LPC54628

Clock Driver

enum _clock_ip_name

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:

enumerator kCLOCK_IpInvalid

Invalid Ip Name.

enumerator kCLOCK_Rom

Clock gate name: Rom.

enumerator kCLOCK_Sram1

Clock gate name: Sram1.

enumerator kCLOCK_Sram2

Clock gate name: Sram2.

enumerator kCLOCK_Sram3

Clock gate name: Sram3.

enumerator kCLOCK_Flash

Clock gate name: Flash.

enumerator kCLOCK_Fmc

Clock gate name: Fmc.

enumerator kCLOCK_Eeprom

Clock gate name: Eeprom.

enumerator kCLOCK_Spifi

Clock gate name: Spifi.

enumerator kCLOCK_InputMux

Clock gate name: InputMux.

enumerator kCLOCK_Iocon

Clock gate name: Iocon.

enumerator kCLOCK_Gpio0

Clock gate name: Gpio0.

enumerator kCLOCK_Gpio1

Clock gate name: Gpio1.

enumerator kCLOCK_Gpio2

Clock gate name: Gpio2.

enumerator kCLOCK_Gpio3

Clock gate name: Gpio3.

enumerator kCLOCK_Pint

Clock gate name: Pint.

enumerator kCLOCK_Gint

Clock gate name: Gint.

enumerator kCLOCK_Dma

Clock gate name: Dma.

enumerator kCLOCK_Crc

Clock gate name: Crc.

enumerator kCLOCK_Wwdt

Clock gate name: Wwdt.

enumerator kCLOCK_Rtc

Clock gate name: Rtc.

enumerator kCLOCK_Adc0

Clock gate name: Adc0.

enumerator kCLOCK_Mrt

Clock gate name: Mrt.

enumerator kCLOCK_Rit

Clock gate name: Rit.

enumerator kCLOCK_Sct0

Clock gate name: Sct0.

enumerator kCLOCK_Mcan0

Clock gate name: Mcan0.

enumerator kCLOCK_Mcan1

Clock gate name: Mcan1.

enumerator kCLOCK_Utick

Clock gate name: Utick.

enumerator kCLOCK_FlexComm0

Clock gate name: FlexComm0.

enumerator kCLOCK_FlexComm1

Clock gate name: FlexComm1.

enumerator kCLOCK_FlexComm2

Clock gate name: FlexComm2.

enumerator kCLOCK_FlexComm3

Clock gate name: FlexComm3.

enumerator kCLOCK_FlexComm4

Clock gate name: FlexComm4.

enumerator kCLOCK_FlexComm5

Clock gate name: FlexComm5.

enumerator kCLOCK_FlexComm6

Clock gate name: FlexComm6.

enumerator kCLOCK_FlexComm7

Clock gate name: FlexComm7.

enumerator kCLOCK_MinUart0

Clock gate name: MinUart0.

enumerator kCLOCK_MinUart1

Clock gate name: MinUart1.

enumerator kCLOCK_MinUart2

Clock gate name: MinUart2.

enumerator kCLOCK_MinUart3

Clock gate name: MinUart3.

enumerator kCLOCK_MinUart4

Clock gate name: MinUart4.

enumerator kCLOCK_MinUart5

Clock gate name: MinUart5.

enumerator kCLOCK_MinUart6

Clock gate name: MinUart6.

enumerator kCLOCK_MinUart7

Clock gate name: MinUart7.

enumerator kCLOCK_LSpi0

Clock gate name: LSpi0.

enumerator kCLOCK_LSpi1

Clock gate name: LSpi1.

enumerator kCLOCK_LSpi2

Clock gate name: LSpi2.

enumerator kCLOCK_LSpi3

Clock gate name: LSpi3.

enumerator kCLOCK_LSpi4

Clock gate name: LSpi4.

enumerator kCLOCK_LSpi5

Clock gate name: LSpi5.

enumerator kCLOCK_LSpi6

Clock gate name: LSpi6.

enumerator kCLOCK_LSpi7

Clock gate name: LSpi7.

enumerator kCLOCK_BI2c0

Clock gate name: BI2c0.

enumerator kCLOCK_BI2c1

Clock gate name: BI2c1.

enumerator kCLOCK_BI2c2

Clock gate name: BI2c2.

enumerator kCLOCK_BI2c3

Clock gate name: BI2c3.

enumerator kCLOCK_BI2c4

Clock gate name: BI2c4.

enumerator kCLOCK_BI2c5

Clock gate name: BI2c5.

enumerator kCLOCK_BI2c6

Clock gate name: BI2c6.

enumerator kCLOCK_BI2c7

Clock gate name: BI2c7.

enumerator kCLOCK_FlexI2s0

Clock gate name: FlexI2s0.

enumerator kCLOCK_FlexI2s1

Clock gate name: FlexI2s1.

enumerator kCLOCK_FlexI2s2

Clock gate name: FlexI2s2.

enumerator kCLOCK_FlexI2s3

Clock gate name: FlexI2s3.

enumerator kCLOCK_FlexI2s4

Clock gate name: FlexI2s4.

enumerator kCLOCK_FlexI2s5

Clock gate name: FlexI2s5.

enumerator kCLOCK_FlexI2s6

Clock gate name: FlexI2s6.

enumerator kCLOCK_FlexI2s7

Clock gate name: FlexI2s7.

enumerator kCLOCK_DMic

Clock gate name: DMic.

enumerator kCLOCK_Ct32b2

Clock gate name: Ct32b2.

enumerator kCLOCK_Usbd0

Clock gate name: Usbd0.

enumerator kCLOCK_Ct32b0

Clock gate name: Ct32b0.

enumerator kCLOCK_Ct32b1

Clock gate name: Ct32b1.

enumerator kCLOCK_BodyBias0

Clock gate name: BodyBias0.

enumerator kCLOCK_EzhArchB0

Clock gate name: EzhArchB0.

enumerator kCLOCK_Lcd

Clock gate name: Lcd.

enumerator kCLOCK_Sdio

Clock gate name: Sdio.

enumerator kCLOCK_Usbh1

Clock gate name: Usbh1.

enumerator kCLOCK_Usbd1

Clock gate name: Usbd1.

enumerator kCLOCK_UsbRam1

Clock gate name: UsbRam1.

enumerator kCLOCK_Emc

Clock gate name: Emc.

enumerator kCLOCK_Eth

Clock gate name: Eth.

enumerator kCLOCK_Gpio4

Clock gate name: Gpio4.

enumerator kCLOCK_Gpio5

Clock gate name: Gpio5.

enumerator kCLOCK_Aes

Clock gate name: Aes.

enumerator kCLOCK_Otp

Clock gate name: Otp.

enumerator kCLOCK_Rng

Clock gate name: Rng.

enumerator kCLOCK_FlexComm8

Clock gate name: FlexComm8.

enumerator kCLOCK_FlexComm9

Clock gate name: FlexComm9.

enumerator kCLOCK_MinUart8

Clock gate name: MinUart8.

enumerator kCLOCK_MinUart9

Clock gate name: MinUart9.

enumerator kCLOCK_LSpi8

Clock gate name: LSpi8.

enumerator kCLOCK_LSpi9

Clock gate name: LSpi9.

enumerator kCLOCK_BI2c8

Clock gate name: BI2c8.

enumerator kCLOCK_BI2c9

Clock gate name: BI2c9.

enumerator kCLOCK_FlexI2s8

Clock gate name: FlexI2s8.

enumerator kCLOCK_FlexI2s9

Clock gate name: FlexI2s9.

enumerator kCLOCK_Usbhmr0

Clock gate name: Usbhmr0.

enumerator kCLOCK_Usbhsl0

Clock gate name: Usbhsl0.

enumerator kCLOCK_Sha0

Clock gate name: Sha0.

enumerator kCLOCK_SmartCard0

Clock gate name: SmartCard0.

enumerator kCLOCK_SmartCard1

Clock gate name: SmartCard1.

enumerator kCLOCK_Ct32b3

Clock gate name: Ct32b3.

enumerator kCLOCK_Ct32b4

Clock gate name: Ct32b4.

enum _clock_name

Clock name used to get clock frequency.

Values:

enumerator kCLOCK_CoreSysClk

Core/system clock (aka MAIN_CLK)

enumerator kCLOCK_BusClk

Bus clock (AHB clock)

enumerator kCLOCK_ClockOut

CLOCKOUT

enumerator kCLOCK_FroHf

FRO48/96

enumerator kCLOCK_UsbPll

USB1 PLL

enumerator kCLOCK_Mclk

MCLK

enumerator kCLOCK_Fro12M

FRO12M

enumerator kCLOCK_ExtClk

External Clock

enumerator kCLOCK_PllOut

PLL Output

enumerator kCLOCK_UsbClk

USB input

enumerator kCLOCK_WdtOsc

Watchdog Oscillator

enumerator kCLOCK_Frg

Frg Clock

enumerator kCLOCK_AsyncApbClk

Async APB clock

enumerator kCLOCK_FlexI2S

FlexI2S clock

enum _async_clock_src

Clock source selections for the asynchronous APB clock.

Values:

enumerator kCLOCK_AsyncMainClk

Main System clock

enumerator kCLOCK_AsyncFro12Mhz

12MHz FRO

enumerator kCLOCK_AsyncAudioPllClk

Async Audio PLL clock.

enumerator kCLOCK_AsyncI2cClkFc6

Async I2C clock.

enum _clock_attach_id

The enumerator of clock attach Id.

Values:

enumerator kFRO12M_to_MAIN_CLK

Attach FRO12M to MAIN_CLK.

enumerator kEXT_CLK_to_MAIN_CLK

Attach EXT_CLK to MAIN_CLK.

enumerator kWDT_OSC_to_MAIN_CLK

Attach WDT_OSC to MAIN_CLK.

enumerator kFRO_HF_to_MAIN_CLK

Attach FRO_HF to MAIN_CLK.

enumerator kSYS_PLL_to_MAIN_CLK

Attach SYS_PLL to MAIN_CLK.

enumerator kOSC32K_to_MAIN_CLK

Attach OSC32K to MAIN_CLK.

enumerator kMAIN_CLK_to_CLKOUT

Attach MAIN_CLK to CLKOUT.

enumerator kEXT_CLK_to_CLKOUT

Attach EXT_CLK to CLKOUT.

enumerator kWDT_OSC_to_CLKOUT

Attach WDT_OSC to CLKOUT.

enumerator kFRO_HF_to_CLKOUT

Attach FRO_HF to CLKOUT.

enumerator kSYS_PLL_to_CLKOUT

Attach SYS_PLL to CLKOUT.

enumerator kUSB_PLL_to_CLKOUT

Attach USB_PLL to CLKOUT.

enumerator kAUDIO_PLL_to_CLKOUT

Attach AUDIO_PLL to CLKOUT.

enumerator kOSC32K_OSC_to_CLKOUT

Attach OSC32K_OSC to CLKOUT.

enumerator kFRO12M_to_SYS_PLL

Attach FRO12M to SYS_PLL.

enumerator kEXT_CLK_to_SYS_PLL

Attach EXT_CLK to SYS_PLL.

enumerator kWDT_OSC_to_SYS_PLL

Attach WDT_OSC to SYS_PLL.

enumerator kOSC32K_to_SYS_PLL

Attach OSC32K to SYS_PLL.

enumerator kNONE_to_SYS_PLL

Attach NONE to SYS_PLL.

enumerator kFRO12M_to_AUDIO_PLL

Attach FRO12M to AUDIO_PLL.

enumerator kEXT_CLK_to_AUDIO_PLL

Attach EXT_CLK to AUDIO_PLL.

enumerator kNONE_to_AUDIO_PLL

Attach NONE to AUDIO_PLL.

enumerator kMAIN_CLK_to_SPIFI_CLK

Attach MAIN_CLK to SPIFI_CLK.

enumerator kSYS_PLL_to_SPIFI_CLK

Attach SYS_PLL to SPIFI_CLK.

enumerator kUSB_PLL_to_SPIFI_CLK

Attach USB_PLL to SPIFI_CLK.

enumerator kFRO_HF_to_SPIFI_CLK

Attach FRO_HF to SPIFI_CLK.

enumerator kAUDIO_PLL_to_SPIFI_CLK

Attach AUDIO_PLL to SPIFI_CLK.

enumerator kNONE_to_SPIFI_CLK

Attach NONE to SPIFI_CLK.

enumerator kFRO_HF_to_ADC_CLK

Attach FRO_HF to ADC_CLK.

enumerator kSYS_PLL_to_ADC_CLK

Attach SYS_PLL to ADC_CLK.

enumerator kUSB_PLL_to_ADC_CLK

Attach USB_PLL to ADC_CLK.

enumerator kAUDIO_PLL_to_ADC_CLK

Attach AUDIO_PLL to ADC_CLK.

enumerator kNONE_to_ADC_CLK

Attach NONE to ADC_CLK.

enumerator kFRO_HF_to_USB0_CLK

Attach FRO_HF to USB0_CLK.

enumerator kSYS_PLL_to_USB0_CLK

Attach SYS_PLL to USB0_CLK.

enumerator kUSB_PLL_to_USB0_CLK

Attach USB_PLL to USB0_CLK.

enumerator kNONE_to_USB0_CLK

Attach NONE to USB0_CLK.

enumerator kFRO_HF_to_USB1_CLK

Attach FRO_HF to USB1_CLK.

enumerator kSYS_PLL_to_USB1_CLK

Attach SYS_PLL to USB1_CLK.

enumerator kUSB_PLL_to_USB1_CLK

Attach USB_PLL to USB1_CLK.

enumerator kNONE_to_USB1_CLK

Attach NONE to USB1_CLK.

enumerator kFRO12M_to_FLEXCOMM0

Attach FRO12M to FLEXCOMM0.

enumerator kFRO_HF_to_FLEXCOMM0

Attach FRO_HF to FLEXCOMM0.

enumerator kAUDIO_PLL_to_FLEXCOMM0

Attach AUDIO_PLL to FLEXCOMM0.

enumerator kMCLK_to_FLEXCOMM0

Attach MCLK to FLEXCOMM0.

enumerator kFRG_to_FLEXCOMM0

Attach FRG to FLEXCOMM0.

enumerator kNONE_to_FLEXCOMM0

Attach NONE to FLEXCOMM0.

enumerator kFRO12M_to_FLEXCOMM1

Attach FRO12M to FLEXCOMM1.

enumerator kFRO_HF_to_FLEXCOMM1

Attach FRO_HF to FLEXCOMM1.

enumerator kAUDIO_PLL_to_FLEXCOMM1

Attach AUDIO_PLL to FLEXCOMM1.

enumerator kMCLK_to_FLEXCOMM1

Attach MCLK to FLEXCOMM1.

enumerator kFRG_to_FLEXCOMM1

Attach FRG to FLEXCOMM1.

enumerator kNONE_to_FLEXCOMM1

Attach NONE to FLEXCOMM1.

enumerator kFRO12M_to_FLEXCOMM2

Attach FRO12M to FLEXCOMM2.

enumerator kFRO_HF_to_FLEXCOMM2

Attach FRO_HF to FLEXCOMM2.

enumerator kAUDIO_PLL_to_FLEXCOMM2

Attach AUDIO_PLL to FLEXCOMM2.

enumerator kMCLK_to_FLEXCOMM2

Attach MCLK to FLEXCOMM2.

enumerator kFRG_to_FLEXCOMM2

Attach FRG to FLEXCOMM2.

enumerator kNONE_to_FLEXCOMM2

Attach NONE to FLEXCOMM2.

enumerator kFRO12M_to_FLEXCOMM3

Attach FRO12M to FLEXCOMM3.

enumerator kFRO_HF_to_FLEXCOMM3

Attach FRO_HF to FLEXCOMM3.

enumerator kAUDIO_PLL_to_FLEXCOMM3

Attach AUDIO_PLL to FLEXCOMM3.

enumerator kMCLK_to_FLEXCOMM3

Attach MCLK to FLEXCOMM3.

enumerator kFRG_to_FLEXCOMM3

Attach FRG to FLEXCOMM3.

enumerator kNONE_to_FLEXCOMM3

Attach NONE to FLEXCOMM3.

enumerator kFRO12M_to_FLEXCOMM4

Attach FRO12M to FLEXCOMM4.

enumerator kFRO_HF_to_FLEXCOMM4

Attach FRO_HF to FLEXCOMM4.

enumerator kAUDIO_PLL_to_FLEXCOMM4

Attach AUDIO_PLL to FLEXCOMM4.

enumerator kMCLK_to_FLEXCOMM4

Attach MCLK to FLEXCOMM4.

enumerator kFRG_to_FLEXCOMM4

Attach FRG to FLEXCOMM4.

enumerator kNONE_to_FLEXCOMM4

Attach NONE to FLEXCOMM4.

enumerator kFRO12M_to_FLEXCOMM5

Attach FRO12M to FLEXCOMM5.

enumerator kFRO_HF_to_FLEXCOMM5

Attach FRO_HF to FLEXCOMM5.

enumerator kAUDIO_PLL_to_FLEXCOMM5

Attach AUDIO_PLL to FLEXCOMM5.

enumerator kMCLK_to_FLEXCOMM5

Attach MCLK to FLEXCOMM5.

enumerator kFRG_to_FLEXCOMM5

Attach FRG to FLEXCOMM5.

enumerator kNONE_to_FLEXCOMM5

Attach NONE to FLEXCOMM5.

enumerator kFRO12M_to_FLEXCOMM6

Attach FRO12M to FLEXCOMM6.

enumerator kFRO_HF_to_FLEXCOMM6

Attach FRO_HF to FLEXCOMM6.

enumerator kAUDIO_PLL_to_FLEXCOMM6

Attach AUDIO_PLL to FLEXCOMM6.

enumerator kMCLK_to_FLEXCOMM6

Attach MCLK to FLEXCOMM6.

enumerator kFRG_to_FLEXCOMM6

Attach FRG to FLEXCOMM6.

enumerator kNONE_to_FLEXCOMM6

Attach NONE to FLEXCOMM6.

enumerator kFRO12M_to_FLEXCOMM7

Attach FRO12M to FLEXCOMM7.

enumerator kFRO_HF_to_FLEXCOMM7

Attach FRO_HF to FLEXCOMM7.

enumerator kAUDIO_PLL_to_FLEXCOMM7

Attach AUDIO_PLL to FLEXCOMM7.

enumerator kMCLK_to_FLEXCOMM7

Attach MCLK to FLEXCOMM7.

enumerator kFRG_to_FLEXCOMM7

Attach FRG to FLEXCOMM7.

enumerator kNONE_to_FLEXCOMM7

Attach NONE to FLEXCOMM7.

enumerator kFRO12M_to_FLEXCOMM8

Attach FRO12M to FLEXCOMM8.

enumerator kFRO_HF_to_FLEXCOMM8

Attach FRO_HF to FLEXCOMM8.

enumerator kAUDIO_PLL_to_FLEXCOMM8

Attach AUDIO_PLL to FLEXCOMM8.

enumerator kMCLK_to_FLEXCOMM8

Attach MCLK to FLEXCOMM8.

enumerator kFRG_to_FLEXCOMM8

Attach FRG to FLEXCOMM8.

enumerator kNONE_to_FLEXCOMM8

Attach NONE to FLEXCOMM8.

enumerator kFRO12M_to_FLEXCOMM9

Attach FRO12M to FLEXCOMM9.

enumerator kFRO_HF_to_FLEXCOMM9

Attach FRO_HF to FLEXCOMM9.

enumerator kAUDIO_PLL_to_FLEXCOMM9

Attach AUDIO_PLL to FLEXCOMM9.

enumerator kMCLK_to_FLEXCOMM9

Attach MCLK to FLEXCOMM9.

enumerator kFRG_to_FLEXCOMM9

Attach FRG to FLEXCOMM9.

enumerator kNONE_to_FLEXCOMM9

Attach NONE to FLEXCOMM9.

enumerator kFRO_HF_to_MCLK

Attach FRO_HF to MCLK.

enumerator kAUDIO_PLL_to_MCLK

Attach AUDIO_PLL to MCLK.

enumerator kNONE_to_MCLK

Attach NONE to MCLK.

enumerator kMAIN_CLK_to_FRG

Attach MAIN_CLK to FRG.

enumerator kSYS_PLL_to_FRG

Attach SYS_PLL to FRG.

enumerator kFRO12M_to_FRG

Attach FRO12M to FRG.

enumerator kFRO_HF_to_FRG

Attach FRO_HF to FRG.

enumerator kNONE_to_FRG

Attach NONE to FRG.

enumerator kFRO12M_to_DMIC

Attach FRO12M to DMIC.

enumerator kFRO_HF_DIV_to_DMIC

Attach FRO_HF_DIV to DMIC.

enumerator kAUDIO_PLL_to_DMIC

Attach AUDIO_PLL to DMIC.

enumerator kMCLK_to_DMIC

Attach MCLK to DMIC.

enumerator kNONE_to_DMIC

Attach NONE to DMIC.

enumerator kMAIN_CLK_to_SCT_CLK

Attach MAIN_CLK to SCT_CLK.

enumerator kSYS_PLL_to_SCT_CLK

Attach SYS_PLL to SCT_CLK.

enumerator kFRO_HF_to_SCT_CLK

Attach FRO_HF to SCT_CLK.

enumerator kAUDIO_PLL_to_SCT_CLK

Attach AUDIO_PLL to SCT_CLK.

enumerator kNONE_to_SCT_CLK

Attach NONE to SCT_CLK.

enumerator kMAIN_CLK_to_SDIO_CLK

Attach MAIN_CLK to SDIO_CLK.

enumerator kSYS_PLL_to_SDIO_CLK

Attach SYS_PLL to SDIO_CLK.

enumerator kUSB_PLL_to_SDIO_CLK

Attach USB_PLL to SDIO_CLK.

enumerator kFRO_HF_to_SDIO_CLK

Attach FRO_HF to SDIO_CLK.

enumerator kAUDIO_PLL_to_SDIO_CLK

Attach AUDIO_PLL to SDIO_CLK.

enumerator kNONE_to_SDIO_CLK

Attach NONE to SDIO_CLK.

enumerator kMAIN_CLK_to_LCD_CLK

Attach MAIN_CLK to LCD_CLK.

enumerator kLCDCLKIN_to_LCD_CLK

Attach LCDCLKIN to LCD_CLK.

enumerator kFRO_HF_to_LCD_CLK

Attach FRO_HF to LCD_CLK.

enumerator kNONE_to_LCD_CLK

Attach NONE to LCD_CLK.

enumerator kMAIN_CLK_to_ASYNC_APB

Attach MAIN_CLK to ASYNC_APB.

enumerator kFRO12M_to_ASYNC_APB

Attach FRO12M to ASYNC_APB.

enumerator kAUDIO_PLL_to_ASYNC_APB

Attach AUDIO_PLL to ASYNC_APB.

enumerator kI2C_CLK_FC6_to_ASYNC_APB

Attach I2C_CLK_FC6 to ASYNC_APB.

enumerator kNONE_to_NONE

Attach NONE to NONE.

enum _clock_div_name

Clock dividers.

Values:

enumerator kCLOCK_DivSystickClk

Systick Clock Divider.

enumerator kCLOCK_DivArmTrClkDiv

Arm Tr Clk Div Divider.

enumerator kCLOCK_DivCan0Clk

Can0 Clock Divider.

enumerator kCLOCK_DivCan1Clk

Can1 Clock Divider.

enumerator kCLOCK_DivSmartCard0Clk

Smart Card0 Clock Divider.

enumerator kCLOCK_DivSmartCard1Clk

Smart Card1 Clock Divider.

enumerator kCLOCK_DivAhbClk

Ahb Clock Divider.

enumerator kCLOCK_DivClkOut

Clk Out Divider.

enumerator kCLOCK_DivFrohfClk

Frohf Clock Divider.

enumerator kCLOCK_DivSpifiClk

Spifi Clock Divider.

enumerator kCLOCK_DivAdcAsyncClk

Adc Async Clock Divider.

enumerator kCLOCK_DivUsb0Clk

Usb0 Clock Divider.

enumerator kCLOCK_DivUsb1Clk

Usb1 Clock Divider.

enumerator kCLOCK_DivFrg

Frg Divider.

enumerator kCLOCK_DivDmicClk

Dmic Clock Divider.

enumerator kCLOCK_DivMClk

I2S MCLK Clock Divider.

enumerator kCLOCK_DivLcdClk

Lcd Clock Divider.

enumerator kCLOCK_DivSctClk

Sct Clock Divider.

enumerator kCLOCK_DivEmcClk

Emc Clock Divider.

enumerator kCLOCK_DivSdioClk

Sdio clock divider.

enum _clock_flashtim

FLASH Access time definitions.

Values:

enumerator kCLOCK_Flash1Cycle

Flash accesses use 1 CPU clocks

enumerator kCLOCK_Flash2Cycle

Flash accesses use 2 CPU clocks

enumerator kCLOCK_Flash3Cycle

Flash accesses use 3 CPU clocks

enumerator kCLOCK_Flash4Cycle

Flash accesses use 4 CPU clocks

enumerator kCLOCK_Flash5Cycle

Flash accesses use 5 CPU clocks

enumerator kCLOCK_Flash6Cycle

Flash accesses use 6 CPU clocks

enumerator kCLOCK_Flash7Cycle

Flash accesses use 7 CPU clocks

enumerator kCLOCK_Flash8Cycle

Flash accesses use 8 CPU clocks

enumerator kCLOCK_Flash9Cycle

Flash accesses use 9 CPU clocks

enum _pll_error

PLL status definitions.

Values:

enumerator kStatus_PLL_Success

PLL operation was successful

enumerator kStatus_PLL_OutputTooLow

PLL output rate request was too low

enumerator kStatus_PLL_OutputTooHigh

PLL output rate request was too high

enumerator kStatus_PLL_InputTooLow

PLL input rate is too low

enumerator kStatus_PLL_InputTooHigh

PLL input rate is too high

enumerator kStatus_PLL_OutsideIntLimit

Requested output rate isn’t possible

enumerator kStatus_PLL_CCOTooLow

Requested CCO rate isn’t possible

enumerator kStatus_PLL_CCOTooHigh

Requested CCO rate isn’t possible

enum _clock_usb_src

USB clock source definition.

Values:

enumerator kCLOCK_UsbSrcFro

Use FRO 96 or 48 MHz.

enumerator kCLOCK_UsbSrcSystemPll

Use System PLL output.

enumerator kCLOCK_UsbSrcMainClock

Use Main clock.

enumerator kCLOCK_UsbSrcUsbPll

Use USB PLL clock.

enumerator kCLOCK_UsbSrcNone

Use None, this may be selected in order to reduce power when no output is needed.

enum _usb_pll_psel

USB PDEL Divider.

Values:

enumerator pSel_Divide_1
enumerator pSel_Divide_2
enumerator pSel_Divide_4
enumerator pSel_Divide_8
typedef enum _clock_ip_name clock_ip_name_t

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef enum _clock_name clock_name_t

Clock name used to get clock frequency.

typedef enum _async_clock_src async_clock_src_t

Clock source selections for the asynchronous APB clock.

typedef enum _clock_attach_id clock_attach_id_t

The enumerator of clock attach Id.

typedef enum _clock_div_name clock_div_name_t

Clock dividers.

typedef enum _clock_flashtim clock_flashtim_t

FLASH Access time definitions.

typedef struct _pll_config pll_config_t

PLL configuration structure.

This structure can be used to configure the settings for a PLL setup structure. Fill in the desired configuration for the PLL and call the PLL setup function to fill in a PLL setup structure.

typedef struct _pll_setup pll_setup_t

PLL setup structure This structure can be used to pre-build a PLL setup configuration at run-time and quickly set the PLL to the configuration. It can be populated with the PLL setup function. If powering up or waiting for PLL lock, the PLL input clock source should be configured prior to PLL setup.

typedef enum _pll_error pll_error_t

PLL status definitions.

typedef enum _clock_usb_src clock_usb_src_t

USB clock source definition.

typedef enum _usb_pll_psel usb_pll_psel

USB PDEL Divider.

typedef struct _usb_pll_setup usb_pll_setup_t

PLL setup structure This structure can be used to pre-build a USB PLL setup configuration at run-time and quickly set the usb PLL to the configuration. It can be populated with the USB PLL setup function. If powering up or waiting for USB PLL lock, the PLL input clock source should be configured prior to USB PLL setup.

static inline void CLOCK_EnableClock(clock_ip_name_t clk)
static inline void CLOCK_DisableClock(clock_ip_name_t clk)
static inline void CLOCK_SetFLASHAccessCycles(clock_flashtim_t clks)

Set FLASH memory access time in clocks.

Parameters:
  • clks – : Clock cycles for FLASH access

Returns:

Nothing

status_t CLOCK_SetupFROClocking(uint32_t iFreq)

Initialize the Core clock to given frequency (12, 48 or 96 MHz). Turns on FRO and uses default CCO, if freq is 12000000, then high speed output is off, else high speed output is enabled.

Parameters:
  • iFreq – : Desired frequency (must be one of CLK_FRO_12MHZ or CLK_FRO_48MHZ or CLK_FRO_96MHZ)

Returns:

returns success or fail status.

void CLOCK_AttachClk(clock_attach_id_t connection)

Configure the clock selection muxes.

Parameters:
  • connection – : Clock to be configured.

Returns:

Nothing

clock_attach_id_t CLOCK_GetClockAttachId(clock_attach_id_t attachId)

Get the actual clock attach id. This fuction uses the offset in input attach id, then it reads the actual source value in the register and combine the offset to obtain an actual attach id.

Parameters:
  • attachId – : Clock attach id to get.

Returns:

Clock source value.

void CLOCK_SetClkDiv(clock_div_name_t div_name, uint32_t divided_by_value, bool reset)

Setup peripheral clock dividers.

Parameters:
  • div_name – : Clock divider name

  • divided_by_value – Value to be divided

  • reset – : Whether to reset the divider counter.

Returns:

Nothing

void CLOCK_SetFLASHAccessCyclesForFreq(uint32_t iFreq)

Set the flash wait states for the input freuqency.

Parameters:
  • iFreq – : Input frequency

Returns:

Nothing

uint32_t CLOCK_SetFRGClock(uint32_t freq)

Set the frg output frequency.

Parameters:
  • freq – : output frequency

Returns:

0 : the frequency range is out of range. 1 : switch successfully.

uint32_t CLOCK_GetFRGInputClock(void)

Return Frequency of FRG input clock.

Returns:

Frequency value

uint32_t CLOCK_GetFreq(clock_name_t clockName)

Return Frequency of selected clock.

Returns:

Frequency of selected clock

uint32_t CLOCK_GetFro12MFreq(void)

Return Frequency of FRO 12MHz.

Returns:

Frequency of FRO 12MHz

uint32_t CLOCK_GetClockOutClkFreq(void)

Return Frequency of ClockOut.

Returns:

Frequency of ClockOut

uint32_t CLOCK_GetSpifiClkFreq(void)

Return Frequency of Spifi Clock.

Returns:

Frequency of Spifi.

uint32_t CLOCK_GetAdcClkFreq(void)

Return Frequency of Adc Clock.

Returns:

Frequency of Adc Clock.

uint32_t CLOCK_GetMCanClkFreq(uint32_t MCanSel)

brief Return Frequency of MCAN Clock param MCanSel : 0U: MCAN0; 1U: MCAN1 return Frequency of MCAN Clock

uint32_t CLOCK_GetUsb0ClkFreq(void)

Return Frequency of Usb0 Clock.

Returns:

Frequency of Usb0 Clock.

uint32_t CLOCK_GetUsb1ClkFreq(void)

Return Frequency of Usb1 Clock.

Returns:

Frequency of Usb1 Clock.

uint32_t CLOCK_GetMclkClkFreq(void)

Return Frequency of MClk Clock.

Returns:

Frequency of MClk Clock.

uint32_t CLOCK_GetSctClkFreq(void)

Return Frequency of SCTimer Clock.

Returns:

Frequency of SCTimer Clock.

uint32_t CLOCK_GetSdioClkFreq(void)

Return Frequency of SDIO Clock.

Returns:

Frequency of SDIO Clock.

uint32_t CLOCK_GetLcdClkFreq(void)

Return Frequency of LCD Clock.

Returns:

Frequency of LCD Clock.

uint32_t CLOCK_GetLcdClkIn(void)

Return Frequency of LCD CLKIN Clock.

Returns:

Frequency of LCD CLKIN Clock.

uint32_t CLOCK_GetExtClkFreq(void)

Return Frequency of External Clock.

Returns:

Frequency of External Clock. If no external clock is used returns 0.

uint32_t CLOCK_GetWdtOscFreq(void)

Return Frequency of Watchdog Oscillator.

Returns:

Frequency of Watchdog Oscillator

uint32_t CLOCK_GetFroHfFreq(void)

Return Frequency of High-Freq output of FRO.

Returns:

Frequency of High-Freq output of FRO

uint32_t CLOCK_GetFrgClkFreq(void)

Return Frequency of frg.

Returns:

Frequency of FRG

uint32_t CLOCK_GetDmicClkFreq(void)

Return Frequency of dmic.

Returns:

Frequency of DMIC

uint32_t CLOCK_GetPllOutFreq(void)

Return Frequency of PLL.

Returns:

Frequency of PLL

uint32_t CLOCK_GetUsbPllOutFreq(void)

Return Frequency of USB PLL.

Returns:

Frequency of PLL

uint32_t CLOCK_GetAudioPllOutFreq(void)

Return Frequency of AUDIO PLL.

Returns:

Frequency of PLL

uint32_t CLOCK_GetOsc32KFreq(void)

Return Frequency of 32kHz osc.

Returns:

Frequency of 32kHz osc

uint32_t CLOCK_GetCoreSysClkFreq(void)

Return Frequency of Core System.

Returns:

Frequency of Core System

uint32_t CLOCK_GetI2SMClkFreq(void)

Return Frequency of I2S MCLK Clock.

Returns:

Frequency of I2S MCLK Clock

uint32_t CLOCK_GetFlexCommClkFreq(uint32_t id)

Return Frequency of Flexcomm functional Clock.

Returns:

Frequency of Flexcomm functional Clock

__STATIC_INLINE async_clock_src_t CLOCK_GetAsyncApbClkSrc (void)

Return Asynchronous APB Clock source.

Returns:

Asynchronous APB CLock source

uint32_t CLOCK_GetAsyncApbClkFreq(void)

Return Frequency of Asynchronous APB Clock.

Returns:

Frequency of Asynchronous APB Clock Clock

__STATIC_INLINE uint32_t CLOCK_GetEmcClkFreq (void)

Return EMC source.

Returns:

EMC source

uint32_t CLOCK_GetAudioPLLInClockRate(void)

Return Audio PLL input clock rate.

Returns:

Audio PLL input clock rate

uint32_t CLOCK_GetSystemPLLInClockRate(void)

Return System PLL input clock rate.

Returns:

System PLL input clock rate

uint32_t CLOCK_GetSystemPLLOutClockRate(bool recompute)

Return System PLL output clock rate.

Note

The PLL rate is cached in the driver in a variable as the rate computation function can take some time to perform. It is recommended to use ‘false’ with the ‘recompute’ parameter.

Parameters:
  • recompute – : Forces a PLL rate recomputation if true

Returns:

System PLL output clock rate

uint32_t CLOCK_GetAudioPLLOutClockRate(bool recompute)

Return System AUDIO PLL output clock rate.

Note

The AUDIO PLL rate is cached in the driver in a variable as the rate computation function can take some time to perform. It is recommended to use ‘false’ with the ‘recompute’ parameter.

Parameters:
  • recompute – : Forces a AUDIO PLL rate recomputation if true

Returns:

System AUDIO PLL output clock rate

uint32_t CLOCK_GetUsbPLLOutClockRate(bool recompute)

Return System USB PLL output clock rate.

Note

The USB PLL rate is cached in the driver in a variable as the rate computation function can take some time to perform. It is recommended to use ‘false’ with the ‘recompute’ parameter.

Parameters:
  • recompute – : Forces a USB PLL rate recomputation if true

Returns:

System USB PLL output clock rate

__STATIC_INLINE void CLOCK_SetBypassPLL (bool bypass)

Enables and disables PLL bypass mode.

bypass : true to bypass PLL (PLL output = PLL input, false to disable bypass

Returns:

System PLL output clock rate

__STATIC_INLINE bool CLOCK_IsSystemPLLLocked (void)

Check if PLL is locked or not.

Returns:

true if the PLL is locked, false if not locked

__STATIC_INLINE bool CLOCK_IsUsbPLLLocked (void)

Check if USB PLL is locked or not.

Returns:

true if the USB PLL is locked, false if not locked

__STATIC_INLINE bool CLOCK_IsAudioPLLLocked (void)

Check if AUDIO PLL is locked or not.

Returns:

true if the AUDIO PLL is locked, false if not locked

__STATIC_INLINE void CLOCK_Enable_SysOsc (bool enable)

Enables and disables SYS OSC.

enable : true to enable SYS OSC, false to disable SYS OSC

void CLOCK_SetStoredPLLClockRate(uint32_t rate)

Store the current PLL rate.

Parameters:
  • rate – Current rate of the PLL

Returns:

Nothing

void CLOCK_SetStoredAudioPLLClockRate(uint32_t rate)

Store the current AUDIO PLL rate.

Parameters:
  • rate – Current rate of the PLL

Returns:

Nothing

uint32_t CLOCK_GetSystemPLLOutFromSetup(pll_setup_t *pSetup)

Return System PLL output clock rate from setup structure.

Parameters:
  • pSetup – : Pointer to a PLL setup structure

Returns:

System PLL output clock rate the setup structure will generate

uint32_t CLOCK_GetAudioPLLOutFromSetup(pll_setup_t *pSetup)

Return System AUDIO PLL output clock rate from setup structure.

Parameters:
  • pSetup – : Pointer to a PLL setup structure

Returns:

System PLL output clock rate the setup structure will generate

uint32_t CLOCK_GetAudioPLLOutFromFractSetup(pll_setup_t *pSetup)

Return System AUDIO PLL output clock rate from audio fractioanl setup structure.

Parameters:
  • pSetup – : Pointer to a PLL setup structure

Returns:

System PLL output clock rate the setup structure will generate

uint32_t CLOCK_GetUsbPLLOutFromSetup(const usb_pll_setup_t *pSetup)

Return System USB PLL output clock rate from setup structure.

Parameters:
  • pSetup – : Pointer to a PLL setup structure

Returns:

System PLL output clock rate the setup structure will generate

void CLOCK_SetStoredUsbPLLClockRate(uint32_t rate)

Set USB PLL output frequency.

Parameters:
  • rate – : frequency value

pll_error_t CLOCK_SetupPLLData(pll_config_t *pControl, pll_setup_t *pSetup)

Set PLL output based on the passed PLL setup data.

Note

Actual frequency for setup may vary from the desired frequency based on the accuracy of input clocks, rounding, non-fractional PLL mode, etc.

Parameters:
  • pControl – : Pointer to populated PLL control structure to generate setup with

  • pSetup – : Pointer to PLL setup structure to be filled

Returns:

PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetupAudioPLLData(pll_config_t *pControl, pll_setup_t *pSetup)

Set AUDIO PLL output based on the passed AUDIO PLL setup data.

Note

Actual frequency for setup may vary from the desired frequency based on the accuracy of input clocks, rounding, non-fractional PLL mode, etc.

Parameters:
  • pControl – : Pointer to populated PLL control structure to generate setup with

  • pSetup – : Pointer to PLL setup structure to be filled

Returns:

PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetupSystemPLLPrec(pll_setup_t *pSetup, uint32_t flagcfg)

Set PLL output from PLL setup structure (precise frequency)

Note

This function will power off the PLL, setup the PLL with the new setup data, and then optionally powerup the PLL, wait for PLL lock, and adjust system voltages to the new PLL rate. The function will not alter any source clocks (ie, main systen clock) that may use the PLL, so these should be setup prior to and after exiting the function.

Parameters:
  • pSetup – : Pointer to populated PLL setup structure

  • flagcfg – : Flag configuration for PLL config structure

Returns:

PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetupAudioPLLPrec(pll_setup_t *pSetup, uint32_t flagcfg)

Set AUDIO PLL output from AUDIOPLL setup structure (precise frequency)

Note

This function will power off the PLL, setup the PLL with the new setup data, and then optionally powerup the AUDIO PLL, wait for PLL lock, and adjust system voltages to the new AUDIOPLL rate. The function will not alter any source clocks (ie, main systen clock) that may use the AUDIO PLL, so these should be setup prior to and after exiting the function.

Parameters:
  • pSetup – : Pointer to populated PLL setup structure

  • flagcfg – : Flag configuration for PLL config structure

Returns:

PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetupAudioPLLPrecFract(pll_setup_t *pSetup, uint32_t flagcfg)

Set AUDIO PLL output from AUDIOPLL setup structure using the Audio Fractional divider register(precise

frequency)

Note

This function will power off the PLL, setup the PLL with the new setup data, and then optionally powerup the AUDIO PLL, wait for PLL lock, and adjust system voltages to the new AUDIOPLL rate. The function will not alter any source clocks (ie, main systen clock) that may use the AUDIO PLL, so these should be setup prior to and after exiting the function.

Parameters:
  • pSetup – : Pointer to populated PLL setup structure

  • flagcfg – : Flag configuration for PLL config structure

Returns:

PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetPLLFreq(const pll_setup_t *pSetup)

Set PLL output from PLL setup structure (precise frequency)

Note

This function will power off the PLL, setup the PLL with the new setup data, and then optionally powerup the PLL, wait for PLL lock, and adjust system voltages to the new PLL rate. The function will not alter any source clocks (ie, main systen clock) that may use the PLL, so these should be setup prior to and after exiting the function.

Parameters:
  • pSetup – : Pointer to populated PLL setup structure

Returns:

kStatus_PLL_Success on success, or PLL setup error code

pll_error_t CLOCK_SetAudioPLLFreq(const pll_setup_t *pSetup)

Set Audio PLL output from Audio PLL setup structure (precise frequency)

Note

This function will power off the PLL, setup the Audio PLL with the new setup data, and then optionally powerup the PLL, wait for Audio PLL lock, and adjust system voltages to the new PLL rate. The function will not alter any source clocks (ie, main systen clock) that may use the Audio PLL, so these should be setup prior to and after exiting the function.

Parameters:
  • pSetup – : Pointer to populated PLL setup structure

Returns:

kStatus_PLL_Success on success, or Audio PLL setup error code

pll_error_t CLOCK_SetUsbPLLFreq(const usb_pll_setup_t *pSetup)

Set USB PLL output from USB PLL setup structure (precise frequency)

Note

This function will power off the USB PLL, setup the PLL with the new setup data, and then optionally powerup the USB PLL, wait for USB PLL lock, and adjust system voltages to the new USB PLL rate. The function will not alter any source clocks (ie, usb pll clock) that may use the USB PLL, so these should be setup prior to and after exiting the function.

Parameters:
  • pSetup – : Pointer to populated USB PLL setup structure

Returns:

kStatus_PLL_Success on success, or USB PLL setup error code

void CLOCK_SetupSystemPLLMult(uint32_t multiply_by, uint32_t input_freq)

Set PLL output based on the multiplier and input frequency.

Note

Unlike the Chip_Clock_SetupSystemPLLPrec() function, this function does not disable or enable PLL power, wait for PLL lock, or adjust system voltages. These must be done in the application. The function will not alter any source clocks (ie, main systen clock) that may use the PLL, so these should be setup prior to and after exiting the function.

Parameters:
  • multiply_by – : multiplier

  • input_freq – : Clock input frequency of the PLL

Returns:

Nothing

static inline void CLOCK_DisableUsbDevicefs0Clock(clock_ip_name_t clk)

Disable USB clock.

Disable USB clock.

bool CLOCK_EnableUsbfs0DeviceClock(clock_usb_src_t src, uint32_t freq)

Enable USB Device FS clock.

Parameters:
  • src – : clock source

  • freq – clock frequency Enable USB Device Full Speed clock.

bool CLOCK_EnableUsbfs0HostClock(clock_usb_src_t src, uint32_t freq)

Enable USB HOST FS clock.

Parameters:
  • src – : clock source

  • freq – clock frequency Enable USB HOST Full Speed clock.

bool CLOCK_EnableUsbhs0DeviceClock(clock_usb_src_t src, uint32_t freq)

Enable USB Device HS clock.

Parameters:
  • src – : clock source

  • freq – clock frequency Enable USB Device High Speed clock.

bool CLOCK_EnableUsbhs0HostClock(clock_usb_src_t src, uint32_t freq)

Enable USB HOST HS clock.

Parameters:
  • src – : clock source

  • freq – clock frequency Enable USB HOST High Speed clock.

FSL_CLOCK_DRIVER_VERSION

CLOCK driver version 2.5.4.

FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL

Configure whether driver controls clock.

When set to 0, peripheral drivers will enable clock in initialize function and disable clock in de-initialize function. When set to 1, peripheral driver will not control the clock, application could control the clock out of the driver.

Note

All drivers share this feature switcher. If it is set to 1, application should handle clock enable and disable for all drivers.

CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT

User-defined the size of cache for CLOCK_PllGetConfig() function.

Once define this MACRO to be non-zero value, CLOCK_PllGetConfig() function would cache the recent calulation and accelerate the execution to get the right settings.

CLOCK_FROHF_SETTING_API_ROM_ADDRESS

FROHF clock setting API address in ROM.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
set_fro_frequency(iFreq)

Initialize the Core clock to given frequency (12, 48 or 96 MHz), this API is implememnt in ROM code. Turns on FRO and uses default CCO, if freq is 12000000, then high speed output is off, else high speed output is enabled. Usage: set_fro_frequency(frequency), (frequency must be one of 12, 48 or 96 MHz)

ADC_CLOCKS

Clock ip name array for ROM.

ROM_CLOCKS

Clock ip name array for ROM.

SRAM_CLOCKS

Clock ip name array for SRAM.

FLASH_CLOCKS

Clock ip name array for FLASH.

FMC_CLOCKS

Clock ip name array for FMC.

EEPROM_CLOCKS

Clock ip name array for EEPROM.

SPIFI_CLOCKS

Clock ip name array for SPIFI.

INPUTMUX_CLOCKS

Clock ip name array for INPUTMUX.

IOCON_CLOCKS

Clock ip name array for IOCON.

GPIO_CLOCKS

Clock ip name array for GPIO.

PINT_CLOCKS

Clock ip name array for PINT.

GINT_CLOCKS

Clock ip name array for GINT.

DMA_CLOCKS

Clock ip name array for DMA.

CRC_CLOCKS

Clock ip name array for CRC.

WWDT_CLOCKS

Clock ip name array for WWDT.

RTC_CLOCKS

Clock ip name array for RTC.

ADC0_CLOCKS

Clock ip name array for ADC0.

MRT_CLOCKS

Clock ip name array for MRT.

RIT_CLOCKS

Clock ip name array for RIT.

SCT_CLOCKS

Clock ip name array for SCT0.

MCAN_CLOCKS

Clock ip name array for MCAN.

UTICK_CLOCKS

Clock ip name array for UTICK.

FLEXCOMM_CLOCKS

Clock ip name array for FLEXCOMM.

LPUART_CLOCKS

Clock ip name array for LPUART.

BI2C_CLOCKS

Clock ip name array for BI2C.

LPSI_CLOCKS

Clock ip name array for LSPI.

FLEXI2S_CLOCKS

Clock ip name array for FLEXI2S.

DMIC_CLOCKS

Clock ip name array for DMIC.

CTIMER_CLOCKS

Clock ip name array for CT32B.

LCD_CLOCKS

Clock ip name array for LCD.

SDIO_CLOCKS

Clock ip name array for SDIO.

USBRAM_CLOCKS

Clock ip name array for USBRAM.

EMC_CLOCKS

Clock ip name array for EMC.

ETH_CLOCKS

Clock ip name array for ETH.

AES_CLOCKS

Clock ip name array for AES.

OTP_CLOCKS

Clock ip name array for OTP.

RNG_CLOCKS

Clock ip name array for RNG.

USBHMR0_CLOCKS

Clock ip name array for USBHMR0.

USBHSL0_CLOCKS

Clock ip name array for USBHSL0.

SHA0_CLOCKS

Clock ip name array for SHA0.

SMARTCARD_CLOCKS

Clock ip name array for SMARTCARD.

USBD_CLOCKS

Clock ip name array for USBD.

USBH_CLOCKS

Clock ip name array for USBH.

CLK_GATE_REG_OFFSET_SHIFT

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

CLK_GATE_REG_OFFSET_MASK
CLK_GATE_BIT_SHIFT_SHIFT
CLK_GATE_BIT_SHIFT_MASK
CLK_GATE_DEFINE(reg_offset, bit_shift)
CLK_GATE_ABSTRACT_REG_OFFSET(x)
CLK_GATE_ABSTRACT_BITS_SHIFT(x)
AHB_CLK_CTRL0
AHB_CLK_CTRL1
AHB_CLK_CTRL2
ASYNC_CLK_CTRL0
CLK_ATTACH_ID(mux, sel, pos)

Clock Mux Switches The encoding is as follows each connection identified is 32bits wide while 24bits are valuable starting from LSB upwards.

[4 bits for choice, 0 means invalid choice] [8 bits mux ID]*

MUX_A(mux, sel)
MUX_B(mux, sel, selector)
GET_ID_ITEM(connection)
GET_ID_NEXT_ITEM(connection)
GET_ID_ITEM_MUX(connection)
GET_ID_ITEM_SEL(connection)
GET_ID_SELECTOR(connection)
CM_MAINCLKSELA
CM_MAINCLKSELB
CM_CLKOUTCLKSELA
CM_SYSPLLCLKSEL
CM_AUDPLLCLKSEL
CM_SPIFICLKSEL
CM_ADCASYNCCLKSEL
CM_USB0CLKSEL
CM_USB1CLKSEL
CM_FXCOMCLKSEL0
CM_FXCOMCLKSEL1
CM_FXCOMCLKSEL2
CM_FXCOMCLKSEL3
CM_FXCOMCLKSEL4
CM_FXCOMCLKSEL5
CM_FXCOMCLKSEL6
CM_FXCOMCLKSEL7
CM_FXCOMCLKSEL8
CM_FXCOMCLKSEL9
CM_MCLKCLKSEL
CM_FRGCLKSEL
CM_DMICCLKSEL
CM_SCTCLKSEL
CM_LCDCLKSEL
CM_SDIOCLKSEL
CM_ASYNCAPB
PLL_CONFIGFLAG_USEINRATE

PLL configuration structure flags for ‘flags’ field These flags control how the PLL configuration function sets up the PLL setup structure.

When the PLL_CONFIGFLAG_USEINRATE flag is selected, the ‘InputRate’ field in the configuration structure must be assigned with the expected PLL frequency. If the PLL_CONFIGFLAG_USEINRATE is not used, ‘InputRate’ is ignored in the configuration function and the driver will determine the PLL rate from the currently selected PLL source. This flag might be used to configure the PLL input clock more accurately when using the WDT oscillator or a more dyanmic CLKIN source.

When the PLL_CONFIGFLAG_FORCENOFRACT flag is selected, the PLL hardware for the automatic bandwidth selection, Spread Spectrum (SS) support, and fractional M-divider are not used.

Flag to use InputRate in PLL configuration structure for setup

PLL_CONFIGFLAG_FORCENOFRACT

Force non-fractional output mode, PLL output will not use the fractional, automatic bandwidth, or SS \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ hardware

PLL_SETUPFLAG_POWERUP

PLL setup structure flags for ‘flags’ field These flags control how the PLL setup function sets up the PLL.

Setup will power on the PLL after setup

PLL_SETUPFLAG_WAITLOCK

Setup will wait for PLL lock, implies the PLL will be pwoered on

PLL_SETUPFLAG_ADGVOLT

Optimize system voltage for the new PLL rate

uint32_t desiredRate

Desired PLL rate in Hz

uint32_t inputRate

PLL input clock in Hz, only used if PLL_CONFIGFLAG_USEINRATE flag is set

uint32_t flags

PLL configuration flags, Or’ed value of PLL_CONFIGFLAG_* definitions

uint32_t pllctrl

PLL control register SYSPLLCTRL

uint32_t pllndec

PLL NDEC register SYSPLLNDEC

uint32_t pllpdec

PLL PDEC register SYSPLLPDEC

uint32_t pllmdec

PLL MDEC registers SYSPLLPDEC

uint32_t pllRate

Acutal PLL rate

uint32_t audpllfrac

only aduio PLL has this function

uint32_t flags

PLL setup flags, Or’ed value of PLL_SETUPFLAG_* definitions

uint8_t msel

USB PLL control register msel:1U-256U

uint8_t psel

USB PLL control register psel:only support inter 1U 2U 4U 8U

uint8_t nsel

USB PLL control register nsel:only suppoet inter 1U 2U 3U 4U

bool direct

USB PLL CCO output control

bool bypass

USB PLL inout clock bypass control

bool fbsel

USB PLL ineter mode and non-integer mode control

uint32_t inputRate

USB PLL input rate

struct _pll_config
#include <fsl_clock.h>

PLL configuration structure.

This structure can be used to configure the settings for a PLL setup structure. Fill in the desired configuration for the PLL and call the PLL setup function to fill in a PLL setup structure.

struct _pll_setup
#include <fsl_clock.h>

PLL setup structure This structure can be used to pre-build a PLL setup configuration at run-time and quickly set the PLL to the configuration. It can be populated with the PLL setup function. If powering up or waiting for PLL lock, the PLL input clock source should be configured prior to PLL setup.

struct _usb_pll_setup
#include <fsl_clock.h>

PLL setup structure This structure can be used to pre-build a USB PLL setup configuration at run-time and quickly set the usb PLL to the configuration. It can be populated with the USB PLL setup function. If powering up or waiting for USB PLL lock, the PLL input clock source should be configured prior to USB PLL setup.

CRC: Cyclic Redundancy Check Driver

FSL_CRC_DRIVER_VERSION

CRC driver version. Version 2.1.1.

Current version: 2.1.1

Change log:

  • Version 2.0.0

    • initial version

  • Version 2.0.1

    • add explicit type cast when writing to WR_DATA

  • Version 2.0.2

    • Fix MISRA issue

  • Version 2.1.0

    • Add CRC_WriteSeed function

  • Version 2.1.1

    • Fix MISRA issue

enum _crc_polynomial

CRC polynomials to use.

Values:

enumerator kCRC_Polynomial_CRC_CCITT

x^16+x^12+x^5+1

enumerator kCRC_Polynomial_CRC_16

x^16+x^15+x^2+1

enumerator kCRC_Polynomial_CRC_32

x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

typedef enum _crc_polynomial crc_polynomial_t

CRC polynomials to use.

typedef struct _crc_config crc_config_t

CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_Init(CRC_Type *base, const crc_config_t *config)

Enables and configures the CRC peripheral module.

This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures the CRC engine and starts checksum computation by writing the seed.

Parameters:
  • base – CRC peripheral address.

  • config – CRC module configuration structure.

static inline void CRC_Deinit(CRC_Type *base)

Disables the CRC peripheral module.

This functions disables the CRC peripheral clock in the LPC SYSCON block.

Parameters:
  • base – CRC peripheral address.

void CRC_Reset(CRC_Type *base)

resets CRC peripheral module.

Parameters:
  • base – CRC peripheral address.

void CRC_WriteSeed(CRC_Type *base, uint32_t seed)

Write seed to CRC peripheral module.

Parameters:
  • base – CRC peripheral address.

  • seed – CRC Seed value.

void CRC_GetDefaultConfig(crc_config_t *config)

Loads default values to CRC protocol configuration structure.

Loads default values to CRC protocol configuration structure. The default values are:

config->polynomial = kCRC_Polynomial_CRC_CCITT;
config->reverseIn = false;
config->complementIn = false;
config->reverseOut = false;
config->complementOut = false;
config->seed = 0xFFFFU;

Parameters:
  • config – CRC protocol configuration structure

void CRC_GetConfig(CRC_Type *base, crc_config_t *config)

Loads actual values configured in CRC peripheral to CRC protocol configuration structure.

The values, including seed, can be used to resume CRC calculation later.

Parameters:
  • base – CRC peripheral address.

  • config – CRC protocol configuration structure

void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)

Writes data to the CRC module.

Writes input data buffer bytes to CRC data register.

Parameters:
  • base – CRC peripheral address.

  • data – Input data stream, MSByte in data[0].

  • dataSize – Size of the input data buffer in bytes.

static inline uint32_t CRC_Get32bitResult(CRC_Type *base)

Reads 32-bit checksum from the CRC module.

Reads CRC data register.

Parameters:
  • base – CRC peripheral address.

Returns:

final 32-bit checksum, after configured bit reverse and complement operations.

static inline uint16_t CRC_Get16bitResult(CRC_Type *base)

Reads 16-bit checksum from the CRC module.

Reads CRC data register.

Parameters:
  • base – CRC peripheral address.

Returns:

final 16-bit checksum, after configured bit reverse and complement operations.

CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT

Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE as default.

struct _crc_config
#include <fsl_crc.h>

CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members

crc_polynomial_t polynomial

CRC polynomial.

bool reverseIn

Reverse bits on input.

bool complementIn

Perform 1’s complement on input.

bool reverseOut

Reverse bits on output.

bool complementOut

Perform 1’s complement on output.

uint32_t seed

Starting checksum value.

CTIMER: Standard counter/timers

void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)

Ungates the clock and configures the peripheral for basic operation.

Note

This API should be called at the beginning of the application before using the driver.

Parameters:
  • base – Ctimer peripheral base address

  • config – Pointer to the user configuration structure.

void CTIMER_Deinit(CTIMER_Type *base)

Gates the timer clock.

Parameters:
  • base – Ctimer peripheral base address

void CTIMER_GetDefaultConfig(ctimer_config_t *config)

Fills in the timers configuration structure with the default settings.

The default values are:

config->mode = kCTIMER_TimerMode;
config->input = kCTIMER_Capture_0;
config->prescale = 0;

Parameters:
  • config – Pointer to the user configuration structure.

status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint32_t pwmPeriod, uint32_t pulsePeriod, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value and other match parameters to generate a PWM signal. This function can manually assign the specified channel to set the PWM cycle.

Note

When setting PWM output from multiple output pins, all should use the same PWM period

Parameters:
  • base – Ctimer peripheral base address

  • pwmPeriodChannel – Specify the channel to control the PWM period

  • matchChannel – Match pin to be used to output the PWM signal

  • pwmPeriod – PWM period match value

  • pulsePeriod – Pulse width match value

  • enableInt – Enable interrupt when the timer value reaches the match value of the PWM pulse, if it is 0 then no interrupt will be generated.

Returns:

kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeriodChannel; this channel is reserved to set the PWM cycle If PWM pulse width register value is larger than 0xFFFFFFFF.

status_t CTIMER_SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint8_t dutyCyclePercent, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value and other match parameters to generate a PWM signal. This function can manually assign the specified channel to set the PWM cycle.

Note

When setting PWM output from multiple output pins, all should use the same PWM frequency. Please use CTIMER_SetupPwmPeriod to set up the PWM with high resolution.

Parameters:
  • base – Ctimer peripheral base address

  • pwmPeriodChannel – Specify the channel to control the PWM period

  • matchChannel – Match pin to be used to output the PWM signal

  • dutyCyclePercent – PWM pulse width; the value should be between 0 to 100

  • pwmFreq_Hz – PWM signal frequency in Hz

  • srcClock_Hz – Timer counter clock in Hz

  • enableInt – Enable interrupt when the timer value reaches the match value of the PWM pulse, if it is 0 then no interrupt will be generated.

static inline void CTIMER_UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t matchChannel, uint32_t pulsePeriod)

Updates the pulse period of an active PWM signal.

Parameters:
  • base – Ctimer peripheral base address

  • matchChannel – Match pin to be used to output the PWM signal

  • pulsePeriod – New PWM pulse width match value

status_t CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel, ctimer_match_t matchChannel, uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

Note

Please use CTIMER_SetupPwmPeriod to update the PWM with high resolution. This function can manually assign the specified channel to set the PWM cycle.

Parameters:
  • base – Ctimer peripheral base address

  • pwmPeriodChannel – Specify the channel to control the PWM period

  • matchChannel – Match pin to be used to output the PWM signal

  • dutyCyclePercent – New PWM pulse width; the value should be between 0 to 100

Returns:

kStatus_Success on success kStatus_Fail If PWM pulse width register value is larger than 0xFFFFFFFF.

static inline void CTIMER_EnableInterrupts(CTIMER_Type *base, uint32_t mask)

Enables the selected Timer interrupts.

Parameters:
  • base – Ctimer peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration ctimer_interrupt_enable_t

static inline void CTIMER_DisableInterrupts(CTIMER_Type *base, uint32_t mask)

Disables the selected Timer interrupts.

Parameters:
  • base – Ctimer peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetEnabledInterrupts(CTIMER_Type *base)

Gets the enabled Timer interrupts.

Parameters:
  • base – Ctimer peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetStatusFlags(CTIMER_Type *base)

Gets the Timer status flags.

Parameters:
  • base – Ctimer peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration ctimer_status_flags_t

static inline void CTIMER_ClearStatusFlags(CTIMER_Type *base, uint32_t mask)

Clears the Timer status flags.

Parameters:
  • base – Ctimer peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration ctimer_status_flags_t

static inline void CTIMER_StartTimer(CTIMER_Type *base)

Starts the Timer counter.

Parameters:
  • base – Ctimer peripheral base address

static inline void CTIMER_StopTimer(CTIMER_Type *base)

Stops the Timer counter.

Parameters:
  • base – Ctimer peripheral base address

FSL_CTIMER_DRIVER_VERSION

Version 2.3.3

enum _ctimer_capture_channel

List of Timer capture channels.

Values:

enumerator kCTIMER_Capture_0

Timer capture channel 0

enumerator kCTIMER_Capture_1

Timer capture channel 1

enumerator kCTIMER_Capture_3

Timer capture channel 3

enum _ctimer_capture_edge

List of capture edge options.

Values:

enumerator kCTIMER_Capture_RiseEdge

Capture on rising edge

enumerator kCTIMER_Capture_FallEdge

Capture on falling edge

enumerator kCTIMER_Capture_BothEdge

Capture on rising and falling edge

enum _ctimer_match

List of Timer match registers.

Values:

enumerator kCTIMER_Match_0

Timer match register 0

enumerator kCTIMER_Match_1

Timer match register 1

enumerator kCTIMER_Match_2

Timer match register 2

enumerator kCTIMER_Match_3

Timer match register 3

enum _ctimer_external_match

List of external match.

Values:

enumerator kCTIMER_External_Match_0

External match 0

enumerator kCTIMER_External_Match_1

External match 1

enumerator kCTIMER_External_Match_2

External match 2

enumerator kCTIMER_External_Match_3

External match 3

enum _ctimer_match_output_control

List of output control options.

Values:

enumerator kCTIMER_Output_NoAction

No action is taken

enumerator kCTIMER_Output_Clear

Clear the EM bit/output to 0

enumerator kCTIMER_Output_Set

Set the EM bit/output to 1

enumerator kCTIMER_Output_Toggle

Toggle the EM bit/output

enum _ctimer_timer_mode

List of Timer modes.

Values:

enumerator kCTIMER_TimerMode
enumerator kCTIMER_IncreaseOnRiseEdge
enumerator kCTIMER_IncreaseOnFallEdge
enumerator kCTIMER_IncreaseOnBothEdge
enum _ctimer_interrupt_enable

List of Timer interrupts.

Values:

enumerator kCTIMER_Match0InterruptEnable

Match 0 interrupt

enumerator kCTIMER_Match1InterruptEnable

Match 1 interrupt

enumerator kCTIMER_Match2InterruptEnable

Match 2 interrupt

enumerator kCTIMER_Match3InterruptEnable

Match 3 interrupt

enum _ctimer_status_flags

List of Timer flags.

Values:

enumerator kCTIMER_Match0Flag

Match 0 interrupt flag

enumerator kCTIMER_Match1Flag

Match 1 interrupt flag

enumerator kCTIMER_Match2Flag

Match 2 interrupt flag

enumerator kCTIMER_Match3Flag

Match 3 interrupt flag

enum ctimer_callback_type_t

Callback type when registering for a callback. When registering a callback an array of function pointers is passed the size could be 1 or 8, the callback type will tell that.

Values:

enumerator kCTIMER_SingleCallback

Single Callback type where there is only one callback for the timer. based on the status flags different channels needs to be handled differently

enumerator kCTIMER_MultipleCallback

Multiple Callback type where there can be 8 valid callbacks, one per channel. for both match/capture

typedef enum _ctimer_capture_channel ctimer_capture_channel_t

List of Timer capture channels.

typedef enum _ctimer_capture_edge ctimer_capture_edge_t

List of capture edge options.

typedef enum _ctimer_match ctimer_match_t

List of Timer match registers.

typedef enum _ctimer_external_match ctimer_external_match_t

List of external match.

typedef enum _ctimer_match_output_control ctimer_match_output_control_t

List of output control options.

typedef enum _ctimer_timer_mode ctimer_timer_mode_t

List of Timer modes.

typedef enum _ctimer_interrupt_enable ctimer_interrupt_enable_t

List of Timer interrupts.

typedef enum _ctimer_status_flags ctimer_status_flags_t

List of Timer flags.

typedef void (*ctimer_callback_t)(uint32_t flags)
typedef struct _ctimer_match_config ctimer_match_config_t

Match configuration.

This structure holds the configuration settings for each match register.

typedef struct _ctimer_config ctimer_config_t

Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const ctimer_match_config_t *config)

Setup the match register.

User configuration is used to setup the match value and action to be taken when a match occurs.

Parameters:
  • base – Ctimer peripheral base address

  • matchChannel – Match register to configure

  • config – Pointer to the match configuration structure

uint32_t CTIMER_GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)

Get the status of output match.

This function gets the status of output MAT, whether or not this output is connected to a pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 = LOW. 1 = HIGH.

Parameters:
  • base – Ctimer peripheral base address

  • matchChannel – External match channel, user can obtain the status of multiple match channels at the same time by using the logic of “|” enumeration ctimer_external_match_t

Returns:

The mask of external match channel status flags. Users need to use the _ctimer_external_match type to decode the return variables.

void CTIMER_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, ctimer_capture_edge_t edge, bool enableInt)

Setup the capture.

Parameters:
  • base – Ctimer peripheral base address

  • capture – Capture channel to configure

  • edge – Edge on the channel that will trigger a capture

  • enableInt – Flag to enable channel interrupts, if enabled then the registered call back is called upon capture

static inline uint32_t CTIMER_GetTimerCountValue(CTIMER_Type *base)

Get the timer count value from TC register.

Parameters:
  • base – Ctimer peripheral base address.

Returns:

return the timer count value.

void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func, ctimer_callback_type_t cb_type)

Register callback.

Parameters:
  • base – Ctimer peripheral base address

  • cb_func – callback function

  • cb_type – callback function type, singular or multiple

static inline void CTIMER_Reset(CTIMER_Type *base)

Reset the counter.

The timer counter and prescale counter are reset on the next positive edge of the APB clock.

Parameters:
  • base – Ctimer peripheral base address

static inline void CTIMER_SetPrescale(CTIMER_Type *base, uint32_t prescale)

Setup the timer prescale value.

Specifies the maximum value for the Prescale Counter.

Parameters:
  • base – Ctimer peripheral base address

  • prescale – Prescale value

static inline uint32_t CTIMER_GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel_t capture)

Get capture channel value.

Get the counter/timer value on the corresponding capture channel.

Parameters:
  • base – Ctimer peripheral base address

  • capture – Select capture channel

Returns:

The timer count capture value.

static inline void CTIMER_EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t match, bool enable)

Enable reset match channel.

Set the specified match channel reset operation.

Parameters:
  • base – Ctimer peripheral base address

  • match – match channel used

  • enable – Enable match channel reset operation.

static inline void CTIMER_EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t match, bool enable)

Enable stop match channel.

Set the specified match channel stop operation.

Parameters:
  • base – Ctimer peripheral base address.

  • match – match channel used.

  • enable – Enable match channel stop operation.

static inline void CTIMER_EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t match, bool enable)

Enable reload channel falling edge.

Enable the specified match channel reload match shadow value.

Parameters:
  • base – Ctimer peripheral base address.

  • match – match channel used.

  • enable – Enable .

static inline void CTIMER_EnableRisingEdgeCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, bool enable)

Enable capture channel rising edge.

Sets the specified capture channel for rising edge capture.

Parameters:
  • base – Ctimer peripheral base address.

  • capture – capture channel used.

  • enable – Enable rising edge capture.

static inline void CTIMER_EnableFallingEdgeCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, bool enable)

Enable capture channel falling edge.

Sets the specified capture channel for falling edge capture.

Parameters:
  • base – Ctimer peripheral base address.

  • capture – capture channel used.

  • enable – Enable falling edge capture.

static inline void CTIMER_SetShadowValue(CTIMER_Type *base, ctimer_match_t match, uint32_t matchvalue)

Set the specified match shadow channel.

Parameters:
  • base – Ctimer peripheral base address.

  • match – match channel used.

  • matchvalue – Reload the value of the corresponding match register.

struct _ctimer_match_config
#include <fsl_ctimer.h>

Match configuration.

This structure holds the configuration settings for each match register.

Public Members

uint32_t matchValue

This is stored in the match register

bool enableCounterReset

true: Match will reset the counter false: Match will not reser the counter

bool enableCounterStop

true: Match will stop the counter false: Match will not stop the counter

ctimer_match_output_control_t outControl

Action to be taken on a match on the EM bit/output

bool outPinInitState

Initial value of the EM bit/output

bool enableInterrupt

true: Generate interrupt upon match false: Do not generate interrupt on match

struct _ctimer_config
#include <fsl_ctimer.h>

Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

ctimer_timer_mode_t mode

Timer mode

ctimer_capture_channel_t input

Input channel to increment the timer, used only in timer modes that rely on this input signal to increment TC

uint32_t prescale

Prescale value

DMA: Direct Memory Access Controller Driver

void DMA_Init(DMA_Type *base)

Initializes DMA peripheral.

This function enable the DMA clock, set descriptor table and enable DMA peripheral.

Parameters:
  • base – DMA peripheral base address.

void DMA_Deinit(DMA_Type *base)

Deinitializes DMA peripheral.

This function gates the DMA clock.

Parameters:
  • base – DMA peripheral base address.

void DMA_InstallDescriptorMemory(DMA_Type *base, void *addr)

Install DMA descriptor memory.

This function used to register DMA descriptor memory for linked transfer, a typical case is ping pong transfer which will request more than one DMA descriptor memory space, althrough current DMA driver has a default DMA descriptor buffer, but it support one DMA descriptor for one channel only.

Parameters:
  • base – DMA base address.

  • addr – DMA descriptor address

static inline bool DMA_ChannelIsActive(DMA_Type *base, uint32_t channel)

Return whether DMA channel is processing transfer.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

Returns:

True for active state, false otherwise.

static inline bool DMA_ChannelIsBusy(DMA_Type *base, uint32_t channel)

Return whether DMA channel is busy.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

Returns:

True for busy state, false otherwise.

static inline void DMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel)

Enables the interrupt source for the DMA transfer.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel)

Disables the interrupt source for the DMA transfer.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_EnableChannel(DMA_Type *base, uint32_t channel)

Enable DMA channel.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_DisableChannel(DMA_Type *base, uint32_t channel)

Disable DMA channel.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_EnableChannelPeriphRq(DMA_Type *base, uint32_t channel)

Set PERIPHREQEN of channel configuration register.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_DisableChannelPeriphRq(DMA_Type *base, uint32_t channel)

Get PERIPHREQEN value of channel configuration register.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

Returns:

True for enabled PeriphRq, false for disabled.

void DMA_ConfigureChannelTrigger(DMA_Type *base, uint32_t channel, dma_channel_trigger_t *trigger)

Set trigger settings of DMA channel.

Deprecated:

Do not use this function. It has been superceded by DMA_SetChannelConfig.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

  • trigger – trigger configuration.

void DMA_SetChannelConfig(DMA_Type *base, uint32_t channel, dma_channel_trigger_t *trigger, bool isPeriph)

set channel config.

This function provide a interface to configure channel configuration reisters.

Parameters:
  • base – DMA base address.

  • channel – DMA channel number.

  • trigger – channel configurations structure.

  • isPeriph – true is periph request, false is not.

static inline uint32_t DMA_SetChannelXferConfig(bool reload, bool clrTrig, bool intA, bool intB, uint8_t width, uint8_t srcInc, uint8_t dstInc, uint32_t bytes)

DMA channel xfer transfer configurations.

Parameters:
  • reload – true is reload link descriptor after current exhaust, false is not

  • clrTrig – true is clear trigger status, wait software trigger, false is not

  • intA – enable interruptA

  • intB – enable interruptB

  • width – transfer width

  • srcInc – source address interleave size

  • dstInc – destination address interleave size

  • bytes – transfer bytes

Returns:

The vaule of xfer config

uint32_t DMA_GetRemainingBytes(DMA_Type *base, uint32_t channel)

Gets the remaining bytes of the current DMA descriptor transfer.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

Returns:

The number of bytes which have not been transferred yet.

static inline void DMA_SetChannelPriority(DMA_Type *base, uint32_t channel, dma_priority_t priority)

Set priority of channel configuration register.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

  • priority – Channel priority value.

static inline dma_priority_t DMA_GetChannelPriority(DMA_Type *base, uint32_t channel)

Get priority of channel configuration register.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

Returns:

Channel priority value.

static inline void DMA_SetChannelConfigValid(DMA_Type *base, uint32_t channel)

Set channel configuration valid.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_DoChannelSoftwareTrigger(DMA_Type *base, uint32_t channel)

Do software trigger for the channel.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

static inline void DMA_LoadChannelTransferConfig(DMA_Type *base, uint32_t channel, uint32_t xfer)

Load channel transfer configurations.

Parameters:
  • base – DMA peripheral base address.

  • channel – DMA channel number.

  • xfer – transfer configurations.

void DMA_CreateDescriptor(dma_descriptor_t *desc, dma_xfercfg_t *xfercfg, void *srcAddr, void *dstAddr, void *nextDesc)

Create application specific DMA descriptor to be used in a chain in transfer.

Deprecated:

Do not use this function. It has been superceded by DMA_SetupDescriptor.

Parameters:
  • desc – DMA descriptor address.

  • xfercfg – Transfer configuration for DMA descriptor.

  • srcAddr – Address of last item to transmit

  • dstAddr – Address of last item to receive.

  • nextDesc – Address of next descriptor in chain.

void DMA_SetupDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc)

setup dma descriptor

Note: This function do not support configure wrap descriptor.

Parameters:
  • desc – DMA descriptor address.

  • xfercfg – Transfer configuration for DMA descriptor.

  • srcStartAddr – Start address of source address.

  • dstStartAddr – Start address of destination address.

  • nextDesc – Address of next descriptor in chain.

void DMA_SetupChannelDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc, dma_burst_wrap_t wrapType, uint32_t burstSize)

setup dma channel descriptor

Note: This function support configure wrap descriptor.

Parameters:
  • desc – DMA descriptor address.

  • xfercfg – Transfer configuration for DMA descriptor.

  • srcStartAddr – Start address of source address.

  • dstStartAddr – Start address of destination address.

  • nextDesc – Address of next descriptor in chain.

  • wrapType – burst wrap type.

  • burstSize – burst size, reference _dma_burst_size.

void DMA_LoadChannelDescriptor(DMA_Type *base, uint32_t channel, dma_descriptor_t *descriptor)

load channel transfer decriptor.

This function can be used to load desscriptor to driver internal channel descriptor that is used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful for the case:

  1. for the polling transfer, application can allocate a local descriptor memory table to prepare a descriptor firstly and then call this api to load the configured descriptor to driver descriptor table.

    DMA_Init(DMA0);
    DMA_EnableChannel(DMA0, DEMO_DMA_CHANNEL);
    DMA_SetupDescriptor(desc, xferCfg, s_srcBuffer, &s_destBuffer[0], NULL);
    DMA_LoadChannelDescriptor(DMA0, DEMO_DMA_CHANNEL, (dma_descriptor_t *)desc);
    DMA_DoChannelSoftwareTrigger(DMA0, DEMO_DMA_CHANNEL);
    while(DMA_ChannelIsBusy(DMA0, DEMO_DMA_CHANNEL))
    {}
    

Parameters:
  • base – DMA base address.

  • channel – DMA channel.

  • descriptor – configured DMA descriptor.

void DMA_AbortTransfer(dma_handle_t *handle)

Abort running transfer by handle.

This function aborts DMA transfer specified by handle.

Parameters:
  • handle – DMA handle pointer.

void DMA_CreateHandle(dma_handle_t *handle, DMA_Type *base, uint32_t channel)

Creates the DMA handle.

This function is called if using transaction API for DMA. This function initializes the internal state of DMA handle.

Parameters:
  • handle – DMA handle pointer. The DMA handle stores callback function and parameters.

  • base – DMA peripheral base address.

  • channel – DMA channel number.

void DMA_SetCallback(dma_handle_t *handle, dma_callback callback, void *userData)

Installs a callback function for the DMA transfer.

This callback is called in DMA IRQ handler. Use the callback to do something after the current major loop transfer completes.

Parameters:
  • handle – DMA handle pointer.

  • callback – DMA callback function pointer.

  • userData – Parameter for callback function.

void DMA_PrepareTransfer(dma_transfer_config_t *config, void *srcAddr, void *dstAddr, uint32_t byteWidth, uint32_t transferBytes, dma_transfer_type_t type, void *nextDesc)

Prepares the DMA transfer structure.

Deprecated:

Do not use this function. It has been superceded by DMA_PrepareChannelTransfer. This function prepares the transfer configuration structure according to the user input.

Note

The data address and the data width must be consistent. For example, if the SRC is 4 bytes, so the source address must be 4 bytes aligned, or it shall result in source address error(SAE).

Parameters:
  • config – The user configuration structure of type dma_transfer_t.

  • srcAddr – DMA transfer source address.

  • dstAddr – DMA transfer destination address.

  • byteWidth – DMA transfer destination address width(bytes).

  • transferBytes – DMA transfer bytes to be transferred.

  • type – DMA transfer type.

  • nextDesc – Chain custom descriptor to transfer.

void DMA_PrepareChannelTransfer(dma_channel_config_t *config, void *srcStartAddr, void *dstStartAddr, uint32_t xferCfg, dma_transfer_type_t type, dma_channel_trigger_t *trigger, void *nextDesc)

Prepare channel transfer configurations.

This function used to prepare channel transfer configurations.

Parameters:
  • config – Pointer to DMA channel transfer configuration structure.

  • srcStartAddr – source start address.

  • dstStartAddr – destination start address.

  • xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER about to how to get xferCfg value.

  • type – transfer type.

  • trigger – DMA channel trigger configurations.

  • nextDesc – address of next descriptor.

status_t DMA_SubmitTransfer(dma_handle_t *handle, dma_transfer_config_t *config)

Submits the DMA transfer request.

Deprecated:

Do not use this function. It has been superceded by DMA_SubmitChannelTransfer.

This function submits the DMA transfer request according to the transfer configuration structure. If the user submits the transfer request repeatedly, this function packs an unprocessed request as a TCD and enables scatter/gather feature to process it in the next time.

Parameters:
  • handle – DMA handle pointer.

  • config – Pointer to DMA transfer configuration structure.

Return values:
  • kStatus_DMA_Success – It means submit transfer request succeed.

  • kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer request is not allowed.

  • kStatus_DMA_Busy – It means the given channel is busy, need to submit request later.

void DMA_SubmitChannelTransferParameter(dma_handle_t *handle, uint32_t xferCfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc)

Submit channel transfer paramter directly.

This function used to configue channel head descriptor that is used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful for the case:

  1. for the single transfer, application doesn’t need to allocate descriptor table, the head descriptor can be used for it.

       DMA_SetChannelConfig(base, channel, trigger, isPeriph);
       DMA_CreateHandle(handle, base, channel)
       DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc,
    bytes), srcStartAddr, dstStartAddr, NULL);
       DMA_StartTransfer(handle)
    

  2. for the linked transfer, application should responsible for link descriptor, for example, if 4 transfer is required, then application should prepare three descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.

       define link descriptor table in application with macro
       DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[3]);
    
       DMA_SetupDescriptor(nextDesc0,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc1);
       DMA_SetupDescriptor(nextDesc1,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc2);
       DMA_SetupDescriptor(nextDesc2,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, NULL);
       DMA_SetChannelConfig(base, channel, trigger, isPeriph);
       DMA_CreateHandle(handle, base, channel)
       DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc,
    bytes), srcStartAddr, dstStartAddr, nextDesc0);
       DMA_StartTransfer(handle);
    

Parameters:
  • handle – Pointer to DMA handle.

  • xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER about to how to get xferCfg value.

  • srcStartAddr – source start address.

  • dstStartAddr – destination start address.

  • nextDesc – address of next descriptor.

void DMA_SubmitChannelDescriptor(dma_handle_t *handle, dma_descriptor_t *descriptor)

Submit channel descriptor.

This function used to configue channel head descriptor that is used to start DMA transfer, the head descriptor table is defined in DMA driver, this functiono is typical for the ping pong case:

  1. for the ping pong case, application should responsible for the descriptor, for example, application should prepare two descriptor table with macro.

       define link descriptor table in application with macro
       DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[2]);
    
       DMA_SetupDescriptor(nextDesc0,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc1);
       DMA_SetupDescriptor(nextDesc1,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc0);
       DMA_SetChannelConfig(base, channel, trigger, isPeriph);
       DMA_CreateHandle(handle, base, channel)
       DMA_SubmitChannelDescriptor(handle,  nextDesc0);
       DMA_StartTransfer(handle);
    

Parameters:
  • handle – Pointer to DMA handle.

  • descriptor – descriptor to submit.

status_t DMA_SubmitChannelTransfer(dma_handle_t *handle, dma_channel_config_t *config)

Submits the DMA channel transfer request.

This function submits the DMA transfer request according to the transfer configuration structure. If the user submits the transfer request repeatedly, this function packs an unprocessed request as a TCD and enables scatter/gather feature to process it in the next time. It is used for the case:

  1. for the single transfer, application doesn’t need to allocate descriptor table, the head descriptor can be used for it.

    DMA_CreateHandle(handle, base, channel)
    DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,NULL);
    DMA_SubmitChannelTransfer(handle, config)
    DMA_StartTransfer(handle)
    

  2. for the linked transfer, application should responsible for link descriptor, for example, if 4 transfer is required, then application should prepare three descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.

       define link descriptor table in application with macro
       DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);
       DMA_SetupDescriptor(nextDesc0,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc1);
       DMA_SetupDescriptor(nextDesc1,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc2);
       DMA_SetupDescriptor(nextDesc2,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, NULL);
       DMA_CreateHandle(handle, base, channel)
       DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,nextDesc0);
       DMA_SubmitChannelTransfer(handle, config)
       DMA_StartTransfer(handle)
    

  3. for the ping pong case, application should responsible for link descriptor, for example, application should prepare two descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.

       define link descriptor table in application with macro
       DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);
    
       DMA_SetupDescriptor(nextDesc0,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc1);
       DMA_SetupDescriptor(nextDesc1,  DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
    srcStartAddr, dstStartAddr, nextDesc0);
       DMA_CreateHandle(handle, base, channel)
       DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,nextDesc0);
       DMA_SubmitChannelTransfer(handle, config)
       DMA_StartTransfer(handle)
    

Parameters:
  • handle – DMA handle pointer.

  • config – Pointer to DMA transfer configuration structure.

Return values:
  • kStatus_DMA_Success – It means submit transfer request succeed.

  • kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer request is not allowed.

  • kStatus_DMA_Busy – It means the given channel is busy, need to submit request later.

void DMA_StartTransfer(dma_handle_t *handle)

DMA start transfer.

This function enables the channel request. User can call this function after submitting the transfer request It will trigger transfer start with software trigger only when hardware trigger is not used.

Parameters:
  • handle – DMA handle pointer.

void DMA_IRQHandle(DMA_Type *base)

DMA IRQ handler for descriptor transfer complete.

This function clears the channel major interrupt flag and call the callback function if it is not NULL.

Parameters:
  • base – DMA base address.

FSL_DMA_DRIVER_VERSION

DMA driver version.

Version 2.5.3.

_dma_transfer_status DMA transfer status

Values:

enumerator kStatus_DMA_Busy

Channel is busy and can’t handle the transfer request.

_dma_addr_interleave_size dma address interleave size

Values:

enumerator kDMA_AddressInterleave0xWidth

dma source/destination address no interleave

enumerator kDMA_AddressInterleave1xWidth

dma source/destination address interleave 1xwidth

enumerator kDMA_AddressInterleave2xWidth

dma source/destination address interleave 2xwidth

enumerator kDMA_AddressInterleave4xWidth

dma source/destination address interleave 3xwidth

_dma_transfer_width dma transfer width

Values:

enumerator kDMA_Transfer8BitWidth

dma channel transfer bit width is 8 bit

enumerator kDMA_Transfer16BitWidth

dma channel transfer bit width is 16 bit

enumerator kDMA_Transfer32BitWidth

dma channel transfer bit width is 32 bit

enum _dma_priority

DMA channel priority.

Values:

enumerator kDMA_ChannelPriority0

Highest channel priority - priority 0

enumerator kDMA_ChannelPriority1

Channel priority 1

enumerator kDMA_ChannelPriority2

Channel priority 2

enumerator kDMA_ChannelPriority3

Channel priority 3

enumerator kDMA_ChannelPriority4

Channel priority 4

enumerator kDMA_ChannelPriority5

Channel priority 5

enumerator kDMA_ChannelPriority6

Channel priority 6

enumerator kDMA_ChannelPriority7

Lowest channel priority - priority 7

enum _dma_int

DMA interrupt flags.

Values:

enumerator kDMA_IntA

DMA interrupt flag A

enumerator kDMA_IntB

DMA interrupt flag B

enumerator kDMA_IntError

DMA interrupt flag error

enum _dma_trigger_type

DMA trigger type.

Values:

enumerator kDMA_NoTrigger

Trigger is disabled

enumerator kDMA_LowLevelTrigger

Low level active trigger

enumerator kDMA_HighLevelTrigger

High level active trigger

enumerator kDMA_FallingEdgeTrigger

Falling edge active trigger

enumerator kDMA_RisingEdgeTrigger

Rising edge active trigger

_dma_burst_size DMA burst size

Values:

enumerator kDMA_BurstSize1

burst size 1 transfer

enumerator kDMA_BurstSize2

burst size 2 transfer

enumerator kDMA_BurstSize4

burst size 4 transfer

enumerator kDMA_BurstSize8

burst size 8 transfer

enumerator kDMA_BurstSize16

burst size 16 transfer

enumerator kDMA_BurstSize32

burst size 32 transfer

enumerator kDMA_BurstSize64

burst size 64 transfer

enumerator kDMA_BurstSize128

burst size 128 transfer

enumerator kDMA_BurstSize256

burst size 256 transfer

enumerator kDMA_BurstSize512

burst size 512 transfer

enumerator kDMA_BurstSize1024

burst size 1024 transfer

enum _dma_trigger_burst

DMA trigger burst.

Values:

enumerator kDMA_SingleTransfer

Single transfer

enumerator kDMA_LevelBurstTransfer

Burst transfer driven by level trigger

enumerator kDMA_EdgeBurstTransfer1

Perform 1 transfer by edge trigger

enumerator kDMA_EdgeBurstTransfer2

Perform 2 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer4

Perform 4 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer8

Perform 8 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer16

Perform 16 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer32

Perform 32 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer64

Perform 64 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer128

Perform 128 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer256

Perform 256 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer512

Perform 512 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer1024

Perform 1024 transfers by edge trigger

enum _dma_burst_wrap

DMA burst wrapping.

Values:

enumerator kDMA_NoWrap

Wrapping is disabled

enumerator kDMA_SrcWrap

Wrapping is enabled for source

enumerator kDMA_DstWrap

Wrapping is enabled for destination

enumerator kDMA_SrcAndDstWrap

Wrapping is enabled for source and destination

enum _dma_transfer_type

DMA transfer type.

Values:

enumerator kDMA_MemoryToMemory

Transfer from memory to memory (increment source and destination)

enumerator kDMA_PeripheralToMemory

Transfer from peripheral to memory (increment only destination)

enumerator kDMA_MemoryToPeripheral

Transfer from memory to peripheral (increment only source)

enumerator kDMA_StaticToStatic

Peripheral to static memory (do not increment source or destination)

typedef struct _dma_descriptor dma_descriptor_t

DMA descriptor structure.

typedef struct _dma_xfercfg dma_xfercfg_t

DMA transfer configuration.

typedef enum _dma_priority dma_priority_t

DMA channel priority.

typedef enum _dma_int dma_irq_t

DMA interrupt flags.

typedef enum _dma_trigger_type dma_trigger_type_t

DMA trigger type.

typedef enum _dma_trigger_burst dma_trigger_burst_t

DMA trigger burst.

typedef enum _dma_burst_wrap dma_burst_wrap_t

DMA burst wrapping.

typedef enum _dma_transfer_type dma_transfer_type_t

DMA transfer type.

typedef struct _dma_channel_trigger dma_channel_trigger_t

DMA channel trigger.

typedef struct _dma_channel_config dma_channel_config_t

DMA channel trigger.

typedef struct _dma_transfer_config dma_transfer_config_t

DMA transfer configuration.

typedef void (*dma_callback)(struct _dma_handle *handle, void *userData, bool transferDone, uint32_t intmode)

Define Callback function for DMA.

typedef struct _dma_handle dma_handle_t

DMA transfer handle structure.

DMA_MAX_TRANSFER_COUNT

DMA max transfer size.

FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(x)

DMA channel numbers.

FSL_FEATURE_DMA_MAX_CHANNELS
FSL_FEATURE_DMA_ALL_CHANNELS
FSL_FEATURE_DMA_LINK_DESCRIPTOR_ALIGN_SIZE

DMA head link descriptor table align size.

DMA_ALLOCATE_HEAD_DESCRIPTORS(name, number)

DMA head descriptor table allocate macro To simplify user interface, this macro will help allocate descriptor memory, user just need to provide the name and the number for the allocate descriptor.

Parameters:
  • name – Allocate decriptor name.

  • number – Number of descriptor to be allocated.

DMA_ALLOCATE_HEAD_DESCRIPTORS_AT_NONCACHEABLE(name, number)

DMA head descriptor table allocate macro at noncacheable section To simplify user interface, this macro will help allocate descriptor memory at noncacheable section, user just need to provide the name and the number for the allocate descriptor.

Parameters:
  • name – Allocate decriptor name.

  • number – Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS(name, number)

DMA link descriptor table allocate macro To simplify user interface, this macro will help allocate descriptor memory, user just need to provide the name and the number for the allocate descriptor.

Parameters:
  • name – Allocate decriptor name.

  • number – Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS_AT_NONCACHEABLE(name, number)

DMA link descriptor table allocate macro at noncacheable section To simplify user interface, this macro will help allocate descriptor memory at noncacheable section, user just need to provide the name and the number for the allocate descriptor.

Parameters:
  • name – Allocate decriptor name.

  • number – Number of descriptor to be allocated.

DMA_ALLOCATE_DATA_TRANSFER_BUFFER(name, width)

DMA transfer buffer address need to align with the transfer width.

DMA_CHANNEL_GROUP(channel)
DMA_CHANNEL_INDEX(base, channel)
DMA_COMMON_REG_GET(base, channel, reg)

DMA linked descriptor address algin size.

DMA_COMMON_CONST_REG_GET(base, channel, reg)
DMA_COMMON_REG_SET(base, channel, reg, value)
DMA_DESCRIPTOR_END_ADDRESS(start, inc, bytes, width)

DMA descriptor end address calculate.

Parameters:
  • start – start address

  • inc – address interleave size

  • bytes – transfer bytes

  • width – transfer width

DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes)
struct _dma_descriptor
#include <fsl_dma.h>

DMA descriptor structure.

Public Members

volatile uint32_t xfercfg

Transfer configuration

void *srcEndAddr

Last source address of DMA transfer

void *dstEndAddr

Last destination address of DMA transfer

void *linkToNextDesc

Address of next DMA descriptor in chain

struct _dma_xfercfg
#include <fsl_dma.h>

DMA transfer configuration.

Public Members

bool valid

Descriptor is ready to transfer

bool reload

Reload channel configuration register after current descriptor is exhausted

bool swtrig

Perform software trigger. Transfer if fired when ‘valid’ is set

bool clrtrig

Clear trigger

bool intA

Raises IRQ when transfer is done and set IRQA status register flag

bool intB

Raises IRQ when transfer is done and set IRQB status register flag

uint8_t byteWidth

Byte width of data to transfer

uint8_t srcInc

Increment source address by ‘srcInc’ x ‘byteWidth’

uint8_t dstInc

Increment destination address by ‘dstInc’ x ‘byteWidth’

uint16_t transferCount

Number of transfers

struct _dma_channel_trigger
#include <fsl_dma.h>

DMA channel trigger.

Public Members

dma_trigger_type_t type

Select hardware trigger as edge triggered or level triggered.

dma_trigger_burst_t burst

Select whether hardware triggers cause a single or burst transfer.

dma_burst_wrap_t wrap

Select wrap type, source wrap or dest wrap, or both.

struct _dma_channel_config
#include <fsl_dma.h>

DMA channel trigger.

Public Members

void *srcStartAddr

Source data address

void *dstStartAddr

Destination data address

void *nextDesc

Chain custom descriptor

uint32_t xferCfg

channel transfer configurations

dma_channel_trigger_t *trigger

DMA trigger type

bool isPeriph

select the request type

struct _dma_transfer_config
#include <fsl_dma.h>

DMA transfer configuration.

Public Members

uint8_t *srcAddr

Source data address

uint8_t *dstAddr

Destination data address

uint8_t *nextDesc

Chain custom descriptor

dma_xfercfg_t xfercfg

Transfer options

bool isPeriph

DMA transfer is driven by peripheral

struct _dma_handle
#include <fsl_dma.h>

DMA transfer handle structure.

Public Members

dma_callback callback

Callback function. Invoked when transfer of descriptor with interrupt flag finishes

void *userData

Callback function parameter

DMA_Type *base

DMA peripheral base address

uint8_t channel

DMA channel number

DMIC: Digital Microphone

DMIC DMA Driver

status_t DMIC_TransferCreateHandleDMA(DMIC_Type *base, dmic_dma_handle_t *handle, dmic_dma_transfer_callback_t callback, void *userData, dma_handle_t *rxDmaHandle)

Initializes the DMIC handle which is used in transactional functions.

Parameters:
  • base – DMIC peripheral base address.

  • handle – Pointer to dmic_dma_handle_t structure.

  • callback – Callback function.

  • userData – User data.

  • rxDmaHandle – User-requested DMA handle for RX DMA transfer.

status_t DMIC_TransferReceiveDMA(DMIC_Type *base, dmic_dma_handle_t *handle, dmic_transfer_t *xfer, uint32_t channel)

Receives data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.

Parameters:
  • base – USART peripheral base address.

  • handle – Pointer to usart_dma_handle_t structure.

  • xfer – DMIC DMA transfer structure. See dmic_transfer_t.

  • channel – DMIC start channel number.

Return values:

kStatus_Success

void DMIC_TransferAbortReceiveDMA(DMIC_Type *base, dmic_dma_handle_t *handle)

Aborts the received data using DMA.

This function aborts the received data using DMA.

Parameters:
  • base – DMIC peripheral base address

  • handle – Pointer to dmic_dma_handle_t structure

status_t DMIC_TransferGetReceiveCountDMA(DMIC_Type *base, dmic_dma_handle_t *handle, uint32_t *count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters:
  • base – DMIC peripheral base address.

  • handle – DMIC handle pointer.

  • count – Receive bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

void DMIC_InstallDMADescriptorMemory(dmic_dma_handle_t *handle, void *linkAddr, size_t linkNum)

Install DMA descriptor memory.

This function used to register DMA descriptor memory for linked transfer, a typical case is ping pong transfer which will request more than one DMA descriptor memory space, it should be called after DMIC_TransferCreateHandleDMA. User should be take care about the address of DMA descriptor pool which required align with 16BYTE at least.

Parameters:
  • handle – Pointer to DMA channel transfer handle.

  • linkAddr – DMA link descriptor address.

  • linkNum – DMA link descriptor number.

FSL_DMIC_DMA_DRIVER_VERSION

DMIC DMA driver version 2.4.0.

typedef struct _dmic_transfer dmic_transfer_t

DMIC transfer structure.

typedef struct _dmic_dma_handle dmic_dma_handle_t
typedef void (*dmic_dma_transfer_callback_t)(DMIC_Type *base, dmic_dma_handle_t *handle, status_t status, void *userData)

DMIC transfer callback function.

struct _dmic_transfer
#include <fsl_dmic_dma.h>

DMIC transfer structure.

Public Members

void *data

The buffer of data to be transfer.

uint8_t dataWidth

DMIC support 16bit/32bit

size_t dataSize

The byte count to be transfer.

uint8_t dataAddrInterleaveSize

destination address interleave size

struct _dmic_transfer *linkTransfer

use to support link transfer

struct _dmic_dma_handle
#include <fsl_dmic_dma.h>

DMIC DMA handle.

Public Members

DMIC_Type *base

DMIC peripheral base address.

dma_handle_t *rxDmaHandle

The DMA RX channel used.

dmic_dma_transfer_callback_t callback

Callback function.

void *userData

DMIC callback function parameter.

size_t transferSize

Size of the data to receive.

volatile uint8_t state

Internal state of DMIC DMA transfer

uint32_t channel

DMIC channel used.

bool isChannelValid

DMIC channel initialization flag

dma_descriptor_t *desLink

descriptor pool pointer

size_t linkNum

number of descriptor in descriptors pool

DMIC Driver

uint32_t DMIC_GetInstance(DMIC_Type *base)

Get the DMIC instance from peripheral base address.

Parameters:
  • base – DMIC peripheral base address.

Returns:

DMIC instance.

void DMIC_Init(DMIC_Type *base)

Turns DMIC Clock on.

Parameters:
  • base – : DMIC base

Returns:

Nothing

void DMIC_DeInit(DMIC_Type *base)

Turns DMIC Clock off.

Parameters:
  • base – : DMIC base

Returns:

Nothing

void DMIC_ConfigIO(DMIC_Type *base, dmic_io_t config)

Configure DMIC io.

Deprecated:

Do not use this function. It has been superceded by DMIC_SetIOCFG

Parameters:
  • base – : The base address of DMIC interface

  • config – : DMIC io configuration

Returns:

Nothing

static inline void DMIC_SetIOCFG(DMIC_Type *base, uint32_t sel)

Stereo PDM select.

Parameters:
  • base – : The base address of DMIC interface

  • sel – : Reference dmic_io_t, can be a single or combination value of dmic_io_t.

Returns:

Nothing

void DMIC_SetOperationMode(DMIC_Type *base, operation_mode_t mode)

Set DMIC operating mode.

Deprecated:

Do not use this function. It has been superceded by DMIC_EnableChannelInterrupt, DMIC_EnableChannelDma.

Parameters:
  • base – : The base address of DMIC interface

  • mode – : DMIC mode

Returns:

Nothing

void DMIC_Use2fs(DMIC_Type *base, bool use2fs)

Configure Clock scaling.

Parameters:
  • base – : The base address of DMIC interface

  • use2fs – : clock scaling

Returns:

Nothing

void DMIC_CfgChannelDc(DMIC_Type *base, dmic_channel_t channel, dc_removal_t dc_cut_level, uint32_t post_dc_gain_reduce, bool saturate16bit)

Configure DMIC channel.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : DMIC channel

  • dc_cut_level – : dc_removal_t, Cut off Frequency

  • post_dc_gain_reduce – : Fine gain adjustment in the form of a number of bits to downshift.

  • saturate16bit – : If selects 16-bit saturation.

void DMIC_ConfigChannel(DMIC_Type *base, dmic_channel_t channel, stereo_side_t side, dmic_channel_config_t *channel_config)

Configure DMIC channel.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : DMIC channel

  • side – : stereo_side_t, choice of left or right

  • channel_config – : Channel configuration

Returns:

Nothing

void DMIC_EnableChannnel(DMIC_Type *base, uint32_t channelmask)

Enable a particualr channel.

Parameters:
  • base – : The base address of DMIC interface

  • channelmask – reference _dmic_channel_mask

Returns:

Nothing

void DMIC_FifoChannel(DMIC_Type *base, uint32_t channel, uint32_t trig_level, uint32_t enable, uint32_t resetn)

Configure fifo settings for DMIC channel.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : DMIC channel

  • trig_level – : FIFO trigger level

  • enable – : FIFO level

  • resetn – : FIFO reset

Returns:

Nothing

static inline void DMIC_EnableChannelInterrupt(DMIC_Type *base, dmic_channel_t channel, bool enable)

Enable a particualr channel interrupt request.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : Channel selection

  • enable – : true is enable, false is disable

static inline void DMIC_EnableChannelDma(DMIC_Type *base, dmic_channel_t channel, bool enable)

Enable a particualr channel dma request.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : Channel selection

  • enable – : true is enable, false is disable

static inline void DMIC_EnableChannelFifo(DMIC_Type *base, dmic_channel_t channel, bool enable)

Enable a particualr channel fifo.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : Channel selection

  • enable – : true is enable, false is disable

static inline void DMIC_DoFifoReset(DMIC_Type *base, dmic_channel_t channel)

Channel fifo reset.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : Channel selection

static inline uint32_t DMIC_FifoGetStatus(DMIC_Type *base, uint32_t channel)

Get FIFO status.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : DMIC channel

Returns:

FIFO status

static inline void DMIC_FifoClearStatus(DMIC_Type *base, uint32_t channel, uint32_t mask)

Clear FIFO status.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : DMIC channel

  • mask – : Bits to be cleared

Returns:

FIFO status

static inline uint32_t DMIC_FifoGetData(DMIC_Type *base, uint32_t channel)

Get FIFO data.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : DMIC channel

Returns:

FIFO data

static inline uint32_t DMIC_FifoGetAddress(DMIC_Type *base, uint32_t channel)

Get FIFO address.

Parameters:
  • base – : The base address of DMIC interface

  • channel – : DMIC channel

Returns:

FIFO data

void DMIC_EnableIntCallback(DMIC_Type *base, dmic_callback_t cb)

Enable callback.

This function enables the interrupt for the selected DMIC peripheral. The callback function is not enabled until this function is called.

Parameters:
  • base – Base address of the DMIC peripheral.

  • cb – callback Pointer to store callback function.

Return values:

None.

void DMIC_DisableIntCallback(DMIC_Type *base, dmic_callback_t cb)

Disable callback.

This function disables the interrupt for the selected DMIC peripheral.

Parameters:
  • base – Base address of the DMIC peripheral.

  • cb – callback Pointer to store callback function..

Return values:

None.

static inline void DMIC_SetGainNoiseEstHwvad(DMIC_Type *base, uint32_t value)

Sets the gain value for the noise estimator.

Parameters:
  • base – DMIC base pointer

  • value – gain value for the noise estimator.

Return values:

None.

static inline void DMIC_SetGainSignalEstHwvad(DMIC_Type *base, uint32_t value)

Sets the gain value for the signal estimator.

Parameters:
  • base – DMIC base pointer

  • value – gain value for the signal estimator.

Return values:

None.

static inline void DMIC_SetFilterCtrlHwvad(DMIC_Type *base, uint32_t value)

Sets the hwvad filter cutoff frequency parameter.

Parameters:
  • base – DMIC base pointer

  • value – cut off frequency value.

Return values:

None.

static inline void DMIC_SetInputGainHwvad(DMIC_Type *base, uint32_t value)

Sets the input gain of hwvad.

Parameters:
  • base – DMIC base pointer

  • value – input gain value for hwvad.

Return values:

None.

static inline void DMIC_CtrlClrIntrHwvad(DMIC_Type *base, bool st10)

Clears hwvad internal interrupt flag.

Parameters:
  • base – DMIC base pointer

  • st10 – bit value.

Return values:

None.

static inline void DMIC_FilterResetHwvad(DMIC_Type *base, bool rstt)

Resets hwvad filters.

Parameters:
  • base – DMIC base pointer

  • rstt – Reset bit value.

Return values:

None.

static inline uint16_t DMIC_GetNoiseEnvlpEst(DMIC_Type *base)

Gets the value from output of the filter z7.

Parameters:
  • base – DMIC base pointer

Return values:

output – of filter z7.

void DMIC_HwvadEnableIntCallback(DMIC_Type *base, dmic_hwvad_callback_t vadcb)

Enable hwvad callback.

This function enables the hwvad interrupt for the selected DMIC peripheral. The callback function is not enabled until this function is called.

Parameters:
  • base – Base address of the DMIC peripheral.

  • vadcb – callback Pointer to store callback function.

Return values:

None.

void DMIC_HwvadDisableIntCallback(DMIC_Type *base, dmic_hwvad_callback_t vadcb)

Disable callback.

This function disables the hwvad interrupt for the selected DMIC peripheral.

Parameters:
  • base – Base address of the DMIC peripheral.

  • vadcb – callback Pointer to store callback function..

Return values:

None.

FSL_DMIC_DRIVER_VERSION

DMIC driver version 2.3.2.

_dmic_status DMIC transfer status.

Values:

enumerator kStatus_DMIC_Busy

DMIC is busy

enumerator kStatus_DMIC_Idle

DMIC is idle

enumerator kStatus_DMIC_OverRunError

DMIC over run Error

enumerator kStatus_DMIC_UnderRunError

DMIC under run Error

enum _operation_mode

DMIC different operation modes.

Values:

enumerator kDMIC_OperationModeInterrupt

Interrupt mode

enumerator kDMIC_OperationModeDma

DMA mode

enum _stereo_side

DMIC left/right values.

Values:

enumerator kDMIC_Left

Left Stereo channel

enumerator kDMIC_Right

Right Stereo channel

enum pdm_div_t

DMIC Clock pre-divider values.

Values:

enumerator kDMIC_PdmDiv1

DMIC pre-divider set in divide by 1

enumerator kDMIC_PdmDiv2

DMIC pre-divider set in divide by 2

enumerator kDMIC_PdmDiv3

DMIC pre-divider set in divide by 3

enumerator kDMIC_PdmDiv4

DMIC pre-divider set in divide by 4

enumerator kDMIC_PdmDiv6

DMIC pre-divider set in divide by 6

enumerator kDMIC_PdmDiv8

DMIC pre-divider set in divide by 8

enumerator kDMIC_PdmDiv12

DMIC pre-divider set in divide by 12

enumerator kDMIC_PdmDiv16

DMIC pre-divider set in divide by 16

enumerator kDMIC_PdmDiv24

DMIC pre-divider set in divide by 24

enumerator kDMIC_PdmDiv32

DMIC pre-divider set in divide by 32

enumerator kDMIC_PdmDiv48

DMIC pre-divider set in divide by 48

enumerator kDMIC_PdmDiv64

DMIC pre-divider set in divide by 64

enumerator kDMIC_PdmDiv96

DMIC pre-divider set in divide by 96

enumerator kDMIC_PdmDiv128

DMIC pre-divider set in divide by 128

enum _compensation

Pre-emphasis Filter coefficient value for 2FS and 4FS modes.

Values:

enumerator kDMIC_CompValueZero

Compensation 0

enumerator kDMIC_CompValueNegativePoint16

Compensation -0.16

enumerator kDMIC_CompValueNegativePoint15

Compensation -0.15

enumerator kDMIC_CompValueNegativePoint13

Compensation -0.13

enum _dc_removal

DMIC DC filter control values.

Values:

enumerator kDMIC_DcNoRemove

Flat response no filter

enumerator kDMIC_DcCut155

Cut off Frequency is 155 Hz

enumerator kDMIC_DcCut78

Cut off Frequency is 78 Hz

enumerator kDMIC_DcCut39

Cut off Frequency is 39 Hz

enum _dmic_io

DMIC IO configiration.

Values:

enumerator kDMIC_PdmDual

Two separate pairs of PDM wires

enumerator kDMIC_PdmStereo

Stereo data0

enumerator kDMIC_PdmBypass

Clk Bypass clocks both channels

enumerator kDMIC_PdmBypassClk0

Clk Bypass clocks only channel0

enumerator kDMIC_PdmBypassClk1

Clk Bypas clocks only channel1

enum _dmic_channel

DMIC Channel number.

Values:

enumerator kDMIC_Channel0

DMIC channel 0

enumerator kDMIC_Channel1

DMIC channel 1

_dmic_channel_mask DMIC Channel mask.

Values:

enumerator kDMIC_EnableChannel0

DMIC channel 0 mask

enumerator kDMIC_EnableChannel1

DMIC channel 1 mask

enum _dmic_phy_sample_rate

DMIC and decimator sample rates.

Values:

enumerator kDMIC_PhyFullSpeed

Decimator gets one sample per each chosen clock edge of PDM interface

enumerator kDMIC_PhyHalfSpeed

PDM clock to Microphone is halved, decimator receives each sample twice

typedef enum _operation_mode operation_mode_t

DMIC different operation modes.

typedef enum _stereo_side stereo_side_t

DMIC left/right values.

typedef enum _compensation compensation_t

Pre-emphasis Filter coefficient value for 2FS and 4FS modes.

typedef enum _dc_removal dc_removal_t

DMIC DC filter control values.

typedef enum _dmic_io dmic_io_t

DMIC IO configiration.

typedef enum _dmic_channel dmic_channel_t

DMIC Channel number.

typedef enum _dmic_phy_sample_rate dmic_phy_sample_rate_t

DMIC and decimator sample rates.

typedef struct _dmic_channel_config dmic_channel_config_t

DMIC Channel configuration structure.

typedef void (*dmic_callback_t)(void)

DMIC Callback function.

typedef void (*dmic_hwvad_callback_t)(void)

HWVAD Callback function.

struct _dmic_channel_config
#include <fsl_dmic.h>

DMIC Channel configuration structure.

Public Members

pdm_div_t divhfclk

DMIC Clock pre-divider values

uint32_t osr

oversampling rate(CIC decimation rate) for PCM

int32_t gainshft

4FS PCM data gain control

compensation_t preac2coef

Pre-emphasis Filter coefficient value for 2FS

compensation_t preac4coef

Pre-emphasis Filter coefficient value for 4FS

dc_removal_t dc_cut_level

DMIC DC filter control values.

uint32_t post_dc_gain_reduce

Fine gain adjustment in the form of a number of bits to downshift

dmic_phy_sample_rate_t sample_rate

DMIC and decimator sample rates

bool saturate16bit

Selects 16-bit saturation. 0 means results roll over if out range and do not saturate. 1 means if the result overflows, it saturates at 0xFFFF for positive overflow and 0x8000 for negative overflow.

EEPROM: EEPROM memory driver

void EEPROM_Init(EEPROM_Type *base, const eeprom_config_t *config, uint32_t sourceClock_Hz)

Initializes the EEPROM with the user configuration structure.

This function configures the EEPROM module with the user-defined configuration. This function also sets the internal clock frequency to about 155kHz according to the source clock frequency.

Parameters:
  • base – EEPROM peripheral base address.

  • config – The pointer to the configuration structure.

  • sourceClock_Hz – EEPROM source clock frequency in Hz.

void EEPROM_GetDefaultConfig(eeprom_config_t *config)

Get EEPROM default configure settings.

Parameters:
  • config – EEPROM config structure pointer.

void EEPROM_Deinit(EEPROM_Type *base)

Deinitializes the EEPROM regions.

Parameters:
  • base – EEPROM peripheral base address.

static inline void EEPROM_SetAutoProgram(EEPROM_Type *base, eeprom_auto_program_t autoProgram)

Set EEPROM automatic program feature.

EEPROM write always needs a program and erase cycle to write the data into EEPROM. This program and erase cycle can be finished automaticlly or manually. If users want to use or disable auto program feature, users can call this API.

Parameters:
  • base – EEPROM peripheral base address.

  • autoProgram – EEPROM auto program feature need to set.

static inline void EEPROM_SetPowerDownMode(EEPROM_Type *base, bool enable)

Set EEPROM to in/out power down mode.

This function make EEPROM eneter or out of power mode. Notice that, users shall not put EEPROM into power down mode while there is still any pending EEPROM operation. While EEPROM is wakes up from power down mode, any EEPROM operation has to be suspended for 100 us.

Parameters:
  • base – EEPROM peripheral base address.

  • enable – True means enter to power down mode, false means wake up.

static inline void EEPROM_EnableInterrupt(EEPROM_Type *base, uint32_t mask)

Enable EEPROM interrupt.

Parameters:
  • base – EEPROM peripheral base address.

  • mask – EEPROM interrupt enable mask. It is a logic OR of members the enumeration :: eeprom_interrupt_enable_t

static inline void EEPROM_DisableInterrupt(EEPROM_Type *base, uint32_t mask)

Disable EEPROM interrupt.

Parameters:
  • base – EEPROM peripheral base address.

  • mask – EEPROM interrupt enable mask. It is a logic OR of members the enumeration :: eeprom_interrupt_enable_t

static inline uint32_t EEPROM_GetInterruptStatus(EEPROM_Type *base)

Get the status of all interrupt flags for ERPROM.

Parameters:
  • base – EEPROM peripheral base address.

Returns:

EEPROM interrupt flag status

static inline void EEPROM_ClearInterruptFlag(EEPROM_Type *base, uint32_t mask)

Clear interrupt flags manually.

This API clears interrupt flags manually. Call this API will clear the corresponding bit in INSTAT register.

Parameters:
  • base – EEPROM peripheral base address.

  • mask – EEPROM interrupt flag need to be cleared. It is a logic OR of members of enumeration:: eeprom_interrupt_enable_t

static inline uint32_t EEPROM_GetEnabledInterruptStatus(EEPROM_Type *base)

Get the status of enabled interrupt flags for ERPROM.

Parameters:
  • base – EEPROM peripheral base address.

Returns:

EEPROM enabled interrupt flag status

static inline void EEPROM_SetInterruptFlag(EEPROM_Type *base, uint32_t mask)

Set interrupt flags manually.

This API trigger a interrupt manually, users can no need to wait for hardware trigger interrupt. Call this API will set the corresponding bit in INSTAT register.

Parameters:
  • base – EEPROM peripheral base address.

  • mask – EEPROM interrupt flag need to be set. It is a logic OR of members of enumeration:: eeprom_interrupt_enable_t

status_t EEPROM_WriteWord(EEPROM_Type *base, uint32_t offset, uint32_t data)

Write a word data in address of EEPROM.

Users can write a page or at least a word data into EEPROM address.

Parameters:
  • base – EEPROM peripheral base address.

  • offset – Offset from the begining address of EEPROM. This value shall be 4-byte aligned.

  • data – Data need be write.

void EEPROM_Write(EEPROM_Type *base, uint32_t offset, void *wBuf, uint32_t size)

Write data from a user allocated buffer in address of EEPROM.

Users can write any bytes data into EEPROM address by wBuf.

Parameters:
  • base – EEPROM peripheral base address.

  • offset – Offset from the begining address of EEPROM.

  • wBuf – Data need be write.

  • size – Number of bytes to write.

status_t EEPROM_WritePage(EEPROM_Type *base, uint32_t pageNum, uint32_t *data)
FSL_EEPROM_DRIVER_VERSION

EEPROM driver version 2.1.3.

enum _eeprom_auto_program

EEPROM automatic program option.

Values:

enumerator kEEPROM_AutoProgramDisable

Disable auto program

enumerator kEEPROM_AutoProgramWriteWord

Auto program triggered after 1 word is written

enumerator kEEPROM_AutoProgramLastWord

Auto program triggered after last word of a page written

enum _eeprom_interrupt_enable

EEPROM interrupt source.

Values:

enumerator kEEPROM_ProgramFinishInterruptEnable

Interrupt while program finished

typedef enum _eeprom_auto_program eeprom_auto_program_t

EEPROM automatic program option.

typedef enum _eeprom_interrupt_enable eeprom_interrupt_enable_t

EEPROM interrupt source.

typedef struct _eeprom_config eeprom_config_t

EEPROM region configuration structure.

struct _eeprom_config
#include <fsl_eeprom.h>

EEPROM region configuration structure.

Public Members

eeprom_auto_program_t autoProgram

Automatic program feature.

uint8_t readWaitPhase1

EEPROM read waiting phase 1

uint8_t readWaitPhase2

EEPROM read waiting phase 2

uint8_t writeWaitPhase1

EEPROM write waiting phase 1

uint8_t writeWaitPhase2

EEPROM write waiting phase 2

uint8_t writeWaitPhase3

EEPROM write waiting phase 3

bool lockTimingParam

If lock the read and write wait phase settings

EMC: External Memory Controller Driver

void EMC_Init(EMC_Type *base, emc_basic_config_t *config)

Initializes the basic for EMC. This function ungates the EMC clock, initializes the emc system configure and enable the EMC module. This function must be called in the first step to initialize the external memory.

Parameters:
  • base – EMC peripheral base address.

  • config – The EMC basic configuration.

void EMC_DynamicMemInit(EMC_Type *base, emc_dynamic_timing_config_t *timing, emc_dynamic_chip_config_t *config, uint32_t totalChips)

Initializes the dynamic memory controller. This function initializes the dynamic memory controller in external memory controller. This function must be called after EMC_Init and before accessing the external dynamic memory.

Parameters:
  • base – EMC peripheral base address.

  • timing – The timing and latency for dynamica memory controller setting. It shall be used for all dynamica memory chips, threfore the worst timing value for all used chips must be given.

  • config – The EMC dynamic memory controller chip independent configuration pointer. This configuration pointer is actually pointer to a configration array. the array number depends on the “totalChips”.

  • totalChips – The total dynamic memory chip numbers been used or the length of the “emc_dynamic_chip_config_t” type memory.

void EMC_StaticMemInit(EMC_Type *base, uint32_t *extWait_Ns, emc_static_chip_config_t *config, uint32_t totalChips)

Initializes the static memory controller. This function initializes the static memory controller in external memory controller. This function must be called after EMC_Init and before accessing the external static memory.

Parameters:
  • base – EMC peripheral base address.

  • extWait_Ns – The extended wait timeout or the read/write transfer time. This is common for all static memory chips and set with NULL if not required.

  • config – The EMC static memory controller chip independent configuration pointer. This configuration pointer is actually pointer to a configration array. the array number depends on the “totalChips”.

  • totalChips – The total static memory chip numbers been used or the length of the “emc_static_chip_config_t” type memory.

void EMC_Deinit(EMC_Type *base)

Deinitializes the EMC module and gates the clock. This function gates the EMC controller clock. As a result, the EMC module doesn’t work after calling this function.

Parameters:
  • base – EMC peripheral base address.

static inline void EMC_Enable(EMC_Type *base, bool enable)

Enables/disables the EMC module.

Parameters:
  • base – EMC peripheral base address.

  • enable – True enable EMC module, false disable.

static inline void EMC_EnableDynamicMemControl(EMC_Type *base, bool enable)

Enables/disables the EMC Dynaimc memory controller.

Parameters:
  • base – EMC peripheral base address.

  • enable – True enable EMC dynamic memory controller, false disable.

static inline void EMC_MirrorChipAddr(EMC_Type *base, bool enable)

Enables/disables the EMC address mirror. Enable the address mirror the EMC_CS1is mirrored to both EMC_CS0 and EMC_DYCS0 memory areas. Disable the address mirror enables EMC_cS0 and EMC_DYCS0 memory to be accessed.

Parameters:
  • base – EMC peripheral base address.

  • enable – True enable the address mirror, false disable the address mirror.

static inline void EMC_EnterSelfRefreshCommand(EMC_Type *base, bool enable)

Enter the self-refresh mode for dynamic memory controller. This function provided self-refresh mode enter or exit for application.

Parameters:
  • base – EMC peripheral base address.

  • enable – True enter the self-refresh mode, false to exit self-refresh and enter the normal mode.

static inline bool EMC_IsInSelfrefreshMode(EMC_Type *base)

Get the operating mode of the EMC. This function can be used to get the operating mode of the EMC.

Parameters:
  • base – EMC peripheral base address.

Returns:

The EMC in self-refresh mode if true, else in normal mode.

static inline void EMC_EnterLowPowerMode(EMC_Type *base, bool enable)

Enter/exit the low-power mode.

Parameters:
  • base – EMC peripheral base address.

  • enable – True Enter the low-power mode, false exit low-power mode and return to normal mode.

FSL_EMC_DRIVER_VERSION

EMC driver version.

enum _emc_static_memwidth

Define EMC memory width for static memory device.

Values:

enumerator kEMC_8BitWidth

8 bit memory width.

enumerator kEMC_16BitWidth

16 bit memory width.

enumerator kEMC_32BitWidth

32 bit memory width.

enum _emc_static_special_config

Define EMC static configuration.

Values:

enumerator kEMC_AsynchronosPageEnable

Enable the asynchronous page mode. page length four.

enumerator kEMC_ActiveHighChipSelect

Chip select active high.

enumerator kEMC_ByteLaneStateAllLow

Reads/writes the respective valuie bits in BLS3:0 are low.

enumerator kEMC_ExtWaitEnable

Extended wait enable.

enumerator kEMC_BufferEnable

Buffer enable.

enum _emc_dynamic_device

EMC dynamic memory device.

Values:

enumerator kEMC_Sdram

Dynamic memory device: SDRAM.

enumerator kEMC_Lpsdram

Dynamic memory device: Low-power SDRAM.

enum _emc_dynamic_read

EMC dynamic read strategy.

Values:

enumerator kEMC_NoDelay

No delay.

enumerator kEMC_Cmddelay

Command delayed strategy, using EMCCLKDELAY.

enumerator kEMC_CmdDelayPulseOneclk

Command delayed strategy pluse one clock cycle using EMCCLKDELAY.

enumerator kEMC_CmddelayPulsetwoclk

Command delayed strategy pulse two clock cycle using EMCCLKDELAY.

enum _emc_endian_mode

EMC endian mode.

Values:

enumerator kEMC_LittleEndian

Little endian mode.

enumerator kEMC_BigEndian

Big endian mode.

enum _emc_fbclk_src

EMC Feedback clock input source select.

Values:

enumerator kEMC_IntloopbackEmcclk

Use the internal loop back from EMC_CLK output.

enumerator kEMC_EMCFbclkInput

Use the external EMC_FBCLK input.

typedef enum _emc_static_memwidth emc_static_memwidth_t

Define EMC memory width for static memory device.

typedef enum _emc_static_special_config emc_static_special_config_t

Define EMC static configuration.

typedef enum _emc_dynamic_device emc_dynamic_device_t

EMC dynamic memory device.

typedef enum _emc_dynamic_read emc_dynamic_read_t

EMC dynamic read strategy.

typedef enum _emc_endian_mode emc_endian_mode_t

EMC endian mode.

typedef enum _emc_fbclk_src emc_fbclk_src_t

EMC Feedback clock input source select.

typedef struct _emc_dynamic_timing_config emc_dynamic_timing_config_t

EMC dynamic timing/delay configure structure.

typedef struct _emc_dynamic_chip_config emc_dynamic_chip_config_t

EMC dynamic memory controller independent chip configuration structure. Please take refer to the address mapping table in the RM in EMC chapter when you set the “devAddrMap”. Choose the right Bit 14 Bit12 ~ Bit 7 group in the table according to the bus width/banks/row/colum length for you device. Set devAddrMap with the value make up with the seven bits (bit14 bit12 ~ bit 7) and inset the bit 13 with 0. for example, if the bit 14 and bit12 ~ bit7 is 1000001 is choosen according to the 32bit high-performance bus width with 2 banks, 11 row lwngth, 8 column length. Set devAddrMap with 0x81.

typedef struct _emc_static_chip_config emc_static_chip_config_t

EMC static memory controller independent chip configuration structure.

typedef struct _emc_basic_config emc_basic_config_t

EMC module basic configuration structure.

Defines the static memory controller configure structure and uses the EMC_Init() function to make necessary initializations.

EMC_STATIC_MEMDEV_NUM

Define the chip numbers for dynamic and static memory devices.

EMC_DYNAMIC_MEMDEV_NUM
EMC_ADDRMAP_SHIFT
EMC_ADDRMAP_MASK
EMC_ADDRMAP(x)
EMC_HZ_ONEMHZ
EMC_MILLISECS_ONESEC
EMC_SDRAM_MODE_CL_SHIFT
EMC_SDRAM_MODE_CL_MASK
EMC_SDRAM_NOP_DELAY_US

EDMA_SDRAM NOP command wait us.

EMC_SDRAM_PRECHARGE_DELAY_US

EDMA_SDRAM precharge command wait us.

EMC_SDRAM_AUTO_REFRESH_DELAY_US

EDMA_SDRAM auto refresh wait us.

struct _emc_dynamic_timing_config
#include <fsl_emc.h>

EMC dynamic timing/delay configure structure.

Public Members

uint32_t refreshPeriod_Nanosec

The refresh period in unit of nanosecond.

uint32_t tRp_Ns

Precharge command period in unit of nanosecond.

uint32_t tRas_Ns

Active to precharge command period in unit of nanosecond.

uint32_t tSrex_Ns

Self-refresh exit time in unit of nanosecond.

uint32_t tApr_Ns

Last data out to active command time in unit of nanosecond.

uint32_t tDal_Ns

Data-in to active command in unit of nanosecond.

uint32_t tWr_Ns

Write recovery time in unit of nanosecond.

uint32_t tRc_Ns

Active to active command period in unit of nanosecond.

uint32_t tRfc_Ns

Auto-refresh period and auto-refresh to active command period in unit of nanosecond.

uint32_t tXsr_Ns

Exit self-refresh to active command time in unit of nanosecond.

uint32_t tRrd_Ns

Active bank A to active bank B latency in unit of nanosecond.

uint8_t tMrd_Nclk

Load mode register to active command time in unit of EMCCLK cycles.

struct _emc_dynamic_chip_config
#include <fsl_emc.h>

EMC dynamic memory controller independent chip configuration structure. Please take refer to the address mapping table in the RM in EMC chapter when you set the “devAddrMap”. Choose the right Bit 14 Bit12 ~ Bit 7 group in the table according to the bus width/banks/row/colum length for you device. Set devAddrMap with the value make up with the seven bits (bit14 bit12 ~ bit 7) and inset the bit 13 with 0. for example, if the bit 14 and bit12 ~ bit7 is 1000001 is choosen according to the 32bit high-performance bus width with 2 banks, 11 row lwngth, 8 column length. Set devAddrMap with 0x81.

Public Members

uint8_t chipIndex

Chip Index, range from 0 ~ EMC_DYNAMIC_MEMDEV_NUM - 1.

emc_dynamic_device_t dynamicDevice

All chips shall use the same device setting. mixed use are not supported.

uint8_t rAS_Nclk

Active to read/write delay tRCD.

uint16_t sdramModeReg

Sdram mode register setting.

uint16_t sdramExtModeReg

Used for low-power sdram device. The extended mode register.

uint8_t devAddrMap

dynamic device address mapping, choose the address mapping for your specific device.

struct _emc_static_chip_config
#include <fsl_emc.h>

EMC static memory controller independent chip configuration structure.

Public Members

emc_static_memwidth_t memWidth

Memory width.

uint32_t specailConfig

Static configuration,a logical OR of “emc_static_special_config_t”.

uint32_t tWaitWriteEn_Ns

The delay form chip select to write enable in unit of nanosecond.

uint32_t tWaitOutEn_Ns

The delay from chip selcet to output enable in unit of nanosecond.

uint32_t tWaitReadNoPage_Ns

In No-page mode, the delay from chip select to read access in unit of nanosecond.

uint32_t tWaitReadPage_Ns

In page mode, the read after the first read wait states in unit of nanosecond.

uint32_t tWaitWrite_Ns

The delay from chip select to write access in unit of nanosecond.

uint32_t tWaitTurn_Ns

The Bus turn-around time in unit of nanosecond.

struct _emc_basic_config
#include <fsl_emc.h>

EMC module basic configuration structure.

Defines the static memory controller configure structure and uses the EMC_Init() function to make necessary initializations.

Public Members

emc_endian_mode_t endian

Endian mode .

emc_fbclk_src_t fbClkSrc

The feedback clock source.

uint8_t emcClkDiv

EMC_CLK = AHB_CLK / (emc_clkDiv + 1).

FLASHIAP: Flash In Application Programming Driver

FSL_FLASHIAP_DRIVER_VERSION
enum _flashiap_status

Flashiap status codes.

Values:

enumerator kStatus_FLASHIAP_Success

Api is executed successfully

enumerator kStatus_FLASHIAP_InvalidCommand

Invalid command

enumerator kStatus_FLASHIAP_SrcAddrError

Source address is not on word boundary

enumerator kStatus_FLASHIAP_DstAddrError

Destination address is not on a correct boundary

enumerator kStatus_FLASHIAP_SrcAddrNotMapped

Source address is not mapped in the memory map

enumerator kStatus_FLASHIAP_DstAddrNotMapped

Destination address is not mapped in the memory map

enumerator kStatus_FLASHIAP_CountError

Byte count is not multiple of 4 or is not a permitted value

enumerator kStatus_FLASHIAP_InvalidSector

Sector number is invalid or end sector number is greater than start sector number

enumerator kStatus_FLASHIAP_SectorNotblank

One or more sectors are not blank

enumerator kStatus_FLASHIAP_NotPrepared

Command to prepare sector for write operation was not executed

enumerator kStatus_FLASHIAP_CompareError

Destination and source memory contents do not match

enumerator kStatus_FLASHIAP_Busy

Flash programming hardware interface is busy

enumerator kStatus_FLASHIAP_ParamError

Insufficient number of parameters or invalid parameter

enumerator kStatus_FLASHIAP_AddrError

Address is not on word boundary

enumerator kStatus_FLASHIAP_AddrNotMapped

Address is not mapped in the memory map

enumerator kStatus_FLASHIAP_NoPower

Flash memory block is powered down

enumerator kStatus_FLASHIAP_NoClock

Flash memory block or controller is not clocked

enum _flashiap_commands

Flashiap command codes.

Values:

enumerator kIapCmd_FLASHIAP_PrepareSectorforWrite

Prepare Sector for write

enumerator kIapCmd_FLASHIAP_CopyRamToFlash

Copy RAM to flash

enumerator kIapCmd_FLASHIAP_EraseSector

Erase Sector

enumerator kIapCmd_FLASHIAP_BlankCheckSector

Blank check sector

enumerator kIapCmd_FLASHIAP_ReadPartId

Read part id

enumerator kIapCmd_FLASHIAP_Read_BootromVersion

Read bootrom version

enumerator kIapCmd_FLASHIAP_Compare

Compare

enumerator kIapCmd_FLASHIAP_ReinvokeISP

Reinvoke ISP

enumerator kIapCmd_FLASHIAP_ReadUid

Read Uid isp

enumerator kIapCmd_FLASHIAP_ErasePage

Erase Page

enumerator kIapCmd_FLASHIAP_ReadMisr

Read Misr

enumerator kIapCmd_FLASHIAP_ReinvokeI2cSpiISP

Reinvoke I2C/SPI isp

typedef void (*FLASHIAP_ENTRY_T)(uint32_t cmd[5], uint32_t stat[4])

IAP_ENTRY API function type.

static inline void iap_entry(uint32_t *cmd_param, uint32_t *status_result)

IAP_ENTRY API function type.

Wrapper for rom iap call

Parameters:
  • cmd_param – IAP command and relevant parameter array.

  • status_result – IAP status result array.

Return values:

None. – Status/Result is returned via status_result array.

status_t FLASHIAP_PrepareSectorForWrite(uint32_t startSector, uint32_t endSector)

Prepare sector for write operation.

This function prepares sector(s) for write/erase operation. This function must be called before calling the FLASHIAP_CopyRamToFlash() or FLASHIAP_EraseSector() or FLASHIAP_ErasePage() function. The end sector must be greater than or equal to start sector number.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • startSector – Start sector number.

  • endSector – End sector number.

Return values:
  • kStatus_FLASHIAP_Success – Api was executed successfully.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_InvalidSector – Sector number is invalid or end sector number is greater than start sector number.

  • kStatus_FLASHIAP_Busy – Flash programming hardware interface is busy.

status_t FLASHIAP_CopyRamToFlash(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes, uint32_t systemCoreClock)

Copy RAM to flash.

This function programs the flash memory. Corresponding sectors must be prepared via FLASHIAP_PrepareSectorForWrite before calling calling this function. The addresses should be a 256 byte boundary and the number of bytes should be 256 | 512 | 1024 | 4096.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • dstAddr – Destination flash address where data bytes are to be written.

  • srcAddr – Source ram address from where data bytes are to be read.

  • numOfBytes – Number of bytes to be written.

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function.

Return values:
  • kStatus_FLASHIAP_Success – Api was executed successfully.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_SrcAddrError – Source address is not on word boundary.

  • kStatus_FLASHIAP_DstAddrError – Destination address is not on a correct boundary.

  • kStatus_FLASHIAP_SrcAddrNotMapped – Source address is not mapped in the memory map.

  • kStatus_FLASHIAP_DstAddrNotMapped – Destination address is not mapped in the memory map.

  • kStatus_FLASHIAP_CountError – Byte count is not multiple of 4 or is not a permitted value.

  • kStatus_FLASHIAP_NotPrepared – Command to prepare sector for write operation was not executed.

  • kStatus_FLASHIAP_Busy – Flash programming hardware interface is busy.

status_t FLASHIAP_EraseSector(uint32_t startSector, uint32_t endSector, uint32_t systemCoreClock)

Erase sector.

This function erases sector(s). The end sector must be greater than or equal to start sector number. FLASHIAP_PrepareSectorForWrite must be called before calling this function.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • startSector – Start sector number.

  • endSector – End sector number.

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function.

Return values:
  • kStatus_FLASHIAP_Success – Api was executed successfully.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_InvalidSector – Sector number is invalid or end sector number is greater than start sector number.

  • kStatus_FLASHIAP_NotPrepared – Command to prepare sector for write operation was not executed.

  • kStatus_FLASHIAP_Busy – Flash programming hardware interface is busy.

status_t FLASHIAP_ErasePage(uint32_t startPage, uint32_t endPage, uint32_t systemCoreClock)

This function erases page(s). The end page must be greater than or equal to start page number. Corresponding sectors must be prepared via FLASHIAP_PrepareSectorForWrite before calling calling this function.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • startPage – Start page number

  • endPage – End page number

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function.

Return values:
  • kStatus_FLASHIAP_Success – Api was executed successfully.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_InvalidSector – Page number is invalid or end page number is greater than start page number

  • kStatus_FLASHIAP_NotPrepared – Command to prepare sector for write operation was not executed.

  • kStatus_FLASHIAP_Busy – Flash programming hardware interface is busy.

status_t FLASHIAP_BlankCheckSector(uint32_t startSector, uint32_t endSector)

Blank check sector(s)

Blank check single or multiples sectors of flash memory. The end sector must be greater than or equal to start sector number. It can be used to verify the sector eraseure after FLASHIAP_EraseSector call.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • startSector – : Start sector number. Must be greater than or equal to start sector number

  • endSector – : End sector number

Return values:
  • kStatus_FLASHIAP_Success – One or more sectors are in erased state.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_SectorNotblank – One or more sectors are not blank.

status_t FLASHIAP_Compare(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes)

Compare memory contents of flash with ram.

This function compares the contents of flash and ram. It can be used to verify the flash memory contents after FLASHIAP_CopyRamToFlash call.

Deprecated:

Do not use this function. It has benn moved to iap driver.

Parameters:
  • dstAddr – Destination flash address.

  • srcAddr – Source ram address.

  • numOfBytes – Number of bytes to be compared.

Return values:
  • kStatus_FLASHIAP_Success – Contents of flash and ram match.

  • kStatus_FLASHIAP_NoPower – Flash memory block is powered down.

  • kStatus_FLASHIAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_FLASHIAP_AddrError – Address is not on word boundary.

  • kStatus_FLASHIAP_AddrNotMapped – Address is not mapped in the memory map.

  • kStatus_FLASHIAP_CountError – Byte count is not multiple of 4 or is not a permitted value.

  • kStatus_FLASHIAP_CompareError – Destination and source memory contents do not match.

FLEXCOMM: FLEXCOMM Driver

FLEXCOMM Driver

FSL_FLEXCOMM_DRIVER_VERSION

FlexCOMM driver version 2.0.2.

enum FLEXCOMM_PERIPH_T

FLEXCOMM peripheral modes.

Values:

enumerator FLEXCOMM_PERIPH_NONE

No peripheral

enumerator FLEXCOMM_PERIPH_USART

USART peripheral

enumerator FLEXCOMM_PERIPH_SPI

SPI Peripheral

enumerator FLEXCOMM_PERIPH_I2C

I2C Peripheral

enumerator FLEXCOMM_PERIPH_I2S_TX

I2S TX Peripheral

enumerator FLEXCOMM_PERIPH_I2S_RX

I2S RX Peripheral

typedef void (*flexcomm_irq_handler_t)(void *base, void *handle)

Typedef for interrupt handler.

IRQn_Type const kFlexcommIrqs[]

Array with IRQ number for each FLEXCOMM module.

uint32_t FLEXCOMM_GetInstance(void *base)

Returns instance number for FLEXCOMM module with given base address.

status_t FLEXCOMM_Init(void *base, FLEXCOMM_PERIPH_T periph)

Initializes FLEXCOMM and selects peripheral mode according to the second parameter.

void FLEXCOMM_SetIRQHandler(void *base, flexcomm_irq_handler_t handler, void *flexcommHandle)

Sets IRQ handler for given FLEXCOMM module. It is used by drivers register IRQ handler according to FLEXCOMM mode.

FMC: Hardware flash signature generator

FSL_FMC_DRIVER_VERSION

Driver version 2.0.2.

void FMC_Init(FMC_Type *base, fmc_config_t *config)

Initialize FMC module.

This function initialize FMC module with user configuration

Parameters:
  • base – The FMC peripheral base address.

  • config – pointer to user configuration structure.

void FMC_Deinit(FMC_Type *base)

Deinit FMC module.

This function De-initialize FMC module.

Parameters:
  • base – The FMC peripheral base address.

void FMC_GetDefaultConfig(fmc_config_t *config)

Provides default configuration for fmc module.

This function provides default configuration for fmc module, the default wait states value is 5.

Parameters:
  • config – pointer to user configuration structure.

void FMC_GenerateFlashSignature(FMC_Type *base, uint32_t startAddress, uint32_t length, fmc_flash_signature_t *flashSignature)

Generate hardware flash signature.

This function generates hardware flash signature for specified address range.

Note

This function needs to be excuted out of flash memory.

Parameters:
  • base – The FMC peripheral base address.

  • startAddress – Flash start address for signature generation.

  • length – Length of address range.

  • flashSignature – Pointer which stores the generated flash signarue.

Fmc_driver

fmc peripheral flag.

Values:

enumerator kFMC_SignatureGenerationDoneFlag

Flash signature generation done.

typedef struct _fmc_flash_signature fmc_flash_signature_t

Defines the generated 128-bit signature.

typedef struct _fmc_config fmc_config_t

fmc config structure.

struct _fmc_flash_signature
#include <fsl_fmc.h>

Defines the generated 128-bit signature.

struct _fmc_config
#include <fsl_fmc.h>

fmc config structure.

FMEAS: Frequency Measure Driver

static inline void FMEAS_StartMeasure(FMEAS_SYSCON_Type *base)

Starts a frequency measurement cycle.

Parameters:
  • base – : SYSCON peripheral base address.

static inline bool FMEAS_IsMeasureComplete(FMEAS_SYSCON_Type *base)

Indicates when a frequency measurement cycle is complete.

Parameters:
  • base – : SYSCON peripheral base address.

Returns:

true if a measurement cycle is active, otherwise false.

uint32_t FMEAS_GetFrequency(FMEAS_SYSCON_Type *base, uint32_t refClockRate)

Returns the computed value for a frequency measurement cycle.

Parameters:
  • base – : SYSCON peripheral base address.

  • refClockRate – : Reference clock rate used during the frequency measurement cycle.

Returns:

Frequency in Hz.

FSL_FMEAS_DRIVER_VERSION

Defines LPC Frequency Measure driver version 2.1.1.

typedef SYSCON_Type FMEAS_SYSCON_Type
FMEAS_SYSCON_FREQMECTRL_CAPVAL_MASK
FMEAS_SYSCON_FREQMECTRL_CAPVAL_SHIFT
FMEAS_SYSCON_FREQMECTRL_CAPVAL
FMEAS_SYSCON_FREQMECTRL_PROG_MASK
FMEAS_SYSCON_FREQMECTRL_PROG_SHIFT
FMEAS_SYSCON_FREQMECTRL_PROG

GINT: Group GPIO Input Interrupt Driver

FSL_GINT_DRIVER_VERSION

Driver version.

enum _gint_comb

GINT combine inputs type.

Values:

enumerator kGINT_CombineOr

A grouped interrupt is generated when any one of the enabled inputs is active

enumerator kGINT_CombineAnd

A grouped interrupt is generated when all enabled inputs are active

enum _gint_trig

GINT trigger type.

Values:

enumerator kGINT_TrigEdge

Edge triggered based on polarity

enumerator kGINT_TrigLevel

Level triggered based on polarity

enum _gint_port

Values:

enumerator kGINT_Port0
enumerator kGINT_Port1
typedef enum _gint_comb gint_comb_t

GINT combine inputs type.

typedef enum _gint_trig gint_trig_t

GINT trigger type.

typedef enum _gint_port gint_port_t
typedef void (*gint_cb_t)(void)

GINT Callback function.

void GINT_Init(GINT_Type *base)

Initialize GINT peripheral.

This function initializes the GINT peripheral and enables the clock.

Parameters:
  • base – Base address of the GINT peripheral.

Return values:

None.

void GINT_SetCtrl(GINT_Type *base, gint_comb_t comb, gint_trig_t trig, gint_cb_t callback)

Setup GINT peripheral control parameters.

This function sets the control parameters of GINT peripheral.

Parameters:
  • base – Base address of the GINT peripheral.

  • comb – Controls if the enabled inputs are logically ORed or ANDed for interrupt generation.

  • trig – Controls if the enabled inputs are level or edge sensitive based on polarity.

  • callback – This function is called when configured group interrupt is generated.

Return values:

None.

void GINT_GetCtrl(GINT_Type *base, gint_comb_t *comb, gint_trig_t *trig, gint_cb_t *callback)

Get GINT peripheral control parameters.

This function returns the control parameters of GINT peripheral.

Parameters:
  • base – Base address of the GINT peripheral.

  • comb – Pointer to store combine input value.

  • trig – Pointer to store trigger value.

  • callback – Pointer to store callback function.

Return values:

None.

void GINT_ConfigPins(GINT_Type *base, gint_port_t port, uint32_t polarityMask, uint32_t enableMask)

Configure GINT peripheral pins.

This function enables and controls the polarity of enabled pin(s) of a given port.

Parameters:
  • base – Base address of the GINT peripheral.

  • port – Port number.

  • polarityMask – Each bit position selects the polarity of the corresponding enabled pin. 0 = The pin is active LOW. 1 = The pin is active HIGH.

  • enableMask – Each bit position selects if the corresponding pin is enabled or not. 0 = The pin is disabled. 1 = The pin is enabled.

Return values:

None.

void GINT_GetConfigPins(GINT_Type *base, gint_port_t port, uint32_t *polarityMask, uint32_t *enableMask)

Get GINT peripheral pin configuration.

This function returns the pin configuration of a given port.

Parameters:
  • base – Base address of the GINT peripheral.

  • port – Port number.

  • polarityMask – Pointer to store the polarity mask Each bit position indicates the polarity of the corresponding enabled pin. 0 = The pin is active LOW. 1 = The pin is active HIGH.

  • enableMask – Pointer to store the enable mask. Each bit position indicates if the corresponding pin is enabled or not. 0 = The pin is disabled. 1 = The pin is enabled.

Return values:

None.

void GINT_EnableCallback(GINT_Type *base)

Enable callback.

This function enables the interrupt for the selected GINT peripheral. Although the pin(s) are monitored as soon as they are enabled, the callback function is not enabled until this function is called.

Parameters:
  • base – Base address of the GINT peripheral.

Return values:

None.

void GINT_DisableCallback(GINT_Type *base)

Disable callback.

This function disables the interrupt for the selected GINT peripheral. Although the pins are still being monitored but the callback function is not called.

Parameters:
  • base – Base address of the peripheral.

Return values:

None.

static inline void GINT_ClrStatus(GINT_Type *base)

Clear GINT status.

This function clears the GINT status bit.

Parameters:
  • base – Base address of the GINT peripheral.

Return values:

None.

static inline uint32_t GINT_GetStatus(GINT_Type *base)

Get GINT status.

This function returns the GINT status.

Parameters:
  • base – Base address of the GINT peripheral.

Return values:

status – = 0 No group interrupt request. = 1 Group interrupt request active.

void GINT_Deinit(GINT_Type *base)

Deinitialize GINT peripheral.

This function disables the GINT clock.

Parameters:
  • base – Base address of the GINT peripheral.

Return values:

None.

I2C: Inter-Integrated Circuit Driver

I2C DMA Driver

void I2C_MasterTransferCreateHandleDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, i2c_master_dma_transfer_callback_t callback, void *userData, dma_handle_t *dmaHandle)

Init the I2C handle which is used in transactional functions.

Parameters:
  • base – I2C peripheral base address

  • handle – pointer to i2c_master_dma_handle_t structure

  • callback – pointer to user callback function

  • userData – user param passed to the callback function

  • dmaHandle – DMA handle pointer

status_t I2C_MasterTransferDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, i2c_master_transfer_t *xfer)

Performs a master dma non-blocking transfer on the I2C bus.

Parameters:
  • base – I2C peripheral base address

  • handle – pointer to i2c_master_dma_handle_t structure

  • xfer – pointer to transfer structure of i2c_master_transfer_t

Return values:
  • kStatus_Success – Sucessully complete the data transmission.

  • kStatus_I2C_Busy – Previous transmission still not finished.

  • kStatus_I2C_Timeout – Transfer error, wait signal timeout.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive Nak during transfer.

status_t I2C_MasterTransferGetCountDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, size_t *count)

Get master transfer status during a dma non-blocking transfer.

Parameters:
  • base – I2C peripheral base address

  • handle – pointer to i2c_master_dma_handle_t structure

  • count – Number of bytes transferred so far by the non-blocking transaction.

void I2C_MasterTransferAbortDMA(I2C_Type *base, i2c_master_dma_handle_t *handle)

Abort a master dma non-blocking transfer in a early time.

Parameters:
  • base – I2C peripheral base address

  • handle – pointer to i2c_master_dma_handle_t structure

FSL_I2C_DMA_DRIVER_VERSION

I2C DMA driver version.

typedef struct _i2c_master_dma_handle i2c_master_dma_handle_t

I2C master dma handle typedef.

typedef void (*i2c_master_dma_transfer_callback_t)(I2C_Type *base, i2c_master_dma_handle_t *handle, status_t status, void *userData)

I2C master dma transfer callback typedef.

typedef void (*flexcomm_i2c_dma_master_irq_handler_t)(I2C_Type *base, i2c_master_dma_handle_t *handle)

Typedef for master dma handler.

I2C_MAX_DMA_TRANSFER_COUNT

Maximum lenght of single DMA transfer (determined by capability of the DMA engine)

struct _i2c_master_dma_handle
#include <fsl_i2c_dma.h>

I2C master dma transfer structure.

Public Members

uint8_t state

Transfer state machine current state.

uint32_t transferCount

Indicates progress of the transfer

uint32_t remainingBytesDMA

Remaining byte count to be transferred using DMA.

uint8_t *buf

Buffer pointer for current state.

bool checkAddrNack

Whether to check the nack signal is detected during addressing.

dma_handle_t *dmaHandle

The DMA handler used.

i2c_master_transfer_t transfer

Copy of the current transfer info.

i2c_master_dma_transfer_callback_t completionCallback

Callback function called after dma transfer finished.

void *userData

Callback parameter passed to callback function.

I2C Driver

FSL_I2C_DRIVER_VERSION

I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy

The master is already performing a transfer.

enumerator kStatus_I2C_Idle

The slave driver is idle.

enumerator kStatus_I2C_Nak

The slave device sent a NAK in response to a byte.

enumerator kStatus_I2C_InvalidParameter

Unable to proceed due to invalid parameter.

enumerator kStatus_I2C_BitError

Transferred bit was not seen on the bus.

enumerator kStatus_I2C_ArbitrationLost

Arbitration lost error.

enumerator kStatus_I2C_NoTransferInProgress

Attempt to abort a transfer when one is not in progress.

enumerator kStatus_I2C_DmaRequestFail

DMA request failed.

enumerator kStatus_I2C_StartStopError

Start and stop error.

enumerator kStatus_I2C_UnexpectedState

Unexpected state.

enumerator kStatus_I2C_Timeout

Timeout when waiting for I2C master/slave pending status to set to continue transfer.

enumerator kStatus_I2C_Addr_Nak

NAK received for Address

enumerator kStatus_I2C_EventTimeout

Timeout waiting for bus event.

enumerator kStatus_I2C_SclLowTimeout

Timeout SCL signal remains low.

enum _i2c_status_flags

I2C status flags.

Note

These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingFlag

The I2C module is waiting for software interaction. bit 0

enumerator kI2C_MasterArbitrationLostFlag

The arbitration of the bus was lost. There was collision on the bus. bit 4

enumerator kI2C_MasterStartStopErrorFlag

There was an error during start or stop phase of the transaction. bit 6

enumerator kI2C_MasterIdleFlag

The I2C master idle status. bit 5

enumerator kI2C_MasterRxReadyFlag

The I2C master rx ready status. bit 1

enumerator kI2C_MasterTxReadyFlag

The I2C master tx ready status. bit 2

enumerator kI2C_MasterAddrNackFlag

The I2C master address nack status. bit 7

enumerator kI2C_MasterDataNackFlag

The I2C master data nack status. bit 3

enumerator kI2C_SlavePendingFlag

The I2C module is waiting for software interaction. bit 8

enumerator kI2C_SlaveNotStretching

Indicates whether the slave is currently stretching clock (0 = yes, 1 = no). bit 11

enumerator kI2C_SlaveSelected

Indicates whether the slave is selected by an address match. bit 14

enumerator kI2C_SaveDeselected

Indicates that slave was previously deselected (deselect event took place, w1c). bit 15

enumerator kI2C_SlaveAddressedFlag

One of the I2C slave’s 4 addresses is matched. bit 22

enumerator kI2C_SlaveReceiveFlag

Slave receive data available. bit 9

enumerator kI2C_SlaveTransmitFlag

Slave data can be transmitted. bit 10

enumerator kI2C_SlaveAddress0MatchFlag

Slave address0 match. bit 20

enumerator kI2C_SlaveAddress1MatchFlag

Slave address1 match. bit 12

enumerator kI2C_SlaveAddress2MatchFlag

Slave address2 match. bit 13

enumerator kI2C_SlaveAddress3MatchFlag

Slave address3 match. bit 21

enumerator kI2C_MonitorReadyFlag

The I2C monitor ready interrupt. bit 16

enumerator kI2C_MonitorOverflowFlag

The monitor data overrun interrupt. bit 17

enumerator kI2C_MonitorActiveFlag

The monitor is active. bit 18

enumerator kI2C_MonitorIdleFlag

The monitor idle interrupt. bit 19

enumerator kI2C_EventTimeoutFlag

The bus event timeout interrupt. bit 24

enumerator kI2C_SclTimeoutFlag

The SCL timeout interrupt. bit 25

enumerator kI2C_MasterAllClearFlags
enumerator kI2C_SlaveAllClearFlags
enumerator kI2C_CommonAllClearFlags
enum _i2c_interrupt_enable

I2C interrupt enable.

Note

These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingInterruptEnable

The I2C master communication pending interrupt.

enumerator kI2C_MasterArbitrationLostInterruptEnable

The I2C master arbitration lost interrupt.

enumerator kI2C_MasterStartStopErrorInterruptEnable

The I2C master start/stop timing error interrupt.

enumerator kI2C_SlavePendingInterruptEnable

The I2C slave communication pending interrupt.

enumerator kI2C_SlaveNotStretchingInterruptEnable

The I2C slave not streching interrupt, deep-sleep mode can be entered only when this interrupt occurs.

enumerator kI2C_SlaveDeselectedInterruptEnable

The I2C slave deselection interrupt.

enumerator kI2C_MonitorReadyInterruptEnable

The I2C monitor ready interrupt.

enumerator kI2C_MonitorOverflowInterruptEnable

The monitor data overrun interrupt.

enumerator kI2C_MonitorIdleInterruptEnable

The monitor idle interrupt.

enumerator kI2C_EventTimeoutInterruptEnable

The bus event timeout interrupt.

enumerator kI2C_SclTimeoutInterruptEnable

The SCL timeout interrupt.

enumerator kI2C_MasterAllInterruptEnable
enumerator kI2C_SlaveAllInterruptEnable
enumerator kI2C_CommonAllInterruptEnable
I2C_RETRY_TIMES

Retry times for waiting flag.

I2C_MASTER_TRANSMIT_IGNORE_LAST_NACK

Whether to ignore the nack signal of the last byte during master transmit.

I2C_STAT_MSTCODE_IDLE

Master Idle State Code

I2C_STAT_MSTCODE_RXREADY

Master Receive Ready State Code

I2C_STAT_MSTCODE_TXREADY

Master Transmit Ready State Code

I2C_STAT_MSTCODE_NACKADR

Master NACK by slave on address State Code

I2C_STAT_MSTCODE_NACKDAT

Master NACK by slave on data State Code

I2C_STAT_SLVST_ADDR
I2C_STAT_SLVST_RX
I2C_STAT_SLVST_TX

I2C Master Driver

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)

Provides a default configuration for the I2C master peripheral.

This function provides the following default configuration for the I2C master peripheral:

masterConfig->enableMaster            = true;
masterConfig->baudRate_Bps            = 100000U;
masterConfig->enableTimeout           = false;

After calling this function, you can override any settings in order to customize the configuration, prior to initializing the master driver with I2C_MasterInit().

Parameters:
  • masterConfig[out] User provided configuration structure for default values. Refer to i2c_master_config_t.

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)

Initializes the I2C master peripheral.

This function enables the peripheral clock and initializes the I2C master peripheral as described by the user provided configuration. A software reset is performed prior to configuration.

Parameters:
  • base – The I2C peripheral base address.

  • masterConfig – User provided peripheral configuration. Use I2C_MasterGetDefaultConfig() to get a set of defaults that you can override.

  • srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to calculate the baud rate divisors, filter widths, and timeout periods.

void I2C_MasterDeinit(I2C_Type *base)

Deinitializes the I2C master peripheral.

This function disables the I2C master peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.

Parameters:
  • base – The I2C peripheral base address.

uint32_t I2C_GetInstance(I2C_Type *base)

Returns an instance number given a base address.

If an invalid base address is passed, debug builds will assert. Release builds will just return instance number 0.

Parameters:
  • base – The I2C peripheral base address.

Returns:

I2C instance number starting from 0.

static inline void I2C_MasterReset(I2C_Type *base)

Performs a software reset.

Restores the I2C master peripheral to reset conditions.

Parameters:
  • base – The I2C peripheral base address.

static inline void I2C_MasterEnable(I2C_Type *base, bool enable)

Enables or disables the I2C module as master.

Parameters:
  • base – The I2C peripheral base address.

  • enable – Pass true to enable or false to disable the specified I2C as master.

uint32_t I2C_GetStatusFlags(I2C_Type *base)

Gets the I2C status flags.

A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding bit in the return value is set if the flag is asserted.

See also

_i2c_status_flags.

Parameters:
  • base – The I2C peripheral base address.

Returns:

State of the status flags:

  • 1: related status flag is set.

  • 0: related status flag is not set.

static inline void I2C_ClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C status flag state.

Refer to kI2C_CommonAllClearStatusFlags, kI2C_MasterAllClearStatusFlags and kI2C_SlaveAllClearStatusFlags to see the clearable flags. Attempts to clear other flags has no effect.

See also

_i2c_status_flags, _i2c_master_status_flags and _i2c_slave_status_flags.

Parameters:
  • base – The I2C peripheral base address.

  • statusMask – A bitmask of status flags that are to be cleared. The mask is composed of the members in kI2C_CommonAllClearStatusFlags, kI2C_MasterAllClearStatusFlags and kI2C_SlaveAllClearStatusFlags. You may pass the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C master status flag state.

Deprecated:

Do not use this function. It has been superceded by I2C_ClearStatusFlags The following status register flags can be cleared:

  • kI2C_MasterArbitrationLostFlag

  • kI2C_MasterStartStopErrorFlag

Attempts to clear other flags has no effect.

See also

_i2c_status_flags.

Parameters:
  • base – The I2C peripheral base address.

  • statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i2c_status_flags enumerators OR’d together. You may pass the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_EnableInterrupts(I2C_Type *base, uint32_t interruptMask)

Enables the I2C interrupt requests.

Parameters:
  • base – The I2C peripheral base address.

  • interruptMask – Bit mask of interrupts to enable. See _i2c_interrupt_enable for the set of constants that should be OR’d together to form the bit mask.

static inline void I2C_DisableInterrupts(I2C_Type *base, uint32_t interruptMask)

Disables the I2C interrupt requests.

Parameters:
  • base – The I2C peripheral base address.

  • interruptMask – Bit mask of interrupts to disable. See _i2c_interrupt_enable for the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t I2C_GetEnabledInterrupts(I2C_Type *base)

Returns the set of currently enabled I2C interrupt requests.

Parameters:
  • base – The I2C peripheral base address.

Returns:

A bitmask composed of _i2c_interrupt_enable enumerators OR’d together to indicate the set of enabled interrupts.

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)

Sets the I2C bus frequency for master transactions.

The I2C master is automatically disabled and re-enabled as necessary to configure the baud rate. Do not call this function during a transfer, or the transfer is aborted.

Parameters:
  • base – The I2C peripheral base address.

  • srcClock_Hz – I2C functional clock frequency in Hertz.

  • baudRate_Bps – Requested bus frequency in bits per second.

void I2C_MasterSetTimeoutValue(I2C_Type *base, uint8_t timeout_Ms, uint32_t srcClock_Hz)

Sets the I2C bus timeout value.

If the SCL signal remains low or bus does not have event longer than the timeout value, kI2C_SclTimeoutFlag or kI2C_EventTimeoutFlag is set. This can indicete the bus is held by slave or any fault occurs to the I2C module.

Parameters:
  • base – The I2C peripheral base address.

  • timeout_Ms – Timeout value in millisecond.

  • srcClock_Hz – I2C functional clock frequency in Hertz.

static inline bool I2C_MasterGetBusIdleState(I2C_Type *base)

Returns whether the bus is idle.

Requires the master mode to be enabled.

Parameters:
  • base – The I2C peripheral base address.

Return values:
  • true – Bus is busy.

  • false – Bus is idle.

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal. The slave address is sent following the I2C START signal.

Parameters:
  • base – I2C peripheral base pointer

  • address – 7-bit slave device address.

  • direction – Master transfer directions(transmit/receive).

Return values:
  • kStatus_Success – Successfully send the start signal.

  • kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)

Sends a STOP signal on the I2C bus.

Return values:
  • kStatus_Success – Successfully send the stop signal.

  • kStatus_I2C_Timeout – Send stop signal failed, timeout.

static inline status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a REPEATED START on the I2C bus.

Parameters:
  • base – I2C peripheral base pointer

  • address – 7-bit slave device address.

  • direction – Master transfer directions(transmit/receive).

Return values:
  • kStatus_Success – Successfully send the start signal.

  • kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C master.

status_t I2C_MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t flags)

Performs a polling send transfer on the I2C bus.

Sends up to txSize number of bytes to the previously addressed slave device. The slave may reply with a NAK to any byte in order to terminate the transfer early. If this happens, this function returns kStatus_I2C_Nak.

Parameters:
  • base – The I2C peripheral base address.

  • txBuff – The pointer to the data to be transferred.

  • txSize – The length in bytes of the data to be transferred.

  • flags – Transfer control flag to control special behavior like suppressing start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values:
  • kStatus_Success – Data was sent successfully.

  • kStatus_I2C_Busy – Another master is currently utilizing the bus.

  • kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

  • kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)

Performs a polling receive transfer on the I2C bus.

Parameters:
  • base – The I2C peripheral base address.

  • rxBuff – The pointer to the data to be transferred.

  • rxSize – The length in bytes of the data to be transferred.

  • flags – Transfer control flag to control special behavior like suppressing start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values:
  • kStatus_Success – Data was received successfully.

  • kStatus_I2C_Busy – Another master is currently utilizing the bus.

  • kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

  • kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)

Performs a master polling transfer on the I2C bus.

Note

The API does not return until the transfer succeeds or fails due to arbitration lost or receiving a NAK.

Parameters:
  • base – I2C peripheral base address.

  • xfer – Pointer to the transfer structure.

Return values:
  • kStatus_Success – Successfully complete the data transmission.

  • kStatus_I2C_Busy – Previous transmission still not finished.

  • kStatus_I2C_Timeout – Transfer error, wait signal timeout.

  • kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

  • kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

  • kStataus_I2C_Addr_Nak – Transfer error, receive NAK during addressing.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C master non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I2C_MasterTransferAbort() API shall be called.

Parameters:
  • base – The I2C peripheral base address.

  • handle[out] Pointer to the I2C master driver handle.

  • callback – User provided pointer to the asynchronous callback function.

  • userData – User provided pointer to the application callback data.

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)

Performs a non-blocking transaction on the I2C bus.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to the I2C master driver handle.

  • xfer – The pointer to the transfer descriptor.

Return values:
  • kStatus_Success – The transaction was started successfully.

  • kStatus_I2C_Busy – Either another master is currently utilizing the bus, or a non-blocking transaction is already in progress.

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count)

Returns number of bytes transferred so far.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to the I2C master driver handle.

  • count[out] Number of bytes transferred so far by the non-blocking transaction.

Return values:
  • kStatus_Success

  • kStatus_I2C_Busy

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)

Terminates a non-blocking I2C master transmission early.

Note

It is not safe to call this function from an IRQ handler that has a higher priority than the I2C peripheral’s IRQ priority.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to the I2C master driver handle.

Return values:
  • kStatus_Success – A transaction was successfully aborted.

  • kStatus_I2C_Timeout – Timeout during polling for flags.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, i2c_master_handle_t *handle)

Reusable routine to handle master interrupts.

Note

This function does not need to be called unless you are reimplementing the nonblocking API’s interrupt handler routines to add special functionality.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to the I2C master driver handle.

enum _i2c_direction

Direction of master and slave transfers.

Values:

enumerator kI2C_Write

Master transmit.

enumerator kI2C_Read

Master receive.

enum _i2c_master_transfer_flags

Transfer option flags.

Note

These enumerations are intended to be OR’d together to form a bit mask of options for the _i2c_master_transfer::flags field.

Values:

enumerator kI2C_TransferDefaultFlag

Transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag

Don’t send a start condition, address, and sub address

enumerator kI2C_TransferRepeatedStartFlag

Send a repeated start condition

enumerator kI2C_TransferNoStopFlag

Don’t send a stop condition.

enum _i2c_transfer_states

States for the state machine used by transactional APIs.

Values:

enumerator kIdleState
enumerator kTransmitSubaddrState
enumerator kTransmitDataState
enumerator kReceiveDataBeginState
enumerator kReceiveDataState
enumerator kReceiveLastDataState
enumerator kStartState
enumerator kStopState
enumerator kWaitForCompletionState
typedef enum _i2c_direction i2c_direction_t

Direction of master and slave transfers.

typedef struct _i2c_master_config i2c_master_config_t

Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _i2c_master_transfer i2c_master_transfer_t

I2C master transfer typedef.

typedef struct _i2c_master_handle i2c_master_handle_t

I2C master handle typedef.

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle, status_t completionStatus, void *userData)

Master completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you wish to use in the call to I2C_MasterTransferCreateHandle().

Param base:

The I2C peripheral base address.

Param completionStatus:

Either kStatus_Success or an error code describing how the transfer completed.

Param userData:

Arbitrary pointer-sized value passed from the application.

struct _i2c_master_config
#include <fsl_i2c.h>

Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableMaster

Whether to enable master mode.

uint32_t baudRate_Bps

Desired baud rate in bits per second.

bool enableTimeout

Enable internal timeout function.

uint8_t timeout_Ms

Event timeout and SCL low timeout value.

struct _i2c_master_transfer
#include <fsl_i2c.h>

Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the I2C_MasterTransferNonBlocking() API.

Public Members

uint32_t flags

Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.

uint8_t slaveAddress

The 7-bit slave address.

i2c_direction_t direction

Either kI2C_Read or kI2C_Write.

uint32_t subaddress

Sub address. Transferred MSB first.

size_t subaddressSize

Length of sub address to send in bytes. Maximum size is 4 bytes.

void *data

Pointer to data to transfer.

size_t dataSize

Number of bytes to transfer.

struct _i2c_master_handle
#include <fsl_i2c.h>

Driver handle for master non-blocking APIs.

Note

The contents of this structure are private and subject to change.

Public Members

uint8_t state

Transfer state machine current state.

uint32_t transferCount

Indicates progress of the transfer

uint32_t remainingBytes

Remaining byte count in current state.

uint8_t *buf

Buffer pointer for current state.

bool checkAddrNack

Whether to check the nack signal is detected during addressing.

i2c_master_transfer_t transfer

Copy of the current transfer info.

i2c_master_transfer_callback_t completionCallback

Callback function pointer.

void *userData

Application data passed to callback.

I2C Slave Driver

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)

Provides a default configuration for the I2C slave peripheral.

This function provides the following default configuration for the I2C slave peripheral:

slaveConfig->enableSlave = true;
slaveConfig->address0.disable = false;
slaveConfig->address0.address = 0u;
slaveConfig->address1.disable = true;
slaveConfig->address2.disable = true;
slaveConfig->address3.disable = true;
slaveConfig->busSpeed = kI2C_SlaveStandardMode;

After calling this function, override any settings to customize the configuration, prior to initializing the master driver with I2C_SlaveInit(). Be sure to override at least the address0.address member of the configuration structure with the desired slave address.

Parameters:
  • slaveConfig[out] User provided configuration structure that is set to default values. Refer to i2c_slave_config_t.

status_t I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)

Initializes the I2C slave peripheral.

This function enables the peripheral clock and initializes the I2C slave peripheral as described by the user provided configuration.

Parameters:
  • base – The I2C peripheral base address.

  • slaveConfig – User provided peripheral configuration. Use I2C_SlaveGetDefaultConfig() to get a set of defaults that you can override.

  • srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to calculate CLKDIV value to provide enough data setup time for master when slave stretches the clock.

void I2C_SlaveSetAddress(I2C_Type *base, i2c_slave_address_register_t addressRegister, uint8_t address, bool addressDisable)

Configures Slave Address n register.

This function writes new value to Slave Address register.

Parameters:
  • base – The I2C peripheral base address.

  • addressRegister – The module supports multiple address registers. The parameter determines which one shall be changed.

  • address – The slave address to be stored to the address register for matching.

  • addressDisable – Disable matching of the specified address register.

void I2C_SlaveDeinit(I2C_Type *base)

Deinitializes the I2C slave peripheral.

This function disables the I2C slave peripheral and gates the clock. It also performs a software reset to restore the peripheral to reset conditions.

Parameters:
  • base – The I2C peripheral base address.

static inline void I2C_SlaveEnable(I2C_Type *base, bool enable)

Enables or disables the I2C module as slave.

Parameters:
  • base – The I2C peripheral base address.

  • enable – True to enable or flase to disable.

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C status flag state.

The following status register flags can be cleared:

  • slave deselected flag

Attempts to clear other flags has no effect.

See also

_i2c_slave_flags.

Parameters:
  • base – The I2C peripheral base address.

  • statusMask – A bitmask of status flags that are to be cleared. The mask is composed of _i2c_slave_flags enumerators OR’d together. You may pass the result of a previous call to I2C_SlaveGetStatusFlags().

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)

Performs a polling send transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters:
  • base – The I2C peripheral base address.

  • txBuff – The pointer to the data to be transferred.

  • txSize – The length in bytes of the data to be transferred.

Returns:

kStatus_Success Data has been sent.

Returns:

kStatus_Fail Unexpected slave state (master data write while master read from slave is expected).

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)

Performs a polling receive transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters:
  • base – The I2C peripheral base address.

  • rxBuff – The pointer to the data to be transferred.

  • rxSize – The length in bytes of the data to be transferred.

Returns:

kStatus_Success Data has been received.

Returns:

kStatus_Fail Unexpected slave state (master data read while master write to slave is expected).

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C slave non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created, there is not a corresponding destroy handle. If the user wants to terminate a transfer, the I2C_SlaveTransferAbort() API shall be called.

Parameters:
  • base – The I2C peripheral base address.

  • handle[out] Pointer to the I2C slave driver handle.

  • callback – User provided pointer to the asynchronous callback function.

  • userData – User provided pointer to the application callback data.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask)

Starts accepting slave transfers.

Call this API after calling I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start processing transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The callback is always invoked from the interrupt context.

If no slave Tx transfer is busy, a master read from slave request invokes kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to slave request invokes kI2C_SlaveReceiveEvent callback.

The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.

  • eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.

Return values:
  • kStatus_Success – Slave transfers were successfully started.

  • kStatus_I2C_Busy – Slave transfers have already been started on this handle.

status_t I2C_SlaveSetSendBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, const void *txData, size_t txSize, uint32_t eventMask)

Starts accepting master read from slave requests.

The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new slave Tx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters:
  • base – The I2C peripheral base address.

  • transfer – Pointer to i2c_slave_transfer_t structure.

  • txData – Pointer to data to send to master.

  • txSize – Size of txData in bytes.

  • eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.

Return values:
  • kStatus_Success – Slave transfers were successfully started.

  • kStatus_I2C_Busy – Slave transfers have already been started on this handle.

status_t I2C_SlaveSetReceiveBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void *rxData, size_t rxSize, uint32_t eventMask)

Starts accepting master write to slave requests.

The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new slave Rx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask parameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are always enabled and do not need to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and receive events that are always enabled. In addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters:
  • base – The I2C peripheral base address.

  • transfer – Pointer to i2c_slave_transfer_t structure.

  • rxData – Pointer to data to store data from master.

  • rxSize – Size of rxData in bytes.

  • eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t enumerators to specify which events to send to the callback. Other accepted values are 0 to get a default set of only the transmit and receive events, and kI2C_SlaveAllEvents to enable all events.

Return values:
  • kStatus_Success – Slave transfers were successfully started.

  • kStatus_I2C_Busy – Slave transfers have already been started on this handle.

static inline uint32_t I2C_SlaveGetReceivedAddress(I2C_Type *base, volatile i2c_slave_transfer_t *transfer)

Returns the slave address sent by the I2C master.

This function should only be called from the address match event callback kI2C_SlaveAddressMatchEvent.

Parameters:
  • base – The I2C peripheral base address.

  • transfer – The I2C slave transfer.

Returns:

The 8-bit address matched by the I2C slave. Bit 0 contains the R/w direction bit, and the 7-bit slave address is in the upper 7 bits.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)

Aborts the slave non-blocking transfers.

Note

This API could be called at any time to stop slave for handling the bus events.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.

Return values:
  • kStatus_Success

  • kStatus_I2C_Idle

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)

Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters:
  • base – I2C base pointer.

  • handle – pointer to i2c_slave_handle_t structure.

  • count – Number of bytes transferred so far by the non-blocking transaction.

Return values:
  • kStatus_InvalidArgument – count is Invalid.

  • kStatus_Success – Successfully return the count.

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, i2c_slave_handle_t *handle)

Reusable routine to handle slave interrupts.

Note

This function does not need to be called unless you are reimplementing the non blocking API’s interrupt handler routines to add special functionality.

Parameters:
  • base – The I2C peripheral base address.

  • handle – Pointer to i2c_slave_handle_t structure which stores the transfer state.

enum _i2c_slave_address_register

I2C slave address register.

Values:

enumerator kI2C_SlaveAddressRegister0

Slave Address 0 register.

enumerator kI2C_SlaveAddressRegister1

Slave Address 1 register.

enumerator kI2C_SlaveAddressRegister2

Slave Address 2 register.

enumerator kI2C_SlaveAddressRegister3

Slave Address 3 register.

enum _i2c_slave_address_qual_mode

I2C slave address match options.

Values:

enumerator kI2C_QualModeMask

The SLVQUAL0 field (qualAddress) is used as a logical mask for matching address0.

enumerator kI2C_QualModeExtend

The SLVQUAL0 (qualAddress) field is used to extend address 0 matching in a range of addresses.

enum _i2c_slave_bus_speed

I2C slave bus speed options.

Values:

enumerator kI2C_SlaveStandardMode
enumerator kI2C_SlaveFastMode
enumerator kI2C_SlaveFastModePlus
enumerator kI2C_SlaveHsMode
enum _i2c_slave_transfer_event

Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.

Note

These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent

Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent

Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_SlaveReceiveEvent

Callback is requested to provide a buffer in which to place received data (slave-receiver role).

enumerator kI2C_SlaveCompletionEvent

All data in the active transfer have been consumed.

enumerator kI2C_SlaveDeselectedEvent

The slave function has become deselected (SLVSEL flag changing from 1 to 0.

enumerator kI2C_SlaveAllEvents

Bit mask of all available events.

enum _i2c_slave_fsm

I2C slave software finite state machine states.

Values:

enumerator kI2C_SlaveFsmAddressMatch
enumerator kI2C_SlaveFsmReceive
enumerator kI2C_SlaveFsmTransmit
typedef enum _i2c_slave_address_register i2c_slave_address_register_t

I2C slave address register.

typedef struct _i2c_slave_address i2c_slave_address_t

Data structure with 7-bit Slave address and Slave address disable.

typedef enum _i2c_slave_address_qual_mode i2c_slave_address_qual_mode_t

I2C slave address match options.

typedef enum _i2c_slave_bus_speed i2c_slave_bus_speed_t

I2C slave bus speed options.

typedef struct _i2c_slave_config i2c_slave_config_t

Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t

Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify which events to enable. Then, when the slave callback is invoked, it is passed the current event through its transfer parameter.

Note

These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_slave_handle i2c_slave_handle_t

I2C slave handle typedef.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t

I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void *userData)

Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use the I2C_SlaveSetCallback() function after you have created a handle.

Param base:

Base address for the I2C instance on which the event occurred.

Param transfer:

Pointer to transfer descriptor containing values passed to and/or from the callback.

Param userData:

Arbitrary pointer-sized value passed from the application.

typedef enum _i2c_slave_fsm i2c_slave_fsm_t

I2C slave software finite state machine states.

typedef void (*flexcomm_i2c_master_irq_handler_t)(I2C_Type *base, i2c_master_handle_t *handle)

Typedef for master interrupt handler.

typedef void (*flexcomm_i2c_slave_irq_handler_t)(I2C_Type *base, i2c_slave_handle_t *handle)

Typedef for slave interrupt handler.

struct _i2c_slave_address
#include <fsl_i2c.h>

Data structure with 7-bit Slave address and Slave address disable.

Public Members

uint8_t address

7-bit Slave address SLVADR.

bool addressDisable

Slave address disable SADISABLE.

struct _i2c_slave_config
#include <fsl_i2c.h>

Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

i2c_slave_address_t address0

Slave’s 7-bit address and disable.

i2c_slave_address_t address1

Alternate slave 7-bit address and disable.

i2c_slave_address_t address2

Alternate slave 7-bit address and disable.

i2c_slave_address_t address3

Alternate slave 7-bit address and disable.

i2c_slave_address_qual_mode_t qualMode

Qualify mode for slave address 0.

uint8_t qualAddress

Slave address qualifier for address 0.

i2c_slave_bus_speed_t busSpeed

Slave bus speed mode. If the slave function stretches SCL to allow for software response, it must provide sufficient data setup time to the master before releasing the stretched clock. This is accomplished by inserting one clock time of CLKDIV at that point. The busSpeed value is used to configure CLKDIV such that one clock time is greater than the tSU;DAT value noted in the I2C bus specification for the I2C mode that is being used. If the busSpeed mode is unknown at compile time, use the longest data setup time kI2C_SlaveStandardMode (250 ns)

bool enableSlave

Enable slave mode.

struct _i2c_slave_transfer
#include <fsl_i2c.h>

I2C slave transfer structure.

Public Members

i2c_slave_handle_t *handle

Pointer to handle that contains this transfer.

i2c_slave_transfer_event_t event

Reason the callback is being invoked.

uint8_t receivedAddress

Matching address send by master. 7-bits plus R/nW bit0

uint32_t eventMask

Mask of enabled events.

uint8_t *rxData

Transfer buffer for receive data

const uint8_t *txData

Transfer buffer for transmit data

size_t txSize

Transfer size

size_t rxSize

Transfer size

size_t transferredCount

Number of bytes transferred during this transfer.

status_t completionStatus

Success or error code describing how the transfer completed. Only applies for kI2C_SlaveCompletionEvent.

struct _i2c_slave_handle
#include <fsl_i2c.h>

I2C slave handle structure.

Note

The contents of this structure are private and subject to change.

Public Members

volatile i2c_slave_transfer_t transfer

I2C slave transfer.

volatile bool isBusy

Whether transfer is busy.

volatile i2c_slave_fsm_t slaveFsm

slave transfer state machine.

i2c_slave_transfer_callback_t callback

Callback function called at transfer event.

void *userData

Callback parameter passed to callback.

I2S: I2S Driver

I2S DMA Driver

void I2S_TxTransferCreateHandleDMA(I2S_Type *base, i2s_dma_handle_t *handle, dma_handle_t *dmaHandle, i2s_dma_transfer_callback_t callback, void *userData)

Initializes handle for transfer of audio data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • dmaHandle – pointer to dma handle structure.

  • callback – function to be called back when transfer is done or fails.

  • userData – pointer to data passed to callback.

status_t I2S_TxTransferSendDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t transfer)

Begins or queue sending of the given data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • transfer – data buffer.

Return values:
  • kStatus_Success

  • kStatus_I2S_Busy – if all queue slots are occupied with unsent buffers.

void I2S_TransferAbortDMA(I2S_Type *base, i2s_dma_handle_t *handle)

Aborts transfer of data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

void I2S_RxTransferCreateHandleDMA(I2S_Type *base, i2s_dma_handle_t *handle, dma_handle_t *dmaHandle, i2s_dma_transfer_callback_t callback, void *userData)

Initializes handle for reception of audio data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • dmaHandle – pointer to dma handle structure.

  • callback – function to be called back when transfer is done or fails.

  • userData – pointer to data passed to callback.

status_t I2S_RxTransferReceiveDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t transfer)

Begins or queue reception of data into given buffer.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • transfer – data buffer.

Return values:
  • kStatus_Success

  • kStatus_I2S_Busy – if all queue slots are occupied with buffers which are not full.

void I2S_DMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t tcds)

Invoked from DMA interrupt handler.

Parameters:
  • handle – pointer to DMA handle structure.

  • userData – argument for user callback.

  • transferDone – if transfer was done.

  • tcds

void I2S_TransferInstallLoopDMADescriptorMemory(i2s_dma_handle_t *handle, void *dmaDescriptorAddr, size_t dmaDescriptorNum)

Install DMA descriptor memory for loop transfer only.

This function used to register DMA descriptor memory for the i2s loop dma transfer.

It must be callbed before I2S_TransferSendLoopDMA/I2S_TransferReceiveLoopDMA and after I2S_RxTransferCreateHandleDMA/I2S_TxTransferCreateHandleDMA.

User should be take care about the address of DMA descriptor pool which required align with 16BYTE at least.

Parameters:
  • handle – Pointer to i2s DMA transfer handle.

  • dmaDescriptorAddr – DMA descriptor start address.

  • dmaDescriptorNum – DMA descriptor number.

status_t I2S_TransferSendLoopDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t *xfer, uint32_t loopTransferCount)

Send link transfer data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.

This function support loop transfer, such as A->B->…->A, the loop transfer chain will be converted into a chain of descriptor and submit to dma. Application must be aware of that the more counts of the loop transfer, then more DMA descriptor memory required, user can use function I2S_InstallDMADescriptorMemory to register the dma descriptor memory.

As the DMA support maximum 1024 transfer count, so application must be aware of that this transfer function support maximum 1024 samples in each transfer, otherwise assert error or error status will be returned. Once the loop transfer start, application can use function I2S_TransferAbortDMA to stop the loop transfer.

Parameters:
  • base – I2S peripheral base address.

  • handle – Pointer to usart_dma_handle_t structure.

  • xfer – I2S DMA transfer structure. See i2s_transfer_t.

  • loopTransferCount – loop count

Return values:

kStatus_Success

status_t I2S_TransferReceiveLoopDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t *xfer, uint32_t loopTransferCount)

Receive link transfer data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.

This function support loop transfer, such as A->B->…->A, the loop transfer chain will be converted into a chain of descriptor and submit to dma. Application must be aware of that the more counts of the loop transfer, then more DMA descriptor memory required, user can use function I2S_InstallDMADescriptorMemory to register the dma descriptor memory.

As the DMA support maximum 1024 transfer count, so application must be aware of that this transfer function support maximum 1024 samples in each transfer, otherwise assert error or error status will be returned. Once the loop transfer start, application can use function I2S_TransferAbortDMA to stop the loop transfer.

Parameters:
  • base – I2S peripheral base address.

  • handle – Pointer to usart_dma_handle_t structure.

  • xfer – I2S DMA transfer structure. See i2s_transfer_t.

  • loopTransferCount – loop count

Return values:

kStatus_Success

FSL_I2S_DMA_DRIVER_VERSION

I2S DMA driver version 2.3.3.

typedef struct _i2s_dma_handle i2s_dma_handle_t

Members not to be accessed / modified outside of the driver.

typedef void (*i2s_dma_transfer_callback_t)(I2S_Type *base, i2s_dma_handle_t *handle, status_t completionStatus, void *userData)

Callback function invoked from DMA API on completion.

Param base:

I2S base pointer.

Param handle:

pointer to I2S transaction.

Param completionStatus:

status of the transaction.

Param userData:

optional pointer to user arguments data.

struct _i2s_dma_handle
#include <fsl_i2s_dma.h>

i2s dma handle

Public Members

uint32_t state

Internal state of I2S DMA transfer

uint8_t bytesPerFrame

bytes per frame

i2s_dma_transfer_callback_t completionCallback

Callback function pointer

void *userData

Application data passed to callback

dma_handle_t *dmaHandle

DMA handle

volatile i2s_transfer_t i2sQueue[(4U)]

Transfer queue storing transfer buffers

volatile uint8_t queueUser

Queue index where user’s next transfer will be stored

volatile uint8_t queueDriver

Queue index of buffer actually used by the driver

dma_descriptor_t *i2sLoopDMADescriptor

descriptor pool pointer

size_t i2sLoopDMADescriptorNum

number of descriptor in descriptors pool

I2S Driver

void I2S_TxInit(I2S_Type *base, const i2s_config_t *config)

Initializes the FLEXCOMM peripheral for I2S transmit functionality.

Ungates the FLEXCOMM clock and configures the module for I2S transmission using a configuration structure. The configuration structure can be custom filled or set with default values by I2S_TxGetDefaultConfig().

Note

This API should be called at the beginning of the application to use the I2S driver.

Parameters:
  • base – I2S base pointer.

  • config – pointer to I2S configuration structure.

void I2S_RxInit(I2S_Type *base, const i2s_config_t *config)

Initializes the FLEXCOMM peripheral for I2S receive functionality.

Ungates the FLEXCOMM clock and configures the module for I2S receive using a configuration structure. The configuration structure can be custom filled or set with default values by I2S_RxGetDefaultConfig().

Note

This API should be called at the beginning of the application to use the I2S driver.

Parameters:
  • base – I2S base pointer.

  • config – pointer to I2S configuration structure.

void I2S_TxGetDefaultConfig(i2s_config_t *config)

Sets the I2S Tx configuration structure to default values.

This API initializes the configuration structure for use in I2S_TxInit(). The initialized structure can remain unchanged in I2S_TxInit(), or it can be modified before calling I2S_TxInit(). Example:

i2s_config_t config;
I2S_TxGetDefaultConfig(&config);

Default values:

config->masterSlave = kI2S_MasterSlaveNormalMaster;
config->mode = kI2S_ModeI2sClassic;
config->rightLow = false;
config->leftJust = false;
config->pdmData = false;
config->sckPol = false;
config->wsPol = false;
config->divider = 1;
config->oneChannel = false;
config->dataLength = 16;
config->frameLength = 32;
config->position = 0;
config->watermark = 4;
config->txEmptyZero = true;
config->pack48 = false;

Parameters:
  • config – pointer to I2S configuration structure.

void I2S_RxGetDefaultConfig(i2s_config_t *config)

Sets the I2S Rx configuration structure to default values.

This API initializes the configuration structure for use in I2S_RxInit(). The initialized structure can remain unchanged in I2S_RxInit(), or it can be modified before calling I2S_RxInit(). Example:

i2s_config_t config;
I2S_RxGetDefaultConfig(&config);

Default values:

config->masterSlave = kI2S_MasterSlaveNormalSlave;
config->mode = kI2S_ModeI2sClassic;
config->rightLow = false;
config->leftJust = false;
config->pdmData = false;
config->sckPol = false;
config->wsPol = false;
config->divider = 1;
config->oneChannel = false;
config->dataLength = 16;
config->frameLength = 32;
config->position = 0;
config->watermark = 4;
config->txEmptyZero = false;
config->pack48 = false;

Parameters:
  • config – pointer to I2S configuration structure.

void I2S_Deinit(I2S_Type *base)

De-initializes the I2S peripheral.

This API gates the FLEXCOMM clock. The I2S module can’t operate unless I2S_TxInit or I2S_RxInit is called to enable the clock.

Parameters:
  • base – I2S base pointer.

void I2S_SetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate, uint32_t bitWidth, uint32_t channelNumbers)

Transmitter/Receiver bit clock rate configurations.

Parameters:
  • base – SAI base pointer.

  • sourceClockHz – bit clock source frequency.

  • sampleRate – audio data sample rate.

  • bitWidth – audio data bitWidth.

  • channelNumbers – audio channel numbers.

void I2S_TxTransferCreateHandle(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_callback_t callback, void *userData)

Initializes handle for transfer of audio data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • callback – function to be called back when transfer is done or fails.

  • userData – pointer to data passed to callback.

status_t I2S_TxTransferNonBlocking(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_t transfer)

Begins or queue sending of the given data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • transfer – data buffer.

Return values:
  • kStatus_Success

  • kStatus_I2S_Busy – if all queue slots are occupied with unsent buffers.

void I2S_TxTransferAbort(I2S_Type *base, i2s_handle_t *handle)

Aborts sending of data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

void I2S_RxTransferCreateHandle(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_callback_t callback, void *userData)

Initializes handle for reception of audio data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • callback – function to be called back when transfer is done or fails.

  • userData – pointer to data passed to callback.

status_t I2S_RxTransferNonBlocking(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_t transfer)

Begins or queue reception of data into given buffer.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • transfer – data buffer.

Return values:
  • kStatus_Success

  • kStatus_I2S_Busy – if all queue slots are occupied with buffers which are not full.

void I2S_RxTransferAbort(I2S_Type *base, i2s_handle_t *handle)

Aborts receiving of data.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

status_t I2S_TransferGetCount(I2S_Type *base, i2s_handle_t *handle, size_t *count)

Returns number of bytes transferred so far.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • count[out] number of bytes transferred so far by the non-blocking transaction.

Return values:
  • kStatus_Success

  • kStatus_NoTransferInProgress – there is no non-blocking transaction currently in progress.

status_t I2S_TransferGetErrorCount(I2S_Type *base, i2s_handle_t *handle, size_t *count)

Returns number of buffer underruns or overruns.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

  • count[out] number of transmit errors encountered so far by the non-blocking transaction.

Return values:
  • kStatus_Success

  • kStatus_NoTransferInProgress – there is no non-blocking transaction currently in progress.

static inline void I2S_Enable(I2S_Type *base)

Enables I2S operation.

Parameters:
  • base – I2S base pointer.

void I2S_EnableSecondaryChannel(I2S_Type *base, uint32_t channel, bool oneChannel, uint32_t position)

Enables I2S secondary channel.

Parameters:
  • base – I2S base pointer.

  • channel – seondary channel channel number, reference _i2s_secondary_channel.

  • oneChannel – true is treated as single channel, functionality left channel for this pair.

  • position – define the location within the frame of the data, should not bigger than 0x1FFU.

static inline void I2S_DisableSecondaryChannel(I2S_Type *base, uint32_t channel)

Disables I2S secondary channel.

Parameters:
  • base – I2S base pointer.

  • channel – seondary channel channel number, reference _i2s_secondary_channel.

static inline void I2S_Disable(I2S_Type *base)

Disables I2S operation.

Parameters:
  • base – I2S base pointer.

static inline void I2S_EnableInterrupts(I2S_Type *base, uint32_t interruptMask)

Enables I2S FIFO interrupts.

Parameters:
  • base – I2S base pointer.

  • interruptMask – bit mask of interrupts to enable. See i2s_flags_t for the set of constants that should be OR’d together to form the bit mask.

static inline void I2S_DisableInterrupts(I2S_Type *base, uint32_t interruptMask)

Disables I2S FIFO interrupts.

Parameters:
  • base – I2S base pointer.

  • interruptMask – bit mask of interrupts to enable. See i2s_flags_t for the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t I2S_GetEnabledInterrupts(I2S_Type *base)

Returns the set of currently enabled I2S FIFO interrupts.

Parameters:
  • base – I2S base pointer.

Returns:

A bitmask composed of i2s_flags_t enumerators OR’d together to indicate the set of enabled interrupts.

status_t I2S_EmptyTxFifo(I2S_Type *base)

Flush the valid data in TX fifo.

Parameters:
  • base – I2S base pointer.

Returns:

kStatus_Fail empty TX fifo failed, kStatus_Success empty tx fifo success.

void I2S_TxHandleIRQ(I2S_Type *base, i2s_handle_t *handle)

Invoked from interrupt handler when transmit FIFO level decreases.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

void I2S_RxHandleIRQ(I2S_Type *base, i2s_handle_t *handle)

Invoked from interrupt handler when receive FIFO level decreases.

Parameters:
  • base – I2S base pointer.

  • handle – pointer to handle structure.

FSL_I2S_DRIVER_VERSION

I2S driver version 2.3.2.

_i2s_status I2S status codes.

Values:

enumerator kStatus_I2S_BufferComplete

Transfer from/into a single buffer has completed

enumerator kStatus_I2S_Done

All buffers transfers have completed

enumerator kStatus_I2S_Busy

Already performing a transfer and cannot queue another buffer

enum _i2s_flags

I2S flags.

Note

These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2S_TxErrorFlag

TX error interrupt

enumerator kI2S_TxLevelFlag

TX level interrupt

enumerator kI2S_RxErrorFlag

RX error interrupt

enumerator kI2S_RxLevelFlag

RX level interrupt

enum _i2s_master_slave

Master / slave mode.

Values:

enumerator kI2S_MasterSlaveNormalSlave

Normal slave

enumerator kI2S_MasterSlaveWsSyncMaster

WS synchronized master

enumerator kI2S_MasterSlaveExtSckMaster

Master using existing SCK

enumerator kI2S_MasterSlaveNormalMaster

Normal master

enum _i2s_mode

I2S mode.

Values:

enumerator kI2S_ModeI2sClassic

I2S classic mode

enumerator kI2S_ModeDspWs50

DSP mode, WS having 50% duty cycle

enumerator kI2S_ModeDspWsShort

DSP mode, WS having one clock long pulse

enumerator kI2S_ModeDspWsLong

DSP mode, WS having one data slot long pulse

_i2s_secondary_channel I2S secondary channel.

Values:

enumerator kI2S_SecondaryChannel1

secondary channel 1

enumerator kI2S_SecondaryChannel2

secondary channel 2

enumerator kI2S_SecondaryChannel3

secondary channel 3

typedef enum _i2s_flags i2s_flags_t

I2S flags.

Note

These enums are meant to be OR’d together to form a bit mask.

typedef enum _i2s_master_slave i2s_master_slave_t

Master / slave mode.

typedef enum _i2s_mode i2s_mode_t

I2S mode.

typedef struct _i2s_config i2s_config_t

I2S configuration structure.

typedef struct _i2s_transfer i2s_transfer_t

Buffer to transfer from or receive audio data into.

typedef struct _i2s_handle i2s_handle_t

Transactional state of the intialized transfer or receive I2S operation.

typedef void (*i2s_transfer_callback_t)(I2S_Type *base, i2s_handle_t *handle, status_t completionStatus, void *userData)

Callback function invoked from transactional API on completion of a single buffer transfer.

Param base:

I2S base pointer.

Param handle:

pointer to I2S transaction.

Param completionStatus:

status of the transaction.

Param userData:

optional pointer to user arguments data.

I2S_NUM_BUFFERS

Number of buffers .

struct _i2s_config
#include <fsl_i2s.h>

I2S configuration structure.

Public Members

i2s_master_slave_t masterSlave

Master / slave configuration

i2s_mode_t mode

I2S mode

bool rightLow

Right channel data in low portion of FIFO

bool leftJust

Left justify data in FIFO

bool pdmData

Data source is the D-Mic subsystem

bool sckPol

SCK polarity

bool wsPol

WS polarity

uint16_t divider

Flexcomm function clock divider (1 - 4096)

bool oneChannel

true mono, false stereo

uint8_t dataLength

Data length (4 - 32)

uint16_t frameLength

Frame width (4 - 512)

uint16_t position

Data position in the frame

uint8_t watermark

FIFO trigger level

bool txEmptyZero

Transmit zero when buffer becomes empty or last item

bool pack48

Packing format for 48-bit data (false - 24 bit values, true - alternating 32-bit and 16-bit values)

struct _i2s_transfer
#include <fsl_i2s.h>

Buffer to transfer from or receive audio data into.

Public Members

uint8_t *data

Pointer to data buffer.

size_t dataSize

Buffer size in bytes.

struct _i2s_handle
#include <fsl_i2s.h>

Members not to be accessed / modified outside of the driver.

Public Members

volatile uint32_t state

State of transfer

i2s_transfer_callback_t completionCallback

Callback function pointer

void *userData

Application data passed to callback

bool oneChannel

true mono, false stereo

uint8_t dataLength

Data length (4 - 32)

bool pack48

Packing format for 48-bit data (false - 24 bit values, true - alternating 32-bit and 16-bit values)

uint8_t watermark

FIFO trigger level

bool useFifo48H

When dataLength 17-24: true use FIFOWR48H, false use FIFOWR

volatile i2s_transfer_t i2sQueue[(4U)]

Transfer queue storing transfer buffers

volatile uint8_t queueUser

Queue index where user’s next transfer will be stored

volatile uint8_t queueDriver

Queue index of buffer actually used by the driver

volatile uint32_t errorCount

Number of buffer underruns/overruns

volatile uint32_t transferCount

Number of bytes transferred

IAP: In Application Programming Driver

status_t IAP_ReadPartID(uint32_t *partID)

Read part identification number.

This function is used to read the part identification number.

Parameters:
  • partID – Address to store the part identification number.

Return values:

kStatus_IAP_Success – Api has been executed successfully.

status_t IAP_ReadBootCodeVersion(uint32_t *bootCodeVersion)

Read boot code version number.

This function is used to read the boot code version number.

note Boot code version is two 32-bit words. Word 0 is the major version, word 1 is the minor version.

Parameters:
  • bootCodeVersion – Address to store the boot code version.

Return values:

kStatus_IAP_Success – Api has been executed successfully.

void IAP_ReinvokeISP(uint8_t ispType, uint32_t *status)

Reinvoke ISP.

This function is used to invoke the boot loader in ISP mode. It maps boot vectors and configures the peripherals for ISP.

note The error response will be returned when IAP is disabled or an invalid ISP type selection appears. The call won’t return unless an error occurs, so there can be no status code.

Parameters:
  • ispType – ISP type selection.

  • status – store the possible status.

Return values:

kStatus_IAP_ReinvokeISPConfig – reinvoke configuration error.

status_t IAP_ReadUniqueID(uint32_t *uniqueID)

Read unique identification.

This function is used to read the unique id.

Parameters:
  • uniqueID – store the uniqueID.

Return values:

kStatus_IAP_Success – Api has been executed successfully.

status_t IAP_PrepareSectorForWrite(uint32_t startSector, uint32_t endSector)

Prepare sector for write operation.

This function prepares sector(s) for write/erase operation. This function must be called before calling the IAP_CopyRamToFlash() or IAP_EraseSector() or IAP_ErasePage() function. The end sector number must be greater than or equal to the start sector number.

Parameters:
  • startSector – Start sector number.

  • endSector – End sector number.

Return values:
  • kStatus_IAP_Success – Api has been executed successfully.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_InvalidSector – Sector number is invalid or end sector number is greater than start sector number.

  • kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_CopyRamToFlash(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes, uint32_t systemCoreClock)

Copy RAM to flash.

This function programs the flash memory. Corresponding sectors must be prepared via IAP_PrepareSectorForWrite before calling this function.

Parameters:
  • dstAddr – Destination flash address where data bytes are to be written, the address should be multiples of FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES boundary.

  • srcAddr – Source ram address from where data bytes are to be read.

  • numOfBytes – Number of bytes to be written, it should be multiples of FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES, and ranges from FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES to FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES.

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function. When the flash controller has a fixed reference clock, this parameter is bypassed.

Return values:
  • kStatus_IAP_Success – Api has been executed successfully.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_SrcAddrError – Source address is not on word boundary.

  • kStatus_IAP_DstAddrError – Destination address is not on a correct boundary.

  • kStatus_IAP_SrcAddrNotMapped – Source address is not mapped in the memory map.

  • kStatus_IAP_DstAddrNotMapped – Destination address is not mapped in the memory map.

  • kStatus_IAP_CountError – Byte count is not multiple of 4 or is not a permitted value.

  • kStatus_IAP_NotPrepared – Command to prepare sector for write operation has not been executed.

  • kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_EraseSector(uint32_t startSector, uint32_t endSector, uint32_t systemCoreClock)

Erase sector.

This function erases sector(s). The end sector number must be greater than or equal to the start sector number.

Parameters:
  • startSector – Start sector number.

  • endSector – End sector number.

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function. When the flash controller has a fixed reference clock, this parameter is bypassed.

Return values:
  • kStatus_IAP_Success – Api has been executed successfully.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_InvalidSector – Sector number is invalid or end sector number is greater than start sector number.

  • kStatus_IAP_NotPrepared – Command to prepare sector for write operation has not been executed.

  • kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_ErasePage(uint32_t startPage, uint32_t endPage, uint32_t systemCoreClock)

Erase page.

This function erases page(s). The end page number must be greater than or equal to the start page number.

Parameters:
  • startPage – Start page number.

  • endPage – End page number.

  • systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before calling the rom IAP function. When the flash controller has a fixed reference clock, this parameter is bypassed.

Return values:
  • kStatus_IAP_Success – Api has been executed successfully.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_InvalidSector – Page number is invalid or end page number is greater than start page number.

  • kStatus_IAP_NotPrepared – Command to prepare sector for write operation has not been executed.

  • kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_BlankCheckSector(uint32_t startSector, uint32_t endSector)

Blank check sector(s)

Blank check single or multiples sectors of flash memory. The end sector number must be greater than or equal to the start sector number. It can be used to verify the sector erasure after IAP_EraseSector call.

Parameters:
  • startSector – Start sector number.

  • endSector – End sector number.

Return values:
  • kStatus_IAP_Success – One or more sectors are in erased state.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_SectorNotblank – One or more sectors are not blank.

status_t IAP_Compare(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes)

Compare memory contents of flash with ram.

This function compares the contents of flash and ram. It can be used to verify the flash memory contents after IAP_CopyRamToFlash call.

Parameters:
  • dstAddr – Destination flash address.

  • srcAddr – Source ram address.

  • numOfBytes – Number of bytes to be compared.

Return values:
  • kStatus_IAP_Success – Contents of flash and ram match.

  • kStatus_IAP_NoPower – Flash memory block is powered down.

  • kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

  • kStatus_IAP_AddrError – Address is not on word boundary.

  • kStatus_IAP_AddrNotMapped – Address is not mapped in the memory map.

  • kStatus_IAP_CountError – Byte count is not multiple of 4 or is not a permitted value.

  • kStatus_IAP_CompareError – Destination and source memory contents do not match.

status_t IAP_ExtendedFlashSignatureRead(uint32_t startPage, uint32_t endPage, uint32_t numOfStates, uint32_t *signature)

Extended Read signature.

This function calculates the signature value for one or more pages of on-chip flash memory.

Parameters:
  • startPage – Start page number.

  • endPage – End page number.

  • numOfStates – Number of wait states.

  • signature – Address to store the signature value.

Return values:

kStatus_IAP_Success – Api has been executed successfully.

status_t IAP_ReadFlashSignature(uint32_t *signature)

Read flash signature.

This funtion is used to obtain a 32-bit signature value of the entire flash memory.

Parameters:
  • signature – Address to store the 32-bit generated signature value.

Return values:

kStatus_IAP_Success – Api has been executed successfully.

status_t IAP_ReadEEPROMPage(uint32_t pageNumber, uint32_t *dstAddr, uint32_t systemCoreClock)

Read EEPROM page.

This function is used to read given page of EEPROM into the memory provided.

note Value 0xFFFFFFFF of systemCoreClock will retain the timing and clock settings for EEPROM.

Parameters:
  • pageNumber – EEPROM page number.

  • dstAddr – Memory address to store the value read from EEPROM.

  • systemCoreClock – Current core clock frequency in kHz.

Return values:
  • kStatus_IAP_Success – Api has been executed successfully.

  • kStatus_IAP_InvalidSector – Sector number is invalid.

  • kStatus_IAP_DstAddrNotMapped – Destination address is not mapped in the memory map.

status_t IAP_WriteEEPROMPage(uint32_t pageNumber, uint32_t *srcAddr, uint32_t systemCoreClock)

Write EEPROM page.

This function is used to write given data in the provided memory to a page of EEPROM.

note Value 0xFFFFFFFF of systemCoreClock will retain the timing and clock settings for EEPROM

Parameters:
  • pageNumber – EEPROM page number.

  • srcAddr – Memory address holding data to be stored on to EEPROM page.

  • systemCoreClock – Current core clock frequency in kHz.

Return values:
  • kStatus_IAP_Success – Api has been executed successfully.

  • kStatus_IAP_InvalidSector – Sector number is invalid.

  • kStatus_IAP_SrcAddrNotMapped – Source address is not mapped in the memory map.

FSL_IAP_DRIVER_VERSION

iap status codes.

Values:

enumerator kStatus_IAP_Success

Api is executed successfully

enumerator kStatus_IAP_InvalidCommand

Invalid command

enumerator kStatus_IAP_SrcAddrError

Source address is not on word boundary

enumerator kStatus_IAP_DstAddrError

Destination address is not on a correct boundary

enumerator kStatus_IAP_SrcAddrNotMapped

Source address is not mapped in the memory map

enumerator kStatus_IAP_DstAddrNotMapped

Destination address is not mapped in the memory map

enumerator kStatus_IAP_CountError

Byte count is not multiple of 4 or is not a permitted value

enumerator kStatus_IAP_InvalidSector

Sector/page number is invalid or end sector/page number is greater than start sector/page number

enumerator kStatus_IAP_SectorNotblank

One or more sectors are not blank

enumerator kStatus_IAP_NotPrepared

Command to prepare sector for write operation has not been executed

enumerator kStatus_IAP_CompareError

Destination and source memory contents do not match

enumerator kStatus_IAP_Busy

Flash programming hardware interface is busy

enumerator kStatus_IAP_ParamError

Insufficient number of parameters or invalid parameter

enumerator kStatus_IAP_AddrError

Address is not on word boundary

enumerator kStatus_IAP_AddrNotMapped

Address is not mapped in the memory map

enumerator kStatus_IAP_NoPower

Flash memory block is powered down

enumerator kStatus_IAP_NoClock

Flash memory block or controller is not clocked

enumerator kStatus_IAP_ReinvokeISPConfig

Reinvoke configuration error

enum _iap_commands

iap command codes.

Values:

enumerator kIapCmd_IAP_ReadFactorySettings

Read the factory settings

enumerator kIapCmd_IAP_PrepareSectorforWrite

Prepare Sector for write

enumerator kIapCmd_IAP_CopyRamToFlash

Copy RAM to flash

enumerator kIapCmd_IAP_EraseSector

Erase Sector

enumerator kIapCmd_IAP_BlankCheckSector

Blank check sector

enumerator kIapCmd_IAP_ReadPartId

Read part id

enumerator kIapCmd_IAP_Read_BootromVersion

Read bootrom version

enumerator kIapCmd_IAP_Compare

Compare

enumerator kIapCmd_IAP_ReinvokeISP

Reinvoke ISP

enumerator kIapCmd_IAP_ReadUid

Read Uid

enumerator kIapCmd_IAP_ErasePage

Erase Page

enumerator kIapCmd_IAP_ReadSignature

Read Signature

enumerator kIapCmd_IAP_ExtendedReadSignature

Extended Read Signature

enumerator kIapCmd_IAP_ReadEEPROMPage

Read EEPROM page

enumerator kIapCmd_IAP_WriteEEPROMPage

Write EEPROM page

enum _flash_access_time

Flash memory access time.

Values:

enumerator kFlash_IAP_OneSystemClockTime
enumerator kFlash_IAP_TwoSystemClockTime

1 system clock flash access time

enumerator kFlash_IAP_ThreeSystemClockTime

2 system clock flash access time

INPUTMUX: Input Multiplexing Driver

enum _inputmux_connection_t

INPUTMUX connections type.

Values:

enumerator kINPUTMUX_SctGpi0ToSct0

SCT INMUX.

enumerator kINPUTMUX_SctGpi1ToSct0
enumerator kINPUTMUX_SctGpi2ToSct0
enumerator kINPUTMUX_SctGpi3ToSct0
enumerator kINPUTMUX_SctGpi4ToSct0
enumerator kINPUTMUX_SctGpi5ToSct0
enumerator kINPUTMUX_SctGpi6ToSct0
enumerator kINPUTMUX_SctGpi7ToSct0
enumerator kINPUTMUX_T0Out0ToSct0
enumerator kINPUTMUX_T1Out0ToSct0
enumerator kINPUTMUX_T2Out0ToSct0
enumerator kINPUTMUX_T3Out0ToSct0
enumerator kINPUTMUX_T4Out0ToSct0
enumerator kINPUTMUX_AdcThcmpIrqToSct0
enumerator kINPUTMUX_GpioIntBmatchToSct0
enumerator kINPUTMUX_Usb0FrameToggleToSct0
enumerator kINPUTMUX_Usb1FrameToggleToSct0
enumerator kINPUTMUX_ArmTxevToSct0
enumerator kINPUTMUX_DebugHaltedToSct0
enumerator kINPUTMUX_SmartCard0TxActivreToSct0
enumerator kINPUTMUX_SmartCard0RxActivreToSct0
enumerator kINPUTMUX_SmartCard1TxActivreToSct0
enumerator kINPUTMUX_SmartCard1RxActivreToSct0
enumerator kINPUTMUX_I2s6SclkToSct0
enumerator kINPUTMUX_I2sS7clkToSct0

Frequency measure.

enumerator kINPUTMUX_MainOscToFreqmeas
enumerator kINPUTMUX_Fro12MhzToFreqmeas
enumerator kINPUTMUX_Fro96MhzToFreqmeas
enumerator kINPUTMUX_WdtOscToFreqmeas
enumerator kINPUTMUX_32KhzOscToFreqmeas
enumerator kINPUTMUX_MainClkToFreqmeas
enumerator kINPUTMUX_FreqmeGpioClk_a
enumerator kINPUTMUX_FreqmeGpioClk_b

Pin Interrupt.

enumerator kINPUTMUX_GpioPort0Pin0ToPintsel
enumerator kINPUTMUX_GpioPort0Pin1ToPintsel
enumerator kINPUTMUX_GpioPort0Pin2ToPintsel
enumerator kINPUTMUX_GpioPort0Pin3ToPintsel
enumerator kINPUTMUX_GpioPort0Pin4ToPintsel
enumerator kINPUTMUX_GpioPort0Pin5ToPintsel
enumerator kINPUTMUX_GpioPort0Pin6ToPintsel
enumerator kINPUTMUX_GpioPort0Pin7ToPintsel
enumerator kINPUTMUX_GpioPort0Pin8ToPintsel
enumerator kINPUTMUX_GpioPort0Pin9ToPintsel
enumerator kINPUTMUX_GpioPort0Pin10ToPintsel
enumerator kINPUTMUX_GpioPort0Pin11ToPintsel
enumerator kINPUTMUX_GpioPort0Pin12ToPintsel
enumerator kINPUTMUX_GpioPort0Pin13ToPintsel
enumerator kINPUTMUX_GpioPort0Pin14ToPintsel
enumerator kINPUTMUX_GpioPort0Pin15ToPintsel
enumerator kINPUTMUX_GpioPort0Pin16ToPintsel
enumerator kINPUTMUX_GpioPort0Pin17ToPintsel
enumerator kINPUTMUX_GpioPort0Pin18ToPintsel
enumerator kINPUTMUX_GpioPort0Pin19ToPintsel
enumerator kINPUTMUX_GpioPort0Pin20ToPintsel
enumerator kINPUTMUX_GpioPort0Pin21ToPintsel
enumerator kINPUTMUX_GpioPort0Pin22ToPintsel
enumerator kINPUTMUX_GpioPort0Pin23ToPintsel
enumerator kINPUTMUX_GpioPort0Pin24ToPintsel
enumerator kINPUTMUX_GpioPort0Pin25ToPintsel
enumerator kINPUTMUX_GpioPort0Pin26ToPintsel
enumerator kINPUTMUX_GpioPort0Pin27ToPintsel
enumerator kINPUTMUX_GpioPort0Pin28ToPintsel
enumerator kINPUTMUX_GpioPort0Pin29ToPintsel
enumerator kINPUTMUX_GpioPort0Pin30ToPintsel
enumerator kINPUTMUX_GpioPort0Pin31ToPintsel
enumerator kINPUTMUX_GpioPort1Pin0ToPintsel
enumerator kINPUTMUX_GpioPort1Pin1ToPintsel
enumerator kINPUTMUX_GpioPort1Pin2ToPintsel
enumerator kINPUTMUX_GpioPort1Pin3ToPintsel
enumerator kINPUTMUX_GpioPort1Pin4ToPintsel
enumerator kINPUTMUX_GpioPort1Pin5ToPintsel
enumerator kINPUTMUX_GpioPort1Pin6ToPintsel
enumerator kINPUTMUX_GpioPort1Pin7ToPintsel
enumerator kINPUTMUX_GpioPort1Pin8ToPintsel
enumerator kINPUTMUX_GpioPort1Pin9ToPintsel
enumerator kINPUTMUX_GpioPort1Pin10ToPintsel
enumerator kINPUTMUX_GpioPort1Pin11ToPintsel
enumerator kINPUTMUX_GpioPort1Pin12ToPintsel
enumerator kINPUTMUX_GpioPort1Pin13ToPintsel
enumerator kINPUTMUX_GpioPort1Pin14ToPintsel
enumerator kINPUTMUX_GpioPort1Pin15ToPintsel
enumerator kINPUTMUX_GpioPort1Pin16ToPintsel
enumerator kINPUTMUX_GpioPort1Pin17ToPintsel
enumerator kINPUTMUX_GpioPort1Pin18ToPintsel
enumerator kINPUTMUX_GpioPort1Pin19ToPintsel
enumerator kINPUTMUX_GpioPort1Pin20ToPintsel
enumerator kINPUTMUX_GpioPort1Pin21ToPintsel
enumerator kINPUTMUX_GpioPort1Pin22ToPintsel
enumerator kINPUTMUX_GpioPort1Pin23ToPintsel
enumerator kINPUTMUX_GpioPort1Pin24ToPintsel
enumerator kINPUTMUX_GpioPort1Pin25ToPintsel
enumerator kINPUTMUX_GpioPort1Pin26ToPintsel
enumerator kINPUTMUX_GpioPort1Pin27ToPintsel
enumerator kINPUTMUX_GpioPort1Pin28ToPintsel
enumerator kINPUTMUX_GpioPort1Pin29ToPintsel
enumerator kINPUTMUX_GpioPort1Pin30ToPintsel
enumerator kINPUTMUX_GpioPort1Pin31ToPintsel

DMA ITRIG.

enumerator kINPUTMUX_Adc0SeqaIrqToDma
enumerator kINPUTMUX_Adc0SeqbIrqToDma
enumerator kINPUTMUX_Sct0DmaReq0ToDma
enumerator kINPUTMUX_Sct0DmaReq1ToDma
enumerator kINPUTMUX_PinInt0ToDma
enumerator kINPUTMUX_PinInt1ToDma
enumerator kINPUTMUX_PinInt2ToDma
enumerator kINPUTMUX_PinInt3ToDma
enumerator kINPUTMUX_Ctimer0M0ToDma
enumerator kINPUTMUX_Ctimer0M1ToDma
enumerator kINPUTMUX_Ctimer1M0ToDma
enumerator kINPUTMUX_Ctimer1M1ToDma
enumerator kINPUTMUX_Ctimer2M0ToDma
enumerator kINPUTMUX_Ctimer2M1ToDma
enumerator kINPUTMUX_Ctimer3M0ToDma
enumerator kINPUTMUX_Ctimer3M1ToDma
enumerator kINPUTMUX_Ctimer4M0ToDma
enumerator kINPUTMUX_Ctimer4M1ToDma
enumerator kINPUTMUX_Otrig0ToDma
enumerator kINPUTMUX_Otrig1ToDma
enumerator kINPUTMUX_Otrig2ToDma
enumerator kINPUTMUX_Otrig3ToDma

DMA OTRIG.

enumerator kINPUTMUX_DmaFlexcomm0RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm0TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm1RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm1TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm2RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm2TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm3RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm3TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm4RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm4TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm5RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm5TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm6RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm6TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm7RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm7TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaDmic0Ch0TrigoutToTriginChannels
enumerator kINPUTMUX_Dmamic0Ch1TrigoutToTriginChannels
enumerator kINPUTMUX_DmaSpifi0TrigoutToTriginChannels
enumerator kINPUTMUX_DmaSha_TrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm8RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm8TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm9RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaFlexcomm9TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaSmartcard0RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaSmartcard0TxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaSmartcard1RxTrigoutToTriginChannels
enumerator kINPUTMUX_DmaSmartcard1TxTrigoutToTriginChannels
typedef enum _inputmux_connection_t inputmux_connection_t

INPUTMUX connections type.

SCT0_PMUX_ID

Periphinmux IDs.

PINTSEL_PMUX_ID
DMA_TRIG0_PMUX_ID
DMA_OTRIG_PMUX_ID
FREQMEAS_PMUX_ID
PMUX_SHIFT
FSL_INPUTMUX_DRIVER_VERSION

Group interrupt driver version for SDK.

void INPUTMUX_Init(INPUTMUX_Type *base)

Initialize INPUTMUX peripheral.

This function enables the INPUTMUX clock.

Parameters:
  • base – Base address of the INPUTMUX peripheral.

Return values:

None.

void INPUTMUX_AttachSignal(INPUTMUX_Type *base, uint16_t index, inputmux_connection_t connection)

Attaches a signal.

This function attaches multiplexed signals from INPUTMUX to target signals. For example, to attach GPIO PORT0 Pin 5 to PINT peripheral, do the following:

INPUTMUX_AttachSignal(INPUTMUX, 2, kINPUTMUX_GpioPort0Pin5ToPintsel);
In this example, INTMUX has 8 registers for PINT, PINT_SEL0~PINT_SEL7. With parameter index specified as 2, this function configures register PINT_SEL2.

Parameters:
  • base – Base address of the INPUTMUX peripheral.

  • index – The serial number of destination register in the group of INPUTMUX registers with same name.

  • connection – Applies signal from source signals collection to target signal.

Return values:

None.

void INPUTMUX_Deinit(INPUTMUX_Type *base)

Deinitialize INPUTMUX peripheral.

This function disables the INPUTMUX clock.

Parameters:
  • base – Base address of the INPUTMUX peripheral.

Return values:

None.

Common Driver

FSL_COMMON_DRIVER_VERSION

common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE

No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART

Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART

Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI

Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC

Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM

Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART

Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART

Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART

Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO

Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI

Debug console based on QSCI.

MIN(a, b)

Computes the minimum of a and b.

MAX(a, b)

Computes the maximum of a and b.

UINT16_MAX

Max value of uint16_t type.

UINT32_MAX

Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)

Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)

Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)

Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)

Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)

Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)

For the variable at address address, clear the bits specifiled by clearBits and set the bits specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)

For the variable at address address, check whether the value equal to expected. If value same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)

For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)

Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)

Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)

Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)

Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER
SDK_SIZEALIGN(var, alignbytes)

Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

AT_NONCACHEABLE_SECTION(var)

Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)

Define a variable var, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)

Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)

Define a variable var with initial value, and place it in non-cacheable section, the start address of the variable is aligned to alignbytes.

enum _status_groups

Status group numbers.

Values:

enumerator kStatusGroup_Generic

Group number for generic status codes.

enumerator kStatusGroup_FLASH

Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI

Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI

Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI

Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART

Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C

Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C

Group number for LPI2C status codes.

enumerator kStatusGroup_UART

Group number for UART status codes.

enumerator kStatusGroup_I2C

Group number for UART status codes.

enumerator kStatusGroup_LPSCI

Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART

Group number for LPUART status codes.

enumerator kStatusGroup_SPI

Group number for SPI status code.

enumerator kStatusGroup_XRDC

Group number for XRDC status code.

enumerator kStatusGroup_SEMA42

Group number for SEMA42 status code.

enumerator kStatusGroup_SDHC

Group number for SDHC status code

enumerator kStatusGroup_SDMMC

Group number for SDMMC status code

enumerator kStatusGroup_SAI

Group number for SAI status code

enumerator kStatusGroup_MCG

Group number for MCG status codes.

enumerator kStatusGroup_SCG

Group number for SCG status codes.

enumerator kStatusGroup_SDSPI

Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S

Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD

Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP

Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C

Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S

Group number for I2S status codes

enumerator kStatusGroup_IUART

Group number for IUART status codes

enumerator kStatusGroup_CSI

Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI

Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC

Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER

Group number for POWER status codes.

enumerator kStatusGroup_ENET

Group number for ENET status codes.

enumerator kStatusGroup_PHY

Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX

Group number for TRGMUX status codes.

enumerator kStatusGroup_SMARTCARD

Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM

Group number for LMEM status codes.

enumerator kStatusGroup_QSPI

Group number for QSPI status codes.

enumerator kStatusGroup_DMA

Group number for DMA status codes.

enumerator kStatusGroup_EDMA

Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR

Group number for DMAMGR status codes.

enumerator kStatusGroup_FLEXCAN

Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC

Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA

Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI

Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART

Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC

Group number for DMIC status codes.

enumerator kStatusGroup_SDIF

Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI

Group number for SPIFI status codes.

enumerator kStatusGroup_OTP

Group number for OTP status codes.

enumerator kStatusGroup_MCAN

Group number for MCAN status codes.

enumerator kStatusGroup_CAAM

Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI

Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC

Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C

Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP

Group number for DCP status codes.

enumerator kStatusGroup_MSCAN

Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI

Group number for ESAI status codes.

enumerator kStatusGroup_FLEXSPI

Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC

Group number for MMDC status codes.

enumerator kStatusGroup_PDM

Group number for MIC status codes.

enumerator kStatusGroup_SDMA

Group number for SDMA status codes.

enumerator kStatusGroup_ICS

Group number for ICS status codes.

enumerator kStatusGroup_SPDIF

Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI

Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT

Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP

Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C

Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1

Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER

Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole

Group number for debug console status codes.

enumerator kStatusGroup_SEMC

Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart

Starting number for application groups.

enumerator kStatusGroup_IAP

Group number for IAP status codes

enumerator kStatusGroup_SFA

Group number for SFA status codes

enumerator kStatusGroup_SPC

Group number for SPC status codes.

enumerator kStatusGroup_PUF

Group number for PUF status codes.

enumerator kStatusGroup_TOUCH_PANEL

Group number for touch panel status codes

enumerator kStatusGroup_VBAT

Group number for VBAT status codes

enumerator kStatusGroup_XSPI

Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC

Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC

Group number for JPEGDEC status codes

enumerator kStatusGroup_HAL_GPIO

Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART

Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER

Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI

Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C

Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH

Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM

Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG

Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S

Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR

Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER

Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER

Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED

Group number for LED status codes.

enumerator kStatusGroup_BUTTON

Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM

Group number for EXTERN EEPROM status codes.

enumerator kStatusGroup_SHELL

Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER

Group number for MEM MANAGER status codes.

enumerator kStatusGroup_LIST

Group number for List status codes.

enumerator kStatusGroup_OSA

Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK

Group number for Common task status codes.

enumerator kStatusGroup_MSG

Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP

Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR

Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC

Group number for codec status codes.

enumerator kStatusGroup_ASRC

Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD

Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV

Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC

Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS

Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG

Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS

Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI

Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU

Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI

Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER

Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED

Group number for IPED status codes.

enumerator kStatusGroup_ELS_PKC

Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC

Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF

Group number for HOSTIF status codes.

enumerator kStatusGroup_CLIF

Group number for CLIF status codes.

enumerator kStatusGroup_BMA

Group number for BMA status codes.

enumerator kStatusGroup_NETC

Group number for NETC status codes.

enumerator kStatusGroup_ELE

Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY

Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER

Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON

Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3

Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE

Group number for HIPERFACE status codes.

Generic status return codes.

Values:

enumerator kStatus_Success

Generic status for Success.

enumerator kStatus_Fail

Generic status for Fail.

enumerator kStatus_ReadOnly

Generic status for read only failure.

enumerator kStatus_OutOfRange

Generic status for out of range access.

enumerator kStatus_InvalidArgument

Generic status for invalid argument check.

enumerator kStatus_Timeout

Generic status for timeout.

enumerator kStatus_NoTransferInProgress

Generic status for no transfer in progress.

enumerator kStatus_Busy

Generic status for module is busy.

enumerator kStatus_NoData

Generic status for no data is found for the operation.

typedef int32_t status_t

Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)

Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters:
  • size – The length required to malloc.

  • alignbytes – The alignment size.

Return values:

The – allocated memory.

void SDK_Free(void *ptr)

Free memory.

Parameters:
  • ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)

Delay at least for some time. Please note that, this API uses while loop for delay, different run-time environments make the time not precise, if precise delay count was needed, please implement a new delay function with hardware timer.

Parameters:
  • delayTime_us – Delay time in unit of microsecond.

  • coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)

Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ number.

Return values:
  • kStatus_Success – Interrupt enabled successfully

  • kStatus_Fail – Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)

Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ number.

Return values:
  • kStatus_Success – Interrupt disabled successfully

  • kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)

Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ to Enable.

  • priNum – Priority number set to interrupt controller register.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)

Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The IRQ to set.

  • priNum – Priority number set to interrupt controller register.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)

Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters:
  • interrupt – The flag which IRQ to clear.

Return values:
  • kStatus_Success – Interrupt priority set successfully

  • kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)

Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to provided the primask register for the EnableGlobalIRQ().

Returns:

Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)

Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask. The idea is for the convenience of integration of RTOS. some RTOS get its own management mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlobalIRQ() in pair.

Parameters:
  • primask – value of primask register to be restored. The primask value is supposed to be provided by the DisableGlobalIRQ().

void EnableDeepSleepIRQ(IRQn_Type interrupt)

Enable specific interrupt for wake-up from deep-sleep mode.

Enable the interrupt for wake-up from deep sleep mode. Some interrupts are typically used in sleep mode only and will not occur during deep-sleep mode because relevant clocks are stopped. However, it is possible to enable those clocks (significantly increasing power consumption in the reduced power mode), making these wake-ups possible.

Note

This function also enables the interrupt in the NVIC (EnableIRQ() is called internaly).

Parameters:
  • interrupt – The IRQ number.

void DisableDeepSleepIRQ(IRQn_Type interrupt)

Disable specific interrupt for wake-up from deep-sleep mode.

Disable the interrupt for wake-up from deep sleep mode. Some interrupts are typically used in sleep mode only and will not occur during deep-sleep mode because relevant clocks are stopped. However, it is possible to enable those clocks (significantly increasing power consumption in the reduced power mode), making these wake-ups possible.

Note

This function also disables the interrupt in the NVIC (DisableIRQ() is called internaly).

Parameters:
  • interrupt – The IRQ number.

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t newValue)
static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ

Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)

Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)

Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit platforms(such as DSC).

| Unused    || Major Version || Minor Version ||  Bug Fix    |
31        25  24           17  16            9  8            0
ARRAY_SIZE(x)

Computes the number of elements in an array.

UINT64_H(X)

Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)

Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()

For switch case code block, if case section ends without “break;” statement, there wil be fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)

Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)

Convert the register address to the one used in non-secure mode.

ADC: 12-bit SAR Analog-to-Digital Converter Driver

void ADC_Init(ADC_Type *base, const adc_config_t *config)

Initialize the ADC module.

Parameters:
  • base – ADC peripheral base address.

  • config – Pointer to configuration structure, see to adc_config_t.

void ADC_Deinit(ADC_Type *base)

Deinitialize the ADC module.

Parameters:
  • base – ADC peripheral base address.

void ADC_GetDefaultConfig(adc_config_t *config)

Gets an available pre-defined settings for initial configuration.

This function initializes the initial configuration structure with an available settings. The default values are:

config->clockMode = kADC_ClockSynchronousMode;
config->clockDividerNumber = 0U;
config->resolution = kADC_Resolution12bit;
config->enableBypassCalibration = false;
config->sampleTimeNumber = 0U;
config->extendSampleTimeNumber = kADC_ExtendSampleTimeNotUsed;

Parameters:
  • config – Pointer to configuration structure.

bool ADC_DoSelfCalibration(ADC_Type *base)

Do the hardware self-calibration.

Deprecated:

Do not use this function. It has been superceded by ADC_DoOffsetCalibration.

To calibrate the ADC, set the ADC clock to 500 kHz. In order to achieve the specified ADC accuracy, the A/D converter must be recalibrated, at a minimum, following every chip reset before initiating normal ADC operation.

Parameters:
  • base – ADC peripheral base address.

Return values:
  • true – Calibration succeed.

  • false – Calibration failed.

bool ADC_DoOffsetCalibration(ADC_Type *base, uint32_t frequency)

Do the hardware offset-calibration.

To calibrate the ADC, set the ADC clock to no more then 30 MHz. In order to achieve the specified ADC accuracy, the A/D converter must be recalibrated, at a minimum, following every chip reset before initiating normal ADC operation.

Parameters:
  • base – ADC peripheral base address.

  • frequency – The clock frequency that ADC operates at.

Return values:
  • true – Calibration succeed.

  • false – Calibration failed.

static inline void ADC_EnableConvSeqA(ADC_Type *base, bool enable)

Enable the conversion sequence A.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence should be ready before the sequence is ready. when the sequence is disabled, the trigger would be ignored. Also, it is suggested to disable the sequence during changing the sequence’s setting.

Parameters:
  • base – ADC peripheral base address.

  • enable – Switcher to enable the feature or not.

void ADC_SetConvSeqAConfig(ADC_Type *base, const adc_conv_seq_config_t *config)

Configure the conversion sequence A.

Parameters:
  • base – ADC peripheral base address.

  • config – Pointer to configuration structure, see to adc_conv_seq_config_t.

static inline void ADC_DoSoftwareTriggerConvSeqA(ADC_Type *base)

Do trigger the sequence’s conversion by software.

Parameters:
  • base – ADC peripheral base address.

static inline void ADC_EnableConvSeqABurstMode(ADC_Type *base, bool enable)

Enable the burst conversion of sequence A.

Enable the burst mode would cause the conversion sequence to be cntinuously cycled through. Other triggers would be ignored while this mode is enabled. Repeated conversions could be halted by disabling this mode. And the sequence currently in process will be completed before cnversions are terminated. Note that a new sequence could begin just before the burst mode is disabled.

Parameters:
  • base – ADC peripheral base address.

  • enable – Switcher to enable this feature.

static inline void ADC_SetConvSeqAHighPriority(ADC_Type *base)

Set the high priority for conversion sequence A.

Parameters:
  • base – ADC peripheral bass address.

static inline void ADC_EnableConvSeqB(ADC_Type *base, bool enable)

Enable the conversion sequence B.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence should be ready before the sequence is ready. when the sequence is disabled, the trigger would be ignored. Also, it is suggested to disable the sequence during changing the sequence’s setting.

Parameters:
  • base – ADC peripheral base address.

  • enable – Switcher to enable the feature or not.

void ADC_SetConvSeqBConfig(ADC_Type *base, const adc_conv_seq_config_t *config)

Configure the conversion sequence B.

Parameters:
  • base – ADC peripheral base address.

  • config – Pointer to configuration structure, see to adc_conv_seq_config_t.

static inline void ADC_DoSoftwareTriggerConvSeqB(ADC_Type *base)

Do trigger the sequence’s conversion by software.

Parameters:
  • base – ADC peripheral base address.

static inline void ADC_EnableConvSeqBBurstMode(ADC_Type *base, bool enable)

Enable the burst conversion of sequence B.

Enable the burst mode would cause the conversion sequence to be continuously cycled through. Other triggers would be ignored while this mode is enabled. Repeated conversions could be halted by disabling this mode. And the sequence currently in process will be completed before cnversions are terminated. Note that a new sequence could begin just before the burst mode is disabled.

Parameters:
  • base – ADC peripheral base address.

  • enable – Switcher to enable this feature.

static inline void ADC_SetConvSeqBHighPriority(ADC_Type *base)

Set the high priority for conversion sequence B.

Parameters:
  • base – ADC peripheral bass address.

bool ADC_GetConvSeqAGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)

Get the global ADC conversion infomation of sequence A.

Parameters:
  • base – ADC peripheral base address.

  • info – Pointer to information structure, see to adc_result_info_t;

Return values:
  • true – The conversion result is ready.

  • false – The conversion result is not ready yet.

bool ADC_GetConvSeqBGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)

Get the global ADC conversion infomation of sequence B.

Parameters:
  • base – ADC peripheral base address.

  • info – Pointer to information structure, see to adc_result_info_t;

Return values:
  • true – The conversion result is ready.

  • false – The conversion result is not ready yet.

bool ADC_GetChannelConversionResult(ADC_Type *base, uint32_t channel, adc_result_info_t *info)

Get the channel’s ADC conversion completed under each conversion sequence.

Parameters:
  • base – ADC peripheral base address.

  • channel – The indicated channel number.

  • info – Pointer to information structure, see to adc_result_info_t;

Return values:
  • true – The conversion result is ready.

  • false – The conversion result is not ready yet.

static inline void ADC_SetThresholdPair0(ADC_Type *base, uint32_t lowValue, uint32_t highValue)

Set the threshhold pair 0 with low and high value.

Parameters:
  • base – ADC peripheral base address.

  • lowValue – LOW threshold value.

  • highValue – HIGH threshold value.

static inline void ADC_SetThresholdPair1(ADC_Type *base, uint32_t lowValue, uint32_t highValue)

Set the threshhold pair 1 with low and high value.

Parameters:
  • base – ADC peripheral base address.

  • lowValue – LOW threshold value. The available value is with 12-bit.

  • highValue – HIGH threshold value. The available value is with 12-bit.

static inline void ADC_SetChannelWithThresholdPair0(ADC_Type *base, uint32_t channelMask)

Set given channels to apply the threshold pare 0.

Parameters:
  • base – ADC peripheral base address.

  • channelMask – Indicated channels’ mask.

static inline void ADC_SetChannelWithThresholdPair1(ADC_Type *base, uint32_t channelMask)

Set given channels to apply the threshold pare 1.

Parameters:
  • base – ADC peripheral base address.

  • channelMask – Indicated channels’ mask.

static inline void ADC_EnableInterrupts(ADC_Type *base, uint32_t mask)

Enable interrupts for conversion sequences.

Parameters:
  • base – ADC peripheral base address.

  • mask – Mask of interrupt mask value for global block except each channal, see to _adc_interrupt_enable.

static inline void ADC_DisableInterrupts(ADC_Type *base, uint32_t mask)

Disable interrupts for conversion sequence.

Parameters:
  • base – ADC peripheral base address.

  • mask – Mask of interrupt mask value for global block except each channel, see to _adc_interrupt_enable.

static inline void ADC_EnableThresholdCompareInterrupt(ADC_Type *base, uint32_t channel, adc_threshold_interrupt_mode_t mode)

Enable the interrupt of threshold compare event for each channel.

Parameters:
  • base – ADC peripheral base address.

  • channel – Channel number.

  • mode – Interrupt mode for threshold compare event, see to adc_threshold_interrupt_mode_t.

static inline uint32_t ADC_GetStatusFlags(ADC_Type *base)

Get status flags of ADC module.

Parameters:
  • base – ADC peripheral base address.

Returns:

Mask of status flags of module, see to _adc_status_flags.

static inline void ADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)

Clear status flags of ADC module.

Parameters:
  • base – ADC peripheral base address.

  • mask – Mask of status flags of module, see to _adc_status_flags.

FSL_ADC_DRIVER_VERSION

ADC driver version 2.6.0.

enum _adc_status_flags

Flags.

Values:

enumerator kADC_ThresholdCompareFlagOnChn0

Threshold comparison event on Channel 0.

enumerator kADC_ThresholdCompareFlagOnChn1

Threshold comparison event on Channel 1.

enumerator kADC_ThresholdCompareFlagOnChn2

Threshold comparison event on Channel 2.

enumerator kADC_ThresholdCompareFlagOnChn3

Threshold comparison event on Channel 3.

enumerator kADC_ThresholdCompareFlagOnChn4

Threshold comparison event on Channel 4.

enumerator kADC_ThresholdCompareFlagOnChn5

Threshold comparison event on Channel 5.

enumerator kADC_ThresholdCompareFlagOnChn6

Threshold comparison event on Channel 6.

enumerator kADC_ThresholdCompareFlagOnChn7

Threshold comparison event on Channel 7.

enumerator kADC_ThresholdCompareFlagOnChn8

Threshold comparison event on Channel 8.

enumerator kADC_ThresholdCompareFlagOnChn9

Threshold comparison event on Channel 9.

enumerator kADC_ThresholdCompareFlagOnChn10

Threshold comparison event on Channel 10.

enumerator kADC_ThresholdCompareFlagOnChn11

Threshold comparison event on Channel 11.

enumerator kADC_OverrunFlagForChn0

Mirror the OVERRUN status flag from the result register for ADC channel 0.

enumerator kADC_OverrunFlagForChn1

Mirror the OVERRUN status flag from the result register for ADC channel 1.

enumerator kADC_OverrunFlagForChn2

Mirror the OVERRUN status flag from the result register for ADC channel 2.

enumerator kADC_OverrunFlagForChn3

Mirror the OVERRUN status flag from the result register for ADC channel 3.

enumerator kADC_OverrunFlagForChn4

Mirror the OVERRUN status flag from the result register for ADC channel 4.

enumerator kADC_OverrunFlagForChn5

Mirror the OVERRUN status flag from the result register for ADC channel 5.

enumerator kADC_OverrunFlagForChn6

Mirror the OVERRUN status flag from the result register for ADC channel 6.

enumerator kADC_OverrunFlagForChn7

Mirror the OVERRUN status flag from the result register for ADC channel 7.

enumerator kADC_OverrunFlagForChn8

Mirror the OVERRUN status flag from the result register for ADC channel 8.

enumerator kADC_OverrunFlagForChn9

Mirror the OVERRUN status flag from the result register for ADC channel 9.

enumerator kADC_OverrunFlagForChn10

Mirror the OVERRUN status flag from the result register for ADC channel 10.

enumerator kADC_OverrunFlagForChn11

Mirror the OVERRUN status flag from the result register for ADC channel 11.

enumerator kADC_GlobalOverrunFlagForSeqA

Mirror the glabal OVERRUN status flag for conversion sequence A.

enumerator kADC_GlobalOverrunFlagForSeqB

Mirror the global OVERRUN status flag for conversion sequence B.

enumerator kADC_ConvSeqAInterruptFlag

Sequence A interrupt/DMA trigger.

enumerator kADC_ConvSeqBInterruptFlag

Sequence B interrupt/DMA trigger.

enumerator kADC_ThresholdCompareInterruptFlag

Threshold comparision interrupt flag.

enumerator kADC_OverrunInterruptFlag

Overrun interrupt flag.

enum _adc_interrupt_enable

Interrupts.

Note

Not all the interrupt options are listed here

Values:

enumerator kADC_ConvSeqAInterruptEnable

Enable interrupt upon completion of each individual conversion in sequence A, or entire sequence.

enumerator kADC_ConvSeqBInterruptEnable

Enable interrupt upon completion of each individual conversion in sequence B, or entire sequence.

enumerator kADC_OverrunInterruptEnable

Enable the detection of an overrun condition on any of the channel data registers will cause an overrun interrupt/DMA trigger.

enum _adc_clock_mode

Define selection of clock mode.

Values:

enumerator kADC_ClockSynchronousMode

The ADC clock would be derived from the system clock based on “clockDividerNumber”.

enumerator kADC_ClockAsynchronousMode

The ADC clock would be based on the SYSCON block’s divider.

enum _adc_resolution

Define selection of resolution.

Values:

enumerator kADC_Resolution6bit

6-bit resolution.

enumerator kADC_Resolution8bit

8-bit resolution.

enumerator kADC_Resolution10bit

10-bit resolution.

enumerator kADC_Resolution12bit

12-bit resolution.

enum _adc_voltage_range

Definfe range of the analog supply voltage VDDA.

Values:

enumerator kADC_HighVoltageRange
enumerator kADC_LowVoltageRange
enum _adc_trigger_polarity

Define selection of polarity of selected input trigger for conversion sequence.

Values:

enumerator kADC_TriggerPolarityNegativeEdge

A negative edge launches the conversion sequence on the trigger(s).

enumerator kADC_TriggerPolarityPositiveEdge

A positive edge launches the conversion sequence on the trigger(s).

enum _adc_priority

Define selection of conversion sequence’s priority.

Values:

enumerator kADC_PriorityLow

This sequence would be preempted when another sequence is started.

enumerator kADC_PriorityHigh

This sequence would preempt other sequence even when it is started.

enum _adc_seq_interrupt_mode

Define selection of conversion sequence’s interrupt.

Values:

enumerator kADC_InterruptForEachConversion

The sequence interrupt/DMA trigger will be set at the end of each individual ADC conversion inside this conversion sequence.

enumerator kADC_InterruptForEachSequence

The sequence interrupt/DMA trigger will be set when the entire set of this sequence conversions completes.

enum _adc_threshold_compare_status

Define status of threshold compare result.

Values:

enumerator kADC_ThresholdCompareInRange

LOW threshold <= conversion value <= HIGH threshold.

enumerator kADC_ThresholdCompareBelowRange

conversion value < LOW threshold.

enumerator kADC_ThresholdCompareAboveRange

conversion value > HIGH threshold.

enum _adc_threshold_crossing_status

Define status of threshold crossing detection result.

Values:

enumerator kADC_ThresholdCrossingNoDetected

No threshold Crossing detected.

enumerator kADC_ThresholdCrossingDownward

Downward Threshold Crossing detected.

enumerator kADC_ThresholdCrossingUpward

Upward Threshold Crossing Detected.

enum _adc_threshold_interrupt_mode

Define interrupt mode for threshold compare event.

Values:

enumerator kADC_ThresholdInterruptDisabled

Threshold comparison interrupt is disabled.

enumerator kADC_ThresholdInterruptOnOutside

Threshold comparison interrupt is enabled on outside threshold.

enumerator kADC_ThresholdInterruptOnCrossing

Threshold comparison interrupt is enabled on crossing threshold.

enum _adc_inforesultshift

Define the info result mode of different resolution.

Values:

enumerator kADC_Resolution12bitInfoResultShift

Info result shift of Resolution12bit.

enumerator kADC_Resolution10bitInfoResultShift

Info result shift of Resolution10bit.

enumerator kADC_Resolution8bitInfoResultShift

Info result shift of Resolution8bit.

enumerator kADC_Resolution6bitInfoResultShift

Info result shift of Resolution6bit.

enum _adc_tempsensor_common_mode

Define common modes for Temerature sensor.

Values:

enumerator kADC_HighNegativeOffsetAdded

Temperature sensor common mode: high negative offset added.

enumerator kADC_IntermediateNegativeOffsetAdded

Temperature sensor common mode: intermediate negative offset added.

enumerator kADC_NoOffsetAdded

Temperature sensor common mode: no offset added.

enumerator kADC_LowPositiveOffsetAdded

Temperature sensor common mode: low positive offset added.

enum _adc_second_control

Define source impedance modes for GPADC control.

Values:

enumerator kADC_Impedance621Ohm

Extand ADC sampling time according to source impedance 1: 0.621 kOhm.

enumerator kADC_Impedance55kOhm

Extand ADC sampling time according to source impedance 20 (default): 55 kOhm.

enumerator kADC_Impedance87kOhm

Extand ADC sampling time according to source impedance 31: 87 kOhm.

enumerator kADC_NormalFunctionalMode

TEST mode: Normal functional mode.

enumerator kADC_MultiplexeTestMode

TEST mode: Multiplexer test mode.

enumerator kADC_ADCInUnityGainMode

TEST mode: ADC in unity gain mode.

typedef enum _adc_clock_mode adc_clock_mode_t

Define selection of clock mode.

typedef enum _adc_resolution adc_resolution_t

Define selection of resolution.

typedef enum _adc_voltage_range adc_vdda_range_t

Definfe range of the analog supply voltage VDDA.

typedef enum _adc_trigger_polarity adc_trigger_polarity_t

Define selection of polarity of selected input trigger for conversion sequence.

typedef enum _adc_priority adc_priority_t

Define selection of conversion sequence’s priority.

typedef enum _adc_seq_interrupt_mode adc_seq_interrupt_mode_t

Define selection of conversion sequence’s interrupt.

typedef enum _adc_threshold_compare_status adc_threshold_compare_status_t

Define status of threshold compare result.

typedef enum _adc_threshold_crossing_status adc_threshold_crossing_status_t

Define status of threshold crossing detection result.

typedef enum _adc_threshold_interrupt_mode adc_threshold_interrupt_mode_t

Define interrupt mode for threshold compare event.

typedef enum _adc_inforesultshift adc_inforesult_t

Define the info result mode of different resolution.

typedef enum _adc_tempsensor_common_mode adc_tempsensor_common_mode_t

Define common modes for Temerature sensor.

typedef enum _adc_second_control adc_second_control_t

Define source impedance modes for GPADC control.

typedef struct _adc_config adc_config_t

Define structure for configuring the block.

typedef struct _adc_conv_seq_config adc_conv_seq_config_t

Define structure for configuring conversion sequence.

typedef struct _adc_result_info adc_result_info_t

Define structure of keeping conversion result information.

struct _adc_config
#include <fsl_adc.h>

Define structure for configuring the block.

Public Members

adc_clock_mode_t clockMode

Select the clock mode for ADC converter.

uint32_t clockDividerNumber

This field is only available when using kADC_ClockSynchronousMode for “clockMode” field. The divider would be plused by 1 based on the value in this field. The available range is in 8 bits.

adc_resolution_t resolution

Select the conversion bits.

bool enableBypassCalibration

By default, a calibration cycle must be performed each time the chip is powered-up. Re-calibration may be warranted periodically - especially if operating conditions have changed. To enable this option would avoid the need to calibrate if offset error is not a concern in the application.

uint32_t sampleTimeNumber

By default, with value as “0U”, the sample period would be 2.5 ADC clocks. Then, to plus the “sampleTimeNumber” value here. The available value range is in 3 bits.

bool enableLowPowerMode

If disable low-power mode, ADC remains activated even when no conversions are requested. If enable low-power mode, The ADC is automatically powered-down when no conversions are taking place.

adc_vdda_range_t voltageRange

Configure the ADC for the appropriate operating range of the analog supply voltage VDDA. Failure to set the area correctly causes the ADC to return incorrect conversion results.

struct _adc_conv_seq_config
#include <fsl_adc.h>

Define structure for configuring conversion sequence.

Public Members

uint32_t channelMask

Selects which one or more of the ADC channels will be sampled and converted when this sequence is launched. The masked channels would be involved in current conversion sequence, beginning with the lowest-order. The available range is in 12-bit.

uint32_t triggerMask

Selects which one or more of the available hardware trigger sources will cause this conversion sequence to be initiated. The available range is 6-bit.

adc_trigger_polarity_t triggerPolarity

Select the trigger to launch conversion sequence.

bool enableSyncBypass

To enable this feature allows the hardware trigger input to bypass synchronization flip-flop stages and therefore shorten the time between the trigger input signal and the start of a conversion.

bool enableSingleStep

When enabling this feature, a trigger will launch a single conversion on the next channel in the sequence instead of the default response of launching an entire sequence of conversions.

adc_seq_interrupt_mode_t interruptMode

Select the interrpt/DMA trigger mode.

struct _adc_result_info
#include <fsl_adc.h>

Define structure of keeping conversion result information.

Public Members

uint32_t result

Keep the conversion data value.

adc_threshold_compare_status_t thresholdCompareStatus

Keep the threshold compare status.

adc_threshold_crossing_status_t thresholdCorssingStatus

Keep the threshold crossing status.

uint32_t channelNumber

Keep the channel number for this conversion.

bool overrunFlag

Keep the status whether the conversion is overrun or not.

ENET: Ethernet Driver

void ENET_GetDefaultConfig(enet_config_t *config)

Gets the ENET default configuration structure.

The purpose of this API is to get the default ENET configure structure for ENET_Init(). User may use the initialized structure unchanged in ENET_Init(), or modify some fields of the structure before calling ENET_Init(). Example:

enet_config_t config;
ENET_GetDefaultConfig(&config);

Parameters:
  • config – The ENET mac controller configuration structure pointer.

void ENET_Init(ENET_Type *base, const enet_config_t *config, uint8_t *macAddr, uint32_t refclkSrc_Hz)

Initializes the ENET module.

This function ungates the module clock and initializes it with the ENET basic configuration.

Note

As our transactional transmit API use the zero-copy transmit buffer. So there are two thing we emphasize here:

  1. Tx buffer free/requeue for application should be done in the Tx interrupt handler. Please set callback: kENET_TxIntEvent with Tx buffer free/requeue process APIs.

  2. The Tx interrupt is forced to open.

Parameters:
  • base – ENET peripheral base address.

  • config – ENET mac configuration structure pointer. The “enet_config_t” type mac configuration return from ENET_GetDefaultConfig can be used directly. It is also possible to verify the Mac configuration using other methods.

  • macAddr – ENET mac address of Ethernet device. This MAC address should be provided.

  • refclkSrc_Hz – ENET input reference clock.

void ENET_Deinit(ENET_Type *base)

Deinitializes the ENET module.

This function gates the module clock and disables the ENET module.

Parameters:
  • base – ENET peripheral base address.

status_t ENET_DescriptorInit(ENET_Type *base, enet_config_t *config, enet_buffer_config_t *bufferConfig)

Initialize for all ENET descriptors.

Note

This function finishes all Tx/Rx descriptors initialization. The descriptor initialization should be called after ENET_Init().

Parameters:
  • base – ENET peripheral base address.

  • config – The configuration for ENET.

  • bufferConfig – All buffers configuration.

status_t ENET_RxBufferAllocAll(ENET_Type *base, enet_handle_t *handle)

Allocates Rx buffers for all BDs. It’s used for zero copy Rx. In zero copy Rx case, Rx buffers are dynamic. This function will populate initial buffers in all BDs for receiving. Then ENET_GetRxFrame() is used to get Rx frame with zero copy, it will allocate new buffer to replace the buffer in BD taken by application, application should free those buffers after they’re used.

Note

This function should be called after ENET_CreateHandler() and buffer allocating callback function should be ready.

Parameters:
  • base – ENET peripheral base address.

  • handle – The ENET handler structure. This is the same handler pointer used in the ENET_Init.

void ENET_RxBufferFreeAll(ENET_Type *base, enet_handle_t *handle)

Frees Rx buffers in all BDs. It’s used for zero copy Rx. In zero copy Rx case, Rx buffers are dynamic. This function will free left buffers in all BDs.

Parameters:
  • base – ENET peripheral base address.

  • handle – The ENET handler structure. This is the same handler pointer used in the ENET_Init.

void ENET_StartRxTx(ENET_Type *base, uint8_t txRingNum, uint8_t rxRingNum)

Starts the ENET Tx/Rx. This function enable the Tx/Rx and starts the Tx/Rx DMA. This shall be set after ENET initialization and before starting to receive the data.

Note

This must be called after all the ENET initilization. And should be called when the ENET receive/transmit is required.

Parameters:
  • base – ENET peripheral base address.

  • rxRingNum – The number of the used Rx rings. It shall not be larger than the ENET_RING_NUM_MAX(2). If the ringNum is set with 1, the ring 0 will be used.

  • txRingNum – The number of the used Tx rings. It shall not be larger than the ENET_RING_NUM_MAX(2). If the ringNum is set with 1, the ring 0 will be used.

void ENET_SetISRHandler(ENET_Type *base, enet_isr_t ISRHandler)

Set the second level IRQ handler.

Parameters:
  • base – ENET peripheral base address.

  • ISRHandler – The handler to install.

static inline void ENET_SetMII(ENET_Type *base, enet_mii_speed_t speed, enet_mii_duplex_t duplex)

Sets the ENET MII speed and duplex.

This API is provided to dynamically change the speed and dulpex for MAC.

Parameters:
  • base – ENET peripheral base address.

  • speed – The speed of the RMII mode.

  • duplex – The duplex of the RMII mode.

void ENET_SetSMI(ENET_Type *base)

Sets the ENET SMI(serial management interface)- MII management interface.

Parameters:
  • base – ENET peripheral base address.

static inline bool ENET_IsSMIBusy(ENET_Type *base)

Checks if the SMI is busy.

Parameters:
  • base – ENET peripheral base address.

Returns:

The status of MII Busy status.

static inline uint16_t ENET_ReadSMIData(ENET_Type *base)

Reads data from the PHY register through SMI interface.

Parameters:
  • base – ENET peripheral base address.

Returns:

The data read from PHY

void ENET_StartSMIWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t data)

Sends the MDIO IEEE802.3 Clause 22 format write command.

Parameters:
  • base – ENET peripheral base address.

  • phyAddr – The PHY address.

  • regAddr – The PHY register.

  • data – The data written to PHY.

void ENET_StartSMIRead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr)

Sends the MDIO IEEE802.3 Clause 22 format read command.

Parameters:
  • base – ENET peripheral base address.

  • phyAddr – The PHY address.

  • regAddr – The PHY register.

status_t ENET_MDIOWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t data)

MDIO write with IEEE802.3 Clause 22 format.

Parameters:
  • base – ENET peripheral base address.

  • phyAddr – The PHY address.

  • regAddr – The PHY register.

  • data – The data written to PHY.

Returns:

kStatus_Success MDIO access succeeds.

Returns:

kStatus_Timeout MDIO access timeout.

status_t ENET_MDIORead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t *pData)

MDIO read with IEEE802.3 Clause 22 format.

Parameters:
  • base – ENET peripheral base address.

  • phyAddr – The PHY address.

  • regAddr – The PHY register.

  • pData – The data read from PHY.

Returns:

kStatus_Success MDIO access succeeds.

Returns:

kStatus_Timeout MDIO access timeout.

uint32_t ENET_GetInstance(ENET_Type *base)

Get the ENET instance from peripheral base address.

Parameters:
  • base – ENET peripheral base address.

Returns:

ENET instance.

static inline void ENET_SetMacAddr(ENET_Type *base, uint8_t *macAddr)

Sets the ENET module Mac address.

Parameters:
  • base – ENET peripheral base address.

  • macAddr – The six-byte Mac address pointer. The pointer is allocated by application and input into the API.

void ENET_GetMacAddr(ENET_Type *base, uint8_t *macAddr)

Gets the ENET module Mac address.

Parameters:
  • base – ENET peripheral base address.

  • macAddr – The six-byte Mac address pointer. The pointer is allocated by application and input into the API.

static inline void ENET_AcceptAllMulticast(ENET_Type *base)

Enable ENET device to accept all multicast frames.

Parameters:
  • base – ENET peripheral base address.

static inline void ENET_RejectAllMulticast(ENET_Type *base)

ENET device reject to accept all multicast frames.

Parameters:
  • base – ENET peripheral base address.

void ENET_EnterPowerDown(ENET_Type *base, uint32_t *wakeFilter)

Set the MAC to enter into power down mode. the remote power wake up frame and magic frame can wake up the ENET from the power down mode.

Parameters:
  • base – ENET peripheral base address.

  • wakeFilter – The wakeFilter provided to configure the wake up frame fitlter. Set the wakeFilter to NULL is not required. But if you have the filter requirement, please make sure the wakeFilter pointer shall be eight continous 32-bits configuration.

static inline void ENET_ExitPowerDown(ENET_Type *base)

Set the MAC to exit power down mode. Eixt from the power down mode and recover to normal work mode.

Parameters:
  • base – ENET peripheral base address.

void ENET_EnableInterrupts(ENET_Type *base, uint32_t mask)

Enables the ENET DMA and MAC interrupts.

This function enables the ENET interrupt according to the provided mask. The mask is a logical OR of enet_dma_interrupt_enable_t and enet_mac_interrupt_enable_t. For example, to enable the dma and mac interrupt, do the following.

ENET_EnableInterrupts(ENET, kENET_DmaRx | kENET_DmaTx | kENET_MacPmt);

Parameters:
  • base – ENET peripheral base address.

  • mask – ENET interrupts to enable. This is a logical OR of both enumeration :: enet_dma_interrupt_enable_t and enet_mac_interrupt_enable_t.

void ENET_DisableInterrupts(ENET_Type *base, uint32_t mask)

Disables the ENET DMA and MAC interrupts.

This function disables the ENET interrupt according to the provided mask. The mask is a logical OR of enet_dma_interrupt_enable_t and enet_mac_interrupt_enable_t. For example, to disable the dma and mac interrupt, do the following.

ENET_DisableInterrupts(ENET, kENET_DmaRx | kENET_DmaTx | kENET_MacPmt);

Parameters:
  • base – ENET peripheral base address.

  • mask – ENET interrupts to disables. This is a logical OR of both enumeration :: enet_dma_interrupt_enable_t and enet_mac_interrupt_enable_t.

static inline uint32_t ENET_GetDmaInterruptStatus(ENET_Type *base, uint8_t channel)

Gets the ENET DMA interrupt status flag.

Parameters:
  • base – ENET peripheral base address.

  • channel – The DMA Channel. Shall not be larger than ENET_RING_NUM_MAX.

Returns:

The event status of the interrupt source. This is the logical OR of members of the enumeration :: enet_dma_interrupt_enable_t.

static inline void ENET_ClearDmaInterruptStatus(ENET_Type *base, uint8_t channel, uint32_t mask)

Clear the ENET DMA interrupt status flag.

Parameters:
  • base – ENET peripheral base address.

  • channel – The DMA Channel. Shall not be larger than ENET_RING_NUM_MAX.

  • mask – The event status of the interrupt source. This is the logical OR of members of the enumeration :: enet_dma_interrupt_enable_t.

static inline uint32_t ENET_GetMacInterruptStatus(ENET_Type *base)

Gets the ENET MAC interrupt status flag.

Parameters:
  • base – ENET peripheral base address.

Returns:

The event status of the interrupt source. Use the enum in enet_mac_interrupt_enable_t and right shift ENET_MACINT_ENUM_OFFSET to mask the returned value to get the exact interrupt status.

void ENET_ClearMacInterruptStatus(ENET_Type *base, uint32_t mask)

Clears the ENET mac interrupt events status flag.

This function clears enabled ENET interrupts according to the provided mask. The mask is a logical OR of enumeration members. See the enet_mac_interrupt_enable_t. For example, to clear the TX frame interrupt and RX frame interrupt, do the following.

ENET_ClearMacInterruptStatus(ENET, kENET_MacPmt);

Parameters:
  • base – ENET peripheral base address.

  • mask – ENET interrupt source to be cleared. This is the logical OR of members of the enumeration :: enet_mac_interrupt_enable_t.

static inline bool ENET_IsTxDescriptorDmaOwn(enet_tx_bd_struct_t *txDesc)

Get the Tx descriptor DMA Own flag.

Parameters:
  • txDesc – The given Tx descriptor.

Return values:

True – the dma own Tx descriptor, false application own Tx descriptor.

void ENET_SetupTxDescriptor(enet_tx_bd_struct_t *txDesc, void *buffer1, uint32_t bytes1, void *buffer2, uint32_t bytes2, uint32_t framelen, bool intEnable, bool tsEnable, enet_desc_flag_t flag, uint8_t slotNum)

Setup a given Tx descriptor. This function is a low level functional API to setup or prepare a given Tx descriptor.

Note

This must be called after all the ENET initilization. And should be called when the ENET receive/transmit is required. Transmit buffers are ‘zero-copy’ buffers, so the buffer must remain in memory until the packet has been fully transmitted. The buffers should be free or requeued in the transmit interrupt irq handler.

Parameters:
  • txDesc – The given Tx descriptor.

  • buffer1 – The first buffer address in the descriptor.

  • bytes1 – The bytes in the fist buffer.

  • buffer2 – The second buffer address in the descriptor.

  • bytes2 – The bytes in the second buffer.

  • framelen – The length of the frame to be transmitted.

  • intEnable – Interrupt enable flag.

  • tsEnable – The timestamp enable.

  • flag – The flag of this Tx desciriptor, see “enet_desc_flag_t” .

  • slotNum – The slot num used for AV mode only.

static inline void ENET_UpdateTxDescriptorTail(ENET_Type *base, uint8_t channel, uint32_t txDescTailAddrAlign)

Update the Tx descriptor tail pointer. This function is a low level functional API to update the the Tx descriptor tail. This is called after you setup a new Tx descriptor to update the tail pointer to make the new descritor accessable by DMA.

Parameters:
  • base – ENET peripheral base address.

  • channel – The Tx DMA channel.

  • txDescTailAddrAlign – The new Tx tail pointer address.

static inline void ENET_UpdateRxDescriptorTail(ENET_Type *base, uint8_t channel, uint32_t rxDescTailAddrAlign)

Update the Rx descriptor tail pointer. This function is a low level functional API to update the the Rx descriptor tail. This is called after you setup a new Rx descriptor to update the tail pointer to make the new descritor accessable by DMA and to anouse the Rx poll command for DMA.

Parameters:
  • base – ENET peripheral base address.

  • channel – The Rx DMA channel.

  • rxDescTailAddrAlign – The new Rx tail pointer address.

static inline uint32_t ENET_GetRxDescriptor(enet_rx_bd_struct_t *rxDesc)

Gets the context in the ENET Rx descriptor. This function is a low level functional API to get the the status flag from a given Rx descriptor.

Note

This must be called after all the ENET initilization. And should be called when the ENET receive/transmit is required.

Parameters:
  • rxDesc – The given Rx descriptor.

Return values:

The – RDES3 regions for write-back format Rx buffer descriptor.

void ENET_UpdateRxDescriptor(enet_rx_bd_struct_t *rxDesc, void *buffer1, void *buffer2, bool intEnable, bool doubleBuffEnable)

Updates the buffers and the own status for a given Rx descriptor. This function is a low level functional API to Updates the buffers and the own status for a given Rx descriptor.

Note

This must be called after all the ENET initilization. And should be called when the ENET receive/transmit is required.

Parameters:
  • rxDesc – The given Rx descriptor.

  • buffer1 – The first buffer address in the descriptor.

  • buffer2 – The second buffer address in the descriptor.

  • intEnable – Interrupt enable flag.

  • doubleBuffEnable – The double buffer enable flag.

void ENET_CreateHandler(ENET_Type *base, enet_handle_t *handle, enet_config_t *config, enet_buffer_config_t *bufferConfig, enet_callback_t callback, void *userData)

Create ENET Handler.

This is a transactional API and it’s provided to store all datas which are needed during the whole transactional process. This API should not be used when you use functional APIs to do data Tx/Rx. This is funtion will store many data/flag for transactional use.

Parameters:
  • base – ENET peripheral base address.

  • handle – ENET handler.

  • config – ENET configuration.

  • bufferConfig – ENET buffer configuration.

  • callback – The callback function.

  • userData – The application data.

status_t ENET_GetRxFrameSize(ENET_Type *base, enet_handle_t *handle, uint32_t *length, uint8_t channel)

Gets the size of the read frame. This function gets a received frame size from the ENET buffer descriptors.

Note

The FCS of the frame is automatically removed by MAC and the size is the length without the FCS. After calling ENET_GetRxFrameSize, ENET_ReadFrame() should be called to update the receive buffers If the result is not “kStatus_ENET_RxFrameEmpty”.

Parameters:
  • base – ENET peripheral base address.

  • handle – The ENET handler structure. This is the same handler pointer used in the ENET_Init.

  • length – The length of the valid frame received.

  • channel – The DMAC channel for the Rx.

Return values:
  • kStatus_ENET_RxFrameEmpty – No frame received. Should not call ENET_ReadFrame to read frame.

  • kStatus_ENET_RxFrameError – Data error happens. ENET_ReadFrame should be called with NULL data and NULL length to update the receive buffers.

  • kStatus_Success – Receive a frame Successfully then the ENET_ReadFrame should be called with the right data buffer and the captured data length input.

status_t ENET_ReadFrame(ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t length, uint8_t channel, enet_ptp_time_t *timestamp)

Reads a frame from the ENET device. This function reads a frame from the ENET DMA descriptors. The ENET_GetRxFrameSize should be used to get the size of the prepared data buffer. For example use Rx dma channel 0:

uint32_t length;
enet_handle_t g_handle;
Comment: Get the received frame size firstly.
status = ENET_GetRxFrameSize(&g_handle, &length, 0);
if (length != 0)
{
    Comment: Allocate memory here with the size of "length"
    uint8_t *data = memory allocate interface;
    if (!data)
    {
        ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0);
    }
    else
    {
       status = ENET_ReadFrame(ENET, &g_handle, data, length, 0);
    }
}
else if (status == kStatus_ENET_RxFrameError)
{
    Comment: Update the received buffer when a error frame is received.
    ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0);
}

Parameters:
  • base – ENET peripheral base address.

  • handle – The ENET handler structure. This is the same handler pointer used in the ENET_Init.

  • data – The data buffer provided by user to store the frame which memory size should be at least “length”.

  • length – The size of the data buffer which is still the length of the received frame.

  • channel – The Rx DMA channel. Shall not be larger than 2.

  • timestamp – The timestamp address to store received timestamp.

Returns:

The execute status, successful or failure.

status_t ENET_GetRxFrame(ENET_Type *base, enet_handle_t *handle, enet_rx_frame_struct_t *rxFrame, uint8_t channel)

Receives one frame in specified BD ring with zero copy.

This function will use the user-defined allocate and free callback. Every time application gets one frame through this function, driver will allocate new buffers for the BDs whose buffers have been taken by application.

Note

This function will drop current frame and update related BDs as available for DMA if new buffers allocating fails. Application must provide a memory pool including at least BD number + 1 buffers(+2 if enable double buffer) to make this function work normally.

Parameters:
  • base – ENET peripheral base address.

  • handle – The ENET handler pointer. This is the same handler pointer used in the ENET_Init.

  • rxFrame – The received frame information structure provided by user.

  • channel – The Rx DMA channel. Shall not be larger than 2.

Return values:
  • kStatus_Success – Succeed to get one frame and allocate new memory for Rx buffer.

  • kStatus_ENET_RxFrameEmpty – There’s no Rx frame in the BD.

  • kStatus_ENET_RxFrameError – There’s issue in this receiving. In this function, issue frame will be dropped.

  • kStatus_ENET_RxFrameDrop – There’s no new buffer memory for BD, dropped this frame.

status_t ENET_SendFrame(ENET_Type *base, enet_handle_t *handle, enet_tx_frame_struct_t *txFrame, uint8_t channel)

Transmits an ENET frame.

Note

The CRC is automatically appended to the data. Input the data to send without the CRC. This API uses input buffer for Tx, application should reclaim the buffer after Tx is over.

Parameters:
  • base – ENET peripheral base address.

  • handle – The ENET handler pointer. This is the same handler pointer used in the ENET_Init.

  • txFrame – The Tx frame structure.

  • channel – Channel to send the frame, same with queue index.

Return values:
  • kStatus_Success – Send frame succeed.

  • kStatus_ENET_TxFrameBusy – Transmit buffer descriptor is busy under transmission. The transmit busy happens when the data send rate is over the MAC capacity. The waiting mechanism is recommended to be added after each call return with kStatus_ENET_TxFrameBusy. Also need to pay attention to reclaim Tx frame after Tx is over.

  • kStatus_ENET_TxFrameOverLen – Transmit frme length exceeds the 0x3FFF limit defined by the driver.

void ENET_ReclaimTxDescriptor(ENET_Type *base, enet_handle_t *handle, uint8_t channel)

Reclaim Tx descriptors. This function is used to update the Tx descriptor status and store the Tx timestamp when the 1588 feature is enabled. This is called by the transmit interupt IRQ handler after the complete of a frame transmission.

Parameters:
  • base – ENET peripheral base address.

  • handle – The ENET handler pointer. This is the same handler pointer used in the ENET_Init.

  • channel – The Tx DMA channnel.

void ENET_IRQHandler(ENET_Type *base, enet_handle_t *handle)

The ENET IRQ handler.

Parameters:
  • base – ENET peripheral base address.

  • handle – The ENET handler pointer.

FSL_ENET_DRIVER_VERSION

Defines the driver version.

ENET_RXDESCRIP_RD_BUFF1VALID_MASK

Defines for read format.

Buffer1 address valid.

ENET_RXDESCRIP_RD_BUFF2VALID_MASK

Buffer2 address valid.

ENET_RXDESCRIP_RD_IOC_MASK

Interrupt enable on complete.

ENET_RXDESCRIP_RD_OWN_MASK

Own bit.

ENET_RXDESCRIP_WR_ERR_MASK

Defines for write back format.

ENET_RXDESCRIP_WR_PYLOAD_MASK
ENET_RXDESCRIP_WR_PTPMSGTYPE_MASK
ENET_RXDESCRIP_WR_PTPTYPE_MASK
ENET_RXDESCRIP_WR_PTPVERSION_MASK
ENET_RXDESCRIP_WR_PTPTSA_MASK
ENET_RXDESCRIP_WR_PACKETLEN_MASK
ENET_RXDESCRIP_WR_ERRSUM_MASK
ENET_RXDESCRIP_WR_TYPE_MASK
ENET_RXDESCRIP_WR_DE_MASK
ENET_RXDESCRIP_WR_RE_MASK
ENET_RXDESCRIP_WR_OE_MASK
ENET_RXDESCRIP_WR_RS0V_MASK
ENET_RXDESCRIP_WR_RS1V_MASK
ENET_RXDESCRIP_WR_RS2V_MASK
ENET_RXDESCRIP_WR_LD_MASK
ENET_RXDESCRIP_WR_FD_MASK
ENET_RXDESCRIP_WR_CTXT_MASK
ENET_RXDESCRIP_WR_OWN_MASK
ENET_TXDESCRIP_RD_BL1_MASK

Defines for read format.

ENET_TXDESCRIP_RD_BL2_MASK
ENET_TXDESCRIP_RD_BL1(n)
ENET_TXDESCRIP_RD_BL2(n)
ENET_TXDESCRIP_RD_TTSE_MASK
ENET_TXDESCRIP_RD_IOC_MASK
ENET_TXDESCRIP_RD_FL_MASK
ENET_TXDESCRIP_RD_FL(n)
ENET_TXDESCRIP_RD_CIC(n)
ENET_TXDESCRIP_RD_TSE_MASK
ENET_TXDESCRIP_RD_SLOT(n)
ENET_TXDESCRIP_RD_SAIC(n)
ENET_TXDESCRIP_RD_CPC(n)
ENET_TXDESCRIP_RD_LDFD(n)
ENET_TXDESCRIP_RD_LD_MASK
ENET_TXDESCRIP_RD_FD_MASK
ENET_TXDESCRIP_RD_CTXT_MASK
ENET_TXDESCRIP_RD_OWN_MASK
ENET_TXDESCRIP_WB_TTSS_MASK

Defines for write back format.

ENET_ABNORM_INT_MASK
ENET_NORM_INT_MASK
ENET_FRAME_MAX_FRAMELEN

Default maximum ethernet frame size.

ENET_FCS_LEN

Ethernet Rx frame FCS length.

ENET_ADDR_ALIGNMENT

Recommended ethernet buffer alignment.

ENET_BUFF_ALIGNMENT

Receive buffer alignment shall be 4bytes-aligned.

ENET_RING_NUM_MAX

The maximum number of Tx/Rx descriptor rings.

ENET_MTL_RXFIFOSIZE

The Rx fifo size.

ENET_MTL_TXFIFOSIZE

The Tx fifo size.

ENET_MACINT_ENUM_OFFSET

The offset for mac interrupt in enum type.

ENET_FRAME_TX_LEN_LIMITATION

The Tx frame length software limitation.

ENET_FRAME_RX_ERROR_BITS(x)

The Rx frame error bits field.

Defines the status return codes for transaction.

Values:

enumerator kStatus_ENET_InitMemoryFail

Status code 4000. Init failed since buffer memory was not enough.

enumerator kStatus_ENET_RxFrameError

Status code 4001. A frame received but data error occurred.

enumerator kStatus_ENET_RxFrameFail

Status code 4002. Failed to receive a frame.

enumerator kStatus_ENET_RxFrameEmpty

Status code 4003. No frame arrived.

enumerator kStatus_ENET_RxFrameDrop

Status code 4004. Rx frame was dropped since there’s no buffer memory.

enumerator kStatus_ENET_TxFrameBusy

Status code 4005. There were no resources for Tx operation.

enumerator kStatus_ENET_TxFrameFail

Status code 4006. Transmit frame failed.

enumerator kStatus_ENET_TxFrameOverLen

Status code 4007. Failed to send an oversize frame.

enum _enet_mii_mode

Defines the MII/RMII mode for data interface between the MAC and the PHY.

Values:

enumerator kENET_MiiMode

MII mode for data interface.

enumerator kENET_RmiiMode

RMII mode for data interface.

enum _enet_mii_speed

Defines the 10/100 Mbps speed for the MII data interface.

Values:

enumerator kENET_MiiSpeed10M

Speed 10 Mbps.

enumerator kENET_MiiSpeed100M

Speed 100 Mbps.

enum _enet_mii_duplex

Defines the half or full duplex for the MII data interface.

Values:

enumerator kENET_MiiHalfDuplex

Half duplex mode.

enumerator kENET_MiiFullDuplex

Full duplex mode.

enum _enet_mii_normal_opcode

Define the MII opcode for normal MDIO_CLAUSES_22 Frame.

Values:

enumerator kENET_MiiWriteFrame

Write frame operation for a valid MII management frame.

enumerator kENET_MiiReadFrame

Read frame operation for a valid MII management frame.

enum _enet_dma_burstlen

Define the DMA maximum transmit burst length.

Values:

enumerator kENET_BurstLen1

DMA burst length 1.

enumerator kENET_BurstLen2

DMA burst length 2.

enumerator kENET_BurstLen4

DMA burst length 4.

enumerator kENET_BurstLen8

DMA burst length 8.

enumerator kENET_BurstLen16

DMA burst length 16.

enumerator kENET_BurstLen32

DMA burst length 32.

enumerator kENET_BurstLen64

DMA burst length 64. eight times enabled.

enumerator kENET_BurstLen128

DMA burst length 128. eight times enabled.

enumerator kENET_BurstLen256

DMA burst length 256. eight times enabled.

enum _enet_desc_flag

Define the flag for the descriptor.

Values:

enumerator kENET_MiddleFlag

It’s a middle descriptor of the frame.

enumerator kENET_LastFlagOnly

It’s the last descriptor of the frame.

enumerator kENET_FirstFlagOnly

It’s the first descriptor of the frame.

enumerator kENET_FirstLastFlag

It’s the first and last descriptor of the frame.

enum _enet_systime_op

Define the system time adjust operation control.

Values:

enumerator kENET_SystimeAdd

System time add to.

enumerator kENET_SystimeSubtract

System time subtract.

enum _enet_ts_rollover_type

Define the system time rollover control.

Values:

enumerator kENET_BinaryRollover

System time binary rollover.

enumerator kENET_DigitalRollover

System time digital rollover.

enum _enet_special_config

Defines some special configuration for ENET.

These control flags are provided for special user requirements. Normally, these is no need to set this control flags for ENET initialization. But if you have some special requirements, set the flags to specialControl in the enet_config_t.

Note

“kENET_StoreAndForward” is recommended to be set when the ENET_PTP1588FEATURE_REQUIRED is defined or else the timestamp will be mess-up when the overflow happens.

Values:

enumerator kENET_DescDoubleBuffer

The double buffer is used in the Tx/Rx descriptor.

enumerator kENET_StoreAndForward

The Rx/Tx store and forward enable.

enumerator kENET_PromiscuousEnable

The promiscuous enabled.

enumerator kENET_FlowControlEnable

The flow control enabled.

enumerator kENET_BroadCastRxDisable

The broadcast disabled.

enumerator kENET_MulticastAllEnable

All multicast are passed.

enumerator kENET_8023AS2KPacket

8023as support for 2K packets.

enumerator kENET_RxChecksumOffloadEnable

The Rx checksum offload enabled.

enum _enet_dma_interrupt_enable

List of DMA interrupts supported by the ENET interrupt. This enumeration uses one-hot encoding to allow a logical OR of multiple members.

Values:

enumerator kENET_DmaTx

Tx interrupt.

enumerator kENET_DmaTxStop

Tx stop interrupt.

enumerator kENET_DmaTxBuffUnavail

Tx buffer unavailable.

enumerator kENET_DmaRx

Rx interrupt.

enumerator kENET_DmaRxBuffUnavail

Rx buffer unavailable.

enumerator kENET_DmaRxStop

Rx stop.

enumerator kENET_DmaRxWatchdogTimeout

Rx watchdog timeout.

enumerator kENET_DmaEarlyTx

Early transmit.

enumerator kENET_DmaEarlyRx

Early receive.

enumerator kENET_DmaBusErr

Fatal bus error.

enum _enet_mac_interrupt_enable

List of mac interrupts supported by the ENET interrupt. This enumeration uses one-hot encoding to allow a logical OR of multiple members.

Values:

enumerator kENET_MacPmt
enumerator kENET_MacTimestamp
enum _enet_event

Defines the common interrupt event for callback use.

Values:

enumerator kENET_RxIntEvent

Receive interrupt event.

enumerator kENET_TxIntEvent

Transmit interrupt event.

enumerator kENET_WakeUpIntEvent

Wake up interrupt event.

enumerator kENET_TimeStampIntEvent

Time stamp interrupt event.

enum _enet_dma_tx_sche

Define the DMA transmit arbitration for multi-queue.

Values:

enumerator kENET_FixPri

Fixed priority. channel 0 has lower priority than channel 1.

enumerator kENET_WeightStrPri

Weighted(burst length) strict priority.

enumerator kENET_WeightRoundRobin

Weighted (weight factor) round robin.

enum _enet_mtl_multiqueue_txsche

Define the MTL Tx scheduling algorithm for multiple queues/rings.

Values:

enumerator kENET_txWeightRR

Tx weight round-robin.

enumerator kENET_txStrPrio

Tx strict priority.

enum _enet_mtl_multiqueue_rxsche

Define the MTL Rx scheduling algorithm for multiple queues/rings.

Values:

enumerator kENET_rxStrPrio

Tx weight round-robin, Rx strict priority.

enumerator kENET_rxWeightStrPrio

Tx strict priority, Rx weight strict priority.

enum _enet_mtl_rxqueuemap

Define the MTL Rx queue and DMA channel mapping.

Values:

enumerator kENET_StaticDirctMap

The received fame in Rx Qn(n = 0,1) direclty map to dma channel n.

enumerator kENET_DynamicMap

The received frame in Rx Qn(n = 0,1) map to the dma channel m(m = 0,1) related with the same Mac.

enum _enet_ptp_event_type

Defines the ENET PTP message related constant.

Values:

enumerator kENET_PtpEventMsgType

PTP event message type.

enumerator kENET_PtpSrcPortIdLen

PTP message sequence id length.

enumerator kENET_PtpEventPort

PTP event port number.

enumerator kENET_PtpGnrlPort

PTP general port number.

enum _enet_tx_offload

Define the Tx checksum offload options.

Values:

enumerator kENET_TxOffloadDisable

Disable Tx checksum offload.

enumerator kENET_TxOffloadIPHeader

Enable IP header checksum calculation and insertion.

enumerator kENET_TxOffloadIPHeaderPlusPayload

Enable IP header and payload checksum calculation and insertion.

enumerator kENET_TxOffloadAll

Enable IP header, payload and pseudo header checksum calculation and insertion.

typedef enum _enet_mii_mode enet_mii_mode_t

Defines the MII/RMII mode for data interface between the MAC and the PHY.

typedef enum _enet_mii_speed enet_mii_speed_t

Defines the 10/100 Mbps speed for the MII data interface.

typedef enum _enet_mii_duplex enet_mii_duplex_t

Defines the half or full duplex for the MII data interface.

typedef enum _enet_mii_normal_opcode enet_mii_normal_opcode_t

Define the MII opcode for normal MDIO_CLAUSES_22 Frame.

typedef enum _enet_dma_burstlen enet_dma_burstlen_t

Define the DMA maximum transmit burst length.

typedef enum _enet_desc_flag enet_desc_flag_t

Define the flag for the descriptor.

typedef enum _enet_systime_op enet_systime_op_t

Define the system time adjust operation control.

typedef enum _enet_ts_rollover_type enet_ts_rollover_type_t

Define the system time rollover control.

typedef enum _enet_special_config enet_special_config_t

Defines some special configuration for ENET.

These control flags are provided for special user requirements. Normally, these is no need to set this control flags for ENET initialization. But if you have some special requirements, set the flags to specialControl in the enet_config_t.

Note

“kENET_StoreAndForward” is recommended to be set when the ENET_PTP1588FEATURE_REQUIRED is defined or else the timestamp will be mess-up when the overflow happens.

typedef enum _enet_dma_interrupt_enable enet_dma_interrupt_enable_t

List of DMA interrupts supported by the ENET interrupt. This enumeration uses one-hot encoding to allow a logical OR of multiple members.

typedef enum _enet_mac_interrupt_enable enet_mac_interrupt_enable_t

List of mac interrupts supported by the ENET interrupt. This enumeration uses one-hot encoding to allow a logical OR of multiple members.

typedef enum _enet_event enet_event_t

Defines the common interrupt event for callback use.

typedef enum _enet_dma_tx_sche enet_dma_tx_sche_t

Define the DMA transmit arbitration for multi-queue.

typedef enum _enet_mtl_multiqueue_txsche enet_mtl_multiqueue_txsche_t

Define the MTL Tx scheduling algorithm for multiple queues/rings.

typedef enum _enet_mtl_multiqueue_rxsche enet_mtl_multiqueue_rxsche_t

Define the MTL Rx scheduling algorithm for multiple queues/rings.

typedef enum _enet_mtl_rxqueuemap enet_mtl_rxqueuemap_t

Define the MTL Rx queue and DMA channel mapping.

typedef enum _enet_ptp_event_type enet_ptp_event_type_t

Defines the ENET PTP message related constant.

typedef enum _enet_tx_offload enet_tx_offload_t

Define the Tx checksum offload options.

typedef struct _enet_rx_bd_struct enet_rx_bd_struct_t

Defines the receive descriptor structure It has the read-format and write-back format structures. They both have the same size with different region definition. So we define common name as the recive descriptor structure. When initialize the buffer descriptors, read-format region mask bits should be used. When Rx frame has been in the buffer descriptors, write-back format region store the Rx result information.

typedef struct _enet_tx_bd_struct enet_tx_bd_struct_t

Defines the transmit descriptor structure It has the read-format and write-back format structure. They both has the same size with different region definition. So we define common name as the transmit descriptor structure. When initialize the buffer descriptors for Tx, read-format region mask bits should be used. When frame has been transmitted, write-back format region store the Tx result information.

typedef struct _enet_tx_bd_config_struct enet_tx_bd_config_struct_t

Defines the Tx BD configuration structure.

typedef struct _enet_ptp_time enet_ptp_time_t

Defines the ENET PTP time stamp structure.

typedef struct enet_tx_reclaim_info enet_tx_reclaim_info_t

Defines the Tx reclaim information structure.

typedef struct _enet_tx_dirty_ring enet_tx_dirty_ring_t

Defines the ENET transmit dirty addresses ring/queue structure.

typedef struct _enet_buffer_config enet_buffer_config_t

Defines the buffer descriptor configure structure.

Notes:

  1. The receive and transmit descriptor start address pointer and tail pointer must be word-aligned.

  2. The recommended minimum Tx/Rx ring length is 4.

  3. The Tx/Rx descriptor tail address shall be the address pointer to the address just after the end of the last last descriptor. because only the descriptors between the start address and the tail address will be used by DMA.

  4. The decriptor address is the start address of all used contiguous memory. for example, the rxDescStartAddrAlign is the start address of rxRingLen contiguous descriptor memorise for Rx descriptor ring 0.

  5. The “*rxBufferstartAddr” is the first element of rxRingLen (2*rxRingLen for double buffers) Rx buffers. It means the *rxBufferStartAddr is the Rx buffer for the first descriptor the *rxBufferStartAddr + 1 is the Rx buffer for the second descriptor or the Rx buffer for the second buffer in the first descriptor. So please make sure the rxBufferStartAddr is the address of a rxRingLen or 2*rxRingLen array.

typedef struct enet_multiqueue_config enet_multiqueue_config_t

Defines the configuration when multi-queue is used.

typedef void *(*enet_rx_alloc_callback_t)(ENET_Type *base, void *userData, uint8_t channel)

Defines the Rx memory buffer alloc function pointer.

typedef void (*enet_rx_free_callback_t)(ENET_Type *base, void *buffer, void *userData, uint8_t channel)

Defines the Rx memory buffer free function pointer.

typedef struct _enet_config enet_config_t

Defines the basic configuration structure for the ENET device.

Note:

  1. Default the signal queue is used so the “multiqueueCfg” is set default with NULL. Set the pointer with a valid configration pointer if the multiple queues are required. If multiple queue is enabled, please make sure the buffer configuration for all are prepared also.

typedef struct _enet_handle enet_handle_t
typedef void (*enet_callback_t)(ENET_Type *base, enet_handle_t *handle, enet_event_t event, uint8_t channel, enet_tx_reclaim_info_t *txReclaimInfo, void *userData)

ENET callback function.

typedef struct _enet_tx_bd_ring enet_tx_bd_ring_t

Defines the ENET transmit buffer descriptor ring/queue structure.

typedef struct _enet_rx_bd_ring enet_rx_bd_ring_t

Defines the ENET receive buffer descriptor ring/queue structure.

typedef struct _enet_buffer_struct enet_buffer_struct_t
typedef struct _enet_rx_frame_attribute_struct enet_rx_frame_attribute_t

Rx frame attribute structure.

typedef struct _enet_rx_frame_error enet_rx_frame_error_t

Defines the Rx frame error structure.

typedef struct _enet_rx_frame_struct enet_rx_frame_struct_t

Defines the Rx frame data structure.

typedef struct _enet_tx_config_struct enet_tx_config_struct_t
typedef struct _enet_tx_frame_struct enet_tx_frame_struct_t
typedef void (*enet_isr_t)(ENET_Type *base, enet_handle_t *handle)
const clock_ip_name_t s_enetClock[]

Pointers to enet clocks for each instance.

struct _enet_rx_bd_struct
#include <fsl_enet.h>

Defines the receive descriptor structure It has the read-format and write-back format structures. They both have the same size with different region definition. So we define common name as the recive descriptor structure. When initialize the buffer descriptors, read-format region mask bits should be used. When Rx frame has been in the buffer descriptors, write-back format region store the Rx result information.

Public Members

__IO uint32_t rdes0

Receive descriptor 0

__IO uint32_t rdes1

Receive descriptor 1

__IO uint32_t rdes2

Receive descriptor 2

__IO uint32_t rdes3

Receive descriptor 3

struct _enet_tx_bd_struct
#include <fsl_enet.h>

Defines the transmit descriptor structure It has the read-format and write-back format structure. They both has the same size with different region definition. So we define common name as the transmit descriptor structure. When initialize the buffer descriptors for Tx, read-format region mask bits should be used. When frame has been transmitted, write-back format region store the Tx result information.

Public Members

__IO uint32_t tdes0

Transmit descriptor 0

__IO uint32_t tdes1

Transmit descriptor 1

__IO uint32_t tdes2

Transmit descriptor 2

__IO uint32_t tdes3

Transmit descriptor 3

struct _enet_tx_bd_config_struct
#include <fsl_enet.h>

Defines the Tx BD configuration structure.

Public Members

void *buffer1

The first buffer address in the descriptor.

uint32_t bytes1

The bytes in the fist buffer.

void *buffer2

The second buffer address in the descriptor.

uint32_t bytes2

The bytes in the second buffer.

uint32_t framelen

The length of the frame to be transmitted.

bool intEnable

Interrupt enable flag.

bool tsEnable

The timestamp enable.

enet_tx_offload_t txOffloadOps

The Tx checksum offload option, only vaild for Queue 0.

enet_desc_flag_t flag

The flag of this tx desciriptor, see “enet_qos_desc_flag”.

uint8_t slotNum

The slot number used for AV mode only.

struct _enet_ptp_time
#include <fsl_enet.h>

Defines the ENET PTP time stamp structure.

Public Members

uint64_t second

Second.

uint32_t nanosecond

Nanosecond.

struct enet_tx_reclaim_info
#include <fsl_enet.h>

Defines the Tx reclaim information structure.

Public Members

void *context

User specified data, could be buffer address for free

bool isTsAvail

Flag indicates timestamp available status

enet_ptp_time_t timeStamp

Timestamp of frame

struct _enet_tx_dirty_ring
#include <fsl_enet.h>

Defines the ENET transmit dirty addresses ring/queue structure.

Public Members

enet_tx_reclaim_info_t *txDirtyBase

Dirty buffer descriptor base address pointer.

uint16_t txGenIdx

Tx generate index.

uint16_t txConsumIdx

Tx consume index.

uint16_t txRingLen

Tx ring length.

bool isFull

Tx ring is full flag, add this parameter to avoid waste one element.

struct _enet_buffer_config
#include <fsl_enet.h>

Defines the buffer descriptor configure structure.

Notes:

  1. The receive and transmit descriptor start address pointer and tail pointer must be word-aligned.

  2. The recommended minimum Tx/Rx ring length is 4.

  3. The Tx/Rx descriptor tail address shall be the address pointer to the address just after the end of the last last descriptor. because only the descriptors between the start address and the tail address will be used by DMA.

  4. The decriptor address is the start address of all used contiguous memory. for example, the rxDescStartAddrAlign is the start address of rxRingLen contiguous descriptor memorise for Rx descriptor ring 0.

  5. The “*rxBufferstartAddr” is the first element of rxRingLen (2*rxRingLen for double buffers) Rx buffers. It means the *rxBufferStartAddr is the Rx buffer for the first descriptor the *rxBufferStartAddr + 1 is the Rx buffer for the second descriptor or the Rx buffer for the second buffer in the first descriptor. So please make sure the rxBufferStartAddr is the address of a rxRingLen or 2*rxRingLen array.

Public Members

uint8_t rxRingLen

The length of receive buffer descriptor ring.

uint8_t txRingLen

The length of transmit buffer descriptor ring.

enet_tx_bd_struct_t *txDescStartAddrAlign

Aligned transmit descriptor start address.

enet_tx_bd_struct_t *txDescTailAddrAlign

Aligned transmit descriptor tail address.

enet_tx_reclaim_info_t *txDirtyStartAddr

Start address of the dirty Tx frame information.

enet_rx_bd_struct_t *rxDescStartAddrAlign

Aligned receive descriptor start address.

enet_rx_bd_struct_t *rxDescTailAddrAlign

Aligned receive descriptor tail address.

uint32_t *rxBufferStartAddr

Start address of the Rx buffers.

uint32_t rxBuffSizeAlign

Aligned receive data buffer size.

struct enet_multiqueue_config
#include <fsl_enet.h>

Defines the configuration when multi-queue is used.

Public Members

enet_dma_tx_sche_t dmaTxSche

Transmit arbitation.

enet_dma_burstlen_t burstLen

Burset len for the queue 1.

uint8_t txdmaChnWeight[(2U)]

Transmit channel weight.

enet_mtl_multiqueue_txsche_t mtltxSche

Transmit schedule for multi-queue.

enet_mtl_multiqueue_rxsche_t mtlrxSche

Receive schedule for multi-queue.

uint8_t rxqueweight[(2U)]

Refer to the MTL RxQ Control register.

uint32_t txqueweight[(2U)]

Refer to the MTL TxQ Quantum Weight register.

uint8_t rxqueuePrio[(2U)]

Receive queue priority.

uint8_t txqueuePrio[(2U)]

Refer to Transmit Queue Priority Mapping register.

enet_mtl_rxqueuemap_t mtlrxQuemap

Rx queue DMA Channel mapping.

struct _enet_config
#include <fsl_enet.h>

Defines the basic configuration structure for the ENET device.

Note:

  1. Default the signal queue is used so the “multiqueueCfg” is set default with NULL. Set the pointer with a valid configration pointer if the multiple queues are required. If multiple queue is enabled, please make sure the buffer configuration for all are prepared also.

Public Members

uint16_t specialControl

The logicl or of enet_special_config_t

enet_multiqueue_config_t *multiqueueCfg

Use both Tx/Rx queue(dma channel) 0 and 1.

uint32_t interrupt

MAC interrupt source. A logical OR of enet_dma_interrupt_enable_t and enet_mac_interrupt_enable_t.

enet_mii_mode_t miiMode

MII mode.

enet_mii_speed_t miiSpeed

MII Speed.

enet_mii_duplex_t miiDuplex

MII duplex.

uint16_t pauseDuration

Used in the Tx flow control frame, only valid when kENET_FlowControlEnable is set.

enet_rx_alloc_callback_t rxBuffAlloc

Callback to alloc memory, must be provided for zero-copy Rx.

enet_rx_free_callback_t rxBuffFree

Callback to free memory, must be provided for zero-copy Rx.

struct _enet_tx_bd_ring
#include <fsl_enet.h>

Defines the ENET transmit buffer descriptor ring/queue structure.

Public Members

enet_tx_bd_struct_t *txBdBase

Buffer descriptor base address pointer.

uint16_t txGenIdx

Tx generate index.

uint16_t txConsumIdx

Tx consum index.

volatile uint16_t txDescUsed

Tx descriptor used number.

uint16_t txRingLen

Tx ring length.

struct _enet_rx_bd_ring
#include <fsl_enet.h>

Defines the ENET receive buffer descriptor ring/queue structure.

Public Members

enet_rx_bd_struct_t *rxBdBase

Buffer descriptor base address pointer.

uint16_t rxGenIdx

The current available receive buffer descriptor pointer.

uint16_t rxRingLen

Receive ring length.

uint32_t rxBuffSizeAlign

Receive buffer size.

struct _enet_handle
#include <fsl_enet.h>

Defines the ENET handler structure.

Public Members

bool multiQueEnable

Multi-queue enable status.

bool doubleBuffEnable

The double buffer enable status.

bool rxintEnable

Rx interrupt enable status.

enet_rx_bd_ring_t rxBdRing[(2U)]

Receive buffer descriptor.

enet_tx_bd_ring_t txBdRing[(2U)]

Transmit buffer descriptor.

enet_tx_dirty_ring_t txDirtyRing[(2U)]

Transmit dirty buffers addresses.

uint32_t *rxBufferStartAddr[(2U)]

The Init-Rx buffers used for reinit corrupted BD due to write-back operation.

uint32_t txLenLimitation[(2U)]

Tx frame length limitation.

enet_callback_t callback

Callback function.

void *userData

Callback function parameter.

enet_rx_alloc_callback_t rxBuffAlloc

Callback to alloc memory, must be provided for zero-copy Rx.

enet_rx_free_callback_t rxBuffFree

Callback to free memory, must be provided for zero-copy Rx.

struct _enet_buffer_struct
#include <fsl_enet.h>

Public Members

void *buffer

The buffer stores the whole or partial frame.

uint16_t length

The byte length of this buffer.

struct _enet_rx_frame_attribute_struct
#include <fsl_enet.h>

Rx frame attribute structure.

Public Members

bool isTsAvail

Rx frame timestamp is available or not.

enet_ptp_time_t timestamp

The nanosecond part timestamp of this Rx frame.

struct _enet_rx_frame_error
#include <fsl_enet.h>

Defines the Rx frame error structure.

Public Members

bool statsDribbleErr

The received packet has a non-integer multiple of bytes (odd nibbles).

bool statsRxErr

Receive error.

bool statsOverflowErr

Rx FIFO overflow error.

bool statsWatchdogTimeoutErr

Receive watchdog timeout.

bool statsGaintPacketErr

Receive error.

bool statsRxFcsErr

Receive CRC error.

struct _enet_rx_frame_struct
#include <fsl_enet.h>

Defines the Rx frame data structure.

Public Members

enet_buffer_struct_t *rxBuffArray

Rx frame buffer structure.

uint16_t totLen

Rx frame total length.

enet_rx_frame_attribute_t rxAttribute

Rx frame attribute structure.

enet_rx_frame_error_t rxFrameError

Rx frame error.

struct _enet_tx_config_struct
#include <fsl_enet.h>

Public Members

uint8_t intEnable

Enable interrupt every time one BD is completed.

uint8_t tsEnable

Transmit timestamp enable.

uint8_t slotNum

Slot number control bits in AV mode.

enet_tx_offload_t txOffloadOps

Tx checksum offload option.

struct _enet_tx_frame_struct
#include <fsl_enet.h>

Public Members

enet_buffer_struct_t *txBuffArray

Tx frame buffer structure.

uint32_t txBuffNum

Buffer number of this Tx frame.

enet_tx_config_struct_t txConfig

Tx extra configuation.

void *context

Driver reclaims and gives it in Tx over callback.

GPIO: General Purpose I/O

void GPIO_PortInit(GPIO_Type *base, uint32_t port)

Initializes the GPIO peripheral.

This function ungates the GPIO clock.

Parameters:
  • base – GPIO peripheral base pointer.

  • port – GPIO port number.

void GPIO_PinInit(GPIO_Type *base, uint32_t port, uint32_t pin, const gpio_pin_config_t *config)

Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, either input or output, in the user file. Then, call the GPIO_PinInit() function.

This is an example to define an input pin or output pin configuration:

Define a digital input pin configuration,
gpio_pin_config_t config =
{
  kGPIO_DigitalInput,
  0,
}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
  kGPIO_DigitalOutput,
  0,
}

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • pin – GPIO pin number

  • config – GPIO pin configuration pointer

static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t port, uint32_t pin, uint8_t output)

Sets the output level of the one GPIO pin to the logic 1 or 0.

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • pin – GPIO pin number

  • output – GPIO pin output logic level.

    • 0: corresponding pin output low-logic level.

    • 1: corresponding pin output high-logic level.

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t port, uint32_t pin)

Reads the current input value of the GPIO PIN.

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • pin – GPIO pin number

Return values:

GPIO – port input value

  • 0: corresponding pin input low-logic level.

  • 1: corresponding pin input high-logic level.

FSL_GPIO_DRIVER_VERSION

LPC GPIO driver version.

enum _gpio_pin_direction

LPC GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput

Set current pin as digital input

enumerator kGPIO_DigitalOutput

Set current pin as digital output

typedef enum _gpio_pin_direction gpio_pin_direction_t

LPC GPIO direction definition.

typedef struct _gpio_pin_config gpio_pin_config_t

The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured as a input pin, then leave the outputConfig unused.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t port, uint32_t mask)

Sets the output level of the multiple GPIO pins to the logic 1.

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • mask – GPIO pin number macro

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t port, uint32_t mask)

Sets the output level of the multiple GPIO pins to the logic 0.

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • mask – GPIO pin number macro

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t port, uint32_t mask)

Reverses current output logic of the multiple GPIO pins.

Parameters:
  • base – GPIO peripheral base pointer(Typically GPIO)

  • port – GPIO port number

  • mask – GPIO pin number macro

struct _gpio_pin_config
#include <fsl_gpio.h>

The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured as a input pin, then leave the outputConfig unused.

Public Members

gpio_pin_direction_t pinDirection

GPIO direction, input or output

uint8_t outputLogic

Set default output logic, no use in input

IOCON: I/O pin configuration

FSL_IOCON_DRIVER_VERSION

IOCON driver version.

typedef struct _iocon_group iocon_group_t

Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.

__STATIC_INLINE void IOCON_PinMuxSet (IOCON_Type *base, uint8_t port, uint8_t pin, uint32_t modefunc)

Sets I/O Control pin mux.

Parameters:
  • base – : The base of IOCON peripheral on the chip

  • port – : GPIO port to mux

  • pin – : GPIO pin to mux

  • modefunc – : OR’ed values of type IOCON_*

Returns:

Nothing

__STATIC_INLINE void IOCON_SetPinMuxing (IOCON_Type *base, const iocon_group_t *pinArray, uint32_t arrayLength)

Set all I/O Control pin muxing.

Parameters:
  • base – : The base of IOCON peripheral on the chip

  • pinArray – : Pointer to array of pin mux selections

  • arrayLength – : Number of entries in pinArray

Returns:

Nothing

FSL_COMPONENT_ID
IOCON_FUNC0

IOCON function and mode selection definitions.

Note

See the User Manual for specific modes and functions supported by the various pins. Selects pin function 0

IOCON_FUNC1

Selects pin function 1

IOCON_FUNC2

Selects pin function 2

IOCON_FUNC3

Selects pin function 3

IOCON_FUNC4

Selects pin function 4

IOCON_FUNC5

Selects pin function 5

IOCON_FUNC6

Selects pin function 6

IOCON_FUNC7

Selects pin function 7

struct _iocon_group
#include <fsl_iocon.h>

Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.

LCDC: LCD Controller Driver

status_t LCDC_Init(LCD_Type *base, const lcdc_config_t *config, uint32_t srcClock_Hz)

Initialize the LCD module.

Parameters:
  • base – LCD peripheral base address.

  • config – Pointer to configuration structure, see to lcdc_config_t.

  • srcClock_Hz – The LCD input clock (LCDCLK) frequency in Hz.

Return values:
  • kStatus_Success – LCD is initialized successfully.

  • kStatus_InvalidArgument – Initlialize failed because of invalid argument.

void LCDC_Deinit(LCD_Type *base)

Deinitialize the LCD module.

Parameters:
  • base – LCD peripheral base address.

void LCDC_GetDefaultConfig(lcdc_config_t *config)

Gets default pre-defined settings for initial configuration.

This function initializes the configuration structure. The default values are:

config->panelClock_Hz = 0U;
config->ppl = 0U;
config->hsw = 0U;
config->hfp = 0U;
config->hbp = 0U;
config->lpp = 0U;
config->vsw = 0U;
config->vfp = 0U;
config->vbp = 0U;
config->acBiasFreq = 1U;
config->polarityFlags = 0U;
config->enableLineEnd = false;
config->lineEndDelay = 0U;
config->upperPanelAddr = 0U;
config->lowerPanelAddr = 0U;
config->bpp = kLCDC_1BPP;
config->dataFormat = kLCDC_LittleEndian;
config->swapRedBlue = false;
config->display = kLCDC_DisplayTFT;
Parameters:
  • config – Pointer to configuration structure.

static inline void LCDC_Start(LCD_Type *base)

Start to output LCD timing signal.

The LCD power up sequence should be:

  1. Apply power to LCD, here all output signals are held low.

  2. When LCD power stablized, call LCDC_Start to output the timing signals.

  3. Apply contrast voltage to LCD panel. Delay if the display requires.

  4. Call LCDC_PowerUp.

Parameters:
  • base – LCD peripheral base address.

static inline void LCDC_Stop(LCD_Type *base)

Stop the LCD timing signal.

The LCD power down sequence should be:

  1. Call LCDC_PowerDown.

  2. Delay if the display requires. Disable contrast voltage to LCD panel.

  3. Call LCDC_Stop to disable the timing signals.

  4. Disable power to LCD.

Parameters:
  • base – LCD peripheral base address.

static inline void LCDC_PowerUp(LCD_Type *base)

Power up the LCD and output the pixel signal.

Parameters:
  • base – LCD peripheral base address.

static inline void LCDC_PowerDown(LCD_Type *base)

Power down the LCD and disable the output pixel signal.

Parameters:
  • base – LCD peripheral base address.

void LCDC_SetPanelAddr(LCD_Type *base, lcdc_panel_t panel, uint32_t addr)

Sets panel frame base address.

Parameters:
  • base – LCD peripheral base address.

  • panel – Which panel to set.

  • addr – Frame base address, must be doubleword(64-bit) aligned.

void LCDC_SetPalette(LCD_Type *base, const uint32_t *palette, uint8_t count_words)

Sets palette.

Parameters:
  • base – LCD peripheral base address.

  • palette – Pointer to the palette array.

  • count_words – Length of the palette array to set (how many words), it should not be larger than LCDC_PALETTE_SIZE_WORDS.

static inline void LCDC_SetVerticalInterruptMode(LCD_Type *base, lcdc_vertical_compare_interrupt_mode_t mode)

Sets the vertical compare interrupt mode.

Parameters:
  • base – LCD peripheral base address.

  • mode – The vertical compare interrupt mode.

void LCDC_EnableInterrupts(LCD_Type *base, uint32_t mask)

Enable LCD interrupts.

Example to enable LCD base address update interrupt and vertical compare interrupt:

LCDC_EnableInterrupts(LCD, kLCDC_BaseAddrUpdateInterrupt | kLCDC_VerticalCompareInterrupt);
Parameters:
  • base – LCD peripheral base address.

  • mask – Interrupts to enable, it is OR’ed value of _lcdc_interrupts.

void LCDC_DisableInterrupts(LCD_Type *base, uint32_t mask)

Disable LCD interrupts.

Example to disable LCD base address update interrupt and vertical compare interrupt:

LCDC_DisableInterrupts(LCD, kLCDC_BaseAddrUpdateInterrupt | kLCDC_VerticalCompareInterrupt);
Parameters:
  • base – LCD peripheral base address.

  • mask – Interrupts to disable, it is OR’ed value of _lcdc_interrupts.

uint32_t LCDC_GetInterruptsPendingStatus(LCD_Type *base)

Get LCD interrupt pending status.

Example:

uint32_t status;

status = LCDC_GetInterruptsPendingStatus(LCD);

if (kLCDC_BaseAddrUpdateInterrupt & status)
{
    LCD base address update interrupt occurred.
}

if (kLCDC_VerticalCompareInterrupt & status)
{
    LCD vertical compare interrupt occurred.
}
Parameters:
  • base – LCD peripheral base address.

Returns:

Interrupts pending status, it is OR’ed value of _lcdc_interrupts.

uint32_t LCDC_GetEnabledInterruptsPendingStatus(LCD_Type *base)

Get LCD enabled interrupt pending status.

This function is similar with LCDC_GetInterruptsPendingStatus, the only difference is, this function only returns the pending status of the interrupts that have been enabled using LCDC_EnableInterrupts.

Parameters:
  • base – LCD peripheral base address.

Returns:

Interrupts pending status, it is OR’ed value of _lcdc_interrupts.

void LCDC_ClearInterruptsStatus(LCD_Type *base, uint32_t mask)

Clear LCD interrupts pending status.

Example to clear LCD base address update interrupt and vertical compare interrupt pending status:

LCDC_ClearInterruptsStatus(LCD, kLCDC_BaseAddrUpdateInterrupt | kLCDC_VerticalCompareInterrupt);
Parameters:
  • base – LCD peripheral base address.

  • mask – Interrupts to disable, it is OR’ed value of _lcdc_interrupts.

void LCDC_SetCursorConfig(LCD_Type *base, const lcdc_cursor_config_t *config)

Set the hardware cursor configuration.

This function should be called before enabling the hardware cursor. It supports initializing multiple cursor images at a time when using 32x32 pixels cursor.

For example:

uint32_t cursor0Img[LCDC_CURSOR_IMG_32X32_WORDS] = {...};
uint32_t cursor2Img[LCDC_CURSOR_IMG_32X32_WORDS] = {...};

lcdc_cursor_config_t cursorConfig;

LCDC_CursorGetDefaultConfig(&cursorConfig);

cursorConfig.image[0] = cursor0Img;
cursorConfig.image[2] = cursor2Img;

LCDC_SetCursorConfig(LCD, &cursorConfig);

LCDC_ChooseCursor(LCD, 0);
LCDC_SetCursorPosition(LCD, 0, 0);

LCDC_EnableCursor(LCD);

In this example, cursor 0 and cursor 2 image data are initialized, but cursor 1 and cursor 3 image data are not initialized because image[1] and image[2] are all NULL. With this, application could initializes all cursor images it will use at the beginning and call LCDC_SetCursorImage directly to display the one which it needs.

Parameters:
  • base – LCD peripheral base address.

  • config – Pointer to the hardware cursor configuration structure.

void LCDC_CursorGetDefaultConfig(lcdc_cursor_config_t *config)

Get the hardware cursor default configuration.

The default configuration values are:

config->size = kLCDC_CursorSize32;
config->syncMode = kLCDC_CursorAsync;
config->palette0.red = 0U;
config->palette0.green = 0U;
config->palette0.blue = 0U;
config->palette1.red = 255U;
config->palette1.green = 255U;
config->palette1.blue = 255U;
config->image[0] = (uint32_t *)0;
config->image[1] = (uint32_t *)0;
config->image[2] = (uint32_t *)0;
config->image[3] = (uint32_t *)0;
Parameters:
  • config – Pointer to the hardware cursor configuration structure.

static inline void LCDC_EnableCursor(LCD_Type *base, bool enable)

Enable or disable the cursor.

Parameters:
  • base – LCD peripheral base address.

  • enable – True to enable, false to disable.

static inline void LCDC_ChooseCursor(LCD_Type *base, uint8_t index)

Choose which cursor to display.

When using 32x32 cursor, the number of cursors supports is LCDC_CURSOR_COUNT. When using 64x64 cursor, the LCD only supports one cursor. This function selects which cursor to display when using 32x32 cursor. When synchronization mode is kLCDC_CursorSync, the change effects in the next frame. When synchronization mode is kLCDC_CursorAsync, change effects immediately.

Note

The function LCDC_SetCursorPosition must be called after this function to show the new cursor.

Parameters:
  • base – LCD peripheral base address.

  • index – Index of the cursor to display.

void LCDC_SetCursorPosition(LCD_Type *base, int32_t positionX, int32_t positionY)

Set the position of cursor.

When synchronization mode is kLCDC_CursorSync, position change effects in the next frame. When synchronization mode is kLCDC_CursorAsync, position change effects immediately.

Parameters:
  • base – LCD peripheral base address.

  • positionX – X ordinate of the cursor top-left measured in pixels

  • positionY – Y ordinate of the cursor top-left measured in pixels

void LCDC_SetCursorImage(LCD_Type *base, lcdc_cursor_size_t size, uint8_t index, const uint32_t *image)

Set the cursor image.

The interrupt kLCDC_CursorInterrupt indicates that last cursor pixel is displayed. When the hardware cursor is enabled,

Parameters:
  • base – LCD peripheral base address.

  • size – The cursor size.

  • index – Index of the cursor to set when using 32x32 cursor.

  • image – Pointer to the cursor image. When using 32x32 cursor, the image size should be LCDC_CURSOR_IMG_32X32_WORDS. When using 64x64 cursor, the image size should be LCDC_CURSOR_IMG_64X64_WORDS.

FSL_LCDC_DRIVER_VERSION

LCDC driver version.

enum _lcdc_polarity_flags

LCD sigal polarity flags.

Values:

enumerator kLCDC_InvertVsyncPolarity

Invert the VSYNC polarity, set to active low.

enumerator kLCDC_InvertHsyncPolarity

Invert the HSYNC polarity, set to active low.

enumerator kLCDC_InvertClkPolarity

Invert the panel clock polarity, set to drive data on falling edge.

enumerator kLCDC_InvertDePolarity

Invert the data enable (DE) polarity, set to active low.

enum _lcdc_bpp

LCD bits per pixel.

Values:

enumerator kLCDC_1BPP

1 bpp.

enumerator kLCDC_2BPP

2 bpp.

enumerator kLCDC_4BPP

4 bpp.

enumerator kLCDC_8BPP

8 bpp.

enumerator kLCDC_16BPP

16 bpp.

enumerator kLCDC_24BPP

24 bpp, TFT panel only.

enumerator kLCDC_16BPP565

16 bpp, 5:6:5 mode.

enumerator kLCDC_12BPP

12 bpp, 4:4:4 mode.

enum _lcdc_display

The types of display panel.

Values:

enumerator kLCDC_DisplayTFT

Active matrix TFT panels with up to 24-bit bus interface.

enumerator kLCDC_DisplaySingleMonoSTN4Bit

Single-panel monochrome STN (4-bit bus interface).

enumerator kLCDC_DisplaySingleMonoSTN8Bit

Single-panel monochrome STN (8-bit bus interface).

enumerator kLCDC_DisplayDualMonoSTN4Bit

Dual-panel monochrome STN (4-bit bus interface).

enumerator kLCDC_DisplayDualMonoSTN8Bit

Dual-panel monochrome STN (8-bit bus interface).

enumerator kLCDC_DisplaySingleColorSTN8Bit

Single-panel color STN (8-bit bus interface).

enumerator kLCDC_DisplayDualColorSTN8Bit

Dual-panel coor STN (8-bit bus interface).

enum _lcdc_data_format

LCD panel buffer data format.

Values:

enumerator kLCDC_LittleEndian

Little endian byte, little endian pixel.

enumerator kLCDC_BigEndian

Big endian byte, big endian pixel.

enumerator kLCDC_WinCeMode

little-endian byte, big-endian pixel for Windows CE mode.

enum _lcdc_vertical_compare_interrupt_mode

LCD vertical compare interrupt mode.

Values:

enumerator kLCDC_StartOfVsync

Generate vertical compare interrupt at start of VSYNC.

enumerator kLCDC_StartOfBackPorch

Generate vertical compare interrupt at start of back porch.

enumerator kLCDC_StartOfActiveVideo

Generate vertical compare interrupt at start of active video.

enumerator kLCDC_StartOfFrontPorch

Generate vertical compare interrupt at start of front porch.

enum _lcdc_interrupts

LCD interrupts.

Values:

enumerator kLCDC_CursorInterrupt

Cursor image read finished interrupt.

enumerator kLCDC_FifoUnderflowInterrupt

FIFO underflow interrupt.

enumerator kLCDC_BaseAddrUpdateInterrupt

Panel frame base address update interrupt.

enumerator kLCDC_VerticalCompareInterrupt

Vertical compare interrupt.

enumerator kLCDC_AhbErrorInterrupt

AHB master error interrupt.

enum _lcdc_panel

LCD panel frame.

Values:

enumerator kLCDC_UpperPanel

Upper panel frame.

enumerator kLCDC_LowerPanel

Lower panel frame.

enum _lcdc_cursor_size

LCD hardware cursor size.

Values:

enumerator kLCDC_CursorSize32

32x32 pixel cursor.

enumerator kLCDC_CursorSize64

64x64 pixel cursor.

enum _lcdc_cursor_sync_mode

LCD hardware cursor frame synchronization mode.

Values:

enumerator kLCDC_CursorAsync

Cursor change will be displayed immediately.

enumerator kLCDC_CursorSync

Cursor change will be displayed in next frame.

typedef enum _lcdc_bpp lcdc_bpp_t

LCD bits per pixel.

typedef enum _lcdc_display lcdc_display_t

The types of display panel.

typedef enum _lcdc_data_format lcdc_data_format_t

LCD panel buffer data format.

typedef struct _lcdc_config lcdc_config_t

LCD configuration structure.

typedef enum _lcdc_vertical_compare_interrupt_mode lcdc_vertical_compare_interrupt_mode_t

LCD vertical compare interrupt mode.

typedef enum _lcdc_panel lcdc_panel_t

LCD panel frame.

typedef enum _lcdc_cursor_size lcdc_cursor_size_t

LCD hardware cursor size.

typedef struct _lcdc_cursor_palette lcdc_cursor_palette_t

LCD hardware cursor palette.

typedef enum _lcdc_cursor_sync_mode lcdc_cursor_sync_mode_t

LCD hardware cursor frame synchronization mode.

typedef struct _lcdc_cursor_config lcdc_cursor_config_t

LCD hardware cursor configuration structure.

LCDC_CURSOR_COUNT

How many hardware cursors supports.

LCDC_CURSOR_IMG_BPP

LCD cursor image bits per pixel.

LCDC_CURSOR_IMG_32X32_WORDS

LCD 32x32 cursor image size in word(32-bit).

LCDC_CURSOR_IMG_64X64_WORDS

LCD 64x64 cursor image size in word(32-bit).

LCDC_PALETTE_SIZE_WORDS

LCD palette size in words(32-bit).

struct _lcdc_config
#include <fsl_lcdc.h>

LCD configuration structure.

Public Members

uint32_t panelClock_Hz

Panel clock in Hz.

uint16_t ppl

Pixels per line, it must could be divided by 16.

uint8_t hsw

HSYNC pulse width.

uint8_t hfp

Horizontal front porch.

uint8_t hbp

Horizontal back porch.

uint16_t lpp

Lines per panal.

uint8_t vsw

VSYNC pulse width.

uint8_t vfp

Vrtical front porch.

uint8_t vbp

Vertical back porch.

uint8_t acBiasFreq

The number of line clocks between AC bias pin toggling. Only used for STN display.

uint16_t polarityFlags

OR’ed value of _lcdc_polarity_flags, used to contol the signal polarity.

bool enableLineEnd

Enable line end or not, the line end is a positive pulse with 4 panel clock.

uint8_t lineEndDelay

The panel clocks between the last pixel of line and the start of line end.

uint32_t upperPanelAddr

LCD upper panel base address, must be double-word(64-bit) align.

uint32_t lowerPanelAddr

LCD lower panel base address, must be double-word(64-bit) align.

lcdc_bpp_t bpp

LCD bits per pixel.

lcdc_data_format_t dataFormat

Data format.

bool swapRedBlue

Set true to use BGR format, set false to choose RGB format.

lcdc_display_t display

The display type.

struct _lcdc_cursor_palette
#include <fsl_lcdc.h>

LCD hardware cursor palette.

Public Members

uint8_t red

Red color component.

uint8_t green

Red color component.

uint8_t blue

Red color component.

struct _lcdc_cursor_config
#include <fsl_lcdc.h>

LCD hardware cursor configuration structure.

Public Members

lcdc_cursor_size_t size

Cursor size.

lcdc_cursor_sync_mode_t syncMode

Cursor synchronization mode.

lcdc_cursor_palette_t palette0

Cursor palette 0.

lcdc_cursor_palette_t palette1

Cursor palette 1.

uint32_t *image[4U]

Pointer to cursor image data.

MCAN: Controller Area Network Driver

void MCAN_Init(CAN_Type *base, const mcan_config_t *config, uint32_t sourceClock_Hz)

Initializes an MCAN instance.

This function initializes the MCAN module with user-defined settings. This example shows how to set up the mcan_config_t parameters and how to call the MCAN_Init function by passing in these parameters.

mcan_config_t config;
config->baudRateA = 500000U;
config->baudRateD = 1000000U;
config->enableCanfdNormal = false;
config->enableCanfdSwitch = false;
config->enableLoopBackInt = false;
config->enableLoopBackExt = false;
config->enableBusMon = false;
MCAN_Init(CANFD0, &config, 8000000UL);

Parameters:
  • base – MCAN peripheral base address.

  • config – Pointer to the user-defined configuration structure.

  • sourceClock_Hz – MCAN Protocol Engine clock source frequency in Hz.

void MCAN_Deinit(CAN_Type *base)

Deinitializes an MCAN instance.

This function deinitializes the MCAN module.

Parameters:
  • base – MCAN peripheral base address.

void MCAN_GetDefaultConfig(mcan_config_t *config)

Gets the default configuration structure.

This function initializes the MCAN configuration structure to default values. The default values are as follows. config->baudRateA = 500000U; config->baudRateD = 1000000U; config->enableCanfdNormal = false; config->enableCanfdSwitch = false; config->enableLoopBackInt = false; config->enableLoopBackExt = false; config->enableBusMon = false;

Parameters:
  • config – Pointer to the MCAN configuration structure.

static inline void MCAN_EnterInitialMode(CAN_Type *base)

MCAN enters initialization mode.

After enter initialization mode, users can write access to the protected configuration registers.

Parameters:
  • base – MCAN peripheral base address.

static inline void MCAN_EnterNormalMode(CAN_Type *base)

MCAN enters normal mode.

After initialization, INIT bit in CCCR register must be cleared to enter normal mode thus synchronizes to the CAN bus and ready for communication.

Parameters:
  • base – MCAN peripheral base address.

static inline void MCAN_SetMsgRAMBase(CAN_Type *base, uint32_t value)

Sets the MCAN Message RAM base address.

This function sets the Message RAM base address.

Parameters:
  • base – MCAN peripheral base address.

  • value – Desired Message RAM base.

static inline uint32_t MCAN_GetMsgRAMBase(CAN_Type *base)

Gets the MCAN Message RAM base address.

This function gets the Message RAM base address.

Parameters:
  • base – MCAN peripheral base address.

Returns:

Message RAM base address.

bool MCAN_CalculateImprovedTimingValues(uint32_t baudRate, uint32_t sourceClock_Hz, mcan_timing_config_t *pconfig)

Calculates the improved timing values by specific baudrates for classical CAN.

Parameters:
  • baudRate – The classical CAN speed in bps defined by user

  • sourceClock_Hz – The Source clock data speed in bps. Zero to disable baudrate switching

  • pconfig – Pointer to the MCAN timing configuration structure.

Returns:

TRUE if timing configuration found, FALSE if failed to find configuration

bool MCAN_CalculateSpecifiedTimingValues(uint32_t sourceClock_Hz, mcan_timing_config_t *pconfig, const mcan_timing_param_t *pParamConfig)

Calculates the specified timing values for classical CAN with user-defined settings.

User can specify baudrates, sample point position, bus length, and transceiver propagation delay. This example shows how to set up the mcan_timing_param_t parameters and how to call the this function by passing in these parameters.

mcan_timing_config_t timing_config;
mcan_timing_param_t timing_param;
timing_param.busLength = 1U;
timing_param.propTxRx = 230U;
timing_param.nominalbaudRate = 500000U;
timing_param.nominalSP = 800U;
MCAN_CalculateSpecifiedTimingValues(MCAN_CLK_FREQ, &timing_config, &timing_param);

Note that due to integer division will sacrifice the precision, actual sample point may not equal to expected. If actual sample point is not in allowed 2% range, this function will return false. So it is better to select higher source clock when baudrate is relatively high. This will ensure more time quanta and higher precision of sample point. Parameter busLength and propTxRx are optional and intended to verify whether propagation delay is too long to corrupt sample point. User can set these parameter zero if you do not want to consider this factor.

Parameters:
  • sourceClock_Hz – The Source clock data speed in bps.

  • pconfig – Pointer to the MCAN timing configuration structure.

  • config – Pointer to the MCAN timing parameters structure.

Returns:

TRUE if timing configuration found, FALSE if failed to find configuration

void MCAN_SetArbitrationTimingConfig(CAN_Type *base, const mcan_timing_config_t *config)

Sets the MCAN protocol arbitration phase timing characteristic.

This function gives user settings to CAN bus timing characteristic. The function is for an experienced user. For less experienced users, call the MCAN_Init() and fill the baud rate field with a desired value. This provides the default arbitration phase timing characteristics.

Note that calling MCAN_SetArbitrationTimingConfig() overrides the baud rate set in MCAN_Init().

Parameters:
  • base – MCAN peripheral base address.

  • config – Pointer to the timing configuration structure.

status_t MCAN_SetBaudRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t baudRate_Bps)

Set Baud Rate of MCAN classic mode.

This function set the baud rate of MCAN base on MCAN_CalculateImprovedTimingValues() API calculated timing values.

Parameters:
  • base – MCAN peripheral base address.

  • sourceClock_Hz – Source Clock in Hz.

  • baudRate_Bps – Baud Rate in Bps.

Returns:

kStatus_Success - Set CAN baud rate (only has Nominal phase) successfully.

bool MCAN_FDCalculateImprovedTimingValues(uint32_t baudRate, uint32_t baudRateFD, uint32_t sourceClock_Hz, mcan_timing_config_t *pconfig)

Calculates the improved timing values by specific baudrates for CANFD.

Parameters:
  • baudRate – The CANFD bus control speed in bps defined by user

  • baudRateFD – The CANFD bus data speed in bps defined by user

  • sourceClock_Hz – The Source clock data speed in bps.

  • pconfig – Pointer to the MCAN timing configuration structure.

Returns:

TRUE if timing configuration found, FALSE if failed to find configuration

bool MCAN_FDCalculateSpecifiedTimingValues(uint32_t sourceClock_Hz, mcan_timing_config_t *pconfig, const mcan_timing_param_t *pParamConfig)

Calculates the specified timing values for CANFD with user-defined settings.

User can specify baudrates, sample point position, bus length, and transceiver propagation delay. This example shows how to set up the mcan_timing_param_t parameters and how to call the this function by passing in these parameters.

mcan_timing_config_t timing_config;
mcan_timing_param_t timing_param;
timing_param.busLength = 1U;
timing_param.propTxRx = 230U;
timing_param.nominalbaudRate = 500000U;
timing_param.nominalSP = 800U;
timing_param.databaudRate = 4000000U;
timing_param.dataSP = 700U;
MCAN_FDCalculateSpecifiedTimingValues(MCAN_CLK_FREQ, &timing_config, &timing_param);

Note that due to integer division will sacrifice the precision, actual sample point may not equal to expected. So it is better to select higher source clock when baudrate is relatively high. Select higher nominal baudrate when source clock is relatively high because large clock predivider will lead to less time quanta in data phase. This function will set predivider in arbitration phase equal to data phase. These methods will ensure more time quanta and higher precision of sample point. Parameter busLength and propTxRx are optional and intended to verify whether propagation delay is too long to corrupt sample point. User can set these parameter zero if you do not want to consider this factor.

Parameters:
  • sourceClock_Hz – The Source clock data speed in bps.

  • pconfig – Pointer to the MCAN timing configuration structure.

  • config – Pointer to the MCAN timing parameters structure.

Returns:

TRUE if timing configuration found, FALSE if failed to find configuration

status_t MCAN_SetBaudRateFD(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t baudRateN_Bps, uint32_t baudRateD_Bps)

Set Baud Rate of MCAN FD mode.

This function set the baud rate of MCAN FD base on MCAN_FDCalculateImprovedTimingValues API calculated timing values.

Parameters:
  • base – MCAN peripheral base address.

  • sourceClock_Hz – Source Clock in Hz.

  • baudRateN_Bps – Nominal Baud Rate in Bps.

  • baudRateD_Bps – Data Baud Rate in Bps.

Returns:

kStatus_Success - Set CAN FD baud rate (include Nominal and Data phase) successfully.

void MCAN_SetDataTimingConfig(CAN_Type *base, const mcan_timing_config_t *config)

Sets the MCAN protocol data phase timing characteristic.

This function gives user settings to CAN bus timing characteristic. The function is for an experienced user. For less experienced users, call the MCAN_Init() and fill the baud rate field with a desired value. This provides the default data phase timing characteristics.

Note that calling MCAN_SetArbitrationTimingConfig() overrides the baud rate set in MCAN_Init().

Parameters:
  • base – MCAN peripheral base address.

  • config – Pointer to the timing configuration structure.

void MCAN_SetRxFifo0Config(CAN_Type *base, const mcan_rx_fifo_config_t *config)

Configures an MCAN receive fifo 0 buffer.

This function sets start address, element size, watermark, operation mode and datafield size of the recieve fifo 0.

Parameters:
  • base – MCAN peripheral base address.

  • config – The receive fifo 0 configuration structure.

void MCAN_SetRxFifo1Config(CAN_Type *base, const mcan_rx_fifo_config_t *config)

Configures an MCAN receive fifo 1 buffer.

This function sets start address, element size, watermark, operation mode and datafield size of the recieve fifo 1.

Parameters:
  • base – MCAN peripheral base address.

  • config – The receive fifo 1 configuration structure.

void MCAN_SetRxBufferConfig(CAN_Type *base, const mcan_rx_buffer_config_t *config)

Configures an MCAN receive buffer.

This function sets start address and datafield size of the recieve buffer.

Parameters:
  • base – MCAN peripheral base address.

  • config – The receive buffer configuration structure.

void MCAN_SetTxEventFifoConfig(CAN_Type *base, const mcan_tx_fifo_config_t *config)

Configures an MCAN transmit event fifo.

This function sets start address, element size, watermark of the transmit event fifo.

Parameters:
  • base – MCAN peripheral base address.

  • config – The transmit event fifo configuration structure.

void MCAN_SetTxBufferConfig(CAN_Type *base, const mcan_tx_buffer_config_t *config)

Configures an MCAN transmit buffer.

This function sets start address, element size, fifo/queue mode and datafield size of the transmit buffer.

Parameters:
  • base – MCAN peripheral base address.

  • config – The transmit buffer configuration structure.

void MCAN_SetFilterConfig(CAN_Type *base, const mcan_frame_filter_config_t *config)

Set filter configuration.

This function sets remote and non masking frames in global filter configuration, also the start address, list size in standard/extended ID filter configuration.

Parameters:
  • base – MCAN peripheral base address.

  • config – The MCAN filter configuration.

status_t MCAN_SetMessageRamConfig(CAN_Type *base, const mcan_memory_config_t *config)

Set Message RAM related configuration.

Note

This function include Standard/extended ID filter, Rx FIFO 0/1, Rx buffer, Tx event FIFO and Tx buffer configurations

Parameters:
  • base – MCAN peripheral base address.

  • config – The MCAN filter configuration.

Return values:
  • kStatus_Success – - Message RAM related configuration Successfully.

  • kStatus_Fail – - Message RAM related configure fail due to wrong address parameter.

void MCAN_SetSTDFilterElement(CAN_Type *base, const mcan_frame_filter_config_t *config, const mcan_std_filter_element_config_t *filter, uint8_t idx)

Set standard message ID filter element configuration.

Parameters:
  • base – MCAN peripheral base address.

  • config – The MCAN filter configuration.

  • filter – The MCAN standard message ID filter element configuration.

  • idx – The standard message ID filter element index.

void MCAN_SetEXTFilterElement(CAN_Type *base, const mcan_frame_filter_config_t *config, const mcan_ext_filter_element_config_t *filter, uint8_t idx)

Set extended message ID filter element configuration.

Parameters:
  • base – MCAN peripheral base address.

  • config – The MCAN filter configuration.

  • filter – The MCAN extended message ID filter element configuration.

  • idx – The extended message ID filter element index.

static inline uint32_t MCAN_GetStatusFlag(CAN_Type *base, uint32_t mask)

Gets the MCAN module interrupt flags.

This function gets all MCAN interrupt status flags.

Parameters:
  • base – MCAN peripheral base address.

  • mask – The ORed MCAN interrupt mask.

Returns:

MCAN status flags which are ORed.

static inline void MCAN_ClearStatusFlag(CAN_Type *base, uint32_t mask)

Clears the MCAN module interrupt flags.

This function clears MCAN interrupt status flags.

Parameters:
  • base – MCAN peripheral base address.

  • mask – The ORed MCAN interrupt mask.

static inline bool MCAN_GetRxBufferStatusFlag(CAN_Type *base, uint8_t idx)

Gets the new data flag of specific Rx Buffer.

This function gets new data flag of specific Rx Buffer.

Parameters:
  • base – MCAN peripheral base address.

  • idx – Rx Buffer index.

Returns:

Rx Buffer new data status flag.

static inline void MCAN_ClearRxBufferStatusFlag(CAN_Type *base, uint8_t idx)

Clears the new data flag of specific Rx Buffer.

This function clears new data flag of specific Rx Buffer.

Parameters:
  • base – MCAN peripheral base address.

  • idx – Rx Buffer index.

static inline void MCAN_EnableInterrupts(CAN_Type *base, uint32_t line, uint32_t mask)

Enables MCAN interrupts according to the provided interrupt line and mask.

This function enables the MCAN interrupts according to the provided interrupt line and mask. The mask is a logical OR of enumeration members.

Parameters:
  • base – MCAN peripheral base address.

  • line – Interrupt line number, 0 or 1.

  • mask – The interrupts to enable.

static inline void MCAN_EnableTransmitBufferInterrupts(CAN_Type *base, uint8_t idx)

Enables MCAN Tx Buffer interrupts according to the provided index.

This function enables the MCAN Tx Buffer interrupts.

Parameters:
  • base – MCAN peripheral base address.

  • idx – Tx Buffer index.

static inline void MCAN_DisableTransmitBufferInterrupts(CAN_Type *base, uint8_t idx)

Disables MCAN Tx Buffer interrupts according to the provided index.

This function disables the MCAN Tx Buffer interrupts.

Parameters:
  • base – MCAN peripheral base address.

  • idx – Tx Buffer index.

static inline void MCAN_DisableInterrupts(CAN_Type *base, uint32_t mask)

Disables MCAN interrupts according to the provided mask.

This function disables the MCAN interrupts according to the provided mask. The mask is a logical OR of enumeration members.

Parameters:
  • base – MCAN peripheral base address.

  • mask – The interrupts to disable.

uint32_t MCAN_IsTransmitRequestPending(CAN_Type *base, uint8_t idx)

Gets the Tx buffer request pending status.

This function returns Tx Message Buffer transmission request pending status.

Parameters:
  • base – MCAN peripheral base address.

  • idx – The MCAN Tx Buffer index.

uint32_t MCAN_IsTransmitOccurred(CAN_Type *base, uint8_t idx)

Gets the Tx buffer transmission occurred status.

This function returns Tx Message Buffer transmission occurred status.

Parameters:
  • base – MCAN peripheral base address.

  • idx – The MCAN Tx Buffer index.

status_t MCAN_WriteTxBuffer(CAN_Type *base, uint8_t idx, const mcan_tx_buffer_frame_t *pTxFrame)

Writes an MCAN Message to the Transmit Buffer.

This function writes a CAN Message to the specified Transmit Message Buffer and changes the Message Buffer state to start CAN Message transmit. After that the function returns immediately.

Parameters:
  • base – MCAN peripheral base address.

  • idx – The MCAN Tx Buffer index.

  • pTxFrame – Pointer to CAN message frame to be sent.

status_t MCAN_ReadRxBuffer(CAN_Type *base, uint8_t idx, mcan_rx_buffer_frame_t *pRxFrame)

Reads an MCAN Message from Rx Buffer.

This function reads a CAN message from the Rx Buffer in the Message RAM.

Parameters:
  • base – MCAN peripheral base address.

  • idx – The MCAN Rx Buffer index.

  • pRxFrame – Pointer to CAN message frame structure for reception.

Return values:

kStatus_Success – - Read Message from Rx Buffer successfully.

status_t MCAN_ReadRxFifo(CAN_Type *base, uint8_t fifoBlock, mcan_rx_buffer_frame_t *pRxFrame)

Reads an MCAN Message from Rx FIFO.

This function reads a CAN message from the Rx FIFO in the Message RAM.

Parameters:
  • base – MCAN peripheral base address.

  • fifoBlock – Rx FIFO block 0 or 1.

  • pRxFrame – Pointer to CAN message frame structure for reception.

Return values:

kStatus_Success – - Read Message from Rx FIFO successfully.

static inline void MCAN_TransmitAddRequest(CAN_Type *base, uint8_t idx)

Tx Buffer add request to send message out.

This function add sending request to corresponding Tx Buffer.

Parameters:
  • base – MCAN peripheral base address.

  • idx – Tx Buffer index.

static inline void MCAN_TransmitCancelRequest(CAN_Type *base, uint8_t idx)

Tx Buffer cancel sending request.

This function clears Tx buffer request pending bit.

Parameters:
  • base – MCAN peripheral base address.

  • idx – Tx Buffer index.

status_t MCAN_TransferSendBlocking(CAN_Type *base, uint8_t idx, mcan_tx_buffer_frame_t *pTxFrame)

Performs a polling send transaction on the CAN bus.

Note that a transfer handle does not need to be created before calling this API.

Parameters:
  • base – MCAN peripheral base pointer.

  • idx – The MCAN buffer index.

  • pTxFrame – Pointer to CAN message frame to be sent.

Return values:
  • kStatus_Success – - Write Tx Message Buffer Successfully.

  • kStatus_Fail – - Tx Message Buffer is currently in use.

status_t MCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t idx, mcan_rx_buffer_frame_t *pRxFrame)

Performs a polling receive transaction on the CAN bus.

Note that a transfer handle does not need to be created before calling this API.

Parameters:
  • base – MCAN peripheral base pointer.

  • idx – The MCAN buffer index.

  • pRxFrame – Pointer to CAN message frame structure for reception.

Return values:
  • kStatus_Success – - Read Rx Message Buffer Successfully.

  • kStatus_Fail – - No new message.

status_t MCAN_TransferReceiveFifoBlocking(CAN_Type *base, uint8_t fifoBlock, mcan_rx_buffer_frame_t *pRxFrame)

Performs a polling receive transaction from Rx FIFO on the CAN bus.

Note that a transfer handle does not need to be created before calling this API.

Parameters:
  • base – MCAN peripheral base pointer.

  • fifoBlock – Rx FIFO block, 0 or 1.

  • pRxFrame – Pointer to CAN message frame structure for reception.

Return values:
  • kStatus_Success – - Read Message from Rx FIFO successfully.

  • kStatus_Fail – - No new message in Rx FIFO.

void MCAN_TransferCreateHandle(CAN_Type *base, mcan_handle_t *handle, mcan_transfer_callback_t callback, void *userData)

Initializes the MCAN handle.

This function initializes the MCAN handle, which can be used for other MCAN transactional APIs. Usually, for a specified MCAN instance, call this API once to get the initialized handle.

Parameters:
  • base – MCAN peripheral base address.

  • handle – MCAN handle pointer.

  • callback – The callback function.

  • userData – The parameter of the callback function.

status_t MCAN_TransferSendNonBlocking(CAN_Type *base, mcan_handle_t *handle, mcan_buffer_transfer_t *xfer)

Sends a message using IRQ.

This function sends a message using IRQ. This is a non-blocking function, which returns right away. When messages have been sent out, the send callback function is called.

Parameters:
  • base – MCAN peripheral base address.

  • handle – MCAN handle pointer.

  • xfer – MCAN Buffer transfer structure. See the mcan_buffer_transfer_t.

Return values:
  • kStatus_Success – Start Tx Buffer sending process successfully.

  • kStatus_Fail – Write Tx Buffer failed.

  • kStatus_MCAN_TxBusy – Tx Buffer is in use.

status_t MCAN_TransferReceiveFifoNonBlocking(CAN_Type *base, uint8_t fifoBlock, mcan_handle_t *handle, mcan_fifo_transfer_t *xfer)

Receives a message from Rx FIFO using IRQ.

This function receives a message using IRQ. This is a non-blocking function, which returns right away. When all messages have been received, the receive callback function is called.

Parameters:
  • base – MCAN peripheral base address.

  • handle – MCAN handle pointer.

  • fifoBlock – Rx FIFO block, 0 or 1.

  • xfer – MCAN Rx FIFO transfer structure. See the mcan_fifo_transfer_t.

Return values:
  • kStatus_Success – - Start Rx FIFO receiving process successfully.

  • kStatus_MCAN_RxFifo0Busy – - Rx FIFO 0 is currently in use.

  • kStatus_MCAN_RxFifo1Busy – - Rx FIFO 1 is currently in use.

void MCAN_TransferAbortSend(CAN_Type *base, mcan_handle_t *handle, uint8_t bufferIdx)

Aborts the interrupt driven message send process.

This function aborts the interrupt driven message send process.

Parameters:
  • base – MCAN peripheral base address.

  • handle – MCAN handle pointer.

  • bufferIdx – The MCAN Buffer index.

void MCAN_TransferAbortReceiveFifo(CAN_Type *base, uint8_t fifoBlock, mcan_handle_t *handle)

Aborts the interrupt driven message receive from Rx FIFO process.

This function aborts the interrupt driven message receive from Rx FIFO process.

Parameters:
  • base – MCAN peripheral base address.

  • fifoBlock – MCAN Fifo block, 0 or 1.

  • handle – MCAN handle pointer.

void MCAN_TransferHandleIRQ(CAN_Type *base, mcan_handle_t *handle)

MCAN IRQ handle function.

This function handles the MCAN Error, the Buffer, and the Rx FIFO IRQ request.

Parameters:
  • base – MCAN peripheral base address.

  • handle – MCAN handle pointer.

FSL_MCAN_DRIVER_VERSION

MCAN driver version.

MCAN transfer status.

Values:

enumerator kStatus_MCAN_TxBusy

Tx Buffer is Busy.

enumerator kStatus_MCAN_TxIdle

Tx Buffer is Idle.

enumerator kStatus_MCAN_RxBusy

Rx Buffer is Busy.

enumerator kStatus_MCAN_RxIdle

Rx Buffer is Idle.

enumerator kStatus_MCAN_RxFifo0New

New message written to Rx FIFO 0.

enumerator kStatus_MCAN_RxFifo0Idle

Rx FIFO 0 is Idle.

enumerator kStatus_MCAN_RxFifo0Watermark

Rx FIFO 0 fill level reached watermark.

enumerator kStatus_MCAN_RxFifo0Full

Rx FIFO 0 full.

enumerator kStatus_MCAN_RxFifo0Lost

Rx FIFO 0 message lost.

enumerator kStatus_MCAN_RxFifo1New

New message written to Rx FIFO 1.

enumerator kStatus_MCAN_RxFifo1Idle

Rx FIFO 1 is Idle.

enumerator kStatus_MCAN_RxFifo1Watermark

Rx FIFO 1 fill level reached watermark.

enumerator kStatus_MCAN_RxFifo1Full

Rx FIFO 1 full.

enumerator kStatus_MCAN_RxFifo1Lost

Rx FIFO 1 message lost.

enumerator kStatus_MCAN_RxFifo0Busy

Rx FIFO 0 is busy.

enumerator kStatus_MCAN_RxFifo1Busy

Rx FIFO 1 is busy.

enumerator kStatus_MCAN_ErrorStatus

MCAN Module Error and Status.

enumerator kStatus_MCAN_UnHandled

UnHadled Interrupt asserted.

enum _mcan_flags

MCAN status flags.

This provides constants for the MCAN status flags for use in the MCAN functions. Note: The CPU read action clears MCAN_ErrorFlag, therefore user need to read MCAN_ErrorFlag and distinguish which error is occur using _mcan_error_flags enumerations.

Values:

enumerator kMCAN_AccesstoRsvdFlag

CAN Synchronization Status.

enumerator kMCAN_ProtocolErrDIntFlag

Tx Warning Interrupt Flag.

enumerator kMCAN_ProtocolErrAIntFlag

Rx Warning Interrupt Flag.

enumerator kMCAN_BusOffIntFlag

Tx Error Warning Status.

enumerator kMCAN_ErrorWarningIntFlag

Rx Error Warning Status.

enumerator kMCAN_ErrorPassiveIntFlag

Rx Error Warning Status.

enum _mcan_rx_fifo_flags

MCAN Rx FIFO status flags.

The MCAN Rx FIFO Status enumerations are used to determine the status of the Rx FIFO.

Values:

enumerator kMCAN_RxFifo0NewFlag

Rx FIFO 0 new message flag.

enumerator kMCAN_RxFifo0WatermarkFlag

Rx FIFO 0 watermark reached flag.

enumerator kMCAN_RxFifo0FullFlag

Rx FIFO 0 full flag.

enumerator kMCAN_RxFifo0LostFlag

Rx FIFO 0 message lost flag.

enumerator kMCAN_RxFifo1NewFlag

Rx FIFO 0 new message flag.

enumerator kMCAN_RxFifo1WatermarkFlag

Rx FIFO 0 watermark reached flag.

enumerator kMCAN_RxFifo1FullFlag

Rx FIFO 0 full flag.

enumerator kMCAN_RxFifo1LostFlag

Rx FIFO 0 message lost flag.

enum _mcan_tx_flags

MCAN Tx status flags.

The MCAN Tx Status enumerations are used to determine the status of the Tx Buffer/Event FIFO.

Values:

enumerator kMCAN_TxTransmitCompleteFlag

Transmission completed flag.

enumerator kMCAN_TxTransmitCancelFinishFlag

Transmission cancellation finished flag.

enumerator kMCAN_TxEventFifoLostFlag

Tx Event FIFO element lost.

enumerator kMCAN_TxEventFifoFullFlag

Tx Event FIFO full.

enumerator kMCAN_TxEventFifoWatermarkFlag

Tx Event FIFO fill level reached watermark.

enumerator kMCAN_TxEventFifoNewFlag

Tx Handler wrote Tx Event FIFO element flag.

enumerator kMCAN_TxEventFifoEmptyFlag

Tx FIFO empty flag.

enum _mcan_interrupt_enable

MCAN interrupt configuration structure, default settings all disabled.

This structure contains the settings for all of the MCAN Module interrupt configurations.

Values:

enumerator kMCAN_BusOffInterruptEnable

Bus Off interrupt.

enumerator kMCAN_ErrorInterruptEnable

Error interrupt.

enumerator kMCAN_WarningInterruptEnable

Rx Warning interrupt.

enum _mcan_frame_idformat

MCAN frame format.

Values:

enumerator kMCAN_FrameIDStandard

Standard frame format attribute.

enumerator kMCAN_FrameIDExtend

Extend frame format attribute.

enum _mcan_frame_type

MCAN frame type.

Values:

enumerator kMCAN_FrameTypeData

Data frame type attribute.

enumerator kMCAN_FrameTypeRemote

Remote frame type attribute.

enum _mcan_bytes_in_datafield

MCAN frame datafield size.

Values:

enumerator kMCAN_8ByteDatafield

8 byte data field.

enumerator kMCAN_12ByteDatafield

12 byte data field.

enumerator kMCAN_16ByteDatafield

16 byte data field.

enumerator kMCAN_20ByteDatafield

20 byte data field.

enumerator kMCAN_24ByteDatafield

24 byte data field.

enumerator kMCAN_32ByteDatafield

32 byte data field.

enumerator kMCAN_48ByteDatafield

48 byte data field.

enumerator kMCAN_64ByteDatafield

64 byte data field.

enum _mcan_fifo_type

MCAN Rx FIFO block number.

Values:

enumerator kMCAN_Fifo0

CAN Rx FIFO 0.

enumerator kMCAN_Fifo1

CAN Rx FIFO 1.

enum _mcan_fifo_opmode_config

MCAN FIFO Operation Mode.

Values:

enumerator kMCAN_FifoBlocking

FIFO blocking mode.

enumerator kMCAN_FifoOverwrite

FIFO overwrite mode.

enum _mcan_txmode_config

MCAN Tx FIFO/Queue Mode.

Values:

enumerator kMCAN_txFifo

Tx FIFO operation.

enumerator kMCAN_txQueue

Tx Queue operation.

enum _mcan_remote_frame_config

MCAN remote frames treatment.

Values:

enumerator kMCAN_filterFrame

Filter remote frames.

enumerator kMCAN_rejectFrame

Reject all remote frames.

enum _mcan_nonmasking_frame_config

MCAN non-masking frames treatment.

Values:

enumerator kMCAN_acceptinFifo0

Accept non-masking frames in Rx FIFO 0.

enumerator kMCAN_acceptinFifo1

Accept non-masking frames in Rx FIFO 1.

enumerator kMCAN_reject0

Reject non-masking frames.

enumerator kMCAN_reject1

Reject non-masking frames.

enum _mcan_fec_config

MCAN Filter Element Configuration.

Values:

enumerator kMCAN_disable

Disable filter element.

enumerator kMCAN_storeinFifo0

Store in Rx FIFO 0 if filter matches.

enumerator kMCAN_storeinFifo1

Store in Rx FIFO 1 if filter matches.

enumerator kMCAN_reject

Reject ID if filter matches.

enumerator kMCAN_setprio

Set priority if filter matches.

enumerator kMCAN_setpriofifo0

Set priority and store in FIFO 0 if filter matches.

enumerator kMCAN_setpriofifo1

Set priority and store in FIFO 1 if filter matches.

enumerator kMCAN_storeinbuffer

Store into Rx Buffer or as debug message.

enum _mcan_std_filter_type

MCAN Filter Type.

Values:

enumerator kMCAN_range

Range filter from SFID1 to SFID2.

enumerator kMCAN_dual

Dual ID filter for SFID1 or SFID2.

enumerator kMCAN_classic

Classic filter: SFID1 = filter, SFID2 = mask.

enumerator kMCAN_disableORrange2

Filter element disabled for standard filter or Range filter, XIDAM mask not applied for extended filter.

typedef enum _mcan_frame_idformat mcan_frame_idformat_t

MCAN frame format.

typedef enum _mcan_frame_type mcan_frame_type_t

MCAN frame type.

typedef enum _mcan_bytes_in_datafield mcan_bytes_in_datafield_t

MCAN frame datafield size.

typedef struct _mcan_tx_buffer_frame mcan_tx_buffer_frame_t

MCAN Tx Buffer structure.

typedef struct _mcan_rx_buffer_frame mcan_rx_buffer_frame_t

MCAN Rx FIFO/Buffer structure.

typedef enum _mcan_fifo_type mcan_fifo_type_t

MCAN Rx FIFO block number.

typedef enum _mcan_fifo_opmode_config mcan_fifo_opmode_config_t

MCAN FIFO Operation Mode.

typedef enum _mcan_txmode_config mcan_txmode_config_t

MCAN Tx FIFO/Queue Mode.

typedef enum _mcan_remote_frame_config mcan_remote_frame_config_t

MCAN remote frames treatment.

typedef enum _mcan_nonmasking_frame_config mcan_nonmasking_frame_config_t

MCAN non-masking frames treatment.

typedef enum _mcan_fec_config mcan_fec_config_t

MCAN Filter Element Configuration.

typedef struct _mcan_rx_fifo_config mcan_rx_fifo_config_t

MCAN Rx FIFO configuration.

typedef struct _mcan_rx_buffer_config mcan_rx_buffer_config_t

MCAN Rx Buffer configuration.

typedef struct _mcan_tx_fifo_config mcan_tx_fifo_config_t

MCAN Tx Event FIFO configuration.

typedef struct _mcan_tx_buffer_config mcan_tx_buffer_config_t

MCAN Tx Buffer configuration.

typedef enum _mcan_std_filter_type mcan_filter_type_t

MCAN Filter Type.

typedef struct _mcan_std_filter_element_config mcan_std_filter_element_config_t

MCAN Standard Message ID Filter Element.

typedef struct _mcan_ext_filter_element_config mcan_ext_filter_element_config_t

MCAN Extended Message ID Filter Element.

typedef struct _mcan_frame_filter_config mcan_frame_filter_config_t

MCAN Rx filter configuration.

typedef struct _mcan_timing_config mcan_timing_config_t

MCAN protocol timing characteristic configuration structure.

typedef struct _mcan_timing_param mcan_timing_param_t

MCAN bit timing parameter configuration structure.

typedef struct _mcan_memory_config mcan_memory_config_t

MCAN Message RAM related configuration structure.

typedef struct _mcan_config mcan_config_t

MCAN module configuration structure.

typedef struct _mcan_buffer_transfer mcan_buffer_transfer_t

MCAN Buffer transfer.

typedef struct _mcan_fifo_transfer mcan_fifo_transfer_t

MCAN Rx FIFO transfer.

typedef struct _mcan_handle mcan_handle_t

MCAN handle structure definition.

typedef void (*mcan_transfer_callback_t)(CAN_Type *base, mcan_handle_t *handle, status_t status, uint32_t result, void *userData)

MCAN transfer callback function.

The MCAN transfer callback returns a value from the underlying layer. If the status equals to kStatus_MCAN_ErrorStatus, the result parameter is the Content of MCAN status register which can be used to get the working status(or error status) of MCAN module. If the status equals to other MCAN Message Buffer transfer status, the result is the index of Message Buffer that generate transfer event. If the status equals to other MCAN Message Buffer transfer status, the result is meaningless and should be Ignored.

MCAN_RETRY_TIMES
struct _mcan_tx_buffer_frame
#include <fsl_mcan.h>

MCAN Tx Buffer structure.

Public Members

uint8_t size

classical CAN is 8(bytes), FD is 12/64 such.

struct _mcan_rx_buffer_frame
#include <fsl_mcan.h>

MCAN Rx FIFO/Buffer structure.

Public Members

uint8_t size

classical CAN is 8(bytes), FD is 12/64 such.

struct _mcan_rx_fifo_config
#include <fsl_mcan.h>

MCAN Rx FIFO configuration.

Public Members

uint32_t address

FIFOn start address.

uint32_t elementSize

FIFOn element number.

uint32_t watermark

FIFOn watermark level.

mcan_fifo_opmode_config_t opmode

FIFOn blocking/overwrite mode.

mcan_bytes_in_datafield_t datafieldSize

Data field size per frame, size>8 is for CANFD.

struct _mcan_rx_buffer_config
#include <fsl_mcan.h>

MCAN Rx Buffer configuration.

Public Members

uint32_t address

Rx Buffer start address.

mcan_bytes_in_datafield_t datafieldSize

Data field size per frame, size>8 is for CANFD.

struct _mcan_tx_fifo_config
#include <fsl_mcan.h>

MCAN Tx Event FIFO configuration.

Public Members

uint32_t address

Event fifo start address.

uint32_t elementSize

FIFOn element number.

uint32_t watermark

FIFOn watermark level.

struct _mcan_tx_buffer_config
#include <fsl_mcan.h>

MCAN Tx Buffer configuration.

Public Members

uint32_t address

Tx Buffers Start Address.

uint32_t dedicatedSize

Number of Dedicated Transmit Buffers.

uint32_t fqSize

Transmit FIFO/Queue Size.

mcan_txmode_config_t mode

Tx FIFO/Queue Mode.

mcan_bytes_in_datafield_t datafieldSize

Data field size per frame, size>8 is for CANFD.

struct _mcan_std_filter_element_config
#include <fsl_mcan.h>

MCAN Standard Message ID Filter Element.

Public Members

uint32_t sfid2

Standard Filter ID 2.

uint32_t __pad0__

Reserved.

uint32_t sfid1

Standard Filter ID 1.

uint32_t sfec

Standard Filter Element Configuration.

uint32_t sft

Standard Filter Type.

struct _mcan_ext_filter_element_config
#include <fsl_mcan.h>

MCAN Extended Message ID Filter Element.

Public Members

uint32_t efid1

Extended Filter ID 1.

uint32_t efec

Extended Filter Element Configuration.

uint32_t efid2

Extended Filter ID 2.

uint32_t __pad0__

Reserved.

uint32_t eft

Extended Filter Type.

struct _mcan_frame_filter_config
#include <fsl_mcan.h>

MCAN Rx filter configuration.

Public Members

uint32_t address

Filter start address.

uint32_t listSize

Filter list size.

mcan_frame_idformat_t idFormat

Frame format.

mcan_remote_frame_config_t remFrame

Remote frame treatment.

mcan_nonmasking_frame_config_t nmFrame

Non-masking frame treatment.

struct _mcan_timing_config
#include <fsl_mcan.h>

MCAN protocol timing characteristic configuration structure.

Public Members

uint16_t preDivider

Nominal Clock Pre-scaler Division Factor.

uint8_t rJumpwidth

Nominal Re-sync Jump Width.

uint8_t seg1

Nominal Time Segment 1.

uint8_t seg2

Nominal Time Segment 2.

uint16_t datapreDivider

Data Clock Pre-scaler Division Factor.

uint8_t datarJumpwidth

Data Re-sync Jump Width.

uint8_t dataseg1

Data Time Segment 1.

uint8_t dataseg2

Data Time Segment 2.

struct _mcan_timing_param
#include <fsl_mcan.h>

MCAN bit timing parameter configuration structure.

Public Members

uint32_t busLength

Maximum Bus length in meter.

uint32_t propTxRx

Transceiver propagation delay in nanosecond.

uint32_t nominalbaudRate

Baud rate of Arbitration phase in bps.

uint32_t nominalSP

Sample point of Arbitration phase, range in 10 ~ 990, 800 means 80%.

uint32_t databaudRate

Baud rate of Data phase in bps.

uint32_t dataSP

Sample point of Data phase, range in 0 ~ 1000, 800 means 80%.

struct _mcan_memory_config
#include <fsl_mcan.h>

MCAN Message RAM related configuration structure.

Public Members

uint32_t baseAddr

Message RAM base address, should be 4k alignment.

struct _mcan_config
#include <fsl_mcan.h>

MCAN module configuration structure.

Public Members

uint32_t baudRateA

Baud rate of Arbitration phase in bps.

uint32_t baudRateD

Baud rate of Data phase in bps.

bool enableCanfdNormal

Enable or Disable CANFD normal.

bool enableCanfdSwitch

Enable or Disable CANFD with baudrate switch.

bool enableLoopBackInt

Enable or Disable Internal Back.

bool enableLoopBackExt

Enable or Disable External Loop Back.

bool enableBusMon

Enable or Disable Bus Monitoring Mode.

mcan_timing_config_t timingConfig

Protocol timing .

struct _mcan_buffer_transfer
#include <fsl_mcan.h>

MCAN Buffer transfer.

Public Members

mcan_tx_buffer_frame_t *frame

The buffer of CAN Message to be transfer.

uint8_t bufferIdx

The index of Message buffer used to transfer Message.

struct _mcan_fifo_transfer
#include <fsl_mcan.h>

MCAN Rx FIFO transfer.

Public Members

mcan_rx_buffer_frame_t *frame

The buffer of CAN Message to be received from Rx FIFO.

struct _mcan_handle
#include <fsl_mcan.h>

MCAN handle structure.

Public Members

mcan_transfer_callback_t callback

Callback function.

void *userData

MCAN callback function parameter.

mcan_tx_buffer_frame_t *volatile bufferFrameBuf[64]

The buffer for received data from Buffers.

mcan_rx_buffer_frame_t *volatile rxFifoFrameBuf

The buffer for received data from Rx FIFO.

volatile uint8_t bufferState[64]

Message Buffer transfer state.

volatile uint8_t rxFifoState

Rx FIFO transfer state.

struct __unnamed12__

Public Members

uint32_t id

CAN Frame Identifier.

uint32_t rtr

CAN Frame Type(DATA or REMOTE).

uint32_t xtd

CAN Frame Type(STD or EXT).

uint32_t esi

CAN Frame Error State Indicator.

struct __unnamed14__

Public Members

uint32_t dlc

Data Length Code 9 10 11 12 13 14 15 Number of data bytes 12 16 20 24 32 48 64

uint32_t brs

Bit Rate Switch.

uint32_t fdf

CAN FD format.

uint32_t __pad1__

Reserved.

uint32_t efc

Event FIFO control.

uint32_t mm

Message Marker.

struct __unnamed16__

Public Members

uint32_t id

CAN Frame Identifier.

uint32_t rtr

CAN Frame Type(DATA or REMOTE).

uint32_t xtd

CAN Frame Type(STD or EXT).

uint32_t esi

CAN Frame Error State Indicator.

struct __unnamed18__

Public Members

uint32_t rxts

Rx Timestamp.

uint32_t dlc

Data Length Code 9 10 11 12 13 14 15 Number of data bytes 12 16 20 24 32 48 64

uint32_t brs

Bit Rate Switch.

uint32_t fdf

CAN FD format.

uint32_t __pad0__

Reserved.

uint32_t fidx

Filter Index.

uint32_t anmf

Accepted Non-matching Frame.

MRT: Multi-Rate Timer

void MRT_Init(MRT_Type *base, const mrt_config_t *config)

Ungates the MRT clock and configures the peripheral for basic operation.

Note

This API should be called at the beginning of the application using the MRT driver.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • config – Pointer to user’s MRT config structure. If MRT has MULTITASK bit field in MODCFG reigster, param config is useless.

void MRT_Deinit(MRT_Type *base)

Gate the MRT clock.

Parameters:
  • base – Multi-Rate timer peripheral base address

static inline void MRT_GetDefaultConfig(mrt_config_t *config)

Fill in the MRT config struct with the default settings.

The default values are:

config->enableMultiTask = false;

Parameters:
  • config – Pointer to user’s MRT config structure.

static inline void MRT_SetupChannelMode(MRT_Type *base, mrt_chnl_t channel, const mrt_timer_mode_t mode)

Sets up an MRT channel mode.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Channel that is being configured.

  • mode – Timer mode to use for the channel.

static inline void MRT_EnableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)

Enables the MRT interrupt.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration mrt_interrupt_enable_t

static inline void MRT_DisableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)

Disables the selected MRT interrupt.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

  • mask – The interrupts to disable. This is a logical OR of members of the enumeration mrt_interrupt_enable_t

static inline uint32_t MRT_GetEnabledInterrupts(MRT_Type *base, mrt_chnl_t channel)

Gets the enabled MRT interrupts.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration mrt_interrupt_enable_t

static inline uint32_t MRT_GetStatusFlags(MRT_Type *base, mrt_chnl_t channel)

Gets the MRT status flags.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

Returns:

The status flags. This is the logical OR of members of the enumeration mrt_status_flags_t

static inline void MRT_ClearStatusFlags(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)

Clears the MRT status flags.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

  • mask – The status flags to clear. This is a logical OR of members of the enumeration mrt_status_flags_t

void MRT_UpdateTimerPeriod(MRT_Type *base, mrt_chnl_t channel, uint32_t count, bool immediateLoad)

Used to update the timer period in units of count.

The new value will be immediately loaded or will be loaded at the end of the current time interval. For one-shot interrupt mode the new value will be immediately loaded.

Note

User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

  • count – Timer period in units of ticks

  • immediateLoad – true: Load the new value immediately into the TIMER register; false: Load the new value at the end of current timer interval

static inline uint32_t MRT_GetCurrentTimerCount(MRT_Type *base, mrt_chnl_t channel)

Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note

User can call the utility macros provided in fsl_common.h to convert ticks to usec or msec

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number

Returns:

Current timer counting value in ticks

static inline void MRT_StartTimer(MRT_Type *base, mrt_chnl_t channel, uint32_t count)

Starts the timer counting.

After calling this function, timers load period value, counts down to 0 and depending on the timer mode it will either load the respective start value again or stop.

Note

User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number.

  • count – Timer period in units of ticks. Count can contain the LOAD bit, which control the force load feature.

static inline void MRT_StopTimer(MRT_Type *base, mrt_chnl_t channel)

Stops the timer counting.

This function stops the timer from counting.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number.

static inline uint32_t MRT_GetIdleChannel(MRT_Type *base)

Find the available channel.

This function returns the lowest available channel number.

Parameters:
  • base – Multi-Rate timer peripheral base address

static inline void MRT_ReleaseChannel(MRT_Type *base, mrt_chnl_t channel)

Release the channel when the timer is using the multi-task mode.

In multi-task mode, the INUSE flags allow more control over when MRT channels are released for further use. The user can hold on to a channel acquired by calling MRT_GetIdleChannel() for as long as it is needed and release it by calling this function. This removes the need to ask for an available channel for every use.

Parameters:
  • base – Multi-Rate timer peripheral base address

  • channel – Timer channel number.

FSL_MRT_DRIVER_VERSION
enum _mrt_chnl

List of MRT channels.

Values:

enumerator kMRT_Channel_0

MRT channel number 0

enumerator kMRT_Channel_1

MRT channel number 1

enumerator kMRT_Channel_2

MRT channel number 2

enumerator kMRT_Channel_3

MRT channel number 3

enum _mrt_timer_mode

List of MRT timer modes.

Values:

enumerator kMRT_RepeatMode

Repeat Interrupt mode

enumerator kMRT_OneShotMode

One-shot Interrupt mode

enumerator kMRT_OneShotStallMode

One-shot stall mode

enum _mrt_interrupt_enable

List of MRT interrupts.

Values:

enumerator kMRT_TimerInterruptEnable

Timer interrupt enable

enum _mrt_status_flags

List of MRT status flags.

Values:

enumerator kMRT_TimerInterruptFlag

Timer interrupt flag

enumerator kMRT_TimerRunFlag

Indicates state of the timer

typedef enum _mrt_chnl mrt_chnl_t

List of MRT channels.

typedef enum _mrt_timer_mode mrt_timer_mode_t

List of MRT timer modes.

typedef enum _mrt_interrupt_enable mrt_interrupt_enable_t

List of MRT interrupts.

typedef enum _mrt_status_flags mrt_status_flags_t

List of MRT status flags.

typedef struct _mrt_config mrt_config_t

MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

struct _mrt_config
#include <fsl_mrt.h>

MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool enableMultiTask

true: Timers run in multi-task mode; false: Timers run in hardware status mode

OTP: One-Time Programmable memory and API

FSL_OTP_DRIVER_VERSION

OTP driver version 2.0.1.

Current version: 2.0.1

Change log:

  • Version 2.0.1

    • Fixed MISRA-C 2012 violations.

  • Version 2.0.0

    • Initial version.

enum _otp_bank

Bank bit flags.

Values:

enumerator kOTP_Bank0

Bank 0.

enumerator kOTP_Bank1

Bank 1.

enumerator kOTP_Bank2

Bank 2.

enumerator kOTP_Bank3

Bank 3.

enum _otp_word

Bank word bit flags.

Values:

enumerator kOTP_Word0

Word 0.

enumerator kOTP_Word1

Word 1.

enumerator kOTP_Word2

Word 2.

enumerator kOTP_Word3

Word 3.

enum _otp_lock

Lock modifications of a read or write access to a bank register.

Values:

enumerator kOTP_LockDontLock

Do not lock.

enumerator kOTP_LockLock

Lock till reset.

enum _otp_status

OTP error codes.

Values:

enumerator kStatus_OTP_WrEnableInvalid

Write enable invalid.

enumerator kStatus_OTP_SomeBitsAlreadyProgrammed

Some bits already programmed.

enumerator kStatus_OTP_AllDataOrMaskZero

All data or mask zero.

enumerator kStatus_OTP_WriteAccessLocked

Write access locked.

enumerator kStatus_OTP_ReadDataMismatch

Read data mismatch.

enumerator kStatus_OTP_UsbIdEnabled

USB ID enabled.

enumerator kStatus_OTP_EthMacEnabled

Ethernet MAC enabled.

enumerator kStatus_OTP_AesKeysEnabled

AES keys enabled.

enumerator kStatus_OTP_IllegalBank

Illegal bank.

enumerator kStatus_OTP_ShufflerConfigNotValid

Shuffler config not valid.

enumerator kStatus_OTP_ShufflerNotEnabled

Shuffler not enabled.

enumerator kStatus_OTP_ShufflerCanOnlyProgSingleKey

Shuffler can only program single key.

enumerator kStatus_OTP_IllegalProgramData

Illegal program data.

enumerator kStatus_OTP_ReadAccessLocked

Read access locked.

typedef enum _otp_bank otp_bank_t

Bank bit flags.

typedef enum _otp_word otp_word_t

Bank word bit flags.

typedef enum _otp_lock otp_lock_t

Lock modifications of a read or write access to a bank register.

static inline status_t OTP_Init(void)

Initializes OTP controller.

Returns:

kStatus_Success upon successful execution, error status otherwise.

static inline status_t OTP_EnableBankWriteMask(otp_bank_t bankMask)

Unlock one or more OTP banks for write access.

Parameters:
  • bankMask – bit flag that specifies which banks to unlock.

Returns:

kStatus_Success upon successful execution, error status otherwise.

static inline status_t OTP_DisableBankWriteMask(otp_bank_t bankMask)

Lock one or more OTP banks for write access.

Parameters:
  • bankMask – bit flag that specifies which banks to lock.

Returns:

kStatus_Success upon successful execution, error status otherwise.

static inline status_t OTP_EnableBankWriteLock(uint32_t bankIndex, otp_word_t regEnableMask, otp_word_t regDisableMask, otp_lock_t lockWrite)

Locks or unlocks write access to a register of an OTP bank and possibly lock un/locking of it.

Parameters:
  • bankIndex – OTP bank index, 0 = bank 0, 1 = bank 1 etc.

  • regEnableMask – bit flag that specifies for which words to enable writing.

  • regDisableMask – bit flag that specifies for which words to disable writing.

  • lockWrite – specifies if access set can be modified or is locked till reset.

Returns:

kStatus_Success upon successful execution, error status otherwise.

static inline status_t OTP_EnableBankReadLock(uint32_t bankIndex, otp_word_t regEnableMask, otp_word_t regDisableMask, otp_lock_t lockWrite)

Locks or unlocks read access to a register of an OTP bank and possibly lock un/locking of it.

Parameters:
  • bankIndex – OTP bank index, 0 = bank 0, 1 = bank 1 etc.

  • regEnableMask – bit flag that specifies for which words to enable reading.

  • regDisableMask – bit flag that specifies for which words to disable reading.

  • lockWrite – specifies if access set can be modified or is locked till reset.

Returns:

kStatus_Success upon successful execution, error status otherwise.

static inline status_t OTP_ProgramRegister(uint32_t bankIndex, uint32_t regIndex, uint32_t value)

Program a single register in an OTP bank.

Parameters:
  • bankIndex – OTP bank index, 0 = bank 0, 1 = bank 1 etc.

  • regIndex – OTP register index.

  • value – value to write.

Returns:

kStatus_Success upon successful execution, error status otherwise.

static inline uint32_t OTP_GetDriverVersion(void)

Returns the version of the OTP driver in ROM.

Returns:

version.

FSL_COMPONENT_ID
_OTP_ERR_BASE
_OTP_MAKE_STATUS(errorCode)

PINT: Pin Interrupt and Pattern Match Driver

FSL_PINT_DRIVER_VERSION
enum _pint_pin_enable

PINT Pin Interrupt enable type.

Values:

enumerator kPINT_PinIntEnableNone

Do not generate Pin Interrupt

enumerator kPINT_PinIntEnableRiseEdge

Generate Pin Interrupt on rising edge

enumerator kPINT_PinIntEnableFallEdge

Generate Pin Interrupt on falling edge

enumerator kPINT_PinIntEnableBothEdges

Generate Pin Interrupt on both edges

enumerator kPINT_PinIntEnableLowLevel

Generate Pin Interrupt on low level

enumerator kPINT_PinIntEnableHighLevel

Generate Pin Interrupt on high level

enum _pint_int

PINT Pin Interrupt type.

Values:

enumerator kPINT_PinInt0

Pin Interrupt 0

enum _pint_pmatch_input_src

PINT Pattern Match bit slice input source type.

Values:

enumerator kPINT_PatternMatchInp0Src

Input source 0

enumerator kPINT_PatternMatchInp1Src

Input source 1

enumerator kPINT_PatternMatchInp2Src

Input source 2

enumerator kPINT_PatternMatchInp3Src

Input source 3

enumerator kPINT_PatternMatchInp4Src

Input source 4

enumerator kPINT_PatternMatchInp5Src

Input source 5

enumerator kPINT_PatternMatchInp6Src

Input source 6

enumerator kPINT_PatternMatchInp7Src

Input source 7

enumerator kPINT_SecPatternMatchInp0Src

Input source 0

enumerator kPINT_SecPatternMatchInp1Src

Input source 1

enum _pint_pmatch_bslice

PINT Pattern Match bit slice type.

Values:

enumerator kPINT_PatternMatchBSlice0

Bit slice 0

enum _pint_pmatch_bslice_cfg

PINT Pattern Match configuration type.

Values:

enumerator kPINT_PatternMatchAlways

Always Contributes to product term match

enumerator kPINT_PatternMatchStickyRise

Sticky Rising edge

enumerator kPINT_PatternMatchStickyFall

Sticky Falling edge

enumerator kPINT_PatternMatchStickyBothEdges

Sticky Rising or Falling edge

enumerator kPINT_PatternMatchHigh

High level

enumerator kPINT_PatternMatchLow

Low level

enumerator kPINT_PatternMatchNever

Never contributes to product term match

enumerator kPINT_PatternMatchBothEdges

Either rising or falling edge

typedef enum _pint_pin_enable pint_pin_enable_t

PINT Pin Interrupt enable type.

typedef enum _pint_int pint_pin_int_t

PINT Pin Interrupt type.

typedef enum _pint_pmatch_input_src pint_pmatch_input_src_t

PINT Pattern Match bit slice input source type.

typedef enum _pint_pmatch_bslice pint_pmatch_bslice_t

PINT Pattern Match bit slice type.

typedef enum _pint_pmatch_bslice_cfg pint_pmatch_bslice_cfg_t

PINT Pattern Match configuration type.

typedef void (*pint_cb_t)(pint_pin_int_t pintr, uint32_t pmatch_status)

PINT Callback function.

typedef struct _pint_pmatch_cfg pint_pmatch_cfg_t
void PINT_Init(PINT_Type *base)

Initialize PINT peripheral.

This function initializes the PINT peripheral and enables the clock.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

void PINT_PinInterruptConfig(PINT_Type *base, pint_pin_int_t intr, pint_pin_enable_t enable, pint_cb_t callback)

Configure PINT peripheral pin interrupt.

This function configures a given pin interrupt.

Parameters:
  • base – Base address of the PINT peripheral.

  • intr – Pin interrupt.

  • enable – Selects detection logic.

  • callback – Callback.

Return values:

None.

void PINT_PinInterruptGetConfig(PINT_Type *base, pint_pin_int_t pintr, pint_pin_enable_t *enable, pint_cb_t *callback)

Get PINT peripheral pin interrupt configuration.

This function returns the configuration of a given pin interrupt.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

  • enable – Pointer to store the detection logic.

  • callback – Callback.

Return values:

None.

void PINT_PinInterruptClrStatus(PINT_Type *base, pint_pin_int_t pintr)

Clear Selected pin interrupt status only when the pin was triggered by edge-sensitive.

This function clears the selected pin interrupt status.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetStatus(PINT_Type *base, pint_pin_int_t pintr)

Get Selected pin interrupt status.

This function returns the selected pin interrupt status.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

status – = 0 No pin interrupt request. = 1 Selected Pin interrupt request active.

void PINT_PinInterruptClrStatusAll(PINT_Type *base)

Clear all pin interrupts status only when pins were triggered by edge-sensitive.

This function clears the status of all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetStatusAll(PINT_Type *base)

Get all pin interrupts status.

This function returns the status of all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

status – Each bit position indicates the status of corresponding pin interrupt. = 0 No pin interrupt request. = 1 Pin interrupt request active.

static inline void PINT_PinInterruptClrFallFlag(PINT_Type *base, pint_pin_int_t pintr)

Clear Selected pin interrupt fall flag.

This function clears the selected pin interrupt fall flag.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetFallFlag(PINT_Type *base, pint_pin_int_t pintr)

Get selected pin interrupt fall flag.

This function returns the selected pin interrupt fall flag.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

flag – = 0 Falling edge has not been detected. = 1 Falling edge has been detected.

static inline void PINT_PinInterruptClrFallFlagAll(PINT_Type *base)

Clear all pin interrupt fall flags.

This function clears the fall flag for all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetFallFlagAll(PINT_Type *base)

Get all pin interrupt fall flags.

This function returns the fall flag of all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

flags – Each bit position indicates the falling edge detection of the corresponding pin interrupt. 0 Falling edge has not been detected. = 1 Falling edge has been detected.

static inline void PINT_PinInterruptClrRiseFlag(PINT_Type *base, pint_pin_int_t pintr)

Clear Selected pin interrupt rise flag.

This function clears the selected pin interrupt rise flag.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetRiseFlag(PINT_Type *base, pint_pin_int_t pintr)

Get selected pin interrupt rise flag.

This function returns the selected pin interrupt rise flag.

Parameters:
  • base – Base address of the PINT peripheral.

  • pintr – Pin interrupt.

Return values:

flag – = 0 Rising edge has not been detected. = 1 Rising edge has been detected.

static inline void PINT_PinInterruptClrRiseFlagAll(PINT_Type *base)

Clear all pin interrupt rise flags.

This function clears the rise flag for all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline uint32_t PINT_PinInterruptGetRiseFlagAll(PINT_Type *base)

Get all pin interrupt rise flags.

This function returns the rise flag of all pin interrupts.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

flags – Each bit position indicates the rising edge detection of the corresponding pin interrupt. 0 Rising edge has not been detected. = 1 Rising edge has been detected.

void PINT_PatternMatchConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t *cfg)

Configure PINT pattern match.

This function configures a given pattern match bit slice.

Parameters:
  • base – Base address of the PINT peripheral.

  • bslice – Pattern match bit slice number.

  • cfg – Pointer to bit slice configuration.

Return values:

None.

void PINT_PatternMatchGetConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t *cfg)

Get PINT pattern match configuration.

This function returns the configuration of a given pattern match bit slice.

Parameters:
  • base – Base address of the PINT peripheral.

  • bslice – Pattern match bit slice number.

  • cfg – Pointer to bit slice configuration.

Return values:

None.

static inline uint32_t PINT_PatternMatchGetStatus(PINT_Type *base, pint_pmatch_bslice_t bslice)

Get pattern match bit slice status.

This function returns the status of selected bit slice.

Parameters:
  • base – Base address of the PINT peripheral.

  • bslice – Pattern match bit slice number.

Return values:

status – = 0 Match has not been detected. = 1 Match has been detected.

static inline uint32_t PINT_PatternMatchGetStatusAll(PINT_Type *base)

Get status of all pattern match bit slices.

This function returns the status of all bit slices.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

status – Each bit position indicates the match status of corresponding bit slice. = 0 Match has not been detected. = 1 Match has been detected.

uint32_t PINT_PatternMatchResetDetectLogic(PINT_Type *base)

Reset pattern match detection logic.

This function resets the pattern match detection logic if any of the product term is matching.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

pmstatus – Each bit position indicates the match status of corresponding bit slice. = 0 Match was detected. = 1 Match was not detected.

static inline void PINT_PatternMatchEnable(PINT_Type *base)

Enable pattern match function.

This function enables the pattern match function.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline void PINT_PatternMatchDisable(PINT_Type *base)

Disable pattern match function.

This function disables the pattern match function.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline void PINT_PatternMatchEnableRXEV(PINT_Type *base)

Enable RXEV output.

This function enables the pattern match RXEV output.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

static inline void PINT_PatternMatchDisableRXEV(PINT_Type *base)

Disable RXEV output.

This function disables the pattern match RXEV output.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

void PINT_EnableCallback(PINT_Type *base)

Enable callback.

This function enables the interrupt for the selected PINT peripheral. Although the pin(s) are monitored as soon as they are enabled, the callback function is not enabled until this function is called.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

void PINT_DisableCallback(PINT_Type *base)

Disable callback.

This function disables the interrupt for the selected PINT peripheral. Although the pins are still being monitored but the callback function is not called.

Parameters:
  • base – Base address of the peripheral.

Return values:

None.

void PINT_Deinit(PINT_Type *base)

Deinitialize PINT peripheral.

This function disables the PINT clock.

Parameters:
  • base – Base address of the PINT peripheral.

Return values:

None.

void PINT_EnableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)

enable callback by pin index.

This function enables callback by pin index instead of enabling all pins.

Parameters:
  • base – Base address of the peripheral.

  • pintIdx – pin index.

Return values:

None.

void PINT_DisableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)

disable callback by pin index.

This function disables callback by pin index instead of disabling all pins.

Parameters:
  • base – Base address of the peripheral.

  • pintIdx – pin index.

Return values:

None.

PININT_BITSLICE_SRC_START
PININT_BITSLICE_SRC_MASK
PININT_BITSLICE_CFG_START
PININT_BITSLICE_CFG_MASK
PININT_BITSLICE_ENDP_MASK
PINT_PIN_INT_LEVEL
PINT_PIN_INT_EDGE
PINT_PIN_INT_FALL_OR_HIGH_LEVEL
PINT_PIN_INT_RISE
PINT_PIN_RISE_EDGE
PINT_PIN_FALL_EDGE
PINT_PIN_BOTH_EDGE
PINT_PIN_LOW_LEVEL
PINT_PIN_HIGH_LEVEL
struct _pint_pmatch_cfg
#include <fsl_pint.h>

Power Driver

enum pd_bits

Values:

enumerator kPDRUNCFG_LP_REG
enumerator kPDRUNCFG_PD_FRO_EN
enumerator kPDRUNCFG_PD_TS
enumerator kPDRUNCFG_PD_BOD_RESET
enumerator kPDRUNCFG_PD_BOD_INTR
enumerator kPDRUNCFG_PD_VD2_ANA
enumerator kPDRUNCFG_PD_ADC0
enumerator kPDRUNCFG_PD_RAM0
enumerator kPDRUNCFG_PD_RAM1
enumerator kPDRUNCFG_PD_RAM2
enumerator kPDRUNCFG_PD_RAM3
enumerator kPDRUNCFG_PD_ROM
enumerator kPDRUNCFG_PD_VDDA
enumerator kPDRUNCFG_PD_WDT_OSC
enumerator kPDRUNCFG_PD_USB0_PHY
enumerator kPDRUNCFG_PD_SYS_PLL0
enumerator kPDRUNCFG_PD_VREFP
enumerator kPDRUNCFG_PD_FLASH_BG
enumerator kPDRUNCFG_PD_VD3
enumerator kPDRUNCFG_PD_VD4
enumerator kPDRUNCFG_PD_VD5
enumerator kPDRUNCFG_PD_VD6
enumerator kPDRUNCFG_REQ_DELAY
enumerator kPDRUNCFG_FORCE_RBB
enumerator kPDRUNCFG_PD_USB1_PHY
enumerator kPDRUNCFG_PD_USB_PLL
enumerator kPDRUNCFG_PD_AUDIO_PLL
enumerator kPDRUNCFG_PD_SYS_OSC
enumerator kPDRUNCFG_PD_EEPROM
enumerator kPDRUNCFG_PD_rng
enumerator kPDRUNCFG_ForceUnsigned
enum _power_mode_config

Values:

enumerator kPmu_Sleep
enumerator kPmu_Deep_Sleep
enumerator kPmu_Deep_PowerDown
enum _power_bod_status

The enumeration of BOD status flags.

Values:

enumerator kBod_ResetStatusFlag

BOD reset has occurred.

enumerator kBod_InterruptStatusFlag

BOD interrupt has occurred

enum _power_bod_reset_level

The enumeration of BOD reset level.

Values:

enumerator kBod_ResetLevel0

Reset Level0: 1.5V.

enumerator kBod_ResetLevel1

Reset Level0: 1.85V.

enumerator kBod_ResetLevel2

Reset Level0: 2.0V.

enumerator kBod_ResetLevel3

Reset Level0: 2.3V.

enum _power_bod_interrupt_level

The enumeration of BOD interrupt level.

Values:

enumerator kBod_InterruptLevel0

Interrupt level: 2.05V.

enumerator kBod_InterruptLevel1

Interrupt level: 2.45V.

enumerator kBod_InterruptLevel2

Interrupt level: 2.75V.

enumerator kBod_InterruptLevel3

Interrupt level: 3.05V.

typedef enum pd_bits pd_bit_t
typedef enum _power_mode_config power_mode_cfg_t
typedef enum _power_bod_status power_bod_status_t

The enumeration of BOD status flags.

typedef enum _power_bod_reset_level power_bod_reset_level_t

The enumeration of BOD reset level.

typedef enum _power_bod_interrupt_level power_bod_interrupt_level_t

The enumeration of BOD interrupt level.

typedef struct _power_bod_config power_bod_config_t

The configuration of power bod, including reset level, interrupt level, and so on.

FSL_POWER_DRIVER_VERSION

power driver version 2.2.0.

MAKE_PD_BITS(reg, slot)
PDRCFG0
PDRCFG1
static inline void POWER_EnablePD(pd_bit_t en)

API to enable PDRUNCFG bit in the Syscon. Note that enabling the bit powers down the peripheral.

Parameters:
  • en – peripheral for which to enable the PDRUNCFG bit

Returns:

none

static inline void POWER_DisablePD(pd_bit_t en)

API to disable PDRUNCFG bit in the Syscon. Note that disabling the bit powers up the peripheral.

Parameters:
  • en – peripheral for which to disable the PDRUNCFG bit

Returns:

none

static inline void POWER_EnableDeepSleep(void)

API to enable deep sleep bit in the ARM Core.

Returns:

none

static inline void POWER_DisableDeepSleep(void)

API to disable deep sleep bit in the ARM Core.

Returns:

none

static inline void POWER_PowerDownFlash(void)

API to power down flash controller.

Returns:

none

static inline void POWER_PowerUpFlash(void)

API to power up flash controller.

Returns:

none

void POWER_SetPLL(void)

Power Library API to power the PLLs.

Returns:

none

void POWER_SetUsbPhy(void)

Power Library API to power the USB PHY.

Returns:

none

void POWER_EnterPowerMode(power_mode_cfg_t mode, uint64_t exclude_from_pd)

Power Library API to enter different power mode.

Parameters:
  • mode – Power mode configuration

  • exclude_from_pd – Bit mask of the PDRUNCFG0(low 32bits) and PDRUNCFG1(high 32bits) that needs to be powered on during power mode selected.

Returns:

none

void POWER_EnterSleep(void)

Power Library API to enter sleep mode.

Returns:

none

void POWER_EnterDeepSleep(uint64_t exclude_from_pd)

Power Library API to enter deep sleep mode.

Parameters:
  • exclude_from_pd – Bit mask of the PDRUNCFG0(low 32bits) and PDRUNCFG1(high 32bits) bits that needs to be powered on during deep sleep

Returns:

none

void POWER_EnterDeepPowerDown(uint64_t exclude_from_pd)

Power Library API to enter deep power down mode.

Parameters:
  • exclude_from_pd – Bit mask of the PDRUNCFG0(low 32bits) and PDRUNCFG1(high 32bits) that needs to be powered on during deep power down mode, but this is has no effect as the voltages are cut off.

Returns:

none

void POWER_SetVoltageForFreq(uint32_t freq)

Power Library API to choose normal regulation and set the voltage for the desired operating frequency.

Parameters:
  • freq – - The desired frequency at which the part would like to operate, note that the voltage and flash wait states should be set before changing frequency

Returns:

none

uint32_t POWER_GetLibVersion(void)

Power Library API to return the library version.

Returns:

version number of the power library

void POWER_InitBod(const power_bod_config_t *bodConfig)

Initialize BOD, including enabling/disabling BOD interrupt, enabling/disabling BOD reset, setting BOD interrupt level, and reset level.

Parameters:
  • bodConfig – Pointer the the structure power_bod_config_t.

void POWER_GetDefaultBodConfig(power_bod_config_t *bodConfig)

Get default BOD configuration.

bodConfig->enableReset = true;
bodConfig->resetLevel = kBod_ResetLevel0;
bodConfig->enableInterrupt = false;
bodConfig->interruptLevel = kBod_InterruptLevel0;
Parameters:
  • bodConfig – Pointer the the structure power_bod_config_t.

static inline void POWER_DeinitBod(void)

De-initialize BOD.

static inline uint32_t POWER_GetBodStatusFlags(void)

Get Bod status flags.

Returns:

uint32_t

static inline void POWER_ClearBodStatusFlags(uint32_t mask)

Clear Bod status flags.

Parameters:
  • mask – The mask of status flags to clear, should be the OR’ed value of power_bod_status_t.

bool enableReset

Enable/disable BOD reset function.

power_bod_reset_level_t resetLevel

BOD reset level, please refer to power_bod_reset_level_t.

bool enableInterrupt

Enable/disable BOD interrupt function.

power_bod_interrupt_level_t interruptLevel

BOD interrupt level, please refer to power_bod_interrupt_level_t.

struct _power_bod_config
#include <fsl_power.h>

The configuration of power bod, including reset level, interrupt level, and so on.

Reset Driver

enum _SYSCON_RSTn

Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETCTRL/ASYNCPRESETCTRL registers

Values:

enumerator kFLASH_RST_SHIFT_RSTn

Flash controller reset control

enumerator kFMC_RST_SHIFT_RSTn

Flash accelerator reset control

enumerator kEEPROM_RST_SHIFT_RSTn

EEPROM reset control

enumerator kSPIFI_RST_SHIFT_RSTn

SPIFI reset control

enumerator kMUX_RST_SHIFT_RSTn

Input mux reset control

enumerator kIOCON_RST_SHIFT_RSTn

IOCON reset control

enumerator kGPIO0_RST_SHIFT_RSTn

GPIO0 reset control

enumerator kGPIO1_RST_SHIFT_RSTn

GPIO1 reset control

enumerator kGPIO2_RST_SHIFT_RSTn

GPIO2 reset control

enumerator kGPIO3_RST_SHIFT_RSTn

GPIO3 reset control

enumerator kPINT_RST_SHIFT_RSTn

Pin interrupt (PINT) reset control

enumerator kGINT_RST_SHIFT_RSTn

Grouped interrupt (PINT) reset control.

enumerator kDMA_RST_SHIFT_RSTn

DMA reset control

enumerator kCRC_RST_SHIFT_RSTn

CRC reset control

enumerator kWWDT_RST_SHIFT_RSTn

Watchdog timer reset control

enumerator kADC0_RST_SHIFT_RSTn

ADC0 reset control

enumerator kMRT_RST_SHIFT_RSTn

Multi-rate timer (MRT) reset control

enumerator kSCT0_RST_SHIFT_RSTn

SCTimer/PWM 0 (SCT0) reset control

enumerator kMCAN0_RST_SHIFT_RSTn

MCAN0 reset control

enumerator kMCAN1_RST_SHIFT_RSTn

MCAN1 reset control

enumerator kUTICK_RST_SHIFT_RSTn

Micro-tick timer reset control

enumerator kFC0_RST_SHIFT_RSTn

Flexcomm Interface 0 reset control

enumerator kFC1_RST_SHIFT_RSTn

Flexcomm Interface 1 reset control

enumerator kFC2_RST_SHIFT_RSTn

Flexcomm Interface 2 reset control

enumerator kFC3_RST_SHIFT_RSTn

Flexcomm Interface 3 reset control

enumerator kFC4_RST_SHIFT_RSTn

Flexcomm Interface 4 reset control

enumerator kFC5_RST_SHIFT_RSTn

Flexcomm Interface 5 reset control

enumerator kFC6_RST_SHIFT_RSTn

Flexcomm Interface 6 reset control

enumerator kFC7_RST_SHIFT_RSTn

Flexcomm Interface 7 reset control

enumerator kDMIC_RST_SHIFT_RSTn

Digital microphone interface reset control

enumerator kCT32B2_RST_SHIFT_RSTn

CT32B2 reset control

enumerator kUSB0D_RST_SHIFT_RSTn

USB0D reset control

enumerator kCT32B0_RST_SHIFT_RSTn

CT32B0 reset control

enumerator kCT32B1_RST_SHIFT_RSTn

CT32B1 reset control

enumerator kLCD_RST_SHIFT_RSTn

LCD reset control

enumerator kSDIO_RST_SHIFT_RSTn

SDIO reset control

enumerator kUSB1H_RST_SHIFT_RSTn

USB1H reset control

enumerator kUSB1D_RST_SHIFT_RSTn

USB1D reset control

enumerator kUSB1RAM_RST_SHIFT_RSTn

USB1RAM reset control

enumerator kEMC_RST_SHIFT_RSTn

EMC reset control

enumerator kETH_RST_SHIFT_RSTn

ETH reset control

enumerator kGPIO4_RST_SHIFT_RSTn

GPIO4 reset control

enumerator kGPIO5_RST_SHIFT_RSTn

GPIO5 reset control

enumerator kAES_RST_SHIFT_RSTn

AES reset control

enumerator kOTP_RST_SHIFT_RSTn

OTP reset control

enumerator kRNG_RST_SHIFT_RSTn

RNG reset control

enumerator kFC8_RST_SHIFT_RSTn

Flexcomm Interface 8 reset control

enumerator kFC9_RST_SHIFT_RSTn

Flexcomm Interface 9 reset control

enumerator kUSB0HMR_RST_SHIFT_RSTn

USB0HMR reset control

enumerator kUSB0HSL_RST_SHIFT_RSTn

USB0HSL reset control

enumerator kSHA_RST_SHIFT_RSTn

SHA reset control

enumerator kSC0_RST_SHIFT_RSTn

SC0 reset control

enumerator kSC1_RST_SHIFT_RSTn

SC1 reset control

enumerator kCT32B3_RST_SHIFT_RSTn

CT32B3 reset control

enumerator kCT32B4_RST_SHIFT_RSTn

CT32B4 reset control

typedef enum _SYSCON_RSTn SYSCON_RSTn_t

Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETCTRL/ASYNCPRESETCTRL registers

typedef SYSCON_RSTn_t reset_ip_name_t
void RESET_SetPeripheralReset(reset_ip_name_t peripheral)

Assert reset to peripheral.

Asserts reset signal to specified peripheral module.

Parameters:
  • peripheral – Assert reset to this peripheral. The enum argument contains encoding of reset register and reset bit position in the reset register.

void RESET_ClearPeripheralReset(reset_ip_name_t peripheral)

Clear reset to peripheral.

Clears reset signal to specified peripheral module, allows it to operate.

Parameters:
  • peripheral – Clear reset to this peripheral. The enum argument contains encoding of reset register and reset bit position in the reset register.

void RESET_PeripheralReset(reset_ip_name_t peripheral)

Reset peripheral module.

Reset peripheral module.

Parameters:
  • peripheral – Peripheral to reset. The enum argument contains encoding of reset register and reset bit position in the reset register.

static inline void RESET_ReleasePeripheralReset(reset_ip_name_t peripheral)

Release peripheral module.

Release peripheral module.

Parameters:
  • peripheral – Peripheral to release. The enum argument contains encoding of reset register and reset bit position in the reset register.

FSL_RESET_DRIVER_VERSION

reset driver version 2.4.0

ADC_RSTS

Array initializers with peripheral reset bits

AES_RSTS
CRC_RSTS
CTIMER_RSTS
DMA_RSTS_N
DMIC_RSTS
EMC_RSTS
ETH_RST
FLEXCOMM_RSTS
GINT_RSTS
GPIO_RSTS_N
INPUTMUX_RSTS
IOCON_RSTS
FLASH_RSTS
LCD_RSTS
MRT_RSTS
MCAN_RSTS
OTP_RSTS
PINT_RSTS
RNG_RSTS
SDIO_RST
SCT_RSTS
SHA_RST
SPIFI_RSTS
USB0D_RST
USB0HMR_RST
USB0HSL_RST
USB1H_RST
USB1D_RST
USB1RAM_RST
UTICK_RSTS
WWDT_RSTS
USB1RAM_RSTS
USB1H_RSTS
USB1D_RSTS
USB0HSL_RSTS
USB0HMR_RSTS
USB0D_RSTS
SHA_RSTS
SDIO_RSTS
ETH_RSTS

RIT: Repetitive Interrupt Timer

void RIT_Init(RIT_Type *base, const rit_config_t *config)

Ungates the RIT clock, enables the RIT module, and configures the peripheral for basic operations.

Note

This API should be called at the beginning of the application using the RIT driver.

Parameters:
  • base – RIT peripheral base address

  • config – Pointer to the user’s RIT config structure

void RIT_Deinit(RIT_Type *base)

Gates the RIT clock and disables the RIT module.

Parameters:
  • base – RIT peripheral base address

void RIT_GetDefaultConfig(rit_config_t *config)

Fills in the RIT configuration structure with the default settings.

The default values are as follows.

config->enableRunInDebug = false;

Parameters:
  • config – Pointer to the onfiguration structure.

static inline uint32_t RIT_GetStatusFlags(RIT_Type *base)

Gets the RIT status flags.

Parameters:
  • base – RIT peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration rit_status_flags_t

static inline void RIT_ClearStatusFlags(RIT_Type *base, uint32_t mask)

Clears the RIT status flags.

Parameters:
  • base – RIT peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration rit_status_flags_t

void RIT_SetTimerCompare(RIT_Type *base, uint64_t count)

Sets the timer period in units of count.

This function sets the RI compare value. If the counter value equals to the compare value, it will generate an interrupt.

Note

Users can call the utility macros provided in fsl_common.h to convert to ticks

Parameters:
  • base – RIT peripheral base address

  • count – Timer period in units of ticks

void RIT_SetMaskBit(RIT_Type *base, uint64_t count)

Sets the mask bit of count compare.

This function sets the RI mask value. A 1 written to any bit will force the compare to be true for the corresponding bit of the counter and compare register (causes the comparison of the register bits to be always true).

Note

Users can call the utility macros provided in fsl_common.h to convert to ticks

Parameters:
  • base – RIT peripheral base address

  • count – Timer period in units of ticks

uint64_t RIT_GetCompareTimerCount(RIT_Type *base)

Reads the current value of compare register.

Note

Users can call the utility macros provided in fsl_common.h to convert ticks to usec or msec

Parameters:
  • base – RIT peripheral base address

Returns:

Current RI compare value

uint64_t RIT_GetCounterTimerCount(RIT_Type *base)

Reads the current timer counting value of counter register.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note

Users can call the utility macros provided in fsl_common.h to convert ticks to usec or msec

Parameters:
  • base – RIT peripheral base address

Returns:

Current timer counting value in ticks

uint64_t RIT_GetMaskTimerCount(RIT_Type *base)

Reads the current value of mask register.

Note

Users can call the utility macros provided in fsl_common.h to convert ticks to usec or msec

Parameters:
  • base – RIT peripheral base address

Returns:

Current RI mask value

static inline void RIT_StartTimer(RIT_Type *base)

Starts the timer counting.

After calling this function, timers load initial value(0U), count up to desired value or over-flow then the counter will count up again.

Parameters:
  • base – RIT peripheral base address

static inline void RIT_StopTimer(RIT_Type *base)

Stops the timer counting.

This function stop timer counting. Timer reload their new value after the next time they call the RIT_StartTimer.

Parameters:
  • base – RIT peripheral base address

FSL_RIT_DRIVER_VERSION

Version 2.1.1

enum _rit_status_flags

List of RIT status flags.

Values:

enumerator kRIT_TimerFlag

Timer flag

typedef enum _rit_status_flags rit_status_flags_t

List of RIT status flags.

typedef struct _rit_config rit_config_t

RIT config structure.

This structure holds the configuration settings for the RIT peripheral. To initialize this structure to reasonable defaults, call the RIT_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

static inline void RIT_ClearCounter(RIT_Type *base, bool enable)

Sets the Timer Counter auto clear or not.

This function set the counter auto clear or not whenever the counter value equals the masked compare value specified by the contents of COMPVAL/COMPVAL_H and MASK/MASK_H registers..

Deprecated:

Do not use this function. It has been superceded by RIT_SetCountAutoClear.

static inline void RIT_SetCountAutoClear(RIT_Type *base, bool enable)

Sets the Timer Counter auto clear or not.

This function set the counter auto clear or not whenever the counter value equals the masked compare value specified by the contents of COMPVAL/COMPVAL_H and MASK/MASK_H registers..

Parameters:
  • base – RIT peripheral base address

  • enable – Enable/disable Counter auto clear when value equals the compare value.

    • true: Enable Counter auto clear.

    • false: Disable Counter auto clear.

struct _rit_config
#include <fsl_rit.h>

RIT config structure.

This structure holds the configuration settings for the RIT peripheral. To initialize this structure to reasonable defaults, call the RIT_GetDefaultConfig() function and pass a pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool enableRunInDebug

true: The timer is halted when the processor is halted for debugging.; false: Debug has no effect on the timer operation.

RNG: Random Number Generator

FSL_RNG_DRIVER_VERSION

RNG driver version 2.1.0.

Current version: 2.1.0

Change log:

  • Version 2.0.0

    • Initial version.

  • Version 2.1.0

    • Renamed function RNG_GetRandomData() to RNG_GetRandomDataWord(). Added function RNG_GetRandomData() which discarding next 32 words after reading RNG register which results into better entropy, as is recommended in UM.

    • API is aligned with other RNG driver, having similar functionality as other RNG/TRNG drivers.

status_t RNG_GetRandomData(void *data, size_t dataSize)

Gets random data.

This function gets random data from the RNG.

Parameters:
  • data – Pointer address used to store random data.

  • dataSize – Size of the buffer pointed by the data parameter.

Returns:

Status from operation

static inline uint32_t RNG_GetRandomDataWord(void)

Gets random data.

This function returns single 32 bit random number. For each read word next 32 words should be discarded to achieve better entropy.

Returns:

random data

FSL_COMPONENT_ID

RTC: Real Time Clock

void RTC_Init(RTC_Type *base)

Un-gate the RTC clock and enable the RTC oscillator.

Note

This API should be called at the beginning of the application using the RTC driver.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_Deinit(RTC_Type *base)

Stop the timer and gate the RTC clock.

Parameters:
  • base – RTC peripheral base address

status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)

Set the RTC date and time according to the given time structure.

The RTC counter must be stopped prior to calling this function as writes to the RTC seconds register will fail if the RTC counter is running.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to structure where the date and time details to set are stored

Returns:

kStatus_Success: Success in setting the time and starting the RTC kStatus_InvalidArgument: Error because the datetime format is incorrect

void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)

Get the RTC time and stores it in the given time structure.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to structure where the date and time details are stored.

status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)

Set the RTC alarm time.

The function checks whether the specified alarm time is greater than the present time. If not, the function does not set the alarm and returns an error.

Parameters:
  • base – RTC peripheral base address

  • alarmTime – Pointer to structure where the alarm time is stored.

Returns:

kStatus_Success: success in setting the RTC alarm kStatus_InvalidArgument: Error because the alarm datetime format is incorrect kStatus_Fail: Error because the alarm time has already passed

void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)

Return the RTC alarm time.

Parameters:
  • base – RTC peripheral base address

  • datetime – Pointer to structure where the alarm date and time details are stored.

static inline void RTC_EnableWakeupTimer(RTC_Type *base, bool enable)

Enable the RTC wake-up timer (1KHZ).

After calling this function, the RTC driver will use/un-use the RTC wake-up (1KHZ) at the same time.

Parameters:
  • base – RTC peripheral base address

  • enable – Use/Un-use the RTC wake-up timer.

    • true: Use RTC wake-up timer at the same time.

    • false: Un-use RTC wake-up timer, RTC only use the normal seconds timer by default.

static inline uint32_t RTC_GetEnabledWakeupTimer(RTC_Type *base)

Get the enabled status of the RTC wake-up timer (1KHZ).

Parameters:
  • base – RTC peripheral base address

Returns:

The enabled status of RTC wake-up timer (1KHZ).

static inline void RTC_EnableWakeUpTimerInterruptFromDPD(RTC_Type *base, bool enable)

Enable the wake-up timer interrupt from deep power down mode.

Parameters:
  • base – RTC peripheral base address

  • enable – Enable/Disable wake-up timer interrupt from deep power down mode.

    • true: Enable wake-up timer interrupt from deep power down mode.

    • false: Disable wake-up timer interrupt from deep power down mode.

static inline void RTC_EnableAlarmTimerInterruptFromDPD(RTC_Type *base, bool enable)

Enable the alarm timer interrupt from deep power down mode.

Parameters:
  • base – RTC peripheral base address

  • enable – Enable/Disable alarm timer interrupt from deep power down mode.

    • true: Enable alarm timer interrupt from deep power down mode.

    • false: Disable alarm timer interrupt from deep power down mode.

static inline void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)

Enables the selected RTC interrupts.

Deprecated:

Do not use this function. It has been superceded by RTC_EnableAlarmTimerInterruptFromDPD and RTC_EnableWakeUpTimerInterruptFromDPD

Parameters:
  • base – RTC peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t

static inline void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)

Disables the selected RTC interrupts.

Deprecated:

Do not use this function. It has been superceded by RTC_EnableAlarmTimerInterruptFromDPD and RTC_EnableWakeUpTimerInterruptFromDPD

Parameters:
  • base – RTC peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration rtc_interrupt_enable_t

static inline uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)

Get the enabled RTC interrupts.

Deprecated:

Do not use this function. It will be deleted in next release version.

Parameters:
  • base – RTC peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration rtc_interrupt_enable_t

static inline uint32_t RTC_GetStatusFlags(RTC_Type *base)

Get the RTC status flags.

Parameters:
  • base – RTC peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration rtc_status_flags_t

static inline void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)

Clear the RTC status flags.

Parameters:
  • base – RTC peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration rtc_status_flags_t

static inline void RTC_EnableTimer(RTC_Type *base, bool enable)

Enable the RTC timer counter.

After calling this function, the RTC inner counter increments once a second when only using the RTC seconds timer (1hz), while the RTC inner wake-up timer countdown once a millisecond when using RTC wake-up timer (1KHZ) at the same time. RTC timer contain two timers, one is the RTC normal seconds timer, the other one is the RTC wake-up timer, the RTC enable bit is the master switch for the whole RTC timer, so user can use the RTC seconds (1HZ) timer independly, but they can’t use the RTC wake-up timer (1KHZ) independently.

Parameters:
  • base – RTC peripheral base address

  • enable – Enable/Disable RTC Timer counter.

    • true: Enable RTC Timer counter.

    • false: Disable RTC Timer counter.

static inline void RTC_StartTimer(RTC_Type *base)

Starts the RTC time counter.

Deprecated:

Do not use this function. It has been superceded by RTC_EnableTimer

After calling this function, the timer counter increments once a second provided SR[TOF] or SR[TIF] are not set.

Parameters:
  • base – RTC peripheral base address

static inline void RTC_StopTimer(RTC_Type *base)

Stops the RTC time counter.

Deprecated:

Do not use this function. It has been superceded by RTC_EnableTimer

RTC’s seconds register can be written to only when the timer is stopped.

Parameters:
  • base – RTC peripheral base address

FSL_RTC_DRIVER_VERSION

Version 2.2.0

enum _rtc_interrupt_enable

List of RTC interrupts.

Values:

enumerator kRTC_AlarmInterruptEnable

Alarm interrupt.

enumerator kRTC_WakeupInterruptEnable

Wake-up interrupt.

enum _rtc_status_flags

List of RTC flags.

Values:

enumerator kRTC_AlarmFlag

Alarm flag

enumerator kRTC_WakeupFlag

1kHz wake-up timer flag

typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t

List of RTC interrupts.

typedef enum _rtc_status_flags rtc_status_flags_t

List of RTC flags.

typedef struct _rtc_datetime rtc_datetime_t

Structure is used to hold the date and time.

static inline void RTC_SetSecondsTimerMatch(RTC_Type *base, uint32_t matchValue)

Set the RTC seconds timer (1HZ) MATCH value.

Parameters:
  • base – RTC peripheral base address

  • matchValue – The value to be set into the RTC MATCH register

static inline uint32_t RTC_GetSecondsTimerMatch(RTC_Type *base)

Read actual RTC seconds timer (1HZ) MATCH value.

Parameters:
  • base – RTC peripheral base address

Returns:

The actual RTC seconds timer (1HZ) MATCH value.

static inline void RTC_SetSecondsTimerCount(RTC_Type *base, uint32_t countValue)

Set the RTC seconds timer (1HZ) COUNT value.

Parameters:
  • base – RTC peripheral base address

  • countValue – The value to be loaded into the RTC COUNT register

static inline uint32_t RTC_GetSecondsTimerCount(RTC_Type *base)

Read the actual RTC seconds timer (1HZ) COUNT value.

Parameters:
  • base – RTC peripheral base address

Returns:

The actual RTC seconds timer (1HZ) COUNT value.

static inline void RTC_SetWakeupCount(RTC_Type *base, uint16_t wakeupValue)

Enable the RTC wake-up timer (1KHZ) and set countdown value to the RTC WAKE register.

Parameters:
  • base – RTC peripheral base address

  • wakeupValue – The value to be loaded into the WAKE register in RTC wake-up timer (1KHZ).

static inline uint16_t RTC_GetWakeupCount(RTC_Type *base)

Read the actual value from the WAKE register value in RTC wake-up timer (1KHZ)

Read the WAKE register twice and compare the result, if the value match,the time can be used.

Parameters:
  • base – RTC peripheral base address

Returns:

The actual value of the WAKE register value in RTC wake-up timer (1KHZ).

static inline void RTC_Reset(RTC_Type *base)

Perform a software reset on the RTC module.

This resets all RTC registers to their reset value. The bit is cleared by software explicitly clearing it.

Parameters:
  • base – RTC peripheral base address

struct _rtc_datetime
#include <fsl_rtc.h>

Structure is used to hold the date and time.

Public Members

uint16_t year

Range from 1970 to 2099.

uint8_t month

Range from 1 to 12.

uint8_t day

Range from 1 to 31 (depending on month).

uint8_t hour

Range from 0 to 23.

uint8_t minute

Range from 0 to 59.

uint8_t second

Range from 0 to 59.

SCTimer: SCTimer/PWM (SCT)

status_t SCTIMER_Init(SCT_Type *base, const sctimer_config_t *config)

Ungates the SCTimer clock and configures the peripheral for basic operation.

Note

This API should be called at the beginning of the application using the SCTimer driver.

Parameters:
  • base – SCTimer peripheral base address

  • config – Pointer to the user configuration structure.

Returns:

kStatus_Success indicates success; Else indicates failure.

void SCTIMER_Deinit(SCT_Type *base)

Gates the SCTimer clock.

Parameters:
  • base – SCTimer peripheral base address

void SCTIMER_GetDefaultConfig(sctimer_config_t *config)

Fills in the SCTimer configuration structure with the default settings.

The default values are:

config->enableCounterUnify = true;
config->clockMode = kSCTIMER_System_ClockMode;
config->clockSelect = kSCTIMER_Clock_On_Rise_Input_0;
config->enableBidirection_l = false;
config->enableBidirection_h = false;
config->prescale_l = 0U;
config->prescale_h = 0U;
config->outInitState = 0U;
config->inputsync  = 0xFU;

Parameters:
  • config – Pointer to the user configuration structure.

status_t SCTIMER_SetupPwm(SCT_Type *base, const sctimer_pwm_signal_param_t *pwmParams, sctimer_pwm_mode_t mode, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz, uint32_t *event)

Configures the PWM signal parameters.

Call this function to configure the PWM signal period, mode, duty cycle, and edge. This function will create 2 events; one of the events will trigger on match with the pulse value and the other will trigger when the counter matches the PWM period. The PWM period event is also used as a limit event to reset the counter or change direction. Both events are enabled for the same state. The state number can be retrieved by calling the function SCTIMER_GetCurrentStateNumber(). The counter is set to operate as one 32-bit counter (unify bit is set to 1). The counter operates in bi-directional mode when generating a center-aligned PWM.

Note

When setting PWM output from multiple output pins, they all should use the same PWM mode i.e all PWM’s should be either edge-aligned or center-aligned. When using this API, the PWM signal frequency of all the initialized channels must be the same. Otherwise all the initialized channels’ PWM signal frequency is equal to the last call to the API’s pwmFreq_Hz.

Parameters:
  • base – SCTimer peripheral base address

  • pwmParams – PWM parameters to configure the output

  • mode – PWM operation mode, options available in enumeration sctimer_pwm_mode_t

  • pwmFreq_Hz – PWM signal frequency in Hz

  • srcClock_Hz – SCTimer counter clock in Hz

  • event – Pointer to a variable where the PWM period event number is stored

Returns:

kStatus_Success on success kStatus_Fail If we have hit the limit in terms of number of events created or if an incorrect PWM dutycylce is passed in.

void SCTIMER_UpdatePwmDutycycle(SCT_Type *base, sctimer_out_t output, uint8_t dutyCyclePercent, uint32_t event)

Updates the duty cycle of an active PWM signal.

Before calling this function, the counter is set to operate as one 32-bit counter (unify bit is set to 1).

Parameters:
  • base – SCTimer peripheral base address

  • output – The output to configure

  • dutyCyclePercent – New PWM pulse width; the value should be between 1 to 100

  • event – Event number associated with this PWM signal. This was returned to the user by the function SCTIMER_SetupPwm().

static inline void SCTIMER_EnableInterrupts(SCT_Type *base, uint32_t mask)

Enables the selected SCTimer interrupts.

Parameters:
  • base – SCTimer peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration sctimer_interrupt_enable_t

static inline void SCTIMER_DisableInterrupts(SCT_Type *base, uint32_t mask)

Disables the selected SCTimer interrupts.

Parameters:
  • base – SCTimer peripheral base address

  • mask – The interrupts to enable. This is a logical OR of members of the enumeration sctimer_interrupt_enable_t

static inline uint32_t SCTIMER_GetEnabledInterrupts(SCT_Type *base)

Gets the enabled SCTimer interrupts.

Parameters:
  • base – SCTimer peripheral base address

Returns:

The enabled interrupts. This is the logical OR of members of the enumeration sctimer_interrupt_enable_t

static inline uint32_t SCTIMER_GetStatusFlags(SCT_Type *base)

Gets the SCTimer status flags.

Parameters:
  • base – SCTimer peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration sctimer_status_flags_t

static inline void SCTIMER_ClearStatusFlags(SCT_Type *base, uint32_t mask)

Clears the SCTimer status flags.

Parameters:
  • base – SCTimer peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration sctimer_status_flags_t

static inline void SCTIMER_StartTimer(SCT_Type *base, uint32_t countertoStart)

Starts the SCTimer counter.

Note

In 16-bit mode, we can enable both Counter_L and Counter_H, In 32-bit mode, we only can select Counter_U.

Parameters:
  • base – SCTimer peripheral base address

  • countertoStart – The SCTimer counters to enable. This is a logical OR of members of the enumeration sctimer_counter_t.

static inline void SCTIMER_StopTimer(SCT_Type *base, uint32_t countertoStop)

Halts the SCTimer counter.

Parameters:
  • base – SCTimer peripheral base address

  • countertoStop – The SCTimer counters to stop. This is a logical OR of members of the enumeration sctimer_counter_t.

status_t SCTIMER_CreateAndScheduleEvent(SCT_Type *base, sctimer_event_t howToMonitor, uint32_t matchValue, uint32_t whichIO, sctimer_counter_t whichCounter, uint32_t *event)

Create an event that is triggered on a match or IO and schedule in current state.

This function will configure an event using the options provided by the user. If the event type uses the counter match, then the function will set the user provided match value into a match register and put this match register number into the event control register. The event is enabled for the current state and the event number is increased by one at the end. The function returns the event number; this event number can be used to configure actions to be done when this event is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • howToMonitor – Event type; options are available in the enumeration sctimer_interrupt_enable_t

  • matchValue – The match value that will be programmed to a match register

  • whichIO – The input or output that will be involved in event triggering. This field is ignored if the event type is “match only”

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • event – Pointer to a variable where the new event number is stored

Returns:

kStatus_Success on success kStatus_Error if we have hit the limit in terms of number of events created or if we have reached the limit in terms of number of match registers

void SCTIMER_ScheduleEvent(SCT_Type *base, uint32_t event)

Enable an event in the current state.

This function will allow the event passed in to trigger in the current state. The event must be created earlier by either calling the function SCTIMER_SetupPwm() or function SCTIMER_CreateAndScheduleEvent() .

Parameters:
  • base – SCTimer peripheral base address

  • event – Event number to enable in the current state

status_t SCTIMER_IncreaseState(SCT_Type *base)

Increase the state by 1.

All future events created by calling the function SCTIMER_ScheduleEvent() will be enabled in this new state.

Parameters:
  • base – SCTimer peripheral base address

Returns:

kStatus_Success on success kStatus_Error if we have hit the limit in terms of states used

uint32_t SCTIMER_GetCurrentState(SCT_Type *base)

Provides the current state.

User can use this to set the next state by calling the function SCTIMER_SetupNextStateAction().

Parameters:
  • base – SCTimer peripheral base address

Returns:

The current state

static inline void SCTIMER_SetCounterState(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t state)

Set the counter current state.

The function is to set the state variable bit field of STATE register. Writing to the STATE_L, STATE_H, or unified register is only allowed when the corresponding counter is halted (HALT bits are set to 1 in the CTRL register).

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • state – The counter current state number (only support range from 0~31).

static inline uint16_t SCTIMER_GetCounterState(SCT_Type *base, sctimer_counter_t whichCounter)

Get the counter current state value.

The function is to get the state variable bit field of STATE register.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns:

The the counter current state value.

status_t SCTIMER_SetupCaptureAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t *captureRegister, uint32_t event)

Setup capture of the counter value on trigger of a selected event.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • captureRegister – Pointer to a variable where the capture register number will be returned. User can read the captured value from this register when the specified event is triggered.

  • event – Event number that will trigger the capture

Returns:

kStatus_Success on success kStatus_Error if we have hit the limit in terms of number of match/capture registers available

void SCTIMER_SetCallback(SCT_Type *base, sctimer_event_callback_t callback, uint32_t event)

Receive noticification when the event trigger an interrupt.

If the interrupt for the event is enabled by the user, then a callback can be registered which will be invoked when the event is triggered

Parameters:
  • base – SCTimer peripheral base address

  • event – Event number that will trigger the interrupt

  • callback – Function to invoke when the event is triggered

static inline void SCTIMER_SetupStateLdMethodAction(SCT_Type *base, uint32_t event, bool fgLoad)

Change the load method of transition to the specified state.

Change the load method of transition, it will be triggered by the event number that is passed in by the user.

Parameters:
  • base – SCTimer peripheral base address

  • event – Event number that will change the method to trigger the state transition

  • fgLoad – The method to load highest-numbered event occurring for that state to the STATE register.

    • true: Load the STATEV value to STATE when the event occurs to be the next state.

    • false: Add the STATEV value to STATE when the event occurs to be the next state.

static inline void SCTIMER_SetupNextStateActionwithLdMethod(SCT_Type *base, uint32_t nextState, uint32_t event, bool fgLoad)

Transition to the specified state with Load method.

This transition will be triggered by the event number that is passed in by the user, the method decide how to load the highest-numbered event occurring for that state to the STATE register.

Parameters:
  • base – SCTimer peripheral base address

  • nextState – The next state SCTimer will transition to

  • event – Event number that will trigger the state transition

  • fgLoad – The method to load the highest-numbered event occurring for that state to the STATE register.

    • true: Load the STATEV value to STATE when the event occurs to be the next state.

    • false: Add the STATEV value to STATE when the event occurs to be the next state.

static inline void SCTIMER_SetupNextStateAction(SCT_Type *base, uint32_t nextState, uint32_t event)

Transition to the specified state.

Deprecated:

Do not use this function. It has been superceded by SCTIMER_SetupNextStateActionwithLdMethod

This transition will be triggered by the event number that is passed in by the user.

Parameters:
  • base – SCTimer peripheral base address

  • nextState – The next state SCTimer will transition to

  • event – Event number that will trigger the state transition

static inline void SCTIMER_SetupEventActiveDirection(SCT_Type *base, sctimer_event_active_direction_t activeDirection, uint32_t event)

Setup event active direction when the counters are operating in BIDIR mode.

Parameters:
  • base – SCTimer peripheral base address

  • activeDirection – Event generation active direction, see sctimer_event_active_direction_t.

  • event – Event number that need setup the active direction.

static inline void SCTIMER_SetupOutputSetAction(SCT_Type *base, uint32_t whichIO, uint32_t event)

Set the Output.

This output will be set when the event number that is passed in by the user is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • whichIO – The output to set

  • event – Event number that will trigger the output change

static inline void SCTIMER_SetupOutputClearAction(SCT_Type *base, uint32_t whichIO, uint32_t event)

Clear the Output.

This output will be cleared when the event number that is passed in by the user is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • whichIO – The output to clear

  • event – Event number that will trigger the output change

void SCTIMER_SetupOutputToggleAction(SCT_Type *base, uint32_t whichIO, uint32_t event)

Toggle the output level.

This change in the output level is triggered by the event number that is passed in by the user.

Parameters:
  • base – SCTimer peripheral base address

  • whichIO – The output to toggle

  • event – Event number that will trigger the output change

static inline void SCTIMER_SetupCounterLimitAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)

Limit the running counter.

The counter is limited when the event number that is passed in by the user is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • event – Event number that will trigger the counter to be limited

static inline void SCTIMER_SetupCounterStopAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)

Stop the running counter.

The counter is stopped when the event number that is passed in by the user is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • event – Event number that will trigger the counter to be stopped

static inline void SCTIMER_SetupCounterStartAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)

Re-start the stopped counter.

The counter will re-start when the event number that is passed in by the user is triggered.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • event – Event number that will trigger the counter to re-start

static inline void SCTIMER_SetupCounterHaltAction(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t event)

Halt the running counter.

The counter is disabled (halted) when the event number that is passed in by the user is triggered. When the counter is halted, all further events are disabled. The HALT condition can only be removed by calling the SCTIMER_StartTimer() function.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • event – Event number that will trigger the counter to be halted

static inline void SCTIMER_SetupDmaTriggerAction(SCT_Type *base, uint32_t dmaNumber, uint32_t event)

Generate a DMA request.

DMA request will be triggered by the event number that is passed in by the user.

Parameters:
  • base – SCTimer peripheral base address

  • dmaNumber – The DMA request to generate

  • event – Event number that will trigger the DMA request

static inline void SCTIMER_SetCOUNTValue(SCT_Type *base, sctimer_counter_t whichCounter, uint32_t value)

Set the value of counter.

The function is to set the value of Count register, Writing to the COUNT_L, COUNT_H, or unified register is only allowed when the corresponding counter is halted (HALT bits are set to 1 in the CTRL register).

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • value – the counter value update to the COUNT register.

static inline uint32_t SCTIMER_GetCOUNTValue(SCT_Type *base, sctimer_counter_t whichCounter)

Get the value of counter.

The function is to read the value of Count register, software can read the counter registers at any time..

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns:

The value of counter selected.

static inline void SCTIMER_SetEventInState(SCT_Type *base, uint32_t event, uint32_t state)

Set the state mask bit field of EV_STATE register.

Parameters:
  • base – SCTimer peripheral base address

  • event – The EV_STATE register be set.

  • state – The state value in which the event is enabled to occur.

static inline void SCTIMER_ClearEventInState(SCT_Type *base, uint32_t event, uint32_t state)

Clear the state mask bit field of EV_STATE register.

Parameters:
  • base – SCTimer peripheral base address

  • event – The EV_STATE register be clear.

  • state – The state value in which the event is disabled to occur.

static inline bool SCTIMER_GetEventInState(SCT_Type *base, uint32_t event, uint32_t state)

Get the state mask bit field of EV_STATE register.

Note

This function is to check whether the event is enabled in a specific state.

Parameters:
  • base – SCTimer peripheral base address

  • event – The EV_STATE register be read.

  • state – The state value.

Returns:

The the state mask bit field of EV_STATE register.

  • true: The event is enable in state.

  • false: The event is disable in state.

static inline uint32_t SCTIMER_GetCaptureValue(SCT_Type *base, sctimer_counter_t whichCounter, uint8_t capChannel)

Get the value of capture register.

This function returns the captured value upon occurrence of the events selected by the corresponding Capture Control registers occurred.

Parameters:
  • base – SCTimer peripheral base address

  • whichCounter – SCTimer counter to use. In 16-bit mode, we can select Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

  • capChannel – SCTimer capture register of capture channel.

Returns:

The SCTimer counter value at which this register was last captured.

void SCTIMER_EventHandleIRQ(SCT_Type *base)

SCTimer interrupt handler.

Parameters:
  • base – SCTimer peripheral base address.

FSL_SCTIMER_DRIVER_VERSION

Version

enum _sctimer_pwm_mode

SCTimer PWM operation modes.

Values:

enumerator kSCTIMER_EdgeAlignedPwm

Edge-aligned PWM

enumerator kSCTIMER_CenterAlignedPwm

Center-aligned PWM

enum _sctimer_counter

SCTimer counters type.

Values:

enumerator kSCTIMER_Counter_L

16-bit Low counter.

enumerator kSCTIMER_Counter_H

16-bit High counter.

enumerator kSCTIMER_Counter_U

32-bit Unified counter.

enum _sctimer_input

List of SCTimer input pins.

Values:

enumerator kSCTIMER_Input_0

SCTIMER input 0

enumerator kSCTIMER_Input_1

SCTIMER input 1

enumerator kSCTIMER_Input_2

SCTIMER input 2

enumerator kSCTIMER_Input_3

SCTIMER input 3

enumerator kSCTIMER_Input_4

SCTIMER input 4

enumerator kSCTIMER_Input_5

SCTIMER input 5

enumerator kSCTIMER_Input_6

SCTIMER input 6

enumerator kSCTIMER_Input_7

SCTIMER input 7

enum _sctimer_out

List of SCTimer output pins.

Values:

enumerator kSCTIMER_Out_0

SCTIMER output 0

enumerator kSCTIMER_Out_1

SCTIMER output 1

enumerator kSCTIMER_Out_2

SCTIMER output 2

enumerator kSCTIMER_Out_3

SCTIMER output 3

enumerator kSCTIMER_Out_4

SCTIMER output 4

enumerator kSCTIMER_Out_5

SCTIMER output 5

enumerator kSCTIMER_Out_6

SCTIMER output 6

enumerator kSCTIMER_Out_7

SCTIMER output 7

enumerator kSCTIMER_Out_8

SCTIMER output 8

enumerator kSCTIMER_Out_9

SCTIMER output 9

enum _sctimer_pwm_level_select

SCTimer PWM output pulse mode: high-true, low-true or no output.

Values:

enumerator kSCTIMER_LowTrue

Low true pulses

enumerator kSCTIMER_HighTrue

High true pulses

enum _sctimer_clock_mode

SCTimer clock mode options.

Values:

enumerator kSCTIMER_System_ClockMode

System Clock Mode

enumerator kSCTIMER_Sampled_ClockMode

Sampled System Clock Mode

enumerator kSCTIMER_Input_ClockMode

SCT Input Clock Mode

enumerator kSCTIMER_Asynchronous_ClockMode

Asynchronous Mode

enum _sctimer_clock_select

SCTimer clock select options.

Values:

enumerator kSCTIMER_Clock_On_Rise_Input_0

Rising edges on input 0

enumerator kSCTIMER_Clock_On_Fall_Input_0

Falling edges on input 0

enumerator kSCTIMER_Clock_On_Rise_Input_1

Rising edges on input 1

enumerator kSCTIMER_Clock_On_Fall_Input_1

Falling edges on input 1

enumerator kSCTIMER_Clock_On_Rise_Input_2

Rising edges on input 2

enumerator kSCTIMER_Clock_On_Fall_Input_2

Falling edges on input 2

enumerator kSCTIMER_Clock_On_Rise_Input_3

Rising edges on input 3

enumerator kSCTIMER_Clock_On_Fall_Input_3

Falling edges on input 3

enumerator kSCTIMER_Clock_On_Rise_Input_4

Rising edges on input 4

enumerator kSCTIMER_Clock_On_Fall_Input_4

Falling edges on input 4

enumerator kSCTIMER_Clock_On_Rise_Input_5

Rising edges on input 5

enumerator kSCTIMER_Clock_On_Fall_Input_5

Falling edges on input 5

enumerator kSCTIMER_Clock_On_Rise_Input_6

Rising edges on input 6

enumerator kSCTIMER_Clock_On_Fall_Input_6

Falling edges on input 6

enumerator kSCTIMER_Clock_On_Rise_Input_7

Rising edges on input 7

enumerator kSCTIMER_Clock_On_Fall_Input_7

Falling edges on input 7

enum _sctimer_conflict_resolution

SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should be both set and cleared at the same time

Values:

enumerator kSCTIMER_ResolveNone

No change

enumerator kSCTIMER_ResolveSet

Set output

enumerator kSCTIMER_ResolveClear

Clear output

enumerator kSCTIMER_ResolveToggle

Toggle output

enum _sctimer_event_active_direction

List of SCTimer event generation active direction when the counters are operating in BIDIR mode.

Values:

enumerator kSCTIMER_ActiveIndependent

This event is triggered regardless of the count direction.

enumerator kSCTIMER_ActiveInCountUp

This event is triggered only during up-counting when BIDIR = 1.

enumerator kSCTIMER_ActiveInCountDown

This event is triggered only during down-counting when BIDIR = 1.

enum _sctimer_event

List of SCTimer event types.

Values:

enumerator kSCTIMER_InputLowOrMatchEvent
enumerator kSCTIMER_InputRiseOrMatchEvent
enumerator kSCTIMER_InputFallOrMatchEvent
enumerator kSCTIMER_InputHighOrMatchEvent
enumerator kSCTIMER_MatchEventOnly
enumerator kSCTIMER_InputLowEvent
enumerator kSCTIMER_InputRiseEvent
enumerator kSCTIMER_InputFallEvent
enumerator kSCTIMER_InputHighEvent
enumerator kSCTIMER_InputLowAndMatchEvent
enumerator kSCTIMER_InputRiseAndMatchEvent
enumerator kSCTIMER_InputFallAndMatchEvent
enumerator kSCTIMER_InputHighAndMatchEvent
enumerator kSCTIMER_OutputLowOrMatchEvent
enumerator kSCTIMER_OutputRiseOrMatchEvent
enumerator kSCTIMER_OutputFallOrMatchEvent
enumerator kSCTIMER_OutputHighOrMatchEvent
enumerator kSCTIMER_OutputLowEvent
enumerator kSCTIMER_OutputRiseEvent
enumerator kSCTIMER_OutputFallEvent
enumerator kSCTIMER_OutputHighEvent
enumerator kSCTIMER_OutputLowAndMatchEvent
enumerator kSCTIMER_OutputRiseAndMatchEvent
enumerator kSCTIMER_OutputFallAndMatchEvent
enumerator kSCTIMER_OutputHighAndMatchEvent
enum _sctimer_interrupt_enable

List of SCTimer interrupts.

Values:

enumerator kSCTIMER_Event0InterruptEnable

Event 0 interrupt

enumerator kSCTIMER_Event1InterruptEnable

Event 1 interrupt

enumerator kSCTIMER_Event2InterruptEnable

Event 2 interrupt

enumerator kSCTIMER_Event3InterruptEnable

Event 3 interrupt

enumerator kSCTIMER_Event4InterruptEnable

Event 4 interrupt

enumerator kSCTIMER_Event5InterruptEnable

Event 5 interrupt

enumerator kSCTIMER_Event6InterruptEnable

Event 6 interrupt

enumerator kSCTIMER_Event7InterruptEnable

Event 7 interrupt

enumerator kSCTIMER_Event8InterruptEnable

Event 8 interrupt

enumerator kSCTIMER_Event9InterruptEnable

Event 9 interrupt

enumerator kSCTIMER_Event10InterruptEnable

Event 10 interrupt

enumerator kSCTIMER_Event11InterruptEnable

Event 11 interrupt

enumerator kSCTIMER_Event12InterruptEnable

Event 12 interrupt

enum _sctimer_status_flags

List of SCTimer flags.

Values:

enumerator kSCTIMER_Event0Flag

Event 0 Flag

enumerator kSCTIMER_Event1Flag

Event 1 Flag

enumerator kSCTIMER_Event2Flag

Event 2 Flag

enumerator kSCTIMER_Event3Flag

Event 3 Flag

enumerator kSCTIMER_Event4Flag

Event 4 Flag

enumerator kSCTIMER_Event5Flag

Event 5 Flag

enumerator kSCTIMER_Event6Flag

Event 6 Flag

enumerator kSCTIMER_Event7Flag

Event 7 Flag

enumerator kSCTIMER_Event8Flag

Event 8 Flag

enumerator kSCTIMER_Event9Flag

Event 9 Flag

enumerator kSCTIMER_Event10Flag

Event 10 Flag

enumerator kSCTIMER_Event11Flag

Event 11 Flag

enumerator kSCTIMER_Event12Flag

Event 12 Flag

enumerator kSCTIMER_BusErrorLFlag

Bus error due to write when L counter was not halted

enumerator kSCTIMER_BusErrorHFlag

Bus error due to write when H counter was not halted

typedef enum _sctimer_pwm_mode sctimer_pwm_mode_t

SCTimer PWM operation modes.

typedef enum _sctimer_counter sctimer_counter_t

SCTimer counters type.

typedef enum _sctimer_input sctimer_input_t

List of SCTimer input pins.

typedef enum _sctimer_out sctimer_out_t

List of SCTimer output pins.

typedef enum _sctimer_pwm_level_select sctimer_pwm_level_select_t

SCTimer PWM output pulse mode: high-true, low-true or no output.

typedef struct _sctimer_pwm_signal_param sctimer_pwm_signal_param_t

Options to configure a SCTimer PWM signal.

typedef enum _sctimer_clock_mode sctimer_clock_mode_t

SCTimer clock mode options.

typedef enum _sctimer_clock_select sctimer_clock_select_t

SCTimer clock select options.

typedef enum _sctimer_conflict_resolution sctimer_conflict_resolution_t

SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should be both set and cleared at the same time

typedef enum _sctimer_event_active_direction sctimer_event_active_direction_t

List of SCTimer event generation active direction when the counters are operating in BIDIR mode.

typedef enum _sctimer_event sctimer_event_t

List of SCTimer event types.

typedef void (*sctimer_event_callback_t)(void)

SCTimer callback typedef.

typedef enum _sctimer_interrupt_enable sctimer_interrupt_enable_t

List of SCTimer interrupts.

typedef enum _sctimer_status_flags sctimer_status_flags_t

List of SCTimer flags.

typedef struct _sctimer_config sctimer_config_t

SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

SCT_EV_STATE_STATEMSKn(x)
struct _sctimer_pwm_signal_param
#include <fsl_sctimer.h>

Options to configure a SCTimer PWM signal.

Public Members

sctimer_out_t output

The output pin to use to generate the PWM signal

sctimer_pwm_level_select_t level

PWM output active level select.

uint8_t dutyCyclePercent

PWM pulse width, value should be between 0 to 100 0 = always inactive signal (0% duty cycle) 100 = always active signal (100% duty cycle).

struct _sctimer_config
#include <fsl_sctimer.h>

SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

bool enableCounterUnify

true: SCT operates as a unified 32-bit counter; false: SCT operates as two 16-bit counters. User can use the 16-bit low counter and the 16-bit high counters at the same time; for Hardware limit, user can not use unified 32-bit counter and any 16-bit low/high counter at the same time.

sctimer_clock_mode_t clockMode

SCT clock mode value

sctimer_clock_select_t clockSelect

SCT clock select value

bool enableBidirection_l

true: Up-down count mode for the L or unified counter false: Up count mode only for the L or unified counter

bool enableBidirection_h

true: Up-down count mode for the H or unified counter false: Up count mode only for the H or unified counter. This field is used only if the enableCounterUnify is set to false

uint8_t prescale_l

Prescale value to produce the L or unified counter clock

uint8_t prescale_h

Prescale value to produce the H counter clock. This field is used only if the enableCounterUnify is set to false

uint8_t outInitState

Defines the initial output value

uint8_t inputsync

SCT INSYNC value, INSYNC field in the CONFIG register, from bit9 to bit 16. it is used to define synchronization for input N: bit 9 = input 0 bit 10 = input 1 bit 11 = input 2 bit 12 = input 3 All other bits are reserved (bit13 ~bit 16). How User to set the the value for the member inputsync. IE: delay for input0, and input 1, bypasses for input 2 and input 3 MACRO definition in user level. #define INPUTSYNC0 (0U) #define INPUTSYNC1 (1U) #define INPUTSYNC2 (2U) #define INPUTSYNC3 (3U) User Code. sctimerInfo.inputsync = (1 << INPUTSYNC2) | (1 << INPUTSYNC3);

SDIF: SD/MMC/SDIO card interface

FSL_SDIF_DRIVER_VERSION

Driver version 2.0.15.

_sdif_status SDIF status

Values:

enumerator kStatus_SDIF_DescriptorBufferLenError

Set DMA descriptor failed

enumerator kStatus_SDIF_InvalidArgument

invalid argument status

enumerator kStatus_SDIF_SyncCmdTimeout

sync command to CIU timeout status

enumerator kStatus_SDIF_SendCmdFail

send command to card fail

enumerator kStatus_SDIF_SendCmdErrorBufferFull

send command to card fail, due to command buffer full user need to resend this command

enumerator kStatus_SDIF_DMATransferFailWithFBE

DMA transfer data fail with fatal bus error , to do with this error :issue a hard reset/controller reset

enumerator kStatus_SDIF_DMATransferDescriptorUnavailable

DMA descriptor unavailable

enumerator kStatus_SDIF_DataTransferFail

transfer data fail

enumerator kStatus_SDIF_ResponseError

response error

enumerator kStatus_SDIF_DMAAddrNotAlign

DMA address not align

enumerator kStatus_SDIF_BusyTransferring

SDIF transfer busy status

enumerator kStatus_SDIF_DataTransferSuccess

transfer data success

enumerator kStatus_SDIF_SendCmdSuccess

transfer command success

_sdif_capability_flag Host controller capabilities flag mask

Values:

enumerator kSDIF_SupportHighSpeedFlag

Support high-speed

enumerator kSDIF_SupportDmaFlag

Support DMA

enumerator kSDIF_SupportSuspendResumeFlag

Support suspend/resume

enumerator kSDIF_SupportV330Flag

Support voltage 3.3V

enumerator kSDIF_Support4BitFlag

Support 4 bit mode

enumerator kSDIF_Support8BitFlag

Support 8 bit mode

_sdif_reset_type define the reset type

Values:

enumerator kSDIF_ResetController

reset controller,will reset: BIU/CIU interface CIU and state machine,ABORT_READ_DATA,SEND_IRQ_RESPONSE and READ_WAIT bits of control register,START_CMD bit of the command register

enumerator kSDIF_ResetFIFO

reset data FIFO

enumerator kSDIF_ResetDMAInterface

reset DMA interface

enumerator kSDIF_ResetAll

reset all

enum _sdif_bus_width

define the card bus width type

Values:

enumerator kSDIF_Bus1BitWidth

1bit bus width, 1bit mode and 4bit mode share one register bit

enumerator kSDIF_Bus4BitWidth

4bit mode mask

enumerator kSDIF_Bus8BitWidth

support 8 bit mode

_sdif_command_flags define the command flags

Values:

enumerator kSDIF_CmdResponseExpect

command request response

enumerator kSDIF_CmdResponseLengthLong

command response length long

enumerator kSDIF_CmdCheckResponseCRC

request check command response CRC

enumerator kSDIF_DataExpect

request data transfer,either read/write

enumerator kSDIF_DataWriteToCard

data transfer direction

enumerator kSDIF_DataStreamTransfer

data transfer mode :stream/block transfer command

enumerator kSDIF_DataTransferAutoStop

data transfer with auto stop at the end of

enumerator kSDIF_WaitPreTransferComplete

wait pre transfer complete before sending this cmd

enumerator kSDIF_TransferStopAbort

when host issue stop or abort cmd to stop data transfer ,this bit should set so that cmd/data state-machines of CIU can return to idle correctly

enumerator kSDIF_SendInitialization

send initialization 80 clocks for SD card after power on

enumerator kSDIF_CmdUpdateClockRegisterOnly

send cmd update the CIU clock register only

enumerator kSDIF_CmdtoReadCEATADevice

host is perform read access to CE-ATA device

enumerator kSDIF_CmdExpectCCS

command expect command completion signal signal

enumerator kSDIF_BootModeEnable

this bit should only be set for mandatory boot mode

enumerator kSDIF_BootModeExpectAck

boot mode expect ack

enumerator kSDIF_BootModeDisable

when software set this bit along with START_CMD, CIU terminates the boot operation

enumerator kSDIF_BootModeAlternate

select boot mode ,alternate or mandatory

enumerator kSDIF_CmdVoltageSwitch

this bit set for CMD11 only

enumerator kSDIF_CmdDataUseHoldReg

cmd and data send to card through the HOLD register

_sdif_command_type The command type

Values:

enumerator kCARD_CommandTypeNormal

Normal command

enumerator kCARD_CommandTypeSuspend

Suspend command

enumerator kCARD_CommandTypeResume

Resume command

enumerator kCARD_CommandTypeAbort

Abort command

_sdif_response_type The command response type.

Define the command response type from card to host controller.

Values:

enumerator kCARD_ResponseTypeNone

Response type: none

enumerator kCARD_ResponseTypeR1

Response type: R1

enumerator kCARD_ResponseTypeR1b

Response type: R1b

enumerator kCARD_ResponseTypeR2

Response type: R2

enumerator kCARD_ResponseTypeR3

Response type: R3

enumerator kCARD_ResponseTypeR4

Response type: R4

enumerator kCARD_ResponseTypeR5

Response type: R5

enumerator kCARD_ResponseTypeR5b

Response type: R5b

enumerator kCARD_ResponseTypeR6

Response type: R6

enumerator kCARD_ResponseTypeR7

Response type: R7

_sdif_interrupt_mask define the interrupt mask flags

Values:

enumerator kSDIF_CardDetect

mask for card detect

enumerator kSDIF_ResponseError

command response error

enumerator kSDIF_CommandDone

command transfer over

enumerator kSDIF_DataTransferOver

data transfer over flag

enumerator kSDIF_WriteFIFORequest

write FIFO request

enumerator kSDIF_ReadFIFORequest

read FIFO request

enumerator kSDIF_ResponseCRCError

response CRC error

enumerator kSDIF_DataCRCError

data CRC error

enumerator kSDIF_ResponseTimeout

response timeout

enumerator kSDIF_DataReadTimeout

read data timeout

enumerator kSDIF_DataStarvationByHostTimeout

data starvation by host time out

enumerator kSDIF_FIFOError

indicate the FIFO under run or overrun error

enumerator kSDIF_HardwareLockError

hardware lock write error

enumerator kSDIF_DataStartBitError

start bit error

enumerator kSDIF_AutoCmdDone

indicate the auto command done

enumerator kSDIF_DataEndBitError

end bit error

enumerator kSDIF_SDIOInterrupt

interrupt from the SDIO card

enumerator kSDIF_CommandTransferStatus

command transfer status collection

enumerator kSDIF_DataTransferStatus

data transfer status collection

enumerator kSDIF_DataTransferError
enumerator kSDIF_AllInterruptStatus

all interrupt mask

_sdif_dma_status define the internal DMA status flags

Values:

enumerator kSDIF_DMATransFinishOneDescriptor

DMA transfer finished for one DMA descriptor

enumerator kSDIF_DMARecvFinishOneDescriptor

DMA receive finished for one DMA descriptor

enumerator kSDIF_DMAFatalBusError

DMA fatal bus error

enumerator kSDIF_DMADescriptorUnavailable

DMA descriptor unavailable

enumerator kSDIF_DMACardErrorSummary

card error summary

enumerator kSDIF_NormalInterruptSummary

normal interrupt summary

enumerator kSDIF_AbnormalInterruptSummary

abnormal interrupt summary

enumerator kSDIF_DMAAllStatus

_sdif_dma_descriptor_flag define the internal DMA descriptor flag

Deprecated:

Do not use this enum anymore, please use SDIF_DMA_DESCRIPTOR_XXX_FLAG instead.

Values:

enumerator kSDIF_DisableCompleteInterrupt

disable the complete interrupt flag for the ends in the buffer pointed to by this descriptor

enumerator kSDIF_DMADescriptorDataBufferEnd

indicate this descriptor contain the last data buffer of data

enumerator kSDIF_DMADescriptorDataBufferStart

indicate this descriptor contain the first data buffer of data,if first buffer size is 0,next descriptor contain the begin of the data

enumerator kSDIF_DMASecondAddrChained

indicate that the second addr in the descriptor is the next descriptor addr not the data buffer

enumerator kSDIF_DMADescriptorEnd

indicate that the descriptor list reached its final descriptor

enumerator kSDIF_DMADescriptorOwnByDMA

indicate the descriptor is own by SD/MMC DMA

enum _sdif_dma_mode

define the internal DMA mode

Values:

enumerator kSDIF_ChainDMAMode
enumerator kSDIF_DualDMAMode
typedef enum _sdif_bus_width sdif_bus_width_t

define the card bus width type

typedef enum _sdif_dma_mode sdif_dma_mode_t

define the internal DMA mode

typedef struct _sdif_dma_descriptor sdif_dma_descriptor_t

define the internal DMA descriptor

typedef struct _sdif_dma_config sdif_dma_config_t

Defines the internal DMA configure structure.

typedef struct _sdif_data sdif_data_t

Card data descriptor.

typedef struct _sdif_command sdif_command_t

Card command descriptor.

Define card command-related attribute.

typedef struct _sdif_transfer sdif_transfer_t

Transfer state.

typedef struct _sdif_config sdif_config_t

Data structure to initialize the sdif.

typedef struct _sdif_capability sdif_capability_t

SDIF capability information. Defines a structure to get the capability information of SDIF.

typedef struct _sdif_transfer_callback sdif_transfer_callback_t

sdif callback functions.

typedef struct _sdif_handle sdif_handle_t

sdif handle

Defines the structure to save the sdif state information and callback function. The detail interrupt status when send command or transfer data can be obtained from interruptFlags field by using mask defined in sdif_interrupt_flag_t;

Note

All the fields except interruptFlags and transferredWords must be allocated by the user.

typedef status_t (*sdif_transfer_function_t)(SDIF_Type *base, sdif_transfer_t *content)

sdif transfer function.

typedef struct _sdif_host sdif_host_t

sdif host descriptor

void SDIF_Init(SDIF_Type *base, sdif_config_t *config)

SDIF module initialization function.

Configures the SDIF according to the user configuration.

Parameters:
  • base – SDIF peripheral base address.

  • config – SDIF configuration information.

void SDIF_Deinit(SDIF_Type *base)

SDIF module deinit function. user should call this function follow with IP reset.

Parameters:
  • base – SDIF peripheral base address.

bool SDIF_SendCardActive(SDIF_Type *base, uint32_t timeout)

SDIF send initialize 80 clocks for SD card after initial.

Parameters:
  • base – SDIF peripheral base address.

  • timeout – timeout value

static inline void SDIF_EnableCardClock(SDIF_Type *base, bool enable)

SDIF module enable/disable card clock.

Parameters:
  • base – SDIF peripheral base address.

  • enable – enable/disable flag

static inline void SDIF_EnableLowPowerMode(SDIF_Type *base, bool enable)

SDIF module enable/disable module disable the card clock to enter low power mode when card is idle,for SDIF cards, if interrupts must be detected, clock should not be stopped.

Parameters:
  • base – SDIF peripheral base address.

  • enable – enable/disable flag

static inline void SDIF_EnableCardPower(SDIF_Type *base, bool enable)

enable/disable the card power. once turn power on, software should wait for regulator/switch ramp-up time before trying to initialize card.

Parameters:
  • base – SDIF peripheral base address.

  • enable – enable/disable flag.

void SDIF_SetCardBusWidth(SDIF_Type *base, sdif_bus_width_t type)

set card data bus width

Parameters:
  • base – SDIF peripheral base address.

  • type – bus width type

static inline uint32_t SDIF_DetectCardInsert(SDIF_Type *base, bool data3)

SDIF module detect card insert status function.

Parameters:
  • base – SDIF peripheral base address.

  • data3 – indicate use data3 as card insert detect pin

Return values:

1 – card is inserted 0 card is removed

uint32_t SDIF_SetCardClock(SDIF_Type *base, uint32_t srcClock_Hz, uint32_t target_HZ)

Sets the card bus clock frequency.

Parameters:
  • base – SDIF peripheral base address.

  • srcClock_Hz – SDIF source clock frequency united in Hz.

  • target_HZ – card bus clock frequency united in Hz.

Returns:

The nearest frequency of busClock_Hz configured to SD bus.

bool SDIF_Reset(SDIF_Type *base, uint32_t mask, uint32_t timeout)

reset the different block of the interface.

Parameters:
  • base – SDIF peripheral base address.

  • mask – indicate which block to reset.

  • timeout – timeout value,set to wait the bit self clear

Returns:

reset result.

static inline uint32_t SDIF_GetCardWriteProtect(SDIF_Type *base)

get the card write protect status

Parameters:
  • base – SDIF peripheral base address.

static inline void SDIF_AssertHardwareReset(SDIF_Type *base)

toggle state on hardware reset PIN This is used which card has a reset PIN typically.

Parameters:
  • base – SDIF peripheral base address.

status_t SDIF_SendCommand(SDIF_Type *base, sdif_command_t *cmd, uint32_t timeout)

send command to the card

This api include polling the status of the bit START_COMMAND, if 0 used as timeout value, then this function will return directly without polling the START_CMD status.

Parameters:
  • base – SDIF peripheral base address.

  • cmd – configuration collection

  • timeout – the timeout value of polling START_CMD auto clear status.

Returns:

command excute status

static inline void SDIF_EnableGlobalInterrupt(SDIF_Type *base, bool enable)

SDIF enable/disable global interrupt.

Parameters:
  • base – SDIF peripheral base address.

  • enable – enable/disable flag

static inline void SDIF_EnableInterrupt(SDIF_Type *base, uint32_t mask)

SDIF enable interrupt.

Parameters:
  • base – SDIF peripheral base address.

  • mask – mask

static inline void SDIF_DisableInterrupt(SDIF_Type *base, uint32_t mask)

SDIF disable interrupt.

Parameters:
  • base – SDIF peripheral base address.

  • mask – mask

static inline uint32_t SDIF_GetInterruptStatus(SDIF_Type *base)

SDIF get interrupt status.

Parameters:
  • base – SDIF peripheral base address.

static inline uint32_t SDIF_GetEnabledInterruptStatus(SDIF_Type *base)

SDIF get enabled interrupt status.

Parameters:
  • base – SDIF peripheral base address.

static inline void SDIF_ClearInterruptStatus(SDIF_Type *base, uint32_t mask)

SDIF clear interrupt status.

Parameters:
  • base – SDIF peripheral base address.

  • mask – mask to clear

void SDIF_TransferCreateHandle(SDIF_Type *base, sdif_handle_t *handle, sdif_transfer_callback_t *callback, void *userData)

Creates the SDIF handle. register call back function for interrupt and enable the interrupt.

Parameters:
  • base – SDIF peripheral base address.

  • handle – SDIF handle pointer.

  • callback – Structure pointer to contain all callback functions.

  • userData – Callback function parameter.

static inline void SDIF_EnableDmaInterrupt(SDIF_Type *base, uint32_t mask)

SDIF enable DMA interrupt.

Parameters:
  • base – SDIF peripheral base address.

  • mask – mask to set

static inline void SDIF_DisableDmaInterrupt(SDIF_Type *base, uint32_t mask)

SDIF disable DMA interrupt.

Parameters:
  • base – SDIF peripheral base address.

  • mask – mask to clear

static inline uint32_t SDIF_GetInternalDMAStatus(SDIF_Type *base)

SDIF get internal DMA status.

Parameters:
  • base – SDIF peripheral base address.

Returns:

the internal DMA status register

static inline uint32_t SDIF_GetEnabledDMAInterruptStatus(SDIF_Type *base)

SDIF get enabled internal DMA interrupt status.

Parameters:
  • base – SDIF peripheral base address.

Returns:

the internal DMA status register

static inline void SDIF_ClearInternalDMAStatus(SDIF_Type *base, uint32_t mask)

SDIF clear internal DMA status.

Parameters:
  • base – SDIF peripheral base address.

  • mask – mask to clear

status_t SDIF_InternalDMAConfig(SDIF_Type *base, sdif_dma_config_t *config, const uint32_t *data, uint32_t dataSize)

SDIF internal DMA config function.

Parameters:
  • base – SDIF peripheral base address.

  • config – DMA configuration collection

  • data – buffer pointer

  • dataSize – buffer size

static inline void SDIF_EnableInternalDMA(SDIF_Type *base, bool enable)

SDIF internal DMA enable.

Parameters:
  • base – SDIF peripheral base address.

  • enable – internal DMA enable or disable flag.

static inline void SDIF_SendReadWait(SDIF_Type *base)

SDIF send read wait to SDIF card function.

Parameters:
  • base – SDIF peripheral base address.

bool SDIF_AbortReadData(SDIF_Type *base, uint32_t timeout)

SDIF abort the read data when SDIF card is in suspend state Once assert this bit,data state machine will be reset which is waiting for the next blocking data,used in SDIO card suspend sequence,should call after suspend cmd send.

Parameters:
  • base – SDIF peripheral base address.

  • timeout – timeout value to wait this bit self clear which indicate the data machine reset to idle

static inline void SDIF_EnableCEATAInterrupt(SDIF_Type *base, bool enable)

SDIF enable/disable CE-ATA card interrupt this bit should set together with the card register.

Parameters:
  • base – SDIF peripheral base address.

  • enable – enable/disable flag

status_t SDIF_TransferNonBlocking(SDIF_Type *base, sdif_handle_t *handle, sdif_dma_config_t *dmaConfig, sdif_transfer_t *transfer)

SDIF transfer function data/cmd in a non-blocking way this API should be use in interrupt mode, when use this API user must call SDIF_TransferCreateHandle first, all status check through interrupt.

Parameters:
  • base – SDIF peripheral base address.

  • handle – handle

  • dmaConfig – config structure This parameter can be config as:

    1. NULL In this condition, polling transfer mode is selected

    2. avaliable DMA config In this condition, DMA transfer mode is selected

  • transfer – transfer configuration collection

status_t SDIF_TransferBlocking(SDIF_Type *base, sdif_dma_config_t *dmaConfig, sdif_transfer_t *transfer)

SDIF transfer function data/cmd in a blocking way.

Parameters:
  • base – SDIF peripheral base address.

  • dmaConfig – config structure

    1. NULL In this condition, polling transfer mode is selected

    2. avaliable DMA config In this condition, DMA transfer mode is selected

  • transfer – transfer configuration collection

status_t SDIF_ReleaseDMADescriptor(SDIF_Type *base, sdif_dma_config_t *dmaConfig)

SDIF release the DMA descriptor to DMA engine this function should be called when DMA descriptor unavailable status occurs.

Parameters:
  • base – SDIF peripheral base address.

  • dmaConfig – DMA config pointer

void SDIF_GetCapability(SDIF_Type *base, sdif_capability_t *capability)

SDIF return the controller capability.

Parameters:
  • base – SDIF peripheral base address.

  • capability – capability pointer

static inline uint32_t SDIF_GetControllerStatus(SDIF_Type *base)

SDIF return the controller status.

Parameters:
  • base – SDIF peripheral base address.

static inline void SDIF_SendCCSD(SDIF_Type *base, bool withAutoStop)

SDIF send command complete signal disable to CE-ATA card.

Parameters:
  • base – SDIF peripheral base address.

  • withAutoStop – auto stop flag

void SDIF_ConfigClockDelay(uint32_t target_HZ, uint32_t divider)

SDIF config the clock delay This function is used to config the cclk_in delay to sample and driver the data ,should meet the min setup time and hold time, and user need to config this parameter according to your board setting.

Parameters:
  • target_HZ – freq work mode

  • divider – not used in this function anymore, use DELAY value instead of phase directly.

SDIF_CLOCK_RANGE_NEED_DELAY

SDIOCLKCTRL setting Below clock delay setting should depend on specific platform, so it can be redefined when timing mismatch issue occur. Such as: response error/CRC error and so on.

clock range value which need to add delay to avoid timing issue

SDIF_HIGHSPEED_SAMPLE_DELAY

High speed mode clk_sample fixed delay.

12 * 250ps = 3ns

SDIF_HIGHSPEED_DRV_DELAY

High speed mode clk_drv fixed delay.

31 * 250ps = 7.75ns

SDIF_HIGHSPEED_SAMPLE_PHASE_SHIFT

High speed mode clk_sample phase shift.

SDIF_HIGHSPEED_DRV_PHASE_SHIFT

High speed mode clk_drv phase shift.

SDIF_DEFAULT_MODE_SAMPLE_DELAY

default mode sample fixed delay

12 * 250ps = 3ns

SDIF_DEFAULT_MODE_DRV_DELAY

31 * 250ps = 7.75ns

SDIF_INTERNAL_DMA_ADDR_ALIGN

SDIF internal DMA descriptor address and the data buffer address align.

SDIF_DMA_DESCRIPTOR_DISABLE_COMPLETE_INT_FLAG

SDIF DMA descriptor flag.

SDIF_DMA_DESCRIPTOR_DATA_BUFFER_END_FLAG
SDIF_DMA_DESCRIPTOR_DATA_BUFFER_START_FLAG
SDIF_DMA_DESCRIPTOR_SECOND_ADDR_CHAIN_FLAG
SDIF_DMA_DESCRIPTOR_DESCRIPTOR_END_FLAG
SDIF_DMA_DESCRIPTOR_OWN_BY_DMA_FLAG
struct _sdif_dma_descriptor
#include <fsl_sdif.h>

define the internal DMA descriptor

Public Members

uint32_t dmaDesAttribute

internal DMA attribute control and status

uint32_t dmaDataBufferSize

internal DMA transfer buffer size control

const uint32_t *dmaDataBufferAddr0

internal DMA buffer 0 addr ,the buffer size must be 32bit aligned

const uint32_t *dmaDataBufferAddr1

internal DMA buffer 1 addr ,the buffer size must be 32bit aligned

struct _sdif_dma_config
#include <fsl_sdif.h>

Defines the internal DMA configure structure.

Public Members

bool enableFixBurstLen

fix burst len enable/disable flag,When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of normal burst transfers. When reset, the AHB will use SINGLE and INCR burst transfer operations

sdif_dma_mode_t mode

define the DMA mode

uint8_t dmaDesSkipLen

define the descriptor skip length ,the length between two descriptor this field is special for dual DMA mode

uint32_t *dmaDesBufferStartAddr

internal DMA descriptor start address

uint32_t dmaDesBufferLen

internal DMA buffer descriptor buffer len ,user need to pay attention to the dma descriptor buffer length if it is bigger enough for your transfer

struct _sdif_data
#include <fsl_sdif.h>

Card data descriptor.

Public Members

bool streamTransfer

indicate this is a stream data transfer command

bool enableAutoCommand12

indicate if auto stop will send when data transfer over

bool enableIgnoreError

indicate if enable ignore error when transfer data

size_t blockSize

Block size, take care when configure this parameter

uint32_t blockCount

Block count

uint32_t *rxData

data buffer to receive

const uint32_t *txData

data buffer to transfer

struct _sdif_command
#include <fsl_sdif.h>

Card command descriptor.

Define card command-related attribute.

Public Members

uint32_t index

Command index

uint32_t argument

Command argument

uint32_t response[4U]

Response for this command

uint32_t type

define the command type

uint32_t responseType

Command response type

uint32_t flags

Cmd flags

uint32_t responseErrorFlags

response error flags, need to check the flags when receive the cmd response

struct _sdif_transfer
#include <fsl_sdif.h>

Transfer state.

Public Members

sdif_data_t *data

Data to transfer

sdif_command_t *command

Command to send

struct _sdif_config
#include <fsl_sdif.h>

Data structure to initialize the sdif.

Public Members

uint8_t responseTimeout

command response timeout value

uint32_t cardDetDebounce_Clock

define the debounce clock count which will used in card detect logic,typical value is 5-25ms

uint32_t dataTimeout

data timeout value

struct _sdif_capability
#include <fsl_sdif.h>

SDIF capability information. Defines a structure to get the capability information of SDIF.

Public Members

uint32_t sdVersion

support SD card/sdio version

uint32_t mmcVersion

support emmc card version

uint32_t maxBlockLength

Maximum block length united as byte

uint32_t maxBlockCount

Maximum byte count can be transfered

uint32_t flags

Capability flags to indicate the support information

struct _sdif_transfer_callback
#include <fsl_sdif.h>

sdif callback functions.

Public Members

void (*cardInserted)(SDIF_Type *base, void *userData)

card insert call back

void (*cardRemoved)(SDIF_Type *base, void *userData)

card remove call back

void (*SDIOInterrupt)(SDIF_Type *base, void *userData)

SDIO card interrupt occurs

void (*DMADesUnavailable)(SDIF_Type *base, void *userData)

DMA descriptor unavailable

void (*CommandReload)(SDIF_Type *base, void *userData)

command buffer full,need re-load

void (*TransferComplete)(SDIF_Type *base, void *handle, status_t status, void *userData)

Transfer complete callback

struct _sdif_handle
#include <fsl_sdif.h>

sdif handle

Defines the structure to save the sdif state information and callback function. The detail interrupt status when send command or transfer data can be obtained from interruptFlags field by using mask defined in sdif_interrupt_flag_t;

Note

All the fields except interruptFlags and transferredWords must be allocated by the user.

Public Members

sdif_data_t *volatile data

Data to transfer

sdif_command_t *volatile command

Command to send

volatile uint32_t transferredWords

Words transferred by polling way

sdif_transfer_callback_t callback

Callback function

void *userData

Parameter for transfer complete callback

struct _sdif_host
#include <fsl_sdif.h>

sdif host descriptor

Public Members

SDIF_Type *base

sdif peripheral base address

uint32_t sourceClock_Hz

sdif source clock frequency united in Hz

sdif_config_t config

sdif configuration

sdif_transfer_function_t transfer

sdif transfer function

sdif_capability_t capability

sdif capability information

SHA: SHA encryption decryption driver

FSL_SHA_DRIVER_VERSION

Defines LPC SHA driver version 2.3.2.

Current version: 2.3.2

Change log:

  • Version 2.0.0

    • Initial version

  • Version 2.1.0

    • Updated “sha_ldm_stm_16_words” “sha_one_block” API to match QN9090. QN9090 has no ALIAS register.

    • Added “SHA_ClkInit” “SHA_ClkInit”

  • Version 2.1.1

    • MISRA C-2012 issue fixed: rule 10.3, 10.4, 11.9, 14.4, 16.4 and 17.7.

  • Version 2.2.0

    • Support MEMADDR pseudo DMA for loading input data in SHA_Update function (LPCXpresso54018 and LPCXpresso54628).

  • Version 2.2.1

    • MISRA C-2012 issue fix.

  • Version 2.2.2 Modified SHA_Finish function. While using pseudo DMA with maximum optimization, compiler optimize out condition. Which caused block in this function and did not check state, which has been set in interrupt.

  • Version 2.3.0 Modified SHA_Update to use blocking version of AHB Master mode when its available on chip. Added SHA_UpdateNonBlocking() function which uses nonblocking AHB Master mode. Fixed incorrect calculation of SHA when calling SHA_Update multiple times when is CPU used to load data. Added Reset into SHA_ClkInit and SHA_ClkDeinit function.

  • Version 2.3.1 Modified sha_process_message_data_master() to ensure that MEMCTRL will be written within 64 cycles of writing last word to INDATA as is mentioned in errata, even with different optimization levels.

  • Version 2.3.2 Add -O2 optimization for GCC to sha_process_message_data_master(), because without it the function hangs under some conditions.

enum _sha_algo_t

Supported cryptographic block cipher functions for HASH creation

Values:

enumerator kSHA_Sha1

SHA_1

enumerator kSHA_Sha256

SHA_256

typedef enum _sha_algo_t sha_algo_t

Supported cryptographic block cipher functions for HASH creation

typedef struct _sha_ctx_t sha_ctx_t

Storage type used to save hash context.

typedef void (*sha_callback_t)(SHA_Type *base, sha_ctx_t *ctx, status_t status, void *userData)

background hash callback function.

SHA_CTX_SIZE

SHA Context size.

struct _sha_ctx_t
#include <fsl_sha.h>

Storage type used to save hash context.

Sha_algorithm_level_api

status_t SHA_Init(SHA_Type *base, sha_ctx_t *ctx, sha_algo_t algo)

Initialize HASH context.

This function initializes new hash context.

Parameters:
  • base – SHA peripheral base address

  • ctx[out] Output hash context

  • algo – Underlaying algorithm to use for hash computation. Either SHA-1 or SHA-256.

Returns:

Status of initialization

status_t SHA_Update(SHA_Type *base, sha_ctx_t *ctx, const uint8_t *message, size_t messageSize)

Add data to current HASH.

Add data to current HASH. This can be called repeatedly with an arbitrary amount of data to be hashed.

Parameters:
  • base – SHA peripheral base address

  • ctx[inout] HASH context

  • message – Input message

  • messageSize – Size of input message in bytes

Returns:

Status of the hash update operation

status_t SHA_Finish(SHA_Type *base, sha_ctx_t *ctx, uint8_t *output, size_t *outputSize)

Finalize hashing.

Outputs the final hash and erases the context. SHA-1 or SHA-256 padding bits are automatically added by this function.

Parameters:
  • base – SHA peripheral base address

  • ctx[inout] HASH context

  • output[out] Output hash data

  • outputSize[inout] On input, determines the size of bytes of the output array. On output, tells how many bytes have been written to output.

Returns:

Status of the hash finish operation

void SHA_SetCallback(SHA_Type *base, sha_ctx_t *ctx, sha_callback_t callback, void *userData)

Initializes the SHA handle for background hashing.

This function initializes the hash context for background hashing (Non-blocking) APIs. This is less typical interface to hash function, but can be used for parallel processing, when main CPU has something else to do. Example is digital signature RSASSA-PKCS1-V1_5-VERIFY((n,e),M,S) algorithm, where background hashing of M can be started, then CPU can compute S^e mod n (in parallel with background hashing) and once the digest becomes available, CPU can proceed to comparison of EM with EM’.

Parameters:
  • base – SHA peripheral base address.

  • ctx[out] Hash context.

  • callback – Callback function.

  • userData – User data (to be passed as an argument to callback function, once callback is invoked from isr).

status_t SHA_UpdateNonBlocking(SHA_Type *base, sha_ctx_t *ctx, const uint8_t *input, size_t inputSize)

Create running hash on given data.

Configures the SHA to compute new running hash as AHB master and returns immediately. SHA AHB Master mode supports only aligned input address and can be called only once per continuous block of data. Every call to this function must be preceded with SHA_Init() and finished with _SHA_Finish(). Once callback function is invoked by SHA isr, it should set a flag for the main application to finalize the hashing (padding) and to read out the final digest by calling SHA_Finish().

Parameters:
  • base – SHA peripheral base address

  • ctx – Specifies callback. Last incomplete 512-bit block of the input is copied into clear buffer for padding.

  • input – 32-bit word aligned pointer to Input data.

  • inputSize – Size of input data in bytes (must be word aligned)

Returns:

Status of the hash update operation.

void SHA_ClkInit(SHA_Type *base)

Start SHA clock.

Start SHA clock

Parameters:
  • base – SHA peripheral base address

void SHA_ClkDeinit(SHA_Type *base)

Stop SHA clock.

Stop SHA clock

Parameters:
  • base – SHA peripheral base address

SPI: Serial Peripheral Interface Driver

SPI DMA Driver

status_t SPI_MasterTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_dma_callback_t callback, void *userData, dma_handle_t *txHandle, dma_handle_t *rxHandle)

Initialize the SPI master DMA handle.

This function initializes the SPI master DMA handle which can be used for other SPI master transactional APIs. Usually, for a specified SPI instance, user need only call this API once to get the initialized handle.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI handle pointer.

  • callback – User callback function called at the end of a transfer.

  • userData – User data for callback.

  • txHandle – DMA handle pointer for SPI Tx, the handle shall be static allocated by users.

  • rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allocated by users.

status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)

Perform a non-blocking SPI transfer using DMA.

Note

This interface returned immediately after transfer initiates, users should call SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI DMA handle pointer.

  • xfer – Pointer to dma transfer structure.

Return values:
  • kStatus_Success – Successfully start a transfer.

  • kStatus_InvalidArgument – Input argument is invalid.

  • kStatus_SPI_Busy – SPI is not idle, is running another transfer.

status_t SPI_MasterHalfDuplexTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_half_duplex_transfer_t *xfer)

Transfers a block of data using a DMA method.

This function using polling way to do the first half transimission and using DMA way to do the srcond half transimission, the transfer mechanism is half-duplex. When do the second half transimission, code will return right away. When all data is transferred, the callback function is called.

Parameters:
  • base – SPI base pointer

  • handle – A pointer to the spi_master_dma_handle_t structure which stores the transfer state.

  • xfer – A pointer to the spi_half_duplex_transfer_t structure.

Returns:

status of status_t.

static inline status_t SPI_SlaveTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_dma_callback_t callback, void *userData, dma_handle_t *txHandle, dma_handle_t *rxHandle)

Initialize the SPI slave DMA handle.

This function initializes the SPI slave DMA handle which can be used for other SPI master transactional APIs. Usually, for a specified SPI instance, user need only call this API once to get the initialized handle.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI handle pointer.

  • callback – User callback function called at the end of a transfer.

  • userData – User data for callback.

  • txHandle – DMA handle pointer for SPI Tx, the handle shall be static allocated by users.

  • rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allocated by users.

static inline status_t SPI_SlaveTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)

Perform a non-blocking SPI transfer using DMA.

Note

This interface returned immediately after transfer initiates, users should call SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI DMA handle pointer.

  • xfer – Pointer to dma transfer structure.

Return values:
  • kStatus_Success – Successfully start a transfer.

  • kStatus_InvalidArgument – Input argument is invalid.

  • kStatus_SPI_Busy – SPI is not idle, is running another transfer.

void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)

Abort a SPI transfer using DMA.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI DMA handle pointer.

status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)

Gets the master DMA transfer remaining bytes.

This function gets the master DMA transfer remaining bytes.

Parameters:
  • base – SPI peripheral base address.

  • handle – A pointer to the spi_dma_handle_t structure which stores the transfer state.

  • count – A number of bytes transferred by the non-blocking transaction.

Returns:

status of status_t.

static inline void SPI_SlaveTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)

Abort a SPI transfer using DMA.

Parameters:
  • base – SPI peripheral base address.

  • handle – SPI DMA handle pointer.

static inline status_t SPI_SlaveTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)

Gets the slave DMA transfer remaining bytes.

This function gets the slave DMA transfer remaining bytes.

Parameters:
  • base – SPI peripheral base address.

  • handle – A pointer to the spi_dma_handle_t structure which stores the transfer state.

  • count – A number of bytes transferred by the non-blocking transaction.

Returns:

status of status_t.

FSL_SPI_DMA_DRIVER_VERSION

SPI DMA driver version 2.1.1.

typedef struct _spi_dma_handle spi_dma_handle_t
typedef void (*spi_dma_callback_t)(SPI_Type *base, spi_dma_handle_t *handle, status_t status, void *userData)

SPI DMA callback called at the end of transfer.

struct _spi_dma_handle
#include <fsl_spi_dma.h>

SPI DMA transfer handle, users should not touch the content of the handle.

Public Members

volatile bool txInProgress

Send transfer finished

volatile bool rxInProgress

Receive transfer finished

uint8_t bytesPerFrame

Bytes in a frame for SPI transfer

uint8_t lastwordBytes

The Bytes of lastword for master

dma_handle_t *txHandle

DMA handler for SPI send

dma_handle_t *rxHandle

DMA handler for SPI receive

spi_dma_callback_t callback

Callback for SPI DMA transfer

void *userData

User Data for SPI DMA callback

uint32_t state

Internal state of SPI DMA transfer

size_t transferSize

Bytes need to be transfer

uint32_t instance

Index of SPI instance

const uint8_t *txNextData

The pointer of next time tx data

const uint8_t *txEndData

The pointer of end of data

uint8_t *rxNextData

The pointer of next time rx data

uint8_t *rxEndData

The pointer of end of rx data

uint32_t dataBytesEveryTime

Bytes in a time for DMA transfer, default is DMA_MAX_TRANSFER_COUNT

SPI Driver

FSL_SPI_DRIVER_VERSION

SPI driver version.

enum _spi_xfer_option

SPI transfer option.

Values:

enumerator kSPI_FrameDelay

A delay may be inserted, defined in the DLY register.

enumerator kSPI_FrameAssert

SSEL will be deasserted at the end of a transfer

enum _spi_shift_direction

SPI data shifter direction options.

Values:

enumerator kSPI_MsbFirst

Data transfers start with most significant bit.

enumerator kSPI_LsbFirst

Data transfers start with least significant bit.

enum _spi_clock_polarity

SPI clock polarity configuration.

Values:

enumerator kSPI_ClockPolarityActiveHigh

Active-high SPI clock (idles low).

enumerator kSPI_ClockPolarityActiveLow

Active-low SPI clock (idles high).

enum _spi_clock_phase

SPI clock phase configuration.

Values:

enumerator kSPI_ClockPhaseFirstEdge

First edge on SCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ClockPhaseSecondEdge

First edge on SCK occurs at the start of the first cycle of a data transfer.

enum _spi_txfifo_watermark

txFIFO watermark values

Values:

enumerator kSPI_TxFifo0

SPI tx watermark is empty

enumerator kSPI_TxFifo1

SPI tx watermark at 1 item

enumerator kSPI_TxFifo2

SPI tx watermark at 2 items

enumerator kSPI_TxFifo3

SPI tx watermark at 3 items

enumerator kSPI_TxFifo4

SPI tx watermark at 4 items

enumerator kSPI_TxFifo5

SPI tx watermark at 5 items

enumerator kSPI_TxFifo6

SPI tx watermark at 6 items

enumerator kSPI_TxFifo7

SPI tx watermark at 7 items

enum _spi_rxfifo_watermark

rxFIFO watermark values

Values:

enumerator kSPI_RxFifo1

SPI rx watermark at 1 item

enumerator kSPI_RxFifo2

SPI rx watermark at 2 items

enumerator kSPI_RxFifo3

SPI rx watermark at 3 items

enumerator kSPI_RxFifo4

SPI rx watermark at 4 items

enumerator kSPI_RxFifo5

SPI rx watermark at 5 items

enumerator kSPI_RxFifo6

SPI rx watermark at 6 items

enumerator kSPI_RxFifo7

SPI rx watermark at 7 items

enumerator kSPI_RxFifo8

SPI rx watermark at 8 items

enum _spi_data_width

Transfer data width.

Values:

enumerator kSPI_Data4Bits

4 bits data width

enumerator kSPI_Data5Bits

5 bits data width

enumerator kSPI_Data6Bits

6 bits data width

enumerator kSPI_Data7Bits

7 bits data width

enumerator kSPI_Data8Bits

8 bits data width

enumerator kSPI_Data9Bits

9 bits data width

enumerator kSPI_Data10Bits

10 bits data width

enumerator kSPI_Data11Bits

11 bits data width

enumerator kSPI_Data12Bits

12 bits data width

enumerator kSPI_Data13Bits

13 bits data width

enumerator kSPI_Data14Bits

14 bits data width

enumerator kSPI_Data15Bits

15 bits data width

enumerator kSPI_Data16Bits

16 bits data width

enum _spi_ssel

Slave select.

Values:

enumerator kSPI_Ssel0

Slave select 0

enumerator kSPI_Ssel1

Slave select 1

enumerator kSPI_Ssel2

Slave select 2

enumerator kSPI_Ssel3

Slave select 3

enum _spi_spol

ssel polarity

Values:

enumerator kSPI_Spol0ActiveHigh
enumerator kSPI_Spol1ActiveHigh
enumerator kSPI_Spol3ActiveHigh
enumerator kSPI_SpolActiveAllHigh
enumerator kSPI_SpolActiveAllLow

SPI transfer status.

Values:

enumerator kStatus_SPI_Busy

SPI bus is busy

enumerator kStatus_SPI_Idle

SPI is idle

enumerator kStatus_SPI_Error

SPI error

enumerator kStatus_SPI_BaudrateNotSupport

Baudrate is not support in current clock source

enumerator kStatus_SPI_Timeout

SPI timeout polling status flags.

enum _spi_interrupt_enable

SPI interrupt sources.

Values:

enumerator kSPI_RxLvlIrq

Rx level interrupt

enumerator kSPI_TxLvlIrq

Tx level interrupt

enum _spi_statusflags

SPI status flags.

Values:

enumerator kSPI_TxEmptyFlag

txFifo is empty

enumerator kSPI_TxNotFullFlag

txFifo is not full

enumerator kSPI_RxNotEmptyFlag

rxFIFO is not empty

enumerator kSPI_RxFullFlag

rxFIFO is full

typedef enum _spi_xfer_option spi_xfer_option_t

SPI transfer option.

typedef enum _spi_shift_direction spi_shift_direction_t

SPI data shifter direction options.

typedef enum _spi_clock_polarity spi_clock_polarity_t

SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_clock_phase_t

SPI clock phase configuration.

typedef enum _spi_txfifo_watermark spi_txfifo_watermark_t

txFIFO watermark values

typedef enum _spi_rxfifo_watermark spi_rxfifo_watermark_t

rxFIFO watermark values

typedef enum _spi_data_width spi_data_width_t

Transfer data width.

typedef enum _spi_ssel spi_ssel_t

Slave select.

typedef enum _spi_spol spi_spol_t

ssel polarity

typedef struct _spi_delay_config spi_delay_config_t

SPI delay time configure structure. Note: The DLY register controls several programmable delays related to SPI signalling, it stands for how many SPI clock time will be inserted. The maxinun value of these delay time is 15.

typedef struct _spi_master_config spi_master_config_t

SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t

SPI slave user configure structure.

typedef struct _spi_transfer spi_transfer_t

SPI transfer structure.

typedef struct _spi_half_duplex_transfer spi_half_duplex_transfer_t

SPI half-duplex(master only) transfer structure.

typedef struct _spi_config spi_config_t

Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.

typedef struct _spi_master_handle spi_master_handle_t

Master handle type.

typedef spi_master_handle_t spi_slave_handle_t

Slave handle type.

typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t status, void *userData)

SPI master callback for finished transmit.

typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status, void *userData)

SPI slave callback for finished transmit.

typedef void (*flexcomm_spi_master_irq_handler_t)(SPI_Type *base, spi_master_handle_t *handle)

Typedef for master interrupt handler.

typedef void (*flexcomm_spi_slave_irq_handler_t)(SPI_Type *base, spi_slave_handle_t *handle)

Typedef for slave interrupt handler.

volatile uint8_t s_dummyData[]

SPI default SSEL COUNT.

Global variable for dummy data value setting.

SPI_DUMMYDATA

SPI dummy transfer data, the data is sent while txBuff is NULL.

SPI_RETRY_TIMES

Retry times for waiting flag.

SPI_DATA(n)
SPI_CTRLMASK
SPI_ASSERTNUM_SSEL(n)
SPI_DEASSERTNUM_SSEL(n)
SPI_DEASSERT_ALL
SPI_FIFOWR_FLAGS_MASK
SPI_FIFOTRIG_TXLVL_GET(base)
SPI_FIFOTRIG_RXLVL_GET(base)
struct _spi_delay_config
#include <fsl_spi.h>

SPI delay time configure structure. Note: The DLY register controls several programmable delays related to SPI signalling, it stands for how many SPI clock time will be inserted. The maxinun value of these delay time is 15.

Public Members

uint8_t preDelay

Delay between SSEL assertion and the beginning of transfer.

uint8_t postDelay

Delay between the end of transfer and SSEL deassertion.

uint8_t frameDelay

Delay between frame to frame.

uint8_t transferDelay

Delay between transfer to transfer.

struct _spi_master_config
#include <fsl_spi.h>

SPI master user configure structure.

Public Members

bool enableLoopback

Enable loopback for test purpose

bool enableMaster

Enable SPI at initialization time

spi_clock_polarity_t polarity

Clock polarity

spi_clock_phase_t phase

Clock phase

spi_shift_direction_t direction

MSB or LSB

uint32_t baudRate_Bps

Baud Rate for SPI in Hz

spi_data_width_t dataWidth

Width of the data

spi_ssel_t sselNum

Slave select number

spi_spol_t sselPol

Configure active CS polarity

uint8_t txWatermark

txFIFO watermark

uint8_t rxWatermark

rxFIFO watermark

spi_delay_config_t delayConfig

Delay configuration.

struct _spi_slave_config
#include <fsl_spi.h>

SPI slave user configure structure.

Public Members

bool enableSlave

Enable SPI at initialization time

spi_clock_polarity_t polarity

Clock polarity

spi_clock_phase_t phase

Clock phase

spi_shift_direction_t direction

MSB or LSB

spi_data_width_t dataWidth

Width of the data

spi_spol_t sselPol

Configure active CS polarity

uint8_t txWatermark

txFIFO watermark

uint8_t rxWatermark

rxFIFO watermark

struct _spi_transfer
#include <fsl_spi.h>

SPI transfer structure.

Public Members

const uint8_t *txData

Send buffer

uint8_t *rxData

Receive buffer

uint32_t configFlags

Additional option to control transfer, spi_xfer_option_t.

size_t dataSize

Transfer bytes

struct _spi_half_duplex_transfer
#include <fsl_spi.h>

SPI half-duplex(master only) transfer structure.

Public Members

const uint8_t *txData

Send buffer

uint8_t *rxData

Receive buffer

size_t txDataSize

Transfer bytes for transmit

size_t rxDataSize

Transfer bytes

uint32_t configFlags

Transfer configuration flags, spi_xfer_option_t.

bool isPcsAssertInTransfer

If PCS pin keep assert between transmit and receive. true for assert and false for deassert.

bool isTransmitFirst

True for transmit first and false for receive first.

struct _spi_config
#include <fsl_spi.h>

Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.

struct _spi_master_handle
#include <fsl_spi.h>

SPI transfer handle structure.

Public Members

const uint8_t *volatile txData

Transfer buffer

uint8_t *volatile rxData

Receive buffer

volatile size_t txRemainingBytes

Number of data to be transmitted [in bytes]

volatile size_t rxRemainingBytes

Number of data to be received [in bytes]

volatile int8_t toReceiveCount

The number of data expected to receive in data width. Since the received count and sent count should be the same to complete the transfer, if the sent count is x and the received count is y, toReceiveCount is x-y.

size_t totalByteCount

A number of transfer bytes

volatile uint32_t state

SPI internal state

spi_master_callback_t callback

SPI callback

void *userData

Callback parameter

uint8_t dataWidth

Width of the data [Valid values: 1 to 16]

uint8_t sselNum

Slave select number to be asserted when transferring data [Valid values: 0 to 3]

uint32_t configFlags

Additional option to control transfer

uint8_t txWatermark

txFIFO watermark

uint8_t rxWatermark

rxFIFO watermark

SPIFI: SPIFI flash interface driver

void SPIFI_TransferTxCreateHandleDMA(SPIFI_Type *base, spifi_dma_handle_t *handle, spifi_dma_callback_t callback, void *userData, dma_handle_t *dmaHandle)

Initializes the SPIFI handle for send which is used in transactional functions and set the callback.

Parameters:
  • base – SPIFI peripheral base address

  • handle – Pointer to spifi_dma_handle_t structure

  • callback – SPIFI callback, NULL means no callback.

  • userData – User callback function data.

  • dmaHandle – User requested DMA handle for DMA transfer

void SPIFI_TransferRxCreateHandleDMA(SPIFI_Type *base, spifi_dma_handle_t *handle, spifi_dma_callback_t callback, void *userData, dma_handle_t *dmaHandle)

Initializes the SPIFI handle for receive which is used in transactional functions and set the callback.

Parameters:
  • base – SPIFI peripheral base address

  • handle – Pointer to spifi_dma_handle_t structure

  • callback – SPIFI callback, NULL means no callback.

  • userData – User callback function data.

  • dmaHandle – User requested DMA handle for DMA transfer

status_t SPIFI_TransferSendDMA(SPIFI_Type *base, spifi_dma_handle_t *handle, spifi_transfer_t *xfer)

Transfers SPIFI data using an DMA non-blocking method.

This function writes data to the SPIFI transmit FIFO. This function is non-blocking.

Parameters:
  • base – Pointer to QuadSPI Type.

  • handle – Pointer to spifi_dma_handle_t structure

  • xfer – SPIFI transfer structure.

status_t SPIFI_TransferReceiveDMA(SPIFI_Type *base, spifi_dma_handle_t *handle, spifi_transfer_t *xfer)

Receives data using an DMA non-blocking method.

This function receive data from the SPIFI receive buffer/FIFO. This function is non-blocking.

Parameters:
  • base – Pointer to QuadSPI Type.

  • handle – Pointer to spifi_dma_handle_t structure

  • xfer – SPIFI transfer structure.

void SPIFI_TransferAbortSendDMA(SPIFI_Type *base, spifi_dma_handle_t *handle)

Aborts the sent data using DMA.

This function aborts the sent data using DMA.

Parameters:
  • base – SPIFI peripheral base address.

  • handle – Pointer to spifi_dma_handle_t structure

void SPIFI_TransferAbortReceiveDMA(SPIFI_Type *base, spifi_dma_handle_t *handle)

Aborts the receive data using DMA.

This function abort receive data which using DMA.

Parameters:
  • base – SPIFI peripheral base address.

  • handle – Pointer to spifi_dma_handle_t structure

status_t SPIFI_TransferGetSendCountDMA(SPIFI_Type *base, spifi_dma_handle_t *handle, size_t *count)

Gets the transferred counts of send.

Parameters:
  • base – Pointer to QuadSPI Type.

  • handle – Pointer to spifi_dma_handle_t structure.

  • count – Bytes sent.

Return values:
  • kStatus_Success – Succeed get the transfer count.

  • kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.

status_t SPIFI_TransferGetReceiveCountDMA(SPIFI_Type *base, spifi_dma_handle_t *handle, size_t *count)

Gets the status of the receive transfer.

Parameters:
  • base – Pointer to QuadSPI Type.

  • handle – Pointer to spifi_dma_handle_t structure

  • count – Bytes received.

Return values:
  • kStatus_Success – Succeed get the transfer count.

  • kStatus_NoTransferInProgress – There is not a non-blocking transaction currently in progress.

uint32_t SPIFI_GetInstance(SPIFI_Type *base)

Get the SPIFI instance from peripheral base address.

Parameters:
  • base – SPIFI peripheral base address.

Returns:

SPIFI instance.

void SPIFI_Init(SPIFI_Type *base, const spifi_config_t *config)

Initializes the SPIFI with the user configuration structure.

This function configures the SPIFI module with the user-defined configuration.

Parameters:
  • base – SPIFI peripheral base address.

  • config – The pointer to the configuration structure.

void SPIFI_GetDefaultConfig(spifi_config_t *config)

Get SPIFI default configure settings.

Parameters:
  • config – SPIFI config structure pointer.

void SPIFI_Deinit(SPIFI_Type *base)

Deinitializes the SPIFI regions.

Parameters:
  • base – SPIFI peripheral base address.

void SPIFI_SetCommand(SPIFI_Type *base, spifi_command_t *cmd)

Set SPIFI flash command.

Parameters:
  • base – SPIFI peripheral base address.

  • cmd – SPIFI command structure pointer.

static inline void SPIFI_SetCommandAddress(SPIFI_Type *base, uint32_t addr)

Set SPIFI command address.

Parameters:
  • base – SPIFI peripheral base address.

  • addr – Address value for the command.

static inline void SPIFI_SetIntermediateData(SPIFI_Type *base, uint32_t val)

Set SPIFI intermediate data.

Before writing a command wihch needs specific intermediate value, users shall call this function to write it. The main use of this function for current serial flash is to select no-opcode mode and cancelling this mode. As dummy cycle do not care about the value, no need to call this function.

Parameters:
  • base – SPIFI peripheral base address.

  • val – Intermediate data.

static inline void SPIFI_SetCacheLimit(SPIFI_Type *base, uint32_t val)

Set SPIFI Cache limit value.

SPIFI includes caching of prevously-accessed data to improve performance. Software can write an address to this function, to prevent such caching at and above the address.

Parameters:
  • base – SPIFI peripheral base address.

  • val – Zero-based upper limit of cacheable memory.

static inline void SPIFI_ResetCommand(SPIFI_Type *base)

Reset the command field of SPIFI.

This function is used to abort the current command or memory mode.

Parameters:
  • base – SPIFI peripheral base address.

void SPIFI_SetMemoryCommand(SPIFI_Type *base, spifi_command_t *cmd)

Set SPIFI flash AHB read command.

Call this function means SPIFI enters to memory mode, while users need to use command, a SPIFI_ResetCommand shall be called.

Parameters:
  • base – SPIFI peripheral base address.

  • cmd – SPIFI command structure pointer.

static inline void SPIFI_EnableInterrupt(SPIFI_Type *base, uint32_t mask)

Enable SPIFI interrupt.

The interrupt is triggered only in command mode, and it means the command now is finished.

Parameters:
  • base – SPIFI peripheral base address.

  • mask – SPIFI interrupt enable mask. It is a logic OR of members the enumeration :: spifi_interrupt_enable_t

static inline void SPIFI_DisableInterrupt(SPIFI_Type *base, uint32_t mask)

Disable SPIFI interrupt.

The interrupt is triggered only in command mode, and it means the command now is finished.

Parameters:
  • base – SPIFI peripheral base address.

  • mask – SPIFI interrupt enable mask. It is a logic OR of members the enumeration :: spifi_interrupt_enable_t

static inline uint32_t SPIFI_GetStatusFlag(SPIFI_Type *base)

Get the status of all interrupt flags for SPIFI.

Parameters:
  • base – SPIFI peripheral base address.

Returns:

SPIFI flag status

FSL_SPIFI_DMA_DRIVER_VERSION

SPIFI DMA driver version 2.0.3.

FSL_SPIFI_DRIVER_VERSION

SPIFI driver version 2.0.3.

Status structure of SPIFI.

Values:

enumerator kStatus_SPIFI_Idle

SPIFI is in idle state

enumerator kStatus_SPIFI_Busy

SPIFI is busy

enumerator kStatus_SPIFI_Error

Error occurred during SPIFI transfer

enum _spifi_interrupt_enable

SPIFI interrupt source.

Values:

enumerator kSPIFI_CommandFinishInterruptEnable

Interrupt while command finished

enum _spifi_spi_mode

SPIFI SPI mode select.

Values:

enumerator kSPIFI_SPISckLow

SCK low after last bit of command, keeps low while CS high

enumerator kSPIFI_SPISckHigh

SCK high after last bit of command and while CS high

enum _spifi_dual_mode

SPIFI dual mode select.

Values:

enumerator kSPIFI_QuadMode

SPIFI uses IO3:0

enumerator kSPIFI_DualMode

SPIFI uses IO1:0

enum _spifi_data_direction

SPIFI data direction.

Values:

enumerator kSPIFI_DataInput

Data input from serial flash.

enumerator kSPIFI_DataOutput

Data output to serial flash.

enum _spifi_command_format

SPIFI command opcode format.

Values:

enumerator kSPIFI_CommandAllSerial

All fields of command are serial.

enumerator kSPIFI_CommandDataQuad

Only data field is dual/quad, others are serial.

enumerator kSPIFI_CommandOpcodeSerial

Only opcode field is serial, others are quad/dual.

enumerator kSPIFI_CommandAllQuad

All fields of command are dual/quad mode.

enum _spifi_command_type

SPIFI command type.

Values:

enumerator kSPIFI_CommandOpcodeOnly

Command only have opcode, no address field

enumerator kSPIFI_CommandOpcodeAddrOneByte

Command have opcode and also one byte address field

enumerator kSPIFI_CommandOpcodeAddrTwoBytes

Command have opcode and also two bytes address field

enumerator kSPIFI_CommandOpcodeAddrThreeBytes

Command have opcode and also three bytes address field.

enumerator kSPIFI_CommandOpcodeAddrFourBytes

Command have opcode and also four bytes address field

enumerator kSPIFI_CommandNoOpcodeAddrThreeBytes

Command have no opcode and three bytes address field

enumerator kSPIFI_CommandNoOpcodeAddrFourBytes

Command have no opcode and four bytes address field

SPIFI status flags.

Values:

enumerator kSPIFI_MemoryCommandWriteFinished

Memory command write finished

enumerator kSPIFI_CommandWriteFinished

Command write finished

enumerator kSPIFI_InterruptRequest

CMD flag from 1 to 0, means command execute finished

typedef struct _spifi_dma_handle spifi_dma_handle_t
typedef void (*spifi_dma_callback_t)(SPIFI_Type *base, spifi_dma_handle_t *handle, status_t status, void *userData)

SPIFI DMA transfer callback function for finish and error.

typedef enum _spifi_interrupt_enable spifi_interrupt_enable_t

SPIFI interrupt source.

typedef enum _spifi_spi_mode spifi_spi_mode_t

SPIFI SPI mode select.

typedef enum _spifi_dual_mode spifi_dual_mode_t

SPIFI dual mode select.

typedef enum _spifi_data_direction spifi_data_direction_t

SPIFI data direction.

typedef enum _spifi_command_format spifi_command_format_t

SPIFI command opcode format.

typedef enum _spifi_command_type spifi_command_type_t

SPIFI command type.

typedef struct _spifi_command spifi_command_t

SPIFI command structure.

typedef struct _spifi_config spifi_config_t

SPIFI region configuration structure.

typedef struct _spifi_transfer spifi_transfer_t

Transfer structure for SPIFI.

static inline void SPIFI_EnableDMA(SPIFI_Type *base, bool enable)

Enable or disable DMA request for SPIFI.

Parameters:
  • base – SPIFI peripheral base address.

  • enable – True means enable DMA and false means disable DMA.

static inline uint32_t SPIFI_GetDataRegisterAddress(SPIFI_Type *base)

Gets the SPIFI data register address.

This API is used to provide a transfer address for the SPIFI DMA transfer configuration.

Parameters:
  • base – SPIFI base pointer

Returns:

data register address

static inline void SPIFI_WriteData(SPIFI_Type *base, uint32_t data)

Write a word data in address of SPIFI.

Users can write a page or at least a word data into SPIFI address.

Parameters:
  • base – SPIFI peripheral base address.

  • data – Data need be write.

static inline void SPIFI_WriteDataByte(SPIFI_Type *base, uint8_t data)

Write a byte data in address of SPIFI.

Users can write a byte data into SPIFI address.

Parameters:
  • base – SPIFI peripheral base address.

  • data – Data need be write.

void SPIFI_WriteDataHalfword(SPIFI_Type *base, uint16_t data)

Write a halfword data in address of SPIFI.

Users can write a halfword data into SPIFI address.

Parameters:
  • base – SPIFI peripheral base address.

  • data – Data need be write.

static inline uint32_t SPIFI_ReadData(SPIFI_Type *base)

Read data from serial flash.

Users should notice before call this function, the data length field in command register shall larger than 4, otherwise a hardfault will happen.

Parameters:
  • base – SPIFI peripheral base address.

Returns:

Data input from flash.

static inline uint8_t SPIFI_ReadDataByte(SPIFI_Type *base)

Read a byte data from serial flash.

Parameters:
  • base – SPIFI peripheral base address.

Returns:

Data input from flash.

uint16_t SPIFI_ReadDataHalfword(SPIFI_Type *base)

Read a halfword data from serial flash.

Parameters:
  • base – SPIFI peripheral base address.

Returns:

Data input from flash.

struct _spifi_dma_handle
#include <fsl_spifi_dma.h>

SPIFI DMA transfer handle, users should not touch the content of the handle.

Public Members

dma_handle_t *dmaHandle

DMA handler for SPIFI send

size_t transferSize

Bytes need to transfer.

uint32_t state

Internal state for SPIFI DMA transfer

spifi_dma_callback_t callback

Callback for users while transfer finish or error occurred

void *userData

User callback parameter

struct _spifi_command
#include <fsl_spifi.h>

SPIFI command structure.

Public Members

uint16_t dataLen

How many data bytes are needed in this command.

bool isPollMode

For command need to read data from serial flash

spifi_data_direction_t direction

Data direction of this command.

uint8_t intermediateBytes

How many intermediate bytes needed

spifi_command_format_t format

Command format

spifi_command_type_t type

Command type

uint8_t opcode

Command opcode value

struct _spifi_config
#include <fsl_spifi.h>

SPIFI region configuration structure.

Public Members

uint16_t timeout

SPI transfer timeout, the unit is SCK cycles

uint8_t csHighTime

CS high time cycles

bool disablePrefetch

True means SPIFI will not attempt a speculative prefetch.

bool disableCachePrefech

Disable prefetch of cache line

bool isFeedbackClock

Is data sample uses feedback clock.

spifi_spi_mode_t spiMode

SPIFI spi mode select

bool isReadFullClockCycle

If enable read full clock cycle.

spifi_dual_mode_t dualMode

SPIFI dual mode, dual or quad.

struct _spifi_transfer
#include <fsl_spifi.h>

Transfer structure for SPIFI.

Public Members

uint8_t *data

Pointer to data to transmit

size_t dataSize

Bytes to be transmit

SPIFI DMA Driver

SPIFI Driver

USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver

USART DMA Driver

status_t USART_TransferCreateHandleDMA(USART_Type *base, usart_dma_handle_t *handle, usart_dma_transfer_callback_t callback, void *userData, dma_handle_t *txDmaHandle, dma_handle_t *rxDmaHandle)

Initializes the USART handle which is used in transactional functions.

Parameters:
  • base – USART peripheral base address.

  • handle – Pointer to usart_dma_handle_t structure.

  • callback – Callback function.

  • userData – User data.

  • txDmaHandle – User-requested DMA handle for TX DMA transfer.

  • rxDmaHandle – User-requested DMA handle for RX DMA transfer.

status_t USART_TransferSendDMA(USART_Type *base, usart_dma_handle_t *handle, usart_transfer_t *xfer)

Sends data using DMA.

This function sends data using DMA. This is a non-blocking function, which returns right away. When all data is sent, the send callback function is called.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • xfer – USART DMA transfer structure. See usart_transfer_t.

Return values:
  • kStatus_Success – if succeed, others failed.

  • kStatus_USART_TxBusy – Previous transfer on going.

  • kStatus_InvalidArgument – Invalid argument.

status_t USART_TransferReceiveDMA(USART_Type *base, usart_dma_handle_t *handle, usart_transfer_t *xfer)

Receives data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right away. When all data is received, the receive callback function is called.

Parameters:
  • base – USART peripheral base address.

  • handle – Pointer to usart_dma_handle_t structure.

  • xfer – USART DMA transfer structure. See usart_transfer_t.

Return values:
  • kStatus_Success – if succeed, others failed.

  • kStatus_USART_RxBusy – Previous transfer on going.

  • kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortSendDMA(USART_Type *base, usart_dma_handle_t *handle)

Aborts the sent data using DMA.

This function aborts send data using DMA.

Parameters:
  • base – USART peripheral base address

  • handle – Pointer to usart_dma_handle_t structure

void USART_TransferAbortReceiveDMA(USART_Type *base, usart_dma_handle_t *handle)

Aborts the received data using DMA.

This function aborts the received data using DMA.

Parameters:
  • base – USART peripheral base address

  • handle – Pointer to usart_dma_handle_t structure

status_t USART_TransferGetReceiveCountDMA(USART_Type *base, usart_dma_handle_t *handle, uint32_t *count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • count – Receive bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

status_t USART_TransferGetSendCountDMA(USART_Type *base, usart_dma_handle_t *handle, uint32_t *count)

Get the number of bytes that have been sent.

This function gets the number of bytes that have been sent.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • count – Sent bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

FSL_USART_DMA_DRIVER_VERSION

USART dma driver version.

typedef struct _usart_dma_handle usart_dma_handle_t
typedef void (*usart_dma_transfer_callback_t)(USART_Type *base, usart_dma_handle_t *handle, status_t status, void *userData)

UART transfer callback function.

struct _usart_dma_handle
#include <fsl_usart_dma.h>

UART DMA handle.

Public Members

USART_Type *base

UART peripheral base address.

usart_dma_transfer_callback_t callback

Callback function.

void *userData

UART callback function parameter.

size_t rxDataSizeAll

Size of the data to receive.

size_t txDataSizeAll

Size of the data to send out.

dma_handle_t *txDmaHandle

The DMA TX channel used.

dma_handle_t *rxDmaHandle

The DMA RX channel used.

volatile uint8_t txState

TX transfer state.

volatile uint8_t rxState

RX transfer state

USART Driver

status_t USART_Init(USART_Type *base, const usart_config_t *config, uint32_t srcClock_Hz)

Initializes a USART instance with user configuration structure and peripheral clock.

This function configures the USART module with the user-defined settings. The user can configure the configuration structure and also get the default configuration by using the USART_GetDefaultConfig() function. Example below shows how to use this API to configure USART.

usart_config_t usartConfig;
usartConfig.baudRate_Bps = 115200U;
usartConfig.parityMode = kUSART_ParityDisabled;
usartConfig.stopBitCount = kUSART_OneStopBit;
USART_Init(USART1, &usartConfig, 20000000U);

Parameters:
  • base – USART peripheral base address.

  • config – Pointer to user-defined configuration structure.

  • srcClock_Hz – USART clock source frequency in HZ.

Return values:
  • kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.

  • kStatus_InvalidArgument – USART base address is not valid

  • kStatus_Success – Status USART initialize succeed

void USART_Deinit(USART_Type *base)

Deinitializes a USART instance.

This function waits for TX complete, disables TX and RX, and disables the USART clock.

Parameters:
  • base – USART peripheral base address.

void USART_GetDefaultConfig(usart_config_t *config)

Gets the default configuration structure.

This function initializes the USART configuration structure to a default value. The default values are: usartConfig->baudRate_Bps = 115200U; usartConfig->parityMode = kUSART_ParityDisabled; usartConfig->stopBitCount = kUSART_OneStopBit; usartConfig->bitCountPerChar = kUSART_8BitsPerChar; usartConfig->loopback = false; usartConfig->enableTx = false; usartConfig->enableRx = false;

Parameters:
  • config – Pointer to configuration structure.

status_t USART_SetBaudRate(USART_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)

Sets the USART instance baud rate.

This function configures the USART module baud rate. This function is used to update the USART module baud rate after the USART module is initialized by the USART_Init.

USART_SetBaudRate(USART1, 115200U, 20000000U);

Parameters:
  • base – USART peripheral base address.

  • baudrate_Bps – USART baudrate to be set.

  • srcClock_Hz – USART clock source frequency in HZ.

Return values:
  • kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.

  • kStatus_Success – Set baudrate succeed.

  • kStatus_InvalidArgument – One or more arguments are invalid.

status_t USART_Enable32kMode(USART_Type *base, uint32_t baudRate_Bps, bool enableMode32k, uint32_t srcClock_Hz)

Enable 32 kHz mode which USART uses clock from the RTC oscillator as the clock source.

Please note that in order to use a 32 kHz clock to operate USART properly, the RTC oscillator and its 32 kHz output must be manully enabled by user, by calling RTC_Init and setting SYSCON_RTCOSCCTRL_EN bit to 1. And in 32kHz clocking mode the USART can only work at 9600 baudrate or at the baudrate that 9600 can evenly divide, eg: 4800, 3200.

Parameters:
  • base – USART peripheral base address.

  • baudRate_Bps – USART baudrate to be set..

  • enableMode32k – true is 32k mode, false is normal mode.

  • srcClock_Hz – USART clock source frequency in HZ.

Return values:
  • kStatus_USART_BaudrateNotSupport – Baudrate is not support in current clock source.

  • kStatus_Success – Set baudrate succeed.

  • kStatus_InvalidArgument – One or more arguments are invalid.

void USART_Enable9bitMode(USART_Type *base, bool enable)

Enable 9-bit data mode for USART.

This function set the 9-bit mode for USART module. The 9th bit is not used for parity thus can be modified by user.

Parameters:
  • base – USART peripheral base address.

  • enable – true to enable, false to disable.

static inline void USART_SetMatchAddress(USART_Type *base, uint8_t address)

Set the USART slave address.

This function configures the address for USART module that works as slave in 9-bit data mode. When the address detection is enabled, the frame it receices with MSB being 1 is considered as an address frame, otherwise it is considered as data frame. Once the address frame matches slave’s own addresses, this slave is addressed. This address frame and its following data frames are stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave, just send an address frame with unmatched address.

Note

Any USART instance joined in the multi-slave system can work as slave. The position of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit data formats.

Parameters:
  • base – USART peripheral base address.

  • address – USART slave address.

static inline void USART_EnableMatchAddress(USART_Type *base, bool match)

Enable the USART match address feature.

Parameters:
  • base – USART peripheral base address.

  • match – true to enable match address, false to disable.

static inline uint32_t USART_GetStatusFlags(USART_Type *base)

Get USART status flags.

This function get all USART status flags, the flags are returned as the logical OR value of the enumerators _usart_flags. To check a specific status, compare the return value with enumerators in _usart_flags. For example, to check whether the TX is empty:

if (kUSART_TxFifoNotFullFlag & USART_GetStatusFlags(USART1))
{
    ...
}

Parameters:
  • base – USART peripheral base address.

Returns:

USART status flags which are ORed by the enumerators in the _usart_flags.

static inline void USART_ClearStatusFlags(USART_Type *base, uint32_t mask)

Clear USART status flags.

This function clear supported USART status flags. The mask is a logical OR of enumeration members. See kUSART_AllClearFlags. For example:

USART_ClearStatusFlags(USART1, kUSART_TxError | kUSART_RxError)

Parameters:
  • base – USART peripheral base address.

  • mask – status flags to be cleared.

static inline void USART_EnableInterrupts(USART_Type *base, uint32_t mask)

Enables USART interrupts according to the provided mask.

This function enables the USART interrupts according to the provided mask. The mask is a logical OR of enumeration members. See _usart_interrupt_enable. For example, to enable TX empty interrupt and RX full interrupt:

USART_EnableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_RxLevelInterruptEnable);

Parameters:
  • base – USART peripheral base address.

  • mask – The interrupts to enable. Logical OR of _usart_interrupt_enable.

static inline void USART_DisableInterrupts(USART_Type *base, uint32_t mask)

Disables USART interrupts according to a provided mask.

This function disables the USART interrupts according to a provided mask. The mask is a logical OR of enumeration members. See _usart_interrupt_enable. This example shows how to disable the TX empty interrupt and RX full interrupt:

USART_DisableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_RxLevelInterruptEnable);

Parameters:
  • base – USART peripheral base address.

  • mask – The interrupts to disable. Logical OR of _usart_interrupt_enable.

static inline uint32_t USART_GetEnabledInterrupts(USART_Type *base)

Returns enabled USART interrupts.

This function returns the enabled USART interrupts.

Parameters:
  • base – USART peripheral base address.

static inline void USART_EnableTxDMA(USART_Type *base, bool enable)

Enable DMA for Tx.

static inline void USART_EnableRxDMA(USART_Type *base, bool enable)

Enable DMA for Rx.

static inline void USART_EnableCTS(USART_Type *base, bool enable)

Enable CTS. This function will determine whether CTS is used for flow control.

Parameters:
  • base – USART peripheral base address.

  • enable – Enable CTS or not, true for enable and false for disable.

static inline void USART_EnableContinuousSCLK(USART_Type *base, bool enable)

Continuous Clock generation. By default, SCLK is only output while data is being transmitted in synchronous mode. Enable this funciton, SCLK will run continuously in synchronous mode, allowing characters to be received on Un_RxD independently from transmission on Un_TXD).

Parameters:
  • base – USART peripheral base address.

  • enable – Enable Continuous Clock generation mode or not, true for enable and false for disable.

static inline void USART_EnableAutoClearSCLK(USART_Type *base, bool enable)

Enable Continuous Clock generation bit auto clear. While enable this cuntion, the Continuous Clock bit is automatically cleared when a complete character has been received. This bit is cleared at the same time.

Parameters:
  • base – USART peripheral base address.

  • enable – Enable auto clear or not, true for enable and false for disable.

static inline void USART_SetRxFifoWatermark(USART_Type *base, uint8_t water)

Sets the rx FIFO watermark.

Parameters:
  • base – USART peripheral base address.

  • water – Rx FIFO watermark.

static inline void USART_SetTxFifoWatermark(USART_Type *base, uint8_t water)

Sets the tx FIFO watermark.

Parameters:
  • base – USART peripheral base address.

  • water – Tx FIFO watermark.

static inline void USART_WriteByte(USART_Type *base, uint8_t data)

Writes to the FIFOWR register.

This function writes data to the txFIFO directly. The upper layer must ensure that txFIFO has space for data to write before calling this function.

Parameters:
  • base – USART peripheral base address.

  • data – The byte to write.

static inline uint8_t USART_ReadByte(USART_Type *base)

Reads the FIFORD register directly.

This function reads data from the rxFIFO directly. The upper layer must ensure that the rxFIFO is not empty before calling this function.

Parameters:
  • base – USART peripheral base address.

Returns:

The byte read from USART data register.

static inline uint8_t USART_GetRxFifoCount(USART_Type *base)

Gets the rx FIFO data count.

Parameters:
  • base – USART peripheral base address.

Returns:

rx FIFO data count.

static inline uint8_t USART_GetTxFifoCount(USART_Type *base)

Gets the tx FIFO data count.

Parameters:
  • base – USART peripheral base address.

Returns:

tx FIFO data count.

void USART_SendAddress(USART_Type *base, uint8_t address)

Transmit an address frame in 9-bit data mode.

Parameters:
  • base – USART peripheral base address.

  • address – USART slave address.

status_t USART_WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)

Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty or for the TX FIFO to have room and writes data to the TX buffer.

Parameters:
  • base – USART peripheral base address.

  • data – Start address of the data to write.

  • length – Size of the data to write.

Return values:
  • kStatus_USART_Timeout – Transmission timed out and was aborted.

  • kStatus_InvalidArgument – Invalid argument.

  • kStatus_Success – Successfully wrote all data.

status_t USART_ReadBlocking(USART_Type *base, uint8_t *data, size_t length)

Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full or for RX FIFO to have data and read data from the TX register.

Parameters:
  • base – USART peripheral base address.

  • data – Start address of the buffer to store the received data.

  • length – Size of the buffer.

Return values:
  • kStatus_USART_FramingError – Receiver overrun happened while receiving data.

  • kStatus_USART_ParityError – Noise error happened while receiving data.

  • kStatus_USART_NoiseError – Framing error happened while receiving data.

  • kStatus_USART_RxError – Overflow or underflow rxFIFO happened.

  • kStatus_USART_Timeout – Transmission timed out and was aborted.

  • kStatus_Success – Successfully received all data.

status_t USART_TransferCreateHandle(USART_Type *base, usart_handle_t *handle, usart_transfer_callback_t callback, void *userData)

Initializes the USART handle.

This function initializes the USART handle which can be used for other USART transactional APIs. Usually, for a specified USART instance, call this API once to get the initialized handle.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • callback – The callback function.

  • userData – The parameter of the callback function.

status_t USART_TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle, usart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which returns directly without waiting for all data to be written to the TX register. When all data is written to the TX register in the IRQ handler, the USART driver calls the callback function and passes the kStatus_USART_TxIdle as status parameter.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • xfer – USART transfer structure. See usart_transfer_t.

Return values:
  • kStatus_Success – Successfully start the data transmission.

  • kStatus_USART_TxBusy – Previous transmission still not finished, data not all written to TX register yet.

  • kStatus_InvalidArgument – Invalid argument.

void USART_TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific USART handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when the user doesn’t call the USART_TransferReceiveNonBlocking() API. If there is already data received in the ring buffer, the user can get the received data from the ring buffer directly.

Note

When using the RX ring buffer, one byte is reserved for internal use. In other words, if ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • ringBuffer – Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer.

  • ringBufferSize – size of the ring buffer.

void USART_TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)

Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

size_t USART_TransferGetRxRingBufferLength(usart_handle_t *handle)

Get the length of received data in RX ring buffer.

Parameters:
  • handle – USART handle pointer.

Returns:

Length of received data in RX ring buffer.

void USART_TransferAbortSend(USART_Type *base, usart_handle_t *handle)

Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out how many bytes are still not sent out.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

status_t USART_TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t *count)

Get the number of bytes that have been sent out to bus.

This function gets the number of bytes that have been sent out to bus by interrupt method.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • count – Send bytes count.

Return values:
  • kStatus_NoTransferInProgress – No send in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

status_t USART_TransferReceiveNonBlocking(USART_Type *base, usart_handle_t *handle, usart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function, which returns without waiting for all data to be received. If the RX ring buffer is used and not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is not enough to read, the receive request is saved by the USART driver. When the new data arrives, the receive request is serviced first. When all data is received, the USART driver notifies the upper layer through a callback function and passes the status parameter kStatus_USART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns with the parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to the xfer->data. When all data is received, the upper layer is notified.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • xfer – USART transfer structure, see usart_transfer_t.

  • receivedBytes – Bytes received from the ring buffer directly.

Return values:
  • kStatus_Success – Successfully queue the transfer into transmit queue.

  • kStatus_USART_RxBusy – Previous receive request is not finished.

  • kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortReceive(USART_Type *base, usart_handle_t *handle)

Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out how many bytes not received yet.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

status_t USART_TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t *count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

  • count – Receive bytes count.

Return values:
  • kStatus_NoTransferInProgress – No receive in progress.

  • kStatus_InvalidArgument – Parameter is invalid.

  • kStatus_Success – Get successfully through the parameter count;

void USART_TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)

USART IRQ handle function.

This function handles the USART transmit and receive IRQ request.

Parameters:
  • base – USART peripheral base address.

  • handle – USART handle pointer.

FSL_USART_DRIVER_VERSION

USART driver version.

Error codes for the USART driver.

Values:

enumerator kStatus_USART_TxBusy

Transmitter is busy.

enumerator kStatus_USART_RxBusy

Receiver is busy.

enumerator kStatus_USART_TxIdle

USART transmitter is idle.

enumerator kStatus_USART_RxIdle

USART receiver is idle.

enumerator kStatus_USART_TxError

Error happens on txFIFO.

enumerator kStatus_USART_RxError

Error happens on rxFIFO.

enumerator kStatus_USART_RxRingBufferOverrun

Error happens on rx ring buffer

enumerator kStatus_USART_NoiseError

USART noise error.

enumerator kStatus_USART_FramingError

USART framing error.

enumerator kStatus_USART_ParityError

USART parity error.

enumerator kStatus_USART_BaudrateNotSupport

Baudrate is not support in current clock source

enum _usart_sync_mode

USART synchronous mode.

Values:

enumerator kUSART_SyncModeDisabled

Asynchronous mode.

enumerator kUSART_SyncModeSlave

Synchronous slave mode.

enumerator kUSART_SyncModeMaster

Synchronous master mode.

enum _usart_parity_mode

USART parity mode.

Values:

enumerator kUSART_ParityDisabled

Parity disabled

enumerator kUSART_ParityEven

Parity enabled, type even, bit setting: PE|PT = 10

enumerator kUSART_ParityOdd

Parity enabled, type odd, bit setting: PE|PT = 11

enum _usart_stop_bit_count

USART stop bit count.

Values:

enumerator kUSART_OneStopBit

One stop bit

enumerator kUSART_TwoStopBit

Two stop bits

enum _usart_data_len

USART data size.

Values:

enumerator kUSART_7BitsPerChar

Seven bit mode

enumerator kUSART_8BitsPerChar

Eight bit mode

enum _usart_clock_polarity

USART clock polarity configuration, used in sync mode.

Values:

enumerator kUSART_RxSampleOnFallingEdge

Un_RXD is sampled on the falling edge of SCLK.

enumerator kUSART_RxSampleOnRisingEdge

Un_RXD is sampled on the rising edge of SCLK.

enum _usart_txfifo_watermark

txFIFO watermark values

Values:

enumerator kUSART_TxFifo0

USART tx watermark is empty

enumerator kUSART_TxFifo1

USART tx watermark at 1 item

enumerator kUSART_TxFifo2

USART tx watermark at 2 items

enumerator kUSART_TxFifo3

USART tx watermark at 3 items

enumerator kUSART_TxFifo4

USART tx watermark at 4 items

enumerator kUSART_TxFifo5

USART tx watermark at 5 items

enumerator kUSART_TxFifo6

USART tx watermark at 6 items

enumerator kUSART_TxFifo7

USART tx watermark at 7 items

enum _usart_rxfifo_watermark

rxFIFO watermark values

Values:

enumerator kUSART_RxFifo1

USART rx watermark at 1 item

enumerator kUSART_RxFifo2

USART rx watermark at 2 items

enumerator kUSART_RxFifo3

USART rx watermark at 3 items

enumerator kUSART_RxFifo4

USART rx watermark at 4 items

enumerator kUSART_RxFifo5

USART rx watermark at 5 items

enumerator kUSART_RxFifo6

USART rx watermark at 6 items

enumerator kUSART_RxFifo7

USART rx watermark at 7 items

enumerator kUSART_RxFifo8

USART rx watermark at 8 items

enum _usart_interrupt_enable

USART interrupt configuration structure, default settings all disabled.

Values:

enumerator kUSART_TxErrorInterruptEnable
enumerator kUSART_RxErrorInterruptEnable
enumerator kUSART_TxLevelInterruptEnable
enumerator kUSART_RxLevelInterruptEnable
enumerator kUSART_TxIdleInterruptEnable

Transmitter idle.

enumerator kUSART_CtsChangeInterruptEnable

Change in the state of the CTS input.

enumerator kUSART_RxBreakChangeInterruptEnable

Break condition asserted or deasserted.

enumerator kUSART_RxStartInterruptEnable

Rx start bit detected.

enumerator kUSART_FramingErrorInterruptEnable

Framing error detected.

enumerator kUSART_ParityErrorInterruptEnable

Parity error detected.

enumerator kUSART_NoiseErrorInterruptEnable

Noise error detected.

enumerator kUSART_AutoBaudErrorInterruptEnable

Auto baudrate error detected.

enumerator kUSART_AllInterruptEnables
enum _usart_flags

USART status flags.

This provides constants for the USART status flags for use in the USART functions.

Values:

enumerator kUSART_TxError

TXERR bit, sets if TX buffer is error

enumerator kUSART_RxError

RXERR bit, sets if RX buffer is error

enumerator kUSART_TxFifoEmptyFlag

TXEMPTY bit, sets if TX buffer is empty

enumerator kUSART_TxFifoNotFullFlag

TXNOTFULL bit, sets if TX buffer is not full

enumerator kUSART_RxFifoNotEmptyFlag

RXNOEMPTY bit, sets if RX buffer is not empty

enumerator kUSART_RxFifoFullFlag

RXFULL bit, sets if RX buffer is full

enumerator kUSART_RxIdleFlag

Receiver idle.

enumerator kUSART_TxIdleFlag

Transmitter idle.

enumerator kUSART_CtsAssertFlag

CTS signal high.

enumerator kUSART_CtsChangeFlag

CTS signal changed interrupt status.

enumerator kUSART_BreakDetectFlag

Break detected. Self cleared when rx pin goes high again.

enumerator kUSART_BreakDetectChangeFlag

Break detect change interrupt flag. A change in the state of receiver break detection.

enumerator kUSART_RxStartFlag

Rx start bit detected interrupt flag.

enumerator kUSART_FramingErrorFlag

Framing error interrupt flag.

enumerator kUSART_ParityErrorFlag

parity error interrupt flag.

enumerator kUSART_NoiseErrorFlag

Noise error interrupt flag.

enumerator kUSART_AutobaudErrorFlag

Auto baudrate error interrupt flag, caused by the baudrate counter timeout before the end of start bit.

enumerator kUSART_AllClearFlags
typedef enum _usart_sync_mode usart_sync_mode_t

USART synchronous mode.

typedef enum _usart_parity_mode usart_parity_mode_t

USART parity mode.

typedef enum _usart_stop_bit_count usart_stop_bit_count_t

USART stop bit count.

typedef enum _usart_data_len usart_data_len_t

USART data size.

typedef enum _usart_clock_polarity usart_clock_polarity_t

USART clock polarity configuration, used in sync mode.

typedef enum _usart_txfifo_watermark usart_txfifo_watermark_t

txFIFO watermark values

typedef enum _usart_rxfifo_watermark usart_rxfifo_watermark_t

rxFIFO watermark values

typedef struct _usart_config usart_config_t

USART configuration structure.

typedef struct _usart_transfer usart_transfer_t

USART transfer structure.

typedef struct _usart_handle usart_handle_t
typedef void (*usart_transfer_callback_t)(USART_Type *base, usart_handle_t *handle, status_t status, void *userData)

USART transfer callback function.

typedef void (*flexcomm_usart_irq_handler_t)(USART_Type *base, usart_handle_t *handle)

Typedef for usart interrupt handler.

uint32_t USART_GetInstance(USART_Type *base)

Returns instance number for USART peripheral base address.

USART_FIFOTRIG_TXLVL_GET(base)
USART_FIFOTRIG_RXLVL_GET(base)
UART_RETRY_TIMES

Retry times for waiting flag.

Defining to zero means to keep waiting for the flag until it is assert/deassert in blocking transfer, otherwise the program will wait until the UART_RETRY_TIMES counts down to 0, if the flag still remains unchanged then program will return kStatus_USART_Timeout. It is not advised to use this macro in formal application to prevent any hardware error because the actual wait period is affected by the compiler and optimization.

struct _usart_config
#include <fsl_usart.h>

USART configuration structure.

Public Members

uint32_t baudRate_Bps

USART baud rate

usart_parity_mode_t parityMode

Parity mode, disabled (default), even, odd

usart_stop_bit_count_t stopBitCount

Number of stop bits, 1 stop bit (default) or 2 stop bits

usart_data_len_t bitCountPerChar

Data length - 7 bit, 8 bit

bool loopback

Enable peripheral loopback

bool enableRx

Enable RX

bool enableTx

Enable TX

bool enableContinuousSCLK

USART continuous Clock generation enable in synchronous master mode.

bool enableMode32k

USART uses 32 kHz clock from the RTC oscillator as the clock source.

bool enableHardwareFlowControl

Enable hardware control RTS/CTS

usart_txfifo_watermark_t txWatermark

txFIFO watermark

usart_rxfifo_watermark_t rxWatermark

rxFIFO watermark

usart_sync_mode_t syncMode

Transfer mode select - asynchronous, synchronous master, synchronous slave.

usart_clock_polarity_t clockPolarity

Selects the clock polarity and sampling edge in synchronous mode.

struct _usart_transfer
#include <fsl_usart.h>

USART transfer structure.

Public Members

size_t dataSize

The byte count to be transfer.

struct _usart_handle
#include <fsl_usart.h>

USART handle structure.

Public Members

const uint8_t *volatile txData

Address of remaining data to send.

volatile size_t txDataSize

Size of the remaining data to send.

size_t txDataSizeAll

Size of the data to send out.

uint8_t *volatile rxData

Address of remaining data to receive.

volatile size_t rxDataSize

Size of the remaining data to receive.

size_t rxDataSizeAll

Size of the data to receive.

uint8_t *rxRingBuffer

Start address of the receiver ring buffer.

size_t rxRingBufferSize

Size of the ring buffer.

volatile uint16_t rxRingBufferHead

Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail

Index for the user to get data from the ring buffer.

usart_transfer_callback_t callback

Callback function.

void *userData

USART callback function parameter.

volatile uint8_t txState

TX transfer state.

volatile uint8_t rxState

RX transfer state

uint8_t txWatermark

txFIFO watermark

uint8_t rxWatermark

rxFIFO watermark

union __unnamed36__

Public Members

uint8_t *data

The buffer of data to be transfer.

uint8_t *rxData

The buffer to receive data.

const uint8_t *txData

The buffer of data to be sent.

UTICK: MictoTick Timer Driver

void UTICK_Init(UTICK_Type *base)

Initializes an UTICK by turning its bus clock on.

void UTICK_Deinit(UTICK_Type *base)

Deinitializes a UTICK instance.

This function shuts down Utick bus clock

Parameters:
  • base – UTICK peripheral base address.

uint32_t UTICK_GetStatusFlags(UTICK_Type *base)

Get Status Flags.

This returns the status flag

Parameters:
  • base – UTICK peripheral base address.

Returns:

status register value

void UTICK_ClearStatusFlags(UTICK_Type *base)

Clear Status Interrupt Flags.

This clears intr status flag

Parameters:
  • base – UTICK peripheral base address.

Returns:

none

void UTICK_SetTick(UTICK_Type *base, utick_mode_t mode, uint32_t count, utick_callback_t cb)

Starts UTICK.

This function starts a repeat/onetime countdown with an optional callback

Parameters:
  • base – UTICK peripheral base address.

  • mode – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)

  • count – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)

  • cb – UTICK callback (can be left as NULL if none, otherwise should be a void func(void))

Returns:

none

void UTICK_HandleIRQ(UTICK_Type *base, utick_callback_t cb)

UTICK Interrupt Service Handler.

This function handles the interrupt and refers to the callback array in the driver to callback user (as per request in UTICK_SetTick()). if no user callback is scheduled, the interrupt will simply be cleared.

Parameters:
  • base – UTICK peripheral base address.

  • cb – callback scheduled for this instance of UTICK

Returns:

none

FSL_UTICK_DRIVER_VERSION

UTICK driver version 2.0.5.

enum _utick_mode

UTICK timer operational mode.

Values:

enumerator kUTICK_Onetime

Trigger once

enumerator kUTICK_Repeat

Trigger repeatedly

typedef enum _utick_mode utick_mode_t

UTICK timer operational mode.

typedef void (*utick_callback_t)(void)

UTICK callback function.

WWDT: Windowed Watchdog Timer Driver

void WWDT_GetDefaultConfig(wwdt_config_t *config)

Initializes WWDT configure structure.

This function initializes the WWDT configure structure to default value. The default value are:

config->enableWwdt = true;
config->enableWatchdogReset = false;
config->enableWatchdogProtect = false;
config->enableLockOscillator = false;
config->windowValue = 0xFFFFFFU;
config->timeoutValue = 0xFFFFFFU;
config->warningValue = 0;

See also

wwdt_config_t

Parameters:
  • config – Pointer to WWDT config structure.

void WWDT_Init(WWDT_Type *base, const wwdt_config_t *config)

Initializes the WWDT.

This function initializes the WWDT. When called, the WWDT runs according to the configuration.

Example:

wwdt_config_t config;
WWDT_GetDefaultConfig(&config);
config.timeoutValue = 0x7ffU;
WWDT_Init(wwdt_base,&config);

Parameters:
  • base – WWDT peripheral base address

  • config – The configuration of WWDT

void WWDT_Deinit(WWDT_Type *base)

Shuts down the WWDT.

This function shuts down the WWDT.

Parameters:
  • base – WWDT peripheral base address

static inline void WWDT_Enable(WWDT_Type *base)

Enables the WWDT module.

This function write value into WWDT_MOD register to enable the WWDT, it is a write-once bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will run permanently.

Parameters:
  • base – WWDT peripheral base address

static inline void WWDT_Disable(WWDT_Type *base)

Disables the WWDT module.

Deprecated:

Do not use this function. It will be deleted in next release version, for once the bit field of WDEN written with a 1, it can not be re-written with a 0.

This function write value into WWDT_MOD register to disable the WWDT.

Parameters:
  • base – WWDT peripheral base address

static inline uint32_t WWDT_GetStatusFlags(WWDT_Type *base)

Gets all WWDT status flags.

This function gets all status flags.

Example for getting Timeout Flag:

uint32_t status;
status = WWDT_GetStatusFlags(wwdt_base) & kWWDT_TimeoutFlag;

Parameters:
  • base – WWDT peripheral base address

Returns:

The status flags. This is the logical OR of members of the enumeration _wwdt_status_flags_t

void WWDT_ClearStatusFlags(WWDT_Type *base, uint32_t mask)

Clear WWDT flag.

This function clears WWDT status flag.

Example for clearing warning flag:

WWDT_ClearStatusFlags(wwdt_base, kWWDT_WarningFlag);

Parameters:
  • base – WWDT peripheral base address

  • mask – The status flags to clear. This is a logical OR of members of the enumeration _wwdt_status_flags_t

static inline void WWDT_SetWarningValue(WWDT_Type *base, uint32_t warningValue)

Set the WWDT warning value.

The WDWARNINT register determines the watchdog timer counter value that will generate a watchdog interrupt. When the watchdog timer counter is no longer greater than the value defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.

Parameters:
  • base – WWDT peripheral base address

  • warningValue – WWDT warning value.

static inline void WWDT_SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)

Set the WWDT timeout value.

This function sets the timeout value. Every time a feed sequence occurs the value in the TC register is loaded into the Watchdog timer. Writing a value below 0xFF will cause 0xFF to be loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If enableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change the timeout value before the watchdog counter is below the warning and window values will cause a watchdog reset and set the WDTOF flag.

Parameters:
  • base – WWDT peripheral base address

  • timeoutCount – WWDT timeout value, count of WWDT clock tick.

static inline void WWDT_SetWindowValue(WWDT_Type *base, uint32_t windowValue)

Sets the WWDT window value.

The WINDOW register determines the highest TV value allowed when a watchdog feed is performed. If a feed sequence occurs when timer value is greater than the value in WINDOW, a watchdog event will occur. To disable windowing, set windowValue to 0xFFFFFF (maximum possible timer value) so windowing is not in effect.

Parameters:
  • base – WWDT peripheral base address

  • windowValue – WWDT window value.

void WWDT_Refresh(WWDT_Type *base)

Refreshes the WWDT timer.

This function feeds the WWDT. This function should be called before WWDT timer is in timeout. Otherwise, a reset is asserted.

Parameters:
  • base – WWDT peripheral base address

FSL_WWDT_DRIVER_VERSION

Defines WWDT driver version.

WWDT_FIRST_WORD_OF_REFRESH

First word of refresh sequence

WWDT_SECOND_WORD_OF_REFRESH

Second word of refresh sequence

enum _wwdt_status_flags_t

WWDT status flags.

This structure contains the WWDT status flags for use in the WWDT functions.

Values:

enumerator kWWDT_TimeoutFlag

Time-out flag, set when the timer times out

enumerator kWWDT_WarningFlag

Warning interrupt flag, set when timer is below the value WDWARNINT

typedef struct _wwdt_config wwdt_config_t

Describes WWDT configuration structure.

struct _wwdt_config
#include <fsl_wwdt.h>

Describes WWDT configuration structure.

Public Members

bool enableWwdt

Enables or disables WWDT

bool enableWatchdogReset

true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause a chip reset

bool enableWatchdogProtect

true: Enable watchdog protect i.e timeout value can only be changed after counter is below warning & window values false: Disable watchdog protect; timeout value can be changed at any time

bool enableLockOscillator

true: Disabling or powering down the watchdog oscillator is prevented Once set, this bit can only be cleared by a reset false: Do not lock oscillator

uint32_t windowValue

Window value, set this to 0xFFFFFF if windowing is not in effect

uint32_t timeoutValue

Timeout value

uint32_t warningValue

Watchdog time counter value that will generate a warning interrupt. Set this to 0 for no warning

uint32_t clockFreq_Hz

Watchdog clock source frequency.