clock frequency with Hz.
-
static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.
Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ number.
- Return values:
kStatus_Success – Interrupt enabled successfully
kStatus_Fail – Failed to enable the interrupt
-
static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.
Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ number.
- Return values:
kStatus_Success – Interrupt disabled successfully
kStatus_Fail – Failed to disable the interrupt
-
static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ to Enable.
priNum – Priority number set to interrupt controller register.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The IRQ to set.
priNum – Priority number set to interrupt controller register.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.
Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.
This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
- Parameters:
interrupt – The flag which IRQ to clear.
- Return values:
kStatus_Success – Interrupt priority set successfully
kStatus_Fail – Failed to set the interrupt priority.
-
static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.
Disable the global interrupt and return the current primask register. User is required to provided the primask register for the EnableGlobalIRQ().
- Returns:
Current primask value.
-
static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.
Set the primask register with the provided primask value but not just enable the primask. The idea is for the convenience of integration of RTOS. some RTOS get its own management mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlobalIRQ() in pair.
- Parameters:
primask – value of primask register to be restored. The primask value is supposed to be provided by the DisableGlobalIRQ().
-
void EnableDeepSleepIRQ(IRQn_Type interrupt)
Enable specific interrupt for wake-up from deep-sleep mode.
Enable the interrupt for wake-up from deep sleep mode. Some interrupts are typically used in sleep mode only and will not occur during deep-sleep mode because relevant clocks are stopped. However, it is possible to enable those clocks (significantly increasing power consumption in the reduced power mode), making these wake-ups possible.
Note
This function also enables the interrupt in the NVIC (EnableIRQ() is called internaly).
- Parameters:
interrupt – The IRQ number.
-
void DisableDeepSleepIRQ(IRQn_Type interrupt)
Disable specific interrupt for wake-up from deep-sleep mode.
Disable the interrupt for wake-up from deep sleep mode. Some interrupts are typically used in sleep mode only and will not occur during deep-sleep mode because relevant clocks are stopped. However, it is possible to enable those clocks (significantly increasing power consumption in the reduced power mode), making these wake-ups possible.
Note
This function also disables the interrupt in the NVIC (DisableIRQ() is called internaly).
- Parameters:
interrupt – The IRQ number.
-
static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t newValue)
-
static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
-
FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.
-
MAKE_STATUS(group, code)
Construct a status code value from a group and code number.
-
MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.
The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit platforms(such as DSC).
| Unused || Major Version || Minor Version || Bug Fix | 31 25 24 17 16 9 8 0
-
ARRAY_SIZE(x)
Computes the number of elements in an array.
-
UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value
-
UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value
-
SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be added at the end of each case section which misses “break;”statement.
-
MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.
-
MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.
LPC_ACOMP: Analog comparator Driver
-
void ACOMP_Init(ACOMP_Type *base, const acomp_config_t *config)
Initialize the ACOMP module.
- Parameters:
base – ACOMP peripheral base address.
config – Pointer to “acomp_config_t” structure.
-
void ACOMP_Deinit(ACOMP_Type *base)
De-initialize the ACOMP module.
- Parameters:
base – ACOMP peripheral base address.
-
void ACOMP_GetDefaultConfig(acomp_config_t *config)
Gets an available pre-defined settings for the ACOMP’s configuration.
This function initializes the converter configuration structure with available settings. The default values are:
In default configuration, the ACOMP’s output would be used directly and switch as the voltages cross.config->enableSyncToBusClk = false; config->hysteresisSelection = kACOMP_hysteresisNoneSelection;
- Parameters:
config – Pointer to the configuration structure.
-
void ACOMP_EnableInterrupts(ACOMP_Type *base, acomp_interrupt_enable_t enable)
Enable ACOMP interrupts.
- Parameters:
base – ACOMP peripheral base address.
enable – Enable/Disable interrupt feature.
-
static inline bool ACOMP_GetInterruptsStatusFlags(ACOMP_Type *base)
Get interrupts status flags.
- Parameters:
base – ACOMP peripheral base address.
- Returns:
Reflect the state ACOMP edge-detect status, true or false.
-
static inline void ACOMP_ClearInterruptsStatusFlags(ACOMP_Type *base)
Clear the ACOMP interrupts status flags.
- Parameters:
base – ACOMP peripheral base address.
-
static inline bool ACOMP_GetOutputStatusFlags(ACOMP_Type *base)
Get ACOMP output status flags.
- Parameters:
base – ACOMP peripheral base address.
- Returns:
Reflect the state of the comparator output, true or false.
-
static inline void ACOMP_SetInputChannel(ACOMP_Type *base, uint32_t postiveInputChannel, uint32_t negativeInputChannel)
Set the ACOMP postive and negative input channel.
- Parameters:
base – ACOMP peripheral base address.
postiveInputChannel – The index of postive input channel.
negativeInputChannel – The index of negative input channel.
-
void ACOMP_SetLadderConfig(ACOMP_Type *base, const acomp_ladder_config_t *config)
Set the voltage ladder configuration.
- Parameters:
base – ACOMP peripheral base address.
config – The structure for voltage ladder. If the config is NULL, voltage ladder would be diasbled, otherwise the voltage ladder would be configured and enabled.
-
FSL_ACOMP_DRIVER_VERSION
ACOMP driver version 2.1.0.
-
enum _acomp_ladder_reference_voltage
The ACOMP ladder reference voltage.
Values:
-
enumerator kACOMP_LadderRefVoltagePinVDD
Supply from pin VDD.
-
enumerator kACOMP_LadderRefVoltagePinVDDCMP
Supply from pin VDDCMP.
-
enumerator kACOMP_LadderRefVoltagePinVDD
-
enum _acomp_interrupt_enable
The ACOMP interrupts enable.
Values:
-
enumerator kACOMP_InterruptsFallingEdgeEnable
Enable the falling edge interrupts.
-
enumerator kACOMP_InterruptsRisingEdgeEnable
Enable the rising edge interrupts.
-
enumerator kACOMP_InterruptsBothEdgesEnable
Enable the both edges interrupts.
-
enumerator kACOMP_InterruptsDisable
Disable the interrupts.
-
enumerator kACOMP_InterruptsFallingEdgeEnable
-
enum _acomp_hysteresis_selection
The ACOMP hysteresis selection.
Values:
-
enumerator kACOMP_HysteresisNoneSelection
None (the output will switch as the voltages cross).
-
enumerator kACOMP_Hysteresis5MVSelection
5mV.
-
enumerator kACOMP_Hysteresis10MVSelection
10mV.
-
enumerator kACOMP_Hysteresis20MVSelection
20mV.
-
enumerator kACOMP_HysteresisNoneSelection
-
typedef enum _acomp_ladder_reference_voltage acomp_ladder_reference_voltage_t
The ACOMP ladder reference voltage.
-
typedef enum _acomp_interrupt_enable acomp_interrupt_enable_t
The ACOMP interrupts enable.
-
typedef enum _acomp_hysteresis_selection acomp_hysteresis_selection_t
The ACOMP hysteresis selection.
-
typedef struct _acomp_config acomp_config_t
The structure for ACOMP basic configuration.
-
typedef struct _acomp_ladder_config acomp_ladder_config_t
The structure for ACOMP voltage ladder.
-
struct _acomp_config
- #include <fsl_acomp.h>
The structure for ACOMP basic configuration.
Public Members
-
bool enableSyncToBusClk
If true, Comparator output is synchronized to the bus clock for output to other modules. If false, Comparator output is used directly.
-
acomp_hysteresis_selection_t hysteresisSelection
Controls the hysteresis of the comparator.
-
bool enableSyncToBusClk
-
struct _acomp_ladder_config
- #include <fsl_acomp.h>
The structure for ACOMP voltage ladder.
Public Members
-
uint8_t ladderValue
Voltage ladder value. 00000 = Vss, 00001 = 1*Vref/31, …, 11111 = Vref.
-
acomp_ladder_reference_voltage_t referenceVoltage
Selects the reference voltage(Vref) for the voltage ladder.
-
uint8_t ladderValue
ADC: 12-bit SAR Analog-to-Digital Converter Driver
-
void ADC_Init(ADC_Type *base, const adc_config_t *config)
Initialize the ADC module.
- Parameters:
base – ADC peripheral base address.
config – Pointer to configuration structure, see to adc_config_t.
-
void ADC_Deinit(ADC_Type *base)
Deinitialize the ADC module.
- Parameters:
base – ADC peripheral base address.
-
void ADC_GetDefaultConfig(adc_config_t *config)
Gets an available pre-defined settings for initial configuration.
This function initializes the initial configuration structure with an available settings. The default values are:
config->clockMode = kADC_ClockSynchronousMode; config->clockDividerNumber = 0U; config->resolution = kADC_Resolution12bit; config->enableBypassCalibration = false; config->sampleTimeNumber = 0U; config->extendSampleTimeNumber = kADC_ExtendSampleTimeNotUsed;
- Parameters:
config – Pointer to configuration structure.
-
static inline void ADC_EnableConvSeqA(ADC_Type *base, bool enable)
Enable the conversion sequence A.
In order to avoid spuriously triggering the sequence, the trigger to conversion sequence should be ready before the sequence is ready. when the sequence is disabled, the trigger would be ignored. Also, it is suggested to disable the sequence during changing the sequence’s setting.
- Parameters:
base – ADC peripheral base address.
enable – Switcher to enable the feature or not.
-
void ADC_SetConvSeqAConfig(ADC_Type *base, const adc_conv_seq_config_t *config)
Configure the conversion sequence A.
- Parameters:
base – ADC peripheral base address.
config – Pointer to configuration structure, see to adc_conv_seq_config_t.
-
static inline void ADC_DoSoftwareTriggerConvSeqA(ADC_Type *base)
Do trigger the sequence’s conversion by software.
- Parameters:
base – ADC peripheral base address.
-
static inline void ADC_EnableConvSeqABurstMode(ADC_Type *base, bool enable)
Enable the burst conversion of sequence A.
Enable the burst mode would cause the conversion sequence to be cntinuously cycled through. Other triggers would be ignored while this mode is enabled. Repeated conversions could be halted by disabling this mode. And the sequence currently in process will be completed before cnversions are terminated. Note that a new sequence could begin just before the burst mode is disabled.
- Parameters:
base – ADC peripheral base address.
enable – Switcher to enable this feature.
-
static inline void ADC_SetConvSeqAHighPriority(ADC_Type *base)
Set the high priority for conversion sequence A.
- Parameters:
base – ADC peripheral bass address.
-
static inline void ADC_EnableConvSeqB(ADC_Type *base, bool enable)
Enable the conversion sequence B.
In order to avoid spuriously triggering the sequence, the trigger to conversion sequence should be ready before the sequence is ready. when the sequence is disabled, the trigger would be ignored. Also, it is suggested to disable the sequence during changing the sequence’s setting.
- Parameters:
base – ADC peripheral base address.
enable – Switcher to enable the feature or not.
-
void ADC_SetConvSeqBConfig(ADC_Type *base, const adc_conv_seq_config_t *config)
Configure the conversion sequence B.
- Parameters:
base – ADC peripheral base address.
config – Pointer to configuration structure, see to adc_conv_seq_config_t.
-
static inline void ADC_DoSoftwareTriggerConvSeqB(ADC_Type *base)
Do trigger the sequence’s conversion by software.
- Parameters:
base – ADC peripheral base address.
-
static inline void ADC_EnableConvSeqBBurstMode(ADC_Type *base, bool enable)
Enable the burst conversion of sequence B.
Enable the burst mode would cause the conversion sequence to be continuously cycled through. Other triggers would be ignored while this mode is enabled. Repeated conversions could be halted by disabling this mode. And the sequence currently in process will be completed before cnversions are terminated. Note that a new sequence could begin just before the burst mode is disabled.
- Parameters:
base – ADC peripheral base address.
enable – Switcher to enable this feature.
-
static inline void ADC_SetConvSeqBHighPriority(ADC_Type *base)
Set the high priority for conversion sequence B.
- Parameters:
base – ADC peripheral bass address.
-
bool ADC_GetConvSeqAGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
Get the global ADC conversion infomation of sequence A.
- Parameters:
base – ADC peripheral base address.
info – Pointer to information structure, see to adc_result_info_t;
- Return values:
true – The conversion result is ready.
false – The conversion result is not ready yet.
-
bool ADC_GetConvSeqBGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
Get the global ADC conversion infomation of sequence B.
- Parameters:
base – ADC peripheral base address.
info – Pointer to information structure, see to adc_result_info_t;
- Return values:
true – The conversion result is ready.
false – The conversion result is not ready yet.
-
bool ADC_GetChannelConversionResult(ADC_Type *base, uint32_t channel, adc_result_info_t *info)
Get the channel’s ADC conversion completed under each conversion sequence.
- Parameters:
base – ADC peripheral base address.
channel – The indicated channel number.
info – Pointer to information structure, see to adc_result_info_t;
- Return values:
true – The conversion result is ready.
false – The conversion result is not ready yet.
-
static inline void ADC_SetThresholdPair0(ADC_Type *base, uint32_t lowValue, uint32_t highValue)
Set the threshhold pair 0 with low and high value.
- Parameters:
base – ADC peripheral base address.
lowValue – LOW threshold value.
highValue – HIGH threshold value.
-
static inline void ADC_SetThresholdPair1(ADC_Type *base, uint32_t lowValue, uint32_t highValue)
Set the threshhold pair 1 with low and high value.
- Parameters:
base – ADC peripheral base address.
lowValue – LOW threshold value. The available value is with 12-bit.
highValue – HIGH threshold value. The available value is with 12-bit.
-
static inline void ADC_SetChannelWithThresholdPair0(ADC_Type *base, uint32_t channelMask)
Set given channels to apply the threshold pare 0.
- Parameters:
base – ADC peripheral base address.
channelMask – Indicated channels’ mask.
-
static inline void ADC_SetChannelWithThresholdPair1(ADC_Type *base, uint32_t channelMask)
Set given channels to apply the threshold pare 1.
- Parameters:
base – ADC peripheral base address.
channelMask – Indicated channels’ mask.
-
static inline void ADC_EnableInterrupts(ADC_Type *base, uint32_t mask)
Enable interrupts for conversion sequences.
- Parameters:
base – ADC peripheral base address.
mask – Mask of interrupt mask value for global block except each channal, see to _adc_interrupt_enable.
-
static inline void ADC_DisableInterrupts(ADC_Type *base, uint32_t mask)
Disable interrupts for conversion sequence.
- Parameters:
base – ADC peripheral base address.
mask – Mask of interrupt mask value for global block except each channel, see to _adc_interrupt_enable.
-
static inline void ADC_EnableThresholdCompareInterrupt(ADC_Type *base, uint32_t channel, adc_threshold_interrupt_mode_t mode)
Enable the interrupt of threshold compare event for each channel.
- Parameters:
base – ADC peripheral base address.
channel – Channel number.
mode – Interrupt mode for threshold compare event, see to adc_threshold_interrupt_mode_t.
-
static inline uint32_t ADC_GetStatusFlags(ADC_Type *base)
Get status flags of ADC module.
- Parameters:
base – ADC peripheral base address.
- Returns:
Mask of status flags of module, see to _adc_status_flags.
-
static inline void ADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clear status flags of ADC module.
- Parameters:
base – ADC peripheral base address.
mask – Mask of status flags of module, see to _adc_status_flags.
-
FSL_ADC_DRIVER_VERSION
ADC driver version 2.6.0.
-
enum _adc_status_flags
Flags.
Values:
-
enumerator kADC_ThresholdCompareFlagOnChn0
Threshold comparison event on Channel 0.
-
enumerator kADC_ThresholdCompareFlagOnChn1
Threshold comparison event on Channel 1.
-
enumerator kADC_ThresholdCompareFlagOnChn2
Threshold comparison event on Channel 2.
-
enumerator kADC_ThresholdCompareFlagOnChn3
Threshold comparison event on Channel 3.
-
enumerator kADC_ThresholdCompareFlagOnChn4
Threshold comparison event on Channel 4.
-
enumerator kADC_ThresholdCompareFlagOnChn5
Threshold comparison event on Channel 5.
-
enumerator kADC_ThresholdCompareFlagOnChn6
Threshold comparison event on Channel 6.
-
enumerator kADC_ThresholdCompareFlagOnChn7
Threshold comparison event on Channel 7.
-
enumerator kADC_ThresholdCompareFlagOnChn8
Threshold comparison event on Channel 8.
-
enumerator kADC_ThresholdCompareFlagOnChn9
Threshold comparison event on Channel 9.
-
enumerator kADC_ThresholdCompareFlagOnChn10
Threshold comparison event on Channel 10.
-
enumerator kADC_ThresholdCompareFlagOnChn11
Threshold comparison event on Channel 11.
-
enumerator kADC_OverrunFlagForChn0
Mirror the OVERRUN status flag from the result register for ADC channel 0.
-
enumerator kADC_OverrunFlagForChn1
Mirror the OVERRUN status flag from the result register for ADC channel 1.
-
enumerator kADC_OverrunFlagForChn2
Mirror the OVERRUN status flag from the result register for ADC channel 2.
-
enumerator kADC_OverrunFlagForChn3
Mirror the OVERRUN status flag from the result register for ADC channel 3.
-
enumerator kADC_OverrunFlagForChn4
Mirror the OVERRUN status flag from the result register for ADC channel 4.
-
enumerator kADC_OverrunFlagForChn5
Mirror the OVERRUN status flag from the result register for ADC channel 5.
-
enumerator kADC_OverrunFlagForChn6
Mirror the OVERRUN status flag from the result register for ADC channel 6.
-
enumerator kADC_OverrunFlagForChn7
Mirror the OVERRUN status flag from the result register for ADC channel 7.
-
enumerator kADC_OverrunFlagForChn8
Mirror the OVERRUN status flag from the result register for ADC channel 8.
-
enumerator kADC_OverrunFlagForChn9
Mirror the OVERRUN status flag from the result register for ADC channel 9.
-
enumerator kADC_OverrunFlagForChn10
Mirror the OVERRUN status flag from the result register for ADC channel 10.
-
enumerator kADC_OverrunFlagForChn11
Mirror the OVERRUN status flag from the result register for ADC channel 11.
-
enumerator kADC_GlobalOverrunFlagForSeqA
Mirror the glabal OVERRUN status flag for conversion sequence A.
-
enumerator kADC_GlobalOverrunFlagForSeqB
Mirror the global OVERRUN status flag for conversion sequence B.
-
enumerator kADC_ConvSeqAInterruptFlag
Sequence A interrupt/DMA trigger.
-
enumerator kADC_ConvSeqBInterruptFlag
Sequence B interrupt/DMA trigger.
-
enumerator kADC_ThresholdCompareInterruptFlag
Threshold comparision interrupt flag.
-
enumerator kADC_OverrunInterruptFlag
Overrun interrupt flag.
-
enumerator kADC_ThresholdCompareFlagOnChn0
-
enum _adc_interrupt_enable
Interrupts.
Note
Not all the interrupt options are listed here
Values:
-
enumerator kADC_ConvSeqAInterruptEnable
Enable interrupt upon completion of each individual conversion in sequence A, or entire sequence.
-
enumerator kADC_ConvSeqBInterruptEnable
Enable interrupt upon completion of each individual conversion in sequence B, or entire sequence.
-
enumerator kADC_OverrunInterruptEnable
Enable the detection of an overrun condition on any of the channel data registers will cause an overrun interrupt/DMA trigger.
-
enumerator kADC_ConvSeqAInterruptEnable
-
enum _adc_clock_mode
Define selection of clock mode.
Values:
-
enumerator kADC_ClockSynchronousMode
The ADC clock would be derived from the system clock based on “clockDividerNumber”.
-
enumerator kADC_ClockAsynchronousMode
The ADC clock would be based on the SYSCON block’s divider.
-
enumerator kADC_ClockSynchronousMode
-
enum _adc_resolution
Define selection of resolution.
Values:
-
enumerator kADC_Resolution6bit
6-bit resolution.
-
enumerator kADC_Resolution8bit
8-bit resolution.
-
enumerator kADC_Resolution10bit
10-bit resolution.
-
enumerator kADC_Resolution12bit
12-bit resolution.
-
enumerator kADC_Resolution6bit
-
enum _adc_voltage_range
Definfe range of the analog supply voltage VDDA.
Values:
-
enumerator kADC_HighVoltageRange
-
enumerator kADC_LowVoltageRange
-
enumerator kADC_HighVoltageRange
-
enum _adc_trigger_polarity
Define selection of polarity of selected input trigger for conversion sequence.
Values:
-
enumerator kADC_TriggerPolarityNegativeEdge
A negative edge launches the conversion sequence on the trigger(s).
-
enumerator kADC_TriggerPolarityPositiveEdge
A positive edge launches the conversion sequence on the trigger(s).
-
enumerator kADC_TriggerPolarityNegativeEdge
-
enum _adc_priority
Define selection of conversion sequence’s priority.
Values:
-
enumerator kADC_PriorityLow
This sequence would be preempted when another sequence is started.
-
enumerator kADC_PriorityHigh
This sequence would preempt other sequence even when it is started.
-
enumerator kADC_PriorityLow
-
enum _adc_seq_interrupt_mode
Define selection of conversion sequence’s interrupt.
Values:
-
enumerator kADC_InterruptForEachConversion
The sequence interrupt/DMA trigger will be set at the end of each individual ADC conversion inside this conversion sequence.
-
enumerator kADC_InterruptForEachSequence
The sequence interrupt/DMA trigger will be set when the entire set of this sequence conversions completes.
-
enumerator kADC_InterruptForEachConversion
-
enum _adc_threshold_compare_status
Define status of threshold compare result.
Values:
-
enumerator kADC_ThresholdCompareInRange
LOW threshold <= conversion value <= HIGH threshold.
-
enumerator kADC_ThresholdCompareBelowRange
conversion value < LOW threshold.
-
enumerator kADC_ThresholdCompareAboveRange
conversion value > HIGH threshold.
-
enumerator kADC_ThresholdCompareInRange
-
enum _adc_threshold_crossing_status
Define status of threshold crossing detection result.
Values:
-
enumerator kADC_ThresholdCrossingNoDetected
No threshold Crossing detected.
-
enumerator kADC_ThresholdCrossingDownward
Downward Threshold Crossing detected.
-
enumerator kADC_ThresholdCrossingUpward
Upward Threshold Crossing Detected.
-
enumerator kADC_ThresholdCrossingNoDetected
-
enum _adc_threshold_interrupt_mode
Define interrupt mode for threshold compare event.
Values:
-
enumerator kADC_ThresholdInterruptDisabled
Threshold comparison interrupt is disabled.
-
enumerator kADC_ThresholdInterruptOnOutside
Threshold comparison interrupt is enabled on outside threshold.
-
enumerator kADC_ThresholdInterruptOnCrossing
Threshold comparison interrupt is enabled on crossing threshold.
-
enumerator kADC_ThresholdInterruptDisabled
-
enum _adc_inforesultshift
Define the info result mode of different resolution.
Values:
-
enumerator kADC_Resolution12bitInfoResultShift
Info result shift of Resolution12bit.
-
enumerator kADC_Resolution10bitInfoResultShift
Info result shift of Resolution10bit.
-
enumerator kADC_Resolution8bitInfoResultShift
Info result shift of Resolution8bit.
-
enumerator kADC_Resolution6bitInfoResultShift
Info result shift of Resolution6bit.
-
enumerator kADC_Resolution12bitInfoResultShift
-
enum _adc_tempsensor_common_mode
Define common modes for Temerature sensor.
Values:
-
enumerator kADC_HighNegativeOffsetAdded
Temperature sensor common mode: high negative offset added.
-
enumerator kADC_IntermediateNegativeOffsetAdded
Temperature sensor common mode: intermediate negative offset added.
-
enumerator kADC_NoOffsetAdded
Temperature sensor common mode: no offset added.
-
enumerator kADC_LowPositiveOffsetAdded
Temperature sensor common mode: low positive offset added.
-
enumerator kADC_HighNegativeOffsetAdded
-
enum _adc_second_control
Define source impedance modes for GPADC control.
Values:
-
enumerator kADC_Impedance621Ohm
Extand ADC sampling time according to source impedance 1: 0.621 kOhm.
-
enumerator kADC_Impedance55kOhm
Extand ADC sampling time according to source impedance 20 (default): 55 kOhm.
-
enumerator kADC_Impedance87kOhm
Extand ADC sampling time according to source impedance 31: 87 kOhm.
-
enumerator kADC_NormalFunctionalMode
TEST mode: Normal functional mode.
-
enumerator kADC_MultiplexeTestMode
TEST mode: Multiplexer test mode.
-
enumerator kADC_ADCInUnityGainMode
TEST mode: ADC in unity gain mode.
-
enumerator kADC_Impedance621Ohm
-
typedef enum _adc_clock_mode adc_clock_mode_t
Define selection of clock mode.
-
typedef enum _adc_resolution adc_resolution_t
Define selection of resolution.
-
typedef enum _adc_voltage_range adc_vdda_range_t
Definfe range of the analog supply voltage VDDA.
-
typedef enum _adc_trigger_polarity adc_trigger_polarity_t
Define selection of polarity of selected input trigger for conversion sequence.
-
typedef enum _adc_priority adc_priority_t
Define selection of conversion sequence’s priority.
-
typedef enum _adc_seq_interrupt_mode adc_seq_interrupt_mode_t
Define selection of conversion sequence’s interrupt.
-
typedef enum _adc_threshold_compare_status adc_threshold_compare_status_t
Define status of threshold compare result.
-
typedef enum _adc_threshold_crossing_status adc_threshold_crossing_status_t
Define status of threshold crossing detection result.
-
typedef enum _adc_threshold_interrupt_mode adc_threshold_interrupt_mode_t
Define interrupt mode for threshold compare event.
-
typedef enum _adc_inforesultshift adc_inforesult_t
Define the info result mode of different resolution.
-
typedef enum _adc_tempsensor_common_mode adc_tempsensor_common_mode_t
Define common modes for Temerature sensor.
-
typedef enum _adc_second_control adc_second_control_t
Define source impedance modes for GPADC control.
-
typedef struct _adc_config adc_config_t
Define structure for configuring the block.
-
typedef struct _adc_conv_seq_config adc_conv_seq_config_t
Define structure for configuring conversion sequence.
-
typedef struct _adc_result_info adc_result_info_t
Define structure of keeping conversion result information.
-
struct _adc_config
- #include <fsl_adc.h>
Define structure for configuring the block.
Public Members
-
adc_clock_mode_t clockMode
Select the clock mode for ADC converter.
-
uint32_t clockDividerNumber
This field is only available when using kADC_ClockSynchronousMode for “clockMode” field. The divider would be plused by 1 based on the value in this field. The available range is in 8 bits.
-
adc_resolution_t resolution
Select the conversion bits.
-
bool enableBypassCalibration
By default, a calibration cycle must be performed each time the chip is powered-up. Re-calibration may be warranted periodically - especially if operating conditions have changed. To enable this option would avoid the need to calibrate if offset error is not a concern in the application.
-
uint32_t sampleTimeNumber
By default, with value as “0U”, the sample period would be 2.5 ADC clocks. Then, to plus the “sampleTimeNumber” value here. The available value range is in 3 bits.
-
bool enableLowPowerMode
If disable low-power mode, ADC remains activated even when no conversions are requested. If enable low-power mode, The ADC is automatically powered-down when no conversions are taking place.
-
adc_vdda_range_t voltageRange
Configure the ADC for the appropriate operating range of the analog supply voltage VDDA. Failure to set the area correctly causes the ADC to return incorrect conversion results.
-
adc_clock_mode_t clockMode
-
struct _adc_conv_seq_config
- #include <fsl_adc.h>
Define structure for configuring conversion sequence.
Public Members
-
uint32_t channelMask
Selects which one or more of the ADC channels will be sampled and converted when this sequence is launched. The masked channels would be involved in current conversion sequence, beginning with the lowest-order. The available range is in 12-bit.
-
uint32_t triggerMask
Selects which one or more of the available hardware trigger sources will cause this conversion sequence to be initiated. The available range is 6-bit.
-
adc_trigger_polarity_t triggerPolarity
Select the trigger to launch conversion sequence.
-
bool enableSyncBypass
To enable this feature allows the hardware trigger input to bypass synchronization flip-flop stages and therefore shorten the time between the trigger input signal and the start of a conversion.
-
bool enableSingleStep
When enabling this feature, a trigger will launch a single conversion on the next channel in the sequence instead of the default response of launching an entire sequence of conversions.
-
adc_seq_interrupt_mode_t interruptMode
Select the interrpt/DMA trigger mode.
-
uint32_t channelMask
-
struct _adc_result_info
- #include <fsl_adc.h>
Define structure of keeping conversion result information.
Public Members
-
uint32_t result
Keep the conversion data value.
-
adc_threshold_compare_status_t thresholdCompareStatus
Keep the threshold compare status.
-
adc_threshold_crossing_status_t thresholdCorssingStatus
Keep the threshold crossing status.
-
uint32_t channelNumber
Keep the channel number for this conversion.
-
bool overrunFlag
Keep the status whether the conversion is overrun or not.
-
uint32_t result
GPIO: General Purpose I/O
-
void GPIO_PortInit(GPIO_Type *base, uint32_t port)
Initializes the GPIO peripheral.
This function ungates the GPIO clock.
- Parameters:
base – GPIO peripheral base pointer.
port – GPIO port number.
-
void GPIO_PinInit(GPIO_Type *base, uint32_t port, uint32_t pin, const gpio_pin_config_t *config)
Initializes a GPIO pin used by the board.
To initialize the GPIO, define a pin configuration, either input or output, in the user file. Then, call the GPIO_PinInit() function.
This is an example to define an input pin or output pin configuration:
Define a digital input pin configuration, gpio_pin_config_t config = { kGPIO_DigitalInput, 0, } Define a digital output pin configuration, gpio_pin_config_t config = { kGPIO_DigitalOutput, 0, }
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
pin – GPIO pin number
config – GPIO pin configuration pointer
-
static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t port, uint32_t pin, uint8_t output)
Sets the output level of the one GPIO pin to the logic 1 or 0.
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
pin – GPIO pin number
output – GPIO pin output logic level.
0: corresponding pin output low-logic level.
1: corresponding pin output high-logic level.
-
static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t port, uint32_t pin)
Reads the current input value of the GPIO PIN.
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
pin – GPIO pin number
- Return values:
GPIO – port input value
0: corresponding pin input low-logic level.
1: corresponding pin input high-logic level.
-
FSL_GPIO_DRIVER_VERSION
LPC GPIO driver version.
-
enum _gpio_pin_direction
LPC GPIO direction definition.
Values:
-
enumerator kGPIO_DigitalInput
Set current pin as digital input
-
enumerator kGPIO_DigitalOutput
Set current pin as digital output
-
enumerator kGPIO_DigitalInput
-
typedef enum _gpio_pin_direction gpio_pin_direction_t
LPC GPIO direction definition.
-
typedef struct _gpio_pin_config gpio_pin_config_t
The GPIO pin configuration structure.
Every pin can only be configured as either output pin or input pin at a time. If configured as a input pin, then leave the outputConfig unused.
-
static inline void GPIO_PortSet(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
mask – GPIO pin number macro
-
static inline void GPIO_PortClear(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
mask – GPIO pin number macro
-
static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t port, uint32_t mask)
Reverses current output logic of the multiple GPIO pins.
- Parameters:
base – GPIO peripheral base pointer(Typically GPIO)
port – GPIO port number
mask – GPIO pin number macro
-
struct _gpio_pin_config
- #include <fsl_gpio.h>
The GPIO pin configuration structure.
Every pin can only be configured as either output pin or input pin at a time. If configured as a input pin, then leave the outputConfig unused.
Public Members
-
gpio_pin_direction_t pinDirection
GPIO direction, input or output
-
uint8_t outputLogic
Set default output logic, no use in input
-
gpio_pin_direction_t pinDirection
IOCON: I/O pin configuration
-
LPC_IOCON_DRIVER_VERSION
IOCON driver version 2.0.2.
-
typedef struct _iocon_group iocon_group_t
Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.
- __STATIC_INLINE void IOCON_PinMuxSet (IOCON_Type *base, uint8_t ionumber, uint32_t modefunc)
IOCON function and mode selection definitions.
Sets I/O Control pin mux
Note
See the User Manual for specific modes and functions supported by the various pins.
- Parameters:
base – : The base of IOCON peripheral on the chip
ionumber – : GPIO number to mux
modefunc – : OR’ed values of type IOCON_*
- Returns:
Nothing
- __STATIC_INLINE void IOCON_SetPinMuxing (IOCON_Type *base, const iocon_group_t *pinArray, uint32_t arrayLength)
Set all I/O Control pin muxing.
- Parameters:
base – : The base of IOCON peripheral on the chip
pinArray – : Pointer to array of pin mux selections
arrayLength – : Number of entries in pinArray
- Returns:
Nothing
-
FSL_COMPONENT_ID
-
struct _iocon_group
- #include <fsl_iocon.h>
Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.
MRT: Multi-Rate Timer
-
void MRT_Init(MRT_Type *base, const mrt_config_t *config)
Ungates the MRT clock and configures the peripheral for basic operation.
Note
This API should be called at the beginning of the application using the MRT driver.
- Parameters:
base – Multi-Rate timer peripheral base address
config – Pointer to user’s MRT config structure. If MRT has MULTITASK bit field in MODCFG reigster, param config is useless.
-
void MRT_Deinit(MRT_Type *base)
Gate the MRT clock.
- Parameters:
base – Multi-Rate timer peripheral base address
-
static inline void MRT_GetDefaultConfig(mrt_config_t *config)
Fill in the MRT config struct with the default settings.
The default values are:
config->enableMultiTask = false;
- Parameters:
config – Pointer to user’s MRT config structure.
-
static inline void MRT_SetupChannelMode(MRT_Type *base, mrt_chnl_t channel, const mrt_timer_mode_t mode)
Sets up an MRT channel mode.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Channel that is being configured.
mode – Timer mode to use for the channel.
-
static inline void MRT_EnableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Enables the MRT interrupt.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
mask – The interrupts to enable. This is a logical OR of members of the enumeration mrt_interrupt_enable_t
-
static inline void MRT_DisableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Disables the selected MRT interrupt.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
mask – The interrupts to disable. This is a logical OR of members of the enumeration mrt_interrupt_enable_t
-
static inline uint32_t MRT_GetEnabledInterrupts(MRT_Type *base, mrt_chnl_t channel)
Gets the enabled MRT interrupts.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
- Returns:
The enabled interrupts. This is the logical OR of members of the enumeration mrt_interrupt_enable_t
-
static inline uint32_t MRT_GetStatusFlags(MRT_Type *base, mrt_chnl_t channel)
Gets the MRT status flags.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
- Returns:
The status flags. This is the logical OR of members of the enumeration mrt_status_flags_t
-
static inline void MRT_ClearStatusFlags(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Clears the MRT status flags.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
mask – The status flags to clear. This is a logical OR of members of the enumeration mrt_status_flags_t
-
void MRT_UpdateTimerPeriod(MRT_Type *base, mrt_chnl_t channel, uint32_t count, bool immediateLoad)
Used to update the timer period in units of count.
The new value will be immediately loaded or will be loaded at the end of the current time interval. For one-shot interrupt mode the new value will be immediately loaded.
Note
User can call the utility macros provided in fsl_common.h to convert to ticks
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
count – Timer period in units of ticks
immediateLoad – true: Load the new value immediately into the TIMER register; false: Load the new value at the end of current timer interval
-
static inline uint32_t MRT_GetCurrentTimerCount(MRT_Type *base, mrt_chnl_t channel)
Reads the current timer counting value.
This function returns the real-time timer counting value, in a range from 0 to a timer period.
Note
User can call the utility macros provided in fsl_common.h to convert ticks to usec or msec
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number
- Returns:
Current timer counting value in ticks
-
static inline void MRT_StartTimer(MRT_Type *base, mrt_chnl_t channel, uint32_t count)
Starts the timer counting.
After calling this function, timers load period value, counts down to 0 and depending on the timer mode it will either load the respective start value again or stop.
Note
User can call the utility macros provided in fsl_common.h to convert to ticks
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number.
count – Timer period in units of ticks. Count can contain the LOAD bit, which control the force load feature.
-
static inline void MRT_StopTimer(MRT_Type *base, mrt_chnl_t channel)
Stops the timer counting.
This function stops the timer from counting.
- Parameters:
base – Multi-Rate timer peripheral base address
channel – Timer channel number.
-
static inline uint32_t MRT_GetIdleChannel(MRT_Type *base)
Find the available channel.
This function returns the lowest available channel number.
- Parameters:
base – Multi-Rate timer peripheral base address
-
FSL_MRT_DRIVER_VERSION
-
enum _mrt_chnl
List of MRT channels.
Values:
-
enumerator kMRT_Channel_0
MRT channel number 0
-
enumerator kMRT_Channel_1
MRT channel number 1
-
enumerator kMRT_Channel_2
MRT channel number 2
-
enumerator kMRT_Channel_3
MRT channel number 3
-
enumerator kMRT_Channel_0
-
enum _mrt_timer_mode
List of MRT timer modes.
Values:
-
enumerator kMRT_RepeatMode
Repeat Interrupt mode
-
enumerator kMRT_OneShotMode
One-shot Interrupt mode
-
enumerator kMRT_OneShotStallMode
One-shot stall mode
-
enumerator kMRT_RepeatMode
-
enum _mrt_interrupt_enable
List of MRT interrupts.
Values:
-
enumerator kMRT_TimerInterruptEnable
Timer interrupt enable
-
enumerator kMRT_TimerInterruptEnable
-
enum _mrt_status_flags
List of MRT status flags.
Values:
-
enumerator kMRT_TimerInterruptFlag
Timer interrupt flag
-
enumerator kMRT_TimerRunFlag
Indicates state of the timer
-
enumerator kMRT_TimerInterruptFlag
-
typedef enum _mrt_chnl mrt_chnl_t
List of MRT channels.
-
typedef enum _mrt_timer_mode mrt_timer_mode_t
List of MRT timer modes.
-
typedef enum _mrt_interrupt_enable mrt_interrupt_enable_t
List of MRT interrupts.
-
typedef enum _mrt_status_flags mrt_status_flags_t
List of MRT status flags.
-
typedef struct _mrt_config mrt_config_t
MRT configuration structure.
This structure holds the configuration settings for the MRT peripheral. To initialize this structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a pointer to your config structure instance.
The config struct can be made const so it resides in flash
-
struct _mrt_config
- #include <fsl_mrt.h>
MRT configuration structure.
This structure holds the configuration settings for the MRT peripheral. To initialize this structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a pointer to your config structure instance.
The config struct can be made const so it resides in flash
Public Members
-
bool enableMultiTask
true: Timers run in multi-task mode; false: Timers run in hardware status mode
-
bool enableMultiTask
PINT: Pin Interrupt and Pattern Match Driver
-
FSL_PINT_DRIVER_VERSION
-
enum _pint_pin_enable
PINT Pin Interrupt enable type.
Values:
-
enumerator kPINT_PinIntEnableNone
Do not generate Pin Interrupt
-
enumerator kPINT_PinIntEnableRiseEdge
Generate Pin Interrupt on rising edge
-
enumerator kPINT_PinIntEnableFallEdge
Generate Pin Interrupt on falling edge
-
enumerator kPINT_PinIntEnableBothEdges
Generate Pin Interrupt on both edges
-
enumerator kPINT_PinIntEnableLowLevel
Generate Pin Interrupt on low level
-
enumerator kPINT_PinIntEnableHighLevel
Generate Pin Interrupt on high level
-
enumerator kPINT_PinIntEnableNone
-
enum _pint_int
PINT Pin Interrupt type.
Values:
-
enumerator kPINT_PinInt0
Pin Interrupt 0
-
enumerator kPINT_PinInt0
-
enum _pint_pmatch_input_src
PINT Pattern Match bit slice input source type.
Values:
-
enumerator kPINT_PatternMatchInp0Src
Input source 0
-
enumerator kPINT_PatternMatchInp1Src
Input source 1
-
enumerator kPINT_PatternMatchInp2Src
Input source 2
-
enumerator kPINT_PatternMatchInp3Src
Input source 3
-
enumerator kPINT_PatternMatchInp4Src
Input source 4
-
enumerator kPINT_PatternMatchInp5Src
Input source 5
-
enumerator kPINT_PatternMatchInp6Src
Input source 6
-
enumerator kPINT_PatternMatchInp7Src
Input source 7
-
enumerator kPINT_SecPatternMatchInp0Src
Input source 0
-
enumerator kPINT_SecPatternMatchInp1Src
Input source 1
-
enumerator kPINT_PatternMatchInp0Src
-
enum _pint_pmatch_bslice
PINT Pattern Match bit slice type.
Values:
-
enumerator kPINT_PatternMatchBSlice0
Bit slice 0
-
enumerator kPINT_PatternMatchBSlice0
-
enum _pint_pmatch_bslice_cfg
PINT Pattern Match configuration type.
Values:
-
enumerator kPINT_PatternMatchAlways
Always Contributes to product term match
-
enumerator kPINT_PatternMatchStickyRise
Sticky Rising edge
-
enumerator kPINT_PatternMatchStickyFall
Sticky Falling edge
-
enumerator kPINT_PatternMatchStickyBothEdges
Sticky Rising or Falling edge
-
enumerator kPINT_PatternMatchHigh
High level
-
enumerator kPINT_PatternMatchLow
Low level
-
enumerator kPINT_PatternMatchNever
Never contributes to product term match
-
enumerator kPINT_PatternMatchBothEdges
Either rising or falling edge
-
enumerator kPINT_PatternMatchAlways
-
typedef enum _pint_pin_enable pint_pin_enable_t
PINT Pin Interrupt enable type.
-
typedef enum _pint_int pint_pin_int_t
PINT Pin Interrupt type.
-
typedef enum _pint_pmatch_input_src pint_pmatch_input_src_t
PINT Pattern Match bit slice input source type.
-
typedef enum _pint_pmatch_bslice pint_pmatch_bslice_t
PINT Pattern Match bit slice type.
-
typedef enum _pint_pmatch_bslice_cfg pint_pmatch_bslice_cfg_t
PINT Pattern Match configuration type.
-
typedef void (*pint_cb_t)(pint_pin_int_t pintr, uint32_t pmatch_status)
PINT Callback function.
-
typedef struct _pint_pmatch_cfg pint_pmatch_cfg_t
-
void PINT_Init(PINT_Type *base)
Initialize PINT peripheral.
This function initializes the PINT peripheral and enables the clock.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
void PINT_PinInterruptConfig(PINT_Type *base, pint_pin_int_t intr, pint_pin_enable_t enable, pint_cb_t callback)
Configure PINT peripheral pin interrupt.
This function configures a given pin interrupt.
- Parameters:
base – Base address of the PINT peripheral.
intr – Pin interrupt.
enable – Selects detection logic.
callback – Callback.
- Return values:
None. –
-
void PINT_PinInterruptGetConfig(PINT_Type *base, pint_pin_int_t pintr, pint_pin_enable_t *enable, pint_cb_t *callback)
Get PINT peripheral pin interrupt configuration.
This function returns the configuration of a given pin interrupt.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
enable – Pointer to store the detection logic.
callback – Callback.
- Return values:
None. –
-
void PINT_PinInterruptClrStatus(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt status only when the pin was triggered by edge-sensitive.
This function clears the selected pin interrupt status.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetStatus(PINT_Type *base, pint_pin_int_t pintr)
Get Selected pin interrupt status.
This function returns the selected pin interrupt status.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
status – = 0 No pin interrupt request. = 1 Selected Pin interrupt request active.
-
void PINT_PinInterruptClrStatusAll(PINT_Type *base)
Clear all pin interrupts status only when pins were triggered by edge-sensitive.
This function clears the status of all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetStatusAll(PINT_Type *base)
Get all pin interrupts status.
This function returns the status of all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
status – Each bit position indicates the status of corresponding pin interrupt. = 0 No pin interrupt request. = 1 Pin interrupt request active.
-
static inline void PINT_PinInterruptClrFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt fall flag.
This function clears the selected pin interrupt fall flag.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt fall flag.
This function returns the selected pin interrupt fall flag.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
flag – = 0 Falling edge has not been detected. = 1 Falling edge has been detected.
-
static inline void PINT_PinInterruptClrFallFlagAll(PINT_Type *base)
Clear all pin interrupt fall flags.
This function clears the fall flag for all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetFallFlagAll(PINT_Type *base)
Get all pin interrupt fall flags.
This function returns the fall flag of all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
flags – Each bit position indicates the falling edge detection of the corresponding pin interrupt. 0 Falling edge has not been detected. = 1 Falling edge has been detected.
-
static inline void PINT_PinInterruptClrRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt rise flag.
This function clears the selected pin interrupt rise flag.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt rise flag.
This function returns the selected pin interrupt rise flag.
- Parameters:
base – Base address of the PINT peripheral.
pintr – Pin interrupt.
- Return values:
flag – = 0 Rising edge has not been detected. = 1 Rising edge has been detected.
-
static inline void PINT_PinInterruptClrRiseFlagAll(PINT_Type *base)
Clear all pin interrupt rise flags.
This function clears the rise flag for all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline uint32_t PINT_PinInterruptGetRiseFlagAll(PINT_Type *base)
Get all pin interrupt rise flags.
This function returns the rise flag of all pin interrupts.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
flags – Each bit position indicates the rising edge detection of the corresponding pin interrupt. 0 Rising edge has not been detected. = 1 Rising edge has been detected.
-
void PINT_PatternMatchConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t *cfg)
Configure PINT pattern match.
This function configures a given pattern match bit slice.
- Parameters:
base – Base address of the PINT peripheral.
bslice – Pattern match bit slice number.
cfg – Pointer to bit slice configuration.
- Return values:
None. –
-
void PINT_PatternMatchGetConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t *cfg)
Get PINT pattern match configuration.
This function returns the configuration of a given pattern match bit slice.
- Parameters:
base – Base address of the PINT peripheral.
bslice – Pattern match bit slice number.
cfg – Pointer to bit slice configuration.
- Return values:
None. –
-
static inline uint32_t PINT_PatternMatchGetStatus(PINT_Type *base, pint_pmatch_bslice_t bslice)
Get pattern match bit slice status.
This function returns the status of selected bit slice.
- Parameters:
base – Base address of the PINT peripheral.
bslice – Pattern match bit slice number.
- Return values:
status – = 0 Match has not been detected. = 1 Match has been detected.
-
static inline uint32_t PINT_PatternMatchGetStatusAll(PINT_Type *base)
Get status of all pattern match bit slices.
This function returns the status of all bit slices.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
status – Each bit position indicates the match status of corresponding bit slice. = 0 Match has not been detected. = 1 Match has been detected.
-
uint32_t PINT_PatternMatchResetDetectLogic(PINT_Type *base)
Reset pattern match detection logic.
This function resets the pattern match detection logic if any of the product term is matching.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
pmstatus – Each bit position indicates the match status of corresponding bit slice. = 0 Match was detected. = 1 Match was not detected.
-
static inline void PINT_PatternMatchEnable(PINT_Type *base)
Enable pattern match function.
This function enables the pattern match function.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline void PINT_PatternMatchDisable(PINT_Type *base)
Disable pattern match function.
This function disables the pattern match function.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline void PINT_PatternMatchEnableRXEV(PINT_Type *base)
Enable RXEV output.
This function enables the pattern match RXEV output.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
static inline void PINT_PatternMatchDisableRXEV(PINT_Type *base)
Disable RXEV output.
This function disables the pattern match RXEV output.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
void PINT_EnableCallback(PINT_Type *base)
Enable callback.
This function enables the interrupt for the selected PINT peripheral. Although the pin(s) are monitored as soon as they are enabled, the callback function is not enabled until this function is called.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
void PINT_DisableCallback(PINT_Type *base)
Disable callback.
This function disables the interrupt for the selected PINT peripheral. Although the pins are still being monitored but the callback function is not called.
- Parameters:
base – Base address of the peripheral.
- Return values:
None. –
-
void PINT_Deinit(PINT_Type *base)
Deinitialize PINT peripheral.
This function disables the PINT clock.
- Parameters:
base – Base address of the PINT peripheral.
- Return values:
None. –
-
void PINT_EnableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
enable callback by pin index.
This function enables callback by pin index instead of enabling all pins.
- Parameters:
base – Base address of the peripheral.
pintIdx – pin index.
- Return values:
None. –
-
void PINT_DisableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
disable callback by pin index.
This function disables callback by pin index instead of disabling all pins.
- Parameters:
base – Base address of the peripheral.
pintIdx – pin index.
- Return values:
None. –
-
PININT_BITSLICE_SRC_START
-
PININT_BITSLICE_SRC_MASK
-
PININT_BITSLICE_CFG_START
-
PININT_BITSLICE_CFG_MASK
-
PININT_BITSLICE_ENDP_MASK
-
PINT_PIN_INT_LEVEL
-
PINT_PIN_INT_EDGE
-
PINT_PIN_INT_FALL_OR_HIGH_LEVEL
-
PINT_PIN_INT_RISE
-
PINT_PIN_RISE_EDGE
-
PINT_PIN_FALL_EDGE
-
PINT_PIN_BOTH_EDGE
-
PINT_PIN_LOW_LEVEL
-
PINT_PIN_HIGH_LEVEL
-
struct _pint_pmatch_cfg
- #include <fsl_pint.h>
Power Driver
-
enum pd_bits
Values:
-
enumerator kPDRUNCFG_PD_FRO_OUT
-
enumerator kPDRUNCFG_PD_FRO
-
enumerator kPDRUNCFG_PD_FLASH
-
enumerator kPDRUNCFG_PD_BOD
-
enumerator kPDRUNCFG_PD_ADC0
-
enumerator kPDRUNCFG_PD_LPOSC
-
enumerator kPDRUNCFG_PD_ACMP
-
enumerator kPDRUNCFG_ForceUnsigned
-
enumerator kPDRUNCFG_PD_FRO_OUT
-
enum _power_wakeup
Deep sleep and power down mode wake up configurations.
Values:
-
enumerator kPDAWAKECFG_Wakeup_FRO_OUT
-
enumerator kPDAWAKECFG_Wakeup_FRO
-
enumerator kPDAWAKECFG_Wakeup_FLASH
-
enumerator kPDAWAKECFG_Wakeup_BOD
-
enumerator kPDAWAKECFG_Wakeup_ADC
-
enumerator kPDAWAKECFG_Wakeup_LPOSC
-
enumerator kPDAWAKECFG_Wakeup_ACMP
-
enumerator kPDAWAKECFG_Wakeup_FRO_OUT
-
enum _power_dpd_wakeup_pin
Deep power down mode wake up pins.
Values:
-
enumerator kPmu_Dpd_En_Pio0_15
-
enumerator kPmu_Dpd_En_Pio0_9
-
enumerator kPmu_Dpd_En_Pio0_8
-
enumerator kPmu_Dpd_En_Pio0_17
-
enumerator kPmu_Dpd_En_Pio0_13
-
enumerator kPmu_Dpd_En_Pio0_4
-
enumerator kPmu_Dpd_En_Pio0_11
-
enumerator kPmu_Dpd_En_Pio0_10
-
enumerator kPmu_Dpd_En_Pio0_15
-
enum _power_deep_sleep_active
Deep sleep/power down mode active part.
Values:
-
enumerator kPDSLEEPCFG_DeepSleepBODActive
-
enumerator kPDSLEEPCFG_DeepSleepLPOscActive
-
enumerator kPDSLEEPCFG_DeepSleepBODActive
-
enum _power_gen_reg
pmu general purpose register index
Values:
-
enumerator kPmu_GenReg0
general purpose register0
-
enumerator kPmu_GenReg1
general purpose register1
-
enumerator kPmu_GenReg2
general purpose register2
-
enumerator kPmu_GenReg3
general purpose register3
-
enumerator kPmu_GenReg4
general purpose reguster4
-
enumerator kPmu_GenReg0
-
enum _power_mode_config
Values:
-
enumerator kPmu_Sleep
-
enumerator kPmu_Deep_Sleep
-
enumerator kPmu_PowerDown
-
enumerator kPmu_Deep_PowerDown
-
enumerator kPmu_Sleep
-
enum _power_bod_reset_level
BOD reset level, if VDD below reset level value, the reset will be asserted.
Values:
-
enumerator kBod_ResetLevel0
BOD Reset Level0: 1.51V.
-
enumerator kBod_ResetLevel0
-
enum _power_bod_interrupt_level
BOD interrupt level, if VDD below interrupt level value, the BOD interrupt will be asserted.
Values:
-
enumerator kBod_InterruptLevelReserved
BOD interrupt level reserved.
-
enumerator kBod_InterruptLevel1
BOD interrupt level1: 2.24V.
-
enumerator kBod_InterruptLevel2
BOD interrupt level2: 2.52V.
-
enumerator kBod_InterruptLevel3
BOD interrupt level3: 2.81V.
-
enumerator kBod_InterruptLevelReserved
-
typedef enum pd_bits pd_bit_t
-
typedef enum _power_gen_reg power_gen_reg_t
pmu general purpose register index
-
typedef enum _power_mode_config power_mode_cfg_t
-
typedef enum _power_bod_reset_level power_bod_reset_level_t
BOD reset level, if VDD below reset level value, the reset will be asserted.
-
typedef enum _power_bod_interrupt_level power_bod_interrupt_level_t
BOD interrupt level, if VDD below interrupt level value, the BOD interrupt will be asserted.
-
FSL_POWER_DRIVER_VERSION
power driver version 2.1.0.
-
PMUC_PCON_RESERVED_MASK
PMU PCON reserved mask, used to clear reserved field which should not write 1.
-
POWER_EnbaleLPO
-
static inline void POWER_EnablePD(pd_bit_t en)
API to enable PDRUNCFG bit in the Syscon. Note that enabling the bit powers down the peripheral.
- Parameters:
en – peripheral for which to enable the PDRUNCFG bit
- Returns:
none
-
static inline void POWER_DisablePD(pd_bit_t en)
API to disable PDRUNCFG bit in the Syscon. Note that disabling the bit powers up the peripheral.
- Parameters:
en – peripheral for which to disable the PDRUNCFG bit
- Returns:
none
-
static inline void POWER_EnableLPO(bool enable)
API to enable LPO.
- Parameters:
enable – true to enable LPO, false to disable LPO.
-
static inline void POWER_WakeUpConfig(uint32_t mask, bool powerDown)
API to config wakeup configurations for deep sleep mode and power down mode.
- Parameters:
mask – wake up configurations for deep sleep mode and power down mode, reference _power_wakeup.
powerDown – true is power down the mask part, false is powered part.
-
static inline void POWER_DeepSleepConfig(uint32_t mask, bool powerDown)
API to config active part for deep sleep mode and power down mode.
- Parameters:
mask – active part configurations for deep sleep mode and power down mode, reference _power_deep_sleep_active.
powerDown – true is power down the mask part, false is powered part.
-
static inline void POWER_EnableDeepSleep(void)
API to enable deep sleep bit in the ARM Core.
- Returns:
none
-
static inline void POWER_DisableDeepSleep(void)
API to disable deep sleep bit in the ARM Core.
- Returns:
none
-
void POWER_EnterSleep(void)
API to enter sleep power mode.
- Returns:
none
-
void POWER_EnterDeepSleep(uint32_t activePart)
API to enter deep sleep power mode.
- Parameters:
activePart – should be a single or combine value of _power_deep_sleep_active .
- Returns:
none
-
void POWER_EnterPowerDown(uint32_t activePart)
API to enter power down mode.
- Parameters:
activePart – should be a single or combine value of _power_deep_sleep_active .
- Returns:
none
-
void POWER_EnterDeepPowerDownMode(void)
API to enter deep power down mode.
- Returns:
none
-
static inline uint32_t POWER_GetSleepModeFlag(void)
API to get sleep mode flag.
- Returns:
sleep mode flag: 0 is active mode, 1 is sleep mode entered.
-
static inline void POWER_ClrSleepModeFlag(void)
API to clear sleep mode flag.
-
static inline uint32_t POWER_GetDeepPowerDownModeFlag(void)
API to get deep power down mode flag.
- Returns:
sleep mode flag: 0 not deep power down, 1 is deep power down mode entered.
-
static inline void POWER_ClrDeepPowerDownModeFlag(void)
API to clear deep power down mode flag.
-
static inline void POWER_ClrWakeupPinFlag(void)
API to clear wake up pin status flag.
-
static inline void POWER_DeepPowerDownWakeupSourceSelect(uint32_t wakeup_pin)
-
static inline void POWER_EnableNonDpd(bool enable)
API to enable non deep power down mode.
- Parameters:
enable – true is enable non deep power down, otherwise disable.
-
static inline void POWER_SetRetainData(power_gen_reg_t index, uint32_t data)
API to retore data to general purpose register which can be retain during deep power down mode.
- Parameters:
index – general purpose data register index.
data – data to restore.
-
static inline uint32_t POWER_GetRetainData(power_gen_reg_t index)
API to get data from general purpose register which retain during deep power down mode.
- Parameters:
index – general purpose data register index.
- Returns:
data stored in the general purpose register.
-
static inline void POWER_SetBodLevel(power_bod_reset_level_t resetLevel, power_bod_interrupt_level_t interruptLevel, bool enable)
Set Bod interrupt level and reset level.
- Parameters:
resetLevel – BOD reset threshold level, please refer to power_bod_reset_level_t.
interruptLevel – BOD interrupt threshold level, please refer to power_bod_interrupt_level_t.
enable – Used to enable/disable the BOD interrupt and BOD reset.
Reset Driver
-
enum _SYSCON_RSTn
Enumeration for peripheral reset control bits.
Defines the enumeration for peripheral reset control bits in PRESETCTRL/ASYNCPRESETCTRL registers
Values:
-
enumerator kFLASH_RST_N_SHIFT_RSTn
Flash controller reset control
-
enumerator kI2C0_RST_N_SHIFT_RSTn
I2C0 reset control
-
enumerator kGPIO0_RST_N_SHIFT_RSTn
GPIO0 reset control
-
enumerator kSWM_RST_N_SHIFT_RSTn
SWM reset control
-
enumerator kWKT_RST_N_SHIFT_RSTn
Self-wake-up timer(WKT) reset control
-
enumerator kMRT_RST_N_SHIFT_RSTn
Multi-rate timer(MRT) reset control
-
enumerator kSPI0_RST_N_SHIFT_RSTn
SPI0 reset control.
-
enumerator kCRC_RST_SHIFT_RSTn
CRC reset control
-
enumerator kUART0_RST_N_SHIFT_RSTn
UART0 reset control
-
enumerator kUART1_RST_N_SHIFT_RSTn
UART1 reset control
-
enumerator kIOCON_RST_N_SHIFT_RSTn
IOCON reset control
-
enumerator kACMP_RST_N_SHIFT_RSTn
Analog comparator reset control
-
enumerator kADC_RST_N_SHIFT_RSTn
ADC reset control
-
enumerator kCTIMER0_RST_N_SHIFT_RSTn
CTIMER0 reset control
-
enumerator kGPIOINT_RST_N_SHIFT_RSTn
GPIOINT reset control
-
enumerator kFRG0_RST_N_SHIFT_RSTn
Fractional baud rate generator 0 reset control
-
enumerator kOTHER_RST_N_SHIFT_RSTn
Some functions don’t need reset
-
enumerator kFLASH_RST_N_SHIFT_RSTn
-
typedef enum _SYSCON_RSTn SYSCON_RSTn_t
Enumeration for peripheral reset control bits.
Defines the enumeration for peripheral reset control bits in PRESETCTRL/ASYNCPRESETCTRL registers
-
typedef SYSCON_RSTn_t reset_ip_name_t
-
void RESET_SetPeripheralReset(reset_ip_name_t peripheral)
Assert reset to peripheral.
Asserts reset signal to specified peripheral module.
- Parameters:
peripheral – Assert reset to this peripheral. The enum argument contains encoding of reset register and reset bit position in the reset register.
-
void RESET_ClearPeripheralReset(reset_ip_name_t peripheral)
Clear reset to peripheral.
Clears reset signal to specified peripheral module, allows it to operate.
- Parameters:
peripheral – Clear reset to this peripheral. The enum argument contains encoding of reset register and reset bit position in the reset register.
-
void RESET_PeripheralReset(reset_ip_name_t peripheral)
Reset peripheral module.
Reset peripheral module.
- Parameters:
peripheral – Peripheral to reset. The enum argument contains encoding of reset register and reset bit position in the reset register.
-
static inline void RESET_ReleasePeripheralReset(reset_ip_name_t peripheral)
Release peripheral module.
Release peripheral module.
- Parameters:
peripheral – Peripheral to release. The enum argument contains encoding of reset register and reset bit position in the reset register.
-
FSL_RESET_DRIVER_VERSION
reset driver version 2.4.0
-
FLASH_RSTS_N
Array initializers with peripheral reset bits
-
I2C_RSTS_N
-
GPIO_RSTS_N
-
SWM_RSTS_N
-
WKT_RSTS_N
-
MRT_RSTS_N
-
SPI_RSTS_N
-
CRC_RSTS_N
-
UART_RSTS_N
-
IOCON_RSTS_N
-
ACMP_RSTS_N
-
ADC_RSTS_N
-
CTIMER_RSTS_N
-
GPIOINT_RSTS_N
-
FRG_RSTS_N
-
WWDT_RSTS_N
SPI: Serial Peripheral Interface Driver
SPI Driver
-
void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
Sets the SPI master configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in SPI_MasterInit(). User may use the initialized structure unchanged in SPI_MasterInit(), or modify some fields of the structure before calling SPI_MasterInit(). After calling this API, the master is ready to transfer. Example:
spi_master_config_t config; SPI_MasterGetDefaultConfig(&config);
- Parameters:
config – pointer to master config structure
-
status_t SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)
Initializes the SPI with master configuration.
The configuration structure can be filled by user from scratch, or be set with default values by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer. Example
spi_master_config_t config = { .baudRate_Bps = 500000, ... }; SPI_MasterInit(SPI0, &config);
- Parameters:
base – SPI base pointer
config – pointer to master configuration structure
srcClock_Hz – Source clock frequency.
-
void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
Sets the SPI slave configuration structure to default values.
The purpose of this API is to get the configuration structure initialized for use in SPI_SlaveInit(). Modify some fields of the structure before calling SPI_SlaveInit(). Example:
spi_slave_config_t config; SPI_SlaveGetDefaultConfig(&config);
- Parameters:
config – pointer to slave configuration structure
-
status_t SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
Initializes the SPI with slave configuration.
The configuration structure can be filled by user from scratch or be set with default values by SPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer. Example
spi_slave_config_t config = { .polarity = kSPI_ClockPolarityActiveHigh; .phase = kSPI_ClockPhaseFirstEdge; .direction = kSPI_MsbFirst; ... }; SPI_SlaveInit(SPI0, &config);
- Parameters:
base – SPI base pointer
config – pointer to slave configuration structure
-
void SPI_Deinit(SPI_Type *base)
De-initializes the SPI.
Calling this API resets the SPI module, gates the SPI clock. Disable the fifo if enabled. The SPI module can’t work unless calling the SPI_MasterInit/SPI_SlaveInit to initialize module.
- Parameters:
base – SPI base pointer
-
static inline void SPI_Enable(SPI_Type *base, bool enable)
Enable or disable the SPI Master or Slave.
- Parameters:
base – SPI base pointer
enable – or disable ( true = enable, false = disable)
-
static inline uint32_t SPI_GetStatusFlags(SPI_Type *base)
Gets the status flag.
- Parameters:
base – SPI base pointer
- Returns:
SPI Status, use status flag to AND _spi_status_flags could get the related status.
-
static inline void SPI_ClearStatusFlags(SPI_Type *base, uint32_t mask)
Clear the status flag.
- Parameters:
base – SPI base pointer
mask – SPI Status, use status flag to AND _spi_status_flags could get the related status.
-
static inline void SPI_EnableInterrupts(SPI_Type *base, uint32_t irqs)
Enables the interrupt for the SPI.
- Parameters:
base – SPI base pointer
irqs – SPI interrupt source. The parameter can be any combination of the following values:
kSPI_RxReadyInterruptEnable
kSPI_TxReadyInterruptEnable
-
static inline void SPI_DisableInterrupts(SPI_Type *base, uint32_t irqs)
Disables the interrupt for the SPI.
- Parameters:
base – SPI base pointer
irqs – SPI interrupt source. The parameter can be any combination of the following values:
kSPI_RxReadyInterruptEnable
kSPI_TxReadyInterruptEnable
-
static inline bool SPI_IsMaster(SPI_Type *base)
Returns whether the SPI module is in master mode.
- Parameters:
base – SPI peripheral address.
- Returns:
Returns true if the module is in master mode or false if the module is in slave mode.
-
status_t SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the baud rate for SPI transfer. This is only used in master.
- Parameters:
base – SPI base pointer
baudrate_Bps – baud rate needed in Hz.
srcClock_Hz – SPI source clock frequency in Hz.
-
static inline void SPI_WriteData(SPI_Type *base, uint16_t data)
Writes a data into the SPI data register directly.
- Parameters:
base – SPI base pointer
data – needs to be write.
-
static inline void SPI_WriteConfigFlags(SPI_Type *base, uint32_t configFlags)
Writes a data into the SPI TXCTL register directly.
- Parameters:
base – SPI base pointer
configFlags – control command needs to be written.
-
void SPI_WriteDataWithConfigFlags(SPI_Type *base, uint16_t data, uint32_t configFlags)
Writes a data control info and data into the SPI TX register directly.
- Parameters:
base – SPI base pointer
data – value needs to be written.
configFlags – control command needs to be written.
-
static inline uint32_t SPI_ReadData(SPI_Type *base)
Gets a data from the SPI data register.
- Parameters:
base – SPI base pointer
- Returns:
Data in the register.
-
void SPI_SetTransferDelay(SPI_Type *base, const spi_delay_config_t *config)
Set delay time for transfer. the delay uint is SPI clock time, maximum value is 0xF.
- Parameters:
base – SPI base pointer
config – configuration for delay option spi_delay_config_t.
-
void SPI_SetDummyData(SPI_Type *base, uint16_t dummyData)
Set up the dummy data. This API can change the default data to be transferred when users set the tx buffer to NULL.
- Parameters:
base – SPI peripheral address.
dummyData – Data to be transferred when tx buffer is NULL.
-
status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
Transfers a block of data using a polling method.
- Parameters:
base – SPI base pointer
xfer – pointer to spi_xfer_config_t structure
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_SPI_Timeout – The transfer timed out and was aborted.
-
status_t SPI_MasterTransferCreateHandle(SPI_Type *base, spi_master_handle_t *handle, spi_master_callback_t callback, void *userData)
Initializes the SPI master handle.
This function initializes the SPI master handle which can be used for other SPI master transactional APIs. Usually, for a specified SPI instance, call this API once to get the initialized handle.
- Parameters:
base – SPI peripheral base address.
handle – SPI handle pointer.
callback – Callback function.
userData – User data.
-
status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle, spi_transfer_t *xfer)
Performs a non-blocking SPI interrupt transfer.
- Parameters:
base – SPI peripheral base address.
handle – pointer to spi_master_handle_t structure which stores the transfer state
xfer – pointer to spi_xfer_config_t structure
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_SPI_Busy – SPI is not idle, is running another transfer.
-
status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t *count)
Gets the master transfer count.
This function gets the master transfer count.
- Parameters:
base – SPI peripheral base address.
handle – Pointer to the spi_master_handle_t structure which stores the transfer state.
count – The number of bytes transferred by using the non-blocking transaction.
- Returns:
status of status_t.
-
void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
SPI master aborts a transfer using an interrupt.
This function aborts a transfer using an interrupt.
- Parameters:
base – SPI peripheral base address.
handle – Pointer to the spi_master_handle_t structure which stores the transfer state.
-
void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
Interrupts the handler for the SPI.
- Parameters:
base – SPI peripheral base address.
handle – pointer to spi_master_handle_t structure which stores the transfer state.
-
status_t SPI_SlaveTransferCreateHandle(SPI_Type *base, spi_slave_handle_t *handle, spi_slave_callback_t callback, void *userData)
Initializes the SPI slave handle.
This function initializes the SPI slave handle which can be used for other SPI slave transactional APIs. Usually, for a specified SPI instance, call this API once to get the initialized handle.
- Parameters:
base – SPI peripheral base address.
handle – SPI handle pointer.
callback – Callback function.
userData – User data.
-
status_t SPI_SlaveTransferNonBlocking(SPI_Type *base, spi_slave_handle_t *handle, spi_transfer_t *xfer)
Performs a non-blocking SPI slave interrupt transfer.
Note
The API returns immediately after the transfer initialization is finished.
- Parameters:
base – SPI peripheral base address.
handle – pointer to spi_master_handle_t structure which stores the transfer state
xfer – pointer to spi_xfer_config_t structure
- Return values:
kStatus_Success – Successfully start a transfer.
kStatus_InvalidArgument – Input argument is invalid.
kStatus_SPI_Busy – SPI is not idle, is running another transfer.
-
static inline status_t SPI_SlaveTransferGetCount(SPI_Type *base, spi_slave_handle_t *handle, size_t *count)
Gets the slave transfer count.
This function gets the slave transfer count.
- Parameters:
base – SPI peripheral base address.
handle – Pointer to the spi_master_handle_t structure which stores the transfer state.
count – The number of bytes transferred by using the non-blocking transaction.
- Returns:
status of status_t.
-
static inline void SPI_SlaveTransferAbort(SPI_Type *base, spi_slave_handle_t *handle)
SPI slave aborts a transfer using an interrupt.
This function aborts a transfer using an interrupt.
- Parameters:
base – SPI peripheral base address.
handle – Pointer to the spi_slave_handle_t structure which stores the transfer state.
-
void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
Interrupts a handler for the SPI slave.
- Parameters:
base – SPI peripheral base address.
handle – pointer to spi_slave_handle_t structure which stores the transfer state
-
FSL_SPI_DRIVER_VERSION
SPI driver version.
-
enum _spi_xfer_option
SPI transfer option.
Values:
-
enumerator kSPI_EndOfFrame
Add delay at the end of each frame(the last clk edge).
-
enumerator kSPI_EndOfTransfer
Re-assert the CS signal after transfer finishes to deselect slave.
-
enumerator kSPI_ReceiveIgnore
Ignore the receive data.
-
enumerator kSPI_EndOfFrame
-
enum _spi_shift_direction
SPI data shifter direction options.
Values:
-
enumerator kSPI_MsbFirst
Data transfers start with most significant bit.
-
enumerator kSPI_LsbFirst
Data transfers start with least significant bit.
-
enumerator kSPI_MsbFirst
-
enum _spi_clock_polarity
SPI clock polarity configuration.
Values:
-
enumerator kSPI_ClockPolarityActiveHigh
Active-high SPI clock (idles low).
-
enumerator kSPI_ClockPolarityActiveLow
Active-low SPI clock (idles high).
-
enumerator kSPI_ClockPolarityActiveHigh
-
enum _spi_clock_phase
SPI clock phase configuration.
Values:
-
enumerator kSPI_ClockPhaseFirstEdge
First edge on SCK occurs at the middle of the first cycle of a data transfer.
-
enumerator kSPI_ClockPhaseSecondEdge
First edge on SCK occurs at the start of the first cycle of a data transfer.
-
enumerator kSPI_ClockPhaseFirstEdge
-
enum _spi_ssel
Slave select.
Values:
-
enumerator kSPI_Ssel0Assert
Slave select 0
-
enumerator kSPI_SselDeAssertAll
-
enumerator kSPI_Ssel0Assert
-
enum _spi_spol
ssel polarity
Values:
-
enumerator kSPI_Spol0ActiveHigh
-
enumerator kSPI_Spol1ActiveHigh
-
enumerator kSPI_Spol2ActiveHigh
-
enumerator kSPI_Spol3ActiveHigh
-
enumerator kSPI_SpolActiveAllHigh
-
enumerator kSPI_SpolActiveAllLow
-
enumerator kSPI_Spol0ActiveHigh
-
enum _spi_data_width
Transfer data width.
Values:
-
enumerator kSPI_Data4Bits
4 bits data width
-
enumerator kSPI_Data5Bits
5 bits data width
-
enumerator kSPI_Data6Bits
6 bits data width
-
enumerator kSPI_Data7Bits
7 bits data width
-
enumerator kSPI_Data8Bits
8 bits data width
-
enumerator kSPI_Data9Bits
9 bits data width
-
enumerator kSPI_Data10Bits
10 bits data width
-
enumerator kSPI_Data11Bits
11 bits data width
-
enumerator kSPI_Data12Bits
12 bits data width
-
enumerator kSPI_Data13Bits
13 bits data width
-
enumerator kSPI_Data14Bits
14 bits data width
-
enumerator kSPI_Data15Bits
15 bits data width
-
enumerator kSPI_Data16Bits
16 bits data width
-
enumerator kSPI_Data4Bits
SPI transfer status.
Values:
-
enumerator kStatus_SPI_Busy
SPI bus is busy
-
enumerator kStatus_SPI_Idle
SPI is idle
-
enumerator kStatus_SPI_Error
SPI error
-
enumerator kStatus_SPI_BaudrateNotSupport
Baudrate is not support in current clock source
-
enumerator kStatus_SPI_Timeout
SPI Timeout polling status flags.
-
enumerator kStatus_SPI_Busy
-
enum _spi_interrupt_enable
SPI interrupt sources.
Values:
-
enumerator kSPI_RxReadyInterruptEnable
Rx ready interrupt
-
enumerator kSPI_TxReadyInterruptEnable
Tx ready interrupt
-
enumerator kSPI_RxOverrunInterruptEnable
Rx overrun interrupt
-
enumerator kSPI_TxUnderrunInterruptEnable
Tx underrun interrupt
-
enumerator kSPI_SlaveSelectAssertInterruptEnable
Slave select assert interrupt
-
enumerator kSPI_SlaveSelectDeassertInterruptEnable
Slave select deassert interrupt
-
enumerator kSPI_AllInterruptEnable
-
enumerator kSPI_RxReadyInterruptEnable
-
enum _spi_status_flags
SPI status flags.
Values:
-
enumerator kSPI_RxReadyFlag
Receive ready flag.
-
enumerator kSPI_TxReadyFlag
Transmit ready flag.
-
enumerator kSPI_RxOverrunFlag
Receive overrun flag.
-
enumerator kSPI_TxUnderrunFlag
Transmit underrun flag.
-
enumerator kSPI_SlaveSelectAssertFlag
Slave select assert flag.
-
enumerator kSPI_SlaveSelectDeassertFlag
slave select deassert flag.
-
enumerator kSPI_StallFlag
Stall flag.
-
enumerator kSPI_EndTransferFlag
End transfer bit.
-
enumerator kSPI_MasterIdleFlag
Master in idle status flag.
-
enumerator kSPI_RxReadyFlag
-
typedef enum _spi_shift_direction spi_shift_direction_t
SPI data shifter direction options.
-
typedef enum _spi_clock_polarity spi_clock_polarity_t
SPI clock polarity configuration.
-
typedef enum _spi_clock_phase spi_clock_phase_t
SPI clock phase configuration.
-
typedef enum _spi_ssel spi_ssel_t
Slave select.
-
typedef enum _spi_spol spi_spol_t
ssel polarity
-
typedef enum _spi_data_width spi_data_width_t
Transfer data width.
-
typedef struct _spi_delay_config spi_delay_config_t
SPI delay time configure structure.
-
typedef struct _spi_master_config spi_master_config_t
SPI master user configure structure.
-
typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.
-
typedef struct _spi_transfer spi_transfer_t
SPI transfer structure.
-
typedef struct _spi_master_handle spi_master_handle_t
Master handle type.
-
typedef spi_master_handle_t spi_slave_handle_t
Slave handle type.
-
typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t status, void *userData)
SPI master callback for finished transmit.
-
typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status, void *userData)
SPI slave callback for finished transmit.
-
volatile uint16_t s_dummyData[]
-
uint32_t SPI_GetInstance(SPI_Type *base)
Returns instance number for SPI peripheral base address.
-
SPI_DUMMYDATA
SPI dummy transfer data, the data is sent while txBuff is NULL.
-
FSL_SDK_ENABLE_SPI_DRIVER_TRANSACTIONAL_APIS
-
SPI_RETRY_TIMES
Retry times for waiting flag.
-
struct _spi_delay_config
- #include <fsl_spi.h>
SPI delay time configure structure.
Public Members
-
uint8_t preDelay
Delay between SSEL assertion and the beginning of transfer.
-
uint8_t postDelay
Delay between the end of transfer and SSEL deassertion.
-
uint8_t frameDelay
Delay between frame to frame.
-
uint8_t transferDelay
Delay between transfer to transfer.
-
uint8_t preDelay
-
struct _spi_master_config
- #include <fsl_spi.h>
SPI master user configure structure.
Public Members
-
bool enableLoopback
Enable loopback for test purpose
-
bool enableMaster
Enable SPI at initialization time
-
uint32_t baudRate_Bps
Baud Rate for SPI in Hz
-
spi_clock_polarity_t clockPolarity
Clock polarity
-
spi_clock_phase_t clockPhase
Clock phase
-
spi_shift_direction_t direction
MSB or LSB
-
uint8_t dataWidth
Width of the data
-
spi_ssel_t sselNumber
Slave select number
-
spi_spol_t sselPolarity
Configure active CS polarity
-
spi_delay_config_t delayConfig
Configure for delay time.
-
bool enableLoopback
-
struct _spi_slave_config
- #include <fsl_spi.h>
SPI slave user configure structure.
Public Members
-
bool enableSlave
Enable SPI at initialization time
-
spi_clock_polarity_t clockPolarity
Clock polarity
-
spi_clock_phase_t clockPhase
Clock phase
-
spi_shift_direction_t direction
MSB or LSB
-
uint8_t dataWidth
Width of the data
-
spi_spol_t sselPolarity
Configure active CS polarity
-
bool enableSlave
-
struct _spi_transfer
- #include <fsl_spi.h>
SPI transfer structure.
Public Members
-
const uint8_t *txData
Send buffer
-
uint8_t *rxData
Receive buffer
-
size_t dataSize
Transfer bytes
-
uint32_t configFlags
Additional option to control transfer _spi_xfer_option.
-
const uint8_t *txData
-
struct _spi_master_handle
- #include <fsl_spi.h>
SPI transfer handle structure.
Public Members
-
const uint8_t *volatile txData
Transfer buffer
-
uint8_t *volatile rxData
Receive buffer
-
volatile size_t txRemainingBytes
Number of data to be transmitted [in bytes]
-
volatile size_t rxRemainingBytes
Number of data to be received [in bytes]
-
size_t totalByteCount
A number of transfer bytes
-
volatile uint32_t state
SPI internal state
-
spi_master_callback_t callback
SPI callback
-
void *userData
Callback parameter
-
uint8_t dataWidth
Width of the data [Valid values: 1 to 16]
-
uint32_t lastCommand
Last command for transfer.
-
const uint8_t *volatile txData
SWM: Switch Matrix Module
-
enum _swm_port_pin_type_t
SWM port_pin number.
Values:
-
enumerator kSWM_PortPin_P0_0
port_pin number P0_0.
-
enumerator kSWM_PortPin_P0_1
port_pin number P0_1.
-
enumerator kSWM_PortPin_P0_2
port_pin number P0_2.
-
enumerator kSWM_PortPin_P0_3
port_pin number P0_3.
-
enumerator kSWM_PortPin_P0_4
port_pin number P0_4.
-
enumerator kSWM_PortPin_P0_5
port_pin number P0_5.
-
enumerator kSWM_PortPin_P0_6
port_pin number P0_6.
-
enumerator kSWM_PortPin_P0_7
port_pin number P0_7.
-
enumerator kSWM_PortPin_P0_8
port_pin number P0_8.
-
enumerator kSWM_PortPin_P0_9
port_pin number P0_9.
-
enumerator kSWM_PortPin_P0_10
port_pin number P0_10.
-
enumerator kSWM_PortPin_P0_11
port_pin number P0_11.
-
enumerator kSWM_PortPin_P0_12
port_pin number P0_12.
-
enumerator kSWM_PortPin_P0_13
port_pin number P0_13.
-
enumerator kSWM_PortPin_P0_14
port_pin number P0_14.
-
enumerator kSWM_PortPin_P0_15
port_pin number P0_15.
-
enumerator kSWM_PortPin_P0_16
port_pin number P0_16.
-
enumerator kSWM_PortPin_P0_17
port_pin number P0_17.
-
enumerator kSWM_PortPin_Reset
port_pin reset number.
-
enumerator kSWM_PortPin_P0_0
-
enum _swm_select_movable_t
SWM movable selection.
Values:
-
enumerator kSWM_USART0_TXD
Movable function as USART0_TXD.
-
enumerator kSWM_USART0_RXD
Movable function as USART0_RXD.
-
enumerator kSWM_USART0_RTS
Movable function as USART0_RTS.
-
enumerator kSWM_USART0_CTS
Movable function as USART0_CTS.
-
enumerator kSWM_USART0_SCLK
Movable function as USART0_SCLK.
-
enumerator kSWM_USART1_TXD
Movable function as USART1_TXD.
-
enumerator kSWM_USART1_RXD
Movable function as USART1_RXD.
-
enumerator kSWM_USART1_SCLK
Movable function as USART1_SCLK.
-
enumerator kSWM_SPI0_SCK
Movable function as SPI0_SCK.
-
enumerator kSWM_SPI0_MOSI
Movable function as SPI0_MOSI.
-
enumerator kSWM_SPI0_MISO
Movable function as SPI0_MISO.
-
enumerator kSWM_SPI0_SSEL0
Movable function as SPI0_SSEL0.
-
enumerator kSWM_SPI0_SSEL1
Movable function as SPI0_SSEL1.
-
enumerator kSWM_T0_CAP_CHN0
Movable function as Timer Capture Channel 0.
-
enumerator kSWM_T0_CAP_CHN1
Movable function as Timer Capture Channel 1.
-
enumerator kSWM_T0_CAP_CHN2
Movable function as Timer Capture Channel 2.
-
enumerator kSWM_T0_MAT_CHN0
Movable function as Timer Match Channel 0.
-
enumerator kSWM_T0_MAT_CHN1
Movable function as Timer Match Channel 1.
-
enumerator kSWM_T0_MAT_CHN2
Movable function as Timer Match Channel 2.
-
enumerator kSWM_T0_MAT_CHN3
Movable function as Timer Match Channel 3.
-
enumerator kSWM_I2C0_SDA
Movable function as I2C1_SDA.
-
enumerator kSWM_I2C0_SCL
Movable function as I2C1_SCL.
-
enumerator kSWM_ACMP_OUT
Movable function as ACMP_OUT.
-
enumerator kSWM_CLKOUT
Movable function as CLKOUT.
-
enumerator kSWM_GPIO_INT_BMAT
Movable function as GPIO_INT_BMAT.
-
enumerator kSWM_LVLSHFT_IN0
Movable function as LVLSHFT_IN0.
-
enumerator kSWM_LVLSHFT_IN1
Movable function as LVLSHFT_IN1.
-
enumerator kSWM_LVLSHFT_OUT0
Movable function as LVLSHFT_OUT0.
-
enumerator kSWM_LVLSHFT_OUT1
Movable function as LVLSHFT_OUT1.
-
enumerator kSWM_MOVABLE_NUM_FUNCS
Movable function number.
-
enumerator kSWM_USART0_TXD
-
enum _swm_select_fixed_pin_t
SWM fixed pin selection.
Values:
-
enumerator kSWM_ACMP_INPUT1
Fixed-pin function as ACMP_INPUT1.
-
enumerator kSWM_ACMP_INPUT2
Fixed-pin function as ACMP_INPUT2.
-
enumerator kSWM_ACMP_INPUT3
Fixed-pin function as ACMP_INPUT3.
-
enumerator kSWM_ACMP_INPUT4
Fixed-pin function as ACMP_INPUT4.
-
enumerator kSWM_SWCLK
Fixed-pin function as SWCLK.
-
enumerator kSWM_SWDIO
Fixed-pin function as SWDIO.
-
enumerator kSWM_RESETN
Fixed-pin function as RESETN.
-
enumerator kSWM_CLKIN
Fixed-pin function as CLKIN.
-
enumerator kSWM_WKCLKIN
Fixed-pin function as CLKIN.
-
enumerator kSWM_VDDCMP
Fixed-pin function as VDDCMP.
-
enumerator kSWM_ADC_CHN0
Fixed-pin function as ADC_CHN0.
-
enumerator kSWM_ADC_CHN1
Fixed-pin function as ADC_CHN1.
-
enumerator kSWM_ADC_CHN2
Fixed-pin function as ADC_CHN2.
-
enumerator kSWM_ADC_CHN3
Fixed-pin function as ADC_CHN3.
-
enumerator kSWM_ADC_CHN4
Fixed-pin function as ADC_CHN4.
-
enumerator kSWM_ADC_CHN5
Fixed-pin function as ADC_CHN5.
-
enumerator kSWM_ADC_CHN6
Fixed-pin function as ADC_CHN6.
-
enumerator kSWM_ADC_CHN7
Fixed-pin function as ADC_CHN7.
-
enumerator kSWM_ADC_CHN8
Fixed-pin function as ADC_CHN8.
-
enumerator kSWM_ADC_CHN9
Fixed-pin function as ADC_CHN9.
-
enumerator kSWM_ADC_CHN10
Fixed-pin function as ADC_CHN10.
-
enumerator kSWM_ADC_CHN11
Fixed-pin function as ADC_CHN11.
-
enumerator kSWM_FIXEDPIN_NUM_FUNCS
Fixed-pin function number.
-
enumerator kSWM_ACMP_INPUT1
-
typedef enum _swm_port_pin_type_t swm_port_pin_type_t
SWM port_pin number.
-
typedef enum _swm_select_movable_t swm_select_movable_t
SWM movable selection.
-
typedef enum _swm_select_fixed_pin_t swm_select_fixed_pin_t
SWM fixed pin selection.
-
FSL_SWM_DRIVER_VERSION
LPC SWM driver version.
-
void SWM_SetMovablePinSelect(SWM_Type *base, swm_select_movable_t func, swm_port_pin_type_t swm_port_pin)
Assignment of digital peripheral functions to pins.
This function will selects a pin (designated by its GPIO port and bit numbers) to a function.
- Parameters:
base – SWM peripheral base address.
func – any function name that is movable.
swm_port_pin – any pin which has a GPIO port number and bit number.
-
void SWM_SetFixedPinSelect(SWM_Type *base, swm_select_fixed_pin_t func, bool enable)
Enable the fixed-pin function.
This function will enables a fixed-pin function in PINENABLE0 or PINENABLE1.
- Parameters:
base – SWM peripheral base address.
func – any function name that is fixed pin.
enable – enable or disable.
SYSCON: System Configuration
-
enum _syscon_connection_t
SYSCON connections type.
Values:
-
enumerator kSYSCON_GpioPort0Pin0ToPintsel
Pin Interrupt.
-
enumerator kSYSCON_GpioPort0Pin1ToPintsel
-
enumerator kSYSCON_GpioPort0Pin2ToPintsel
-
enumerator kSYSCON_GpioPort0Pin3ToPintsel
-
enumerator kSYSCON_GpioPort0Pin4ToPintsel
-
enumerator kSYSCON_GpioPort0Pin5ToPintsel
-
enumerator kSYSCON_GpioPort0Pin7ToPintsel
-
enumerator kSYSCON_GpioPort0Pin8ToPintsel
-
enumerator kSYSCON_GpioPort0Pin9ToPintsel
-
enumerator kSYSCON_GpioPort0Pin10ToPintsel
-
enumerator kSYSCON_GpioPort0Pin11ToPintsel
-
enumerator kSYSCON_GpioPort0Pin12ToPintsel
-
enumerator kSYSCON_GpioPort0Pin13ToPintsel
-
enumerator kSYSCON_GpioPort0Pin14ToPintsel
-
enumerator kSYSCON_GpioPort0Pin15ToPintsel
-
enumerator kSYSCON_GpioPort0Pin16ToPintsel
-
enumerator kSYSCON_GpioPort0Pin17ToPintsel
-
enumerator kSYSCON_GpioPort0Pin0ToPintsel
-
typedef enum _syscon_connection_t syscon_connection_t
SYSCON connections type.
-
PINTSEL_ID
Periphinmux IDs.
-
SYSCON_SHIFT
-
FSL_SYSON_DRIVER_VERSION
Group syscon driver version for SDK.
Version 2.0.1.
-
void SYSCON_AttachSignal(SYSCON_Type *base, uint32_t index, syscon_connection_t connection)
Attaches a signal.
This function gates the SYSCON clock.
- Parameters:
base – Base address of the SYSCON peripheral.
index – Destination peripheral to attach the signal to.
connection – Selects connection.
- Return values:
None. –
USART: Universal Asynchronous Receiver/Transmitter Driver
USART Driver
-
uint32_t USART_GetInstance(USART_Type *base)
Returns instance number for USART peripheral base address.
-
status_t USART_Init(USART_Type *base, const usart_config_t *config, uint32_t srcClock_Hz)
Initializes a USART instance with user configuration structure and peripheral clock.
This function configures the USART module with the user-defined settings. The user can configure the configuration structure and also get the default configuration by using the USART_GetDefaultConfig() function. Example below shows how to use this API to configure USART.
usart_config_t usartConfig; usartConfig.baudRate_Bps = 115200U; usartConfig.parityMode = kUSART_ParityDisabled; usartConfig.stopBitCount = kUSART_OneStopBit; USART_Init(USART1, &usartConfig, 20000000U);
- Parameters:
base – USART peripheral base address.
config – Pointer to user-defined configuration structure.
srcClock_Hz – USART clock source frequency in HZ.
- Return values:
kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.
kStatus_InvalidArgument – USART base address is not valid
kStatus_Success – Status USART initialize succeed
-
void USART_Deinit(USART_Type *base)
Deinitializes a USART instance.
This function waits for TX complete, disables the USART clock.
- Parameters:
base – USART peripheral base address.
-
void USART_GetDefaultConfig(usart_config_t *config)
Gets the default configuration structure.
This function initializes the USART configuration structure to a default value. The default values are: usartConfig->baudRate_Bps = 9600U; usartConfig->parityMode = kUSART_ParityDisabled; usartConfig->stopBitCount = kUSART_OneStopBit; usartConfig->bitCountPerChar = kUSART_8BitsPerChar; usartConfig->loopback = false; usartConfig->enableTx = false; usartConfig->enableRx = false; …
- Parameters:
config – Pointer to configuration structure.
-
status_t USART_SetBaudRate(USART_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the USART instance baud rate.
This function configures the USART module baud rate. This function is used to update the USART module baud rate after the USART module is initialized by the USART_Init.
USART_SetBaudRate(USART1, 115200U, 20000000U);
- Parameters:
base – USART peripheral base address.
baudrate_Bps – USART baudrate to be set.
srcClock_Hz – USART clock source frequency in HZ.
- Return values:
kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.
kStatus_Success – Set baudrate succeed.
kStatus_InvalidArgument – One or more arguments are invalid.
-
static inline uint32_t USART_GetStatusFlags(USART_Type *base)
Get USART status flags.
This function get all USART status flags, the flags are returned as the logical OR value of the enumerators _usart_flags. To check a specific status, compare the return value with enumerators in _usart_flags. For example, to check whether the RX is ready:
if (kUSART_RxReady & USART_GetStatusFlags(USART1)) { ... }
- Parameters:
base – USART peripheral base address.
- Returns:
USART status flags which are ORed by the enumerators in the _usart_flags.
-
static inline void USART_ClearStatusFlags(USART_Type *base, uint32_t mask)
Clear USART status flags.
This function clear supported USART status flags For example:
USART_ClearStatusFlags(USART1, kUSART_HardwareOverrunFlag)
- Parameters:
base – USART peripheral base address.
mask – status flags to be cleared.
-
static inline void USART_EnableInterrupts(USART_Type *base, uint32_t mask)
Enables USART interrupts according to the provided mask.
This function enables the USART interrupts according to the provided mask. The mask is a logical OR of enumeration members. See _usart_interrupt_enable. For example, to enable TX ready interrupt and RX ready interrupt:
USART_EnableInterrupts(USART1, kUSART_RxReadyInterruptEnable | kUSART_TxReadyInterruptEnable);
- Parameters:
base – USART peripheral base address.
mask – The interrupts to enable. Logical OR of _usart_interrupt_enable.
-
static inline void USART_DisableInterrupts(USART_Type *base, uint32_t mask)
Disables USART interrupts according to a provided mask.
This function disables the USART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See _usart_interrupt_enable. This example shows how to disable the TX ready interrupt and RX ready interrupt:
USART_DisableInterrupts(USART1, kUSART_TxReadyInterruptEnable | kUSART_RxReadyInterruptEnable);
- Parameters:
base – USART peripheral base address.
mask – The interrupts to disable. Logical OR of _usart_interrupt_enable.
-
static inline uint32_t USART_GetEnabledInterrupts(USART_Type *base)
Returns enabled USART interrupts.
This function returns the enabled USART interrupts.
- Parameters:
base – USART peripheral base address.
-
static inline void USART_EnableContinuousSCLK(USART_Type *base, bool enable)
Continuous Clock generation. By default, SCLK is only output while data is being transmitted in synchronous mode. Enable this funciton, SCLK will run continuously in synchronous mode, allowing characters to be received on Un_RxD independently from transmission on Un_TXD).
- Parameters:
base – USART peripheral base address.
enable – Enable Continuous Clock generation mode or not, true for enable and false for disable.
-
static inline void USART_EnableAutoClearSCLK(USART_Type *base, bool enable)
Enable Continuous Clock generation bit auto clear. While enable this cuntion, the Continuous Clock bit is automatically cleared when a complete character has been received. This bit is cleared at the same time.
- Parameters:
base – USART peripheral base address.
enable – Enable auto clear or not, true for enable and false for disable.
-
static inline void USART_EnableCTS(USART_Type *base, bool enable)
Enable CTS. This function will determine whether CTS is used for flow control.
- Parameters:
base – USART peripheral base address.
enable – Enable CTS or not, true for enable and false for disable.
-
static inline void USART_EnableTx(USART_Type *base, bool enable)
Enable the USART transmit.
This function will enable or disable the USART transmit.
- Parameters:
base – USART peripheral base address.
enable – true for enable and false for disable.
-
static inline void USART_EnableRx(USART_Type *base, bool enable)
Enable the USART receive.
This function will enable or disable the USART receive. Note: if the transmit is enabled, the receive will not be disabled.
- Parameters:
base – USART peripheral base address.
enable – true for enable and false for disable.
-
static inline void USART_WriteByte(USART_Type *base, uint8_t data)
Writes to the TXDAT register.
This function will writes data to the TXDAT automatly.The upper layer must ensure that TXDATA has space for data to write before calling this function.
- Parameters:
base – USART peripheral base address.
data – The byte to write.
-
static inline uint8_t USART_ReadByte(USART_Type *base)
Reads the RXDAT directly.
This function reads data from the RXDAT automatly. The upper layer must ensure that the RXDAT is not empty before calling this function.
- Parameters:
base – USART peripheral base address.
- Returns:
The byte read from USART data register.
-
status_t USART_WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.
This function polls the TX register, waits for the TX register to be empty.
- Parameters:
base – USART peripheral base address.
data – Start address of the data to write.
length – Size of the data to write.
- Return values:
kStatus_USART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully wrote all data.
-
status_t USART_ReadBlocking(USART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.
This function polls the RX register, waits for the RX register to be full.
- Parameters:
base – USART peripheral base address.
data – Start address of the buffer to store the received data.
length – Size of the buffer.
- Return values:
kStatus_USART_FramingError – Receiver overrun happened while receiving data.
kStatus_USART_ParityError – Noise error happened while receiving data.
kStatus_USART_NoiseError – Framing error happened while receiving data.
kStatus_USART_RxError – Overflow or underflow happened.
kStatus_USART_Timeout – Transmission timed out and was aborted.
kStatus_Success – Successfully received all data.
-
status_t USART_TransferCreateHandle(USART_Type *base, usart_handle_t *handle, usart_transfer_callback_t callback, void *userData)
Initializes the USART handle.
This function initializes the USART handle which can be used for other USART transactional APIs. Usually, for a specified USART instance, call this API once to get the initialized handle.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
callback – The callback function.
userData – The parameter of the callback function.
-
status_t USART_TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle, usart_transfer_t *xfer)
Transmits a buffer of data using the interrupt method.
This function sends data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data to be written to the TX register. When all data is written to the TX register in the IRQ handler, the USART driver calls the callback function and passes the kStatus_USART_TxIdle as status parameter.
Note
The kStatus_USART_TxIdle is passed to the upper layer when all data is written to the TX register. However it does not ensure that all data are sent out. Before disabling the TX, check the kUSART_TransmissionCompleteFlag to ensure that the TX is finished.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
xfer – USART transfer structure. See usart_transfer_t.
- Return values:
kStatus_Success – Successfully start the data transmission.
kStatus_USART_TxBusy – Previous transmission still not finished, data not all written to TX register yet.
kStatus_InvalidArgument – Invalid argument.
-
void USART_TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)
Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific USART handle.
When the RX ring buffer is used, data received are stored into the ring buffer even when the user doesn’t call the USART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly.
Note
When using the RX ring buffer, one byte is reserved for internal use. In other words, if ringBufferSize is 32, then only 31 bytes are used for saving data.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
ringBuffer – Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer.
ringBufferSize – size of the ring buffer.
-
void USART_TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.
This function aborts the background transfer and uninstalls the ring buffer.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
-
size_t USART_TransferGetRxRingBufferLength(usart_handle_t *handle)
Get the length of received data in RX ring buffer.
- Parameters:
handle – USART handle pointer.
- Returns:
Length of received data in RX ring buffer.
-
void USART_TransferAbortSend(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data transmit.
This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out how many bytes are still not sent out.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
-
status_t USART_TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t *count)
Get the number of bytes that have been written to USART TX register.
This function gets the number of bytes that have been written to USART TX register by interrupt method.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
count – Send bytes count.
- Return values:
kStatus_NoTransferInProgress – No send in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
status_t USART_TransferReceiveNonBlocking(USART_Type *base, usart_handle_t *handle, usart_transfer_t *xfer, size_t *receivedBytes)
Receives a buffer of data using an interrupt method.
This function receives data using an interrupt method. This is a non-blocking function, which returns without waiting for all data to be received. If the RX ring buffer is used and not empty, the data in the ring buffer is copied and the parameter
receivedBytes
shows how many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is not enough to read, the receive request is saved by the USART driver. When the new data arrives, the receive request is serviced first. When all data is received, the USART driver notifies the upper layer through a callback function and passes the status parameter kStatus_USART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns with the parameterreceivedBytes
set to 5. For the left 5 bytes, newly arrived data is saved from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to the xfer->data. When all data is received, the upper layer is notified.- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
xfer – USART transfer structure, see usart_transfer_t.
receivedBytes – Bytes received from the ring buffer directly.
- Return values:
kStatus_Success – Successfully queue the transfer into transmit queue.
kStatus_USART_RxBusy – Previous receive request is not finished.
kStatus_InvalidArgument – Invalid argument.
-
void USART_TransferAbortReceive(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data receiving.
This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out how many bytes not received yet.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
-
status_t USART_TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t *count)
Get the number of bytes that have been received.
This function gets the number of bytes that have been received.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
count – Receive bytes count.
- Return values:
kStatus_NoTransferInProgress – No receive in progress.
kStatus_InvalidArgument – Parameter is invalid.
kStatus_Success – Get successfully through the parameter
count
;
-
void USART_TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)
USART IRQ handle function.
This function handles the USART transmit and receive IRQ request.
- Parameters:
base – USART peripheral base address.
handle – USART handle pointer.
-
FSL_USART_DRIVER_VERSION
USART driver version.
Error codes for the USART driver.
Values:
-
enumerator kStatus_USART_TxBusy
Transmitter is busy.
-
enumerator kStatus_USART_RxBusy
Receiver is busy.
-
enumerator kStatus_USART_TxIdle
USART transmitter is idle.
-
enumerator kStatus_USART_RxIdle
USART receiver is idle.
-
enumerator kStatus_USART_TxError
Error happens on tx.
-
enumerator kStatus_USART_RxError
Error happens on rx.
-
enumerator kStatus_USART_RxRingBufferOverrun
Error happens on rx ring buffer
-
enumerator kStatus_USART_NoiseError
USART noise error.
-
enumerator kStatus_USART_FramingError
USART framing error.
-
enumerator kStatus_USART_ParityError
USART parity error.
-
enumerator kStatus_USART_HardwareOverrun
USART hardware over flow.
-
enumerator kStatus_USART_BaudrateNotSupport
Baudrate is not support in current clock source
-
enumerator kStatus_USART_Timeout
USART times out.
-
enumerator kStatus_USART_TxBusy
-
enum _usart_parity_mode
USART parity mode.
Values:
-
enumerator kUSART_ParityDisabled
Parity disabled
-
enumerator kUSART_ParityEven
Parity enabled, type even, bit setting: PARITYSEL = 10
-
enumerator kUSART_ParityOdd
Parity enabled, type odd, bit setting: PARITYSEL = 11
-
enumerator kUSART_ParityDisabled
-
enum _usart_sync_mode
USART synchronous mode.
Values:
-
enumerator kUSART_SyncModeDisabled
Asynchronous mode.
-
enumerator kUSART_SyncModeSlave
Synchronous slave mode.
-
enumerator kUSART_SyncModeMaster
Synchronous master mode.
-
enumerator kUSART_SyncModeDisabled
-
enum _usart_stop_bit_count
USART stop bit count.
Values:
-
enumerator kUSART_OneStopBit
One stop bit
-
enumerator kUSART_TwoStopBit
Two stop bits
-
enumerator kUSART_OneStopBit
-
enum _usart_data_len
USART data size.
Values:
-
enumerator kUSART_7BitsPerChar
Seven bit mode
-
enumerator kUSART_8BitsPerChar
Eight bit mode
-
enumerator kUSART_7BitsPerChar
-
enum _usart_clock_polarity
USART clock polarity configuration, used in sync mode.
Values:
-
enumerator kUSART_RxSampleOnFallingEdge
Un_RXD is sampled on the falling edge of SCLK.
-
enumerator kUSART_RxSampleOnRisingEdge
Un_RXD is sampled on the rising edge of SCLK.
-
enumerator kUSART_RxSampleOnFallingEdge
-
enum _usart_interrupt_enable
USART interrupt configuration structure, default settings all disabled.
Values:
-
enumerator kUSART_RxReadyInterruptEnable
Receive ready interrupt.
-
enumerator kUSART_TxReadyInterruptEnable
Transmit ready interrupt.
-
enumerator kUSART_TxIdleInterruptEnable
Transmit idle interrupt.
-
enumerator kUSART_DeltaCtsInterruptEnable
Cts pin change interrupt.
-
enumerator kUSART_TxDisableInterruptEnable
Transmit disable interrupt.
-
enumerator kUSART_HardwareOverRunInterruptEnable
hardware ove run interrupt.
-
enumerator kUSART_RxBreakInterruptEnable
Receive break interrupt.
-
enumerator kUSART_RxStartInterruptEnable
Receive ready interrupt.
-
enumerator kUSART_FramErrorInterruptEnable
Receive start interrupt.
-
enumerator kUSART_ParityErrorInterruptEnable
Receive frame error interrupt.
-
enumerator kUSART_RxNoiseInterruptEnable
Receive noise error interrupt.
-
enumerator kUSART_AutoBaudErrorInterruptEnable
Receive auto baud error interrupt.
-
enumerator kUSART_AllInterruptEnable
All interrupt.
-
enumerator kUSART_RxReadyInterruptEnable
-
enum _usart_flags
USART status flags.
This provides constants for the USART status flags for use in the USART functions.
Values:
-
enumerator kUSART_RxReady
Receive ready flag.
-
enumerator kUSART_RxIdleFlag
Receive IDLE flag.
-
enumerator kUSART_TxReady
Transmit ready flag.
-
enumerator kUSART_TxIdleFlag
Transmit idle flag.
-
enumerator kUSART_CtsState
Cts pin status.
-
enumerator kUSART_DeltaCtsFlag
Cts pin change flag.
-
enumerator kUSART_TxDisableFlag
Transmit disable flag.
-
enumerator kUSART_HardwareOverrunFlag
Hardware over run flag.
-
enumerator kUSART_RxBreakFlag
Receive break flag.
-
enumerator kUSART_RxStartFlag
receive start flag.
-
enumerator kUSART_FramErrorFlag
Frame error flag.
-
enumerator kUSART_ParityErrorFlag
Parity error flag.
-
enumerator kUSART_RxNoiseFlag
Receive noise flag.
-
enumerator kUSART_AutoBaudErrorFlag
Auto baud error flag.
-
enumerator kUSART_RxReady
-
typedef enum _usart_parity_mode usart_parity_mode_t
USART parity mode.
-
typedef enum _usart_sync_mode usart_sync_mode_t
USART synchronous mode.
-
typedef enum _usart_stop_bit_count usart_stop_bit_count_t
USART stop bit count.
-
typedef enum _usart_data_len usart_data_len_t
USART data size.
-
typedef enum _usart_clock_polarity usart_clock_polarity_t
USART clock polarity configuration, used in sync mode.
-
typedef struct _usart_config usart_config_t
USART configuration structure.
-
typedef struct _usart_transfer usart_transfer_t
USART transfer structure.
-
typedef struct _usart_handle usart_handle_t
-
typedef void (*usart_transfer_callback_t)(USART_Type *base, usart_handle_t *handle, status_t status, void *userData)
USART transfer callback function.
-
FSL_SDK_ENABLE_USART_DRIVER_TRANSACTIONAL_APIS
Macro gate for enable transaction API. 1 for enable, 0 for disable.
-
FSL_SDK_USART_DRIVER_ENABLE_BAUDRATE_AUTO_GENERATE
USART baud rate auto generate switch gate. 1 for enable, 0 for disable.
-
UART_RETRY_TIMES
Retry times for waiting flag.
Defining to zero means to keep waiting for the flag until it is assert/deassert.
-
struct _usart_config
- #include <fsl_usart.h>
USART configuration structure.
Public Members
-
uint32_t baudRate_Bps
USART baud rate
-
bool enableRx
USART receive enable.
-
bool enableTx
USART transmit enable.
-
bool loopback
Enable peripheral loopback
-
bool enableContinuousSCLK
USART continuous Clock generation enable in synchronous master mode.
-
bool enableHardwareFlowControl
Enable hardware control RTS/CTS
-
usart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd
-
usart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits
-
usart_data_len_t bitCountPerChar
Data length - 7 bit, 8 bit
-
usart_sync_mode_t syncMode
Transfer mode - asynchronous, synchronous master, synchronous slave.
-
usart_clock_polarity_t clockPolarity
Selects the clock polarity and sampling edge in sync mode.
-
uint32_t baudRate_Bps
-
struct _usart_transfer
- #include <fsl_usart.h>
USART transfer structure.
Public Members
-
size_t dataSize
The byte count to be transfer.
-
size_t dataSize
-
struct _usart_handle
- #include <fsl_usart.h>
USART handle structure.
Public Members
-
const uint8_t *volatile txData
Address of remaining data to send.
-
volatile size_t txDataSize
Size of the remaining data to send.
-
size_t txDataSizeAll
Size of the data to send out.
-
uint8_t *volatile rxData
Address of remaining data to receive.
-
volatile size_t rxDataSize
Size of the remaining data to receive.
-
size_t rxDataSizeAll
Size of the data to receive.
-
uint8_t *rxRingBuffer
Start address of the receiver ring buffer.
-
size_t rxRingBufferSize
Size of the ring buffer.
-
volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.
-
volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.
-
usart_transfer_callback_t callback
Callback function.
-
void *userData
USART callback function parameter.
-
volatile uint8_t txState
TX transfer state.
-
volatile uint8_t rxState
RX transfer state
-
const uint8_t *volatile txData
-
union __unnamed6__
Public Members
-
uint8_t *data
The buffer of data to be transfer.
-
uint8_t *rxData
The buffer to receive data.
-
const uint8_t *txData
The buffer of data to be sent.
-
uint8_t *data
WKT: Self-wake-up Timer
-
void WKT_Init(WKT_Type *base, const wkt_config_t *config)
Ungates the WKT clock and configures the peripheral for basic operation.
Note
This API should be called at the beginning of the application using the WKT driver.
- Parameters:
base – WKT peripheral base address
config – Pointer to user’s WKT config structure.
-
void WKT_Deinit(WKT_Type *base)
Gate the WKT clock.
- Parameters:
base – WKT peripheral base address
-
static inline void WKT_GetDefaultConfig(wkt_config_t *config)
Initializes the WKT configuration structure.
This function initializes the WKT configuration structure to default values. The default values are as follows.
config->clockSource = kWKT_DividedFROClockSource;
See also
wkt_config_t
- Parameters:
config – Pointer to the WKT configuration structure.
-
static inline uint32_t WKT_GetCounterValue(WKT_Type *base)
Read actual WKT counter value.
- Parameters:
base – WKT peripheral base address
-
static inline uint32_t WKT_GetStatusFlags(WKT_Type *base)
Gets the WKT status flags.
- Parameters:
base – WKT peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration wkt_status_flags_t
-
static inline void WKT_ClearStatusFlags(WKT_Type *base, uint32_t mask)
Clears the WKT status flags.
- Parameters:
base – WKT peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration wkt_status_flags_t
-
static inline void WKT_StartTimer(WKT_Type *base, uint32_t count)
Starts the timer counting.
After calling this function, timer loads a count value, counts down to 0, then stops.
Note
User can call the utility macros provided in fsl_common.h to convert to ticks Do not write to Counter register while the counting is in progress
- Parameters:
base – WKT peripheral base address.
count – The value to be loaded into the WKT Count register
-
static inline void WKT_StopTimer(WKT_Type *base)
Stops the timer counting.
This function Clears the counter and stops the timer from counting.
- Parameters:
base – WKT peripheral base address
-
FSL_WKT_DRIVER_VERSION
Version 2.0.2
-
enum _wkt_clock_source
Describes WKT clock source.
Values:
-
enumerator kWKT_DividedFROClockSource
WKT clock sourced from the divided FRO clock
-
enumerator kWKT_LowPowerClockSource
WKT clock sourced from the Low power clock Use this clock, LPOSCEN bit of DPDCTRL register must be enabled
-
enumerator kWKT_ExternalClockSource
WKT clock sourced from the Low power clock Use this clock, WAKECLKPAD_DISABLE bit of DPDCTRL register must be enabled
-
enumerator kWKT_DividedFROClockSource
-
enum _wkt_status_flags
List of WKT flags.
Values:
-
enumerator kWKT_AlarmFlag
Alarm flag
-
enumerator kWKT_AlarmFlag
-
typedef enum _wkt_clock_source wkt_clock_source_t
Describes WKT clock source.
-
typedef struct _wkt_config wkt_config_t
Describes WKT configuration structure.
-
typedef enum _wkt_status_flags wkt_status_flags_t
List of WKT flags.
-
struct _wkt_config
- #include <fsl_wkt.h>
Describes WKT configuration structure.
Public Members
-
wkt_clock_source_t clockSource
External or internal clock source select
-
wkt_clock_source_t clockSource
WWDT: Windowed Watchdog Timer Driver
-
void WWDT_GetDefaultConfig(wwdt_config_t *config)
Initializes WWDT configure structure.
This function initializes the WWDT configure structure to default value. The default value are:
config->enableWwdt = true; config->enableWatchdogReset = false; config->enableWatchdogProtect = false; config->enableLockOscillator = false; config->windowValue = 0xFFFFFFU; config->timeoutValue = 0xFFFFFFU; config->warningValue = 0;
See also
wwdt_config_t
- Parameters:
config – Pointer to WWDT config structure.
-
void WWDT_Init(WWDT_Type *base, const wwdt_config_t *config)
Initializes the WWDT.
This function initializes the WWDT. When called, the WWDT runs according to the configuration.
Example:
wwdt_config_t config; WWDT_GetDefaultConfig(&config); config.timeoutValue = 0x7ffU; WWDT_Init(wwdt_base,&config);
- Parameters:
base – WWDT peripheral base address
config – The configuration of WWDT
-
void WWDT_Deinit(WWDT_Type *base)
Shuts down the WWDT.
This function shuts down the WWDT.
- Parameters:
base – WWDT peripheral base address
-
static inline void WWDT_Enable(WWDT_Type *base)
Enables the WWDT module.
This function write value into WWDT_MOD register to enable the WWDT, it is a write-once bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will run permanently.
- Parameters:
base – WWDT peripheral base address
-
static inline void WWDT_Disable(WWDT_Type *base)
Disables the WWDT module.
- Deprecated:
Do not use this function. It will be deleted in next release version, for once the bit field of WDEN written with a 1, it can not be re-written with a 0.
This function write value into WWDT_MOD register to disable the WWDT.
- Parameters:
base – WWDT peripheral base address
-
static inline uint32_t WWDT_GetStatusFlags(WWDT_Type *base)
Gets all WWDT status flags.
This function gets all status flags.
Example for getting Timeout Flag:
uint32_t status; status = WWDT_GetStatusFlags(wwdt_base) & kWWDT_TimeoutFlag;
- Parameters:
base – WWDT peripheral base address
- Returns:
The status flags. This is the logical OR of members of the enumeration _wwdt_status_flags_t
-
void WWDT_ClearStatusFlags(WWDT_Type *base, uint32_t mask)
Clear WWDT flag.
This function clears WWDT status flag.
Example for clearing warning flag:
WWDT_ClearStatusFlags(wwdt_base, kWWDT_WarningFlag);
- Parameters:
base – WWDT peripheral base address
mask – The status flags to clear. This is a logical OR of members of the enumeration _wwdt_status_flags_t
-
static inline void WWDT_SetWarningValue(WWDT_Type *base, uint32_t warningValue)
Set the WWDT warning value.
The WDWARNINT register determines the watchdog timer counter value that will generate a watchdog interrupt. When the watchdog timer counter is no longer greater than the value defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.
- Parameters:
base – WWDT peripheral base address
warningValue – WWDT warning value.
-
static inline void WWDT_SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)
Set the WWDT timeout value.
This function sets the timeout value. Every time a feed sequence occurs the value in the TC register is loaded into the Watchdog timer. Writing a value below 0xFF will cause 0xFF to be loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If enableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change the timeout value before the watchdog counter is below the warning and window values will cause a watchdog reset and set the WDTOF flag.
- Parameters:
base – WWDT peripheral base address
timeoutCount – WWDT timeout value, count of WWDT clock tick.
-
static inline void WWDT_SetWindowValue(WWDT_Type *base, uint32_t windowValue)
Sets the WWDT window value.
The WINDOW register determines the highest TV value allowed when a watchdog feed is performed. If a feed sequence occurs when timer value is greater than the value in WINDOW, a watchdog event will occur. To disable windowing, set windowValue to 0xFFFFFF (maximum possible timer value) so windowing is not in effect.
- Parameters:
base – WWDT peripheral base address
windowValue – WWDT window value.
-
void WWDT_Refresh(WWDT_Type *base)
Refreshes the WWDT timer.
This function feeds the WWDT. This function should be called before WWDT timer is in timeout. Otherwise, a reset is asserted.
- Parameters:
base – WWDT peripheral base address
-
FSL_WWDT_DRIVER_VERSION
Defines WWDT driver version.
-
WWDT_FIRST_WORD_OF_REFRESH
First word of refresh sequence
-
WWDT_SECOND_WORD_OF_REFRESH
Second word of refresh sequence
-
enum _wwdt_status_flags_t
WWDT status flags.
This structure contains the WWDT status flags for use in the WWDT functions.
Values:
-
enumerator kWWDT_TimeoutFlag
Time-out flag, set when the timer times out
-
enumerator kWWDT_WarningFlag
Warning interrupt flag, set when timer is below the value WDWARNINT
-
enumerator kWWDT_TimeoutFlag
-
typedef struct _wwdt_config wwdt_config_t
Describes WWDT configuration structure.
-
struct _wwdt_config
- #include <fsl_wwdt.h>
Describes WWDT configuration structure.
Public Members
-
bool enableWwdt
Enables or disables WWDT
-
bool enableWatchdogReset
true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause a chip reset
-
bool enableWatchdogProtect
true: Enable watchdog protect i.e timeout value can only be changed after counter is below warning & window values false: Disable watchdog protect; timeout value can be changed at any time
-
bool enableLockOscillator
true: Disabling or powering down the watchdog oscillator is prevented Once set, this bit can only be cleared by a reset false: Do not lock oscillator
-
uint32_t windowValue
Window value, set this to 0xFFFFFF if windowing is not in effect
-
uint32_t timeoutValue
Timeout value
-
uint32_t warningValue
Watchdog time counter value that will generate a warning interrupt. Set this to 0 for no warning
-
uint32_t clockFreq_Hz
Watchdog clock source frequency.
-
bool enableWwdt